Sample records for radiosensitive normal tissues

  1. Chromosomal Radiosensitivity in Lymphocytes of Cervix Cancer Patients—Correlation with Side Effect after Radiotherapy

    NASA Astrophysics Data System (ADS)

    Wegierek-Ciuk, Aneta; Lankoff, Anna; Lisowska, Halina; Banasik-Nowak, Anna; Arabski, Michał; Kedzierawski, Piotr; Florek, Agnieszka; Wojcik, Andrzej

    2010-01-01

    It is well known that cancer patients receiving similar radiotherapy treatments differ widely in normal tissue reactions ranging from undetectable to unacceptably severe levels. Therefore, an important goal of radiobiological research is to establish a test which would allow identifying individual radiosensitivity of patients prior to radiotherapy. The aim of the presented study is to assess the relationship between lymphocyte intrinsic radiosensitivity in vitro and early reaction of normal tissue in cervix cancer patients treated by radiotherapy. The following endpoints are analyzed in vitro: frequency of micronuclei, the kinetics of DNA repair and apoptosis. Acute normal tissue reaction to radiotherapy in the skin, bladder and rectum are scored according to the EORTC/RTOG scale. Our results show a wide inter-individual variability in chromosomal radiosensitivity in vitro. The majority of patients show a Grade 0, 1 or 2 reaction for all organs studied. No statistically significant correlation has been observed between the in vitro results in lymphocytes and the degree of early normal tissue and organ reaction.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, H; Zhang, H

    Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant thatmore » represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients.« less

  3. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing.

    PubMed

    Rübe, Claudia E; Grudzenski, Saskia; Kühne, Martin; Dong, Xiaorong; Rief, Nicole; Löbrich, Markus; Rübe, Christian

    2008-10-15

    Radiotherapy is an effective cancer treatment, but a few patients suffer severe radiation toxicities in neighboring normal tissues. There is increasing evidence that the variable susceptibility to radiation toxicities is caused by the individual genetic predisposition, by subtle mutations, or polymorphisms in genes involved in cellular responses to ionizing radiation. Double-strand breaks (DSB) are the most deleterious form of radiation-induced DNA damage, and DSB repair deficiencies lead to pronounced radiosensitivity. Using a preclinical mouse model, the highly sensitive gammaH2AX-foci approach was tested to verify even subtle, genetically determined DSB repair deficiencies known to be associated with increased normal tissue radiosensitivity. By enumerating gammaH2AX-foci in blood lymphocytes and normal tissues (brain, lung, heart, and intestine), the induction and repair of DSBs after irradiation with therapeutic doses (0.1-2 Gy) was investigated in repair-proficient and repair-deficient mouse strains in vivo and blood samples irradiated ex vivo. gammaH2AX-foci analysis allowed to verify the different DSB repair deficiencies; even slight impairments caused by single polymorphisms were detected similarly in both blood lymphocytes and solid tissues, indicating that DSB repair measured in lymphocytes is valid for different and complex organs. Moreover, gammaH2AX-foci analysis of blood samples irradiated ex vivo was found to reflect repair kinetics measured in vivo and, thus, give reliable information about the individual DSB repair capacity. gammaH2AX analysis of blood and tissue samples allows to detect even minor genetically defined DSB repair deficiencies, affecting normal tissue radiosensitivity. Future studies will have to evaluate the clinical potential to identify patients more susceptible to radiation toxicities before radiotherapy.

  4. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    PubMed

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  5. The radiation response of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Mitchell, Stephen Andrew

    A clinically reliable predictive assay based on normal-tissue radiosensitivity may lead to improved tumour control through individualised dose prescriptions. In-vitro fibroblast radiosensitivity has been shown, in several studies, to correlate with late radiation morbidity. The aim of this study was to investigate some of the cellular mechanisms underlying the normal-tissue response. In this study, seventeen primary fibroblast strains were established by enzymatic disaggregation of skin biopsies obtained from patients. These comprised seven who experienced acute tissue reactions to radiotherapy, four patients with a normal response and six non-cancer volunteers. An AT cell line was included as a positive control for radiosensitivity. In-vitro radiosensitivity was measured using a clonogenic assay at both high (HDR: 1.6 Gymin-1) and low dose rate (LDR: 0.01 Gymin-1). The radiation parameter HDR SF2 was the most sensitive in discriminating the seven sensitive patients from the remaining ten normal patients (range 0.11-0.19 sensitive patients compared with 0.17-0.34 control patients: p<0.0001). Neither the use of an internal control or LDR radiation protocol increased this discrimination. Pulsed-field gel electrophoresis (PFGE) was used to measure the level of initial and residual double-strand breaks following irradiation. No correlation was found between HDR SF2 and initial DNA damage. However, a strong correlation was found between clonogenic survival and both residual DNA damage (measured over 10-70 Gy, allowing 4 h repair, correlation coefficient: 0.90, <0.0001) and the ratio of residual/initial DNA damage, with the sensitive cell lines generally showing a higher level of residual DNA damage. Cell-cycle delays were found in all 18 cell strains in response to 2 Gy irradiation, but were not found to discriminate between sensitive and normal patients. Associated studies found no mutations of the ATM gene in the five radiosensitive patients studied. However, a coding sequence alteration was found in the XRCC1 gene in one of the radiosensitive patients. These findings indicate that a DNA repair defect may be partly responsible for the extreme reactions to radiotherapy observed in a small percentage of patients and that with further modifications, an assay based on measurement of residual DNA damage may form the basis of a predictive test for radiosensitivity.

  6. Do no harm--normal tissue effects

    NASA Technical Reports Server (NTRS)

    Hall, E. J.

    2001-01-01

    Radiation therapy confers enormous benefits that must be balanced against the possibilities for harm including late toxicity in normal tissues and radiation-induced second malignancies. A small percentage of patients experience severe late complications. The question is, do these late sequelae occur randomly, or are they confined to individuals who are genetically predisposed to radiosensitivity. Experiments with knockout mice and with patients demonstrate that individuals heterozygous for a number of genes appear to be radiosensitive. If radiosensitive patients were identified prospectively by genetic analysis, they could be spared the trauma of late sequelae. Several large studies have shown a statistically significant excess of radiation-induced malignancies in radiotherapy patients. Most second cancers are carcinomas, developing in the lining cells of the body often remote from the treatment site. Radiation-induced sarcomas appear only in the heavily irradiated areas. These are small in number but appear with a very high relative risk.

  7. Radiation biology and oncology in the genomic era.

    PubMed

    Kerns, Sarah L; Chuang, Kuang-Hsiang; Hall, William; Werner, Zachary; Chen, Yuhchyau; Ostrer, Harry; West, Catharine; Rosenstein, Barry

    2018-06-14

    Radiobiology research is building the foundation for applying genomics in precision radiation oncology. Advances in high-throughput approaches will underpin increased understanding of radiosensitivity and the development of future predictive assays for clinical application. There is an established contribution of genetics as a risk factor for radiotherapy side effects. An individual's radiosensitivity is an inherited polygenic trait with an architecture that includes rare mutations in a few genes that confer large effects and common variants in many genes with small effects. Current thinking is that some will be tissue specific, and future tests will be tailored to the normal tissues at risk. The relationship between normal and tumor cell radiosensitivity is poorly understood. Data are emerging suggesting interplay between germline genetic variation and epigenetic modification with growing evidence that changes in DNA methylation regulate the radiosensitivity of cancer cells and histone acetyltransferase inhibitors have radiosensitizing effects. Changes in histone methylation can also impair DNA damage response signaling and alter radiosensitivity. An important effort to advance radiobiology in the genomic era was establishment of the Radiogenomics Consortium to enable the creation of the large radiotherapy cohorts required to exploit advances in genomics. To address challenges in harmonizing data from multiple cohorts, the consortium established the REQUITE project to collect standardized data and genotyping for ~5,000 patients. The collection of detailed dosimetric data is important to produce validated multivariable models. Continued efforts will identify new genes that impact on radiosensitivity to generate new knowledge on toxicity pathogenesis and tests to incorporate into the clinical decision-making process.

  8. The yield of DNA double strand breaks determined after exclusion of those forming from heat-labile lesions predicts tumor cell radiosensitivity to killing.

    PubMed

    Cheng, Yanlei; Li, Fanghua; Mladenov, Emil; Iliakis, George

    2015-09-01

    The radiosensitivity to killing of tumor cells and in-field normal tissue are key determinants of radiotherapy response. In vitro radiosensitivity of tumor- and normal-tissue-derived cells often predicts radiation response, but high determination cost in time and resources compromise utility as routine response-predictor. Efforts to use induction or repair of DNA double-strand-breaks (DSBs) as surrogate-predictors of cell radiosensitivity to killing have met with limited success. Here, we re-visit this issue encouraged by our recent observations that ionizing radiation (IR) induces not only promptly-forming DSBs (prDSBs), but also DSBs developing after irradiation from the conversion to breaks of thermally-labile sugar-lesions (tlDSBs). We employ pulsed-field gel-electrophoresis and flow-cytometry protocols to measure total DSBs (tDSB=prDSB+tlDSBs) and prDSBs, as well as γH2AX and parameters of chromatin structure. We report a fully unexpected and in many ways unprecedented correlation between yield of prDSBs and radiosensitivity to killing in a battery of ten tumor cell lines that is not matched by yields of tDSBs or γH2AX, and cannot be explained by simple parameters of chromatin structure. We propose the introduction of prDSBs-yield as a novel and powerful surrogate-predictor of cell radiosensitivity to killing with potential for clinical application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts

    NASA Technical Reports Server (NTRS)

    Worgul, Basil V.; Smilenov, Lubomir; Brenner, David J.; Junk, Anna; Zhou, Wei; Hall, Eric J.

    2002-01-01

    It is important to know whether the human population includes genetically predisposed radiosensitive subsets. In vitro studies have shown that cells from individuals homozygous for ataxia telangiectasia (A-T) are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene (ATM(+/-)) may be slightly more radiosensitive in vitro, it remained to be determined whether the greater susceptibility of ATM(+/-) cells translates into an increased sensitivity for late effects in vivo, though there is a suggestion that radiotherapy patients that are heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. We chose cataractogenesis in the lens as a means to assay for the effects of ATM deficiency in a late-responding tissue. One eye of wild-type, Atm heterozygous and homozygous knockout mice was exposed to 0.5-, 1.0-, 2.0-, or 4.0-Gy x rays. The animals were followed weekly for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all three groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Most important in the present context is that cataracts appeared earlier in the heterozygous versus wild-type animals. The data suggest that ATM heterozygotes in the human population may also be radiosensitive. This may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage.

  10. Development of Antioxidant COX-2 Inhibitors as Radioprotective Agents for Radiation Therapy—A Hypothesis-Driven Review

    PubMed Central

    Laube, Markus; Kniess, Torsten; Pietzsch, Jens

    2016-01-01

    Radiation therapy (RT) evolved to be a primary treatment modality for cancer patients. Unfortunately, the cure or relief of symptoms is still accompanied by radiation-induced side effects with severe acute and late pathophysiological consequences. Inhibitors of cyclooxygenase-2 (COX-2) are potentially useful in this regard because radioprotection of normal tissue and/or radiosensitizing effects on tumor tissue have been described for several compounds of this structurally diverse class. This review aims to substantiate the hypothesis that antioxidant COX-2 inhibitors are promising radioprotectants because of intercepting radiation-induced oxidative stress and inflammation in normal tissue, especially the vascular system. For this, literature reporting on COX inhibitors exerting radioprotective and/or radiosensitizing action as well as on antioxidant COX inhibitors will be reviewed comprehensively with the aim to find cross-points of both and, by that, stimulate further research in the field of radioprotective agents. PMID:27104573

  11. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts

    PubMed Central

    Worgul, Basil V.; Smilenov, Lubomir; Brenner, David J.; Junk, Anna; Zhou, Wei; Hall, Eric J.

    2002-01-01

    It is important to know whether the human population includes genetically predisposed radiosensitive subsets. In vitro studies have shown that cells from individuals homozygous for ataxia telangiectasia (A-T) are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene (ATM+/−) may be slightly more radiosensitive in vitro, it remained to be determined whether the greater susceptibility of ATM+/− cells translates into an increased sensitivity for late effects in vivo, though there is a suggestion that radiotherapy patients that are heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. We chose cataractogenesis in the lens as a means to assay for the effects of ATM deficiency in a late-responding tissue. One eye of wild-type, Atm heterozygous and homozygous knockout mice was exposed to 0.5-, 1.0-, 2.0-, or 4.0-Gy x rays. The animals were followed weekly for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all three groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Most important in the present context is that cataracts appeared earlier in the heterozygous versus wild-type animals. The data suggest that ATM heterozygotes in the human population may also be radiosensitive. This may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage. PMID:12119422

  12. Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Dong; Luo, Zhentao; Chen, Jie; Song, Shasha; Yuan, Xun; Shen, Xiu; Wang, Hao; Sun, Yuanming; Gao, Kai; Zhang, Lianfeng; Fan, Saijun; Leong, David Tai; Guo, Meili; Xie, Jianping

    2015-03-01

    Radiotherapy is often the most straightforward first line cancer treatment for solid tumors. While it is highly effective against tumors, there is also collateral damage to healthy proximal tissues especially with high doses. The use of radiosensitizers is an effective way to boost the killing efficacy of radiotherapy against the tumor while drastically limiting the received dose and reducing the possible damage to normal tissues. Here, we report the design and application of a good radiosensitizer by using ultrasmall Au29-43(SG)27-37 nanoclusters (<2 nm) with a naturally-occurring peptide (e.g., glutathione or GSH) as the protecting shell. The GSH-coated Au29-43(SG)27-37 nanoclusters can escape the RES absorption, leading to a good tumor uptake (~8.1% ID/g at 24 h post injection). As a result, the as-designed Au nanoclusters led to a strong enhancement for radiotherapy, as well as a negligible damage to normal tissues. After the treatment, the ultrasmall Au29-43(SG)27-37 nanoclusters can be efficiently cleared by the kidney, thereby avoiding potential long-term side-effects caused by the accumulation of gold atoms in the body. Our data suggest that the ultrasmall peptide-protected Au nanoclusters are a promising radiosensitizer for cancer radiotherapy.

  13. A chemical screen for medulloblastoma identifies quercetin as a putative radiosensitizer.

    PubMed

    Lagerweij, Tonny; Hiddingh, Lotte; Biesmans, Dennis; Crommentuijn, Matheus H W; Cloos, Jacqueline; Li, Xiao-Nan; Kogiso, Mari; Tannous, Bakhos A; Vandertop, W Peter; Noske, David P; Kaspers, Gertjan J L; Würdinger, Tom; Hulleman, Esther

    2016-06-14

    Treatment of medulloblastoma in children fails in approximately 30% of patients, and is often accompanied by severe late sequelae. Therefore, more effective drugs are needed that spare normal tissue and diminish long-term side effects. Since radiotherapy plays a pivotal role in the treatment of medulloblastoma, we set out to identify novel drugs that could potentiate the effect of ionizing radiation.Thereto, a small molecule library, consisting of 960 chemical compounds, was screened for its ability to sensitize towards irradiation. This small molecule screen identified the flavonoid quercetin as a novel radiosensitizer for the medulloblastoma cell lines DAOY, D283-med, and, to a lesser extent, D458-med at low micromolar concentrations and irradiation doses used in fractionated radiation schemes. Quercetin did not affect the proliferation of neural precursor cells or normal human fibroblasts. Importantly, in vivo experiments confirmed the radiosensitizing properties of quercetin. Administration of this flavonoid at the time of irradiation significantly prolonged survival in orthotopically xenografted mice. Together, these findings indicate that quercetin is a potent radiosensitizer for medulloblastoma cells that may be a promising lead for the treatment of medulloblastoma in patients.

  14. Combining the LKB NTCP model with radiosensitivity parameters to characterize toxicity of radionuclides based on a multiclonogen kidney model: a theoretical assessment.

    PubMed

    Lin, Hui; Jing, Jia; Xu, Liangfeng; Wu, Dongsheng; Xu, Yuanying

    2012-06-01

    The Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) model is often used to estimate the damage level to normal tissue. However, it does not manifestly involve the influence of radiosensitivity parameters. This work replaces the generalized mean equivalent uniform dose (gEUD) with the equivalent uniform dose (EUD) in the LKB model to investigate the effect of a variety of radiobiological parameters on the NTCP to characterize the toxicity of five types of radionuclides. The dose for 50 % complication probability (D (50)) is replaced by the corresponding EUD for 50 % complication probability (EUD(50)). The properties of a variety of radiobiological characteristics, such as biologically effective dose (BED), NTCP, and EUD, for five types of radioisotope ((131)I, (186)Re, (188)Re, (90)Y, and (67)Cu) are investigated by various radiosensitivity parameters such as intrinsic radiosensitivity α, alpha-beta ratio α/β, cell repair half-time, cell mean clonogen doubling time, etc. The high-energy beta emitters ((90)Y and (188)Re) have high initial dose rate and mean absorbed dose per injected activity in kidney, and their kidney toxicity should be of greater concern if they are excreted through kidneys. The radiobiological effect of (188)Re changes most sharply with the radiobiological parameters due to its high-energy electrons and very short physical half-life. The dose for a probability of 50% injury within 5y (D (50/5)) 28 Gy for whole-kidney irradiation should be adjusted according to different radionuclides and different radiosensitivity of individuals. The D (50/5) of individuals with low α/β or low α, or low biological clearance half-time, will be less than 28 Gy. The 50 % complication probability dose for (67)Cu and (188)Re could be 25 Gy and 22 Gy. The same mean absorbed dose generally corresponds to different degrees of damage for tissues of different radiosensitivity and different radionuclides. The influence of various radiobiological parameters should be taken into consideration in the NTCP model.

  15. EphA2 modulates radiosensitive of hepatocellular carcinoma cells via p38/mitogen-activated protein kinase-mediated signal pathways.

    PubMed

    Jin, Qiao; Li, Xiangjun; Cao, Peiguo

    2015-10-01

    This experiment was conducted to investigate the role of EPH receptor A2 (EphA2) in the modulation of radiosensitivity of hepatic cellular cancer (HCC) cells and to determine whether p38/mitogen-activated protein kinase (p38MAPK) signaling mediated EphA2 function in this respect. The protein expressions of EphA2 and phosphorylated p38MAPK were tested in HCC and normal hepatic tissues. In HCC 97H cells, EphA2 was overexpressed and knocked out by transfection with EphA2 expression vector and EphA2-ShRNA, respectively, prior to cell exposure to low-dose irradiation. Significantly upregulated EphA2 and phosphorylated p38MAPK were observed in HCC tissues, compared with those in normal hepatic tissues. Low-dose irradiation (1 Gy) only caused minor damage to HCC 97H cells, as assessed by alterations in cell viability, apoptosis rate, and cell healing capacity (p = 0.072, p = 0.078, and p = 0.069 respectively). However, EphA2 knock-out in HCC 97H cells induced significant reduction in cell viability and cell healing capacity after these cells were subjected to low-dose irradiation. Apoptosis rate underwent dramatic increase (p < 0.01). By contrast, EphA2 overexpression in HCC 97H cells reversed these effects and enhanced cell colony formation rate, thus displaying remarkable attenuation of radiosensitivity of HCC 97H cells. Further, SB203580, a specific inhibitor of p38MAPK, was added to HCC 97H cells over-expressing EphA2. The effect of EphA2 overexpression on the radiosensitivity of HCC 97H cells was abrogated. Thus, the present study indicates that EphA2 have the ability to negatively regulate the radiosensitivity of HCC 97H cells, which mainly depends on 38MAPK-mediated signal pathways. Copyright © 2015. Published by Elsevier Taiwan.

  16. Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes.

    PubMed

    López, Escarlata; Guerrero, Rosario; Núñez, Maria Isabel; del Moral, Rosario; Villalobos, Mercedes; Martínez-Galán, Joaquina; Valenzuela, Maria Teresa; Muñoz-Gámez, José Antonio; Oliver, Francisco Javier; Martín-Oliva, David; Ruiz de Almodóvar, José Mariano

    2005-01-01

    Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify the major determinants of normal tissue radiation response to make it possible to individualize treatments and improve the outcome of radiotherapy in cancer patients.

  17. Preclinical Evaluation of Genexol-PM, a Nanoparticle Formulation of Paclitaxel, as a Novel Radiosensitizer for the Treatment of Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Michael E.; Cummings, Natalie D.; Sethi, Manish

    2013-07-01

    Purpose: A key research objective in radiation oncology is to identify agents that can improve chemoradiation therapy. Nanoparticle (NP) chemotherapeutics possess several properties, such as preferential accumulation in tumors, that are uniquely suited for chemoradiation therapy. To facilitate the clinical translation of NP chemotherapeutics in chemoradiation therapy, we conducted preclinical evaluation of Genexol-PM, the only clinically approved NP chemotherapeutic with a controlled drug release profile, as a radiosensitizer using non-small cell lung cancer (NSCLC) as a model disease. Methods and Materials: The physical characteristics and drug release profile of Genexol-PM were characterized. Genexol-PM's efficacy as a radiosensitizer was evaluated inmore » vitro using NSCLC cell lines and in vivo using mouse xenograft models of NSCLC. Paclitaxel dose to normal lung and liver after Genexol-PM administration were quantified and compared with that after Taxol administration. Results: Genexol-PM has a size of 23.91 ± 0.41 nm and surface charge of −8.1 ± 3.1 mV. It releases paclitaxel in a controlled release profile. In vitro evaluation of Genexol-PM as a radiosensitizer showed it is an effective radiosensitizer and is more effective than Taxol, its small molecule counterpart, at the half maximal inhibitory concentration. In vivo study of Genexol-PM as a radiosensitizer demonstrated that it is more effective as a radiosensitizer than Taxol. We also found that Genexol-PM leads to lower paclitaxel exposure to normal lung tissue than Taxol at 6 hours postadministration. Conclusions: We have demonstrated that Genexol-PM is more effective than Taxol as a radiosensitizer in the preclinical setting and holds high potential for clinical translation. Our data support the clinical evaluation of Genexol-PM in chemoradiation therapy for NSCLC.« less

  18. Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers.

    PubMed

    Labay, Edwardine; Mauceri, Helena J; Efimova, Elena V; Flor, Amy C; Sutton, Harold G; Kron, Stephen J; Weichselbaum, Ralph R

    2016-06-07

    Radiation therapy remains a significant therapeutic modality in the treatment of cancer. An attractive strategy would be to enhance the benefits of ionizing radiation (IR)with radiosensitizers. A high-content drug repurposing screen of approved and investigational agents, natural products and other small molecules has identified multiple candidates that blocked repair of IR damage in vitro. Here, we validated a subset of these hits in vitro and then examined effects on tumor growth after IR in a murine tumor model. Based on robust radiosensitization in vivo and other favorable properties of cephalexin, we conducted additional studies with other beta-lactam antibiotics. When combined with IR, each cephalosporin tested increased DNA damage and slowed tumor growth without affecting normal tissue toxicity. Our data implicate reactive oxygen species in the mechanism by which cephalosporins augment the effects of IR. This work provides a rationale for using commonly prescribed beta-lactam antibiotics as non-toxic radiosensitizers to enhance the therapeutic ratio of radiotherapy.

  19. The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro.

    PubMed

    Chen, Feng; Zhang, Xiao Hong; Hu, Xiao Dan; Liu, Pei Dang; Zhang, Hai Qian

    2018-08-01

    Radiosensitizers that increase cancer cell radio-sensitivity can enhance the effectiveness of irradiation and minimize collateral damage. Nanomaterial has been employed in conjunction with radiotherapy as radiosensitizers, due to its unique physicochemical properties. In this article, we evaluated selenium nanoparticles (Nano-Se) as a new radiosensitizer. Nano-Se was used in conjunction with irradiation on MCF-7 breast cancer cells, and efficacy and mechanisms of this combined treatment approach were evaluated. Nano-Se reinforced the toxic effects of irradiation, leading to a higher mortality rate than either treatment used alone, inducing cell cycle arrest at the G2/M phase and the activation of autophagy, and increasing both endogenous and irradiation-induced reactive oxygen species formation. These results suggest that Nano-Se can be used as an adjuvant drug to improve cancer cell sensitivity to the toxic effects of irradiation and thereby reduce damage to normal tissue nearby.

  20. Replication-Dependent Radiosensitization of Human Glioma Cells by Inhibition of Poly(ADP-Ribose) Polymerase: Mechanisms and Therapeutic Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dungey, Fiona A.; Loeser, Dana A.; Chalmers, Anthony J.

    2008-11-15

    Purpose: Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. Methods and Materials: Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence ofmore » this effect and its therapeutic potential. Results: KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in {gamma}H2AX and Rad51 foci. Conclusion: The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.« less

  1. Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes

    PubMed Central

    López, Escarlata; Guerrero, Rosario; Núñez, Maria Isabel; del Moral, Rosario; Villalobos, Mercedes; Martínez-Galán, Joaquina; Valenzuela, Maria Teresa; Muñoz-Gámez, José Antonio; Oliver, Francisco Javier; Martín-Oliva, David; de Almodóvar, José Mariano Ruiz

    2005-01-01

    Introduction Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. Methods Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. Results Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. Conclusion After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify the major determinants of normal tissue radiation response to make it possible to individualize treatments and improve the outcome of radiotherapy in cancer patients. PMID:16168114

  2. Amelioration of Head and Neck Radiation-Induced Mucositis and Distant Marrow Suppression in Fanca-/- and Fancg-/- Mice by Intraoral Administration of GS-Nitroxide (JP4-039).

    PubMed

    Willis, John; Epperly, Michael W; Fisher, Renee; Zhang, Xichen; Shields, Donna; Hou, Wen; Wang, Hong; Li, Song; Wipf, Peter; Parmar, Kalindi; Guinan, Eva; Steinman, Justin; Greenberger, Joel S

    2018-06-01

    Squamous cell carcinomas of the head and neck are appearing with increased frequency in both marrow transplanted and non-transplanted Fanconi anemia (FA) patients. FA patients commonly display radiosensitivity of epithelial tissues, complicating effective radiotherapy. Fancd2 -/- mice (C57BL/6J and 129/Sv background) demonstrate epithelial tissue sensitivity to single-fraction or fractionated irradiation to the head and neck and distant marrow suppression (abscopal effect), both ameliorated by intraoral administration of the mitochondrial-targeted antioxidant, GS-nitroxide, JP4-039. We now report that mice of two other FA genotypes, Fancg -/- (B6) and the most prevalent human genotype Fanca -/- (129/Sv), also demonstrate: 1. reduced longevity of hematopoiesis in long-term bone marrow cultures; 2. radiosensitivity of bone marrow stromal cell lines; and 3. head and neck radiation-induced severe mucositis and abscopal suppression of distant marrow hematopoiesis. Intraoral administration of JP4-039/F15, but not non-mitochondrial-targeted 4-amino-Tempo/F15 or F15 alone, prior to each radiation treatment ameliorated both local and abscopal radiation effects. Head and neck irradiated TGF-β-resistant SMAD3 -/- (129/Sv) mice and double-knockout SMAD3 -/- Fancd2 -/- (129/Sv) mice treated daily with TGF-β receptor antagonist, LY364947, still displayed abscopal bone marrow suppression, implicating a non-TGF-β mechanism. Thus, amelioration of both local normal tissue radiosensitivity and distant marrow suppression by intraoral administration of JP4-039 in Fancg -/- and Fanca -/- mice supports a clinical trial of this locally administered normal tissue radioprotector and mitigator during head and neck irradiation in FA patients.

  3. Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers

    PubMed Central

    Flor, Amy C.; Sutton, Harold G.; Kron, Stephen J.; Weichselbaum, Ralph R.

    2016-01-01

    Radiation therapy remains a significant therapeutic modality in the treatment of cancer. An attractive strategy would be to enhance the benefits of ionizing radiation (IR)with radiosensitizers. A high-content drug repurposing screen of approved and investigational agents, natural products and other small molecules has identified multiple candidates that blocked repair of IR damage in vitro. Here, we validated a subset of these hits in vitro and then examined effects on tumor growth after IR in a murine tumor model. Based on robust radiosensitization in vivo and other favorable properties of cephalexin, we conducted additional studies with other beta-lactam antibiotics. When combined with IR, each cephalosporin tested increased DNA damage and slowed tumor growth without affecting normal tissue toxicity. Our data implicate reactive oxygen species in the mechanism by which cephalosporins augment the effects of IR. This work provides a rationale for using commonly prescribed beta-lactam antibiotics as non-toxic radiosensitizers to enhance the therapeutic ratio of radiotherapy. PMID:27129153

  4. Individualization of radiotherapy in breast cancer patients: possible usefulness of a DNA damage assay to measure normal cell radiosensitivity.

    PubMed

    Ruiz de Almodóvar, José Mariano; Guirado, Damian; Isabel Núñez, María; López, Escarlata; Guerrero, Rosario; Valenzuela, María Teresa; Villalobos, Mercedes; del Moral, Rosario

    2002-03-01

    The purpose of this study was to determine whether the distribution of sensitivities in breast cancer patients, measured using a DNA damage assay on lymphocytes, is likely to provide sufficient discrimination to enable the reliable identification of patients with abnormal sensitivities. Radiosensitivity (x) was assessed in 226 samples of lymphocytes from unselected women with breast cancer and was quantified as the initial number of DNA double-strand breaks (dsb) induced per Gy and per DNA unit (200 Mbp). The existence of an inter-individual variation in the parameter (x) is described through the range (0.40-4.72 dsb/Gy/DNA unit) of values found, which have been fitted to the mathematical model defined by the log-normal distribution (mu = 0.42+/-0.03; sigma = 0.52+/-0.03; R(2)=0.9475). A total of 189 patients received radiotherapy after surgical treatment. Among them, we have detected 15 patients who developed severe skin reactions and we have compared their radiosensitivity values with the rest of patients treated. Our results suggest that DNA initial damage measured on lymphocytes offers an approach to predict the acute response of human normal tissues prior to radiotherapy. Values of x higher than 3.20 dsb/Gy/DNA unit theoretically should correspond to the highly radio-sensitive patients. Using the experimental results, we have calculated the strength of the test by means of the area under the receiver operator characteristic curves (A(Z)) to determine whether the radiosensitivity assay can discriminate between patients according to their radiation response. The value found (A(Z)=0.675+/-0.072) is indicative of a fair-poor discriminating capacity of the test to identify the patients with higher risk of developing a severe acute reaction during the radiotherapy treatment.

  5. Sustained Radiosensitization of Hypoxic Glioma Cells after Oxygen Pretreatment in an Animal Model of Glioblastoma and In Vitro Models of Tumor Hypoxia

    PubMed Central

    Clarke, Ryon H.; Moosa, Shayan; Anzivino, Matthew; Wang, Yi; Floyd, Desiree Hunt; Purow, Benjamin W.; Lee, Kevin S.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation-resistant hypoxic cancer cells, and could serve as a safe and effective adjuvant to radiation therapy for patients with GBM. PMID:25350400

  6. Parthenolide Selectively Sensitizes Prostate Tumor Tissue to Radiotherapy while Protecting Healthy Tissues In Vivo.

    PubMed

    Morel, Katherine L; Ormsby, Rebecca J; Bezak, Eva; Sweeney, Christopher J; Sykes, Pamela J

    2017-05-01

    Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.

  7. Radiation dose rate affects the radiosensitization of MCF-7 and HeLa cell lines to X-rays induced by dextran-coated iron oxide nanoparticles.

    PubMed

    Khoshgard, Karim; Kiani, Parvaneh; Haghparast, Abbas; Hosseinzadeh, Leila; Eivazi, Mohammad Taghi

    2017-08-01

    The aim of radiotherapy is to deliver lethal damage to cancerous tissue while preserving adjacent normal tissues. Radiation absorbed dose of the tumoral cells can increase when high atomic nanoparticles are present in them during irradiation. Also, the dose rate is an important aspect in radiation effects that determines the biological results of a given dose. This in vitro study investigated the dose-rate effect on the induced radiosensitivity by dextran-coated iron oxide in cancer cells. HeLa and MCF-7 cells were cultured in vitro and incubated with different concentrations of dextran-coated iron oxide nanoparticles. They were then irradiated with 6 MV photons at dose rates of 43, 185 and 370 cGy/min. The MTT test was used to obtain the cells' survival after 48 h of irradiations. Incubating the cells with the nanoparticles at concentrations of 10, 40 and 80 μg/ml showed no significant cytotoxicity effect. Dextran-coated iron oxide nanoparticles showed more radiosensitivity effect by increasing the dose rate and nanoparticles concentration. Radiosensitization enhancement factors of MCF-7 and HeLa cells at a dose-rate of 370 cGy/min and nanoparticles' concentration of 80 μg/ml were 1.21 ± 0.06 and 1.19 ± 0.04, respectively. Increasing the dose rate of 6 MV photons irradiation in MCF-7 and HeLa cells increases the radiosensitization induced by the dextran-coated iron nanoparticles in these cells.

  8. Skull Base Tumors

    NASA Astrophysics Data System (ADS)

    Schulz-Ertner, Daniela

    In skull base tumors associated with a low radiosensitivity for conventional radiotherapy (RT), irradiation with proton or carbon ion beams facilitates a safe and accurate application of high tumor doses due to the favorable beam localization properties of these particle beams. Cranial nerves, the brain stem and normal brain tissue can at the same time be optimally spared.

  9. Radiosensitivity of fibroblasts obtained from a cafe-au-lait spot and normal-appearing skin of a patient with neurofibromatosis (NF-6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannan, M.A.; Smith, B.P.; Sigut, D.

    Fibroblast cells derived from a cafe-au-lait spot and normal-appearing skin of a neurofibromatosis (NF-6) patient were studied for radiosensitivity in comparison with two normal cell lines used as controls. No difference in radiosensitivity was observed between the patient's cell lines and the controls using acute gamma-irradiation. However, a markedly increased radiosensitivity of the fibroblasts obtained from the patient's skin of normal appearance was demonstrated after chronic gamma-irradiation. The cells from the cafe-au-lait spot showed intermediate sensitivity to chronic irradiation as compared with the control cell lines and the fibroblasts derived from the normal skin of the patient. These results showedmore » the usefulness of chronic irradiation in detecting increased cellular radiosensitivity which may result from a unique DNA repair defect in an NF patient. We suggest that enhanced genetic changes in radiosensitive NF patients may lead to formation of cafe-au-lait lesions and certain tumors. Such a transformation may be associated with production of radiotolerant cells.« less

  10. In Vivo and In Vitro Effects of ATM/ATR Signaling Pathway on Proliferation, Apoptosis, and Radiosensitivity of Nasopharyngeal Carcinoma Cells.

    PubMed

    Wang, Ming; Liu, Gang; Shan, Guo-Ping; Wang, Bing-Bing

    2017-08-01

    The study investigated the ability of ataxia-telangiectasia mutated (ATM)/Rad3-related (ATR) signaling pathway to influence the proliferation, apoptosis, and radiosensitivity of nasopharyngeal carcinoma (NPC) cells. NPC tissues and corresponding adjacent normal tissues were collected from 143 NPC patients. The NPC CNE2 cells were assigned into a control group, X-ray group, CGK-733 group, and X-ray+CGK-733 group. The mRNA levels of ATM and ATR were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and the protein levels of ATM and ATR using western blotting. The positive expression of ATM and ATR in tissues and nude mouse tumor tissues was determined by immunohistochemistry. Cell proliferation, migration, invasion, and apoptosis rates were analyzed by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, scratch test, transwell assay, and flow cytometry, respectively. A nude mouse model of NPC was established to observe tumor volume and growth. The mRNA levels of ATR and ATM and the expression of ATR and ATM protein in NPC tissues were significantly higher than those in adjacent normal tissues. The colony formation assay showed that the colony-forming rate decreased, showing radiation dose-dependent and CGK-733 concentration-dependent manners. Expression of ATM, ATR, Chk1, and Chk2 was evidently increased in the X-ray, CGK-733, and X-ray+CGK-733groups compared with the control group, and the aforementioned expression was highest in the X-ray+CGK-733 group among the four groups. The cell proliferation, invasion, and migration were decreased, tumor volume decreased and cell apoptosis increased in the X-ray, CGK-733, and X-ray+CGK-733 groups compared with the control group; the X-ray+CGK-733 group exhibited lowest cell proliferation, invasion and migration, smallest tumor volume, and highest cell apoptosis among the four groups. Inhibition of ATM/ATR signaling pathway reduces proliferation and enhances apoptosis and radiosensitivity of NPC cells.

  11. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.

    PubMed

    Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J

    2010-06-01

    As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.

  12. Tumor radiosensitization by monomethyl auristatin E: mechanism of action and targeted delivery.

    PubMed

    Buckel, Lisa; Savariar, Elamprakash N; Crisp, Jessica L; Jones, Karra A; Hicks, Angel M; Scanderbeg, Daniel J; Nguyen, Quyen T; Sicklick, Jason K; Lowy, Andrew M; Tsien, Roger Y; Advani, Sunil J

    2015-04-01

    Intrinsic tumor resistance to radiotherapy limits the efficacy of ionizing radiation (IR). Sensitizing cancer cells specifically to IR would improve tumor control and decrease normal tissue toxicity. The development of tumor-targeting technologies allows for developing potent radiosensitizing drugs. We hypothesized that the anti-tubulin agent monomethyl auristatin E (MMAE), a component of a clinically approved antibody-directed conjugate, could function as a potent radiosensitizer and be selectively delivered to tumors using an activatable cell-penetrating peptide targeting matrix metalloproteinases and RGD-binding integrins (ACPP-cRGD-MMAE). We evaluated the ability of MMAE to radiosensitize both established cancer cells and a low-passage cultured human pancreatic tumor cell line using clonogenic and DNA damage assays. MMAE sensitized colorectal and pancreatic cancer cells to IR in a schedule- and dose-dependent manner, correlating with mitotic arrest. Radiosensitization was evidenced by decreased clonogenic survival and increased DNA double-strand breaks in irradiated cells treated with MMAE. MMAE in combination with IR resulted in increased DNA damage signaling and activation of CHK1. To test a therapeutic strategy of MMAE and IR, PANC-1 or HCT-116 murine tumor xenografts were treated with nontargeted free MMAE or tumor-targeted MMAE (ACPP-cRGD-MMAE). While free MMAE in combination with IR resulted in tumor growth delay, tumor-targeted ACPP-cRGD-MMAE with IR produced a more robust and significantly prolonged tumor regression in xenograft models. Our studies identify MMAE as a potent radiosensitizer. Importantly, MMAE radiosensitization can be localized to tumors by targeted activatable cell-penetrating peptides. ©2015 American Association for Cancer Research.

  13. Tumor radiosensitization by monomethyl auristatin E: mechanism of action and targeted delivery

    PubMed Central

    Crisp, Jessica L.; Jones, Karra A.; Hicks, Angel M.; Scanderbeg, Daniel J.; Nguyen, Quyen T.; Sicklick, Jason K.; Lowy, Andrew M.; Tsien, Roger Y.; Advani, Sunil J.

    2015-01-01

    Intrinsic tumor resistance to radiotherapy limits the efficacy of ionizing radiation (IR). Sensitizing cancer cells specifically to IR would improve tumor control and decrease normal tissue toxicity. The development of tumor targeting technologies allows for developing potent radiosensitizing drugs. We hypothesized that the anti-tubulin agent monomethyl auristatin E (MMAE), a component of a clinically approved antibody-directed conjugate, could function as a potent radiosensitizer and be selectively delivered to tumors using an activatable cell penetrating peptide targeting matrix metalloproteinases and RGD binding integrins (ACPP-cRGD-MMAE). We evaluated the ability of MMAE to radiosensitize both established cancer cells and a low passage cultured human pancreatic tumor cell line using clonogenic and DNA damage assays. MMAE sensitized colorectal and pancreatic cancer cells to IR in a schedule and dose dependent manner correlating with mitotic arrest. Radiosensitization was evidenced by decreased clonogenic survival and increased DNA double strand breaks in irradiated cells treated with MMAE. MMAE in combination with IR resulted in increased DNA damage signaling and activation of CHK1. To test a therapeutic strategy of MMAE and IR, PANC-1 or HCT-116 murine tumor xenografts were treated with non-targeted free MMAE or tumor targeted MMAE (ACPP-cRGD-MMAE). While free MMAE in combination with IR resulted in tumor growth delay, tumor targeted ACPP-cRGD-MMAE with IR produced a more robust and significantly prolonged tumor regression in xenograft models. Our studies identify MMAE as a potent radiosensitizer. Importantly, MMAE radiosensitization can be localized to tumors by targeted activatable cell penetrating peptides. PMID:25681274

  14. Radiosensitivity of different tissues from carrot root at different phases of growth in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degani, N.; Pickholtz, D.

    1980-09-01

    The present work compares the effect of ..gamma..-radiation dose and time in culture on the growth of cambium and phloem carrot (Daucus carota) root explants. It was found that the phloem is more radiosensitive than the cambium and that both tissues were more radiosensitive when irradiated on excision at the G/sub 1/ phase rather than at the end of the lag phase on the ninth day of growth in culture when cells were predominantly at the G/sub 2/ phase. The nuclear volumes of cells from both tissues were similar but were larger at the end of the more radioresistant lagmore » phase than those of the G/sub 1/ phase on excision. However, nuclear volume could not account for the differences in radiosensitivity between either the tissues or irradiation times in culture.« less

  15. Germ cell loss induced by 12C6+ ion irradiation in young female mice.

    PubMed

    Zhang, Hong; Zhang, Xu; Yuan, Zhigang; Li, Xiaoda; Li, Wenjian; Zhou, Qingming; Min, Fengling; Xie, Yi; Liu, Bing; Duan, Xin

    2006-06-01

    The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of 12C6+ ion in the Bragg peak or the plateau region. At 10th day after irradiation, ovarian and uterine weights were measured; normal and atretic (identified with the oocyte to be degenerating or absent) primordial, primary and preantral follicles were identified in the largest cross-section of each ovary. Percentage (%) of normal follicles of each developmental stage of oogenesis was calculated. The data showed that compared to controls, there was a dose-related decrease in percentage of normal follicles in each developmental stage. And the weights of ovary and uterus were also reduced with doses of irradiation. Moreover, these effects were much more significant in the Bragg peak region and the region close to the Bragg peak than in the beam's entrance (the plateau region). Radiosensitivity varied in different follicle maturation stages. Primordial follicles, which are thought to be extremely sensitive to ionizing irradiation, were reduced by 86.6%, while primary and preantral follicles reduced only by 72.5% and 61.8% respectively, by exposure with 6 Gy of 12C6+ ion in the Bragg peak region and the region close to the Bragg peak. The data suggested that due to their optimal depth-dose distribution in the Bragg peak region, heavy ions are ones of the best particles for radiotherapy of tumors located next of vital organs or/and surrounded by normal tissues, especially radiosensitive tissues such as gonads.

  16. Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by siRNA silencing of tumor necrosis factor receptor-associated factor 2

    PubMed Central

    Zheng, Min; Morgan-Lappe, Susan E.; Yang, Jie; Bockbrader, Katrina M.; Pamarthy, Deepika; Thomas, Dafydd; Fesik, Stephen W.; Sun, Yi

    2008-01-01

    Radiotherapy combined with chemotherapy is the treatment of choice for glioblastoma and locally advanced lung cancer, but radioresistance of these two types of cancer remains a significant therapeutic hindrance. To identify molecular target(s) for radiosensitization, we screened a siRNA library targeting all protein kinases and E3 ubiquitin ligases in the human genome and identified TRAF2 (TNF Receptor-associated factor 2). Silencing of TRAF2 using siRNA caused a significant growth suppression of glioblastoma U251 cells and moderately sensitized these radioresistant cells to radiation. Overexpression of a RING deleted dominant negative TRAF2 mutant, also conferred radiosensitivity; whereas over-expression of wild type TRAF2 significantly protected cells from radiation-induced killing. Likewise, siRNA silencing of TRAF2 in radioresistant lung cancer H1299 cells caused growth suppression and radiosensitization, whereas overexpression of wild type TRAF2 enhanced radioresistance in a RING ligase-dependent manner. Moreover, siRNA silencing of TRAF2 in UM-SCC-1 head and neck cancer cells also conferred radiosensitization. Further support for the role of TRAF2 in cancer comes from the observations that TRAF2 is overexpressed in both lung adenocarcinoma tissues and multiple lung cancer cell lines. Importantly, TRAF2 expression was very low in normal bronchial epithelial NL20 cells, and TRAF2 silencing had a minimal effect on NL20 growth and radiation sensitivity. Mechanistically, TRAF2 silencing blocks the activation of the NF-kB signaling pathway, and down-regulates a number of G2/M cell cycle control proteins, resulting in enhanced G2/M arrest, growth suppression, and radiosensitization. Our studies suggest that TRAF2 is an attractive drug target for anti-cancer therapy and for radiosensitization. PMID:18794145

  17. Mice Lacking RIP3 Kinase are not Protected from Acute Radiation Syndrome.

    PubMed

    Castle, Katherine D; Daniel, Andrea R; Moding, Everett J; Luo, Lixia; Lee, Chang-Lung; Kirsch, David G

    2018-06-01

    Exposure to high doses of ionizing radiation can cause lethal injury to normal tissue, thus inducing acute radiation syndrome. Acute radiation syndrome is caused by depletion of bone marrow cells (hematopoietic syndrome) and irreparable damage to the epithelial cells in the gastrointestinal tract (gastrointestinal syndrome). Although radiation initiates apoptosis in the hematopoietic and gastrointestinal compartments within the first few hours after exposure, alternative mechanisms of cell death may contribute to injury in these radiosensitive tissues. In this study, we utilized mice lacking a critical regulator of necroptosis, receptor interacting protein 3 (RIP3) kinase, to characterize the role of RIP3 in normal tissue toxicity after irradiation. Our results suggest that RIP3-mediated signaling is not a critical driver of acute radiation syndrome.

  18. Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serakinci, Nedime; Christensen, Rikke; Graakjaer, Jesper

    2007-03-10

    During the past several years increasing evidence indicating that the proliferation capacity of mammalian cells is highly radiosensitive, regardless of the species and the tissue of origin of the cells, has accumulated. It has also been shown that normal bone marrow cells of mice have a similar radiosensitivity to other mammalian cells so far tested. In this study, we investigated the genetic effects of ionizing radiation (2.5-15 Gy) on normal human mesenchymal stem cells and their telomerised counterpart hMSC-telo1. We evaluated overall genomic integrity, DNA damage/repair by applying a fluorescence-detected alkaline DNA unwinding assay together with Western blot analyses formore » phosphorylated H2AX and Q-FISH was applied for investigation of telomeric damage. Our results indicate that hMSC and TERT-immortalized hMSCs can cope with relatively high doses of {gamma}-rays and that overall DNA repair is similar in the two cell lines. The telomeres were extensively destroyed after irradiation in both cell types suggesting that telomere caps are especially sensitive to radiation. The TERT-immortalized hMSCs showed higher stability at telomeric regions than primary hMSCs indicating that cells with long telomeres and high telomerase activity have the advantage of re-establishing the telomeric caps.« less

  19. The influence of non-DNA-targeted effects on carbon ion–induced low-dose hyper-radiosensitivity in MRC-5 cells

    PubMed Central

    Ye, Fei; Ning, Jing; Liu, Xinguo; Jin, Xiaodong; Wang, Tieshan; Li, Qiang

    2016-01-01

    Low-dose hyper-radiosensitivity (LDHRS) is a hot topic in normal tissue radiation protection. However, the primary causes for LDHRS still remain unclear. In this study, the impact of non-DNA-targeted effects (NTEs) on high-LET radiation–induced LDHRS was investigated. Human normal lung fibroblast MRC-5 cells were irradiated with high-LET carbon ions, and low-dose biological effects (in terms of various bio-endpoints, including colony formation, DNA damage and micronuclei formation) were detected under conditions with and without gap junctional intercellular communication (GJIC) inhibition. LDHRS was observed when the radiation dose was <0.2 Gy for all bio-endpoints under investigation, but vanished when the GJIC was suppressed. Based on the probability of cells being hit and micro-dose per cell calculation, we deduced that the LDHRS phenomenon came from the combined action of direct hits and NTEs. We concluded that GJIC definitely plays an important role in cytotoxic substance spreading in high-LET carbon ion–induced LDHRS. PMID:26559335

  20. Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.

    Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity wasmore » assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing gammaH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2mug/mL], Trinovin [10mug/mL], and Prostate Rx [50 mug/mL]). However, both Trinovin (10mug/mL) and Prostate Rx (6mug/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.« less

  1. The use of the term 'radiosensitivity' through history of radiation: from clarity to confusion.

    PubMed

    Britel, Manon; Bourguignon, Michel; Foray, Nicolas

    2018-05-01

    The term 'radiosensitivity' appeared for the first time at the beginning of the 20th century, few years after the discovery of X-rays. Initially used by French and German radiologists, it illustrated the risk of radiation-induced (RI) skin reactions. From the 1950s, 'radiosensitivity' was progressively found to describe other features of RI response such as RI cancers or cataracts. To date, such confusion may raise legal issues and complexify the message addressed to general public. Here, through an historical review, we aimed to better understand how this confusion appeared. To support our historical review, a quantitative and qualitative wording analysis of the 'radiosensitivity' occurrences and its derived terms was performed with Google books, Pubmed, Web of Science™ databases, and in all the ICRP publications. While 'radiosensitivity' was historically related to RI adverse tissue events attributable to cell death, the first efforts to quantify the RI risk specific to each organ/tissue revealed some different semantic fields that are not necessarily compatible together (e.g. adverse tissue events for skin, cataracts for eyes, RI cancer for breast or thyroid). To avoid such confusion, we propose to keep the historical definition of 'radiosensitivity' to any clinical and cellular consequences of radiation attributable to cell death and to introduce the term 'radiosusceptibility' to describe the RI cancers or any feature that is attributable to cell transformation.

  2. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: an in vitro study.

    PubMed

    Rezaee, Zohre; Yadollahpour, Ali; Bayati, Vahid; Negad Dehbashi, Fereshteh

    2017-01-01

    Radiation therapy (RT) is the gold standard treatment for more than half of known tumors. Despite recent improvements in RT efficiency, the side effects of ionizing radiation (IR) in normal tissues are a dose-limiting factor that restricts higher doses in tumor treatment. One approach to enhance the efficiency of RT is the application of radiosensitizers to selectively increase the dose at the tumor site. Gold nanoparticles (GNPs) and electroporation (EP) have shown good potential as radiosensitizers for RT. This study aims to investigate the sensitizing effects of EP, GNPs, and combined GNPs-EP on the dose enhancement factor (DEF) for 6 MV photon energy. Radiosensitizing effects of EP, GNPs, and combinations of GNPs-EP were comparatively investigated in vitro for intestinal colon cancer (HT-29) and Chinese hamster ovary (CHO) cell lines by MTT assay and colony formation assay at 6 MV photon energy in six groups: IR (control group), GNPs+IR, GNPs (24 h)+IR, EP+IR, GNPs+EP+IR, and GNPs (24 h)+EP+IR. Treatment of both cell lines with EP, GNPs, and combined GNPs-EP significantly enhanced the response of cells to irradiation. However, the HT-29 showed higher DEF values for all groups. In addition, the DEF value for HT-29 cells for GNPs+IR, GNPs (24 h)+IR, EP+IR, GNPs+EP+IR, and GNPs (24 h)+EP+IR was, respectively, 1.17, 1.47, 1.36, 2.61, and 2.89, indicating synergistic radiosensitizing effect for the GNPs (24 h)+EP+IR group. Furthermore, the synergistic effect was observed just for HT-29 tumor cell lines. Combined GNPs-EP protocols induced synergistic radiosensitizing effect in HT-29 cells, and the effect is also tumor specific. This combined therapy can be beneficially used for the treatment of intrinsically less radiosensitive tumors.

  3. Evaluation of Radioresponse and Radiosensitizers in Glioblastoma Organotypic Cultures.

    PubMed

    Bayin, N Sumru; Ma, Lin; Placantonakis, Dimitris G; Barcellos-Hoff, Mary Helen

    2018-01-01

    Glioblastoma (GBM), a deadly primary brain malignancy, manifests pronounced radioresistance. Identifying agents that improve the sensitivity of tumor tissue to radiotherapy is critical for improving patient outcomes. The response to ionizing radiation is regulated by both cell-intrinsic and -extrinsic mechanisms. In particular, the tumor microenvironment is known to promote radioresistance in GBM. Therefore, model systems used to test radiosensitizing agents need to take into account the tumor microenvironment. We recently showed that GBM explant cultures represent an adaptable ex vivo platform for rapid and personalized testing of radiosensitizers. These explants preserve the cellular composition and tissue architecture of parental patient tumors and therefore capture the microenvironmental context that critically determines the response to radiotherapy. This chapter focuses on the detailed protocol for testing candidate radiosensitizing agents in GBM explants.

  4. Treatment for Radiation-Induced Pulmonary Late Effects: Spoiled for Choice or Looking in the Wrong Direction?

    PubMed Central

    Williams, Jacqueline P.; Johnston, Carl J.; Finkelstein, Jacob N.

    2010-01-01

    Due to the radiosensitivity of the lung, toxic endpoints, in the form of radiation pneumonitis and pulmonary fibrosis, are relatively frequent outcomes following radiation treatment of thoracic neoplasms. Because of the potential lethal nature of these normal tissue reactions, they not only lead to quality-of-life issues in survivors, but also are deemed dose-limiting and thereby compromise treatment. The mitigation and treatment of lung normal tissue late effects has therefore been the goal of many investigations; however, the complexity of both the organ itself and its response to injury has resulted in little success. Nonetheless, current technology allows us to propose likely targets that are either currently being researched or should be considered in future studies. PMID:20583979

  5. Overexpression of microRNA-132 enhances the radiosensitivity of cervical cancer cells by down-regulating Bmi-1.

    PubMed

    Liu, Gui-Feng; Zhang, Shu-Hua; Li, Xue-Feng; Cao, Li-Yan; Fu, Zhan-Zhao; Yu, Shao-Nan

    2017-10-06

    We examined the effects of microRNA-132 (miR-132) on Bmi-1 expression and radiosensitivity in HeLa, SiHa, and C33A cervical cancer (CC) cells and 104 CC patients. MiR-132 expression was decreased and Bmi-1 expression was increased in tumor tissues compared to adjacent normal tissues and in radiotherapy-resistant patients compared to radiotherapy-sensitive patients. MiR-132 expression and Bmi-1 mRNA expression were also negatively correlated in tumor tissues. HeLa, SiHa, and C33A cells were divided into blank, miR-132 negative control (NC), miR-132 inhibitor, miR-132 mimics, siBmi-1, and miR-132 inhibitor + siBmi-1 groups, after which expression of miR-132 and Bmi-1, and the interaction between them and cell survival, proliferation, and apoptosis were examined. Bmi-1 was confirmed as a target of miRNA-132. Survival was higher and apoptosis lower in the miR-132 inhibitor group than the blank group after various doses of radiation. By contrast, survival was lower and apoptosis higher in the miRNA-132 mimics and siBmi-1 groups than in the blank group. Moreover, miR-132 expression increased and Bmi-1 mRNA expression decreased in each group at radiation doses of 6 and 8 Gy. Finally, co-administration of radiotherapy and exogenous miR-132 inhibited the growth of HeLa cell transplant-induced tumors in nude mice more effectively than radiotherapy alone. These results suggest overexpression of miR-132 enhances the radiosensitivity of CC cells by down-regulating Bmi-1 and that miR-132 may be a useful new target for the treatment of CC.

  6. Inhibiting DNA-PK{sub CS} radiosensitizes human osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamo, Tewodros; Mladek, Ann C.; Shogren, Kris L.

    Osteosarcoma survival rate has not improved over the past three decades, and the debilitating side effects of the surgical treatment suggest the need for alternative local control approaches. Radiotherapy is largely ineffective in osteosarcoma, indicating a potential role for radiosensitizers. Blocking DNA repair, particularly by inhibiting the catalytic subunit of DNA-dependent protein kinase (DNA-PK{sub CS}), is an attractive option for the radiosensitization of osteosarcoma. In this study, the expression of DNA-PK{sub CS} in osteosarcoma tissue specimens and cell lines was examined. Moreover, the small molecule DNA-PK{sub CS} inhibitor, KU60648, was investigated as a radiosensitizing strategy for osteosarcoma cells in vitro. DNA-PK{submore » CS} was consistently expressed in the osteosarcoma tissue specimens and cell lines studied. Additionally, KU60648 effectively sensitized two of those osteosarcoma cell lines (143B cells by 1.5-fold and U2OS cells by 2.5-fold). KU60648 co-treatment also altered cell cycle distribution and enhanced DNA damage. Cell accumulation at the G2/M transition point increased by 55% and 45%, while the percentage of cells with >20 γH2AX foci were enhanced by 59% and 107% for 143B and U2OS cells, respectively. These results indicate that the DNA-PK{sub CS} inhibitor, KU60648, is a promising radiosensitizing agent for osteosarcoma. - Highlights: • DNA-PKcs is consistently expressed in human osteosarcoma tissue and cell lines. • The DNA-PKcs inhibitor, KU60648, effectively radiosensitizes osteosarcoma cells. • Combining KU60648 with radiation increases G2/M accumulation and DNA damage.« less

  7. Metalloporphyrins and their uses as radiosensitizers for radiation therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    2004-07-06

    The present invention covers radiosensitizers containing as an active ingredient halogenated derivatives of boronated porphyrins containing multiple carborane cages having the structure ##STR1## which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies including, but not limited to, boron neutron--capture therapy and photodynamic therapy. The present invention also covers methods for using these radiosensitizers in tumor imaging and cancer treatment.

  8. DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs.

    PubMed

    Shinohara, Eric T; Geng, Ling; Tan, Jiahui; Chen, Heidi; Shir, Yu; Edwards, Eric; Halbrook, James; Kesicki, Edward A; Kashishian, Adam; Hallahan, Dennis E

    2005-06-15

    DNA-dependent protein kinase (DNA-PK)-defective severe combined immunodeficient (SCID) mice have a greater sensitivity to ionizing radiation compared with wild-type mice due to deficient repair of DNA double-strand break. SCID cells were therefore studied to determine whether radiosensitization by the specific inhibitor of DNA-PK, IC87361, is eliminated in the absence of functional DNA-PK. IC87361 enhanced radiation sensitivity in wild-type C57BL6 endothelial cells but not in SCID cells. The tumor vascular window model was used to assess IC87361-induced radiosensitization of SCID and wild-type tumor microvasculature. Vascular density was 5% in irradiated SCID host compared with 50% in C57BL6 mice (P < 0.05). IC87361 induced radiosensitization of tumor microvasculature in wild-type mice that resembled the radiosensitive phenotype of tumor vessels in SCID mice. Radiosensitization by IC87361 was eliminated in SCID tumor vasculature, which lack functional DNA-PK. Irradiated LLC and B16F0 tumors implanted into SCID mice showed greater tumor growth delay compared with tumors implanted into either wild-type C57BL6 or nude mice. Furthermore, LLC tumors treated with radiation and IC87361 showed tumor growth delay that was significantly greater than tumors treated with radiation alone (P < 0.01 for 3 Gy alone versus 3 Gy + IC87361). DNA-PK inhibitors induced no cytotoxicity and no toxicity in mouse normal tissues. Mouse models deficient in enzyme activity are useful to assess the specificity of novel kinase inhibitors. DNA-PK is an important target for the development of novel radiation-sensitizing drugs that have little intrinsic cytotoxicity.

  9. Comparison of microwave and magnetic nanoparticle hyperthermia radiosensitization in murine breast tumors

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Petryk, Alicia A.; Hoopes, Paul J.

    2011-03-01

    Hyperthermia has been shown to be an effective radiosensitizer. Its utility as a clinical modality has been limited by a minimally selective tumor sensitivity and the inability to be delivered in a tumor-specific manner. Recent in vivo studies (rodent and human) have shown that cancer cell-specific cytotoxicity can be effectively and safely delivered via iron oxide magnetic nanoparticles (mNP) and an appropriately matched noninvasive alternating magnetic field (AMF). To explore the tumor radiosensitization potential of mNP hyperthermia we used a syngeneic mouse breast cancer model, dextran-coated 110 nm hydrodynamic diameter mNP and a 169 kHz / 450 Oe (35.8 kA/m) AMF. Intradermally implanted (flank) tumors (150 +/- 40 mm3) were treated by injection of 0.04 ml mNP (7.5 mg Fe) / cm3 into the tumor and an AMF (35.8 kA/m and 169 kHz) exposure necessary to achieve a CEM (cumulative equivalent minute) thermal dose of 60 (CEM 60). Tumors were treated with mNP hyperthermia (CEM 60), radiation alone (15 Gy, single dose) and in combination. Compared to the radiation and heat alone treatments, the combined treatment resulted in a greater than two-fold increase in tumor regrowth tripling time (tumor treatment efficacy). None of the treatments resulted in significant normal tissue toxicity or morbidity. Studies were also conducted to compare the radiosensitization effect of mNP hyperthermia with that of microwave-induced hyperthermia. The effects of incubation of nanoparticles within tumors (to allow nanoparticles to be endocytosed) before application of AMF and radiation were determined. This preliminary information suggests cancer cell specific hyperthermia (i.e. antibody-directed or anatomically-directed mNP) is capable of providing significantly greater radiosensitization / therapeutic ratio enhancement than other forms of hyperthermia delivery.

  10. Effect of hyperthermia on the repair of sublethal radiation damage in normal and membrane fatty acid substituted fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolters, H.; Kelholt, D.; Konings, A.W.

    1987-02-01

    The interaction of heat and X irradiation was studied in normal and polyunsaturated fatty acid (PUFA) substituted mouse fibroblast LM cells. As a result of the substitution the membranes of the PUFA cells were more fluid than the membranes of the normal cells. Three different heat doses were applied (60 min 42 degrees C, 20 min 43 degrees C, and 10 min 44 degrees C) in combination with single or split doses of X rays. Heat radiosensitization was the largest for the 60 min 42 degrees C treatment. Heat radiosensitization and the heat-induced inhibition of the rate of sublethal damagemore » repair were the same for the normal and the PUFA cells. It is concluded from the experiments reported that the processes of hyperthermic inhibition of SLD repair and hyperthermic radiosensitization are independent of membrane fluidity and membrane fatty acid composition.« less

  11. Localized delivery of chemotherapy to the cervix for radiosensitization.

    PubMed

    Hodge, Lucy S; Downs, Levi S; Chura, Justin C; Thomas, Sajeena G; Callery, Patrick S; Soisson, A Patrick; Kramer, Paul; Wolfe, Stephen S; Tracy, Timothy S

    2012-10-01

    Chemoradiation is the mainstay of therapy for advanced cervical cancer, with the most effective treatment regimens involving combinations of radiosensitizing agents. However, administration of radiosensitizing chemotherapeutics concurrently with pelvic radiation is not without side effects. The aim of this study was to examine the utility of localized drug delivery as a means of improving drug targeting of radiosensitizing chemotherapeutics to the cervix while limiting systemic toxicities. An initial proof-of-concept study was performed in 14 healthy women following local administration of diazepam utilizing a novel cervical delivery device (CerviPrep™). Uterine vein and peripheral blood samples were collected and diazepam was measured using a GC-MS method. In the follow-up study, gemcitabine was applied to the cervix in 17 women undergoing hysterectomy for various gynecological malignancies. Cervical tissue, uterine vein blood samples, and peripheral plasma were collected, and gemcitabine and its deaminated metabolite 2',2'-difluorodeoxyuridine (dFdU) were measured using HPLC-UV and LC/MS methods. Targeted delivery of diazepam to the cervix was consistent with parent drug detectable in the uterine vein of 13 of 14 women. In the second study, pharmacologically relevant concentrations of gemcitabine (0.01-6.6 nmol/g tissue) were detected in the cervical tissue of 11 of 16 available specimens with dFdU measureable in 15 samples (0.04-8.8 nmol/g tissue). Neither gemcitabine nor its metabolites were detected in the peripheral plasma of any subject. Localized drug delivery to the cervix is possible and may be useful in limiting toxicity associated with intravenous administration of chemotherapeutics for radiosensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines.

    PubMed

    Chen, Xuan; Wang, Cong; Guan, Shanghui; Liu, Yuan; Han, Lihui; Cheng, Yufeng

    2016-07-01

    Telomerase is a type of reverse transcriptase that is overexpressed in almost all human tumor cells, but not in normal tissues, which provides an opportunity for radiosensitization targeting telomerase. Zidovudine, abacavir and lamivudine are reverse transcriptase inhibitors that have been applied in clinical practice for several years. We sought to explore the radiosensitization effect of these three drugs on human esophageal cancer cell lines. Eca109 and Eca9706 cells were treated with zidovudine, abacavir and lamivudine for 48 h before irradiation was administered. Samples were collected 1 h after irradiation. Clonal efficiency assay was used to evaluate the effect of the combination of these drugs with radiation doses of 2, 4, 6 and 8 Gy. DNA damage was measured by comet assay. Telomerase activity (TA) and relative telomere length (TL) were detected and evaluated by real-time PCR. Apoptosis rates were assessed by flow cytometric analysis. The results showed that all the drugs tested sensitized the esophageal squamous cell carcinoma (ESCC) cell lines to radiation through an increase in radiation-induced DNA damage and cell apoptosis, deregulation of TA and decreasing the shortened TL caused by radiation. Each of the drugs investigated (zidovudine, abacavir and lamivudine) could be used for sensitizing human esophageal cancer cell lines to radiation. Consequently, the present study supports the potential of these three drugs as therapeutic agents for the radiosensitization of esophageal squamous cell cancer.

  13. Effect of anemia on tumor radiosensitivity under normo and hyperbaric conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas, A.; Stewart, F.A.; Smith, K.A.

    1987-11-01

    The effect of chronic anemia on tumor radiosensitivity in a murine tumor has been investigated. Anemia was induced by bilateral kidney irradiation given several months before tumor implantation. Anemic, anemic transfused, and normal non-anemic age-matched tumor bearing animals were irradiated with X rays (2 F/24 hr) either in air, air plus misonidazole, or under hyperbaric oxygen. The most resistant response was that of tumors grown in normal mice treated in air. Anemia produced an increase in radiosensitivity which was further enhanced by red blood cell replacement. The most sensitive overall response was seen in the anemic-transfused group treated with HBO.

  14. GS-Nitroxide (JP4-039)-Mediated Radioprotection of Human Fanconi Anemia Cell Lines

    PubMed Central

    Bernard, Mark E.; Kim, Hyun; Berhane, Hebist; Epperly, Michael W.; Franicola, Darcy; Zhang, Xichen; Houghton, Frank; Shields, Donna; Wang, Hong; Bakkenist, Christopher J.; Frantz, Marie-Celine; Forbeck, Erin M.; Goff, Julie P.; Wipf, Peter; Greenberger, Joel S.

    2011-01-01

    Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG–/– (PD326) and FancD2–/– (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2–/– cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG–/– cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2–/– cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2–/– cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients. PMID:21939290

  15. GS-nitroxide (JP4-039)-mediated radioprotection of human Fanconi anemia cell lines.

    PubMed

    Bernard, Mark E; Kim, Hyun; Berhane, Hebist; Epperly, Michael W; Franicola, Darcy; Zhang, Xichen; Houghton, Frank; Shields, Donna; Wang, Hong; Bakkenist, Christopher J; Frantz, Marie-Celine; Forbeck, Erin M; Goff, Julie P; Wipf, Peter; Greenberger, Joel S

    2011-11-01

    Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG(-/-) (PD326) and FancD2(-/-) (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2(-/-) cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG(-/-) cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2(-/-) cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2(-/-) cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients.

  16. Radiation Enhancement of Head and Neck Squamous Cell Carcinoma by the Dual PI3K/mTOR Inhibitor PF-05212384

    PubMed Central

    Leiker, Andrew J.; DeGraff, William; Choudhuri, Rajani; Sowers, Anastasia L.; Thetford, Angela; Cook, John A.; Van Waes, Carter; Mitchell, James B.

    2015-01-01

    Purpose Radiation remains a mainstay for the treatment of non-metastatic head and neck squamous cell carcinoma (HNSCC), a malignancy characterized by a high rate of PI3K/mTOR signaling axis activation. We investigated the ATP-competitive dual PI3K/mTOR inhibitor, PF-05212384, as a radiosensitizer in pre-clinical HNSCC models. Experimental Design Extent of radiation enhancement of two HNSCC cell lines (UMSCC1-wtP53, UMSCC46-mtP53) and normal human fibroblast (1522) was assessed by in vitro clonogenic assay with appropriate target inhibition verified by immunoblotting. Radiation induced DNA damage repair was evaluated by γH2AX western blots with mechanism of DNA-DSB repair abrogation investigated by cell cycle analysis, immunoblotting, and RT-PCR. PF-05212384 efficacy in vivo was assessed by UMSCC1 xenograft tumor regrowth delay, xenograft lysate immunoblotting, and tissue section immunohistochemistry. Results PF-05212384 effectively inhibited PI3K and mTOR resulting in significant radiosensitization of exponentially growing and plateau-phase cells with 24 hr treatment following irradiation, and variable radiation enhancement with 24 hr treatment prior to irradiation. Tumor cells radiosensitized to a greater extent than normal human fibroblasts. Post-irradiation PF-05212384 treatment delays γ-H2AX foci resolution. PF-05212384 24 hr exposure resulted in an evident G1/S phase block in p53 competent cells. Fractionated radiation plus IV PF-05212384 synergistically delayed nude-mice bearing UMSCC1 xenograft regrowth, with potential drug efficacy biomarkers identified, including pS6, pAkt, p4EBP1, and Ki67. Conclusions Taken together, our results of significant radiosensitization both in vitro and in vivo validates the PI3K/mTOR axis as a radiation modification target and PF-05212384 as a potential clinical radiation modifier of non-metastatic HNSCC. PMID:25724523

  17. Differentiation and radiosensitivity of hemopoietic stem cells of mice during hypokinesia

    NASA Technical Reports Server (NTRS)

    Shvets, V. N.

    1980-01-01

    The potential for differentiation and radiosensitivity of the stem hemopoietic cells (KOE) under conditions of initial and later hypokinesia is examined. It is established that in the initial period of hypokinesia (3 days) when a stress reaction prevails, changes occur in the erythroid differentiation and radiosensitivity of KOE. This effect is associated with redistribution of T-lymphocytes that increase in number in the bone marrow of mice during hypokinesia. At later periods of hypokinesia (30 days) when changes in the organism are related to hypokinesia proper, differentiation and radiosensitivity of KOE were normalized.

  18. Upregulation of Long Noncoding RNA Small Nucleolar RNA Host Gene 18 Promotes Radioresistance of Glioma by Repressing Semaphorin 5A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Rong; Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian; Yao, Qiwei

    Purpose: Although increasing evidence has shown that long noncoding RNAs play an important regulatory role in carcinogenesis and tumor progression, little is known about the role of small nucleolar RNA host gene 18 (SNHG18) in cancer. The goal of this study was to investigate the expression of SNHG18 and its clinical significance in glioma. Methods and Materials: Differences in the lncRNA expression profile between M059K and M059J cells were assessed by lncRNA expression microarray analysis. The expression and localization of SNHG18 in glioma cells or tissues was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH),more » respectively. the clinical associations of SNHG18 in glioma was evaluated by qRT-PCR, ISH and immunohistochemistry. The role of SNHG18 in glioma radiosensitivity was evaluated by colony formation assays, immunofluorescence, Western blot and tumor growth inhibition study. Results: The present study investigated the clinical associations of SNHG18 and its role in glioma. Our results showed that the expression of SNHG18 was remarkably upregulated in clinical glioma tissues compared with normal brain tissues. SNHG18 expression was associated with the clinical tumor grade and correlated negatively with isocitrate dehydrogenase 1 mutation. In addition, knockdown of SNHG18 with short hairpin RNA suppressed the radioresistance of glioma cells, and transgenic expression of SNHG18 had the opposite effect. Furthermore, xenograft tumors grown from cells with SNHG18 deletion were more radiosensitive than tumors grown from control cells. Further studies revealed that SNHG18 promotes radioresistance by inhibiting semaphorin 5A and that inhibition of semaphorin 5A expression abrogated the radiosensitizing effect caused by SNHG18 deletion. Conclusions: Our findings provide new insights into the role of SNHG18 in glioma and suggest its potential as a target for glioma therapy.« less

  19. Gene Expression Profile Analysis as a Prognostic Indicator of Normal Tissue Response to Simulated Space Radiations

    NASA Technical Reports Server (NTRS)

    Story, Michael; Stivers, David N.

    2004-01-01

    This project was funded as a pilot project to determine the feasibility of using gene expression profiles to characterize the response of human cells to exposure to particulate radiations such as those encountered in the spaceflight environment. We proposed to use microarray technology to examine the gene expression patterns of a bank of well-characterized human fibroblast cell cultures. These fibroblast cultures were derived from breast or head and neck cancer patients who exhibited normal, minimal, or severe normal tissue reactions following low LET radiation exposure via radiotherapy. Furthermore, determination of SF2 values from fibroblasts cultured from these individuals were predictive of risk for severe late reactions. We hypothesized that by determining the expression of thousands of genes we could identify gene expression patterns that reflect how normal tissues respond to high Z and energy (HZE) particles, that is, that there are molecular signatures for HZE exposures. We also hypothesized that individuals who are intrinsically radiosensitive may elicit a unique response. Because this was funded as a pilot project we focused our initial studies on logistics and appropriate experimental design, and then to test our hypothesis that there is a unique molecular response to specific particles, in this case C and Fe, for primary human skin fibroblasts.

  20. Radiosensitization by inhibiting STAT1 in renal cell carcinoma.

    PubMed

    Hui, Zhouguang; Tretiakova, Maria; Zhang, Zhongfa; Li, Yan; Wang, Xiaozhen; Zhu, Julie Xiaohong; Gao, Yuanhong; Mai, Weiyuan; Furge, Kyle; Qian, Chao-Nan; Amato, Robert; Butler, E Brian; Teh, Bin Tean; Teh, Bin S

    2009-01-01

    Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. The expressions of STAT1 and STAT3 in 164 human clear cell RCC samples, 47 papillary RCC samples, and 15 normal kidney tissue samples were examined by microarray expression profiling and immunohistochemistry. Western blotting was performed to evaluate the total and phosphorylated STAT1 expression in CRL-1932 (786-O) (human clear cell RCC), SKRC-39 (human papillary RCC), CCL-116 (human fibroblast), and CRL-1441 (G-401) (human Wilms tumor). STAT1 was reduced or inhibited by fludarabine and siRNA, respectively, and the effects on radiation-induced cell death were investigated using clonogenic assays. STAT1 expression, but not STAT3 expression, was significantly greater in human RCC samples (p = 1.5 x 10(-8) for clear cell; and p = 3.6 x 10(-4) for papillary). Similarly, the expression of STAT1 was relatively greater in the two RCC cell lines. STAT1 expression was reduced by both fludarabine and siRNA, significantly increasing the radiosensitivity in both RCC cell lines. This is the first study reporting the overexpression of STAT1 in human clear cell and papillary RCC tissues. Radiosensitization in RCC cell lines was observed by a reduction or inhibition of STAT1 signaling, using fludarabine or siRNA. Our data suggest that STAT1 may play a key role in RCC radioresistance and manipulation of this pathway may enhance the efficacy of radiotherapy.

  1. Enhancement of radiotherapy by ceria nanoparticles modified with neogambogic acid in breast cancer cells

    PubMed Central

    Chen, Feng; Zhang, Xiao Hong; Hu, Xiao Dan; Zhang, Wei; Lou, Zhi Chao; Xie, Li Hua; Liu, Pei Dang; Zhang, Hai Qian

    2015-01-01

    Radiotherapy is one of the main strategies for cancer treatment but has significant challenges, such as cancer cell resistance and radiation damage to normal tissue. Radiosensitizers that selectively increase the susceptibility of cancer cells to radiation can enhance the effectiveness of radiotherapy. We report here the development of a novel radiosensitizer consisting of monodispersed ceria nanoparticles (CNPs) covered with the anticancer drug neogambogic acid (NGA-CNPs). These were used in conjunction with radiation in MCF-7 breast cancer cells, and the efficacy and mechanisms of action of this combined treatment approach were evaluated. NGA-CNPs potentiated the toxic effects of radiation, leading to a higher rate of cell death than either treatment used alone and inducing the activation of autophagy and cell cycle arrest at the G2/M phase, while pretreatment with NGA or CNPs did not improve the rate of radiation-induced cancer cells death. However, NGA-CNPs decreased both endogenous and radiation-induced reactive oxygen species formation, unlike other nanomaterials. These results suggest that the adjunctive use of NGA-CNPs can increase the effectiveness of radiotherapy in breast cancer treatment by lowering the radiation doses required to kill cancer cells and thereby minimizing collateral damage to healthy adjacent tissue. PMID:26316742

  2. Effects of low-level chronic irradiation on radiosensitivity of mammals: modeling and experimental studies

    NASA Astrophysics Data System (ADS)

    Smirnova, O. A.; Yonezawa, M.

    Effects of low dose rate chronic irradiation on radiosensitivity of mammals mice are studied by experimental and modeling methods Own and reference experiments show that priming chronic low-level short-term and long-term exposures to radiation induce respectively elevated radiosensitivity and lowered radiosensitivity radioresistance in mice The manifestation of these radiosensitization and radioprotection effects are respectively increased and decreased mortality of preirradiated specimens after challenge acute irradiation in comparison with those for previously unexposed ones Taking into account that the reason of the animal death in the experiments was the hematopoietic syndrome the biophysical models of the critical body system hematopoiesis are used to simulate the dynamics of the major hematopoietic lines in mice exposed to challenge acute irradiation following the chronic one Juxtaposition of the modeling results obtained and the relevant experimental data shows that the radiosensitization effect of chronic low-level short-term less than 1 month preirradiation on mice is due to increased radiosensitivity of lymphopoietic granulocytopoietic and erythropoietic systems accompanied by increased or close to the normal level radiosensitivity of thrombocytopoietic system which are induced by the above-indicated exposure In turn the radioprotection effect of chronic low-level long-term more than 1 month preirradiation on mice is caused by decreased radiosensitivity radioresistance of the granulocytopoietic system which

  3. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies.

    PubMed

    Jain, Suneil; Coulter, Jonathan A; Hounsell, Alan R; Butterworth, Karl T; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Dickson, Glenn R; Prise, Kevin M; Currell, Fred J; O'Sullivan, Joe M; Hirst, David G

    2011-02-01

    Gold nanoparticles (GNPs) have been shown to cause sensitization with kilovoltage (kV) radiation. Differences in the absorption coefficient between gold and soft tissue, as a function of photon energy, predict that maximum enhancement should occur in the kilovoltage (kV) range, with almost no enhancement at megavoltage (MV) energies. Recent studies have shown that GNPs are not biologically inert, causing oxidative stress and even cell death, suggesting a possible biological mechanism for sensitization. The purpose of this study was to assess GNP radiosensitization at clinically relevant MV X-ray energies. Cellular uptake, intracellular localization, and cytotoxicity of GNPs were assessed in normal L132, prostate cancer DU145, and breast cancer MDA-MB-231 cells. Radiosensitization was measured by clonogenic survival at kV and MV photon energies and MV electron energies. Intracellular DNA double-strand break (DSB) induction and DNA repair were determined and GNP chemosensitization was assessed using the radiomimetic agent bleomycin. GNP uptake occurred in all cell lines and was greatest in MDA-MB-231 cells with nanoparticles accumulating in cytoplasmic lysosomes. In MDA-MB-231 cells, radiation sensitizer enhancement ratios (SERs) of 1.41, 1.29, and 1.16 were achieved using 160 kVp, 6 MV, and 15 MV X-ray energies, respectively. No significant effect was observed in L132 or DU145 cells at kV or MV energies (SER 0.97-1.08). GNP exposure did not increase radiation-induced DSB formation or inhibit DNA repair; however, GNP chemosensitization was observed in MDA-MB-231 cells treated with bleomycin (SER 1.38). We have demonstrated radiosensitization in MDA-MB-231 cells at MV X-ray energies. The sensitization was cell-specific with comparable effects at kV and MV energies, no increase in DSB formation, and GNP chemopotentiation with bleomycin, suggesting a possible biological mechanism of radiosensitization. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. TOPK modulates tumour-specific radiosensitivity and correlates with recurrence after prostate radiotherapy

    PubMed Central

    Pirovano, Giacomo; Ashton, Thomas M; Herbert, Katharine J; Bryant, Richard J; Verrill, Clare L; Cerundolo, Lucia; Buffa, Francesca M; Prevo, Remko; Harrap, Iona; Ryan, Anderson J; Macaulay, Valentine; McKenna, William G; Higgins, Geoff S

    2017-01-01

    Background: Tumour-specific radiosensitising treatments may enhance the efficacy of radiotherapy without exacerbating side effects. In this study we determined the radiation response following depletion or inhibition of TOPK, a mitogen-activated protein kinase kinase family Ser/Thr protein kinase that is upregulated in many cancers. Methods: Radiation response was studied in a wide range of cancer cell lines and normal cells using colony formation assays. The effect on cell cycle progression was assessed and the relationship between TOPK expression and therapeutic efficacy was studied in a cohort of 128 prostate cancer patients treated with radical radiotherapy. Results: TOPK knockdown did not alter radiation response in normal tissues, but significantly enhanced radiosensitivity in cancer cells. This result was recapitulated in TOPK knockout cells and with the TOPK inhibitor, OTS964. TOPK depletion altered the G1/S transition and G2/M arrest in response to radiation. Furthermore, TOPK depletion increased chromosomal aberrations, multinucleation and apoptotic cell death after irradiation. These results suggest a possible role for TOPK in the radiation-induced DNA damage checkpoints. These findings have clinical relevance, as elevated TOPK protein expression was associated with poorer clinical outcomes in prostate cancer patients treated with radical radiotherapy. Conclusions: This study demonstrates that TOPK disruption may cause tumour-specific radiosensitisation in multiple different tumour types. PMID:28677687

  5. TOPK modulates tumour-specific radiosensitivity and correlates with recurrence after prostate radiotherapy.

    PubMed

    Pirovano, Giacomo; Ashton, Thomas M; Herbert, Katharine J; Bryant, Richard J; Verrill, Clare L; Cerundolo, Lucia; Buffa, Francesca M; Prevo, Remko; Harrap, Iona; Ryan, Anderson J; Macaulay, Valentine; McKenna, William G; Higgins, Geoff S

    2017-08-08

    Tumour-specific radiosensitising treatments may enhance the efficacy of radiotherapy without exacerbating side effects. In this study we determined the radiation response following depletion or inhibition of TOPK, a mitogen-activated protein kinase kinase family Ser/Thr protein kinase that is upregulated in many cancers. Radiation response was studied in a wide range of cancer cell lines and normal cells using colony formation assays. The effect on cell cycle progression was assessed and the relationship between TOPK expression and therapeutic efficacy was studied in a cohort of 128 prostate cancer patients treated with radical radiotherapy. TOPK knockdown did not alter radiation response in normal tissues, but significantly enhanced radiosensitivity in cancer cells. This result was recapitulated in TOPK knockout cells and with the TOPK inhibitor, OTS964. TOPK depletion altered the G 1 /S transition and G 2 /M arrest in response to radiation. Furthermore, TOPK depletion increased chromosomal aberrations, multinucleation and apoptotic cell death after irradiation. These results suggest a possible role for TOPK in the radiation-induced DNA damage checkpoints. These findings have clinical relevance, as elevated TOPK protein expression was associated with poorer clinical outcomes in prostate cancer patients treated with radical radiotherapy. This study demonstrates that TOPK disruption may cause tumour-specific radiosensitisation in multiple different tumour types.

  6. KPU-300, a Novel Benzophenone–Diketopiperazine–Type Anti-Microtubule Agent with a 2-Pyridyl Structure, Is a Potent Radiosensitizer That Synchronizes the Cell Cycle in Early M Phase

    PubMed Central

    Okuyama, Kohei; Kaida, Atsushi; Hayashi, Yoshiki; Hayashi, Yoshio; Harada, Kiyoshi; Miura, Masahiko

    2015-01-01

    KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cytometric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pattern. Most of these cells were positive for an M phase marker, the phosphorylated form of histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quiescent fraction also responded after recruitment to the growth fraction. When such drug-treated cells were irradiated in monolayer, a remarkable radiosensitization was observed. To determine whether this radiosensitization was truly due to the synchronization in M phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and cells in early M phase isolated by a combined method that took advantage of shake-off and the properties of the Fucci system. Following normalization against the surviving fraction of cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase coincided. Taken together with potential vascular disrupting function in vivo, we propose a novel radiosensitizing strategy using KPU-300. PMID:26716455

  7. KPU-300, a Novel Benzophenone-Diketopiperazine-Type Anti-Microtubule Agent with a 2-Pyridyl Structure, Is a Potent Radiosensitizer That Synchronizes the Cell Cycle in Early M Phase.

    PubMed

    Okuyama, Kohei; Kaida, Atsushi; Hayashi, Yoshiki; Hayashi, Yoshio; Harada, Kiyoshi; Miura, Masahiko

    2015-01-01

    KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cytometric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pattern. Most of these cells were positive for an M phase marker, the phosphorylated form of histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quiescent fraction also responded after recruitment to the growth fraction. When such drug-treated cells were irradiated in monolayer, a remarkable radiosensitization was observed. To determine whether this radiosensitization was truly due to the synchronization in M phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and cells in early M phase isolated by a combined method that took advantage of shake-off and the properties of the Fucci system. Following normalization against the surviving fraction of cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase coincided. Taken together with potential vascular disrupting function in vivo, we propose a novel radiosensitizing strategy using KPU-300.

  8. TGF{beta}1 polymorphisms and late clinical radiosensitivity in patients treated for gynecologic tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruyck, Kim de; Van Eijkeren, Marc; Claes, Kathleen

    2006-07-15

    Purpose: To investigate the association between six transforming growth factor {beta}1 gene (TGF{beta}1) polymorphisms (-1.552delAGG, -800G>A, -509C>T, Leu10Pro, Arg25Pro, Thr263Ile) and the occurrence of late normal tissue reactions after gynecologic radiotherapy (RT). Methods and Materials: Seventy-eight women with cervical or endometrial cancer and 140 control individuals were included in the study. According to the Common Terminology Criteria for Adverse Events version 3.0 (CTCAEv3.0) scale, 25 patients showed late adverse RT reactions (CTC2+), of whom 11 had severe complications (CTC3+). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), single base extension and genotyping assays were performed to examine the polymorphic sites inmore » TGF{beta}1. Results: Homozygous variant -1.552delAGG, -509TT, and 10Pro genotypes were associated with the risk of developing late severe RT reactions. Triple (variant) homozygous patients had a 3.6 times increased risk to develop severe RT reactions (p = 0.26). Neither the -800A allele, nor the 25Pro allele or the 263Ile allele were associated with clinical radiosensitivity. There was perfect linkage disequilibrium (LD) between the -1.552delAGG and the -509C>T polymorphisms, and tight LD between the -1.552/-509 and the Leu10Pro polymorphisms. Haplotype analysis revealed two major haplotypes but could not distinguish radiosensitive from nonradiosensitive patients. Conclusions: The present study shows that homozygous variant TGF{beta}1 -1.552delAGG, -509TT, and 10Pro genotypes may be associated with severe clinical radiosensitivity after gynecologic RT.« less

  9. Predicting normal tissue radiosensitivity

    NASA Astrophysics Data System (ADS)

    Dickson, Jeanette

    Two methods of predicting normal cell radiosensitivity were investigated in different patient groups. Plasma transforming growth factor beta one (TGFbeta1) levels were measured by ELISA, using a commercially available kit. Residual DNA double strand breaks were measured in normal epidermal fibroblasts following 150 Gy. After allowing 24 hours for repair, the DNA damage was assayed using pulsed field gel electrophoresis (PFGE). Pretreatment plasma TGFbeta1 levels were investigated retrospectively in patients with carcinoma of the cervix in relation to tumour control and late morbidity following radiotherapy. Plasma TGFbeta1 levels increased with increasing disease stage. They also correlated with two other known measures of tumour burden i.e. plasma levels of carcinoma antigen 125 (CA125) and tissue polypeptide antigen (TPA). Elevated pretreatment plasma TGFbeta1 levels predicted for a poor outcome both in terms of local control and overall survival. Plasma TGF?l levels did not predict for the development of radiotherapy morbidity of any grade. In conclusion pre-treatment plasma TGFbeta1 levels predict for tumour burden and tumour outcome in patients with carcinoma of the cervix. Changes in plasma TGFbeta1 levels measured prospectively may predict for radiation morbidity and should be investigated. A prospective study was undertaken in patients with carcinoma of the head and neck region. Changes in plasma TGFbeta1 levels between the start and the end of a course of radical radiotherapy were investigated in relation to the development of acute radiation toxicity. Patients were categorised according to the pattern of response of their TGFbeta1 levels over the course of their treatment. Those patients whose TGFbeta1 levels decreased, but did not normalise during radiotherapy were assigned to category 2. Category 2 predicted for a severe acute reaction, as measured using the LENT SOMA score, with a sensitivity of 33% and a specificity of 100%. The positive predictive value of was 100%. As part of the validation of the commercially available TGFbeta1 kit, samples were obtained from sixty-six normal volunteers with a wide age distribution. This large series demonstrated an unexpected age-related rise in TGFbeta1 levels that had not been previously demonstrated in the literature. In breast carcinoma patients, two assays were performed retrospectively. Both pre-treatment plasma TGFbeta1 levels and residual DNA double strand breaks (measured using PFGE) were correlated with clinical outcome. Outcome was in the form of a total LENT SOMA score and late radiation fibrosis score, as measured by clinical palpation. No relationship was demonstrated between either pretreatment TGFbeta1 levels or residual DNA double strand breaks and late radiotherapy outcome. This failed to validate a similar series of patients investigated in the same department using the same technique. This work has shown that measurement of residual DNA double strand breaks using PFGE is not sufficiently robust to be used clinically as a predictor of normal tissue radioresponse. In conclusion, changes in TGFbeta1 plasma levels occurring over time during a course of radical radiotherapy, hold promise for the development of a rapid test of intrinsic radiosensitivity.

  10. BMI-1 suppression increases the radiosensitivity of oesophageal carcinoma via the PI3K/Akt signaling pathway.

    PubMed

    Yang, Xing-Xiao; Ma, Ming; Sang, Mei-Xiang; Zhang, Xue-Yuan; Liu, Zhi-Kun; Song, Heng; Zhu, Shu-Chai

    2018-02-01

    B-cell‑specific Moloney murine leukaemia virus integration site-1 (BMI-1) contributes to the growth of tumour cells post-irradiation (IR). The aim of the present study was to characterize the effects of BMI-1 on cell viability, radiosensitivity and its mechanisms of action in oesophageal squamous cell cancer (ESCC). Western blotting and immunohistochemistry were employed to evaluate the protein expression of BMI-1 in ESCC cells and specimens, respectively. Additionally, the protein expression levels of BMI-1, H2AK119ub and γH2AX in ESCC cells were detected following different doses of IR and at different times after IR. The protein expression levels of MDC1 and 53BP1 were also measured. Flow cytometry and MTT assays were used to determine cell cycle progression, apoptosis and cell viability. The phosphatidylinositol 3-kinase inhibitor LY294002 and the agonist IGF-1 were employed to suppress or induce the phosphorylation of Akt to determine whether BMI-1 induces radioresistance in ESCC cells via activation of the PI3K/Akt pathway. The expression of BMI-1 was higher in ESCC tissues and cells compared with that in normal oesophageal tissues and cells. In addition, BMI-1 was positively related to tumour size and lymph node metastases and negatively to the overall survival of ESCC patients. IR induced the expression of BMI-1, H2AK119ub and γH2AX in a dose- and time-dependent manner. BMI-1 knockdown lowered the expression of γH2AX, MDC1 and 53BP1, suppressed cell viability and increased radiosensitivity. G2/M phase arrest was eliminated; this was followed by an increased proportion of cells entering the G0/G1 phase after IR and BMI-1 knockdown via the upregulation of P16 and downregulation of cyclin D2 and cyclin-dependent kinase-4. Moreover, BMI-1 knockdown increased cell apoptosis, downregulated MCL-1 and p-Akt and upregulated Bax. Additionally, the inhibitory effect of the downregulation of p-Akt by LY294002 on tumour cell viability was identical to that of BMI-1 knockdown, while the kinase agonist IGF-1 reversed the effects of BMI-1 knockdown on cell viability and radiosensitivity. Taken together, BMI-1 knockdown induces radiosensitivity in ESCC and significantly inhibits cell viability, which may contribute to an increased proportion of cells in the G0/G1 phase and cell apoptosis via suppression of the PI3K/Akt signalling pathway.

  11. Radiosensitization of HNSCC cells by EGFR inhibition depends on the induction of cell cycle arrests

    PubMed Central

    Kriegs, Malte; Kasten-Pisula, Ulla; Riepen, Britta; Hoffer, Konstantin; Struve, Nina; Myllynen, Laura; Braig, Friederike; Binder, Mascha; Rieckmann, Thorsten; Grénman, Reidar; Petersen, Cordula; Dikomey, Ekkehard; Rothkamm, Kai

    2016-01-01

    The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells. PMID:27281611

  12. Association between genetic polymorphisms in the XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, and MGMT genes and radiosensitivity in breast cancer patients.

    PubMed

    Mangoni, Monica; Bisanzi, Simonetta; Carozzi, Francesca; Sani, Cristina; Biti, Giampaolo; Livi, Lorenzo; Barletta, Emanuela; Costantini, Adele Seniori; Gorini, Giuseppe

    2011-09-01

    Clinical radiosensitivity varies considerably among patients, and radiation-induced side effects developing in normal tissue can be therapy limiting. Some single nucleotide polymorphisms (SNPs) have been shown to correlate with hypersensitivity to radiotherapy. We conducted a prospective study of 87 female patients with breast cancer who received radiotherapy after breast surgery. We evaluated the association between acute skin reaction following radiotherapy and 11 genetic polymorphisms in DNA repair genes: XRCC1 (Arg399Gln and Arg194Trp), XRCC3 (Thr241Met), XPD (Asp312Asn and Lys751Gln), MSH2 (gIVS12-6T>C), MLH1 (Ile219Val), MSH3 (Ala1045Thr), MGMT (Leu84Phe), and in damage-detoxification GSTM1 and GSTT1 genes (allele deletion). Individual genetic polymorphisms were determined by polymerase chain reaction and single nucleotide primer extension for single nucleotide polymorphisms or by a multiplex polymerase chain reaction assay for deletion polymorphisms. The development of severe acute skin reaction (moist desquamation or interruption of radiotherapy due to toxicity) associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for cumulative biologically effective radiation dose. Radiosensitivity developed in eight patients and was increased in carriers of variants XRCC3-241Met allele (hazard ratio [HR] unquantifiably high), MSH2 gIVS12-6nt-C allele (HR=53.36; 95% confidence intervals [95% CI], 3.56-798.98), and MSH3-1045Ala allele (HR unquantifiably high). Carriers of XRCC1-Arg194Trp variant allele in combination with XRCC1-Arg399Gln wild-type allele had a significant risk of radiosensitivity (HR=38.26; 95% CI, 1.19-1232.52). To our knowledge, this is the first report to find an association between MSH2 and MSH3 genetic variants and the development of radiosensitivity in breast cancer patients. Our findings suggest the hypothesis that mismatch repair mechanisms may be involved in cellular response to radiotherapy. Genetic polymorphisms may be promising candidates for predicting acute radiosensitivity, but further studies are necessary to confirm our findings. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Słonina, Dorota, E-mail: z5slonin@cyfronet.pl; Biesaga, Beata; Janecka, Anna

    Purpose: In our previous study, using the micronucleus assay, a low-dose hyper-radiosensitivity (HRS)-like phenomenon was observed for normal fibroblasts of 2 of the 40 cancer patients investigated. In this article we report, for the first time, the survival response of primary fibroblasts from 25 of these patients to low-dose irradiation and answer the question regarding the effect of G2-phase enrichment on HRS elicitation. Methods and Materials: The clonogenic survival of asynchronous as well as G2-phase enriched fibroblast populations was measured. Separation of G2-phase cells and precise cell counting was performed using a fluorescence-activated cell sorter. Sorted and plated cells weremore » irradiated with single doses (0.1-4 Gy) of 6-MV x-rays. For each patient, at least 4 independent experiments were performed, and the induced-repair model was fitted over the whole data set to confirm the presence of HRS effect. Results: The HRS response was demonstrated for the asynchronous and G2-phase enriched cell populations of 4 patients. For the rest of patients, HRS was not defined in either of the 2 fibroblast populations. Thus, G2-phase enrichment had no effect on HRS elicitation. Conclusions: The fact that low-dose hyper-radiosensitivity is not a common effect in normal human fibroblasts implies that HRS may be of little consequence in late-responding connective tissues with regard to radiation fibrosis.« less

  14. Host cell reactivation of gamma-irradiated adenovirus 5 in human cell lines of varying radiosensitivity.

    PubMed Central

    Eady, J. J.; Peacock, J. H.; McMillan, T. J.

    1992-01-01

    DNA repair processes play an important role in the determination of radiation response in both normal and tumour cells. We have investigated one aspect of DNA repair in a number of human cell lines of varying radiosensitivity using the adenovirus 5 host cell reactivation assay (HCR). In this technique, gamma-irradiated virions are used to infect cells and the ability of the cellular repair systems to process this damage is assayed by a convenient immunoperoxidase method recognising viral structural antigen expression on the cell membrane 48 h after infection. Reduced HCR was exhibited by radioresistant HeLa cells and by a radiosensitive neuroblastoma cell line, HX142. In contrast, an ataxia telangiectasia cell line, AT5 BIVA, did not show reduced HCR. On the basis of these results we can make no general conclusions about the relevance of HCR to cellular radiosensitivity. We have extended these studies to determine whether our cell lines exhibited enhanced viral reactivation (ER) following a small priming dose of gamma-radiation given to the cells before viral infection. No evidence for this phenomenon was found either in normal or tumour cell lines. PMID:1637659

  15. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression andmore » radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.« less

  16. Chromosome damage and cell proliferation rates in in vitro irradiated whole blood as markers of late radiation toxicity after radiation therapy to the prostate.

    PubMed

    Beaton, Lindsay A; Ferrarotto, Catherine; Marro, Leonora; Samiee, Sara; Malone, Shawn; Grimes, Scott; Malone, Kyle; Wilkins, Ruth C

    2013-04-01

    In vitro irradiated blood samples from prostate cancer patients showing late normal tissue damage were examined for lymphocyte response by measuring chromosomal aberrations and proliferation rate. Patients were selected from a randomized trial evaluating the optimal timing of dose-escalated radiation and short-course androgen deprivation therapy. Of 438 patients, 3% experienced grade 3 late radiation proctitis and were considered to be radiosensitive. Blood samples were taken from 10 of these patients along with 20 matched samples from patients with grade 0 proctitis. The samples were irradiated at 6 Gy and, along with control samples, were analyzed for dicentric chromosomes and excess fragments per cell. Cells in first and second metaphase were also enumerated to determine the lymphocyte proliferation rate. At 6 Gy, there were statistically significant differences between the radiosensitive and control cohorts for 3 endpoints: the mean number of dicentric chromosomes per cell (3.26 ± 0.31, 2.91 ± 0.32; P=.0258), the mean number of excess fragments per cell (2.27 ± 0.23, 1.43 ± 0.37; P<.0001), and the proportion of cells in second metaphase (0.27 ± 0.10, 0.46 ± 0.09; P=.0007). These results may be a valuable indicator for identifying radiosensitive patients and for tailoring radiation therapy. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  17. Effect of hydrocortisone on radiosensitivity of hemopoietic stem cells. [. gamma. rays; mice; bone marrow; spleen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvets, V.N.

    Studies were made of the direction of differentiation and radiosensitivity of CFU (colony-forming units) of bone marrow and spleen for 1 month after single injection of 5 mg hydrocortisone (HC) per mouse. It was found that there was a sharp change in direction of differentiation of CFU from different sources. Bone marrow CFU enhanced erythropoiesis and CFU of the spleen enhanced myelopoiesis, which is not inherent in the same CFU of normal mice. Determination of radiosensitivity of CFU from different sources according to the spleen colony test failed to demonstrate any differences in value of D/sub 0/ and extrapolation number,more » whereas substantial changes in radiosensitivity were demonstrated in the bone marrow colony test. Radiosensitivity of marrow CFU diminished while that of the spleen increased, as compared to the control. It is assumed that these phenomena are due to redistribution of T lymphocytes in response to HC.« less

  18. Computed Tomography Demonstration of the Production and Distribution of Oxygen Gas Following Intratumoral Injection of a New Radiosensitizer (KORTUC) for Patients with Breast Cancer-Is Intratumoral Injection Not an Ideal Approach to Solve the Major Problem of Tumor Hypoxia in Radiotherapy?

    PubMed

    Hayashi, Naoya; Ogawa, Yasuhiro; Kubota, Kei; Okino, Kazuhiro; Akima, Ryo; Morita-Tokuhiro, Shiho; Tsuzuki, Akira; Yaogawa, Shin; Nishioka, Akihito; Miyamura, Mitsuhiko

    2016-04-01

    We previously developed a new enzyme-targeting radiosensitization treatment named Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas, Type II (KORTUC II), which contains hydrogen peroxide and sodium hyaluronate for injection into various types of tumors. For breast cancer treatment, the radiosensitization agent was injected into the tumor tissue twice a week under ultrasonographic guidance, immediately prior to each administration of radiation therapy. At approximately three hours after the second or third injection, computed tomography (CT) was performed to confirm the production and distribution of oxygen gas generated from the KORTUC radiosensitization agent by catalysis of peroxidases contained mainly in tumor tissue. The purpose of this study was to demonstrate that tumor hypoxia could be overcome by such a procedure and to evaluate the method of intratumoral injection in terms of confirming oxygen distribution in the target tumor tissue and around the tumor to be visualized on dedicated CT imaging. Three-dimensional reconstructed maximum intensity projection imaging of contrast-enhanced breast magnetic resonance imaging was used to compare the position of the tumor and that of the generated oxygen. Distributed oxygen gas was confirmed in the tumor tissue and around it in all 10 patients examined in the study. A region of oxygen gas was measured as an average value of -457.2 Hounsfield units (HU) as a region of interest. A slightly increased HU value compared to the density of air or oxygen was considered due to the presence of tumor tissue in the low-density area on 5-mm-thick reconstructed CT imaging. The results of this study showed that intratumoral oxygen was successfully produced by intratumoral KORTUC injection under ultrasonographic guidance, and that tumor hypoxia, which is considered a main cause of radioresistance in currently used Linac (linear accelerator) radiation therapy for malignant neoplasms, could be resolved by this method.

  19. The XPO1 inhibitor Selinexor inhibits translation and enhances the radiosensitivity of glioblastoma cells grown in vitro and in vivo.

    PubMed

    Wahba, Amy; Rath, Barbara H; O'Neill, John W; Camphausen, Kevin; Tofilon, Philip J

    2018-06-04

    Analysis of the radiation-induced translatome of glioblastoma stem-like cells (GSCs) identified an interacting network in which XPO1 serves as a major hub protein. To determine whether this nuclear export protein provides a target for radiosensitization, we defined the effects of the clinically relevant XPO1 inhibitor Selinexor on the radiosensitivity of glioblastoma cells. As determined by clonogenic survival analysis, Selinexor enhanced the radiosensitivity of GSCs but not normal fibroblast cell lines. Based on γH2AX foci and neutral comet analyses, Selinexor inhibited the repair of radiation-induced DNA double strand breaks in GSCs suggesting that the Selinexor-induced radiosensitization is mediated by an inhibition of DNA repair. Consistent with a role for XPO1 in the nuclear to cytoplasm export of rRNA, Selinexor reduced 5S and 18S rRNA nuclear export in GSCs, which was accompanied by a decrease in gene translation efficiency, as determined from polysome profiles, as well as in protein synthesis. In contrast, rRNA nuclear export and protein synthesis were not reduced in normal cells treated with Selinexor. Orthotopic xenografts initiated from a GSC line were then used to define the in vivo response to Selinexor and radiation. Treatment of mice bearing orthotopic xenografts with Selinexor decreased tumor translational efficiency as determined from polysome profiles. Although Selinexor treatment alone had no effect on the survival of mice with brain tumors, it significantly enhanced the radiation-induced prolongation of survival. These results indicate that Selinexor enhances the radiosensitivity of glioblastoma cells and suggest that this effect involves a global inhibition of gene translation. Copyright ©2018, American Association for Cancer Research.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangoni, Monica; Bisanzi, Simonetta; Carozzi, Francesca

    Purpose: Clinical radiosensitivity varies considerably among patients, and radiation-induced side effects developing in normal tissue can be therapy limiting. Some single nucleotide polymorphisms (SNPs) have been shown to correlate with hypersensitivity to radiotherapy. We conducted a prospective study of 87 female patients with breast cancer who received radiotherapy after breast surgery. We evaluated the association between acute skin reaction following radiotherapy and 11 genetic polymorphisms in DNA repair genes: XRCC1 (Arg399Gln and Arg194Trp), XRCC3 (Thr241Met), XPD (Asp312Asn and Lys751Gln), MSH2 (gIVS12-6T>C), MLH1 (Ile219Val), MSH3 (Ala1045Thr), MGMT (Leu84Phe), and in damage-detoxification GSTM1 and GSTT1 genes (allele deletion). Methods and Materials: Individualmore » genetic polymorphisms were determined by polymerase chain reaction and single nucleotide primer extension for single nucleotide polymorphisms or by a multiplex polymerase chain reaction assay for deletion polymorphisms. The development of severe acute skin reaction (moist desquamation or interruption of radiotherapy due to toxicity) associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for cumulative biologically effective radiation dose. Results: Radiosensitivity developed in eight patients and was increased in carriers of variants XRCC3-241Met allele (hazard ratio [HR] unquantifiably high), MSH2 gIVS12-6nt-C allele (HR = 53.36; 95% confidence intervals [95% CI], 3.56-798.98), and MSH3-1045Ala allele (HR unquantifiably high). Carriers of XRCC1-Arg194Trp variant allele in combination with XRCC1-Arg399Gln wild-type allele had a significant risk of radiosensitivity (HR = 38.26; 95% CI, 1.19-1232.52). Conclusions: To our knowledge, this is the first report to find an association between MSH2 and MSH3 genetic variants and the development of radiosensitivity in breast cancer patients. Our findings suggest the hypothesis that mismatch repair mechanisms may be involved in cellular response to radiotherapy. Genetic polymorphisms may be promising candidates for predicting acute radiosensitivity, but further studies are necessary to confirm our findings.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, S.E.

    Hereditary anemias of mice are the chief objects of investigation, specificially four macrocytic anemias, 3 types of hemolytic anemia, nonhemolytic microcytic anemia, transitory siderocytic anemia, sex-linked iron-transport anemia, the autoimmune hemolytic anemia of NZB mice, an ..cap alpha..-thalassemia and a new hypochromic anemia with hemochromatosis. New types of anemia may be analyzed as new mutations appear. Three new mutations have been identified during the past 18 months. These anemias are studied through characterization of peripheral blood values, determinations of radiosensitivity under a variety of conditions, measurements of iron metabolism and heme synthesis, study of normal and abnormal erythrocyte membrane proteins,more » histological and biochemical characterization of blood-forming tissue, functional tests of the stem-cell component, examination of responses to erythroid stimuli, and transplantation of tissue and parabiosis between individuals of differently affected genotypes. 31 refs.« less

  2. The Prospective Role of Plant Products in Radiotherapy of Cancer: A Current Overview

    PubMed Central

    Hazra, Banasri; Ghosh, Subhalakshmi; Kumar, Amit; Pandey, B. N.

    2012-01-01

    Treatment of cancer often requires exposure to radiation, which has several limitations involving non-specific toxicity toward normal cells, reducing the efficacy of treatment. Efforts are going on to find chemical compounds which would effectively offer protection to the normal tissues after radiation exposure during radiotherapy of cancer. In this regard, plant-derived compounds might serve as “leads” to design ideal radioprotectors/radiosensitizers. This article reviews some of the recent findings on prospective medicinal plants, phytochemicals, and their analogs, based on both in vitro and in vivo tumor models especially focused with relevance to cancer radiotherapy. Also, pertinent discussion has been presented on the molecular mechanism of apoptotic death in relation to the oxidative stress in cancer cells induced by some of these plant samples and their active constituents. PMID:22291649

  3. Cisplatin radiosensitizes radioresistant human mesenchymal stem cells.

    PubMed

    Rühle, Alexander; Perez, Ramon Lopez; Glowa, Christin; Weber, Klaus-Josef; Ho, Anthony D; Debus, Jürgen; Saffrich, Rainer; Huber, Peter E; Nicolay, Nils H

    2017-10-20

    Cisplatin-based chemo-radiotherapy is widely used to treat cancers with often severe therapy-associated late toxicities. While mesenchymal stem cells (MSCs) were shown to aid regeneration of cisplatin- or radiation-induced tissue lesions, the effect of the combined treatment on the stem cells remains unknown. Here we demonstrate that cisplatin treatment radiosensitized human bone marrow-derived MSCs in a dose-dependent manner and increased levels of radiation-induced apoptosis. However, the defining stem cell properties of MSCs remained largely intact after cisplatin-based chemo-radiation, and stem cell motility, adhesion, surface marker expression and the characteristic differentiation potential were not significantly influenced. The increased cisplatin-mediated radiosensitivity was associated with a cell cycle shift of MSCs towards the radiosensitive G2/M phase and increased residual DNA double-strand breaks. These data demonstrate for the first time a dose-dependent radiosensitization effect of MSCs by cisplatin. Clinically, the observed increase in radiation sensitivity and subsequent loss of regenerative MSCs may contribute to the often severe late toxicities observed after cisplatin-based chemo-radiotherapy in cancer patients.

  4. Development of a Hypoxic Radiosensitizer-Prodrug Liposome Delivery DNA Repair Inhibitor Dbait Combination with Radiotherapy for Glioma Therapy.

    PubMed

    Liu, Hongmei; Cai, Yifan; Zhang, Yafei; Xie, Yandong; Qiu, Hui; Hua, Lei; Liu, Xuejiao; Li, Yuling; Lu, Jun; Zhang, Longzhen; Yu, Rutong

    2017-06-01

    Gliomas are highly radioresistant tumors, mainly due to hypoxia in the core region of the gliomas and efficient DNA double-strand break repair. However, the design of a radiosensitizer incorporating the two above mechanisms is difficult and has rarely been reported. Thus, this study develops a hypoxic radiosensitizer-prodrug liposome (MLP) to deliver the DNA repair inhibitor Dbait (MLP/Dbait) to achieve the simultaneous entry of radiosensitizers with two different mechanisms into the glioma. MLP/Dbait effectively sensitizes glioma cells to X-ray radiotherapy (RT). Histological and microscopic examinations of dissected brain tissue confirm that MLP effectively delivers Dbait into the glioma. Furthermore, the combination of MLP/Dbait with RT significantly inhibits growth of the glioma, as assessed by in vivo bioluminescence imaging. These findings suggest that MLP is a promising candidate as a Dbait delivery system to enhance the effect of RT on glioma, owing to the synergistic effects of the two different radiosensitizers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats.

    PubMed

    Liu, Guochao; Wang, Hui; Zhang, Fengmei; Tian, Youjia; Tian, Zhujun; Cai, Zuchao; Lim, David; Feng, Zhihui

    2017-05-10

    This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function.

  6. The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats

    PubMed Central

    Liu, Guochao; Wang, Hui; Zhang, Fengmei; Tian, Youjia; Tian, Zhujun; Cai, Zuchao; Lim, David; Feng, Zhihui

    2017-01-01

    This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function. PMID:28489060

  7. Radioresistance in murine solid tumors induced by interleukin-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braunschweiger, P.G.; Basrur, V.; Santos, O.

    1996-02-01

    Interleukin-1 (IL-1) has radioprotective activity in hematopoietic lineages and in other normal cell renewal systems, but little is known about the effects of IL-1{alpha} on the radiosensitivity of tumor cell populations. The present studies were conducted to investigate the effects of IL-1{alpha} on the radiosensitivity of clonogenic cells in RIF-1 and SCC-7 tumors. Radioresistance was detected within 2-4 h after administration of IL-1{alpha} (0.5 {mu}g/mouse, ip) and characterized by increases in D{sub 0}, D{sub q}, {alpha}/{Beta} and SF2. This radioresistance was similar to that seen in tumors rendered totally hypoxic before X irradiation. Tirapazamine, a hypoxic cell cytotoxin, and IL-1{alpha}more » had synergistic schedule-dependent antitumor activity in vivo, suggesting that IL-1-induced radioresistance in vivo is due to hypoxia. Radioresistance induced by IL-1{alpha} was transient, and the data suggested reoxygenation within 12 h. In vitro, IL-1{alpha} had no direct effect on the radiosensitivity of SCC-7 cells in tissue culture under aerobic conditions. However, an increase in D{sub 0}, {alpha}/{Beta} and SF2 was seen in clonogenic tumor cells from primary cultures treated with IL-1{alpha} under aerobic conditions. Superoxide dismutase and catalase prevented the induction of radioresistance by IL-1{alpha} in vitro, suggesting that oxidative responses from tumor macrophages after administration of IL-1{alpha} may be responsible for induced radioresistance by IL-1 in vitro. Although oxidant stress induced by IL-1 may play an important role in the activity of IL-1{alpha} both in vivo and in vitro in our models, the mechanisms by which such responses modulate tumor radiosensitivity in vivo and in vitro are likely quite different. 32 refs., 6 figs., 1 tab.« less

  8. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies.

    PubMed

    Lesueur, Paul; Chevalier, François; Austry, Jean-Baptiste; Waissi, Waisse; Burckel, Hélène; Noël, Georges; Habrand, Jean-Louis; Saintigny, Yannick; Joly, Florence

    2017-09-15

    Poly-(ADP-Ribose)-Polymerase (PARP) inhibitors are becoming important actors of anti-neoplasic agents landscape, with recent but narrow FDA's approvals for ovarian BRCA mutated cancers and prostatic cancer. Nevertheless, PARP inhibitors are also promising drugs for combined treatments particularly with radiotherapy. More than seven PARP inhibitors have been currently developed. Central Role of PARP in DNA repair, makes consider PARP inhibitor as potential radiosensitizers, especially for tumors with DNA repair defects, such as BRCA mutation, because of synthetic lethality. Furthermore the replication-dependent activity of PARP inhibitor helps to maintain the differential effect between tumoral and healthy tissues. Inhibition of chromatin remodeling, G2/M arrest, vasodilatory effect induced by PARP inhibitor, also participate to their radio-sensitization effect. Here, after highlighting mechanisms of PARP inhibitors radiosensitization we methodically searched PubMed, Google Scholar, Cochrane Databases and meeting proceedings for human pre-clinical and clinical studies that evaluated PARP inhibitor radiosensitizing effect. Enhancement ratio, when available, was systematically reported. Sixty four studies finally met our selection criteria and were included in the analysis. Only three pre-clinical studies didn't find any radiosensitizing effect. Median enhancement ratio vary from 1,3 for prostate tumors to 1,5 for lung cancers. Nine phase I or II trials assessed safety data. PARP inhibitors are promising radiosensitizers, but need more clinical investigation. The next ten years will be determining for judging their real potential.

  9. In Vitro Detection of Characteristic Differences in Radiation Sensitivity of Female Genital Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUDOVICI, PETER P.; MILLER, NORMAN F.

    1962-01-01

    BS>By a standardized assay technic in which cell monolayers were irradiated at different dose levels (100 to 1200 r) on the 4th culture day and cell counts carried out 4 days later, the radiation sensitivities of 37 cell strains, derived from female patients with various genital cancers and from normal individuals, were assessed. These 37 cell strains had certain patterns of radiation sensitivity which, in general, appear to be consistent with the generally accepted radiosensitivity of the tumors from which the cell strains arose. Cell strains from squamous-cell carcinomas of the cervix as a group were at least twice asmore » sensitive as those from other squamous-cell carcinomas of the female genital tract. Cell strains derived from carcinomas of the ovary, vagina, and vulva were almost equally resistant to radiation. As expected, cell strains derived from benign tissues were the most highly resistant to radiation, normal fibroblastic strains being more resistant than normal epithelial strains. (H.H.D.)« less

  10. New measurements for hadrontherapy and space radiation: biology

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.

    2001-01-01

    The dual goals of optimizing clinical efficacy of hadrontherapy and determining radiation risk estimates for space research have intersected to a common focus for investigation of the biological effects of charged particles. This paper briefly highlights recent international progress at accelerator facilities engaged in both biological and clinical studies of the effects of particle beams, primarily protons, carbon and iron ions. Basic mechanisms of molecular, cellular and tissue responses continue under investigation for radiations with a range of ionization densities. Late normal tissue effects, including the risk of cancer in particular, are of importance for both research fields. International cooperation has enhanced the rate of progress as evidenced by recent publications. Specific areas of biomedical research related to the biological radiotoxicity of critical organs (especially the central nervous system), individual radiosensitivities to radiation carcinogenesis, and the analysis of effects in mixed radiation fields still require more research. Recommendations for addressing these issues are made.

  11. The radiobiology of laser-driven particle beams: focus on sub-lethal responses of normal human cells

    NASA Astrophysics Data System (ADS)

    Manti, L.; Perozziello, F. M.; Borghesi, M.; Candiano, G.; Chaudhary, P.; Cirrone, G. A. P.; Doria, D.; Gwynne, D.; Leanza, R.; Prise, K. M.; Romagnani, L.; Romano, F.; Scuderi, V.; Tramontana, A.

    2017-03-01

    Accelerated proton beams have become increasingly common for treating cancer. The need for cost and size reduction of particle accelerating machines has led to the pioneering investigation of optical ion acceleration techniques based on laser-plasma interactions as a possible alternative. Laser-matter interaction can produce extremely pulsed particle bursts of ultra-high dose rates (>= 109 Gy/s), largely exceeding those currently used in conventional proton therapy. Since biological effects of ionizing radiation are strongly affected by the spatio-temporal distribution of DNA-damaging events, the unprecedented physical features of such beams may modify cellular and tissue radiosensitivity to unexplored extents. Hence, clinical applications of laser-generated particles need thorough assessment of their radiobiological effectiveness. To date, the majority of studies have either used rodent cell lines or have focussed on cancer cell killing being local tumour control the main objective of radiotherapy. Conversely, very little data exist on sub-lethal cellular effects, of relevance to normal tissue integrity and secondary cancers, such as premature cellular senescence. Here, we discuss ultra-high dose rate radiobiology and present preliminary data obtained in normal human cells following irradiation by laser-accelerated protons at the LULI PICO2000 facility at Laser Lab Europe, France.

  12. [Dose rate-dependent cellular and molecular effects of ionizing radiation].

    PubMed

    Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew

    2008-09-11

    The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.

  13. Combined treatment with D-allose, docetaxel and radiation inhibits the tumor growth in an in vivo model of head and neck cancer

    PubMed Central

    Hoshikawa, Hiroshi; Kamitori, Kazuyo; Indo, Kanako; Mori, Terushige; Kamata, Mizuna; Takahashi, Tomoko; Tokuda, Masaaki

    2018-01-01

    The present study was designed to evaluate the effect of one rare sugar, D-allose, on normal human cells and cutaneous tissue, and to investigate the radiosensitizing and chemosensitizing potential of D-allose in an in vivo model of head and neck cancer. Results indicated that D-allose did not inhibit the growth of normal human fibroblasts TIG-1 cells, and no apoptotic changes were observed after D-allose and D-glucose treatment. The mRNA expression levels of thioredoxin interacting protein (TXNIP) in TIG-1 cells after D-allose treatment increased by 2-fold (50.4 to 106.5). Conversely, the mRNA expression levels of TXNIP in HSC3 cancer cells increased by 74-fold (1.5 to 110.6), and the thioredoxin (TRX)/TXNIP ratio was markedly reduced from 61.7 to 1.4 following D-allose treatment. Combined multiple treatments with docetaxel, radiation and D-allose resulted in the greatest antitumor response in the in vivo model. Hyperkeratosis, epidermal thickening and tumor necrosis factor-α immunostaining were observed following irradiation treatment, but these pathophysiological reactions were reduced following D-allose administration. Thus, the present findings suggest that D-allose may enhance the antitumor effects of chemoradiotherapy whilst sparing normal tissues. PMID:29456721

  14. Inhibiting CD146 by its Monoclonal Antibody AA98 Improves Radiosensitivity of Cervical Cancer Cells.

    PubMed

    Cheng, Huawen

    2016-09-20

    BACKGROUND Cervical cancer is one of the major causes of cancer death of females worldwide. Radiotherapy is considered effective for cervical cancer treatment, but the low radiosensitivity found in some cases severely affects therapeutic outcomes. This study aimed to reveal the role of CD146, an important adhesion molecule facilitating tumor angiogenesis, in regulating radiosensitivity of cervical cancer cells. MATERIAL AND METHODS CD146 protein expression was compared in normal cells, cervical cancer cells with lower radiosensitivity, and cervical cancer cells with higher sensitivity from cervical squamous cell carcinoma patients. Anti-CD146 monoclonal antibody AA98 was used to inhibit CD146 in human cervical cancer SiHa cells with relatively low radiosensitivity, and then the cell survival and apoptosis changes after radiation were detected by colony formation assay and flow cytometry. RESULTS CD146 protein was significantly up-regulated in cervical cancer cells (P<0.001), especially in cancer cells with lower radiosensitivity. The SiHa cells treated with AA98 showed more obvious inhibition in cell survival (P<0.05) and promotion in cell apoptosis (P<0.01) after radiation, compared to the untreated cells. More dramatic changes in apoptotic factors Caspase 3 and Bcl-XL were also detected in AA98-treated cells. CONCLUSIONS These results indicate that inhibiting CD146 improves the effect of radiation in suppressing SiHa cells. This study shows the potential of CD146 as a target for increasing radiosensitivity of cervical cancer cells, which might allow improvement in treatment outcome in cervical cancer. Further studies are necessary for understanding the detailed mechanism of CD146 in regulating radiosensitivity.

  15. Modest increased sensitivity to radiation oncogenesis in ATM heterozygous versus wild-type mammalian cells

    NASA Technical Reports Server (NTRS)

    Smilenov, L. B.; Brenner, D. J.; Hall, E. J.

    2001-01-01

    Subpopulations that are genetically predisposed to radiation-induced cancer could have significant public health consequences. Individuals homozygous for null mutations at the ataxia telangiectasia gene are indeed highly radiosensitive, but their numbers are very small. Ataxia Telangiectasia heterozygotes (1-2% of the population) have been associated with somewhat increased radiosensitivity for some end points, but none directly related to carcinogenesis. Here, intralitter comparisons between wild-type mouse embryo fibroblasts and mouse embryo fibroblasts carrying ataxia telangiectasia mutated (ATM) null mutation indicate that the heterozygous cells are more sensitive to radiation oncogenesis than their normal, litter-matched, counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally-significant radiosensitive human subpopulation.

  16. Investigating chromosome damage and gammaH2AX response in human lymphocytes and lymphocyte subsets as potential biomarkers of radiation sensitivity

    NASA Astrophysics Data System (ADS)

    Beaton, Lindsay A.

    This thesis examines in vitro irradiated blood samples from prostate cancer patients exhibiting late normal tissue damage after receiving radiotherapy, for lymphocyte response. Chromosomal aberrations, translocations and proliferation rate are measured, as well as gammaH2AX response in lymphocytes and lymphocyte subsets. The goal of this thesis is to determine whether the lymphocyte response to in vitro radiation could be used as a marker for radiosensitivity. Patients were selected from a randomized clinical trial evaluating the optimal timing of Dose Escalated Radiation and short course Androgen Deprivation Therapy. Of 438 patients, 3% developed Grade 3 late radiation proctitis and were considered to be radiosensitive. Blood was drawn from 10 of these patients along with 20 matched samples from patients with grade 0 proctitis. The samples were irradiated and were analyzed for dicentric chromosomes, excess fragments and proliferation rates (at 6 Gy), translocations, stable and unstable damage (at 4 Gy), and dose response (up to 10 Gy), along with time response after 2 Gy (0 -- 24 h). Chromosome aberrations, excess fragments per cell, translocations per cell and proliferation rates were analyzed by brightfield and fluorescent microscopy, while the gammaH2AX response in lymphocytes and lymphocyte subsets was analyzed by flow cytometry. Both groups were statistically similar for all endpoints at 0 Gy. At 6 Gy, there were statistically significant differences between the radiosensitive and control cohorts for three endpoints; the mean number of dicentric chromosomes per cell, the mean number of excess fragments per cell and the proportion of cells in second metaphase. At 4 Gy, there were statistically significant differences between the two cohorts for three endpoints; the mean number of translocations per cell, the mean number of dicentric chromosomes per cell and the mean number of deletions per cell. There were no significant differences between the gammaH2AX responses of the groups for either the dose or time course as measured with flow cytometry. Six cytogenetic endpoints, measuring chromosomal aberrations, demonstrated a strong correlation with radiosensitivity and should be studied further as markers of radiation response. These results will contribute to the search for an indicator for identifying radiosensitive patients and for tailoring radiotherapy treatments.

  17. Results of heavy ion radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, J.R.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues.more » Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.« less

  18. A comparison of the cytological effects of three hypoxic cell radiosensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spunberg, J.J.; Geard, C.R.; Rutledge-Freeman, M.H.

    1982-07-01

    Misonidazole has entered Phase III clinical trials as a hypoxic cell radiosensitizer. Neurotoxocity is the major dose-limiting factor and has prompted the development of two further compounds with reduced lipophilicity and shorter half-life in vivo. Aside from the short-term problem of neurotoxicity, other potential long-term consequences should be considered. Such is the purpose of this investigation where the cytological effects of three radiosensitizers upon oxic and hypoxic Chinese hamster V-79 cells have been examined. Two newer compounds, desmethylmisonidazole and Stanford Research compound 2508, were compared with their clinically used predecessor misonidazole. Under aerated conditions, cell killing was increased with SR-2508more » in a concentration and time dependent manner, so as to exceed by more than three times the level produced by the other two drugs at 5 mM for 72 hours.Cell progression into mitosis was also markedly reduced by as much as 1/10,000 of control values. However, as the three compounds induced similar frequencies of sister chromatid exchange (SCE) and chromosome aberration, the enhanced cytotoxic effect of SR-2508 appears to be mediated via an interphase rather than a post-mitotic cell death. Cells were made hypoxic and treated with the three drugs for 4 hr, then mitoses sequentially collected for 16 hr. The three compounds produced similar levels of cell killing, slowing of cell cycle progression, SCE's and chromosome aberrations, with cycle-specific effect on S and G-I phase cells for SCE induction. These results indicate that desmethylmisonidazole and misonidazole have similar cytotoxic and clastogenic properties under oxic and hypoxic conditions. SR-2508 is relatively more toxic to aerated cells and may deserve close clinical observation for toxicity to normal tissues.« less

  19. The mechanism of action of radiosensitization of conventional chemotherapeutic agents.

    PubMed

    Lawrence, Theodore S; Blackstock, A William; McGinn, Cornelius

    2003-01-01

    It is not an exaggeration to state that most of the advances in curing cancer in the last decade have come from successful combinations of conventional chemotherapeutic agents with radiation therapy. Further improvements in therapy will depend on understanding the mechanisms by which chemotherapy improves the effectiveness of radiation in model systems and in patients. In this review, we discuss the mechanisms of action of the fluoropyrimidines, gemcitabine, and the platinums. The fluoropyrimidines (5-fluorouracil and fluorodeoxyuridine) increase the effectiveness of radiation chiefly when given before and during radiation. Increased radiation sensitivity occurs in cells that progress inappropriately into S phase in the presence of drug, suggesting a key role for dysregulation of S-phase checkpoints. Gemcitabine may radiosensitize by a similar mechanism, although the relative roles of specific DNA repair pathways (such as homologous end rejoining) and of apoptosis remain to be determined. For both of these categories of drugs, sensitization probably results when cells that are progressing inappropriately through S phase misrepair DNA damage inflicted by radiation. Thus, loss of the S-phase checkpoint in cancer cells may provide the molecular basis for selective killing of tumors compared with normal tissues. Cisplatin has multiple effects on cells, such as adduct formation and DNA damage repair inhibition, but the mechanism for selectivity against cancer cells compared with normal cells is not yet determined. The identification of the enzymatic targets for these drugs offers the potential to develop predictive assays for response and to develop methods of imaging the progress of therapy. Copyright 2003, Elsevier Science (USA). All rights reserved.

  20. Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery.

    PubMed

    Tian, Xi; Lara, Haydee; Wagner, Kyle T; Saripalli, Srinivas; Hyder, Syed Nabeel; Foote, Michael; Sethi, Manish; Wang, Edina; Caster, Joseph M; Zhang, Longzhen; Wang, Andrew Z

    2015-12-21

    Radiotherapy is a key component of cancer treatment. Because of its importance, there has been high interest in developing agents and strategies to further improve the therapeutic index of radiotherapy. DNA double-strand repair inhibitors (DSBRIs) are among the most promising agents to improve radiotherapy. However, their clinical translation has been limited by their potential toxicity to normal tissue. Recent advances in nanomedicine offer an opportunity to overcome this limitation. In this study, we aim to demonstrate the proof of principle by developing and evaluating nanoparticle (NP) formulations of KU55933, a DSBRI. We engineered a NP formulation of KU55933 using nanoprecipitation method with different lipid polymer nanoparticle formulation. NP KU55933 using PLGA formulation has the best loading efficacy as well as prolonged drug release profile. We demonstrated that NP KU55933 is a potent radiosensitizer in vitro using clonogenic assay and is more effective as a radiosensitizer than free KU55933 in vivo using mouse xenograft models of non-small cell lung cancer (NSCLC). Western blots and immunofluorescence showed NP KU55933 exhibited more prolonged inhibition of DNA repair pathway. In addition, NP KU55933 leads to lower skin toxicity than KU55933. Our study supports further investigations using NP to deliver DSBRIs to improve cancer radiotherapy treatment.

  1. Single-cell-based computer simulation of the oxygen-dependent tumour response to irradiation

    NASA Astrophysics Data System (ADS)

    Harting, Christine; Peschke, Peter; Borkenstein, Klaus; Karger, Christian P.

    2007-08-01

    Optimization of treatment plans in radiotherapy requires the knowledge of tumour control probability (TCP) and normal tissue complication probability (NTCP). Mathematical models may help to obtain quantitative estimates of TCP and NTCP. A single-cell-based computer simulation model is presented, which simulates tumour growth and radiation response on the basis of the response of the constituting cells. The model contains oxic, hypoxic and necrotic tumour cells as well as capillary cells which are considered as sources of a radial oxygen profile. Survival of tumour cells is calculated by the linear quadratic model including the modified response due to the local oxygen concentration. The model additionally includes cell proliferation, hypoxia-induced angiogenesis, apoptosis and resorption of inactivated tumour cells. By selecting different degrees of angiogenesis, the model allows the simulation of oxic as well as hypoxic tumours having distinctly different oxygen distributions. The simulation model showed that poorly oxygenated tumours exhibit an increased radiation tolerance. Inter-tumoural variation of radiosensitivity flattens the dose response curve. This effect is enhanced by proliferation between fractions. Intra-tumoural radiosensitivity variation does not play a significant role. The model may contribute to the mechanistic understanding of the influence of biological tumour parameters on TCP. It can in principle be validated in radiation experiments with experimental tumours.

  2. Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Tian, Xi; Lara, Haydee; Wagner, Kyle T.; Saripalli, Srinivas; Hyder, Syed Nabeel; Foote, Michael; Sethi, Manish; Wang, Edina; Caster, Joseph M.; Zhang, Longzhen; Wang, Andrew Z.

    2015-11-01

    Radiotherapy is a key component of cancer treatment. Because of its importance, there has been high interest in developing agents and strategies to further improve the therapeutic index of radiotherapy. DNA double-strand repair inhibitors (DSBRIs) are among the most promising agents to improve radiotherapy. However, their clinical translation has been limited by their potential toxicity to normal tissue. Recent advances in nanomedicine offer an opportunity to overcome this limitation. In this study, we aim to demonstrate the proof of principle by developing and evaluating nanoparticle (NP) formulations of KU55933, a DSBRI. We engineered a NP formulation of KU55933 using nanoprecipitation method with different lipid polymer nanoparticle formulation. NP KU55933 using PLGA formulation has the best loading efficacy as well as prolonged drug release profile. We demonstrated that NP KU55933 is a potent radiosensitizer in vitro using clonogenic assay and is more effective as a radiosensitizer than free KU55933 in vivo using mouse xenograft models of non-small cell lung cancer (NSCLC). Western blots and immunofluorescence showed NP KU55933 exhibited more prolonged inhibition of DNA repair pathway. In addition, NP KU55933 leads to lower skin toxicity than KU55933. Our study supports further investigations using NP to deliver DSBRIs to improve cancer radiotherapy treatment.

  3. Distribution of iron oxide core-titanium dioxide shell nanoparticles in VX2 tumor bearing rabbits introduced by two different delivery modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Refaat, Tamer; West, Derek; El Achy, Samar

    This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Bothmore » IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. Furthermore, this difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.« less

  4. Distribution of iron oxide core-titanium dioxide shell nanoparticles in VX2 tumor bearing rabbits introduced by two different delivery modalities

    DOE PAGES

    Refaat, Tamer; West, Derek; El Achy, Samar; ...

    2016-08-03

    This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Bothmore » IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. Furthermore, this difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.« less

  5. Effect of Cisplatin on Parotid Gland Function in Concomitant Radiochemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hey, Jeremias; Setz, Juergen; Gerlach, Reinhard

    2009-12-01

    Purpose: To determine the influence of concomitant radiochemotherapy with cisplatin on parotid gland tissue complication probability. Methods and Materials: Patients treated with either radiotherapy (n = 61) or concomitant radiochemotherapy with cisplatin (n = 36) for head-and-neck cancer were prospectively evaluated. The dose and volume distributions of the parotid glands were noted in dose-volume histograms. Stimulated salivary flow rates were measured before, during the 2nd and 6th weeks and at 4 weeks and 6 months after the treatment. The data were fit using the normal tissue complication probability model of Lyman. Complication was defined as a reduction of the salivarymore » flow rate to less than 25% of the pretreatment flow rate. Results: The normal tissue complication probability model parameter TD{sub 50} (the dose leading to a complication probability of 50%) was found to be 32.2 Gy at 4 weeks and 32.1 Gy at 6 months for concomitant radiochemotherapy and 41.1 Gy at 4 weeks and 39.6 Gy at 6 months for radiotherapy. The tolerated dose for concomitant radiochemotherapy was at least 7 to 8 Gy lower than for radiotherapy alone at TD{sub 50}. Conclusions: In this study, the concomitant radiochemotherapy tended to cause a higher probability of parotid gland tissue damage. Advanced radiotherapy planning approaches such as intensity-modulated radiotherapy may be partiticularly important for parotid sparing in radiochemotherapy because of cisplatin-related increased radiosensitivity of glands.« less

  6. Extrapolation of Normal Tissue Complication Probability for Different Fractionations in Liver Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai An; Erickson, Beth; Li, X. Allen

    2009-05-01

    Purpose: The ability to predict normal tissue complication probability (NTCP) is essential for NTCP-based treatment planning. The purpose of this work is to estimate the Lyman NTCP model parameters for liver irradiation from published clinical data of different fractionation regimens. A new expression of normalized total dose (NTD) is proposed to convert NTCP data between different treatment schemes. Method and Materials: The NTCP data of radiation- induced liver disease (RILD) from external beam radiation therapy for primary liver cancer patients were selected for analysis. The data were collected from 4 institutions for tumor sizes in the range of of 8-10more » cm. The dose per fraction ranged from 1.5 Gy to 6 Gy. A modified linear-quadratic model with two components corresponding to radiosensitive and radioresistant cells in the normal liver tissue was proposed to understand the new NTD formalism. Results: There are five parameters in the model: TD{sub 50}, m, n, {alpha}/{beta} and f. With two parameters n and {alpha}/{beta} fixed to be 1.0 and 2.0 Gy, respectively, the extracted parameters from the fitting are TD{sub 50}(1) = 40.3 {+-} 8.4Gy, m =0.36 {+-} 0.09, f = 0.156 {+-} 0.074 Gy and TD{sub 50}(1) = 23.9 {+-} 5.3Gy, m = 0.41 {+-} 0.15, f = 0.0 {+-} 0.04 Gy for patients with liver cirrhosis scores of Child-Pugh A and Child-Pugh B, respectively. The fitting results showed that the liver cirrhosis score significantly affects fractional dose dependence of NTD. Conclusion: The Lyman parameters generated presently and the new form of NTD may be used to predict NTCP for treatment planning of innovative liver irradiation with different fractionations, such as hypofractioned stereotactic body radiation therapy.« less

  7. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleiman, Norman Jay

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiationmore » exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9, influence cataract development and thus radiosensitivity. These observations have direct applicability to various human populations including accidentally exposed individuals, interventional medical workers, astronauts and nuclear plant workers.« less

  8. An Eye Model for Computational Dosimetry Using A Multi-Scale Voxel Phantom

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-06-01

    The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  9. The impact of different dose response parameters on biologically optimized IMRT in breast cancer

    NASA Astrophysics Data System (ADS)

    Costa Ferreira, Brigida; Mavroidis, Panayiotis; Adamus-Górka, Magdalena; Svensson, Roger; Lind, Bengt K.

    2008-05-01

    The full potential of biologically optimized radiation therapy can only be maximized with the prediction of individual patient radiosensitivity prior to treatment. Unfortunately, the available biological parameters, derived from clinical trials, reflect an average radiosensitivity of the examined populations. In the present study, a breast cancer patient of stage I II with positive lymph nodes was chosen in order to analyse the effect of the variation of individual radiosensitivity on the optimal dose distribution. Thus, deviations from the average biological parameters, describing tumour, heart and lung response, were introduced covering the range of patient radiosensitivity reported in the literature. Two treatment configurations of three and seven biologically optimized intensity-modulated beams were employed. The different dose distributions were analysed using biological and physical parameters such as the complication-free tumour control probability (P+), the biologically effective uniform dose (\\bar{\\bar{D}} ), dose volume histograms, mean doses, standard deviations, maximum and minimum doses. In the three-beam plan, the difference in P+ between the optimal dose distribution (when the individual patient radiosensitivity is known) and the reference dose distribution, which is optimal for the average patient biology, ranges up to 13.9% when varying the radiosensitivity of the target volume, up to 0.9% when varying the radiosensitivity of the heart and up to 1.3% when varying the radiosensitivity of the lung. Similarly, in the seven-beam plan, the differences in P+ are up to 13.1% for the target, up to 1.6% for the heart and up to 0.9% for the left lung. When the radiosensitivity of the most important tissues in breast cancer radiation therapy was simultaneously changed, the maximum gain in outcome was as high as 7.7%. The impact of the dose response uncertainties on the treatment outcome was clinically insignificant for the majority of the simulated patients. However, the jump from generalized to individualized radiation therapy may significantly increase the therapeutic window for patients with extreme radio sensitivity or radioresistance, provided that these are identified. Even for radiosensitive patients a simple treatment technique is sufficient to maximize the outcome, since no significant benefits were obtained with a more complex technique using seven intensity-modulated beams portals.

  10. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observedmore » radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.« less

  11. Prediction of cellular radiosensitivity from DNA damage induced by gamma-rays and carbon ion irradiation in canine tumor cells.

    PubMed

    Wada, Seiichi; Van Khoa, Tran; Kobayashi, Yasuhiko; Funayama, Tomoo; Ogihara, Kikumi; Ueno, Shunji; Ito, Nobuhiko

    2005-11-01

    Diseases of companion animals are shifting from infectious diseases to neoplasms (cancer), and since radiation therapy is one of the effective choices available for cancer treatment, the application of radiotherapy in veterinary medicine is likely to increase. However tumor tissues have different radiosensitivities, and therefore it is important to determine the intrinsic radiosensitivity of tumors in individual patients in advance of radiotherapy. We have studied the relationship between the surviving cell fraction measured by a clonogenic assay and DNA double strand breaks detected by a comet assay under neutral conditions in three canine tumor cell lines, after gamma-ray and carbon ion irradiation. In all the cell lines, cell death assessed by the clonogenic assay was much higher following irradiation with carbon ions than with gamma-rays. The initial and residual (4 hr) DNA damage due to gamma-ray and carbon ion irradiation were higher in a radiosensitive cell line than in a radioresistant cell line. The surviving cell fraction at 2 Gy (SF2) showed a tendency for correlation with both the initial and residual DNA damage. In particular, the residual damage per Gy was significantly correlated with SF2, regardless of the type of radiation. This indicates that cellular radiosensitivity can be predicted by detection of radiation-induced residual DNA damage.

  12. NUCLEIC ACID CONCENTRATION AND RADIOSENSITIVITY OF THE SCORPION ANDROCTONUS AMOREUXI AUD. AND SAV (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascaud, X.; Niaussat, P.

    1963-01-01

    The concentration of desoxyribonucleic acid and of ribonucleic acid in the soft tissues was determined for the two invertebrates of the arid zone, the scorpion Androctonus amoreuxi Aud. and Sav. and the tenebrionide Pimelia angulata expiata Peyer. The radiosensitivity to gamma rays had been previously determined: LD/sub 50/30// days is 100,000 r for Androctonus and 40,000 for Pimelia. The mean rate of nucleic acids determined in the scorpion was relatively low. A possible relation between the high radioresistance of the scorpion and the low nucleic acid concentration was discussed. (J.S.R.)

  13. miR-124 radiosensitizes human esophageal cancer cell TE-1 by targeting CDK4.

    PubMed

    Zhang, Y H; Wang, Q Q; Li, H; Ye, T; Gao, F; Liu, Y C

    2016-06-03

    Radiotherapy is one of the most important treatments for esophageal cancer, but radioresistance remains a major challenge. Previous studies have shown that microRNAs (miRNAs or miRs) are involved in human cancers. miR-124 has been widely reported in various cancers and it is intimately involved in proliferation, cell cycle regulation, apoptosis, migration, and invasion of cancer cells. The aim of this study was to explore the relationship between the miR-124/cyclin-dependent kinase 4 (CDK4) axis and the radiosensitivity of esophageal cancer cells. In this study, we identified the reduced expression of miR-124 in 18 paired esophageal cancer tissues compared to their matched normal tissues. In order to investigate the physiological role of miR-124 in esophageal cancer, the cell counting kit-8 (CCK-8) assay and wound healing assay were performed, and the results suggest that miR-124 overexpression decreases tumor growth and aggression. Next, we detected the effects of ectopic miR-124 expression on the apoptosis of an esophageal cancer cell line (TE-1) following radiotherapy. Using the CCK-8 assay and Hoechst 332528 stain, we found that ectopic expression of miR-124 led to a higher percentage of apoptotic cells. Finally, we identified that CDK4 is a direct target of miR-124 in TE-1 cells using target prediction algorithms and a luciferase reporter assay. Moreover, western blot assay confirmed that CDK4 was downregulated during miR-124 transfection. Taken together, we illustrate that the miR-124/CDK4 axis plays an important role in radiation sensitivity of human esophageal cancer cells by targeting CDK4.

  14. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    PubMed Central

    Coulter, Jonathan A; Jain, Suneil; Butterworth, Karl T; Taggart, Laura E; Dickson, Glenn R; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Trainor, Coleman; Hounsell, Alan R; O’Sullivan, Joe M; Schettino, Giuseppe; Currell, Fred J; Hirst, David G; Prise, Kevin M

    2012-01-01

    Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies. PMID:22701316

  15. γH2AX/53BP1 foci as a potential pre-treatment marker of HNSCC tumors radiosensitivity - preliminary methodological study and discussion

    NASA Astrophysics Data System (ADS)

    Falk, Martin; Horakova, Zuzana; Svobodova, Marketa; Masarik, Michal; Kopecna, Olga; Gumulec, Jaromir; Raudenska, Martina; Depes, Daniel; Bacikova, Alena; Falkova, Iva; Binkova, Hana

    2017-09-01

    In order to improve patients' post-treatment quality of life, a shift from surgery to non-surgical (chemo)radio-treatment is recognized in head and neck oncology. However, about half of HNSCC tumors are resistant to irradiation and an efficient marker of individual tumor radiosensitivity is still missing. We analyzed whether various parameters of DNA double strand break (DSB) repair determined in vitro can predict, prior to clinical treatment initiation, the radiosensitivity of tumors. We compared formation and decrease of γH2AX/53BP1 foci in 48 h after irradiating tumor cell primocultures with 2 Gy of γ-rays. To better understand complex tumor behavior, three different cell type primocultures - CD90-, CD90+, and a mixed culture of these cells - were isolated from 1 clinically radioresistant, 2 radiosensitive, and 4 undetermined HPV-HNSCC tumors and followed separately. While DSB repair was delayed and the number of persisting DSBs increased in the radiosensitive tumors, the results for the radioresistant tumor were similar to cultured normal human skin fibroblasts. Hence, DSB repair kinetics/efficiency may correlate with clinical response to radiotherapy for a subset of HNSCC tumors but the size (and therefore practical relevance) of this subset remains to be determined. The same is true for contribution of different cell type primocultures to tumor radioresistance.

  16. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debeb, Bisrat G.; Xu Wei; Mok, Henry

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cellmore » transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.« less

  17. [Radiation exposure of cultured tissue cells and animals (mice) within 10-kilometers zone of accident at Chernobyl nuclear plant. Effect on radiosensitivity to future radiation].

    PubMed

    Pelevina, I I; Afanasév, G G; Gotlib, V Ia; Alferovich, A A; Antoshchina, M M; Riabchenko, N I; Saenko, A S; Riabtsev, I A; Riabov, I N

    1993-01-01

    The effect of chronic low-level radiation exposure on radiosensitivity to posterior acute irradiation at high doses has been studied. Cells and mice were exposed within the ten-kilometer zone of Chernobyl disaster during various spaces of time (1-12 days), then over one or more days were additionally irradiated by doses of 1-4 Gy. It was shown that no adaptive response was developed under chronic exposure of cells and mice within the zone of disaster. On the contrary increased sensitivity to posterior irradiation was revealed. The number of cytogenetic damages of cultured tissue cells and marrow cells (chromosome aberrations and micronuclei) increases, the spectrum of aberrations being shifted to chromosome type, cells with multiaberration appearing. The decay of chromatine increases indicating an interphase death; the number of leucocytes in peripheral blood decreases.

  18. Some characteristics of the glutathione cycle revealed by ionising and non-ionising electromagnetic radiation.

    PubMed

    Holt, J A

    1995-10-01

    The cyclic reaction of GSH-->GSSG-->GSH (designated R(exp) or R(e)) obeys the three specific features of life by producing energy in exponential quantities relative to time, is in effect irreversible and is inherited from generation to generation. In multicellular life, this reaction produces the energy for mitosis and is kept in controlled inactivity until needed to maintain perfection of form and function by energising mitosis. The immediate control of Re appears to be feedback process-dependent on the concentration of GSSG. Ultra high-frequency electromagnetic radiation of 434 MHz (UHF) will change Re from inactive to active and, in so doing, it causes resonance and/or fluorescence of the glutathione cycle which changes its radiosensitivity. Re is the primary direct target of ionising radiation and produces the energy for mitosis. Clinical observations suggest that, in the normal cell, Re is inactive and is not killed by 3 x 2700 rads or 6 x 1650 rads yet, when active, its sensitivity value (DO) is approximately 160 rads. Using the standard radiobiological equation of response to ionising radiation, it can be deduced that radiosensitive cancers have two or three Re units active per cell and radioresistance increases in proportion to the number of potentially active Re units per cell. Re appears to be the main cause of cancers' increased conductivity of electricity compared with normal tissue. In cancer therapy, UHF is the best radiosensitiser ever discovered (up to two or more decades). Re is also intelligent compared with non-exponential reactions but cannot be the basis of intellectual brain functions which must be based on non-electrical chemical processes.

  19. Efficient Active Oxygen Free Radical Generated in Tumor Cell by Loading-(HCONH2)·H2O2 Delivery Nanosystem with Soft-X-ray Radiotherapy

    PubMed Central

    Xu, Lei; Shao, Yiran; Chang, Chengkang; Zhu, Yingchun

    2018-01-01

    Tumor hypoxia is known to result in radiotherapy resistance and traditional radiotherapy using super-hard X-ray irradiation can cause considerable damage to normal tissue. Therefore, formamide peroxide (FPO) with high reactive oxygen content was employed to enhance the oxygen concentration in tumor cells and increase the radio-sensitivity of low-energy soft-X-ray. To improve stability of FPO, FPO is encapsulated into polyacrylic acid (PAA)-coated hollow mesoporous silica nanoparticles (FPO@HMSNs-PAA). On account of the pH-responsiveness of PAA, FPO@HMSNs-PAA will release more FPO in simulated acidic tumor microenvironment (pH 6.50) and subcellular endosomes (pH 5.0) than in simulated normal tissue media (pH 7.40). When exposed to soft-X-ray irradiation, the released FPO decomposes into oxygen and the generated oxygen further formed many reactive oxygen species (ROS), leading to significant tumor cell death. The ROS-mediated cytotoxicity of FPO@HMSNs-PAA was confirmed by ROS-induced green fluorescence in tumor cells. The presented FPO delivery system with soft-X-ray irradiation paves a way for developing the next opportunities of radiotherapy toward efficient tumor prognosis. PMID:29649155

  20. Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145.

    PubMed

    Lu, Hongzhi; He, Yu; Lin, Lin; Qi, Zhengqin; Ma, Li; Li, Li; Su, Ying

    2016-02-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a lncRNA playing oncogenic role in several cancers, including cervical cancer. However, its role in radiosensitivity of cervical cancer is not yet well understood. This study explored the role of MALAT1 in radiosensitivity of high-risk human papillomavirus (HR-HPV)-positive cervical cancer and whether there is a ceRNA mechanism which participated in its regulation over radiosensitivity. Based on tissue samples from 50 cervical cancer cases and 25 healthy controls, we found MALAT1 expression was significantly higher in radioresistant than in radiosensitive cancer cases. In addition, MALAT1 and miR-145 expression inversely changed in response to irradiation in HR-HPV+ cervical cancer cells. By using clonogenic assay and flow cytometry analysis of cell cycle distribution and apoptosis, we found CaSki and Hela cells with knockdown of MALAT1 had significantly lower colony formation, higher ratio of G2/M phase block and higher ratio of cell apoptosis. By performing RNA-binding protein immunoprecipitation (RIP) assay and RNA pull-down assay, we confirmed that miR-145 and MALAT1 were in the same Ago2 complex and there was a reciprocal repression between them. Then, we explored the function of MALAT1-miR-145 in radiosensitivity of cervical cancers cells and demonstrated that si-MALAT1 and miR-145 had some level of synergic effect in reducing cancer cell colony formation, cell cycle regulation, and inducing apoptosis. These findings provide an important clue about microRNA-lncRNA interaction in the mechanism of radioresistance of cervical cancer.

  1. The preclinical set-up at the ID17 biomedical beamline to achieve high local dose deposition using interlaced microbeams

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Nemoz, C.; Brochard, Th; Berruyer, G.; Renier, M.; Pouyatos, B.; Serduc, R.

    2013-03-01

    Microbeam Radiation Therapy (MRT) uses spatially a fractionated "white beam" (energies 50-350 keV) irradiation from a Synchrotron Source. The typical microbeams used at ID17 are 25-100μm-thick, spaced by 200-400μm, and carry extremely high dose rates (up to about 16 kGy/s). These microbeams are well tolerated by biological tissue, i.e. up to several hundred of Gy in the peaks. When valley doses, caused by Compton scattering in between two microbeams, remain within a dose regime similar to conventional RT, a superior tumour control can be achieved with MRT than with conventional RT. The normal tissue tolerance of these microscopically small beams is outstanding and well documented in the literature. The hypothesis of a differential effect in particular on the vasculature of normal versus tumoral tissue might best be proven by using large animal models with spontaneous tumors instead of small laboratory animals with transplantable tumors, an ongoing project on ID17. An alternative approach to deposit a high dose, while preserving the feature of the spatial separation of these microbeams outside the target has opened up new applications in preclinical research. The instrumentation of this method to produce such interlaced beams is presented with an outlook on the challenges to build a treatment platform for human patients. Dose measurements using Gafchromic films exposed in interlaced geometries with their steep profiles highlight the potential to deposit radiotoxic doses in the vicinity of radiosensitive tissues.

  2. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  3. Location of radiosensitive organs inside pediatric anthropomorphic phantoms: Data required for dosimetry.

    PubMed

    Inkoom, Stephen; Raissaki, Maria; Perisinakis, Kostas; Maris, Thomas G; Damilakis, John

    2015-12-01

    The aim of this study was to determine the location of radiosensitive organs in the interior of four pediatric anthropomorphic phantoms for dosimetric purposes. Four pediatric anthropomorphic phantoms representing the average individual as newborn, 1-year-old, 5-year-old and 10-year-old child underwent head, thorax and abdomen CT scans. CT and MRI scans of all children aged 0-16 years performed during a 5-year-period in our hospital were reviewed, and 503 were found to be eligible for normal anatomy. Anterior-posterior and lateral dimensions of twelve of the above children closely matched that of the phantoms' head, thoracic and abdominal region in each four phantoms. The mid-sagittal and mid-coronal planes were drawn on selected matching axial images of patients and phantoms. Multiple points outlining large radiosensitive organs in patient images were identified at each slice level and their orthogonal distances from the mid-sagittal and mid-coronal planes were measured. In small organs, the coordinates of organs' centers were similarly determined. The outlines and centers of all radiosensitive organs were reproduced using the coordinates of each organ on corresponding phantoms' transverse images. The locations of the following radiosensitive organs in the interior of the four phantoms was determined: brain, eye lenses, salivary glands, thyroid, lungs, heart, thymus, esophagus, breasts, adrenals, liver, spleen, kidneys, stomach, gallbladder, small bowel, pancreas, colon, ovaries, bladder, prostate, uterus and rectum. The production of charts of radiosensitive organs inside pediatric anthropomorphic phantoms was feasible and may provide users reliable data for positioning of dosimeters during direct organ dose measurements. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian Junqiang; Ning Shouchen; Knox, Susan J., E-mail: sknox@stanford.ed

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5more » Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.« less

  5. Targeting MPS1 Enhances Radiosensitization of Human Glioblastoma by Modulating DNA Repair Proteins.

    PubMed

    Maachani, Uday Bhanu; Kramp, Tamalee; Hanson, Ryan; Zhao, Shuping; Celiku, Orieta; Shankavaram, Uma; Colombo, Riccardo; Caplen, Natasha J; Camphausen, Kevin; Tandle, Anita

    2015-05-01

    To ensure faithful chromosome segregation, cells use the spindle assembly checkpoint (SAC), which can be activated in aneuploid cancer cells. Targeting the components of SAC machinery required for the growth of aneuploid cells may offer a cancer cell-specific therapeutic approach. In this study, the effects of inhibiting Monopolar spindle 1, MPS1 (TTK), an essential SAC kinase, on the radiosensitization of glioblastoma (GBM) cells were analyzed. Clonogenic survival was used to determine the effects of the MPS1 inhibitor NMS-P715 on radiosensitivity in multiple model systems, including GBM cell lines, a normal astrocyte, and a normal fibroblast cell line. DNA double-strand breaks (DSB) were evaluated using γH2AX foci, and cell death was measured by mitotic catastrophe evaluation. Transcriptome analysis was performed via unbiased microarray expression profiling. Tumor xenografts grown from GBM cells were used in tumor growth delay studies. Inhibition of MPS1 activity resulted in reduced GBM cell proliferation. Furthermore, NMS-P715 enhanced the radiosensitivity of GBM cells by decreased repair of DSBs and induction of postradiation mitotic catastrophe. NMS-P715 in combination with fractionated doses of radiation significantly enhanced the tumor growth delay. Molecular profiling of MPS1-silenced GBM cells showed an altered expression of transcripts associated with DNA damage, repair, and replication, including the DNA-dependent protein kinase (PRKDC/DNAPK). Next, inhibition of MPS1 blocked two important DNA repair pathways. In conclusion, these results not only highlight a role for MPS1 kinase in DNA repair and as prognostic marker but also indicate it as a viable option in glioblastoma therapy. Inhibition of MPS1 kinase in combination with radiation represents a promising new approach for glioblastoma and for other cancer therapies. ©2015 American Association for Cancer Research.

  6. Targeting MPS1 Enhances Radiosensitization of Human Glioblastoma by Modulating DNA Repair Proteins

    PubMed Central

    Maachani, Uday B.; Kramp, Tamalee; Hanson, Ryan; Zhao, Shuping; Celiku, Orieta; Shankavaram, Uma; Colombo, Riccardo; Caplen, Natasha J.; Camphausen, Kevin; Tandle, Anita

    2015-01-01

    To ensure faithful chromosome segregation, cells use the spindle assembly checkpoint (SAC), which can be activated in aneuploid cancer cells. Targeting the components of SAC machinery required for the growth of aneuploid cells may offer a cancer cell specific therapeutic approach. In this study, the effects of inhibiting Monopolar spindle 1, MPS1 (TTK), an essential SAC kinase, on the radiosensitization of glioblastoma (GBM) cells was analyzed. Clonogenic survival was used to determine the effects of the MPS1 inhibitor, NMS-P715 on radiosensitivity in multiple model systems including: GBM cell lines, a normal astrocyte and a normal fibroblast cell line. DNA double strand breaks (DSBs) were evaluated using γH2AX foci and cell death was measured by mitotic catastrophe evaluation. Transcriptome analysis was performed via unbiased microarray expression profiling. Tumor xenografts grown from GBM cells were used in tumor growth delay studies. Inhibition of MPS1 activity resulted in reduced GBM cell proliferation. Further, NMS-P715 enhanced the radiosensitivity of GBM cells by decreased repair of DSBs and induction of post-radiation mitotic catastrophe. MNS-P715 in combination with fractionated doses of radiation significantly enhanced the tumor growth delay. Molecular profiling of MPS1 silenced GBM cells showed an altered expression of transcripts associated with DNA damage, repair and replication including the DNA-dependent protein kinase (PRKDC/DNAPK). Next, inhibition of MPS1 blocked two important DNA repair pathways. In conclusion, these results not only highlight a role for MPS1 kinase in DNA repair and as prognostic marker but also indicate it as a viable option in glioblastoma therapy. PMID:25722303

  7. Nanotechnology in Radiation Oncology

    PubMed Central

    Wang, Andrew Z.; Tepper, Joel E.

    2014-01-01

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. PMID:25113769

  8. Nanotechnology in radiation oncology.

    PubMed

    Wang, Andrew Z; Tepper, Joel E

    2014-09-10

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. © 2014 by American Society of Clinical Oncology.

  9. Acid ceramidase in prostate cancer radiation therapy resistance and relapse

    NASA Astrophysics Data System (ADS)

    Cheng, Joseph C.

    Prostate tumor cell escape from ionizing radiation (IR)-induced killing can lead to disease progression and relapse. Sphingolipids such as ceramide and sphingosine 1-phosphate influence signal transduction pathways that regulate stress response in cancer cells. In particular, metabolism of apoptotic ceramide constitutes an important survival adaptation. Assessments of enzyme activity, mRNA, and protein demonstrated preferential upregulation of the ceramide deacylating enzyme acid ceramidase (AC) in irradiated cancer cells. Promoter-reporter and ChIP-qPCR assays revealed AC transcription by activator protein 1 (AP-1) is sensitive to pharmacological inhibition of de novo ceramide biosynthesis, identifying a protective feedback mechanism that mitigates the effects of IR-induced ceramide. Deregulation of c-Jun, in particular, induced marked radiosensitization in vitro and in vivo, which was rescued by ectopic AC over-expression. AC over-expression in prostate cancer clonogens surviving 80 Gray fractionated irradiation was associated with increased radioresistance and proliferation, suggesting a role in radiotherapy failure and relapse. Indeed, immunohistochemical analysis of human prostate cancer tissues revealed higher levels of AC after radiotherapy failure than therapy-naive adenocarcinoma, PIN, or benign tissues. By genetically downregulating AC with small interfering RNA (siRNA), we observed radiosensitization of cells using clonogenic and cytotoxicity assays. Finally, treatment with lysosomotropic small molecule inhibitors of AC, LCL385 or LCL521, induced prostate cancer xenograft radiosensitization and long-term suppression, suggesting AC is a tractable target for adjuvant radiotherapy.

  10. Glucose starvation impairs DNA repair in tumour cells selectively by blocking histone acetylation.

    PubMed

    Ampferl, Rena; Rodemann, Hans Peter; Mayer, Claus; Höfling, Tobias Tim Alexander; Dittmann, Klaus

    2018-03-01

    Tumour cells are characterized by aerobic glycolysis and thus have high glucose consumption. Because repairing radiation-induced DNA damage is an energy-demanding process, we hypothesized that glucose starvation combined with radiotherapy could be an effective strategy to selectively target tumour cells. We glucose-starved tumour cells (A549, FaDu) in vitro and analysed their radiation-induced cell responses compared to normal fibroblasts (HSF7). Irradiation depleted intracellular ATP levels preferentially in cancer cells. Consequently, glucose starvation impaired DNA double-strand break (DSB) repair and radiosensitized confluent tumour cells but not normal fibroblasts. In proliferating tumour cells glucose starvation resulted in a reduction of proliferation, but failed to radiosensitize cells. Glucose supply was indispensable during the late DSB repair in confluent tumour cells starting approximately 13 h after irradiation, and glucose starvation inhibited radiation-induced histone acetylation, which is essential for chromatin relaxation. Sirtinol - an inhibitor of histone deacetylases - reverted the effects of glucose depletion on histone acetylation and DNA DSB repair in tumour cells. Furthermore, a glucose concentration of 2.8 mmol/L was sufficient to impair DSB repair in tumour cells and reduced their clonogenic survival under a fractionated irradiation regimen. In resting tumour cells, glucose starvation combined with irradiation resulted in the impairment of late DSB repair and the reduction of clonogenic survival, which was associated with disrupted radiation-induced histone acetylation. However, in normal cells, DNA repair and radiosensitivity were not affected by glucose depletion. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury.

    PubMed

    Patsalos, Andreas; Pap, Attila; Varga, Tamas; Trencsenyi, Gyorgy; Contreras, Gerardo Alvarado; Garai, Ildiko; Papp, Zoltan; Dezso, Balazs; Pintye, Eva; Nagy, Laszlo

    2017-09-01

    The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6C high ) to a repair (Ly6C low ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  12. Silibinin preferentially radiosensitizes prostate cancer by inhibiting DNA repair signaling

    PubMed Central

    Nambiar, Dhanya K.; Rajamani, Paulraj; Deep, Gagan; Jain, Anil K.; Agarwal, Rajesh; Singh, Rana P.

    2015-01-01

    Radiotherapy, a frequent mode of cancer treatment, is often restricted by dose-related toxicity and development of therapeutic resistance. To develop a novel and selective radiosensitizer, we studied the radiosensitizing effects and associated mechanisms of silibinin in prostate cancer (PCa). The radiosensitizing effect of silibinin with ionizing radiation (IR) was assessed on radioresistant PCa cell lines by clonogenic, cell cycle, cell death and DNA repair assays. Tumor xenograft growth, immunohistochemical (IHC) analysis of tumor tissues, and toxicity-related parameters were measured in vivo. Silibinin (25 μM) enhanced IR (2.5-10 Gy)-caused inhibition (up to 96%, P<0.001) of colony formation selectively in PCa cells, and prolonged and enhanced IR-caused G2/M arrest, apoptosis and ROS production. Mechanistically, silibinin inhibited IR-induced DNA repair (ATM and Chk1/2) and EGFR signaling and attenuated the levels of anti-apoptotic proteins. Specifically, silibinin suppressed IR-induced nuclear translocation of EGFR and DNA-PK, an important mediator of DSB repair, leading to an increased number of γ-H2AX (ser139) foci suggesting lesser DNA repair. In vivo, silibinin strongly radiosensitized DU145 tumor xenograft inhibition (84%, P<0.01) with higher apoptotic response (10-fold, P<0.01) and reduced repair of DNA damage, and rescued the mice from IR-induced toxicity and hematopoietic injury. Overall, silibinin enhanced the radiotherapeutic response via suppressing IR-induced pro-survival signaling and DSB repair by inhibiting nuclear translocation of EGFR and DNA-PK. Since silibinin is already in phase II clinical trial for PCa patients, the present finding has translational relevance for radioresistant PCa. PMID:26516160

  13. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagle, Peter W.; Hosper, Nynke A.; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen

    Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This responsemore » was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.« less

  14. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diagaradjane, P; Deorukhkar, A; Sankaranarayanapillai, M

    2015-06-15

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and inmore » vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and megavoltage x-rays using the active targeting strategy holds promise for clinical translation of this strategy from a toxicity and cost-effectiveness perspective and could evolve as a paradigm-changing approach in the field of radiation oncology.« less

  15. Enhanced G2 chromatid radiosensitivity, an early stage in the neoplastic transformation of human epidermal keratinocytes in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantt, R.; Sanford, K.K.; Parshad, R.

    1987-03-01

    A deficiency in DNA repair, manifest as enhanced chromatid radiosensitivity during the G2 phase of the cell cycle, together with a proliferative stimulus such as that provided by active oncogenes may be necessary and sufficient for the malignant neoplastic transformation of human keratinocytes in culture. Normal epidermal keratinocytes established as continuous cell lines by transfection with pSV3-neo or infection with adeno 12-SV40 hybrid virus developed enhanced G2 chromatid radiosensitivity after 18 passages in culture. In contrast to cells from primary or secondary culture, these cells could be transformed to malignant neoplastic cells by infection with Kirsten murine sarcoma virus containingmore » the Ki-ras oncogene or in one line by the chemical carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine; both of these agents produced a marked proliferative response. Cytological heterogeneity and karyotypic instability characterized the cells during their progression to neoplasia. These results are interpreted in terms of a mechanism for neoplastic transformation.« less

  16. miR-375 Modulates Radiosensitivity of HR-HPV-Positive Cervical Cancer Cells by Targeting UBE3A through the p53 Pathway.

    PubMed

    Song, Lili; Liu, Shikai; Zeng, Saitian; Zhang, Liang; Li, Xia

    2015-07-30

    Prediction of radioresistance of HR-HPV-positive (+) cervical cancer, especially before the course of radiotherapy, is quite beneficial to develop an optimal treatment strategy for individual patients. Unfortunately, the mechanisms responsible for radioresistance of cervical cancer are still largely unexplored. HR-HPV infection leads to a series of changes to normal biophysical process, including miRNAs expression. In this study, we explored the association between miR-375 and radioresistance in HR-HPV (+) cervical cancer. qRT-PCR analysis was performed to determine miR-375 expression in HR-HPV-positive (+) cervical cancer patients and in HPV-16-positive SiHa and HPV-18-positive HeLa cervical cancer cell lines. The influence of miR-375 on radiosensitivity and the downstream regulative network were further explored in the cell line models. The results verified a putative binding site between miR-375 and UBE3A. miR-375 overexpression could significantly reduce UBE3A expression. UBE3A knockdown led to significantly reduced cell survival under radiation treatment. miR-375 promoted radiosensitivity of HR-HPV (+) cancer through decreasing p53 degradation and thereby increasing radiation-induced apoptosis. The miR-375-UBE3A axis is important in modulating radiosensitivity of HR-HPV (+) cervical cancer.

  17. Concomitant liposomal doxorubicin and daily palliative radiotherapy in advanced feline soft tissue sarcomas.

    PubMed

    Kleiter, Miriam; Tichy, Alexander; Willmann, Michael; Pagitz, Maximilian; Wolfesberger, Birgitt

    2010-01-01

    Local recurrence of feline soft tissue sarcomas is common despite aggressive treatment. Liposomal doxorubicin might serve as a depot radiosensitizer if administered concomitantly with daily radiotherapy and thus improve tumor control. In this pilot study, the feasibility of concomitant liposomal radiochemotherapy was evaluated in a palliative setting in 10 cats with advanced soft tissue sarcomas. Cats were treated with median number of 5 (range 5-7) daily fractions of radiotherapy and a median total dose of 20 Gy (range 20-31.5 Gy). One dose of liposomal doxorubicin was administered at the beginning of radiotherapy. Seven cats received further free or liposomal doxorubicin after completion of the liposomal doxorubicin/radiation protocol. Seven of the treated 10 cats (70%) achieved a partial (n=5) or complete (n=2) response with a median response duration of 237 days. The median progression free interval in all 10 cats was 117 days and the median overall survival time was 324 days. Concomitant liposomal radiochemotherapy was tolerated well in nine cats, one cat experienced temporary anorexia. Although the number of patients is too small to make definitive conclusions, results appear promising enough to investigate the role of liposomal doxorubicin as a radiosensitizer further.

  18. Regional radiation dose-response modeling of functional liver in hepatocellular carcinoma patients with longitudinal sulfur colloid SPECT/CT: a proof of concept.

    PubMed

    Price, Ryan G; Apisarnthanarax, Smith; Schaub, Stephanie K; Nyflot, Matthew J; Chapman, Tobias R; Matesan, Manuela; Vesselle, Hubert J; Bowen, Stephen R

    2018-06-19

    We report on patient-specific quantitative changes in longitudinal sulfur colloid SPECT/CT as a function of regional radiation dose distributions to normal liver in a cohort of hepatocellular carcinoma patients. Dose-response thresholds and slopes varied with baseline liver function metrics, and extreme values were found in patients with fatal hepatotoxicity. Dose-response modeling of normal liver in individual HCC patients has potential to characterize in vivo radiosensitivity, identify high risk subgroups, and personalize treatment planning dose constraints. Hepatotoxicity risk in hepatocellular carcinoma (HCC) patients is modulated by radiation dose delivered to normal liver tissue, but reported dose-response data are limited. Our prior work established baseline [ 99m Tc]sulfur colloid (SC) SPECT/CT liver function imaging biomarkers that predict clinical outcomes. We conducted a proof-of-concept investigation with longitudinal SC SPECT/CT to characterize patient-specific radiation dose-response relationships as surrogates for liver radiosensitivity. SC SPECT/CT images of 15 HCC patients with variable Child-Pugh status (8 CP-A, 7 CP-B/C) were acquired in treatment position prior to and 1 month (nominal) after SBRT (n=6) or proton therapy (n=9). Localized rigid registrations between pre/post-treatment CT to planning CT scans were performed, and transformations were applied to pre/post-treatment SC SPECT images. Radiotherapy doses were converted to EQD2 α/β=3 and Gy (RBE), and binned in 5 GyEQD2 increments within tumor-subtracted livers. Mean dose and percent change (%ΔSC) between pre- and post-treatment SPECT uptake, normalized to regions receiving < 5 GyEQD2, were calculated in each binned dose region. Dose-response data were parameterized by sigmoid functions (double exponential) consisting of maximum reduction (%ΔSC max ), dose midpoint (D mid ), and dose-response slope (α mid ) parameters. Individual patient sigmoid dose-response curves had high goodness-of-fit (median R 2 = 0.96, range 0.76-0.99). Large inter-patient variability was observed, with median (range) in %ΔSC max of 44% (20-75%), D mid of 13 Gy (4-27 GyEQD2), and α mid of 0.11 GyEQD2 -1 (0.04-0.29 GyEQD2 -1 ), respectively. Eight of 15 patients had %ΔSC max = 20-45%, while 7/15 had %ΔSC max = 60-75%, with subgroups made up of variable baseline liver function status and radiation treatment modality. Fatal hepatotoxicity occurred in patients (2/15) with low TLF (< 0.12) and low D mid (< 7 GyEQD2). Longitudinal SC SPECT/CT imaging revealed patient-specific variations in dose-response, and may identify patients with poor baseline liver function and increased sensitivity to radiation therapy. Validation of this regional liver dose-response modeling concept as a surrogate for patient-specific radiosensitivity has potential to guide HCC therapy regimen selection and planning constraints. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Acute effects of whole-body proton irradiation on the immune system of the mouse

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Li, J.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Slater, J. M.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on the distribution and function of leukocyte populations in the spleen and blood were examined and compared to the effects of photons derived from a (60)Co gamma-ray source. Adult female C57BL/6 mice were exposed to a single dose (3 Gy at 0.4 Gy/min) of protons at spread-out Bragg peak (SOBP), protons at the distal entry (E) region, or gamma rays and killed humanely at six different times thereafter. Specific differences were noted in the results, thereby suggesting that the kinetics of the response may be variable. However, the lack of significant differences in most assays at most times suggests that the RBE for both entry and peak regions of the Bragg curve was essentially 1.0 under the conditions of this study. The greatest immunodepression was observed at 4 days postexposure. Flow cytometry and mitogenic stimulation analyses of the spleen and peripheral blood demonstrated that lymphocyte populations differ in radiosensitivity, with B (CD19(+)) cells being most sensitive, T (CD3(+)) cells being moderately sensitive, and natural killer (NK1.1(+)) cells being most resistant. B lymphocytes showed the most rapid recovery. Comparison of the T-lymphocyte subsets showed that CD4(+) T helper/inducer cells were more radiosensitive than the CD8(+) T cytotoxic/suppressor cells. These findings should have an impact on future studies designed to maximize protection of normal tissue during and after proton-radiation exposure.

  20. Selective Targeting of Brain Tumors with Gold Nanoparticle-Induced Radiosensitization

    PubMed Central

    Joh, Daniel Y.; Sun, Lova; Stangl, Melissa; Al Zaki, Ajlan; Murty, Surya; Santoiemma, Phillip P.; Davis, James J.; Baumann, Brian C.; Alonso-Basanta, Michelle; Bhang, Dongha; Kao, Gary D.; Tsourkas, Andrew; Dorsey, Jay F.

    2013-01-01

    Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ∼1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature. PMID:23638079

  1. DNA methylation enzyme inhibitor RG108 suppresses the radioresistance of esophageal cancer

    PubMed Central

    Ou, Yao; Zhang, Quan; Tang, Yiting; Lu, Zhonghua; Lu, Xujing; Zhou, Xifa; Liu, Changmin

    2018-01-01

    Esophageal cancer (EC) is the eighth most common highly aggressive cancer worldwide. The purpose of this study was to investigate the effect of the DNA methyltransferase inhibitor RG108 on the radiosensitivity of EC cells. MTT and clonogenic assays were performed to assess the effect of RG108 on the proliferation and radiosensitivity of Eca-109 and TE-1 human EC cells. The cell cycle progression and alterations in apoptosis were analyzed by flow cytometry. For the in vivo analysis, the Eca-109 cells were inoculated into nude mice to establish tumors. Tissues from xenografts were obtained to detect changes to microvessels and tumor growth by immunohistochemistry (IHC). RNA-seq was used to identify differentially expressed genes. We found that RG108 increased the radiosensitivity of EC cells. Apoptosis and G2/M-phase arrest were induced by X-ray irradiation and were significantly enhanced by RG108. In addition, growth of tumor xenografts from the Eca-109 cells was significantly inhibited by irradiation in combination with RG108. The RNA-seq analysis revealed that, compared with radiation alone, X-ray irradiation in combination with RG108 altered the expression of 121 genes in multiple pathways, including the TGF-β signaling pathway and the Epstein-Barr virus infection pathway. In conclusion, RG108 induced radiosensitivity in EC cells both in vitro and in vivo. PMID:29328411

  2. Ionizing radiation sensitivity of the ocular lens and its dose rate dependence.

    PubMed

    Hamada, Nobuyuki

    2017-10-01

    In 2011, the International Commission on Radiological Protection reduced the threshold for the lens effects of low linear energy transfer (LET) radiation. On one hand, the revised threshold of 0.5 Gy is much lower than previously recommended thresholds, but mechanisms behind high radiosensitivity remain incompletely understood. On the other hand, such a threshold is independent of dose rate, in contrast to previously recommended separate thresholds each for single and fractionated/protracted exposures. Such a change was made predicated on epidemiological evidence suggesting that a threshold for fractionated/protracted exposures is not higher than an acute threshold, and that a chronic threshold is uncertain. Thus, the dose rate dependence is still unclear. This paper therefore reviews the current knowledge on the radiosensitivity of the lens and the dose rate dependence of radiation cataractogenesis, and discusses its mechanisms. Mounting biological evidence indicates that the lens cells are not necessarily radiosensitive to cell killing, and the high radiosensitivity of the lens thus appears to be attributable to other mechanisms (e.g., excessive proliferation, abnormal differentiation, a slow repair of DNA double-strand breaks, telomere, senescence, crystallin changes, non-targeted effects and inflammation). Both biological and epidemiological evidence generally supports the lack of dose rate effects. However, there is also biological evidence for the tissue sparing dose rate (or fractionation) effect of low-LET radiation and an enhancing inverse dose fractionation effect of high-LET radiation at a limited range of LET. Emerging epidemiological evidence in chronically exposed individuals implies the inverse dose rate effect. Further biological and epidemiological studies are warranted to gain deeper knowledge on the radiosensitivity of the lens and dose rate dependence of radiation cataractogenesis.

  3. Silibinin Preferentially Radiosensitizes Prostate Cancer by Inhibiting DNA Repair Signaling.

    PubMed

    Nambiar, Dhanya K; Rajamani, Paulraj; Deep, Gagan; Jain, Anil K; Agarwal, Rajesh; Singh, Rana P

    2015-12-01

    Radiotherapy, a frequent mode of cancer treatment, is often restricted by dose-related toxicity and development of therapeutic resistance. To develop a novel and selective radiosensitizer, we studied the radiosensitizing effects and associated mechanisms of silibinin in prostate cancer. The radiosensitizing effect of silibinin with ionizing radiation (IR) was assessed on radioresistant prostate cancer cell lines by clonogenic, cell cycle, cell death, and DNA repair assays. Tumor xenograft growth, immunohistochemical (IHC) analysis of tumor tissues, and toxicity-related parameters were measured in vivo. Silibinin (25 μmol/L) enhanced IR (2.5-10 Gy)-caused inhibition (up to 96%, P < 0.001) of colony formation selectively in prostate cancer cells, and prolonged and enhanced IR-caused G2-M arrest, apoptosis, and ROS production. Mechanistically, silibinin inhibited IR-induced DNA repair (ATM and Chk1/2) and EGFR signaling and attenuated the levels of antiapoptotic proteins. Specifically, silibinin suppressed IR-induced nuclear translocation of EGFR and DNA-PK, an important mediator of DSB repair, leading to an increased number of γ-H2AX (ser139) foci suggesting lesser DNA repair. In vivo, silibinin strongly radiosensitized DU145 tumor xenograft inhibition (84%, P < 0.01) with higher apoptotic response (10-fold, P < 0.01) and reduced repair of DNA damage, and rescued the mice from IR-induced toxicity and hematopoietic injury. Overall, silibinin enhanced the radiotherapeutic response via suppressing IR-induced prosurvival signaling and DSB repair by inhibiting nuclear translocation of EGFR and DNA-PK. Because silibinin is already in phase II clinical trial for prostate cancer patients, the present finding has translational relevance for radioresistant prostate cancer. ©2015 American Association for Cancer Research.

  4. Radiosensitivity of cancer-initiating cells and normal stem cells (or what the Heisenberg uncertainly principle has to do with biology).

    PubMed

    Woodward, Wendy Ann; Bristow, Robert Glen

    2009-04-01

    Mounting evidence suggests that parallels between normal stem cell biology and cancer biology may provide new targets for cancer therapy. Prospective identification and isolation of cancer-initiating cells from solid tumors has promoted the descriptive and functional identification of these cells allowing for characterization of their response to contemporary cancer therapies, including chemotherapy and radiation. In clinical radiation therapy, the failure to clinically eradicate all tumor cells (eg, a lack of response, partial response, or nonpermanent complete response by imaging) is considered a treatment failure. As such, biologists have explored the characteristics of the small population of clonogenic cancer cells that can survive and are capable of repopulating the tumor after subcurative therapy. Herein, we discuss the convergence of these clonogenic studies with contemporary radiosensitivity studies that use cell surface markers to identify cancer-initiating cells. Implications for and uncertainties regarding incorporation of these concepts into the practice of modern radiation oncology are discussed.

  5. Radioprotective Role in Lung of the Flaxseed Lignan Complex Enriched in the Phenolic Secoisolariciresinol Diglucoside (SDG)

    PubMed Central

    Christofidou-Solomidou, Melpo; Tyagi, Sonia; Pietrofesa, Ralph; Dukes, Floyd; Arguiri, Evguenia; Turowski, Jason; Grieshaber, Philip A.; Solomides, Charalambos C.; Cengel, Keith A.

    2012-01-01

    While dietary wholegrain Flaxseed (FS) has potent anti-inflammatory, anti-fibrotic and antioxidant properties in murine models of acute and chronic lung injury, the main bioactive ingredient that contributes to these protective effects remains unknown. This study evaluated the lignan complex of FS (FLC) enriched in secoisolariciresinol diglucoside with respect to lung radioprotective and tumor radiosensitizing efficacy using a mouse model of thoracic radiation-induced pneumonopathy. C57/Bl6 mice were fed 0% FS, 10% FS, 10% FLC or 20% FLC for 3 weeks, then irradiated with a single fraction (13.5 Gy) of X-ray radiation treatment (XRT). Mouse survival was monitored for 4 months after irradiation and inflammatory lung parameters were evaluated in bronchoalveolar lavage (BAL) fluid. Gene and protein levels of protective antioxidant and phase II enzymes were evaluated in lung tissue using qPCR and protein levels were verified by immunoblotting. Prolonged administration of the FLC diet was well tolerated and was not associated with any toxicity. Importantly, comparable to the whole grain 10% FS diet, irradiated mice fed 10% and 20% FLC diets displayed improved survival. Improved hemodynamic measurements were also recorded in irradiated mice fed 10% FS or 10% FLC diet compared to irradiated 0% FS fed mice. Flaxseed lignan complex diet also attenuated polymorphonuclear infiltration and overall lung inflammation to levels comparable to those in nonirradiated mice. Flaxseed lignan complex, similarly to FS, up-regulated gene expression as well as protein levels of protective antioxidant enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Dietary FLC induced radiosensitizing effects in our murine model of metastatic lung cancer. Importantly, protection of normal tissue does not thwart tumor cell death by radiation treatment. The dietary lignan complex of FS, mainly consisting of the phenolic secoisolariciresinol, is protective against radiation pneumonopathy in vivo while not hindering the tumoricidal effects of radiotherapy. PMID:23106213

  6. Radioprotective role in lung of the flaxseed lignan complex enriched in the phenolic secoisolariciresinol diglucoside (SDG).

    PubMed

    Christofidou-Solomidou, Melpo; Tyagi, Sonia; Pietrofesa, Ralph; Dukes, Floyd; Arguiri, Evguenia; Turowski, Jason; Grieshaber, Philip A; Solomides, Charalambos C; Cengel, Keith A

    2012-12-01

    While dietary wholegrain Flaxseed (FS) has potent anti-inflammatory, anti-fibrotic and antioxidant properties in murine models of acute and chronic lung injury, the main bioactive ingredient that contributes to these protective effects remains unknown. This study evaluated the lignan complex of FS (FLC) enriched in secoisolariciresinol diglucoside with respect to lung radioprotective and tumor radiosensitizing efficacy using a mouse model of thoracic radiation-induced pneumonopathy. C57/Bl6 mice were fed 0% FS, 10% FS, 10% FLC or 20% FLC for 3 weeks, then irradiated with a single fraction (13.5 Gy) of X-ray radiation treatment (XRT). Mouse survival was monitored for 4 months after irradiation and inflammatory lung parameters were evaluated in bronchoalveolar lavage (BAL) fluid. Gene and protein levels of protective antioxidant and phase II enzymes were evaluated in lung tissue using qPCR and protein levels were verified by immunoblotting. Prolonged administration of the FLC diet was well tolerated and was not associated with any toxicity. Importantly, comparable to the whole grain 10% FS diet, irradiated mice fed 10% and 20% FLC diets displayed improved survival. Improved hemodynamic measurements were also recorded in irradiated mice fed 10% FS or 10% FLC diet compared to irradiated 0% FS fed mice. Flaxseed lignan complex diet also attenuated polymorphonuclear infiltration and overall lung inflammation to levels comparable to those in nonirradiated mice. Flaxseed lignan complex, similarly to FS, up-regulated gene expression as well as protein levels of protective antioxidant enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Dietary FLC induced radiosensitizing effects in our murine model of metastatic lung cancer. Importantly, protection of normal tissue does not thwart tumor cell death by radiation treatment. The dietary lignan complex of FS, mainly consisting of the phenolic secoisolariciresinol, is protective against radiation pneumonopathy in vivo while not hindering the tumoricidal effects of radiotherapy.

  7. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    PubMed

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  8. Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells.

    PubMed

    Macha, Muzafar A; Rachagani, Satyanarayana; Qazi, Asif Khurshid; Jahan, Rahat; Gupta, Suprit; Patel, Anery; Seshacharyulu, Parthasarathy; Lin, Chi; Li, Sicong; Wang, Shuo; Verma, Vivek; Kishida, Shosei; Kishida, Michiko; Nakamura, Norifumi; Kibe, Toshiro; Lydiatt, William M; Smith, Russell B; Ganti, Apar K; Jones, Dwight T; Batra, Surinder K; Jain, Maneesh

    2017-03-28

    The dismal prognosis of locally advanced and metastatic squamous cell carcinoma of the head and neck (HNSCC) is primarily due to the development of resistance to chemoradiation therapy (CRT). Deregulation of Epidermal Growth Factor Receptor (EGFR) signaling is involved in HNSCC pathogenesis by regulating cell survival, cancer stem cells (CSCs), and resistance to CRT. Here we investigated the radiosensitizing activity of the pan-EGFR inhibitor afatinib in HNSCC in vitro and in vivo. Our results showed strong antiproliferative effects of afatinib in HNSCC SCC1 and SCC10B cells, compared to immortalized normal oral epithelial cells MOE1a and MOE1b. Comparative analysis revealed stronger antitumor effects with afatinib than observed with erlotinib. Furthermore, afatinib enhanced in vitro radiosensitivity of SCC1 and SCC10B cells by inducing mesenchymal to epithelial transition, G1 cell cycle arrest, and the attenuating ionizing radiation (IR)-induced activation of DNA double strand break repair (DSB) ATM/ATR/CHK2/BRCA1 pathway. Our studies also revealed the effect of afatinib on tumor sphere- and colony-forming capabilities of cancer stem cells (CSCs), and decreased IR-induced CSC population in SCC1 and SCC10B cells. Furthermore, we observed that a combination of afatinib with IR significantly reduced SCC1 xenograft tumors (median weight of 168.25 ± 20.85 mg; p = 0.05) compared to afatinib (280.07 ± 20.54 mg) or IR alone (324.91 ± 28.08 mg). Immunohistochemical analysis of SCC1 tumor xenografts demonstrated downregulation of the expression of IR-induced pEGFR1, ALDH1 and upregulation of phosphorylated γH2AX by afatinib. Overall, afatinib reduces tumorigenicity and radiosensitizes HNSCC cells. It holds promise for future clinical development as a novel radiosensitizer by improving CSC eradication.

  9. The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines.

    PubMed

    Cho, Hang Joo; Kim, Sin Young; Kim, Kee Hwan; Kang, Won Kyung; Kim, Ji Il; Oh, Seong Tack; Kim, Jeong Soo; An, Chang Hyeok

    2009-05-21

    The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC) inhibitor, and the two agents combined on radiosensitivity in human colon and breast cancer cell lines. In this study, we used RKO colorectal cancer cell line and MCF-7 breast cancer cell lines and normal colon cell lines. On each of the cell lines, we used three different agents: the HDAC inhibitor sodium butyrate(SB), the demethylating agent 5-Aza-2'-deoxycytidine(5-aza-DC), and radiation. We then estimated the percentage of the cell survival using the XTT method and experimented to determine if there was an augmentation in the therapeutic effect by using different combinations of the two or three of the treatment methods. After treatment of each cell lines with 5-aza-DC, SB and 6 grays of radiation, we observed that the survival fraction was lower after the treatment with 5-aza-DC or SB than with radiation alone in RKO and MCF-7 cell lines(p < 0.001). The survival fraction was lowest when the two agents, 5-aza-DC and SB were combined with radiation in both RKO and MCF-cell lines. In conclusion, 5-aza-DC and SB can enhance radiosensitivity in both MCF-7 and RKO cell lines. The combination effect of a demethylating agent and an HDAC inhibitor is more effective than that of single agent treatment in both breast and colon cancer cell lines.

  10. Sensitivity of Salivary Glands to Radiation

    PubMed Central

    Grundmann, O.; Mitchell, G.C.; Limesand, K.H.

    2009-01-01

    Radiation therapy for head and neck cancer causes significant secondary side-effects in normal salivary glands, resulting in diminished quality of life for these individuals. Salivary glands are exquisitely sensitive to radiation and display acute and chronic responses to radiotherapy. This review will discuss clinical implications of radiosensitivity in normal salivary glands, compare animal models used to investigate radiation-induced salivary gland damage, address therapeutic advances, and project future directions in the field. PMID:19783796

  11. Simple radiosensitizing of hypoxic tumor tissues by N2O/Br(-) mixture.

    PubMed

    Billik, P

    2015-07-01

    The radiosensitization model of hypoxic tumor tissues based on the N2O/Br(-) mixture is described. The well-documented radiolysis of water in the presence of N2O and Br(-) ions at a low concentration supports this model. An aqueous solution saturated with N2O gas during the radiolysis generates OH radicals in a large extent. In N2O/Br- media at pH<9, Br2 is formed. Br2 hydrolyzes in an aqueous solution to form a very reactive hypobromous (HOBr) acid. Such process is described by the following chemical reaction: H2O + Br(-) + N2O + ionizing radiation (IR) --> HOBr + OH(-). In vivo formed HOBr as a long-lived product with a high biological activity induces the hypoxic tumor cell damage via many unique mechanisms. A local application or inhalation of an N2O-O2 mixture before or during the radiotherapy to enhance the saturation of tissues with N2O is a key prerequisite. Since the extracellular concentration of Br(-) ions is very low (0.02-0.05 mM), an oral or local application of NaBr should be used to shift the extracellular concentration of Br(-) ions to the mM region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Towards an integrative computational model for simulating tumor growth and response to radiation therapy

    NASA Astrophysics Data System (ADS)

    Marrero, Carlos Sosa; Aubert, Vivien; Ciferri, Nicolas; Hernández, Alfredo; de Crevoisier, Renaud; Acosta, Oscar

    2017-11-01

    Understanding the response to irradiation in cancer radiotherapy (RT) may help devising new strategies with improved tumor local control. Computational models may allow to unravel the underlying radiosensitive mechanisms intervening in the dose-response relationship. By using extensive simulations a wide range of parameters may be evaluated providing insights on tumor response thus generating useful data to plan modified treatments. We propose in this paper a computational model of tumor growth and radiation response which allows to simulate a whole RT protocol. Proliferation of tumor cells, cell life-cycle, oxygen diffusion, radiosensitivity, RT response and resorption of killed cells were implemented in a multiscale framework. The model was developed in C++, using the Multi-formalism Modeling and Simulation Library (M2SL). Radiosensitivity parameters extracted from literature enabled us to simulate in a regular grid (voxel-wise) a prostate cell tissue. Histopathological specimens with different aggressiveness levels extracted from patients after prostatectomy were used to initialize in silico simulations. Results on tumor growth exhibit a good agreement with data from in vitro studies. Moreover, standard fractionation of 2 Gy/fraction, with a total dose of 80 Gy as a real RT treatment was applied with varying radiosensitivity and oxygen diffusion parameters. As expected, the high influence of these parameters was observed by measuring the percentage of survival tumor cell after RT. This work paves the way to further models allowing to simulate increased doses in modified hypofractionated schemes and to develop new patient-specific combined therapies.

  13. The p53–Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity

    PubMed Central

    Pant, Vinod; Xiong, Shunbin; Jackson, James G.; Post, Sean M.; Abbas, Hussein A.; Quintás-Cardama, Alfonso; Hamir, Amirali N.; Lozano, Guillermina

    2013-01-01

    The p53–Mdm2 feedback loop is perceived to be critical for regulating stress-induced p53 activity and levels. However, this has never been tested in vivo. Using a genetically engineered mouse with mutated p53 response elements in the Mdm2 P2 promoter, we show that feedback loop-deficient Mdm2P2/P2 mice are viable and aphenotypic and age normally. p53 degradation kinetics after DNA damage in radiosensitive tissues remains similar to wild-type controls. Nonetheless, DNA damage response is elevated in Mdm2P2/P2 mice. Enhanced p53-dependent apoptosis sensitizes hematopoietic stem cells (HSCs), causing drastic myeloablation and lethality. These results suggest that while basal Mdm2 levels are sufficient to regulate p53 in most tissues under homeostatic conditions, the p53–Mdm2 feedback loop is critical for regulating p53 activity and sustaining HSC function after DNA damage. Therefore, transient disruption of p53–Mdm2 interaction could be explored as a potential adjuvant/therapeutic strategy for targeting stem cells in hematological malignancies. PMID:23973961

  14. Effects of Taxol plus radiation on the apoptotic and mitotic indices of mouse intestinal crypt cells.

    PubMed

    Ozkan, L; Ozuysal, S; Egeli, U; Adim, S B; Tunca, B; Aydemir, N; Ceçener, G; Ergül, E; Akpinar, G; Cimen, C; Engin, K; Ahmed, M M

    2001-07-01

    In this study we investigated the effect of Taxol, radiation, or Taxol plus radiation on highly proliferative normal tissue--the intestinal crypt cells of Swiss albino mice. Swiss-albino mice, 3-4 months old, were used in this study. Taxol was administered by bolus intravenously through the tail vein. Radiation was given using a linear accelerator. There were four treatment categories, which comprised a total of 34 groups. Each group consisted of five animals. The first category was a control category which comprised one group (n = 5). The second treatment category was Taxol alone which comprised three groups (n = 15). The third treatment category was radiation alone which comprised three groups (n = 15). The fourth treatment category was Taxol plus radiation which comprised 27 groups (n = 135). Mice were killed 24 h after Taxol or radiation or combined administration using ether anesthesia. Using a light microscope, apoptotic and mitotic indices were counted on jejunal crypt cells of mice that were stained with hematoxylin-eosin. Differences between groups were statistically evaluated with Student's t-test. Taxol caused a dose-dependent increase in apoptosis (P = 0.045) and decreased the mitotic index (P = 0.006) at high doses. Similarly, radiation caused a dose-dependent increase in apoptosis (P = 0.046) and decreased the mitotic index (P = 0.299) at higher radiation doses. Compared to radiation alone, Taxol caused a significant induction of apoptosis (P = 0.010). In combination, no significant radiosensitizing effect of Taxol was observed (enhancement ratio < 1), when compared to radiation alone. However, an increase in apoptosis was observed after 24 h of Taxol exposure when compared to 12 or 48 h of Taxol exposure (P = 0.0001 and P = 0.0001). These findings suggest that Taxol did not cause a radiosensitizing effect in intestinal crypt cells. However, a 24-hour pretreatment of Taxol exposure followed by radiation caused significant induction of apoptosis and reduction of the mitotic index when compared to other Taxol timing sequences. Thus, the lack of a radiosensitizing effect of Taxol in these proliferative cells may be due to enhanced mitotic death rather than apoptotic death.

  15. Intensified autophagy compromises the efficacy of radiotherapy against prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koukourakis, Michael I., E-mail: targ@her.forthnet.gr; Kalamida, Dimitra; Mitrakas, Achilleas

    2015-05-29

    Introduction: Radiotherapy is an equivalent alternative or complement to radical prostatectomy, with high therapeutic efficacy. High risk patients, however, experience high relapse rates, so that research on radio-sensitization is the most evident route to improve curability of this common disease. Materials and methods: In the current study we investigated the autophagic activity in a series of patients with localized prostate tumors treated with radical radiotherapy, using the LC3A and the LAMP2a proteins as markers of autophagosome and lysosome cellular content, respectively. The role of autophagy on prostate cancer cell line resistance to radiation was also examined. Results: Using confocal microscopymore » on tissue biopsies, we showed that prostate cancer cells have, overall, high levels of LC3A and low levels of LAMP2a compared to normal prostate glands. Tumors with a ‘highLC3A/lowLAMP2a’ phenotype, suggestive of intensified lysosomal consumption, had a significantly poorer biochemical relapse free survival. The PC3 radioresistant cell line sustained remarkably its autophagic flux ability after radiation, while the DU145 radiosensitive one experiences a prolonged blockage of the autophagic process. This was assessed with aggresome accumulation detection and LC3A/LAMP2a double immunofluorescence, as well as with sequestrosome/p62 protein detection. By silencing the LC3A or LAMP2a expression, both cell lines became more sensitive to escalated doses of radiation. Conclusions: High base line autophagy activity and cell ability to sustain functional autophagy define resistance of prostate cancer cells to radiotherapy. This can be reversed by blocking up-regulated components of the autophagy pathway, which may prove of importance in the field of clinical radiotherapy. - Highlights: • High LC3A and low LAMP2a levels is a frequent expression pattern of prostate carcinoma. • This pattern of intensified autophagic flux relates with high relapse rates after radiotherapy. • The PC3 radio-resistant cell line sustains remarkably its autophagic flux ability after radiation. • Irradiation of the DU145 radio-sensitive cell line blocks the autophagic flux. • Intense autophagy activity defines prostate cancer radio-resistance, in vivo and in vitro.« less

  16. Wee1 Kinase Inhibitor AZD1775 Radiosensitizes Hepatocellular Carcinoma Regardless of TP53 Mutational Status Through Induction of Replication Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, Kyle C., E-mail: kcuneo@umich.edu; Morgan, Meredith A.; Davis, Mary A.

    2016-06-01

    Purpose: Wee1 kinase inhibitors are effective radiosensitizers in cells lacking a G{sub 1} checkpoint. In this study we examined the potential effect of Wee1 kinase inhibition on inducing replication stress in hepatocellular carcinoma (HCC). Methods and Materials: Five independent datasets from the Oncomine database comparing gene expression in HCC compared to normal tissue were combined and specific markers associated with Wee1 sensitivity were analyzed. We then performed a series of in vitro experiments to study the effect of Wee1 inhibition on irradiated HCC cell lines with varying p53 mutational status. Clonogenic survival assays and flow cytometry using anti-γH2AX and phospho-histone H3more » antibodies with propidium iodide were performed to study the effect of AZD1775 on survival, cell cycle, and DNA repair. Additionally, nucleoside enriched medium was used to examine the effect of altering nucleotide pools on Wee1 targeted radiation sensitization. Results: Our analysis of the Oncomine database found high levels of CDK1 and other cell cycle regulators indicative of Wee1 sensitivity in HCC. In our in vitro experiments, treatment with AZD1775 radiosensitized and chemosensitized Hep3B, Huh7, and HepG2 cell lines and was associated with delayed resolution of γH2AX foci and the induction of pan-nuclear γH2AX staining. Wee1 inhibition attenuated radiation-induced G{sub 2} arrest in the Hep3B (TP53 null) and Huh7 (TP53 mutant) cell lines but not in the TP53 wild-type cell line HepG2. Supplementation with nucleosides reversed the radiation-sensitizing effect of AZD1775 and reduced the amount of cells with pan-nuclear γH2AX staining after radiation. Conclusions: Radiation sensitization with Wee1 inhibition occurs in cells regardless of their p53 mutational status. In this study we show for the first time that replication stress via the overconsumption of nucleotides plays an important role in AZD1775-induced radiation sensitization.« less

  17. Polyclonal activation of human lymphocytes in vitro-II. Reappraisal of T and B cell-specific mitogens.

    PubMed

    Dosch, H M; Schuurman, R K; Gelfand, E W

    1980-08-01

    The capacity of the T cell mitogens phytohemagglutinin (PHA), concanavalin A (Con A), pokeweed mitogen (PWM), and Staphylococcus protein A (SpA) to induce B cell proliferation and differentiation was compared with the B cell mitogen, formalinized Staphylococcus aureus (STA). Lymphocyte subpopulations from normal donors and patients with various immunodeficiency diseases were studied. In the presence of the T cell mitogens, irradiated T cells were capable of providing a helper cell activity that enabled co-cultured B lymphocytes to proliferate in response to these mitogens and to differentiate into IgM-secreting (direct) hemolytic plaque-forming cells (PFC). In the PFC response, radioresistant T-helper and radiosensitive T-suppressor cell activities could be demonstrated. T-suppressor cell activity outweighed helper activity only in nonirradiated co-cultures stimulated with Con A. Patients with severe combined immunodeficiency lacked mitogen-induced helper T cells, whereas patients with various forms of humoral immune deficiency were normal in this respect. These findings and the tissue distribution of the helper activity is aquired early in post-thymic T cell differentiation. The data suggest that experiments with cell lineage-specific lymphocyte mitogens should be considered in the context of more complex cell-cell interactions.

  18. Targeting Phosphatidylinositol 4-Kinase IIIα for Radiosensitization: A Potential Model of Drug Repositioning Using an Anti-Hepatitis C Viral Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Jeanny; Kim, Dan Hyo; Park, Ji Min

    Purpose: To investigate which isotype of phosphatidylinositol 4-kinase (PI4K) may affect radiosensitivity and examine whether anti–hepatitis C viral (HCV) agents, some of which have been shown to inhibit PI4K IIIα activity, could be repositioned as a radiosensitizer in human cancer cells. Methods and Materials: U251, BT474, and HepG2 cell lines and normal human astrocyte were used. Ribonucleic acid interference, clonogenic assays, Western blotting, immunofluorescence, annexin V assay, lysotracker staining, and β-galactosidase assay were performed. Results: Of the 4 PI4K isotypes, specific inhibition of IIIα increased radiosensitivity. For pharmacologic inhibition of PI4K IIIα, we screened 9 anti-HCV agents by half-maximal inhibitorymore » concentration assay. Simeprevir was selected, and its inhibition of PI4K IIIα activity was confirmed. Combination of simeprevir treatment and radiation significantly attenuated expression of phospho-phospho-PKC and phospho-Akt and increased radiation-induced cell death in tested cell lines. Pretreatment with simeprevir prolonged γH2AX foci formation and down-regulation of phospho-DNA-PKcs, indicating impairment of nonhomologous end-joining repair. Cells pretreated with simeprevir exhibited mixed modes of cell death, including apoptosis and autophagy. Conclusion: These data demonstrate that targeting PI4K IIIα using an anti-HCV agent is a viable approach to enhance the therapeutic efficacy of radiation therapy in various human cancers, such as glioma, breast, and hepatocellular carcinoma.« less

  19. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants

    NASA Technical Reports Server (NTRS)

    Asaad, N. A.; Zeng, Z. C.; Guan, J.; Thacker, J.; Iliakis, G.

    2000-01-01

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  20. Pharmacological ascorbate and ionizing radiation (IR) increase labile iron in pancreatic cancer☆

    PubMed Central

    Moser, Justin C.; Rawal, Malvika; Wagner, Brett A.; Du, Juan; Cullen, Joseph J.; Buettner, Garry R.

    2013-01-01

    Labile iron, i.e. iron that is weakly bound and is relatively unrestricted in its redox activity, has been implicated in both the pathogenesis as well as treatment of cancer. Two cancer treatments where labile iron may contribute to their mechanism of action are pharmacological ascorbate and ionizing radiation (IR). Pharmacological ascorbate has been shown to have tumor-specific toxic effects due to the formation of hydrogen peroxide. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of hydrogen peroxide; labile iron can also react with hydrogen peroxide. Here we have investigated the magnitude of the labile iron pool in tumor and normal tissue. We also examined the ability of pharmacological ascorbate and IR to change the size of the labile iron pool. Although a significant amount of labile iron was seen in tumors (MIA PaCa-2 cells in athymic nude mice), higher levels were seen in murine tissues that were not susceptible to pharmacological ascorbate. Pharmacological ascorbate and irradiation were shown to increase the labile iron in tumor homogenates from this murine model of pancreatic cancer. As both IR and pharmacological ascorbate may rely on labile iron for their effects on tumor tissues, our data suggest that pharmacological ascorbate could be used as a radio-sensitizing agent for some radio-resistant tumors. PMID:24396727

  1. Artemisinin derivative artesunate induces radiosensitivity in cervical cancer cells in vitro and in vivo.

    PubMed

    Luo, Judong; Zhu, Wei; Tang, Yiting; Cao, Han; Zhou, Yuanyuan; Ji, Rong; Zhou, Xifa; Lu, Zhongkai; Yang, Hongying; Zhang, Shuyu; Cao, Jianping

    2014-03-25

    Cervical cancer is the third most common type of cancer in women worldwide and radiotherapy remains its predominant therapeutic treatment. Artesunate (ART), a derivative of artemisinin, has shown radiosensitization effect in previous studies. However, such effects of ART have not yet been revealed for cervical cancer cells. The effect of ART on radiosensitivity of human cervical cancer cell lines HeLa and SiHa was assessed using the clonogenic assay. Cell cycle progression and apoptosis alterations were analyzed by flow cytometry. For in vivo study, HeLa or SiHa cells were inoculated into nude mice to establish tumors. Tissues from xenografts were obtained to detect the changes of microvessel density, apoptosis and cell cycle distribution. Microarray was used to analyze differentially expressed genes. ART increased the radiosensitivity of HeLa cells (SER=1.43, P<0.001) but not of SiHa cells. Apoptosis and the G2-M phase transition induced by X-ray irradiation (IR) were enhanced by ART via increased Cyclin B1 expression in HeLa cells. Tumor growth of xenografts from HeLa but not SiHa cells was significantly inhibited by irradiation combined with ART (tumor volume reduction of 72.34% in IR+ART group vs. 41.22% in IR group in HeLa cells and 48.79% in IR+ART group vs. 44.03% in IR alone group in SiHa cells). Compared with the irradiated group, cell apoptosis was increased and the G2/M cell cycle arrest was enhanced in the group receiving irradiation combined with ART. Furthermore, compared with radiation alone, X-ray irradiation plus ART affected the expression of 203 genes that function in multiple pathways including RNA transport, the spliceosome, RNA degradation and p53 signaling. ART potently abrogates the G2 checkpoint control in HeLa cells. ART can induce radiosensitivity of HeLa cells in vitro and in vivo.

  2. Comparative human cellular radiosensitivity: I. The effect of SV40 transformation and immortalisation on the gamma-irradiation survival of skin derived fibroblasts from normal individuals and from ataxia-telangiectasia patients and heterozygotes.

    PubMed

    Arlett, C F; Green, M H; Priestley, A; Harcourt, S A; Mayne, L V

    1988-12-01

    We have compared cell killing following 60Co gamma irradiation in 22 primary human fibroblast strains, nine SV40-immortalized human fibroblast lines and seven SV40-transformed pre-crisis human fibroblast cultures. We have examined material from normal individuals, from ataxia-telangiectasia (A-T) patients and from A-T heterozygotes. We have confirmed the greater sensitivity of A-T derived cells to gamma radiation. The distinction between A-T and normal cells is maintained in cells immortalized by SV40 virus but the immortal cells are more gamma radiation resistant than the corresponding primary fibroblasts. Cells transformed by plasmids (pSV3gpt and pSV3neo) expressing SV40 T-antigen, both pre- and post-crisis, show this increased resistance, indicating that it is expression of SV40 T-antigen, rather than immortalization per se which is responsible for the change. We use D0, obtained from a straight line fit, and D, estimated from a multitarget curve, as parameters to compare radiosensitivity. We suggest that both have their advantages; D0 is perhaps more reproducible, but D is more realistic when comparing shouldered and non-shouldered data.

  3. Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu, E-mail: hualinzhang@yahoo.com; Zhong, Hualiang; Barth, Rolf F.

    2014-02-15

    Purpose: To evaluate the impact of dose size in single fraction, spatially fractionated (grid) radiotherapy for selectively killing infiltrated melanoma cancer cells of different tumor sizes, using different radiobiological models. Methods: A Monte Carlo technique was employed to calculate the 3D dose distribution of a commercially available megavoltage grid collimator in a 6 MV beam. The linear-quadratic (LQ) and modified linear quadratic (MLQ) models were used separately to evaluate the therapeutic outcome of a series of single fraction regimens that employed grid therapy to treat both acute and late responding melanomas of varying sizes. The dose prescription point was atmore » the center of the tumor volume. Dose sizes ranging from 1 to 30 Gy at 100% dose line were modeled. Tumors were either touching the skin surface or having their centers at a depth of 3 cm. The equivalent uniform dose (EUD) to the melanoma cells and the therapeutic ratio (TR) were defined by comparing grid therapy with the traditional open debulking field. The clinical outcomes from recent reports were used to verify the authors’ model. Results: Dose profiles at different depths and 3D dose distributions in a series of 3D melanomas treated with grid therapy were obtained. The EUDs and TRs for all sizes of 3D tumors involved at different doses were derived through the LQ and MLQ models, and a practical equation was derived. The EUD was only one fifth of the prescribed dose. The TR was dependent on the prescribed dose and on the LQ parameters of both the interspersed cancer and normal tissue cells. The results from the LQ model were consistent with those of the MLQ model. At 20 Gy, the EUD and TR by the LQ model were 2.8% higher and 1% lower than by the MLQ, while at 10 Gy, the EUD and TR as defined by the LQ model were only 1.4% higher and 0.8% lower, respectively. The dose volume histograms of grid therapy for a 10 cm tumor showed different dosimetric characteristics from those of conventional radiotherapy. A significant portion of the tumor volume received a very large dose in grid therapy, which ensures significant tumor cell killing in these regions. Conversely, some areas received a relatively small dose, thereby sparing interspersed normal cells and increasing radiation tolerance. The radiobiology modeling results indicated that grid therapy could be useful for treating acutely responding melanomas infiltrating radiosensitive normal tissues. The theoretical model predictions were supported by the clinical outcomes. Conclusions: Grid therapy functions by selectively killing infiltrating tumor cells and concomitantly sparing interspersed normal cells. The TR depends on the radiosensitivity of the cell population, dose, tumor size, and location. Because the volumes of very high dose regions are small, the LQ model can be used safely to predict the clinical outcomes of grid therapy. When treating melanomas with a dose of 15 Gy or higher, single fraction grid therapy is clearly advantageous for sparing interspersed normal cells. The existence of a threshold fraction dose, which was found in the authors’ theoretical simulations, was confirmed by clinical observations.« less

  4. Nicaraven reduces cancer metastasis to irradiated lungs by decreasing CCL8 and macrophage recruitment.

    PubMed

    Yan, Chen; Luo, Lan; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng

    2018-04-01

    Radiotherapy for cancer patients damages normal tissues, thereby inducing an inflammatory response and promoting cancer metastasis. We investigated whether nicaraven, a compound with radioprotective and anti-inflammatory properties, could attenuate radiation-induced cancer metastasis to the lungs of mice. Nicaraven and amifostine, another commercial radioprotective agent, had limited effects on both the radiosensitivity of Lewis lung carcinoma cells in vitro and radiation-induced tumor growth inhibition in vivo. Using experimental and spontaneous metastasis models, we confirmed that thorax irradiation with 5 Gy X-rays dramatically increased the number of tumors in the lungs. Interestingly, the number of tumors in the lungs was significantly reduced by administering nicaraven but not by administering amifostine daily after radiation exposure. Furthermore, nicaraven administration effectively inhibited CCL8 expression and macrophage recruitment in the lungs 1 day after thorax irradiation. Our data suggest that nicaraven attenuates radiation-induced lung metastasis, likely by regulating the inflammatory response after radiation exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells

    PubMed Central

    Macha, Muzafar A; Rachagani, Satyanarayana; Qazi, Asif Khurshid; Jahan, Rahat; Gupta, Suprit; Patel, Anery; Seshacharyulu, Parthasarathy; Lin, Chi; Li, Sicong; Wang, Shuo; Verma, Vivek; Kishida, Shosei; Kishida, Michiko; Nakamura, Norifumi; Kibe, Toshiro; Lydiatt, William M; Smith, Russell B; Ganti, Apar K; Jones, Dwight T; Batra, Surinder K; Jain, Maneesh

    2017-01-01

    The dismal prognosis of locally advanced and metastatic squamous cell carcinoma of the head and neck (HNSCC) is primarily due to the development of resistance to chemoradiation therapy (CRT). Deregulation of Epidermal Growth Factor Receptor (EGFR) signaling is involved in HNSCC pathogenesis by regulating cell survival, cancer stem cells (CSCs), and resistance to CRT. Here we investigated the radiosensitizing activity of the pan-EGFR inhibitor afatinib in HNSCC in vitro and in vivo. Our results showed strong antiproliferative effects of afatinib in HNSCC SCC1 and SCC10B cells, compared to immortalized normal oral epithelial cells MOE1a and MOE1b. Comparative analysis revealed stronger antitumor effects with afatinib than observed with erlotinib. Furthermore, afatinib enhanced in vitro radiosensitivity of SCC1 and SCC10B cells by inducing mesenchymal to epithelial transition, G1 cell cycle arrest, and the attenuating ionizing radiation (IR)-induced activation of DNA double strand break repair (DSB) ATM/ATR/CHK2/BRCA1 pathway. Our studies also revealed the effect of afatinib on tumor sphere- and colony-forming capabilities of cancer stem cells (CSCs), and decreased IR-induced CSC population in SCC1 and SCC10B cells. Furthermore, we observed that a combination of afatinib with IR significantly reduced SCC1 xenograft tumors (median weight of 168.25 ± 20.85 mg; p = 0.05) compared to afatinib (280.07 ± 20.54 mg) or IR alone (324.91 ± 28.08 mg). Immunohistochemical analysis of SCC1 tumor xenografts demonstrated downregulation of the expression of IR-induced pEGFR1, ALDH1 and upregulation of phosphorylated γH2AX by afatinib. Overall, afatinib reduces tumorigenicity and radiosensitizes HNSCC cells. It holds promise for future clinical development as a novel radiosensitizer by improving CSC eradication. PMID:28423495

  6. In vivo evaluation of the effects of simultaneous inhibition of GLUT-1 and HIF-1α by antisense oligodeoxynucleotides on the radiosensitivity of laryngeal carcinoma using micro 18F-FDG PET/CT

    PubMed Central

    Shen, Li-Fang; Zhao, Xin; Zhou, Shui-Hong; Lu, Zhong-Jie; Zhao, Kui; Fan, Jun; Zhou, Min-Li

    2017-01-01

    Purpose Hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) are two important hypoxic markers associated with the radioresistance of cancers including laryngeal carcinoma. We evaluated whether the simultaneous inhibition of GLUT-1 and HIF-1α expression improved the radiosensitivity of laryngeal carcinoma. We explored whether the expression of HIF-1α and GLUT-1 was correlated with 2′-deoxy-2’-[18F]fluoro-D-glucose (18F-FDG) uptake and whether 18F-FDG positron emission tomography-computed tomography (PET/CT) was appropriate for early evaluation of the response of laryngeal carcinoma to targeted treatment in vivo. Materials and Methods To verify the above hypotheses, an in vivo model was applied by subcutaneously injecting Hep-2 (2 × 107/mL × 0.2 mL) and Tu212 cells (2 × 107/mL × 0.2 mL) into nude mice. The effects of HIF-1α antisense oligodeoxynucleotides (AS-ODNs) (100 μg) and GLUT-1 AS-ODNs (100 μg) on the radiosensitivity of laryngeal carcinoma were assessed by tumor volume and weight, microvessel density (MVD), apoptosis index (AI) and necrosis in vivo based on a full factorial (23) design. 18F-FDG-PET/CT was taken before and after the treatment of xenografts. The relationships between HIF-1α and GLUT-1 expression and 18F-FDG uptake in xenografts were estimated and the value of 18F-FDG-PET/CT was assessed after treating the xenografts. Results 10 Gy X-ray irradiation decreased the weight of Hep-2 xenografts 8 and 12 days after treatment, and the weights of Tu212 xenografts 8 days after treatment. GLUT-1 AS-ODNs decreased the weight of Tu212 xenografts 12 days after treatment. There was a synergistic interaction among the three treatments (GLUT-1 AS-ODNs, HIF-1α AS-ODNs and 10Gy X-ray irradiation) in increasing apoptosis, decreasing MVD, and increasing necrosis in Hep-2 xenografts 8 days after treatment (p < 0.05) and in Tu212 xenografts 12 days after treatment (p < 0.001). Standardized uptake value (tumor/normal tissue)( SUVmaxT/N) did not show a statistically significant correlation with GLUT1 and HIF-1α expression and therapeutic effect (necrosis, apoptosis). Conclusions Simultaneous inhibition of HIF-1α and GLUT-1 expression might increase the radiosensitivity of laryngeal carcinoma, decreasing MVD, and promoting apoptosis and necrosis. 18F-FDG-PET/CT wasn't useful in evaluating the therapeutic effect on laryngeal cancer in this animal study. PMID:28410229

  7. In vivo evaluation of the effects of simultaneous inhibition of GLUT-1 and HIF-1α by antisense oligodeoxynucleotides on the radiosensitivity of laryngeal carcinoma using micro 18F-FDG PET/CT.

    PubMed

    Shen, Li-Fang; Zhao, Xin; Zhou, Shui-Hong; Lu, Zhong-Jie; Zhao, Kui; Fan, Jun; Zhou, Min-Li

    2017-05-23

    Hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) are two important hypoxic markers associated with the radioresistance of cancers including laryngeal carcinoma. We evaluated whether the simultaneous inhibition of GLUT-1 and HIF-1α expression improved the radiosensitivity of laryngeal carcinoma. We explored whether the expression of HIF-1α and GLUT-1 was correlated with 2'-deoxy-2'-[18F]fluoro-D-glucose (18F-FDG) uptake and whether 18F-FDG positron emission tomography-computed tomography (PET/CT) was appropriate for early evaluation of the response of laryngeal carcinoma to targeted treatment in vivo. To verify the above hypotheses, an in vivo model was applied by subcutaneously injecting Hep-2 (2 × 107/mL × 0.2 mL) and Tu212 cells (2 × 107/mL × 0.2 mL) into nude mice. The effects of HIF-1α antisense oligodeoxynucleotides (AS-ODNs) (100 μg) and GLUT-1 AS-ODNs (100 μg) on the radiosensitivity of laryngeal carcinoma were assessed by tumor volume and weight, microvessel density (MVD), apoptosis index (AI) and necrosis in vivo based on a full factorial (23) design. 18F-FDG-PET/CT was taken before and after the treatment of xenografts. The relationships between HIF-1α and GLUT-1 expression and 18F-FDG uptake in xenografts were estimated and the value of 18F-FDG-PET/CT was assessed after treating the xenografts. 10 Gy X-ray irradiation decreased the weight of Hep-2 xenografts 8 and 12 days after treatment, and the weights of Tu212 xenografts 8 days after treatment. GLUT-1 AS-ODNs decreased the weight of Tu212 xenografts 12 days after treatment. There was a synergistic interaction among the three treatments (GLUT-1 AS-ODNs, HIF-1α AS-ODNs and 10Gy X-ray irradiation) in increasing apoptosis, decreasing MVD, and increasing necrosis in Hep-2 xenografts 8 days after treatment (p < 0.05) and in Tu212 xenografts 12 days after treatment (p < 0.001). Standardized uptake value (tumor/normal tissue)( SUVmaxT/N) did not show a statistically significant correlation with GLUT1 and HIF-1α expression and therapeutic effect (necrosis, apoptosis). Simultaneous inhibition of HIF-1α and GLUT-1 expression might increase the radiosensitivity of laryngeal carcinoma, decreasing MVD, and promoting apoptosis and necrosis. 18F-FDG-PET/CT wasn't useful in evaluating the therapeutic effect on laryngeal cancer in this animal study.

  8. Gold-nanoparticle-based theranostic agents for radiotherapy of malignant solid tumors

    NASA Astrophysics Data System (ADS)

    Moeendarbari, Sina

    Radiation therapy is one of the three major methods of cancer treatment. The fundamental goal of radiotherapy is to deliver high radiation doses to targets while simultaneously minimizing doses to critical structures and healthy normal tissues. The aim of this study is to develop a general, practical, and facile method to prepare nanoscale theranostic agents for more efficacious radiation therapy with less adverse side effects. First, a novel type of gold nanoparticle, hollow Au nanoparticles (HAuNPs) which was synthesized using the unique bubble template synthesis method developed in our lab, are studied in vitro and in vivo to investigate their effect as radiosensitizing agents to enhance the radiation dose during external radiotherapy. The results showed the promising potential of using HAuNPs as radiosensitization agents for efficacious treatment of breast cancer. Second, a novel radiolabeling method is developed to incorporate medical radioisotopes to gold nanoparticles. We incorporate palladium-103 (103Pd), a radioisotope currently in clinical brachytherapy, into a hollow gold nanoparticle. The resulting 103Pd Au nanoparticles in the form of a colloidal suspension can be administered by direct injection into tumors, serving as internal radiation sources (nanoseeds) for radiation therapy. The size of the nanoseed, 150nm in diameter, is large enough to prevent nanoseeds from diffusing into other areas while still small enough to allow them to homogeneously distribute inside the tumor. The therapeutic efficacy of 103Pd Au nanoseeds have been tested when intratumorally injected into a prostate cancer xenograft model. The findings showed that this nanoseed-based brachytherapy has the potential to provide a theranostic solution to unresectable solid tumors. Finally, to make real clinical application more plausible, multi-functional magnetic nanoseeds nanoparticles for imaging-guided radiotherapy are synthesized and characterized.

  9. Radiation concurrent with gemcitabine for locally advanced head and neck cancer: a phase I trial and intracellular drug incorporation study.

    PubMed

    Eisbruch, A; Shewach, D S; Bradford, C R; Littles, J F; Teknos, T N; Chepeha, D B; Marentette, L J; Terrell, J E; Hogikyan, N D; Dawson, L A; Urba, S; Wolf, G T; Lawrence, T S

    2001-02-01

    To examine the feasibility and dose-limiting toxicity (DLT) of once-weekly gemcitabine at doses predicted in preclinical studies to produce radiosensitization, concurrent with a standard course of radiation for locally advanced head and neck cancer. Tumor incorporation of gemcitabine triphosphate (dFdCTP) was measured to assess whether adequate concentrations were achieved at each dose level. Twenty-nine patients with unresectable head and neck cancer received a course of radiation (70 Gy over 7 weeks, 5 days weekly) concurrent with weekly infusions of low-dose gemcitabine. Tumor biopsies were performed after the first gemcitabine infusion (before radiation started), and the intracellular concentrations of dFdCTP were measured. Severe acute and late mucosal and pharyngeal-related DLT required de-escalation of gemcitabine dose in successive patient cohorts receiving dose levels of 300 mg/m(2)/wk, 150 mg/m(2)/wk, and 50 mg/m(2)/wk. No DLT was observed at 10 mg/m(2)/wk. The rate of endoscopy- and biopsy-assessed complete tumor response was 66% to 87% in the various cohorts. Tumor dFdCTP levels were similar in patients receiving 50 to 300 mg/m(2) (on average, 1.55 pmol/mg, SD 1.15) but were barely or not detectable at 10 mg/m(2). A high rate of acute and late mucosa-related DLT and a high rate of complete tumor response were observed in this regimen at the dose levels of 50 to 300 mg/m(2), which also resulted in similar, subcytotoxic intracellular dFdCTP concentrations. These results demonstrate significant tumor and normal tissue radiosensitization by low-dose gemcitabine. Different regimens of combined radiation and gemcitabine should be evaluated, based on newer preclinical data promising an improved therapeutic ratio.

  10. Intra-arterial bromodeoxyuridine radiosensitization of malignant gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegarty, T.J.; Thornton, A.F.; Diaz, R.F.

    1990-08-01

    In the 1950's it was first observed that mammalian cells exposed to the halogenated deoxyuridines were more sensitive to ultraviolet light and radiation than untreated cells. This prompted early clinical trials with bromodeoxyuridine (BUdR) which showed mixed results. More recently, several Phase I studies, while establishing the feasibility of continuous intravenous (IV) infusion of BUdR, have reported significant dose limiting skin and bone marrow toxicities and have questioned the optimal method of BUdR delivery. To exploit the high mitotic activity of malignant gliomas relative to surrounding normal brain tissue, we have developed a permanently implantable infusion pump system for safe,more » continuous intraarterial (IA) internal carotid BUdR delivery. Since July 1985, 23 patients with malignant brain tumors (18 grade 4, 5 grade 3) have been treated in a Phase I clinical trial using IA BUdR (400-600 mg/m2/day X 8 1/2 weeks) and focal external beam radiotherapy (59.4 Gy at 1.8 Gy/day in 6 1/2 weeks). Following initial biopsy/surgery the infusion pump system was implanted; BUdR infusion began 2 weeks prior to and continued throughout the 6 1/2 week course of radiotherapy. There have been no vascular complications. Side-effects in all patients have included varying degrees of anorexia, fatigue, ipsilateral forehead dermatitis, blepharitis, and conjunctivitis. Myelosuppression requiring dose reduction occurred in one patient. An overall Kaplan-Meier estimated median survival of 20 months has been achieved. As in larger controlled series, histologic grade and age are prognostically significant. We have shown in a Phase I study that IA BUdR radiosensitization is safe, tolerable, may lead to improved survival, and appears to be an efficacious primary treatment of malignant gliomas.« less

  11. Development, Characterization and Validation of Trastuzumab-Modified Gold Nanoparticles for Molecularly Targeted Radiosensitization of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Niladri

    The overexpression of the human epidermal growth factor receptor-2 (HER-2) in 20--25% of human breast cancers was investigated as a target for development of a gold nanoparticle (AuNP) based radiosensitizer for improving the efficacy of neoadjuvant X-radiation therapy of the disease. HER-2 targeted AuNPs were developed by covalently conjugating trastuzumab, a Health Canada approved monoclonal antibody for the treatment of HER-2-overexpressing breast cancer, to 30 nm AuNPs. Trastuzumab conjugated AuNPs were efficiently internalized by HER-2-overexpressing breast cancer cells (as assessed by darkfield microscopy and transmission electron microscopy) and increased DNA damage from X-radiation in these cells by more than 5-fold. To optimize delivery of AuNPs to HER-2-overexpressing tumors, high resolution microSPECT/CT imaging was used to track the in vivo fate of 111In-labelled non-targeted and HER-2 targeted AuNPs following intravenous (i.v.) or intratumoral (i.t.) injection. For i.v. injection, the effects of GdCl3 (for deactivation of macrophages) and non-specific (anti-CD20) antibody rituximab (for blocking of Fc mediated liver and spleen uptake) were studied. It was found that HER-2 targeting via attachment of trastuzumab paradoxically decreased tumor uptake as a result of faster elimination of the targeted AuNPs from the blood while improving internalization in HER-2-positive tumor cells as compared to non-targeted AuNPs. This phenomenon could be attributed to Fc-mediated recognition and subsequent sequestration of trastuzumab conjugated AuNP by the reticuloendothelial system (RES). Blocking of the RES did not increase tumor uptake of either HER-2 targeted or non-targeted AuNPs. Following i.t. injection, our results suggest that Au-NTs redistribute over time and traffick to the liver via the ipsilateral axillary lymph node leading to comparable exposure as seen with i.v. administration. In contrast, targeted AuNPs are bound and internalized by HER-2-overexpressing tumor cells following i.t. injection, with a lower proportion of AuNPs redistributing to normal tissues. In vivo, the combination of HER-2 targeted AuNPs injected i.t. and X-radiation (11 Gy) yielded a 46% decrease in tumor size over a 4 month period in contrast to an 11.5% increase in tumor size for X-radiation treatment alone. Toxicology studies (evaluated through complete blood cell counts, by serum transaminase and creatinine measurements and by monitoring the body weight) demonstrated no apparent normal organ toxicity from the combination of HER-2 targeted AuNPs and X-radiation. These results are promising for the clinical translation of HER-2-targeted AuNPs for radiosensitization of tumors to X-radiation.

  12. Protection and Sensitization of Human Cells to Proton Radiation by Cerium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Carlson, Nathan B.

    In radiation therapy for the treatment of cancer, there is demand for novel approaches that will improve tumor cell killing while protecting healthy tissue. One such approach that has shown considerable promise is the application of nanoparticles as radiation sensitizers for tumor cells and as radiation protectants for healthy tissue. In this investigation, cerium oxide nanoparticles (CNPs) obtained from the University of Central Florida's NanoScience Technology Center were studied for their protective effect to charged particle radiation in non-malignant breast cells, and for their sensitizing effect in breast and prostate cancer cell lines. These experiments were conducted at East Carolina University, where human cells were grown in the cell culture facility in the Department of Biology and then irradiated with energetic protons in the Accelerator Laboratory in the Department of Physics. Prior to irradiation, the cells were treated with distinct CNP preparations ranging in concentrations from 10 nanomolar to 10 micromolar, and cell viability was assessed using multiple assays post-irradiation. Radioprotection and radiosensitization were observed for several of the CNP treatments tested. Ultimately, the goal is to find a specific nanoparticle treatment that holds the synergistic effect of enhancing the rate of killing in tumor cells while simultaneously improving the survival of normal cells.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Serk In, E-mail: serkin@korea.edu; The BK21 Plus Program for Biomedical Sciences, Korea University College of Medicine, Seoul; Department of Medicine and Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN

    The radiation stress induces cytotoxic responses of cell death as well as cytoprotective responses of cell survival. Understanding exact cellular mechanism and signal transduction pathways is important in improving cancer radiotherapy. Increasing evidence suggests that cyclic AMP response element binding protein (CREB)/activating transcription factor (ATF) family proteins act as a survival factor and a signaling molecule in response to stress. We postulated that CREB inhibition via CRE decoy oligonucleotide increases tumor cell sensitization to γ-irradiation-induced cytotoxic stress. In the present study, we demonstrate that CREB phosphorylation and CREB DNA-protein complex formation increased in time- and radiation dose-dependent manners, while theremore » was no significant change in total protein level of CREB. In addition, CREB was phosphorylated in response to γ-irradiation through p38 MAPK pathway. Further investigation revealed that CREB blockade by decoy oligonucleotides functionally inhibited transactivation of CREB, and significantly increased radiosensitivity of multiple human cancer cell lines including TP53- and/or RB-mutated cells with minimal effects on normal cells. We also demonstrate that tumor cells ectopically expressing dominant negative mutant CREB (KCREB) and the cells treated with p38 MAPK inhibitors were more sensitive to γ-irradiation than wild type parental cells or control-treated cells. Taken together, we conclude that CREB protects tumor cells from γ-irradiation, and combination of CREB inhibition plus ionizing radiation will be a promising radiotherapeutic approach. - Highlights: • γ-Irradiation induced CREB phosphorylation and CRE-directed transcription in tumor. • γ-Irradiation-induced transcriptional activation of CREB was via p38 MAPK pathway. • CRE blockade increased radiosensitivity of tumor cells but not of normal cells. • CRE decoy oligonucleotides or p38 MAPK inhibitors can be used as radiosensitizers.« less

  14. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Junqiang; Doi, Hiroshi; Saar, Matthias

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome.more » The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.« less

  15. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models.

    PubMed

    Durant, Stephen T; Zheng, Li; Wang, Yingchun; Chen, Kan; Zhang, Lingli; Zhang, Tianwei; Yang, Zhenfan; Riches, Lucy; Trinidad, Antonio G; Fok, Jacqueline H L; Hunt, Tom; Pike, Kurt G; Wilson, Joanne; Smith, Aaron; Colclough, Nicola; Reddy, Venkatesh Pilla; Sykes, Andrew; Janefeldt, Annika; Johnström, Peter; Varnäs, Katarina; Takano, Akihiro; Ling, Stephanie; Orme, Jonathan; Stott, Jonathan; Roberts, Caroline; Barrett, Ian; Jones, Gemma; Roudier, Martine; Pierce, Andrew; Allen, Jasmine; Kahn, Jenna; Sule, Amrita; Karlin, Jeremy; Cronin, Anna; Chapman, Melissa; Valerie, Kristoffer; Illingworth, Ruth; Pass, Martin

    2018-06-01

    Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC 50 , 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase-related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11 C-labeled AZD1390 ( K p,uu , 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G 2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies.

  16. Comparison of direct and indirect radiation effects on osteoclast formation from progenitor cells derived from different hemopoietic sources.

    PubMed

    Scheven, B A; Wassenaar, A M; Kawilarang-de Haas, E W; Nijweide, P J

    1987-07-01

    Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.

  17. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models

    PubMed Central

    Wang, Yingchun; Chen, Kan; Zhang, Lingli; Zhang, Tianwei; Yang, Zhenfan; Riches, Lucy; Trinidad, Antonio G.; Pike, Kurt G.; Wilson, Joanne; Smith, Aaron; Colclough, Nicola; Johnström, Peter; Varnäs, Katarina; Takano, Akihiro; Ling, Stephanie; Orme, Jonathan; Stott, Jonathan; Barrett, Ian; Jones, Gemma; Allen, Jasmine; Kahn, Jenna; Sule, Amrita; Cronin, Anna; Chapman, Melissa; Illingworth, Ruth; Pass, Martin

    2018-01-01

    Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC50, 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase–related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11C-labeled AZD1390 (Kp,uu, 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies. PMID:29938225

  18. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assessmore » hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.« less

  19. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universalmore » survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from stereotactic ablative radiation therapy. The DLQ model also predicted the remarkable GBM radioresistance, a result that is highly consistent with clinical observations. The radioresistance putatively stemmed from accelerated DCC regrowth that rapidly restored compartmental equilibrium between CSCs and DCCs.« less

  20. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Jiawen; Itahana, Koji, E-mail: koji.itahana@duke-nus.edu.sg; Baskar, Rajamanickam, E-mail: r.baskar@nccs.com.sg

    Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G{sub 1}/S or G{sub 2}/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G{sub 0}, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10–1 Gy of γ-radiation. The response of key proteins involvedmore » in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. - Highlights: • p53 response by irradiation was similar between proliferating and quiescent cells. • Quiescent cells showed similar profiles of cell cycle proteins after irradiation. • Radioprotection of GSK-3β inhibitor caused similar effects between these cells. • Quiescence did not affect p53 response despite its known role in radio-resistance.« less

  1. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize.

    PubMed

    Adams, Stephen R; Yang, Howard C; Savariar, Elamprakash N; Aguilera, Joe; Crisp, Jessica L; Jones, Karra A; Whitney, Michael A; Lippman, Scott M; Cohen, Ezra E W; Tsien, Roger Y; Advani, Sunil J

    2016-10-04

    Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery.

  2. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize

    PubMed Central

    Adams, Stephen R.; Yang, Howard C.; Savariar, Elamprakash N.; Aguilera, Joe; Crisp, Jessica L.; Jones, Karra A.; Whitney, Michael A.; Lippman, Scott M.; Cohen, Ezra E. W.; Tsien, Roger Y.; Advani, Sunil J.

    2016-01-01

    Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery. PMID:27698471

  3. Whole Brain Radiotherapy and RRx-001: Two Partial Responses in Radioresistant Melanoma Brain Metastases from a Phase I/II Clinical Trial: A TITE-CRM Phase I/II Clinical Trial.

    PubMed

    Kim, Michelle M; Parmar, Hemant; Cao, Yue; Pramanik, Priyanka; Schipper, Matthew; Hayman, James; Junck, Larry; Mammoser, Aaron; Heth, Jason; Carter, Corey A; Oronsky, Arnold; Knox, Susan J; Caroen, Scott; Oronsky, Bryan; Scicinski, Jan; Lawrence, Theodore S; Lao, Christopher D

    2016-04-01

    Kim et al. report two patients with melanoma metastases to the brain that responded to treatment with RRx-001 and whole brain radiotherapy (WBRT) without neurologic or systemic toxicity in the context of a phase I/II clinical trial. RRx-001 is an reactive oxygen and reactive nitrogen species (ROS/RNS)-dependent systemically nontoxic hypoxic cell radiosensitizer with vascular normalizing properties under investigation in patients with various solid tumors including those with brain metastases. Metastatic melanoma to the brain is historically associated with poor outcomes and a median survival of 4 to 5 months. WBRT is a mainstay of treatment for patients with multiple brain metastases, but no significant therapeutic advances for these patients have been described in the literature. To date, candidate radiosensitizing agents have failed to demonstrate a survival benefit in patients with brain metastases, and in particular, no agent has demonstrated improved outcome in patients with metastatic melanoma. Kim et al. report two patients with melanoma metastases to the brain that responded to treatment with novel radiosensitizing agent RRx-001 and WBRT without neurologic or systemic toxicity in the context of a phase I/II clinical trial. Published by Elsevier Inc.

  4. Mitochondrial stress controls the radiosensitivity of the oxygen effect: Implications for radiotherapy.

    PubMed

    Richardson, Richard B; Harper, Mary-Ellen

    2016-04-19

    It has been more than 60 years since the discovery of the oxygen effect that empirically demonstrates the direct association between cell radiosensitivity and oxygen tension, important parameters in radiotherapy. Yet the mechanisms underlying this principal tenet of radiobiology are poorly understood. Better understanding of the oxygen effect may explain difficulty in eliminating hypoxic tumor cells, a major cause of regrowth after therapy. Our analysis utilizes the Howard-Flanders and Alper formula, which describes the relationship of radiosensitivity with oxygen tension. Here, we assign and qualitatively assess the relative contributions of two important mechanisms. The first mechanism involves the emission of reactive oxygen species from the mitochondrial electron transport chain, which increases with oxygen tension. The second mechanism is related to an energy and repair deficit, which increases with hypoxia. Following a radiation exposure, the uncoupling of the oxidative phosphorylation system (proton leak) in mitochondria lowers the emission of reactive oxygen species which has implications for fractionated radiotherapy, particularly of hypoxic tumors. Our analysis shows that, in oxygenated tumor and normal cells, mitochondria, rather than the nucleus, are the primary loci of radiotherapy effects, especially for low linear energy transfer radiation. Therefore, the oxygen effect can be explained by radiation-induced effects in mitochondria that generate reactive oxygen species, which in turn indirectly target nuclear DNA.

  5. Present Status of Radiotherapy in Clinical Practice

    NASA Astrophysics Data System (ADS)

    Duehmke, Eckhart

    Aims of radiation oncology are cure from malignant diseases and - at the same time preservation of anatomy (e.g. female breast, uterus, prostate) and organ functions (e.g. brain, eye, voice, sphincter ani). At present, methods and results of clinical radiotherapy (RT) are based on experiences with natural history and radiobiology of malignant tumors in properly defined situations as well as on technical developments since World War II in geometrical and biological treatment planning in teletherapy and brachytherapy. Radiobiological research revealed tolerance limits of healthy tissues to be respected, effective total treatment doses of high cure probability depending on histology and tumor volume, and - more recently - altered fractionation schemes to be adapted to specific growth fractions and intrinsic radiosensitivities of clonogenic tumor cells. In addition, Biological Response Modifiers (BRM), such as cis-platinum, oxygen and hyperthermia may steepen cell survival curves of hypoxic tumor cells, others - such as tetrachiordekaoxid (TCDO) - may enhance repair of normal tissues. Computer assisted techniques in geometrical RT-planning based on individual healthy and pathologic anatomy (CT, MRT) provide high precision RT for well defined brain lesions by using dedicated linear accelerators (Stereotaxy). CT-based individual tissue compensators help with homogenization of distorted dose distributions in magna field irradiation for malignant lymphomas and with total body irradiation (TBI) before allogeneic bone marrow transplantation, e.g. for leukemia. RT with fast neutrons, Boron Neutron Capture Therapy (BNCT), RT with protons and heavy ions need to be tested in randomized trials before implementation into clinical routine.

  6. Serine/threonine protein phosphatase 6 modulates the radiation sensitivity of glioblastoma

    PubMed Central

    Shen, Y; Wang, Y; Sheng, K; Fei, X; Guo, Q; Larner, J; Kong, X; Qiu, Y; Mi, J

    2011-01-01

    Increasing the sensitivity of glioblastoma cells to radiation is a promising approach to improve survival in patients with glioblastoma multiforme (GBM). This study aims to determine if serine/threonine phosphatase (protein phosphatase 6 (PP6)) is a molecular target for GBM radiosensitization treatment. The GBM orthotopic xenograft mice model was used in this study. Our data demonstrated that the protein level of PP6 catalytic subunit (PP6c) was upregulated in the GBM tissue from about 50% patients compared with the surrounding tissue or control tissue. Both the in vitro survival fraction of GBM cells and the patient survival time were highly correlated or inversely correlated with PP6c expression (R2=0.755 and −0.707, respectively). We also found that siRNA knockdown of PP6c reduced DNA-dependent protein kinase (DNA-PK) activity in three different GBM cell lines, increasing their sensitivity to radiation. In the orthotopic mice model, the overexpression of PP6c in GBM U87 cells attenuated the effect of radiation treatment, and reduced the survival time of mice compared with the control mice, while the PP6c knocking-down improved the effect of radiation treatment, and increased the survival time of mice. These findings demonstrate that PP6 regulates the sensitivity of GBM cells to radiation, and suggest small molecules disrupting or inhibiting PP6 association with DNA-PK is a potential radiosensitizer for GBM. PMID:22158480

  7. Protection and sensitization of normal and malignant cells by a naturally occurring compound in a model of photochemical damage

    NASA Astrophysics Data System (ADS)

    Lee, Yuan-Hao; Kumar, Neeru; Glickman, Randolph D.

    2012-03-01

    Certain phytonutrients are known to confer protection and immunosuppression against radiation insults. Radiation-induced reactive oxygen species (ROS) can either lead to the destruction of normal tissue cells, or induce tumor radioresistance by activating ROS scavenging proteins. To identify whether the triterpene phytonutrient, ursolic acid, reduces radiation-induced damage in normal cells and promotes the apoptosis of malignant cells, we investigated the biologic mechanisms and effect of radiation-cell interaction with or without treatment with ursolic acid in human skin melanoma cells (ATCC CRL-11147TM) and transformed human retinal pigment epithelial (hTERT-RPE) cells. UV-VIS light was employed to investigate the efficacy of ursolic acid in altering cellular viability by modulations of p53 and NF-κB p65 signaling. Cell response was investigated by changes in proliferative activity and free radical generation assessed by 2',7'-dichlorofluorescin liquid chromatography. Ursolic acid pretreatment strongly increased the level of p53 and decreased the level of phosphorylated p65 leading to enhanced cell death of skin melanoma cells in response to UV-VIS exposure. In contrast, ursolic acid appeared to downregulate p53 levels without disturbing NF-κB activation along with an increase of oxidative stress in hTERT-RPE cells. These findings indicate that ursolic acid may beneficially increase the radiosensitivity of tumor cells while potentiating a photoprotective effect on benign cells through differential effects on the NF-κB and p53 signaling pathways.

  8. The phosphatase and tensin homologue deleted on chromosome 10 mediates radiosensitivity in head and neck cancer

    PubMed Central

    Pattje, W J; Schuuring, E; Mastik, M F; Slagter-Menkema, L; Schrijvers, M L; Alessi, S; van der Laan, B F A M; Roodenburg, J L N; Langendijk, J A; van der Wal, J E

    2010-01-01

    Background: For locally advanced squamous cell carcinoma of the head and neck (HNSCC), the recurrence rate after surgery and postoperative radiotherapy is between 20 and 40%, and the 5-year overall survival rate is ∼50%. Presently, no markers exist to accurately predict treatment outcome. Expression of proteins in the human epidermal growth factor receptor (EGFR) pathway has been reported as a prognostic marker in several types of cancer. Methods: The aim of this study was to investigate the prognostic value of proteins in the EGFR pathway in HNSCC. For this purpose, we collected surgically resected tissue of 140 locally advanced head and neck cancer patients, all treated with surgery and postoperative radiotherapy. Results: In a multivariate analysis, expression of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was significantly related to worse locoregional control (LRC; HR: 2.2, 95% CI: 1.1–4.6; P=0.03), independent of lymph node metastases (HR: 5.6, 95% CI: 1.2–27.4; P=0.03) and extranodal spread (HR: 2.7; 95% CI: 1.2–6.5; P=0.02). In vitro clonogenic radiosensitivity assays confirmed that overexpression of PTEN resulted in increased radioresistance. Conclusion: Our study is the first report showing that expression of PTEN mediates radiosensitivity in vitro and that increased expression in advanced HNSCC predicts worse LRC. PMID:20502457

  9. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, A; Bostani, M; McMillan, K

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generatedmore » using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  10. Synthesis and radiosensitization properties of hydrogen peroxide and sodium hyaluronate complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Nur Ratasha Alia Md.; Mohamed, Faizal; Heng, Cheong Kai

    2014-09-03

    Cancer cells which are large in size are resistant towards radiation therapy due to the presence of large amount of anti-oxidative enzymes and hypoxic cancer cells. Thus radiosensitizer agents have been developed to enhance the therapeutic effect of radiotherapy by increasing the sensitivity of these cancer cells towards radiation. This study is conducted to investigate the radiosensitization properties of radiosensitizer complex containing hydrogen peroxide and sodium hyaluronate. Combination with sodium hyaluronate may decrease reactivity of hydrogen peroxide but maintain the oxygen concentration needed for radiosensitizing effect. HepG2 cancer cells are cultured as the mean of test subject. Cancer cell samplesmore » which are targeted and not targeted with these radiosensitizers are irradiated with 2Gy single fractionated dose. Results obtained shows that the cancer cells which are not targeted with radiosensitizers has a cell viability of 98.80±0.37% after a time interval of 48 hours and has even repopulated over 100% after a 72 hour time interval. This shows that the cancer cells are resistant towards radiation. However, when the cancer cells are targeted with radiosensitizers prior to irradiation, there is a reduction of cell viability by 25.50±10.81% and 10.30±5.10% at time intervals of 48 and 72 hours respectively. This indicates that through the use of these radiosensitizers, cancer cells are more sensitive towards radiation.« less

  11. Synthesis and radiosensitization properties of hydrogen peroxide and sodium hyaluronate complex

    NASA Astrophysics Data System (ADS)

    Rosli, Nur Ratasha Alia Md.; Mohamed, Faizal; Heng, Cheong Kai; Rahman, Irman Abdul; Ahmad, Ainee Fatimah; Mohamad, Hur Munawar Kabir

    2014-09-01

    Cancer cells which are large in size are resistant towards radiation therapy due to the presence of large amount of anti-oxidative enzymes and hypoxic cancer cells. Thus radiosensitizer agents have been developed to enhance the therapeutic effect of radiotherapy by increasing the sensitivity of these cancer cells towards radiation. This study is conducted to investigate the radiosensitization properties of radiosensitizer complex containing hydrogen peroxide and sodium hyaluronate. Combination with sodium hyaluronate may decrease reactivity of hydrogen peroxide but maintain the oxygen concentration needed for radiosensitizing effect. HepG2 cancer cells are cultured as the mean of test subject. Cancer cell samples which are targeted and not targeted with these radiosensitizers are irradiated with 2Gy single fractionated dose. Results obtained shows that the cancer cells which are not targeted with radiosensitizers has a cell viability of 98.80±0.37% after a time interval of 48 hours and has even repopulated over 100% after a 72 hour time interval. This shows that the cancer cells are resistant towards radiation. However, when the cancer cells are targeted with radiosensitizers prior to irradiation, there is a reduction of cell viability by 25.50±10.81% and 10.30±5.10% at time intervals of 48 and 72 hours respectively. This indicates that through the use of these radiosensitizers, cancer cells are more sensitive towards radiation.

  12. MiR-593 mediates curcumin-induced radiosensitization of nasopharyngeal carcinoma cells via MDR1.

    PubMed

    Fan, Haoning; Shao, Meng; Huang, Shaohui; Liu, Ying; Liu, Jie; Wang, Zhiyuan; Diao, Jianxin; Liu, Yuanliang; Tong, L I; Fan, Qin

    2016-06-01

    Curcumin (Cur) exhibits radiosensitization effects to a variety of malignant tumors. The present study investigates the radiosensitizing effect of Cur on nasopharyngeal carcinoma (NPC) cells and whether its mechanism is associated with microRNA-593 (miR-593) and multidrug resistance gene 1 (MDR1). A clonogenic assay was performed to measure the radiosensitizing effect. The expression of miR-593 and MDR1 was analyzed by quantitative polymerase chain reaction (qPCR) or western blot assay. A transplanted tumor model was established to identify the radiosensitizing effect in vivo . A luciferase-based reporter was constructed to evaluate the effect of direct binding of miR-593 to the putative target site on the 3' UTR of MDR1. The clonogenic assay showed that Cur enhanced the radiosensitivity of cells. Cur (100 mg/kg) combined with 4 Gy irradiation inhibited the growth of a transplanted tumor model in vivo , resulting in the higher inhibition ratio compared with the radiotherapy-alone group. These results demonstrated that Cur had a radiosensitizing effect on NPC cells in vivo and in vitro ; Cur-mediated upregulation of miR-593 resulted in reduced MDR1 expression, which may promote radiosensitivity of NPC cells.

  13. Radiobiological concepts for treatment planning of schemes that combines external beam radiotherapy and systemic targeted radiotherapy

    NASA Astrophysics Data System (ADS)

    Fabián Calderón Marín, Carlos; González González, Joaquín Jorge; Laguardia, Rodolfo Alfonso

    2017-09-01

    The combination of radiotherapy modalities with external bundles and systemic radiotherapy (CIERT) could be a reliable alternative for patients with multiple lesions or those where treatment planning maybe difficult because organ(s)-at-risk (OARs) constraints. Radiobiological models should have the capacity for predicting the biological irradiation response considering the differences in the temporal pattern of dose delivering in both modalities. Two CIERT scenarios were studied: sequential combination in which one modality is executed following the other one and concurrent combination when both modalities are running simultaneously. Expressions are provided for calculation of the dose-response magnitudes Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP). General results on radiobiological modeling using the linear-quadratic (LQ) model are also discussed. Inter-subject variation of radiosensitivity and volume irradiation effect in CIERT are studied. OARs should be under control during the planning in concurrent CIERT treatment as the administered activity is increased. The formulation presented here may be used for biological evaluation of prescriptions and biological treatment planning of CIERT schemes in clinical situation.

  14. Novel nitric oxide generating compound glycidyl nitrate enhances the therapeutic efficacy of chemotherapy and radiotherapy.

    PubMed

    Ning, Shoucheng; Bednarski, Mark; Oronsky, Bryan; Scicinski, Jan; Knox, Susan J

    2014-05-09

    Selective release of nitric oxide (NO) in tumors could improve the tumor blood flow and drug delivery for chemotherapeutic agents and radiotherapy, thereby increasing the therapeutic index. Glycidyl nitrate (GLYN) is a NO generating small molecule, and has ability to release NO on bioactivation in SCC VII tumor cells. GLYN-induced intracellular NO generation was significantly attenuated by NO scavenger carboxy-PTIO (cPTIO) and NAC. GLYN significantly increases tumor blood flow, but has no effect on the blood flow of normal tissues in tumor-bearing mice. When used with cisplatin, GLYN significantly increased the tumor growth inhibition effect of cisplatin. GLYN also had a modest radiosensitizing effect in vitro and in vivo. GLYN was well tolerated and there were no acute toxicities found at its effective therapeutic doses in preclinical studies. These results suggest that GLYN is a promising new drug for use with chemotherapy and radiotherapy, and provide a compelling rationale for future studies of GLYN and related compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Optimal radiotherapy dose schedules under parametric uncertainty

    NASA Astrophysics Data System (ADS)

    Badri, Hamidreza; Watanabe, Yoichi; Leder, Kevin

    2016-01-01

    We consider the effects of parameter uncertainty on the optimal radiation schedule in the context of the linear-quadratic model. Our interest arises from the observation that if inter-patient variability in normal and tumor tissue radiosensitivity or sparing factor of the organs-at-risk (OAR) are not accounted for during radiation scheduling, the performance of the therapy may be strongly degraded or the OAR may receive a substantially larger dose than the allowable threshold. This paper proposes a stochastic radiation scheduling concept to incorporate inter-patient variability into the scheduling optimization problem. Our method is based on a probabilistic approach, where the model parameters are given by a set of random variables. Our probabilistic formulation ensures that our constraints are satisfied with a given probability, and that our objective function achieves a desired level with a stated probability. We used a variable transformation to reduce the resulting optimization problem to two dimensions. We showed that the optimal solution lies on the boundary of the feasible region and we implemented a branch and bound algorithm to find the global optimal solution. We demonstrated how the configuration of optimal schedules in the presence of uncertainty compares to optimal schedules in the absence of uncertainty (conventional schedule). We observed that in order to protect against the possibility of the model parameters falling into a region where the conventional schedule is no longer feasible, it is required to avoid extremal solutions, i.e. a single large dose or very large total dose delivered over a long period. Finally, we performed numerical experiments in the setting of head and neck tumors including several normal tissues to reveal the effect of parameter uncertainty on optimal schedules and to evaluate the sensitivity of the solutions to the choice of key model parameters.

  16. Toll-like Receptor 5 Agonist Protects Mice From Dermatitis and Oral Mucositis Caused by Local Radiation: Implications for Head-and-Neck Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdelya, Lyudmila G.; Gleiberman, Anatoli S.; Toshkov, Ilia

    2012-05-01

    Purpose: Development of mucositis is a frequent side effect of radiotherapy of patients with head-and-neck cancer. We have recently reported that bacterial flagellin, an agonist of Toll-like receptor 5 (TLR5), can protect rodents and primates from acute radiation syndrome caused by total body irradiation. Here we analyzed the radioprotective efficacy of TLR5 agonist under conditions of local, single dose or fractionated radiation treatment. Methods and Materials: Mice received either single-dose (10, 15, 20, or 25 Gy) or fractioned irradiation (cumulative dose up to 30 Gy) of the head-and-neck area with or without subcutaneous injection of pharmacologically optimized flagellin, CBLB502, 30more » min before irradiation. Results: CBLB502 significantly reduced the severity of dermatitis and mucositis, accelerated tissue recovery, and reduced the extent of radiation induced weight loss in mice after a single dose of 15 or 20 Gy but not 25 Gy of radiation. CBLB502 was also protective from cumulative doses of 25 and 30 Gy delivered in two (10 + 15 Gy) or three (3 Multiplication-Sign 10 Gy) fractions, respectively. While providing protection to normal epithelia, CBLB502 did not affect the radiosensitivity of syngeneic squamous carcinoma SCCVII grown orthotopically in mice. Use of CBLB502 also elicited a radiation independent growth inhibitory effect upon TLR5-expressing tumors demonstrated in the mouse xenograft model of human lung adenocarcinoma A549. Conclusion: CBLB502 combines properties of supportive care (radiotherapy adjuvant) and anticancer agent, both mediated via activation of TLR5 signaling in the normal tissues or the tumor, respectively.« less

  17. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation

    NASA Technical Reports Server (NTRS)

    Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.

    2002-01-01

    Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.

  18. Radon induced hyperplasia: effective adaptation reducing the local doses in the bronchial epithelium.

    PubMed

    Madas, Balázs G

    2016-09-01

    There is experimental and histological evidence that chronic irritation and cell death may cause hyperplasia in the exposed tissue. As the heterogeneous deposition of inhaled radon progeny results in high local doses at the peak of the bronchial bifurcations, it was proposed earlier that hyperplasia occurs in these deposition hot spots upon chronic radon exposure. The objective of the present study is to quantify how the induction of basal cell hyperplasia modulates the microdosimetric consequences of a given radon exposure. For this purpose, computational epithelium models were constructed with spherical cell nuclei of six different cell types based on histological data. Basal cell hyperplasia was modelled by epithelium models with additional basal cells and increased epithelium thickness. Microdosimetry for alpha-particles was performed by an own-developed Monte-Carlo code. Results show that the average tissue dose, and the average hit number and dose of basal cells decrease by the increase of the measure of hyperplasia. Hit and dose distribution reveal that the induction of hyperplasia may result in a basal cell pool which is shielded from alpha-radiation. It highlights that the exposure history affects the microdosimetric consequences of a present exposure, while the biological and health effects may also depend on previous exposures. The induction of hyperplasia can be considered as a radioadaptive response at the tissue level. Such an adaptation of the tissue challenges the validity of the application of the dose and dose rate effectiveness factor from a mechanistic point of view. As the location of radiosensitive target cells may change due to previous exposures, dosimetry models considering the tissue geometry characteristic of normal conditions may be inappropriate for dose estimation in case of protracted exposures. As internal exposures are frequently chronic, such changes in tissue geometry may be highly relevant for other incorporated radionuclides.

  19. L'effet de p53 sur la radiosensibilité des cellules humaines normales et cancéreuses

    NASA Astrophysics Data System (ADS)

    Little, J. B.; Li, C. Y.; Nagasawa, H.; Huang, H.

    1998-04-01

    The radiosensitivity of normal human fibroblasts in p53 dependent and associated with the loss of cells from the cycling population as the result of an irreversible G1 arrest; cells lacking normal p53 function show no arrest and are more radioresistant. Under conditions in which the repair potentially lethal radiation damage is facilitated, the fraction of cells arrested in G1 is reduced and survival is enhanced. The response of human tumor cells differs significantly. The radiation-induced G1 arrest is minimal or absent in p53+ tumor cells, and loss of normal p53 function has no consistent effect on their radiosensitivity. These results suggest that p53 status may not be a useful predictive marker for the response of human solid tumors to radiation therapy. La radiosensibilité des fibroblastes diploïdes humains est liée à l'expression de p53, et à la perte de cellules en cycle résultant d'un arrêt irréversible en phase G1 ; dans les cellules n'ayant pas une fonction p53 normale, on ne constate aucun arrêt, et elles sont plus radio-résistantes. Dans des conditions favorables à la réparation de lésions potentiellement léthales dues à l'irradiation, la proportion de cellules bloquées en phase G1 baisse, et les chances de survie sont accrues. Bien différente est la réaction des cellules cancéreuses humaines. Le blocage par irradiation en phase G1 est minime ou inexistant dans les cellules cancéreuses p53^+, et la perte de la fonction normale p53 n'a pas d'effet constant sur leur radiosensibilité. Ces résultats laissent penser que l'expression de p53 n'est pas un indice fiable permettant de prévoir la réaction des tumeurs solides à la radiothérapie.

  20. Radioprotective Effects of Heat-Killed Mycobacterium Tuberculosis in Cultured Cells and Radiosensitive Tissues.

    PubMed

    Chen, Yuanyuan; Xu, Yang; Du, Jicong; Guo, Jiaming; Lei, Xiao; Cui, Jianguo; Liu, Cong; Cheng, Ying; Li, Bailong; Gao, Fu; Ju, Jintao; Cai, Jianming; Yang, Yanyong

    2016-01-01

    Exposure to ionizing radiation (IR) often causes severe damage to radiosensitive tissues, which limits the use of radiotherapy in cancer patients. Novel safe and effective radioprotectant is urgently required. It has been reported toll like receptor 2 (TLR2) plays a critical role in radioresistance. In this study, we demonstrated the protective effects of Heat-Killed Mycobacterium tuberculosis (HKMT), a potent TLR2 agonist, against IR. Cell survival and apoptosis were determined by CCK-8 assay and Annexin V assay, respectively. An immunofluorescence staining assay was used to detect the translocation of nuclear faktor-kappa beta (NF-kB) p65. Tissue damage was evaluated by Haematoxilin-Eosin (HE) staining assay. We also used a flow cytometry assay to measure the number of nucleated cells and CD34+ hemopoietic stem cells in bone marrow. A western blot assay was used to detect the changes of proteins involving TLR signaling pathway. We found that HKMT increased cell viability and inhibited cell apoptosis after irradiation. HKMT induced NF-kB translocation and activated Erk1/2, p38 signaling pathway. HKMT also protected bone marrow and testis from destruction. Radiation-induced decreases of nucleated cells and CD34+ hemopoietic stem cells in bone marrow were also inhibited by HKMT treatment. We found that radiation caused increase of inflammatory cytokines was also suppressed by HKMT. Our data showed that HKMT exhibited radioprotective effects in vivo and in vitro through activating NF-kB and MAPK signaling pathway, suggesting a potential of HKMT as novel radioprotector. © 2016 The Author(s) Published by S. Karger AG, Basel.

  1. Electrophilic 5-Substituted Uracils as Potential Radiosensitizers: A Density Functional Theory Study.

    PubMed

    Makurat, Samanta; Chomicz-Mańka, Lidia; Rak, Janusz

    2016-08-18

    Although 5-bromo-2'-deoxyuridine (5BrdU) possesses significant radiosensitizing power in vitro, clinical studies do not confirm any advantages of radiotherapy employing 5BrdU. This situation calls for a continuous search for efficient radiosensitizers. Using the proposed mechanism of radiosensitization by 5BrdU, we propose a series of 5-substituted uracils, XYU, that should undergo efficient dissociative electron attachment. The DFT-calculated thermodynamic and kinetic data concerning the XYU degradations induced by electron addition suggests that some of the scrutinized derivatives have much better characteristics than 5BrdU itself. Synthesis of these promising candidates for radiosensitizers, followed by studies of their radiosensitizing properties in DNA context, and ultimately in cancer cells, are further steps to confirm their potential applicability in anticancer treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Daily rhythms of radiosensitivity of animals and several determining causes

    NASA Technical Reports Server (NTRS)

    Druzhinin, Y. P.; Malyutina, T. S.; Seraya, V. M.; Rodina, G. P.; Vatsek, A.; Rakova, A.

    1974-01-01

    Daily rhythms of radiosensitivity in rats and mice were determined by survival rates after acute total radiation at the same dosage at different times of the day. Radiosensitivity differed in animals of different species and varieties. Inbred mice exhibited one or two increases in radiosensitivity during the dark, active period of the day. These effects were attributed to periodic changes in the state of stem hematopoietic cells.

  3. Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress

    PubMed Central

    Suzuki, Kenshi; Gerelchuluun, Ariungerel; Hong, Zhengshan; Sun, Lue; Zenkoh, Junko; Moritake, Takashi; Tsuboi, Koji

    2013-01-01

    Background Refractoriness of glioblastoma multiforme (GBM) largely depends on its radioresistance. We investigated the radiosensitizing effects of celecoxib on GBM cell lines under both normoxic and hypoxic conditions. Methods Two human GBM cell lines, U87MG and U251MG, and a mouse GBM cell line, GL261, were treated with celecoxib or γ-irradiation either alone or in combination under normoxic and hypoxic conditions. Radiosensitizing effects were analyzed by clonogenic survival assays and cell growth assays and by assessing apoptosis and autophagy. Expression of apoptosis-, autophagy-, and endoplasmic reticulum (ER) stress–related genes was analyzed by immunoblotting. Results Celecoxib significantly enhanced the radiosensitivity of GBM cells under both normoxic and hypoxic conditions. In addition, combined treatment with celecoxib and γ-irradiation induced marked autophagy, particularly in hypoxic cells. The mechanism underlying the radiosensitizing effect of celecoxib was determined to be ER stress loading on GBM cells. Conclusion Celecoxib enhances the radiosensitivity of GBM cells by a mechanism that is different from cyclooxygenase-2 inhibition. Our results indicate that celecoxib may be a promising radiosensitizing drug for clinical use in patients with GBM. PMID:23658321

  4. Patient-specific radiation dose and cancer risk estimation in pediatric chest CT: a study in 30 patients

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2010-04-01

    Radiation-dose awareness and optimization in CT can greatly benefit from a dosereporting system that provides radiation dose and cancer risk estimates specific to each patient and each CT examination. Recently, we reported a method for estimating patientspecific dose from pediatric chest CT. The purpose of this study is to extend that effort to patient-specific risk estimation and to a population of pediatric CT patients. Our study included thirty pediatric CT patients (16 males and 14 females; 0-16 years old), for whom full-body computer models were recently created based on the patients' clinical CT data. Using a validated Monte Carlo program, organ dose received by the thirty patients from a chest scan protocol (LightSpeed VCT, 120 kVp, 1.375 pitch, 40-mm collimation, pediatric body scan field-of-view) was simulated and used to estimate patient-specific effective dose. Risks of cancer incidence were calculated for radiosensitive organs using gender-, age-, and tissue-specific risk coefficients and were used to derive patientspecific effective risk. The thirty patients had normalized effective dose of 3.7-10.4 mSv/100 mAs and normalized effective risk of 0.5-5.8 cases/1000 exposed persons/100 mAs. Normalized lung dose and risk of lung cancer correlated strongly with average chest diameter (correlation coefficient: r = -0.98 to -0.99). Normalized effective risk also correlated strongly with average chest diameter (r = -0.97 to -0.98). These strong correlations can be used to estimate patient-specific dose and risk prior to or after an imaging study to potentially guide healthcare providers in justifying CT examinations and to guide individualized protocol design and optimization.

  5. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, R.M.; Kimler, B.F.; Evans, R.G.

    1987-08-01

    Ataxia telangiectasia (AT) is a genetic disorder with a predisposition to malignancy. Cells from patients with AT demonstrate an increased sensitivity to ionizing radiation which creates a problem when these patients require treatment for their malignant disease. An eleven-year-old boy with a previous diagnosis of AT was seen in consultation following partial resection of medulloblastoma in the posterior fossa. To estimate how much the conventional radiation dose might have to be reduced, we compared the radiosensitivity of bone marrow myeloid progenitor cells from this patient to that of cells from the marrow of normal individuals, using colony formation in anmore » agar culture assay system as the endpoint (CFU-Cs). Neither radiation dose-survival curve exhibited a shoulder--each displayed an extrapolation number of 0.99. The survival curve of normal cells displayed a steep slope with a D0 of 0.98 Gy (0.83-1.19 Gy, 95% confidence limits); the slope for the AT cells was considerably steeper with a value for D0 of 0.32 Gy (0.29-0.35 Gy). The ratio of D0's indicated that these AT cells were approximately 3X more radiosensitive than normal cells. Based on this, the daily dose was reduced from 1.8 to 0.6 Gy and the radiation was restricted to 25 treatments to the posterior fossa rather than the conventional cranio-spinal treatment. An additional 5 treatments at 1.0 Gy per day were given to the whole brain. The patient's skin responded to these reduced fraction sizes and doses to a similar degree as normal patients' skin following a standard schedule and the patient is doing well nine months after initiation of treatment.« less

  6. Cardiovascular changes after a radioprotective dose of AET in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuna, P.; Smid, A.

    1973-01-01

    BS>Cardiac output and stroke volume decreased in pentobarbital anesthesized rats 10 and 20 minutes following AET - BrHBr 1150 mg/kg i.p.) administration. Significant bradycardia was observed from the 20d until the 9th minute post injection. The blood pressure was lowered during the first minute interval only. Peripheral resistance insignificantly increased following AET. No significant changes in the blood flow (estimated by /sup 86/Rb methodl occurred in radiosensitive tissues. (auth)

  7. Comprehensive Molecular Profiling of African-American Prostate Cancer to Inform on Prognosis and Disease Biology

    DTIC Science & Technology

    2016-10-01

    prostate cancer through sequencing xenografts and tissue samples. Qualify novel drivers of AR- prostate cancer through in vitro models. Develop novel...ability of RNASEH2A to modulate radio-sensitivity in prostate cancer cell lines and xenograft models. 3: Investigate RNASEH2A as a marker of radio...lung cancer clinical management. List of the Specific Aims: Aim 1: To establish patient-derived xenografts (PDX) models of pre-neoplastic lesions

  8. Dose rate, mitotic cycle duration, and sensitivity of cell transitions from G1 $Yields$ S and G2 $Yields$ M to protracted gamma radiation in root meristems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, L.S.; Hof, J.V.

    1975-11-01

    Experiments were designed to determine the relative radiosensitivity of the cell transition points of G1 $Yields$ S and G2 $Yields$ M in root meristems of several plant species. Label and mitotic indices and microspectrophotometry were used to measure the proportions of cells in each mitotic cycle stage in root meristems after protracted gamma radiation. The criterion of radiosensitivity was the dose rate needed to produce a tissue with less than 1 percent cells in S and none in M after 3 days of continuous exposure. The results show that DNA is the primary radiation target in proliferative root meristems andmore » that the cycle duration stipulates the time interval of vulnerability. In each species, nonrandom reproducible cell proportions were established with 2C:4C:8C amounts of nuclear DNA after 3 days of exposure. Roots of Helianthus annuus, Crepis capillaris, and Tradescantia clone 02 had 80 percent cells with a 2C amount of DNA and 20 percent had a 4C amount of DNA. In these species the transition point of G1 $Yields$ S was more radiosensitive than G2 $Yields$ M. Roots of Pisum sativum and Triticum aestivum had cell proportions at 2C:4C:8C amounts of DNA in frequencies of 0.10 to 0.20:0.40 to 0.60:0.30 to 0.40. In these two species 0.30 to 0.40 cells underwent radiation-induced endoreduplication that resulted from a rapid inhibition of cell transit from G2 $Yields$ M and a slower impairment of G1 $Yields$ S. Cells increased from 2C to 4C and from 4C to 8C amounts of DNA during irradiation. The proportions of nuclei with 2C:4C:8C amounts of DNA were dependent in part upon the relative radiosensitivity of the G1 $Yields$ S and G2 $Yields$ M control points. The data show the relative radiosensitivity of the transition points from G1 $Yields$ S and from G2 $Yields$ M was species specific and unrelated to the cycle duration and mean nuclear DNA content of the plant species. (auth)« less

  9. [Synthesis of 1-substituted nitroimidazoles and its evaluation as radiosensitizing agents].

    PubMed

    Adams, D R; Martul, R; Alvarez, M V; López Zumel, M C; Espada, M

    1991-01-01

    The synthesis of various substituted nitroimidazoles with lipophilic and hydrophilic side chains as potential radiosensitizing agents is described. The starting material employed was 4(5)-nitroimidazole, which was alkylated via the sodium salt with various chloro-methylated, substituted alcohols and esters, in order to obtain analogues of misonidazole, metronidazole and desmethylmisonidazole of known radiosensitizing and bactericidal activity. Some final products were assayed for their radiosensitizing properties giving negative results under the testing conditions used.

  10. ELECTRON MICROSCOPY OF MITOSIS IN A RADIOSENSITIVE GIANT AMOEBA

    PubMed Central

    Daniels, E. W.; Roth, L. E.

    1964-01-01

    Various aspects of the ultrastructure of the dividing nuclei in the large radiosensitive amoeba Pelomyxa illinoisensis are demonstrated. Evidence of nuclear envelope breakdown is presented, and membrane fragments are traced throughout metaphase to envelope reconstruction in anaphase and telophase. Annuli in the nuclear envelope and its fragments are shown throughout mitosis. During metaphase and anaphase some 15 to 20 mitochondria are aligned at each end of the spindle, and are called polar mitochondria. The radioresistant amoebae Pelomyxa carolinensis and Amoeba proteus do not have polar mitochondria, and Pelomyxa illinoisensis is unique in this regard. The shape of the P. illinoisensis interphase nucleoli differs from that in the two radioresistant species, and certain aspects of nucleolar dissolution in the prophase vary. Helical coils in the interphase nucleoplasm are similar to those in the radioresistant amoebae. A "blister" phase in the flatly shaped telophase nuclei of P. illinoisensis is described which is interpreted to be the result of a rapid nuclear expansion leading to the formation of the normal spherical interphase nuclei. PMID:14105218

  11. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xiaopeng; Du, Jie; Hua, Song

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly,more » combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.« less

  12. Evaluation of The Combined Effects of Hyperthermia, Cobalt-60 Gamma Rays and IUdR on Cultured Glioblastoma Spheroid Cells and Dosimetry Using TLD-100

    PubMed Central

    Neshasteh-Riz, Ali; Rahdani, Rozhin; Mostaar, Ahmad

    2014-01-01

    Objective In radiation treatment, the irradiation which is effective enough to control the tumors far exceeds normal-tissues tolerance. Thus to avoid such unfavourable outcomes, some methods sensitizing the tumor cells to radiation are used. Iododeoxyuridine (IUdR) is a halogenated thymidine analogue that known to be effective as a radiosensitizer in human cancer therapy. Improving the potential efficacy of radiation therapy after combining to hyperthermia depends on the magnitude of the differential sensitization of the hyperthermic effects or on the differential cytotoxicity of the radiation effects on the tumor cells. In this study, we evaluated the combined effects of IUdR, hyperthermia and gamma rays of 60Co on human glioblastoma spheroids culture. Materials and Methods In this experimental study,the cultured spheroids with 100µm diameter were treated by 1 µM IUdR, 43°C hyperthermia for an hour and 2 Gy gamma rays, respectively. The DNA damages induced in cells were compared using alkaline comet assay method, and dosimetry was then performed by TLD-100. Comet scores were calculated as mean ± standard error of mean (SEM) using one-way ANOVA. Results Comparison of DNA damages induced by IUdR and hyperthermia + gamma treatment showed 2.67- and 1.92-fold enhancement, respectively, as compared to the damages induced by radiation alone or radiation combined IUdR. Dosimetry results showed the accurate dose delivered to cells. Conclusion Analysis of the comet tail moments of spheroids showed that the radiation treatments combined with hyperthermia and IUdR caused significant radiosensitization when compared to related results of irradiation alone or of irradiation with IUdR. These results suggest a potential clinical advantage of combining radiation with hyperthermia and indicate effectiveness of hyperthermia treatment in inducing cytotoxicity of tumor cells. PMID:24611138

  13. Combination of suberoylanilide hydroxamic acid with heavy ion therapy shows promising effects in infantile sarcoma cell lines

    PubMed Central

    2011-01-01

    Introduction The pan-HDAC inhibitor (HDACI) suberoylanilide hydroxamic acid (SAHA) has previously shown to be a radio-sensitizer to conventional photon radiotherapy (XRT) in pediatric sarcoma cell lines. Here, we investigate its effect on the response of two sarcoma cell lines and a normal tissue cell line to heavy ion irradiation (HIT). Materials and methods Clonogenic assays after different doses of heavy ions were performed. DNA damage and repair were evaluated by measuring γH2AX via flow-cytometry. Apoptosis and cell cycle analysis were also measured via flow cytometry. Protein expression of repair proteins, p53 and p21 were measured using immunoblot analysis. Changes of nuclear architecture after treatment with SAHA and HIT were observed in one of the sarcoma cell lines via light microscopy after staining towards chromatin and γH2AX. Results Corresponding with previously reported photon data, SAHA lead to an increase of sensitivity to heavy ions along with an increase of DSB and apoptosis in the two sarcoma cell lines. In contrast, in the osteoblast cell line (hFOB 1.19), the combination of SAHA and HIT showed a significant radio-protective effect. Laser scanning microscopy revealed no significant morphologic changes after HIT compared to the combined treatment with SAHA. Immunoblot analysis revealed no significant up or down regulation of p53. However, p21 was significantly increased by SAHA and combination treatment as compared to HIT only in the two sarcoma cell lines - again in contrast to the osteoblast cell line. Changes in the repair kinetics of DSB p53-independent apoptosis with p21 involvement may be part of the underlying mechanisms for radio-sensitization by SAHA. Conclusion Our in vitro data suggest an increase of the therapeutic ratio by the combination of SAHA with HIT in infantile sarcoma cell lines. PMID:21933400

  14. WE-G-303-02: Gold Nanoparticles as Radiosensitizers - What Does It Take To Go From the Bench to the Bedside?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, S.

    Over the last decade, there has been a growing interest in applying nanotechnology to cancer detection, treatment, and treatment monitoring. Advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes and sizes. Nanoparticles can be accumulated preferentially within tumors by either “passive targeting” through a phenomenon typically known as “enhanced permeability and retention” or “active targeting” in which nanoparticles are conjugated with antibodies or peptides directed against tumor and/or stromal markers. The tumor specificity of nanoparticles in conjunction with their unique physicochemical properties offers many novel strategies for cancer treatment and detection. For example, notablemore » approaches in the radiation oncology setting include the use of gold nanoparticles for radiation response modulation of tumor or normal tissue and thermal ablation or hyperthermia treatment of tumors. Some of these approaches are currently being tested either on humans or on animals and, very likely, will become the clinical reality in the near future. Various computational and experimental techniques have also been applied to address unique research issues associated with nanoparticles and may become the standard tools for future investigations and clinical translations. Therefore, both clinicians and researchers may need to be properly educated about the basic principles as well as the promise of nanoparticle-based applications with regard to the future of cancer diagnostics and therapeutics. This symposium will familiarize the audience with the potential applications of nanoparticles in oncologic imaging and therapy using specific illustrative examples. The audience will be properly oriented by these illustrative examples to the multiple avenues for collaborative research amongst interdisciplinary teams of physicists, clinicians, engineers, chemists, and biologists in industry and academia. Learning Objectives: Understand the physical bases of gold nanoparticle applications for radiosensitization and x-ray fluorescence imaging Understand the parameters that define gold nanoparticle-mediated radiosensitization in biological systems Understand the potential of magnetic nanoparticle characterization of the microenvironment Understand the various strategies for radiolabeling of nanoparticles and their applications S.C. and S.K. acknowledge support from MD Anderson Cancer Center, NIH (R01CA155446 and P30CA16672) and DoD (W81XWH-12-1-0198); J.W. acknowledges support from NIH (U54CA151662-01); W.C. acknowledges support from the University of Wisconsin-Madison, NIH (R01CA169365, P30CA014520, and T32CA009206), DoD (W81XWH-11-1-0644 and W81XWH-11-1-0648), and ACS (125246-RSG-13-099-01-CCE)« less

  15. Extracting the normal lung dose-response curve from clinical DVH data: a possible role for low dose hyper-radiosensitivity, increased radioresistance

    NASA Astrophysics Data System (ADS)

    Gordon, J. J.; Snyder, K.; Zhong, H.; Barton, K.; Sun, Z.; Chetty, I. J.; Matuszak, M.; Ten Haken, R. K.

    2015-09-01

    In conventionally fractionated radiation therapy for lung cancer, radiation pneumonitis’ (RP) dependence on the normal lung dose-volume histogram (DVH) is not well understood. Complication models alternatively make RP a function of a summary statistic, such as mean lung dose (MLD). This work searches over damage profiles, which quantify sub-volume damage as a function of dose. Profiles that achieve best RP predictive accuracy on a clinical dataset are hypothesized to approximate DVH dependence. Step function damage rate profiles R(D) are generated, having discrete steps at several dose points. A range of profiles is sampled by varying the step heights and dose point locations. Normal lung damage is the integral of R(D) with the cumulative DVH. Each profile is used in conjunction with a damage cutoff to predict grade 2 plus (G2+) RP for DVHs from a University of Michigan clinical trial dataset consisting of 89 CFRT patients, of which 17 were diagnosed with G2+ RP. Optimal profiles achieve a modest increase in predictive accuracy—erroneous RP predictions are reduced from 11 (using MLD) to 8. A novel result is that optimal profiles have a similar distinctive shape: enhanced damage contribution from low doses (<20 Gy), a flat contribution from doses in the range ~20-40 Gy, then a further enhanced contribution from doses above 40 Gy. These features resemble the hyper-radiosensitivity / increased radioresistance (HRS/IRR) observed in some cell survival curves, which can be modeled using Joiner’s induced repair model. A novel search strategy is employed, which has the potential to estimate RP dependence on the normal lung DVH. When applied to a clinical dataset, identified profiles share a characteristic shape, which resembles HRS/IRR. This suggests that normal lung may have enhanced sensitivity to low doses, and that this sensitivity can affect RP risk.

  16. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217.

    PubMed

    Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio

    2018-01-22

    Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM expression but did not affect radiosensitivity in LM217. Under hypoxia and nutrient starvation, HIF-1α expression was suppressed and glycogen storage was reduced. Our data suggest that AMPK regulates ATM expression and partially regulates radiosensitivity under hypoxia and nutrient starvation. The molecular mechanism underlying the induction of ATM expression by AMPK remains to be elucidated. Copyright © 2017. Published by Elsevier Inc.

  17. Towards Achieving the Full Clinical Potential of Proton Therapy by Inclusion of LET and RBE Models

    PubMed Central

    Jones, Bleddyn

    2015-01-01

    Despite increasing use of proton therapy (PBT), several systematic literature reviews show limited gains in clinical outcomes, with publications mostly devoted to recent technical developments. The lack of randomised control studies has also hampered progress in the acceptance of PBT by many oncologists and policy makers. There remain two important uncertainties associated with PBT, namely: (1) accuracy and reproducibility of Bragg peak position (BPP); and (2) imprecise knowledge of the relative biological effect (RBE) for different tissues and tumours, and at different doses. Incorrect BPP will change dose, linear energy transfer (LET) and RBE, with risks of reduced tumour control and enhanced toxicity. These interrelationships are discussed qualitatively with respect to the ICRU target volume definitions. The internationally accepted proton RBE of 1.1 was based on assays and dose ranges unlikely to reveal the complete range of RBE in the human body. RBE values are not known for human (or animal) brain, spine, kidney, liver, intestine, etc. A simple efficiency model for estimating proton RBE values is described, based on data of Belli et al. and other authors, which allows linear increases in α and β with LET, with a gradient estimated using a saturation model from the low LET α and β radiosensitivity parameter input values, and decreasing RBE with increasing dose. To improve outcomes, 3-D dose-LET-RBE and bio-effectiveness maps are required. Validation experiments are indicated in relevant tissues. Randomised clinical studies that test the invariant 1.1 RBE allocation against higher values in late reacting tissues, and lower tumour RBE values in the case of radiosensitive tumours, are also indicated. PMID:25790470

  18. Radiosensitization of cancer cells by hydroxychalcones.

    PubMed

    Pruitt, Rory; Sasi, Nidhish; Freeman, Michael L; Sekhar, Konjeti R

    2010-10-15

    Radiation sensitization is significantly increased by proteotoxic stress, such as a heat shock. We undertook an investigation, seeking to identify natural products that induced proteotoxic stress and then determined if a compound exhibited radiosensitizing properties. The hydroxychalcones, 2',5'-dihydroxychalcone (D-601) and 2,2'-dihydroxychalcone (D-501), were found to activate heat shock factor 1 (Hsf1) and exhibited radiation sensitization properties in colon and pancreatic cancer cells. The radiosensitization ability of D-601 was blocked by pretreatment with α-napthoflavone (ANF), a specific inhibitor of cytochrome P450 1A2 (CYP1A2), suggesting that the metabolite of D-601 is essential for radiosensitization. The study demonstrated the ability of hydroxychalcones to radiosensitize cancer cells and provides new leads for developing novel radiation sensitizers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Radiosensitization of Cancer Cells by Hydroxychalcones

    PubMed Central

    Pruitt, Rory; Sasi, Nidhish; Freeman, Michael L.; Sekhar, Konjeti R.

    2010-01-01

    Radiation sensitization is significantly increased by proteotoxic stress, such as a heat shock. We undertook an investigation, seeking to identify natural products that induced proteotoxic stress and then determined if a compound exhibited radiosensitizing properties. The hydroxychalcones, 2′,5′-dihydroxychalcone (D-601) and 2,2′-dihydroxychalcone (D-501), were found to activate heat shock factor 1 (Hsf1) and exhibited radiation sensitization properties in colon and pancreatic cancer cells. The radiosensitization ability of D-601 was blocked by pretreatment with α-napthoflavone (ANF), a specific inhibitor of cytochrome P450 1A2 (CYP1A2), suggesting that the metabolite of D-601 is essential for radiosensitization. The study demonstrated the ability of hydroxychalcones to radiosensitize cancer cells and provides new leads for developing novel radiation sensitizers. PMID:20826087

  20. Ionizing Radiation Enhances Adenoviral Vector Expressing mda-7/IL-24-mediated Apoptosis in Human Ovarian Cancer

    PubMed Central

    EMDAD, LUNI; SARKAR, DEVANAND; LEBEDEVA, IRINA V.; SU, ZAO-ZHONG; GUPTA, PANKAJ; MAHASRESHTI, PARAMESHWAR J.; DENT, PAUL; CURIEL, DAVID T.; FISHER, PAUL B.

    2007-01-01

    Ovarian cancer is the fifth most common cause of cancer-related death in women. Current interventional approaches, including debulking surgery, chemotherapy, and/or radiation have proven minimally effective in preventing the recurrence and/or mortality associated with this malignancy. Subtraction hybridization applied to terminally differentiating human melanoma cells identified melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), whose unique properties include the ability to selectively induce growth suppression, apoptosis, and radiosensitization in diverse cancer cells, without causing any harmful effects in normal cells. Previously, it has been shown that adenovirus-mediated mda-7/IL-24 therapy (Ad.mda-7) induces apoptosis in ovarian cancer cells, however, the apoptosis induction was relatively low. We now document that apoptosis can be enhanced by treating ovarian cancer cells with ionizing radiation (IR) in combination with Ad.mda-7. Additionally, we demonstrate that mda-7/IL-24 gene delivery, under the control of a minimal promoter region of progression elevated gene-3 (PEG-3), which functions selectively in diverse cancer cells with minimal activity in normal cells, displays a selective radiosensitization effect in ovarian cancer cells. The present studies support the use of IR in combination with mda-7/IL-24 as a means of augmenting the therapeutic benefit of this gene in ovarian cancer, particularly in the context of tumors displaying resistance to radiation therapy. PMID:16646087

  1. Altered Cross-Linking of HSP27 by Zerumbone as a Novel Strategy for Overcoming HSP27-Mediated Radioresistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seo-Hyun; School of Life Sciences and Biotechnology, Korea University, Seoul; Lee, Yoon-Jin

    Purpose: HSP27 or HSP25 negatively regulates apoptosis pathways after radiation or chemotherapeutic agents. Abrogation of HSP27 function may be a candidate target for overcoming radio- and chemoresistance. Methods and Materials: Zerumbone (ZER), a cytotoxic component isolated from Zingiber zerumbet smith. Clonogenic survival assay and flow cytometry after Annexin V staining were performed to determine in vitro sensitization effects of ZER with ionizing radiation. A nude mouse xenografting system was also applied to detect in vivo radiosensitizing effects of ZER. Results: ZER produced cross-linking of HSP27, which was dependent on inhibition of the monomeric form of HSP27. ZER was directly insertedmore » between the disulfide bond in the HSP27 dimer and modified normal HSP27 dimerization. Pretreatment with ZER before radiation inhibited the binding affinity between HSP27 and apoptotic molecules, such as cytochrome c and PKC{delta}, and induced sensitization in vitro and in an in vivo xenografted nude mouse system. Structural analogs lacking only the carbonyl group in ZER, such as {alpha}-humulene (HUM) and 8-hydroxy-humulen (8-OH-HUM), did not affect normal cross-linking of HSP27 and did not induce radiosensitization. Conclusions: We suggest that altered cross-linking of HSP27 by ZER is a good strategy for abolishing HSP27-mediated resistance.« less

  2. Altered cross-linking of HSP27 by zerumbone as a novel strategy for overcoming HSP27-mediated radioresistance.

    PubMed

    Choi, Seo-Hyun; Lee, Yoon-Jin; Seo, Woo Duck; Lee, Hae-June; Nam, Joo-Won; Lee, Yoo Jin; Kim, Joon; Seo, Eun-Kyoung; Lee, Yun-Sil

    2011-03-15

    HSP27 or HSP25 negatively regulates apoptosis pathways after radiation or chemotherapeutic agents. Abrogation of HSP27 function may be a candidate target for overcoming radio- and chemoresistance. Zerumbone (ZER), a cytotoxic component isolated from Zingiber zerumbet smith. Clonogenic survival assay and flow cytometry after Annexin V staining were performed to determine in vitro sensitization effects of ZER with ionizing radiation. A nude mouse xenografting system was also applied to detect in vivo radiosensitizing effects of ZER. ZER produced cross-linking of HSP27, which was dependent on inhibition of the monomeric form of HSP27. ZER was directly inserted between the disulfide bond in the HSP27 dimer and modified normal HSP27 dimerization. Pretreatment with ZER before radiation inhibited the binding affinity between HSP27 and apoptotic molecules, such as cytochrome c and PKCδ, and induced sensitization in vitro and in an in vivo xenografted nude mouse system. Structural analogs lacking only the carbonyl group in ZER, such as α-humulene (HUM) and 8-hydroxy-humulen (8-OH-HUM), did not affect normal cross-linking of HSP27 and did not induce radiosensitization. We suggest that altered cross-linking of HSP27 by ZER is a good strategy for abolishing HSP27-mediated resistance. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Etoposide radiosensitizes p53-defective cholangiocarcinoma cell lines independent of their G2 checkpoint efficacies

    PubMed Central

    Hematulin, Arunee; Meethang, Sutiwan; Utapom, Kitsana; Wongkham, Sopit; Sagan, Daniel

    2018-01-01

    Radiotherapy has been accounted as the most comprehensive cancer treatment modality over the past few decades. However, failure of this treatment modality occurs in several malignancies due to the resistance of cancer cells to radiation. It was previously reported by the present authors that defective cell cycle checkpoints could be used as biomarkers for predicting the responsiveness to radiation in individual patients with cholangiocarcinoma (CCA). However, identification of functional defective cell cycle checkpoints from cells from a patient's tissues is cumbersome and not applicable in the clinic. The present study evaluated the radiosensitization potential of etoposide in p53-defective CCA KKU-M055 and KKU-M214 cell lines. Treatment with etoposide enhanced the responsiveness of two p53-defective CCA cell lines to radiation independent of G2 checkpoint function. In addition, etoposide treatment increased radiation-induced cell death without altering the dominant mode of cell death of the two cell lines. These findings indicate that etoposide could be used as a radiation sensitizer for p53-defective tumors, independent of the function of G2 checkpoint. PMID:29541168

  4. Radiosensitization Effect of STI-571 on Pancreatic Cancer Cells In Vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Hye Won; Wen, Jing; Lim, Jong-Baeck

    2009-11-01

    Purpose: To examine STI-571-induced radiosensitivity in human pancreatic cancer cells in vitro. Methods and Materials: Three human pancreatic cancer cell lines (Bxpc-3, Capan-1, and MiaPaCa-2) exhibiting different expression levels of c-Kit and platelet-derived growth factor receptor beta (PDGFRbeta) and showing different K-ras mutation types were used. For evaluation of the antitumor activity of STI-571 in combination with radiation, clonogenic survival assays, Western blot analysis, and the annexin V/propidium iodide assay with microscopic evaluation by 4',6-diamidino-2-phenylindole were conducted. Results: Dramatic phosphorylated (p)-c-Kit and p-PDGFRbeta attenuation, a modest dose- and time-dependent growth inhibition, and significant radiosensitization were observed after STI-571 treatment inmore » view of apoptosis, although the levels of growth inhibition and increased radiosensitization were different according to cell lines. The grades of radiosensitivity corresponded to the attenuation levels of p-c-Kit and p-PDGFRbeta by STI-571, particularly to those of p-c-Kit, and the radiosensitivity was partially affected by K-ras mutation in pancreatic cancer cells. Among downstream pathways associated with c-Kit or PDGFRbeta, p-PLCgamma was more closely related to radiosensitivity compared with p-Akt1 or p-extracellular signal-regulated kinase 1. Conclusion: STI-571 enhances radiation response in pancreatic cancer cells. This effect is affected by the attenuation levels of p-c-Kit or p-PDGFRbeta, and K-ras mutation status. Among them, p-c-Kit plays more important roles in the radiosensitivity in pancreatic cancer compared with p-PDGFRbeta or K-ras mutation status.« less

  5. Effects of low-level chronic irradiation on the radiosensitivity of mammals: Modeling studies

    NASA Astrophysics Data System (ADS)

    Smirnova, O. A.

    Mathematical models of the major hematopoietic lines are used to study the modifying effects of low-level chronic preirradiation on radiosensitivity of mammals which resulted in their reduced radiosensitivity (acquired radioresistance) and elevated radiosensitivity (hypersensitivity) to the subsequent radiation exposure. These effects of preirradiation manifest themselves, respectively, in decreased and increased mortality of preirradiated experimental animals (mice) after challenge acute exposure in comparison with that for previously nonirradiated ones. Analysis of the modeling results reveals the biological mechanisms of these radioprotection and radiosensitization effects, and enables one to estimate the ranges of dose rate and duration of chronic preirradiation where these effects are realized. Juxtapositions of the modeling predictions with the relevant experimental data show their qualitative agreement. All this testifies to the importance of accounting the nonlinear effect of low-level chronic irradiation on radiosensitivity of the hematopoiesis system and organism as a whole, when the radiation risk for astronauts on long-term space missions is estimated. The developed models of hematopoiesis can be used, after appropriate identification, as a component of the mathematical tools for radiation risk assessment.

  6. The PCC assay can be used to predict radiosensitivity in biopsy cultures irradiated with different types of radiation.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Nakano, Takashi; Ohno, Tatsuya; Furusawa, Yoshiya; Okayasu, Ryuichi

    2006-12-01

    The aim of this study was to identify potential biomarkers for radiosensitivity using the relationship between cell killing and the yield of excess chromatin fragments detected with the premature chromosome condensation (PCC) technique. This method was applied to primary cultured cells obtained from biopsies from patients. Six primary culture biopsies were obtained from 6 patients with carcinoma of the cervix before starting radiotherapy. The cultures were irradiated with two different LET carbon-ion beams (LET = 13 keV/microm, 77.1+/-2.8 keV/microm) and 200 kV X-rays. The carbon-ion beams were produced by Heavy Ion Medical Accelerator in Chiba (HIMAC). PCC was performed using the polyethylene glycol-mediated cell fusion technique. The yield of excess chromatin fragments were measured by counting the number of unrejoined chromatin fragments detected with the PCC technique after a 24-h post-irradiation incubation period. Obtained results indicated that cultures which were more sensitive to killing were also more susceptible to the induction of excess chromatin fragments. Furthermore there was a good correlation between cell killing and excess chromatin fragments among the 6 cell cultures examined. There is also evidence that the induction of excess chromatin fragments increased with increasing LET as well as cell-killing effect in the same cell culture. The data reported here support the idea that the yield of excess chromatin fragments detected with the PCC technique might be useful for predicting the radiosensitivity of cells contained in tumor tissue, and to predict responses to different radiation types.

  7. Plutonium from Above-Ground Nuclear Tests in Milk Teeth: Investigation of Placental Transfer in Children Born between 1951 and 1995 in Switzerland

    PubMed Central

    Froidevaux, Pascal; Haldimann, Max

    2008-01-01

    Background Occupational risks, the present nuclear threat, and the potential danger associated with nuclear power have raised concerns regarding the metabolism of plutonium in pregnant women. Objective We measured plutonium levels in the milk teeth of children born between 1951 and 1995 to assess the potential risk that plutonium incorporated by pregnant women might pose to the radiosensitive tissues of the fetus through placenta transfer. Methods We used milk teeth, whose enamel is formed during pregnancy, to investigate the transfer of plutonium from the mother’s blood plasma to the fetus. We measured plutonium using sensitive sector field inductively coupled plasma mass spectrometry techniques. We compared our results with those of a previous study on strontium-90 (90Sr) released into the atmosphere after nuclear bomb tests. Results Results show that plutonium activity peaks in the milk teeth of children born about 10 years before the highest recorded levels of plutonium fallout. By contrast, 90Sr, which is known to cross the placenta barrier, manifests differently in milk teeth, in accordance with 90Sr fallout deposition as a function of time. Conclusions These findings demonstrate that plutonium found in milk teeth is caused by fallout that was inhaled around the time the milk teeth were shed and not from any accumulation during pregnancy through placenta transfer. Thus, plutonium may not represent a radiologic risk for the radiosensitive tissues of the fetus. PMID:19079728

  8. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolay, Nils H., E-mail: n.nicolay@dkfz.de; Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg; Sommer, Eva

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IRmore » were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.« less

  9. Dependence of Early and Late Chromosomal Aberrations on Radiation Quality and Cell Types

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Rohde, Larry; Wu, Honglu

    2017-01-01

    Exposure to radiation induces different types of DNA damage, increases mutation and chromosome aberration rates, and increases cellular transformation in vitro and in vivo. The susceptibility of cells to radiation depends on genetic background and growth condition of cells, as well as types of radiation. Mammalian cells of different tissue types and with different genetic background are known to have different survival rate and different mutation rate after cytogenetic insults. Genomic instability, induced by various genetic, metabolic, and environmental factors including radiation, is the driving force of tumorigenesis. Accurate measurements of the relative biological effectiveness (RBE) is important for estimating radiation-related risks. To further understand genomic instability induced by charged particles and their RBE, we exposed human lymphocytes ex vivo, human fibroblast AG1522, human mammary epithelial cells (CH184B5F5/M10), and bone marrow cells isolated from CBA/CaH(CBA) and C57BL/6 (C57) mice to high energy protons and Fe ions. Normal human fibroblasts AG1522 have apparently normal DNA damage response and repair mechanisms, while mammary epithelial cells (M10) are deficient in the repair of DNA DSBs. Mouse strain CBA is radio-sensitive while C57 is radio-resistant. Metaphase chromosomes at different cell divisions after radiation exposure were collected and chromosome aberrations were analyzed as RBE for different cell lines exposed to different radiations at various time points up to one month post irradiation.

  10. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirai, Takahisa; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo; Saito, Soichiro

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in Nationalmore » Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.« less

  11. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: Using CTDI{sub vol} to account for differences between scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Adam C.; Zankl, Maria; DeMarco, John J.

    2010-04-15

    Purpose: Monte Carlo radiation transport techniques have made it possible to accurately estimate the radiation dose to radiosensitive organs in patient models from scans performed with modern multidetector row computed tomography (MDCT) scanners. However, there is considerable variation in organ doses across scanners, even when similar acquisition conditions are used. The purpose of this study was to investigate the feasibility of a technique to estimate organ doses that would be scanner independent. This was accomplished by assessing the ability of CTDI{sub vol} measurements to account for differences in MDCT scanners that lead to organ dose differences. Methods: Monte Carlo simulationsmore » of 64-slice MDCT scanners from each of the four major manufacturers were performed. An adult female patient model from the GSF family of voxelized phantoms was used in which all ICRP Publication 103 radiosensitive organs were identified. A 120 kVp, full-body helical scan with a pitch of 1 was simulated for each scanner using similar scan protocols across scanners. From each simulated scan, the radiation dose to each organ was obtained on a per mA s basis (mGy/mA s). In addition, CTDI{sub vol} values were obtained from each scanner for the selected scan parameters. Then, to demonstrate the feasibility of generating organ dose estimates from scanner-independent coefficients, the simulated organ dose values resulting from each scanner were normalized by the CTDI{sub vol} value for those acquisition conditions. Results: CTDI{sub vol} values across scanners showed considerable variation as the coefficient of variation (CoV) across scanners was 34.1%. The simulated patient scans also demonstrated considerable differences in organ dose values, which varied by up to a factor of approximately 2 between some of the scanners. The CoV across scanners for the simulated organ doses ranged from 26.7% (for the adrenals) to 37.7% (for the thyroid), with a mean CoV of 31.5% across all organs. However, when organ doses are normalized by CTDI{sub vol} values, the differences across scanners become very small. For the CTDI{sub vol}, normalized dose values the CoVs across scanners for different organs ranged from a minimum of 2.4% (for skin tissue) to a maximum of 8.5% (for the adrenals) with a mean of 5.2%. Conclusions: This work has revealed that there is considerable variation among modern MDCT scanners in both CTDI{sub vol} and organ dose values. Because these variations are similar, CTDI{sub vol} can be used as a normalization factor with excellent results. This demonstrates the feasibility of establishing scanner-independent organ dose estimates by using CTDI{sub vol} to account for the differences between scanners.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jans, H-S; Dept. of Oncology, University of Alberta, Edmonton, AB; Stypinski, D

    Purpose: To compare the radiation dose to normal organs from the radio-iodinated, hypoxia-binding radiosensitizer iodoazomycin arabinoside (IAZA) for three different isotopes of iodine. Methods: Dosimety studies with normal volunteers had been carried out with [{sup 123}I]IAZA, a drug binding selectively to hypoxic sites. Two other isotopes of iodine, {sup 131}I and {sup 124}I, offer the opportunity to use IAZA as an agent for radioisotope therapy and as an imaging tracer for Positron Emission Tomography. Radioisotope dosimetry for {sup 131}I and {sup 124}I was performed by first deriving from the [{sup 123}I]IAZA studies biological uptake and excretion data. The cumulated activitiesmore » for {sup 131}I or {sup 124}I where obtained by including their half-lives when integrating the biological data and then extrapolating to infinite time points considering a) physical decay only or b) physical and biological excretion. Doses were calculated using the Medical Internal Radiation Dose (MIRD) schema (OLINDA1.1 code, Vanderbilt 2007). Results: Compared to {sup 123}I, organ doses were elevated on average by a factor 6 and 9 for {sup 131}I and {sup 124}I, respectively, if both physical decay and biological excretion were modeled. If only physical decay is considered, doses increase by a factor 18 ({sup 131}I) and 19 ({sup 124}I). Highest organ doses were observed in intestinal walls, urinary bladder and thyroid. Effective doses increased by a factor 11 and 14 for {sup 131}I and {sup 124}I, respectively, if biological and physical decay are present. Purely physical decay yields a 23-fold increase over {sup 123}I for both, {sup 131}I and {sup 124}I. Conclusion: Owing to the significant dose increase, caused by their longer half life and the approximately 10 times larger electronic dose deposited in tissue per nuclear decay, normal tissue doses of IAZA labeled with {sup 131}I and {sup 124}I need to be carefully considered when designing imaging and therapy protocols for clinical trials. Effective blocking of iodine uptake in the thyroid is essential. Alberta Innovates - Health Solutions (AIHS) and Canadian Institutes of Health Research (CIHR)« less

  13. TISSUE HYPOXIA AS A MECHANISM OF THE ANTI-RADIO PROTECTION EFFECT OF ADRENALIN, HEROIN AND MORPHINE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinova, M.M.; Graevskii, E.J.

    1960-07-21

    The protective mechanism of adrenalin heroin, and - morphine on white mice 12 to 18 weeks old, and weighing 18 to 23 g was analyzed in order to determine the protection action of neurotropical substances in relation to their ability to reduce oxygen in tissues. Parallel studies were made of the time factor influence. The results indicate that the investigated substances are capable of reducing the level of oxygen in tissue, and particularly in the spleen. The reduction and restoration of the oxygen content correspond in general to the reduction and increase of mortality. Data confirm that the protective effectsmore » of adrenalin, heroin, and morphine are the result of their ability to produce hypoxia in radiosensitive organs. The hypoxia is induced by the adrenalin pressure effect and by morphine and heroin depression of respiratory centers. (R.V.J.)« less

  14. VE-821, an ATR inhibitor, causes radiosensitization in human tumor cells irradiated with high LET radiation.

    PubMed

    Fujisawa, Hiroshi; Nakajima, Nakako Izumi; Sunada, Shigeaki; Lee, Younghyun; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2015-08-19

    High linear energy transfer (LET) radiation such as carbon ion particles is successfully used for treatment of solid tumors. The reason why high LET radiation accomplishes greater tumor-killing than X-rays is still not completely understood. One factor would be the clustered or complex-type DNA damages. We previously reported that complex DNA double-strand breaks produced by high LET radiation enhanced DNA end resection, and this could lead to higher kinase activity of ATR protein recruited to RPA-coated single-stranded DNA. Although the effect of ATR inhibition on cells exposed to low LET gamma-rays has recently been reported, little is known regarding the effect of ATR inhibitor on cells treated with high LET radiation. The purpose of this study is to investigate the effects of the ATR inhibitor VE-821 in human tumor and normal cells irradiated with high LET carbon ions. HeLa, U2OS, and 1BR-hTERT (normal) cells were pre-treated with 1 μM VE-821 for 1 hour and irradiated with either high LET carbon ions or X-rays. Cell survival, cell cycle distribution, cell growth, and micronuclei formation were evaluated. VE-821 caused abrogation of G2/M checkpoint and forced irradiated cells to divide into daughter cells. We also found that carbon ions caused a higher number of multiple micronuclei than X-rays, leading to decreased cell survival in tumor cells when treated with VE-821, while the survival of irradiated normal cells were not significantly affected by this inhibitor. ATR inhibitor would be an effective tumor radiosensitizer with carbon ion irradiation.

  15. SU-G-TeP3-10: Radiation Induces Prompt Live-Cell Metabolic Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, D; Peeters, W; Bussink, J

    2016-06-15

    Purpose: To compare metabolic dynamics and HIF-1α expression following radiation between a cancerous cell line (UM-SCC-22B) and a normal, immortalized cell line, NOK (Normal Oral Keratinocyte). HIF-1 is a key factor in metabolism and radiosensitivity. A better understanding of how radiation affects the interplay of metabolism and HIF-1 might give a better understanding of the mechanisms responsible for radiosensitivity. Methods: Changes in cellular metabolism in response to radiation are tracked by fluorescence lifetime of NADH. Expression of HIF-1α was measured by immunofluorescence for both cell lines with and without irradiation. Radiation response is also monitored with additional treatment of amore » HIF-1α inhibitor (chrysin) as well as a radical scavenger (glutathione). Changes in oxygen consumption and respiratory capacity are also monitored using the Seahorse XF analyzer. Results: An increase in HIF-1α was found to be in response to radiation for the cancer cell line, but not the normal cell line. Radiation was found to shift metabolism toward glycolytic pathways in cancer cells as measured by oxygen consumption and respiratory capacity. Radiation response was found to be muted by addition of glutathione to cell media. HIF-1α inhibition similarly muted radiation response in cancer. Conclusion: The HIF-1 protein complex is a key regulator cellular metabolism through the regulation of glycolysis and glucose transport enzymes. Moreover, HIF-1 has shown radio-protective effects in tumor vascular endothelia, and has been implicated in metastatic aggression. Monitoring interplay between metabolism and the HIF-1 protein complex can give a more fundamental understanding of radiotherapy response.« less

  16. Change in radiosensitivity of rats during hypokinetic stress

    NASA Technical Reports Server (NTRS)

    Chernov, I. P.

    1980-01-01

    The laws governing stress modification of radiation sickness in relation to hypokinetic stress were investigated. It was found that gamma irradiation (800 rad) of rats on the third day of exposure to hypokinesia increased the radiosensitivity of the animals which was determined by the survival rate and the dynamics of body weight and the weight of some internal organs. The same radiation dose was given on the 20th day of hypokinesia and on the third day of recovery from the 20 day hypokinesia decreased the radiosensitivity of rats. It is concluded that the variations in the radiosensitivity observed may be due to a stress effect of hypokinesia.

  17. Corynebacterium parvum-induced radiosensitivity and cycling changes of hematopoietic spleen colony-forming units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Y.; Magura, C.; Feola, J.

    1977-07-01

    Ten days after total-body irradiation with 550 rads of /sup 60/Co, spleen colonies were observed in adult C57BL mice. A change in radiosensitivity induced by Corynebacterium parvum, as measured by increased numbers of colony-forming units that survived the 550 rads, began shortly after C. parvum stimulation and extended for at least 7 days before irradiation. C. parvum given 4-24 hours before, followed by high specific activity (/sup 3/H)thymidine (HSATT) 1 hour before total-body irradiation greatly reduced survival of the stem cells that formed spleen colonies (CFU/sub s/) and CFU/sub s/ radiosensitivity to control levels. The HSATT sensitivity by ''suicide'' assaymore » in vivo and the time-response change in radiosensitivity corresponded with the decrease in radiosensitivity, which showed that CFU/sub s/ were stimulated by C. parvum administration and entered the S-phase shortly after stimulation. The data indicated a resting population close to the S-phase. After stimulation, this population entered S-phase. Syngeneic mouse lymphoma cells injected iv 24 hours earlier did not elicit any effect as a stimulus to CFU/sub s/ radiosensitivity change.« less

  18. Radiosensitivity of antibody responses and radioresistant secondary tetanus antitoxin responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, R.; Terres, G.; Cottier, H.

    1976-01-01

    Primary tetanus antitoxin responses were increasingly repressed in mice when gamma radiation doses of 100 to 400 rads were delivered by whole-body exposure prior to immunization with fluid tetanus toxoid (FTT). Nearly normal secondary antitoxin responses were obtained in mice exposed to 600 rads of gamma radiation 4 days after secondary antigenic stimulation with FTT. A rapid transition from radiosensitivity of the antibody-forming system on days 1 to 3 was followed by relative radioresistance on day 4 after the booster injection of toxoid. Studies on lymphoid cellular kinetics in popliteal lymph nodes after injection of $sup 3$H--thymidine ($sup 3$H--TdR) andmore » incorporation of $sup 3$H--L- histidine into circulating antitoxin were carried out. Analysis of tritium radioactivity in antigen--antibody precipitates of serums 2 hr after injection of the labeled amino acid revealed maximum incorporation into antibody around day 7 after the booster in nonirradiated controls and about day 12, i.e., 8 days after irradiation, in experimental mice. The shift from radiosensitivity to relative radioresistance was attributed to a marked peak of plasma-cell proliferation in the medulla of lymph nodes on day 3. Many medullary plasma cells survived and continued to proliferate after exposure to radiation. Germinal centers were destroyed by radiation within 1 day. Since antibody formation continued after exposure to radiation and after the loss of germinal centers, this supports the view that germinal-center cells were involved more in the generation of memory cells than in antibody synthesis. (auth)« less

  19. Effect of Temporal Pattern of Radiation in Intensity Modulated Radiotherapy on Cell Cycle Progression and Apoptosis of ACHN Renal Cell Carcinoma Cell Line.

    PubMed

    Khorramizadeh, Maryam; Saberi, Alihossein; Tahmasebi-Birgani, Mohammadjavad; Shokrani, Parvaneh; Amouhedari, Alireza

    The existence of a hypersensitive radiation response to doses below 1 Gy is well established for many normal and tumor cell lines. The aim of this study was to ascertain the impact of temporal pattern modeling IMRT on survival, cell cycle and apoptosis of human RCC cell line ACHN, so as to provide radiobiological basis for optimizing IMRT plans for this disease. The ACHN renal cell carcinoma cell line was used in this study. Impact of the triangle, V, small-large or large-small temporal patterns in the presence and absence of threshold dose of hyper-radiosensitivity at the beginning of patterns were studied using soft agarclonogenic assays. Cell cycle and apoptosis analysis were performed after irradiation with the temporal patterns. For triangle and small-large dose sequences, survival fraction was significantly reduced after irradiation with or without threshold dose of hyper-radiosensitivity at the beginning of the patterns. In all of the dose patterns, cell cycle distributions and the percentage of apoptotic cells at 24 h after irradiation with or without priming dose of hyper-radiosensitivity showed no significant difference. However, apoptotic cells were increased when beams with the smallest dose applied at the beginning of dose pattern like triangle and small-large dose sequence. These data show that the biologic effects of single fraction may differ in clinical settings depending on the size and sequence of the partial fractions. Doses at the beginning but not at the end of sequences may change cytotoxicity effects of radiation.

  20. Chromosomal radiosensitivity in head and neck cancer patients: evidence for genetic predisposition?

    PubMed Central

    De Ruyck, K; de Gelder, V; Van Eijkeren, M; Boterberg, T; De Neve, W; Vral, A; Thierens, H

    2008-01-01

    The association between chromosomal radiosensitivity and genetic predisposition to head and neck cancer was investigated in this study. In all, 101 head and neck cancer patients and 75 healthy control individuals were included in the study. The G2 assay was used to measure chromosomal radiosensitivity. The results demonstrated that head and neck cancer patients had a statistically higher number of radiation-induced chromatid breaks than controls, with mean values of 1.23 and 1.10 breaks per cell, respectively (P<0.001). Using the 90th percentile of the G2 scores of the healthy individuals as a cutoff value for chromosomal radiosensitivity, 26% of the cancer patients were radiosensitive compared with 9% of the healthy controls (P=0.008). The mean number of radiation-induced chromatid breaks and the proportion of radiosensitive individuals were highest for oral cavity cancer patients (1.26 breaks per cell, 38%) and pharynx cancer patients (1.27 breaks per cell, 35%). The difference between patients and controls was most pronounced in the lower age group (⩽50 years, 1.32 breaks per cell, 38%) and in the non- and light smoking patient group (⩽10 pack-years, 1.28 breaks per cell, 46%). In conclusion, enhanced chromosomal radiosensitivity is a marker of genetic predisposition to head and neck cancer, and the genetic contribution is highest for oral cavity and pharynx cancer patients and for early onset and non- and light smoking patients. PMID:18414410

  1. Chromosomal radiosensitivity in head and neck cancer patients: evidence for genetic predisposition?

    PubMed

    De Ruyck, K; de Gelder, V; Van Eijkeren, M; Boterberg, T; De Neve, W; Vral, A; Thierens, H

    2008-05-20

    The association between chromosomal radiosensitivity and genetic predisposition to head and neck cancer was investigated in this study. In all, 101 head and neck cancer patients and 75 healthy control individuals were included in the study. The G(2) assay was used to measure chromosomal radiosensitivity. The results demonstrated that head and neck cancer patients had a statistically higher number of radiation-induced chromatid breaks than controls, with mean values of 1.23 and 1.10 breaks per cell, respectively (P<0.001). Using the 90th percentile of the G(2) scores of the healthy individuals as a cutoff value for chromosomal radiosensitivity, 26% of the cancer patients were radiosensitive compared with 9% of the healthy controls (P=0.008). The mean number of radiation-induced chromatid breaks and the proportion of radiosensitive individuals were highest for oral cavity cancer patients (1.26 breaks per cell, 38%) and pharynx cancer patients (1.27 breaks per cell, 35%). The difference between patients and controls was most pronounced in the lower age group (

  2. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity

    PubMed Central

    Warenius, H M; Jones, M; Gorman, T; McLeish, R; Seabra, L; Barraclough, R; Rudland, P

    2000-01-01

    The tumour suppressor gene, p53, and genes coding for positive signal transduction factors can influence transit through cell-cycle checkpoints and modulate radiosensitivity. Here we examine the effects of RAF1 protein on the rate of exit from a G2/M block induced by γ-irradiation in relation to intrinsic cellular radiosensitivity in human cell lines expressing wild-type p53 (wtp53) protein as compared to mutant p53 (mutp53) protein. Cell lines which expressed mutp53 protein were all relatively radioresistant and exhibited no relationship between RAF1 protein and cellular radiosensitivity. Cell lines expressing wtp53 protein, however, showed a strong relationship between RAF1 protein levels and the radiosensitivity parameter SF2. In addition, when post-irradiation perturbation of G2/M transit was compared using the parameter T50 (time after the peak of G2/M delay at which 50% of the cells had exited from a block induced by 2 Gy of irradiation), RAF1 was related to T50 in wtp53, but not mutp53, cell lines. Cell lines which expressed wtp53 protein and high levels of RAF1 had shorter T50s and were also more radiosensitive. These results suggest a cooperative role for wtp53 and RAF1 protein in determining cellular radiosensitivity in human cells, which involves control of the G2/M checkpoint. © 2000 Cancer Research Campaign PMID:10993658

  3. Protection of Radiation-Induced Damage to the Hematopoietic System, Small Intestine and Salivary Glands in Rats by JNJ7777120 Compound, a Histamine H4 Ligand

    PubMed Central

    Martinel Lamas, Diego J.; Carabajal, Eliana; Prestifilippo, Juan P.; Rossi, Luis; Elverdin, Juan C.; Merani, Susana; Bergoc, Rosa M.; Rivera, Elena S.; Medina, Vanina A.

    2013-01-01

    Based on previous data on the histamine radioprotective effect on highly radiosensitive tissues, in the present work we aimed at investigating the radioprotective potential of the H4R ligand, JNJ7777120, on ionizing radiation-induced injury and genotoxic damage in small intestine, salivary glands and hematopoietic tissue. For that purpose, rats were divided into 4 groups. JNJ7777120 and JNJ7777120-irradiated groups received a daily subcutaneous JNJ7777120 injection (10 mg/kg) starting 24 h before irradiation. Irradiated groups received a single dose of 5 Gy on whole-body using Cesium-137 source and were sacrificed 3 or 30 days after irradiation. Tissues were removed, fixed, stained with hematoxylin and eosin or PAS staining and histological characteristics were evaluated. Proliferative and apoptotic markers were studied by immunohistochemistry, while micronucleus assay was performed to evaluate DNA damage. Submandibular gland (SMG) function was evaluated by methacholine-induced salivation. Results indicate that JNJ7777120 treatment diminished mucosal atrophy and preserved villi and the number of crypts after radiation exposure (240±8 vs. 165±10, P<0.01). This effect was associated to a reduced apoptosis and DNA damage in intestinal crypts. JNJ7777120 reduced radiation-induced aplasia, preserving medullar components and reducing formation of micronucleus and also it accelerated bone marrow repopulation. Furthermore, it reduced micronucleus frequency in peripheral blood (27±8 vs. 149±22, in 1,000 erythrocytes, P<0.01). JNJ7777120 completely reversed radiation-induced reduced salivation, conserving glandular mass with normal histological appearance and reducing apoptosis and atrophy of SMG. JNJ7777120 exhibits radioprotective effects against radiation-induced cytotoxic and genotoxic damages in small intestine, SMG and hematopoietic tissues and, thus, could be of clinical value for patients undergoing radiotherapy. PMID:23922686

  4. SU-E-T-13: A Comparative Dosimetric Study On Radio-Dynamic Therapy for Pelvic Cancer Treatment: Strategies for Bone Marrow Dose and Volume Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C; Renmin Hospital of Wuhan University, Wuhan, Hubei Province; Wang, B

    Purpose: Radio-dynamic therapy (RDT) is a potentially effective modality for local and systemic cancer treatment. Using RDT, the administration of a radio-sensitizer enhances the biological effect of high-energy photons. Although the sensitizer uptake ratio of tumor to normal tissue is normally high, one cannot simply neglect its effect on critical structures. In this study, we aim to explore planning strategies to improve bone marrow sparing without compromising the plan quality for RDT treatment of pelvic cancers. Methods: Ten cervical and ten prostate cancer patients who previously received radiotherapy at our institution were selected for this study. For each patient, ninemore » plans were created using the Varian Eclipse treatmentplanning-system (TPS) with 3D-CRT, IMRT, and VMAT delivery techniques containing various gantry angle combinations and optimization parameters (dose constraints to the bone marrow). To evaluate the plans for bone marrow sparing, the dose-volume parameters V5, V10, V15, V20, V30, and V40 for bone marrow were examined. Effective doseenhancement factors for the sensitizer were used to weigh the dose-volume histograms for various tissues from individual fractions. Results: The planning strategies had different impacts on bone marrow sparing for the cervical and prostate cases. For the cervical cases, provided the bone marrow constraints were properly set during optimization, the dose to bone marrow sparing was found to be comparable between different IMRT and VMAT plans regardless of the gantry angle selection. For the prostate cases, however, careful selection of gantry angles could dramatically improve the bone marrow sparing, although the dose distribution in bone marrow was clinically acceptable for all prostate plans that we created. Conclusion: For intensity-modulated RDT planning for cervical cancer, planners should set bone marrow constraints properly to avoid any adverse damage, while for prostate cancer one can carefully select gantry angles to improve bone marrow sparing when necessary.« less

  5. The purine scaffold Hsp90 inhibitor PU-H71 sensitizes cancer cells to heavy ion radiation by inhibiting DNA repair by homologous recombination and non-homologous end joining.

    PubMed

    Lee, Younghyun; Li, Huizi Keiko; Masaoka, Aya; Sunada, Shigeaki; Hirakawa, Hirokazu; Fujimori, Akira; Nickoloff, Jac A; Okayasu, Ryuichi

    2016-10-01

    PU-H71 is a purine-scaffold Hsp90 inhibitor developed to overcome limitations of conventional Hsp90 inhibitors. This study was designed to investigate the combined effect of PU-H71 and heavy ion irradiation on human tumor and normal cells. The effects of PU-H71 were determined by monitoring cell survival by colony formation, and DNA double-strand break (DSB) repair by γ-H2AX foci and immuno-blotting DSB repair proteins. The mode of cell death was evaluated by sub-G1 DNA content (as an indicator for apoptosis), and mitotic catastrophe. PU-H71 enhanced heavy ion irradiation-induced cell death in three human cancer cell lines, but the drug did not radiosensitize normal human fibroblasts. In irradiated tumor cells, PU-H71 increased the persistence of γ-H2AX foci, and it reduced RAD51 foci and phosphorylated DNA-PKcs, key DSB repair proteins involved in homologous recombination (HR) and non-homologous end joining (NHEJ). In some tumor cell lines, PU-H71 altered the sub-G1 cell fraction and mitotic catastrophe following carbon ion irradiation. Our results demonstrate that PU-H71 sensitizes human cancer cells to heavy ion irradiation by inhibiting both HR and NHEJ DSB repair pathways. PU-H71 holds promise as a radiosensitizer for enhancing the efficacy of heavy ion radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Radiosensitivity in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nauman, A F

    1979-01-01

    The report presents a compilation of available data on the sensitivity of plants to ionizing radiation, and provides basic information on methods of determining such sensitivities, or of estimating radiosensitivities by calcuation of the nuclear factors upon which they depend. The scope of the data presented here is necessarily limited to the most generally useful radiobiological end points and to the most commonly-used types of radiation. Many of the factors which influence radiosensitivity, particularly nuclear factors, will be discussed. Emphasis will be upon whole-plant studies done at Brookhaven National Laboratory by A.H. Sparrow and his associates, since these studies aremore » the source of most of the available radiosensitivity data and of all the sensitivity predictions listed here. Data presented here include summaries of experimentally-determined radiosensitivities at various end points for both herbaceous and woody higher plants, and for a few species of ferns and lower plants. The algae and fungi have not been considered here due to space limitations.« less

  7. MiR-26a enhances the radiosensitivity of glioblastoma multiforme cells through targeting of ataxia–telangiectasia mutated

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Pin; Lan, Jin; Ge, Jianwei

    Glioblastoma multiforme (GBM) is notoriously resistant to radiation, and consequently, new radiosensitizers are urgently needed. MicroRNAs are a class of endogenous gene modulators with emerging roles in DNA repair. We found that overexpression of miR-26a can enhance radiosensitivity and reduce the DNA repair ability of U87 cells. However, knockdown miR-26a in U87 cells could act the converse manner. Mechanistically, this effect is mediated by direct targeting of miR-26a to the 3′UTR of ATM, which leads to reduced ATM levels and consequent inhibition of the homologous recombination repair pathway. These results suggest that miR-26a may act as a new radiosensitizer ofmore » GBM. - Highlights: ●miR-26a directly target ATM in GBM cells. ●miR-26a enhances the radiosensitivity of GBM cells. ●miR-26a could reduce the DNA repair capacity of GBM cells.« less

  8. Radiation sensitivities of 31 human oesophageal squamous cell carcinoma cell lines

    PubMed Central

    Ban, Sadayuki; Michikawa, Yuichi; Ishikawa, Ken-ichi; Sagara, Masashi; Watanabe, Koji; Shimada, Yutaka; Inazawa, Johji; Imai, Takashi

    2005-01-01

    The purpose of this study was to determine the radiosensitivities of 31 human oesophageal squamous cell carcinoma cell lines with a colony-formation assay. A large variation in radiosensitivity existed among 31 cell lines. Such a large variation may partly explain the poor result of radiotherapy for this cancer. One cell line (KYSE190) demonstrated an unusual radiosensitivity. Ataxia-telangiectasia-mutated (ATM) gene in these cells had five missense mutations, and ATM protein was truncated or degraded. Inability to phosphorylate Chk2 in the irradiated KYSE190 cells suggests that the ATM protein in these cells had lost its function. The dysfunctional ATM protein may be a main cause of unusual radiosensitivity of KYSE190 cells. Because the donor of these cells was not diagnosed with ataxia telangiectasia, mutations in ATM gene might have occurred during the initiation and progression of cancer. Radiosensitive cancer developed in non-hereditary diseased patients must be a good target for radiotherapy. PMID:16045545

  9. Radiation dose to radiosensitive organs in PET/CT myocardial perfusion examination using versatile optical fibre

    NASA Astrophysics Data System (ADS)

    Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.

    2013-05-01

    Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.

  10. Foretinib Enhances the Radiosensitivity in Esophageal Squamous Cell Carcinoma by Inhibiting Phosphorylation of c-Met

    PubMed Central

    Chen, Guang-Zong; Dai, Wang-Shu; Zhu, Hong-Cheng; Song, Hong-Mei; Yang, Xi; Wang, Yuan-Dong; Min, Hua; Lu, Qian; Liu, Shu; Sun, Xin-Chen; Zeng, Xiao-Ning

    2017-01-01

    As a crucial event involved in the metastasis and relapse of esophageal cancer, c-Met overexpression has been considered as one of the culprits responsible for the failure in patients who received radiochemotherapy. Since c-Met has been confirmed to be pivotal for cell survival, proliferation and migration, little is known about its impact on the regulation of radiosensitivity in esophageal cancer. The present study investigated the radiosensitization effects of c-Met inhibitor foretinib in ECA-109 and TE-13 cell lines. Foretinib inhibited c-Met signaling in a dose-dependent manner resulting in decreases in the cell viability of ECA-109 and TE-13. Pretreatment with foretinib synergistically prompted cell apoptosis and G2/M arrest induced by irradiation. Moreover, decreases ability of DNA damage repair was also observed. In vivo studies confirmed that the combinatorial use of foretinib with irradiation significantly diminishes tumor burden compared to either treatment alone. The present findings implied a crucial role of c-Met in the modulation of radiosensitization in esophageal cancer, and foretinib increased the radiosensitivity in ECA-109 and TE-13 cells mainly via c-Met signaling, highlighting a novel profile of foretinib as a potential radiosensitizer for the treatment of esophageal cancer. PMID:28529610

  11. Enhancement of radiosensitivity of melanoma cells by pegylated gold nanoparticles under irradiation of megavoltage electrons.

    PubMed

    Mousavi, Mehdi; Nedaei, Hassan Ali; Khoei, Samideh; Eynali, Samira; Khoshgard, Karim; Robatjazi, Mostafa; Iraji Rad, Rasoul

    2017-02-01

    Gold nanoparticles (GNP) have significant potential as radiosensitizer agents due to their distinctive properties. Several studies have shown that the surface modification of nanoparticles with methyl polyethylene glycol (mPEG) can increase their biocompatibility. However, the present study investigated the radiosensitization effects of mPEG-coated GNP (mPEG-GNP) in B16F10 murine melanoma cells under irradiation of 6 MeV Electron beam. The synthesized GNP were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy, and zeta potential. Enhancement of radiosensitization was evaluated by the clonogenic assay at different radiation doses of megavoltage electron beams. It was observed that mPEG-GNP with a hydrodynamic size of approximately 50 nm are almost spherical and cellular uptake occurred at all concentrations. Both proliferation efficiency and survival fraction decreased with increasing mPEG-GNP concentration. Furthermore, significant GNP sensitization occurred with a maximum dose enhancement factor of 1.22 at a concentration of 30 μM. Pegylated-GNP are taken up by B16F10 cancer cells and cause radiosensitization in the presence of 6 MeV electrons. The radiosensitization effects of GNP may probably be due to biological processes. Therefore, the underlying biological mechanisms beyond the physical dose enhancement need to be further clarified.

  12. Topology and dynamics of the interaction between 5-nitroimidazole radiosensitizers and duplex DNA studied by a combination of docking, molecular dynamic simulations and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramalho, Teodorico C.; França, Tanos C. C.; Cortopassi, Wilian A.; Gonçalves, Arlan S.; da Silva, Alan W. S.; da Cunha, Elaine F. F.

    2011-04-01

    In spite of recent progress, cancer is still one of the most serious health problems of mankind. Recently, it has been discovered that tumor hypoxia can be exploited for selective anticancer treatment using radiosensitizers that are activated only under hypoxic conditions. The most commonly used radiosensitizers are the 5-nitroimidazole derivatives. The toxicity of bioreductive anticancer drugs, such as radiosensitizers is associated to their interaction with DNA. In this work, we have investigated the interaction between the model radiosensitizers metronizole, nimorazole and secnidazole with salmon DNA in order to get insights on the drug-macromolecule interactions. To this end, we have employed NMR techniques (PFG NMR spectra and spin-lattice relaxation rates) in combination with theoretical tools, such as docking calculations and MD simulations. Initially, results show that the δ values are not the most appropriated NMR parameters to map the interaction topology of drug-macromolecule complexes. Furthermore our data indicate that radiosensitizers, in the inactive form, interact considerably with DNA, significantly increasing its toxicity. In fact, we obtained a good agreement between that technique and docking and MD simulations. This suggests that improvements in the structures of these molecules in order to achieve new and more selective bioreductive anticancer drugs are still necessary.

  13. Efficacy of radiosensitizing doped titania nanoparticles under hypoxia and preparation of an embolic microparticle

    PubMed Central

    Morrison, Rachel A; Rybak-Smith, Malgorzata J; Thompson, James M; Thiebaut, Bénédicte; Hill, Mark A; Townley, Helen E

    2017-01-01

    The aim of this study was to develop a manufacturing protocol for large-scale production of doped titania radiosensitizing nanoparticles (NPs) to establish their activity under hypoxia and to produce a multimodal radiosensitizing embolic particle for cancer treatment. We have previously shown that radiosensitizing NPs can be synthesized from titania doped with rare earth elements, especially gadolinium. To translate this technology to the clinic, a crucial step is to find a suitable, scalable, high-throughput method. Herein, we have described the use of flame spray pyrolysis (FSP) to generate NPs from titanium and gadolinium precursors to produce titania NPs doped with 5 at% gadolinium. The NPs were fully characterized, and their capacity to act as radiosensitizers was confirmed by clonogenic assays. The integrity of the NPs in vitro was also ascertained due to the potentially adverse effects of free gadolinium in the body. The activity of the NPs was then studied under hypoxia since this is often a barrier to effective radiotherapy. In vitro radiosensitization experiments were performed with both the hypoxia mimetics deferoxamine and cobalt chloride and also under true hypoxia (oxygen concentration of 0.2%). It was shown that the radiosensitizing NPs were able to cause a significant increase in cell death even after irradiation under hypoxic conditions such as those found in tumors. Subsequently, the synthesized NPs were used to modify polystyrene embolization microparticles. The NPs were sintered to the surface of the microparticles by heating at 230°C for 15 minutes. This resulted in a good coverage of the surface and to generate embolization particles that were shown to be radiosensitizing. Such multimodal particles could therefore result in occlusion of the tumor blood vessels in conjunction with localized reactive oxygen species generation, even under hypoxic conditions such as those found in the center of tumors. PMID:28572729

  14. Efficacy of radiosensitizing doped titania nanoparticles under hypoxia and preparation of an embolic microparticle.

    PubMed

    Morrison, Rachel A; Rybak-Smith, Malgorzata J; Thompson, James M; Thiebaut, Bénédicte; Hill, Mark A; Townley, Helen E

    2017-01-01

    The aim of this study was to develop a manufacturing protocol for large-scale production of doped titania radiosensitizing nanoparticles (NPs) to establish their activity under hypoxia and to produce a multimodal radiosensitizing embolic particle for cancer treatment. We have previously shown that radiosensitizing NPs can be synthesized from titania doped with rare earth elements, especially gadolinium. To translate this technology to the clinic, a crucial step is to find a suitable, scalable, high-throughput method. Herein, we have described the use of flame spray pyrolysis (FSP) to generate NPs from titanium and gadolinium precursors to produce titania NPs doped with 5 at% gadolinium. The NPs were fully characterized, and their capacity to act as radiosensitizers was confirmed by clonogenic assays. The integrity of the NPs in vitro was also ascertained due to the potentially adverse effects of free gadolinium in the body. The activity of the NPs was then studied under hypoxia since this is often a barrier to effective radiotherapy. In vitro radiosensitization experiments were performed with both the hypoxia mimetics deferoxamine and cobalt chloride and also under true hypoxia (oxygen concentration of 0.2%). It was shown that the radiosensitizing NPs were able to cause a significant increase in cell death even after irradiation under hypoxic conditions such as those found in tumors. Subsequently, the synthesized NPs were used to modify polystyrene embolization microparticles. The NPs were sintered to the surface of the microparticles by heating at 230°C for 15 minutes. This resulted in a good coverage of the surface and to generate embolization particles that were shown to be radiosensitizing. Such multimodal particles could therefore result in occlusion of the tumor blood vessels in conjunction with localized reactive oxygen species generation, even under hypoxic conditions such as those found in the center of tumors.

  15. The potential value of the neutral comet assay and the expression of genes associated with DNA damage in assessing the radiosensitivity of tumor cells.

    PubMed

    Jayakumar, Sundarraj; Bhilwade, Hari N; Pandey, Badri N; Sandur, Santosh K; Chaubey, Ramesh C

    2012-10-09

    The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; P<0.05; 6Gy) than evaluated by alkaline comet assay (r=-0.73; P<0.05; 6Gy). Further, a significant correlation between the clonogenic survival and DNA damage was observed in cells exposed to fractionated doses of radiation. Of 15 genes investigated in the gene expression study, HSP70, KU80 and RAD51 all showed significant positive correlations (r=0.9; P<0.05) with tumor radiosensitivity. Our study clearly demonstrated that the neutral comet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation. © 2012 Elsevier B.V. All rights reserved.

  16. EFFECTS OF IN VITRO RADIOCOBALT IRRADIATION OF RABBIT OVA ON SUBSEQUENT DEVELOPMENT IN VIVO WITH SPECIAL REFERENCE TO THE IRRADIATION OF MATERNAL ORGANISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, M.C.; Hunt, D.M.

    Fertilized rabbit ova recovered one to six days after mating were irradiated in vitro from a radiocobalt source and then transplanted into recipient animals. When examined 22 to 28 days later 44, 33, 8 and 0% of ova irradiated respectively at 50, 100, 1,000 and 5,000 r developed into apparently normal fetuses without external or internal malformation. No significant differential sensitivity was apparent in ova irradiated at different ages. It was found further that 34, 36, 19 and 10% of two-, 4-, and 6-day ova irradiated respectively in vitro at 200, 400, 600, and 800 r developed into "normal" fetuses.more » Again no malformation of fetuses and no differential radiosensitivity between ova of different ages were observed. Following whole body irradiation at 400 r, it was found that 40% of non-irradiated ova developed into normal fetuses when transplanted into recipient animals that had been irradiated (vs. 36% in the irradiation of ova alone). However, only 17% of estimated ova developed into "normal" fetuses when pregnant rabbits were irradiated 2, 4 or 6 days after insemination (vs. 64% in the control). It appears that irradiation of the maternal organism influences embryonic development and that irradiation of pregnant animals exerts a combination of ill effects, on the ova and on their environment. Cytological study of irradiated blastocysts revealed no chromosomal breakage immediately after irradiation. Chromosomal abnormalities, fragmentation and condensation of chromatin were observed during the culture of irradiated blastocysts in accordance with the dosages applied. From this study it is concluded that (1) although 50 r may affect embryonic development, there seems to be no differential effect up to 400 r, above which greater prenatal death occurs; (2) before implantation, irradiated ova either die or develop into apparently normal fetuses and there is no evidence of differential radiosensitivity at various stages of development; (3) irradiation of the maternal organism alone also affects embryonic development; and (4) radiation damage affects a fundamental biological system which leads to the nuclear damage and failure of mitosis, and the death of ova. (auth)« less

  17. Targeting MEK5 Enhances Radiosensitivity of Human Prostate Cancer and Impairs Tumor-Associated Angiogenesis

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0296 TITLE: Targeting MEK5 Enhances Radiosensitivity of Human Prostate Cancer and Impairs Tumor- Associated...3. DATES COVERED 31 Aug 2015 - 30 Aug 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting MEK5 Enhances Radiosensitivity of Human Prostate...therapeutic modality for the treatment of human prostate cancer. However, tumors often demonstrate resistance to ionizing radiation and continue to

  18. 5-(Halomethyl)uridine derivatives as potential antitumor radiosensitizers: A DFT study

    NASA Astrophysics Data System (ADS)

    Wang, Shoushan; Zhang, Min; Liu, Peng; Xie, Shilei; Cheng, Faliang; Wang, Lishi

    2018-01-01

    Considering the fact that the efficiency of the uridine-5-methyl radical in producing cytotoxic DNA intrastrand cross-link lesions is greatly higher than that of the uridine-5-yl radical, the radiosensitizing action of 5-(halomethyl)uridines (5-XCH2U, X = F, Cl, or Br) is studied in the present work. It is found that 5-XCH2U has sufficient electron affinity to capture a pre-hydrated or a hydrated electron, and electron attachment leads to significantly facile X- elimination forming the uridine-5-methyl radical. All these three halogenated uridine derivatives are shown to be potential radiosensitizers, with their radiosensitizing abilities increased in an order 5-FCH2U < 5-ClCH2U ≈ 5-BrCH2U.

  19. Neurotoxicity of misonidazole in rats following intravenous administration.

    PubMed

    Graziano, M J; Henck, J W; Meierhenry, E F; Gough, A W

    1996-06-01

    Misonidazole is a hypoxic cell radiosensitizer that induces a peripheral neuropathy in humans after exceeding a schedule-dependent cumulative threshold dose. Clinical studies of misonidazole have been conducted using oral administration, whereas most other radiosensitizers have been administered intravenously. Since route of exposure can potentially influence the toxicity of xenobiotics, the objective of this study was to assess the neurotoxicity of misonidazole in rats following intravenous dosing using a battery of routine clinical, neurofunctional, biochemical, and histopathologic screening methods. Male Sprague-Dawley rats were administered intravenous doses of misonidazole at 0 (vehicle control), 100, 200, 300, or 400 mg kg-1 once per day, 5 days per week, for 2 weeks. Animals were evaluated for neurofunctional and pathological changes following termination of treatment (Days 15-17) and at the end of a 4 week observation period (Days 43-45). During the dosing phase, hypoactivity, salivation, rhinorrhea, chromodacryorrhea, rough pelage and ataxia were observed at 400 mg kg-1, and body weight gain of the 300 and 400 mg kg-1 groups was significantly decreased relative to the vehicle controls by 24% and 49%, respectively. Corresponding reductions in food consumption were 8% and 23%, respectively. Although most 400 mg kg-1 animals appeared normal on Day 15 prior to the neurofunctional evaluations, rotorod testing precipitated a number of clinical signs including: ataxia, impaired righting reflex, excessive rearing, tremors, vocalization, circling, head jerking, excessive sniffing and hyperactivity. All of these animals recovered and appeared normal from Day 17 through study termination. There were no treatment-related effects on motor activity, acoustic startle response, rotorod performance, forelimb group strength, toe and tail pinch reflexes, tibial nerve beta-glucuronidase activity or tail nerve conduction velocity. Although hindlimb grip strength of the 400 mg kg-1 group was significantly decreased by 17% relative to the vehicle controls on Day 15, this finding appeared related to the reduced food consumption and body weight gain in these animals. No microscopic changes were detected in peripheral nerves. Necrosis and proliferation of fibrillary astrocytes (gliosis) were seen in the cerebellum and medulla of the 400 mg kg-1 animals on Day 16. Gliosis in these same brain regions was observed in the 300 and 400 mg kg-1 groups on Day 44. The results show that intravenous administration of misonidazole to rats causes dose-limiting central nervous system toxicity without effects on peripheral nervous tissue. The lack of peripheral neurotoxicity was most likely due to a combination of several interrelated factors including route of administration, duration and intensity of the dosing regimen, and total cumulative dose.

  20. Molecular Modulation of Inhibitors of Apoptosis as a Novel Approach for Radiosensitization of Human Prostate Cancer

    DTIC Science & Technology

    2006-11-01

    6 well plate at the concentration of 2X105/ml, then exposed by SH130 (10 uM) with or without the pan-caspase inhibitor zVAD (2.5 uM) ( Biovision ...treated with SH- 130 and radiation. DU-145 cell were treated as described in Figure 7. Cells were lysed by the lysis buffer ( Biovision ) as indicated...Total extracted proteins were determined and normalized, and then reacted with fluorogenic substrates ( Biovision , DEVD-AFC and LEHD- AFC for Caspase

  1. Therapeutic analysis of high-dose-rate {sup 192}Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu; Donnelly, Eric D.; Strauss, Jonathan B.

    Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model wasmore » used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0){sup 4} to (13.4){sup 4} for the radiosensitive normal tissue depending on the cylinder size, treatment lengths, prescription depth, and dose as well. However, for a uniform cancer cell distribution, the EUDs were between 6.3 Gy × 4 and 7.1 Gy × 4, and the TRs were found to be between (1.4){sup 4} and (1.7){sup 4}. For the uniformly interspersed cancer and radio-resistant normal cells, the TRs were less than 1. The two VCBT prescription regimens were found to be equivalent in terms of EUDs and TRs. Conclusions: HDR VCBT strongly favors cylindrical target volume with the cancer cell distribution following its dosimetric trend. Assuming a half-Gaussian distribution of cancer cells, the HDR VCBT provides a considerable radiobiological advantage over the external beam radiotherapy (EBRT) in terms of sparing more normal tissues while maintaining the same level of cancer cell killing. But for the uniform cancer cell distribution and radio-resistant normal tissue, the radiobiology outcome of the HDR VCBT does not show an advantage over the EBRT. This study strongly suggests that radiation therapy design should consider the cancer cell distribution inside the target volume in addition to the shape of target.« less

  2. Modern Radiotherapy Concepts and the Impact of Radiation on Immune Activation

    PubMed Central

    Deloch, Lisa; Derer, Anja; Hartmann, Josefin; Frey, Benjamin; Fietkau, Rainer; Gaipl, Udo S.

    2016-01-01

    Even though there is extensive research carried out in radiation oncology, most of the clinical studies focus on the effects of radiation on the local tumor tissue and deal with normal tissue side effects. The influence of dose fractionation and timing particularly with regard to immune activation is not satisfactorily investigated so far. This review, therefore, summarizes current knowledge on concepts of modern radiotherapy (RT) and evaluates the potential of RT for immune activation. Focus is set on radiation-induced forms of tumor cell death and consecutively the immunogenicity of the tumor cells. The so-called non-targeted, abscopal effects can contribute to anti-tumor responses in a specific and systemic manner and possess the ability to target relapsing tumor cells as well as metastases. The impact of distinct RT concepts on immune activation is outlined and pre-clinical evidence and clinical observations on RT-induced immunity will be discussed. Knowledge on the radiosensitivity of immune cells as well as clinical evidence for enhanced immunity after RT will be considered. While stereotactic ablative body radiotherapy seem to have a beneficial outcome over classical RT fractionation in pre-clinical animal models, in vitro model systems suggest an advantage for classical fractionated RT for immune activation. Furthermore, the optimal approach may differ based on the tumor site and/or genetic signature. These facts highlight that clinical trials are urgently needed to identify whether high-dose RT is superior to induce anti-tumor immune responses compared to classical fractionated RT and in particular how the outcome is when RT is combined with immunotherapy in selected tumor entities. PMID:27379203

  3. Common Variants of GSTP1, GSTA1, and TGF{beta}1 are Associated With the Risk of Radiation-Induced Fibrosis in Breast Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrazzino, Salvatore; La Mattina, Pierdaniele; Gambaro, Giuseppina

    Purpose: To provide new insights into the genetic basis of normal tissue radiosensitivity, we evaluated the association between eight polymorphic variants located in six genes related to DNA repair mechanisms, oxidative stress, and fibroblast proliferation (XRCC1 Arg399Gln, XRCC1 Arg194Trp, TP53 Arg72Pro, GSTP1 Ile105Val, GSTA1 C-69T, eNOS G894T, TGF{beta}1 C-509T, and TGF{beta}1 T869C) and the risk of subcutaneous fibrosis in a retrospective series of patients who received radiotherapy after breast-conserving surgery. Methods and Materials: Subcutaneous fibrosis was scored according to the Late Effects of Normal Tissue-Subjective Objective Management Analytical scale in 257 breast cancer patients who underwent surgery plus adjuvant radiotherapy.more » Genotyping was conducted by polymerase chain reaction-restriction fragment length polymorphism analysis on genomic DNA extracted from peripheral blood. The association between genetic variants and the risk of moderate to severe fibrosis was evaluated by binary logistic regression analysis. Results: Two hundred thirty-seven patients were available for the analysis. Among them, 41 patients (17.3%) developed moderate to severe fibrosis (Grade 2-3), and 196 (82.7%) patients displayed no or minimal fibrotic reactions (Grade 0-1). After adjustment of confounding factors, GSTP1 Ile105Val (odds ratio [OR] 2.756; 95% CI, 1.188-6.393; p = 0.018), GSTA1 C-69T (OR 3.223; 95% CI, 1.176-8.826; p = 0.022), and TGF{beta}1 T869C (OR 0.295; 95% CI, 0.090-0.964; p = 0.043) polymorphisms were found to be significantly associated with the risk of Grade 2-3 radiation-induced fibrosis. In the combined analysis, carriers of three risk genotypes were found to be at higher odds for the development of Grade 2-3 fibrosis than were patients with two risk genotypes (OR 4.415; 95% CI, 1.553-12.551, p = 0.005) or with no or one risk genotype (OR 8.563; 95% CI, 2.671-27.447; p = 0.0003). Conclusions: These results suggest that functional variations in genes involved in oxidative stress response and fibroblast proliferation may modulate the development of radiation-induced fibrosis in breast cancer patients. The results of the combined analysis support the notion that approaches based on the combination of different genetic markers have the potential to predict normal tissue responses.« less

  4. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wei, E-mail: detachedy@yahoo.com.cn; Sun, Ting; Cao, Jianping

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase inmore » all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.« less

  5. [Changes in cellular radiosensitivity after low dose irradiation].

    PubMed

    Pelevina, I I; Aleshchenko, A V; Antoshchina, M M; Kudriashova, O V; Riabchenko, N I; Akleev, A V

    2012-01-01

    When the adaptive response (AR) was studied on human blood lymphocytes, a new dependence was discovered. This dependence defines the direction of the radiosensitivity change after a low dose of irradiation. Using micronucleus (MN) test with cytochalasin B the dependence between the cell reaction after low level irradiation and radiosensititvity (the effect after irradiation at the dose of 1 Gy) was observed. The negative correlation between the frequency of AR manifestation, sensibilization, intermediate links and radiosensitivity was discovered. This regularity is observed in the population of Moscow, Obninsk, Chelyabinsk region (irradiated and control) inhabitants, Chernobyl accident liquidators, Moscow children, in individuals with Hodgkin's lymphoma before and during treatment. The negative correlation is also noted by AR determination with two irradiation schemes: in one or two different cell cycle phases (G1-G1 or G1-G2). Similar links are observed using the chromosome methaphase analysis (the frequency of cells with chromosome aberrations). So, the results of the experiments conducted allow us to suppose that the connection between the cell radiosensitivity and a different type of reaction after low dose irradiation--from AR to the increase in radiosensitivity (sensibilization) is a general regularity. AR is induced by low level irradiation and high cell radiosensitivity, while sensibilization is induced by low radiosensitivity. Since AR and sensibilization can be induced not only by irradiation, but many different chemicals and physical agents, the described correlation can be observed in the case of different exposures. Cellular AR and sensibilization are integral indexes depending on many genetic and epigenetic factors, as well as on the initiation of a large number of events. However, the discovered mechanisms of interrelations are still difficult to explain.

  6. DNA-targeted 2-nitroimidazoles: studies of the influence of the phenanthridine-linked nitroimidazoles, 2-NLP-3 and 2-NLP-4, on DNA damage induced by ionizing radiation.

    PubMed

    Buchko, Garry W; Weinfeld, Michael

    2002-09-01

    The nitroimidazole-linked phenanthridines 2-NLP-3 (5-[3-(2-nitro-1-imidazoyl)-propyl]-phenanthridinium bromide) and 2-NLP-4 (5-[3-(2-nitro-1-imidazoyl)-butyl]-phenanthridinium bromide) are composed of the radiosensitizer, 2-nitroimidazole, attached to the DNA intercalator phenanthridine by a 3- and 4-carbon linker, respectively. Previous in vitro assays showed both compounds to be 10-100 times more efficient as hypoxic cell radiosensitizers (based on external drug concentrations) than the untargeted 2-nitroimidazole radiosensitizer, misonidazole (Cowan et al., Radiat. Res. 127, 81-89, 1991). Here we have used a (32)P postlabeling assay and 5'-end-labeled oligonucleotide assay to compare the radiation-induced DNA damage generated in the presence of 2-NLP-3, 2-NLP-4, phenanthridine and misonidazole. After irradiation of the DNA under anoxic conditions, we observed a significantly greater level of 3'-phosphoglycolate DNA damage in the presence of 2-NLP-3 or 2-NLP-4 compared to irradiation of the DNA in the presence of misonidazole. This may account at least in part for the greater cellular radiosensitization shown by the nitroimidazole-linked phenanthridines over misonidazole. Of the two nitroimidazole-linked phenanthridines, the better in vitro radiosensitizer, 2-NLP-4, generated more 3'-phosphoglycolate in DNA than did 2-NLP-3. At all concentrations, phenanthridine had little effect on the levels of DNA damage, suggesting that the enhanced radiosensitization displayed by 2-NLP-3 and 2-NLP-4 is due to the localization of the 2-nitroimidazole to the DNA by the phenanthridine substituent and not to radiosensitization by the phenanthridine moiety itself.

  7. Celecoxib enhances the radiosensitivity of HCT116 cells in a COX-2 independent manner by up-regulating BCCIP

    PubMed Central

    Xu, Xiao-Ting; Hu, Wen-Tao; Zhou, Ju-Ying; Tu, Yu

    2017-01-01

    It has been reported that celecoxib, a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug (NSAID), regulates the radiosensitivity of several cancer cells. BCCIP (BRCA2 and CDKN1A interacting protein) plays a critical role in maintaining the critical functions of p53 in tumor suppression and response to therapy. However, whether the effect of celecoxib on the radiosensitivity of colorectal cancer (CRC) cells is dependent on BCCIP is largely unclear. In this study, we found that celecoxib enhanced the radiosensitivity of HeLa (a human cervical carcinoma cell line), A549 (a human lung carcinoma cell line), and HCT116 cells (a human CRC cells line). Among these cells, COX-2 expression was undetected in HCT116 cells. Treatment with celecoxib significantly increased BCCIP expression in COX-2 negative HCT116 cells. Knockdown of BCCIP obviously abrogated the enhanced radiosensitivity of HCT116 cells induced by celecoxib. A combination of celecoxib and irradiation treatment induced much more γ-H2AX foci formation, higher levels of radiation injury-related proteins phosphorylation, G2/M arrest, apoptosis, and p53 and p21 expression, and lower levels of Cyclin B1 in HCT116 cells than those in cells treated with irradiation alone. However, these changes were undetected in BCCIP-silenced HCT116 cells. Therefore, these data suggest that BCCIP gene may be a radiosensitivity-related gene in CRC. Celecoxib affects the functions of p53 and inhibits the recovery from the irradiation-induced injury by up-regulating the expression of BCCIP, and subsequently regulates the expressions of genes such as p21 and Cyclin B1 to enhance the radiosensitivity of HCT116 cells in a COX-2 independent manner. PMID:28386336

  8. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun

    Research highlights: {yields} In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. {yields} The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. {yields} The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. {yields} P53 status is not associated with the occurrence of unsensitized clone. {yields} Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeuticmore » regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC{sup -/-} cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC{sup -/-} clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.« less

  9. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayakumar, Sundarraj; Patwardhan, R.S.; Pal, Debojyoti

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratiomore » and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. - Highlights: • DIMC enhances radiosensitivity of cancer cells by inducing cell death. • DIMC with radiation disrupted the cellular redox and targeted cancer stem cells. • DNA repair is hampered when cells are treated with DIMC. • DIMC inhibited thioredoxin reductase in cancer cells.« less

  10. Radiosensitizing effects of neem (Azadirachta indica) oil.

    PubMed

    Kumar, Ashok; Rao, A R; Kimura, H

    2002-02-01

    Radiosensitization by neem oil was studied using Balbc/3T3 cells and SCID cells. Neem oil enhanced the radiosensitivity of the cells when applied both during and after x-irradiation under aerobic conditions. Neem oil completely inhibited the repair of sublethal damage and potentially lethal damage repair in Balbc/3T3 cells. The cytofluorimeter data show that neem oil treatment before and after x-irradiation reduced the G(2) + M phase, thus inhibiting the expression of the radiation induced arrest of cells in the G(2) phase of the cell cycle. However, SCIK cells (derived from the SCID mouse), deficient in DSB repair, treated with neem oil did not show any enhancement in the radiosensitivity. There was no effect of neem oil on SLD repair or its inhibition in SCIK cells. These results suggest that neem oil enhanced the radiosensitivity of cells by interacting with residual damage after x-irradiation, thereby converting the sublethal damage or potentially lethal damage into lethal damage, inhibiting the double-strand break repair or reducing the G(2) phase of the cell cycle. Copyright 2002 John Wiley & Sons, Ltd.

  11. Change of oxygen pressure in glioblastoma tissue under various conditions.

    PubMed

    Beppu, Takaaki; Kamada, Katsura; Yoshida, Yuki; Arai, Hiroshi; Ogasawara, Kuniaki; Ogawa, Akira

    2002-05-01

    Measurement of oxygen pressure (pO2) in tumor tissue is important, because pO2 is a major factor for radiosensitivity in malignant glioma treatment. We attempted to elucidate the changes in pO2 level in glioblastoma tissue of patients under various conditions. Eighteen patients with newly diagnosed glioblastoma were recruited to this study. Disposable Clark-type electrodes were inserted using CT guided stereotactic surgery under local anesthesia and left in the intra- and peritumoral regions. pO2 was measured in patients under conditions of being awake and asleep, inhaling 100% O2, being administered osmotic diuretics and following hyperbaric oxygen exposure (HBO). Peritumoral tissue had a significantly higher pO2 value in both awake and sleeping patients. O2 inhalation could not significantly increase the pO2 level, whereas administration of osmotic diuretics induced an increase in pO2 levels in peritumoral tissue alone. The pO2 levels were significantly increased in both regions after HBO, and a high pO2 level was maintained until 15 min after HBO in both regions. It is possible that the pO2 level in peritumoral tissue is affected by intracranial pressure, whereas that in the intratumoral tissue is usually low. HBO was the optimal procedure for oxygenation, but its benefit was reduced over time.

  12. Calculation of absorbed fractions to human skeletal tissues due to alpha particles using the Monte Carlo and 3-D chord-based transport techniques.

    PubMed

    Hunt, J G; Watchman, C J; Bolch, W E

    2007-01-01

    Absorbed fraction (AF) calculations to the human skeletal tissues due to alpha particles are of interest to the internal dosimetry of occupationally exposed workers and members of the public. The transport of alpha particles through the skeletal tissue is complicated by the detailed and complex microscopic histology of the skeleton. In this study, both Monte Carlo and chord-based techniques were applied to the transport of alpha particles through 3-D microCT images of the skeletal microstructure of trabecular spongiosa. The Monte Carlo program used was 'Visual Monte Carlo--VMC'. VMC simulates the emission of the alpha particles and their subsequent energy deposition track. The second method applied to alpha transport is the chord-based technique, which randomly generates chord lengths across bone trabeculae and the marrow cavities via alternate and uniform sampling of their cumulative density functions. This paper compares the AF of energy to two radiosensitive skeletal tissues, active marrow and shallow active marrow, obtained with these two techniques.

  13. Superiority of Low Energy 160 KV X-Rays Compared to High Energy 6 MV X-Rays in Heavy Element Radiosensitization for Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia

    2013-06-01

    High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range < 200 keV, far lower than the energy of the majority of photons in the LINAC energy range. In vitro studies were carried to demonstrate the tumoricidal effects of HZ sensitized F98 rat glioma cells following irradiation with both low energy 160 kV and high energy 6 MV X-ray sources. The platinum compound, pyridine terpyridine Pt(II) nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are commonly used in cancer radiotherapy, low energy keV X-rays might be much more effective with HZ radiosensitization.

  14. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Ping; Zhang Qing; Torossian, Artour

    2012-07-01

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used tomore » investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMF{sub SF2}) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMF{sub SF2} at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may have important therapeutic implication in the treatment of a subset of breast cancer patients with high expression of EGFR and deficient function of PTEN.« less

  15. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells

    PubMed Central

    2014-01-01

    Objective Myricetin, a common dietary flavonoid is widely distributed in fruits and vegetables, and is used as a health food supplement based on its immune function, anti-oxidation, anti-tumor, and anti-inflammatory properties. The aim of this study was to investigate the effects of myricetin on combination with radiotherapy enhance radiosensitivity of lung cancer A549 and H1299 cells. Methods A549 cells and H1299 cells were exposed to X-ray with or without myricetin treatment. Colony formation assays, CCK-8 assay, flow cytometry and Caspase-3 level detection were used to evaluate the radiosensitization activity of myricetin on cell proliferation and apoptosis in vitro. Nude mouse tumor xenograft model was built to assessed radiosensitization effect of myricetin in vivo. Results Compared with the exposed group without myricetin treatment, the groups treated with myricetin showed significantly suppressed cell surviving fraction and proliferation, increased the cell apoptosis and increased Caspase-3 protein expression after X-ray exposure in vitro. And in vivo assay, growth speed of tumor xenografts was significantly decreased in irradiated mice treated with myricetin. Conclusions The study demonstrated both in vitro and in vivo evidence that combination of myricetin with radiotherapy can enhance tumor radiosensitivity of pulmonary carcinoma A549 and H1299 cells, and myricetin could be a potential radiosensitizer for lung cancer therapy. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5791518001210633 PMID:24650056

  16. Lethality of radiation-induced chromosome aberrations in human tumour cell lines with different radiosensitivities.

    PubMed

    Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C

    1996-03-01

    In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.

  17. Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation

    PubMed Central

    Xu, Wen-Hong; Han, Min; Dong, Qi; Fu, Zhi-Xuan; Diao, Yuan-Yuan; Liu, Hai; Xu, Jing; Jiang, Hong-Liang; Zhang, Su-Zhan; Zheng, Shu; Gao, Jian-Qing; Wei, Qi-Chun

    2012-01-01

    Background The purpose of this study is to evaluate the efficacy of composite doxorubicinloaded micelles for enhancing doxorubicin radiosensitivity in multicellular spheroids from a non-small cell lung cancer cell line. Methods A novel composite doxorubicin-loaded micelle consisting of polyethylene glycolpolycaprolactone/Pluronic P105 was developed, and carrier-mediated doxorubicin accumulation and release from multicellular spheroids was evaluated. We used confocal laser scanning microscopy and flow cytometry to study the accumulation and efflux of doxorubicin from A549 multicellular spheroids. Doxorubicin radiosensitization and the combined effects of irradiation and doxorubicin on cell migration and proliferation were compared for the different doxorubicin delivery systems. Results Confocal laser scanning microscopy and quantitative flow cytometry studies both verified that, for equivalent doxorubicin concentrations, composite doxorubicin-loaded micelles significantly enhanced cellular doxorubicin accumulation and inhibited doxorubicin release. Colony-forming assays demonstrated that composite doxorubicin-loaded micelles are radiosensitive, as shown by significantly reduced survival of cells treated by radiation + composite micelles compared with those treated with radiation + free doxorubicin or radiation alone. The multicellular spheroid migration area and growth ability verified higher radiosensitivity for the composite micelles loaded with doxorubicin than for free doxorubicin. Conclusion Our composite doxorubicin-loaded micelle was demonstrated to have radiosensitization. Doxorubicin loading in the composite micelles significantly increased its cellular uptake, improved drug retention, and enhanced its antitumor effect relative to free doxorubicin, thereby providing a novel approach for treatment of cancer. PMID:22679376

  18. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research.

    PubMed

    Ainsbury, Elizabeth A; Barnard, Stephen; Bright, Scott; Dalke, Claudia; Jarrin, Miguel; Kunze, Sarah; Tanner, Rick; Dynlacht, Joseph R; Quinlan, Roy A; Graw, Jochen; Kadhim, Munira; Hamada, Nobuyuki

    The lens of the eye has long been considered as a radiosensitive tissue, but recent research has suggested that the radiosensitivity is even greater than previously thought. The 2012 recommendation of the International Commission on Radiological Protection (ICRP) to substantially reduce the annual occupational equivalent dose limit for the ocular lens has now been adopted in the European Union and is under consideration around the rest of the world. However, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological, mechanistic evidence at doses <2Gy. This paper aims to present a review of recently published information on the biological and mechanistic aspects of cataracts induced by exposure to ionizing radiation (IR). The data were compiled by assessing the pertinent literature in several distinct areas which contribute to the understanding of IR induced cataracts, information regarding lens biology and general processes of cataractogenesis. Results from cellular and tissue level studies and animal models, and relevant human studies, were examined. The main focus was the biological effects of low linear energy transfer IR, but dosimetry issues and a number of other confounding factors were also considered. The results of this review clearly highlight a number of gaps in current knowledge. Overall, while there have been a number of recent advances in understanding, it remains unknown exactly how IR exposure contributes to opacification. A fuller understanding of how exposure to relatively low doses of IR promotes induction and/or progression of IR-induced cataracts will have important implications for prevention and treatment of this disease, as well as for the field of radiation protection. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  19. Use of Concept of Chemotherapy-Equivalent Biologically Effective Dose to Provide Quantitative Evaluation of Contribution of Chemotherapy to Local Tumor Control in Chemoradiotherapy Cervical Cancer Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plataniotis, George A.; Dale, Roger G.

    2008-12-01

    Purpose: To express the magnitude of the contribution of chemotherapy to local tumor control in chemoradiotherapy cervical cancer trials in terms of the concept of the biologically effective dose. Methods and Materials: The local control rates of both arms of each study (radiotherapy vs. radiotherapy plus chemotherapy) reported from randomized controlled trials of concurrent chemoradiotherapy for cervical cancer were reviewed and expressed using the Poisson model for tumor control probability (TCP) as TCP = exp(-exp E), where E is the logarithm of cell kill. By combining the two TCP values from each study, we calculated the chemotherapy-related log cell killmore » as Ec = ln[(lnTCP{sub Radiotherapy})/(lnTCP{sub Chemoradiotherapy})]. Assuming a range of radiosensitivities ({alpha} = 0.1-0.5 Gy{sup -1}) and taking the calculated log cell kill, we calculated the chemotherapy-BED, and using the linear quadratic model, the number of 2-Gy fractions corresponding to each BED. The effect of a range of tumor volumes and radiosensitivities ({alpha} Gy{sup -1}) on the TCP was also explored. Results: The chemotherapy-equivalent number of 2-Gy fractions range was 0.2-4 and was greater in tumors with lower radiosensitivity. In those tumors with intermediate radiosensitivity ({alpha} = 0.3 Gy{sup -1}), the equivalent number of 2-Gy fractions was 0.6-1.3, corresponding to 120-260 cGy of extra dose. The opportunities for clinically detectable improvement are only available in tumors with intermediate radiosensitivity with {alpha} = 0.22-0.28 Gy{sup -1}. The dependence of TCP on the tumor volume decreases as the radiosensitivity increases. Conclusion: The results of our study have shown that the contribution of chemotherapy to the TCP in cervical cancer is expected to be clinically detectable in larger and less-radiosensitive tumors.« less

  20. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  1. miR-25 modulates NSCLC cell radio-sensitivity through directly inhibiting BTG2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhiwei, E-mail: carlhe@126.com; Liu, Yi, E-mail: cassieliu@126.com; Xiao, Bing, E-mail: rockg714@aliyun.com

    2015-02-13

    A large proportion of the NSCLC patients were insensitive to radiotherapy, but the exact mechanism is still unclear. This study explored the role of miR-25 in regulating sensitivity of NSCLC cells to ionizing radiation (IR) and its downstream targets. Based on measurement in tumor samples from NSCLC patients, this study found that miR-25 expression is upregulated in both NSCLC and radio-resistant NSCLC patients compared the healthy and radio-sensitive controls. In addition, BTG expression was found negatively correlated with miR-25a expression in the both tissues and cells. By applying luciferase reporter assay, we verified two putative binding sites between miR-25 andmore » BTG2. Therefore, BTG2 is a directly target of miR-25 in NSCLC cancer. By applying loss-and-gain function analysis in NSCLC cell lines, we demonstrated that miR-25-BTG2 axis could directly regulated BTG2 expression and affect radiotherapy sensitivity of NSCLC cells. - Highlights: • miR-25 is upregulated, while BTG2 is downregulated in radioresistant NSCLC patients. • miR-25 modulates sensitivity to radiation induced apoptosis. • miR-25 directly targets BTG2 and suppresses its expression. • miR-25 modulates sensitivity to radiotherapy through inhibiting BTG2 expression.« less

  2. Lanthanum fluoride nanoparticles for radiosensitization of tumors

    NASA Astrophysics Data System (ADS)

    Kudinov, Konstantin; Bekah, Devesh; Cooper, Daniel; Shastry, Sathvik; Hill, Colin; Bradforth, Stephen; Nadeau, Jay

    2016-03-01

    Dense inorganic nanoparticles have recently been identified as promising radiosensitizers. In addition to dose enhancement through increased attenuation of ionizing radiation relative to biological tissue, scintillating nanoparticles can transfer energy to coupled photosensitizers to amplify production of reactive oxygen species, as well as provide UVvisible emission for optical imaging. Lanthanum fluoride is a transparent material that is easily prepared as nanocrystals, and which can provide radioluminescence at a number of wavelengths through simple substitution of lanthanum ions with other luminescent lanthanides. We have prepared lanthanum fluoride nanoparticles doped with cerium, terbium, or both, that have good spectral overlap with chlorine6 or Rose Bengal photosensitizer molecules. We have also developed a strategy for stable conjugation of the photosensitizers to the nanoparticle surface, allowing for high energy transfer efficiencies on a per molecule basis. Additionally, we have succeeded in making our conjugates colloidally stable under physiological conditions. Here we present our latest results, using nanoparticles and nanoparticle-photosensitizer conjugates to demonstrate radiation dose enhancement in B16 melanoma cells. The effects of nanoparticle treatment prior to 250 kVp x-ray irradiation were investigated through clonogenic survival assays and cell cycle analysis. Using a custom apparatus, we have also observed scintillation of the nanoparticles and conjugates under the same conditions that the cell samples are irradiated.

  3. Simultaneous Analysis of P53 Protein Expression and Cell Proliferation in Irradiated Human Lymphocytes by Flow Cytometry

    PubMed Central

    de Freitas e Silva, Rafael; Gonçalves dos Santos, Neyliane Frassinetti; Pereira, Valéria Rěgo Alves; Amaral, Ademir

    2014-01-01

    P53 protein has an intrinsic role in modulating the cellular response against DNA radioinduced damages and has been pointed out as an indirect indicator of individual radiosensitivity. The rate of cell proliferation is also a parameter that has been related to tissue sensitivity to radiation. However, this feature is yet understudied. In this context, the aim of this work was to employ Flow Cytometry (FC) for simultaneously assessing of p53 protein expression levels together with cellular proliferation rate of irradiated human lymphocytes. From in vitro irradiated human blood samples, mononuclear cells were isolated and labeled with Carboxylfluorescein Diacetate Succinimidyl Ester (CFSE) prior to phytohaemagglutinin (PHA) stimulation in culture for 96 hours. Cells were also labeled with anti-p53 monoclonal antibody PE-conjugated in order to analyze either proliferation rate or p53 expression levels by FC. It was verified a reduction in the proliferation rate of irradiated lymphocytes and, in parallel, a rise in the p53 expression levels, similar for quiescent and proliferating lymphocytes. The results emphasize the importance of the use of CFSE-stained lymphocytes in assays associated to proliferation rate and the use of this methodology in several studies, such as for evaluating individual radiosensitivity. PMID:24659936

  4. In vitro and in vivo radiosensitization induced by hydroxyapatite nanoparticles

    PubMed Central

    Chu, Sheng-Hua; Karri, Surya; Ma, Yan-Bin; Feng, Dong-Fu; Li, Zhi-Qiang

    2013-01-01

    Background Previous study showed that hydroxyapatite nanoparticles (nano-HAPs) inhibited glioma growth in vitro and in vivo; and in a drug combination, they could reduce adverse reactions. We investigated the possible enhancement of radiosensitivity induced by nano-HAPs. Methods In vitro radiosensitization of nano-HAPs was measured using a clonogenic survival assay in human glioblastoma U251 and breast tumor brain metastatic tumor MDA-MB-231BR cells. DNA damage and repair were measured using γH2AX foci, and mitotic catastrophe was determined by immunostaining. The effect of nano-HAPs on in vivo tumor radiosensitivity was investigated in a subcutaneous and an orthotopic model. Results Nano-HAPs enhanced each cell line's radiosensitivity when the exposure was 1 h before irradiation, and they had no significant effect on irradiation-induced apoptosis or on the activation of the G2 cell cycle checkpoint. The number of γH2AX foci per cell was significantly large at 24 h after the combination modality of nano-HAPs + irradiation compared with single treatments. Mitotic catastrophe was also significantly increased at an interval of 72 h in tumor cells receiving the combined modality compared with the individual treatments. In a subcutaneous model, nano-HAPs caused a larger than additive increase in tumor growth delay. In an orthotopic model, nano-HAPs significantly reduced tumor growth and extended the prolongation of survival induced by irradiation. Conclusions These results show that nano-HAPs can enhance the radiosensitivity of tumor cells in vitro and in vivo through the inhibition of DNA repair, resulting in an increase in mitotic catastrophe. PMID:23519742

  5. In vitro and in vivo radiosensitization induced by hydroxyapatite nanoparticles.

    PubMed

    Chu, Sheng-Hua; Karri, Surya; Ma, Yan-Bin; Feng, Dong-Fu; Li, Zhi-Qiang

    2013-07-01

    Previous study showed that hydroxyapatite nanoparticles (nano-HAPs) inhibited glioma growth in vitro and in vivo; and in a drug combination, they could reduce adverse reactions. We investigated the possible enhancement of radiosensitivity induced by nano-HAPs. In vitro radiosensitization of nano-HAPs was measured using a clonogenic survival assay in human glioblastoma U251 and breast tumor brain metastatic tumor MDA-MB-231BR cells. DNA damage and repair were measured using γH2AX foci, and mitotic catastrophe was determined by immunostaining. The effect of nano-HAPs on in vivo tumor radiosensitivity was investigated in a subcutaneous and an orthotopic model. Nano-HAPs enhanced each cell line's radiosensitivity when the exposure was 1 h before irradiation, and they had no significant effect on irradiation-induced apoptosis or on the activation of the G2 cell cycle checkpoint. The number of γH2AX foci per cell was significantly large at 24 h after the combination modality of nano-HAPs + irradiation compared with single treatments. Mitotic catastrophe was also significantly increased at an interval of 72 h in tumor cells receiving the combined modality compared with the individual treatments. In a subcutaneous model, nano-HAPs caused a larger than additive increase in tumor growth delay. In an orthotopic model, nano-HAPs significantly reduced tumor growth and extended the prolongation of survival induced by irradiation. These results show that nano-HAPs can enhance the radiosensitivity of tumor cells in vitro and in vivo through the inhibition of DNA repair, resulting in an increase in mitotic catastrophe.

  6. Short hairpin RNA suppression of thymidylate synthase produces DNA mismatches and results in excellent radiosensitization.

    PubMed

    Flanagan, Sheryl A; Cooper, Kristin S; Mannava, Sudha; Nikiforov, Mikhail A; Shewach, Donna S

    2012-12-01

    To determine the effect of short hairpin ribonucleic acid (shRNA)-mediated suppression of thymidylate synthase (TS) on cytotoxicity and radiosensitization and the mechanism by which these events occur. shRNA suppression of TS was compared with 5-fluoro-2'-deoxyuridine (FdUrd) inactivation of TS with or without ionizing radiation in HCT116 and HT29 colon cancer cells. Cytotoxicity and radiosensitization were measured by clonogenic assay. Cell cycle effects were measured by flow cytometry. The effects of FdUrd or shRNA suppression of TS on dNTP deoxynucleotide triphosphate imbalances and consequent nucleotide misincorporations into deoxyribonucleic acid (DNA) were analyzed by high-pressure liquid chromatography and as pSP189 plasmid mutations, respectively. TS shRNA produced profound (≥ 90%) and prolonged (≥ 8 days) suppression of TS in HCT116 and HT29 cells, whereas FdUrd increased TS expression. TS shRNA also produced more specific and prolonged effects on dNTPs deoxynucleotide triphosphates compared with FdUrd. TS shRNA suppression allowed accumulation of cells in S-phase, although its effects were not as long-lasting as those of FdUrd. Both treatments resulted in phosphorylation of Chk1. TS shRNA alone was less cytotoxic than FdUrd but was equally effective as FdUrd in eliciting radiosensitization (radiation enhancement ratio: TS shRNA, 1.5-1.7; FdUrd, 1.4-1.6). TS shRNA and FdUrd produced a similar increase in the number and type of pSP189 mutations. TS shRNA produced less cytotoxicity than FdUrd but was equally effective at radiosensitizing tumor cells. Thus, the inhibitory effect of FdUrd on TS alone is sufficient to elicit radiosensitization with FdUrd, but it only partially explains FdUrd-mediated cytotoxicity and cell cycle inhibition. The increase in DNA mismatches after TS shRNA or FdUrd supports a causal and sufficient role for the depletion of dTTP thymidine triphosphate and consequent DNA mismatches underlying radiosensitization. Importantly, shRNA suppression of TS avoids FP-mediated TS elevation and its negative prognostic role. These studies support the further exploration of TS suppression as a novel radiosensitizing strategy. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. MO-FG-BRA-02: Modulation of Clinical Orthovoltage X-Ray Spectrum Further Enhances Radiosensitization of Cancer Cells Targeted with Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, T; Reynoso, F; Cho, J

    2015-06-15

    Purpose: To assess the potential to amplify radiosensitization of cancer cells targeted with gold nanoparticles by augmenting selective spectral components of X-ray beam. Methods: Human prostate cancer cells were treated for 24h with gold nanorods conjugated to goserelin acetate or pegylated, systematically washed and irradiated with 250 kVp X-rays (25mA, 0.25mm Cu- filter, 8x8cm{sup 2} field size, 50cm SSD) with or without an additional 0.25 mm Erbium (Er) filter. As demonstrated in a companion Monte Carlo study, Er-filter acted as an external target to feed Erbium K-shell X-ray fluorescence photons (∼50 keV) into the 250 kVp beam. After irradiation, wemore » performed measurements of clonogenic viability with doses between 0 -6Gy, irreparable DNA damage assay to measure double-strand breaks via γH2AX-foci staining, and production of stable reactive oxygen species (ROS). Results: The clonogenic assay for the group treated with conjugated nanoparticles showed radiosensitization enhancement factor (REF), calculated at the 10% survival fraction aisle, of (1.62±0.07) vs. (1.23±0.04) with/without the Er-filter in the 250 kVp beam, respectively. The group treated with pegylated nanoparticles, albeit retained in modest amounts within the cells, also showed statistically significant REF (1.13±0.09) when the Erbium filter was added to the beam. No significant radiosensitization was observed for other groups. Measurements of ROS levels showed increments of (1.9±0.2) vs. (1.4±0.1) for combined treatment with targeted nanoparticles and Er-filtered beam. γH2AX-foci showed 50% increase for the same treatment combination, confirming the enhanced radiosensitization in a consistent fashion. Conclusion: Our study demonstrates the feasibility of enhancing radiosensitization of cancer cells by combining actively targeted gold nanoparticles and modulating the X-ray spectrum in the desired energy range. The established technique will not only help develop strategies to maximize nanoparticle-mediated radiosensitization but also offer a convenient way to acquire unprecedented insights into the role of photon energy for the observed radiosensitization effects. Supported by DOD/PCRP grant W81XWH-12-1-0198.« less

  8. Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.

    PubMed

    Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A; Jette, Cicely

    2014-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.

  9. Recent Advances in Cancer Therapy Based on Dual Mode Gold Nanoparticles

    PubMed Central

    Spyratou, Ellas; Makropoulou, Mersini; Sihver, Lembit

    2017-01-01

    Many tumor-targeted strategies have been used worldwide to limit the side effects and improve the effectiveness of therapies, such as chemotherapy, radiotherapy (RT), etc. Biophotonic therapy modalities comprise very promising alternative techniques for cancer treatment with minimal invasiveness and side-effects. These modalities use light e.g., laser irradiation in an extracorporeal or intravenous mode to activate photosensitizer agents with selectivity in the target tissue. Photothermal therapy (PTT) is a minimally invasive technique for cancer treatment which uses laser-activated photoabsorbers to convert photon energy into heat sufficient to induce cells destruction via apoptosis, necroptosis and/or necrosis. During the last decade, PTT has attracted an increased interest since the therapy can be combined with customized functionalized nanoparticles (NPs). Recent advances in nanotechnology have given rise to generation of various types of NPs, like gold NPs (AuNPs), designed to act both as radiosensitizers and photothermal sensitizing agents due to their unique optical and electrical properties i.e., functioning in dual mode. Functionalized AuNPS can be employed in combination with non-ionizing and ionizing radiation to significantly improve the efficacy of cancer treatment while at the same time sparing normal tissues. Here, we first provide an overview of the use of NPs for cancer therapy. Then we review many recent advances on the use of gold NPs in PTT, RT and PTT/RT based on different types of AuNPs, irradiation conditions and protocols. We refer to the interaction mechanisms of AuNPs with cancer cells via the effects of non-ionizing and ionizing radiations and we provide recent existing experimental data as a baseline for the design of optimized protocols in PTT, RT and PTT/RT combined treatment. PMID:29257070

  10. Taxane-mediated radiosensitization derives from chromosomal missegregation on tripolar mitotic spindles orchestrated by AURKA and TPX2.

    PubMed

    Orth, M; Unger, K; Schoetz, U; Belka, C; Lauber, K

    2018-01-04

    Taxane-based radiochemotherapy is a central treatment option for various cancer entities in locally advanced stages. The therapeutic synergism of this combined modality approach due to taxane-mediated radiosensitization of cancer cells is well-known. However, the underlying molecular mechanisms remain largely elusive, and mechanism-derived predictive markers of taxane-based radiochemotherapy are currently not available. Here, we show that clinically relevant doses of Paclitaxel, the prototype taxane, stimulate a tripolar mode of mitosis leading to chromosomal missegregation and aneuploidization rather than interfering with cell cycle progression. This distinct mitotic phenotype was interlinked with Paclitaxel-mediated radiosensitization via overexpression of mitotic Aurora kinase A (AURKA) and its cofactor TPX2 whose knockdown rescued the bipolar mode of cell division and largely attenuated the radiosensitizing effects of Paclitaxel. In the cancer genome atlas (TCGA) lung adenocarcinoma cohort, high expression levels of AURKA and TPX2 were associated with specifically improved overall survival upon taxane-based radiochemotherapy, but not in case of non-taxane-based radiochemotherapy, chemo- or radiotherapy only. Thus, our data provide insights into Paclitaxel-mediated radiosensitization on a mechanistic and molecular level and identify AURKA and TPX2 as the first potential mechanism-based, predictive markers of taxane-based radiochemotherapy.

  11. Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks.

    PubMed

    Wang, Huichen; Boecker, Wilfried; Wang, Hongyan; Wang, Xiang; Guan, Jun; Thompson, Larry H; Nickoloff, Jac A; Iliakis, George

    2004-01-22

    We recently reported that two Chinese hamster mutants deficient in the RAD51 paralogs XRCC2 and XRCC3 show reduced radiosensitization after treatment with caffeine, thus implicating homology-directed repair (HDR) of DNA double-strand breaks (DSBs) in the mechanism of caffeine radiosensitization. Here, we investigate directly the effect of caffeine on HDR initiated by DSBs induced by a rare cutting endonuclease (I-SceI) into one of two direct DNA repeats. The results demonstrate a strong inhibition by caffeine of HDR in wild-type cells, and a substantial reduction of this effect in HDR-deficient XRCC3 mutant cells. Inhibition of HDR and cell radiosensitization to killing shows similar dependence on caffeine concentration suggesting a cause-effect relationship between these effects. UCN-01, a kinase inhibitor that effectively abrogates checkpoint activation in irradiated cells, has only a small effect on HDR, indicating that similar to radiosensitization, inhibition of checkpoint signaling is not sufficient for HDR inhibition. Recombination events occurring during treatment with caffeine are characterized by rearrangements reminiscent to those previously reported for the XRCC3 mutant, and immunofluorescence microscopy demonstrates significantly reduced formation of IR-specific RAD51 foci after caffeine treatment. In summary, our results identify inhibition of HDR as a significant contributor to caffeine radiosensitization.

  12. Chloronitroimidazoles as radiosensitizers of hypoxic cells in vitro.

    PubMed

    Wideł, M; Watras, J; Suwiński, J; Salwińska, E

    1987-01-01

    Some results of the first more complex studies in vitro on radio-sensitizing efficiency, cytotoxicity and reactivity with blood-thiols of a series of 4- or 5-nitroimidazoles substituted in the 5, 4 or 2 position with chlorine are presented. The derivatives of 4-nitroimidazole substituted in 5 position ("ortho" position) with Cl show higher radiosensitizing efficiency than one may expect from their reduction potential, E1/2. At the same time they are extremely toxic, especially for aerobic cells. It is considered that high biological activity of ortho-substituted 4-nitroimidazoles is connected with their considerable chemical reactivity towards thiols and suppression of those natural protective compounds in the cells. The corresponding 5-nitro isomers are about tenfold weaker sensitizers, and simultaneously much less cytotoxic, either in aerobic or in hypoxic conditions. The chloro-4(5)-nitroimidazoles nonsubstituted at N-1 and ionizable in aqueous solution are relatively weaker at the same time less toxic radiosensitizers. It is evaluated that potential application in radiotherapy may have those chloronitroimidazoles which show low aerobic cytotoxicity, moderate radiosensitizing ability and no reactivity towards thiols. On the basis of the study in vitro, we have selected such a compound: 1-methyl-2-chloro-4-nitroimidazole (P13) for screening in vivo.

  13. TU-H-BRC-07: Therapeutic Benefit in Spatially Fractionated Radiotherapy (GRID) Using Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanasamy, G; Zhang, X; Paudel, N

    Purpose: The aim of this project is to study the therapeutic ratio (TR) for helical Tomotherapy (HT) based spatially fractionated radiotherapy (GRID). Estimation of TR was based on the linear-quadratic cell survival model by comparing the normal cell survival in a HT GRID to that of a uniform dose delivery in an open-field for the same tumor survival. Methods: HT GRID plan was generated using a patient specific virtual GRID block pattern of non-divergent, cylinder shaped holes using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT GRID irradiation to an open field irradiationmore » with an equivalent dose that result in the same tumor cell SF. The ratio was estimated from DVH data on ten patient plans with deep seated, bulky tumor approved by the treating radiation oncologist. Dependence of the TR values on radio-sensitivity of the tumor cells and prescription dose were also analyzed. Results: The mean ± standard deviation (SD) of TR was 4.0±0.7 (range: 3.1 to 5.5) for the 10 patients with single fraction dose of 20 Gy and tumor cell SF of 0.5 at 2 Gy. In addition, mean±SD of TR = 1±0.1 and 18.0±5.1 were found for tumor with SF of 0.3 and 0.7, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the TR to 2.0±0.2 and 1.2±0.04 for a tumor cell SF of 0.5 at 2 Gy. In this study, the SF of normal cells was assumed to be 0.5 at 2 Gy. Conclusion: HT GRID displayed a significant therapeutic advantage over uniform dose from an open field irradiation. TR increases with the radioresistance of the tumor cells and with prescription dose.« less

  14. SU-E-T-667: Radiosensitization Due to Gold Nanoparticles: A Monte Carlo Cellular Dosimetry Investigation of An Expansive Parameter Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinov, M; Thomson, R

    2015-06-15

    Purpose: To investigate dose enhancement to cellular compartments following gold nanoparticle (GNP) uptake in tissue, varying cell and tissue morphology, intra and extracellular GNP distribution, and source energy using Monte Carlo (MC) simulations. Methods: Models of single and multiple cells are developed for normal and cancerous tissues; cells (outer radii 5–10 µm) are modeled as concentric spheres comprising the nucleus (radii 2.5–7.5 µm) and cytoplasm. GNP distributions modeled include homogeneous distributions throughout the cytoplasm, variable numbers of GNP-containing endosomes within the cytoplasm, or distributed in a spherical shell about the nucleus. Gold concentrations range from 1 to 30 mg/g. Dosemore » to nucleus and to cytoplasm for simulations including GNPs are compared to simulations without GNPs to compute Nuclear and Cytoplasm Dose Enhancement Factors (NDEF, CDEF). Photon source energies are between 20 keV and 1.25 MeV. Results: DEFs are highly sensitive to GNP intracellular distribution; for a 2.5 µm radius nucleus irradiated by a 30 keV source, NDEF varies from 1.2 for a single endosome containing all GNPs to 8.2 for GNPs distributed about the nucleus (7 mg/g). DEFs vary with cell dimensions and source energy: NDEFs vary from 2.5 (90 keV) to 8.2 (30 keV) for a 2.5 µm radius nucleus and from 1.1 (90 keV) to 1.3 (30 keV) for a 7.5 µm radius nucleus, both with GNPs in a spherical shell about the nucleus (7 mg/g). NDEF and CDEF are generally different within a single cell. For multicell models, the presence of gold within intervening tissues between source and target perturbs the fluence reaching cellular targets, resulting in DEF inhomogeneities within a population of irradiated cells. Conclusion: DEFs vary by an order of magnitude for different cell models, GNP distributions, and source energies, demonstrating the importance of detailed modelling for advancing GNP development for radiotherapy. Funding provided by the Natural Sciences and Engineering Council of Canada (NSERC), and the Canada Research Chairs Program (CRC)« less

  15. "SABER": A new software tool for radiotherapy treatment plan evaluation.

    PubMed

    Zhao, Bo; Joiner, Michael C; Orton, Colin G; Burmeister, Jay

    2010-11-01

    Both spatial and biological information are necessary in order to perform true optimization of a treatment plan and for predicting clinical outcome. The goal of this work is to develop an enhanced treatment plan evaluation tool which incorporates biological parameters and retains spatial dose information. A software system is developed which provides biological plan evaluation with a novel combination of features. It incorporates hyper-radiosensitivity using the induced-repair model and applies the new concept of dose convolution filter (DCF) to simulate dose wash-out effects due to cell migration, bystander effect, and/or tissue motion during treatment. Further, the concept of spatial DVH (sDVH) is introduced to evaluate and potentially optimize the spatial dose distribution in the target volume. Finally, generalized equivalent uniform dose is derived from both the physical dose distribution (gEUD) and the distribution of equivalent dose in 2 Gy fractions (gEUD2) and the software provides three separate models for calculation of tumor control probability (TCP), normal tissue complication probability (NTCP), and probability of uncomplicated tumor control (P+). TCP, NTCP, and P+ are provided as a function of prescribed dose and multivariable TCP, NTCP, and P+ plots are provided to illustrate the dependence on individual parameters used to calculate these quantities. Ten plans from two clinical treatment sites are selected to test the three calculation models provided by this software. By retaining both spatial and biological information about the dose distribution, the software is able to distinguish features of radiotherapy treatment plans not discernible using commercial systems. Plans that have similar DVHs may have different spatial and biological characteristics and the application of novel tools such as sDVH and DCF within the software may substantially change the apparent plan quality or predicted plan metrics such as TCP and NTCP. For the cases examined, both the calculation method and the application of DCF can change the ranking order of competing plans. The voxel-by-voxel TCP model makes it feasible to incorporate spatial variations of clonogen densities (n), radiosensitivities (SF2), and fractionation sensitivities (alpha/beta) as those data become available. The new software incorporates both spatial and biological information into the treatment planning process. The application of multiple methods for the incorporation of biological and spatial information has demonstrated that the order of application of biological models can change the order of plan ranking. Thus, the results of plan evaluation and optimization are dependent not only on the models used but also on the order in which they are applied. This software can help the planner choose more biologically optimal treatment plans and potentially predict treatment outcome more accurately.

  16. Development of DOTA-Rituximab to be Labeled with 90Y for Radioimmunotherapy of B-cell Non-Hodgkin Lymphoma

    PubMed Central

    Johari doha, Fariba; Rahmani, Siyavash; Rikhtechi, Pedram; Rasaneh, Samira; Sheikholislam, Zahra; Shahhosseini, Soraya

    2017-01-01

    NHL is the most common hematologic cancer in adults. Rituximab is the FDA approved treatment of relapsed or refractory low grade B-cell Non-Hodgkin Lymphoma (NHL). But patients eventually become resistant to rituximab. Since lymphocytes and lymphoma cells are highly radiosensitive, low grade NHL that has relapsed or refractory to standard therapy is treated by RIT in which a beta-emitting radionuclide coupled to anti-CD20 antibody. The association of beta emitter radionuclide to rituximab enhances its therapeutic efficacy. The cells which lack antigen or cells which cannot be reached due to poor vascularization and intratumoral pressure in a bulky tumor would be irradiated and killed by cross fire effect of beta emitter. 90Y, a pure high energy β-emitter with a half-life of 64 h, a maximum energy of 2.28 MeV, and maximum board of 11.3 mm in tissue is radionuclide of choice for radioimmunotherapy of outpatient administration. In this study, rituximab was conjugated to DOTA and radiolabeled with 90YCl3. The stability, affinity, and immunoreactivity of radiolabeled antibody was determined in vitro and the conditions were optimized. Biodistribution studies were done in normal mice. The optimum conditions of conjugation and radiolabeling was 1-2 h at 37 °C and 1 h at 45 °C, respectively. Results showed approximately 4 DOTA molecules conjugated per antibody molecule. The purified antibody was stable and intact over 6 months stored at -20 °C. The result of immunoreactivity (≈70%), affinity (≈3 nM) and biodistribution in normal mice are acceptable. PMID:28979315

  17. Effective doses in children: association with common complex imaging techniques used during interventional radiology procedures.

    PubMed

    Lai, Priscilla; McNeil, Sarah M; Gordon, Christopher L; Connolly, Bairbre L

    2014-12-01

    The purpose of this study was to determine the range of effective doses associated with imaging techniques used during interventional radiology procedures on children. A pediatric phantom set (1, 5, and 10 years) coupled with high-sensitivity metal oxide semiconductor field effect transistor (MOSFET) dosimeters was used to calculate effective doses. Twenty MOSFETs were inserted into each phantom at radiosensitive organ locations. The phantoms were exposed to mock head, chest, and abdominal interventional radiology procedures performed with different geometries and magnifications. Fluoroscopy, digital subtraction angiography (DSA), and spin angiography were simulated on each phantom. Road mapping was conducted only on the 5-year-old phantom. International Commission on Radiological Protection publication 103 tissue weights were applied to the organ doses recorded with the MOSFETs to determine effective dose. For easy application to clinical cases, doses were normalized per minute of fluoroscopy and per 10 frames of DSA or spin angiography. Effective doses from DSA, angiography, and fluoroscopy were higher for younger ages because of magnification use and were largest for abdominal procedures. DSA of the head, chest, and abdomen (normalized per 10 frames) imparted doses 2-3 times as high as corresponding doses per minute of fluoroscopy while all other factors remained unchanged (age, projection, collimation, magnification). Three to five frames of DSA imparted an effective dose equal to doses from 1 minute of fluoroscopy. Doses from spin angiography were almost one-half the doses received from an equivalent number of frames of DSA. Patient effective doses during interventional procedures vary substantially depending on procedure type but tend to be higher because of magnification use in younger children and higher in the abdomen.

  18. Development of the septal region in the rat. II. Morphogenesis in normal and x-irradiated embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayer, S.A.

    1979-01-01

    Morphogenesis of the septal region was examined in normal rat embryos from embryonic day (E) 10 to E22. The greater part of the septal region is postulated to form from two separate anlagen which can be clearly distinguished in the telencephalon by E13 and E14. One lies in the anterior ventromedial wall and presumably forms the nucleus of the diagonal band, medial, lateral, and triangular septal nuclei. The other lies in the posterior ventrolateral ridge and presumably forms the bed nuclei of the stria terminalis and the anterior commissure. On E15, the early differentiating cells in these anlagen fuse inmore » the same region where the anterior commissure will cross on E17. On E16 and E17, a prominent subependymal zone develops in the anterior septal region and presumably gives rise to the nucleus accumbens. A quantitative analysis was made of three cell zones (neuroepithelium, subependymal zone, differentiating cell zone) at coronal levels through the developing nucleus accumbens and the nucleus of the diagonal band (anterior level) and the medial and lateral septal nuclei (middle and posterior levels). To accurately locate regions of primitive mitotic and migratory cells within the zones at each level, the number of cells surviving a single exposure to 200 R x-rays in embryonic brains (E15 to E22) were compared with controls. Each zone responded differently to x-ray insult. The radiosensitivity of the neuroepithelium decreases significantly after E19; the subependymal zone is highly radiosensitive throughout; the differentiating cell zone is radioresistant throughout. The significance of these findings is discussed in the light of the autoradiographic determination of the time of formation of septal neurons.« less

  19. β-catenin nuclear translocation induced by HIF-1α overexpression leads to the radioresistance of prostate cancer

    PubMed Central

    Luo, Yong; Li, Mingchuan; Zuo, Xuemei; Basourakos, Spyridon P.; Zhang, Jiao; Zhao, Jiahui; Han, Yili; Lin, Yunhua; Wang, Yongxing; Jiang, Yongguang; Lan, Ling

    2018-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF-1α remain unclear. β-catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF-1α and β-catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4-2B, were grouped as follows: Negative control (no treatment), HIF-1α overexpression group (transfected with HIF-1α overexpression plasmid) and β-catenin silenced group (transfected with HIF-1α plasmids and β-catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4-2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4-2B cells, transfection with HIF-1α overexpression plasmid led to an enhanced β-catenin nuclear translocation, while β-catenin silencing inhibited β-catenin nuclear translocation. The enhanced β-catenin nuclear translocation induced by HIF-1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non-homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF-1α overexpression enhanced β-catenin nuclear translocation, which led to the activation of the β-catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF-1α overexpression promotes the radioresistance of PCa cells. PMID:29658569

  20. Prostate volumetric‐modulated arc therapy: dosimetry and radiobiological model variation between the single‐arc and double‐arc technique

    PubMed Central

    Jiang, Runqing

    2013-01-01

    This study investigates the dosimetry and radiobiological model variation when a second photon arc was added to prostate volumetric‐modulated arc therapy (VMAT) using the single‐arc technique. Dosimetry and radiobiological model comparison between the single‐arc and double‐arc prostate VMAT plans were performed on five patients with prostate volumes ranging from 29−68.1 cm3. The prescription dose was 78 Gy/39 fractions and the photon beam energy was 6 MV. Dose‐volume histogram, mean and maximum dose of targets (planning and clinical target volume) and normal tissues (rectum, bladder and femoral heads), dose‐volume criteria in the treatment plan (D99% of PTV; D30%,D50%,V17Gy and V35Gy of rectum and bladder; D5% of femoral heads), and dose profiles along the vertical and horizontal axis crossing the isocenter were determined using the single‐arc and double‐arc VMAT technique. For comparison, the monitor unit based on the RapidArc delivery method, prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman‐Burman‐Kutcher algorithm were calculated. It was found that though the double‐arc technique required almost double the treatment time than the single‐arc, the double‐arc plan provided a better rectal and bladder dose‐volume criteria by shifting the delivered dose in the patient from the anterior–posterior direction to the lateral. As the femoral head was less radiosensitive than the rectum and bladder, the double‐arc technique resulted in a prostate VMAT plan with better prostate coverage and rectal dose‐volume criteria compared to the single‐arc. The prostate TCP of the double‐arc plan was found slightly increased (0.16%) compared to the single‐arc. Therefore, when the rectal dose‐volume criteria are very difficult to achieve in a single‐arc prostate VMAT plan, it is worthwhile to consider the double‐arc technique. PACS number: 87.55.D‐, 87.55.dk, 87.55.K‐, 87.55.Qr

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Q; Lum, JJ; Isabelle, M

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, andmore » experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.« less

  2. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    PubMed

    Dolman, M Emmy M; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N; Molenaar, Jan J

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  3. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction

    PubMed Central

    Masunaga, S; Sakurai, Y; Tanaka, H; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M; Kondo, N; Narabayashi, M; Maruhashi, A; Ono, K

    2013-01-01

    Objective To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). Methods EL4 tumour-bearing C57BL/J mice received 5-bromo-29-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with c-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of a 10B-carrier. Responses of intratumour Q and total (P+Q) cell populations were assessed based on frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of pimonidazole-unlabelled tumour cells was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. Results Following c-ray irradiation, the pimonidazole-unlabelled tumour cell fraction showed significantly enhanced radiosensitivity compared with the whole tumour cell fraction, more remarkably in the Q than total cell populations. However, a significantly greater decrease in radiosensitivity in the pimonidazole-unlabelled cell fraction, evaluated using a delayed assay or a decrease in radiation dose rate, was more clearly observed among the Q than total cells. These changes in radiosensitivity were suppressed following carbon ion beam and neutron beam-only irradiaton. In the BNCR, the use of a 10B-carrier, especially L-para-boronophenylalanine-10B, enhanced the sensitivity of the pimonidazole-unlabelled cells more clearly in the Q than total cells. Conclusion The radiosensitivity of the pimonidazole-unlabelled cell fraction depends on the quality of radiation delivered and characteristics of the 10B-carrier used in the BNCR. Advances in knowledge The pimonidazole-unlabelled subfraction of Q tumour cells may be a critical target in tumour control. PMID:23255546

  4. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells

    PubMed Central

    Dolman, M. Emmy M.; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N.; Molenaar, Jan J.

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization. PMID:26716839

  5. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Wenshu; Lee Yijang; Yu Yichu

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of {gamma}-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cellsmore » but not human keratocyte HaCaT cells; it also prolonged radiation-induced G{sub 2}/M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.« less

  6. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.

    PubMed

    Masunaga, S; Sakurai, Y; Tanaka, H; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M; Kondo, N; Narabayashi, M; Maruhashi, A; Ono, K

    2013-01-01

    To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). EL4 tumour-bearing C57BL/J mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with γ-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of a (10)B-carrier. Responses of intratumour Q and total (P+Q) cell populations were assessed based on frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of pimonidazole-unlabelled tumour cells was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. Following γ-ray irradiation, the pimonidazole-unlabelled tumour cell fraction showed significantly enhanced radiosensitivity compared with the whole tumour cell fraction, more remarkably in the Q than total cell populations. However, a significantly greater decrease in radiosensitivity in the pimonidazole-unlabelled cell fraction, evaluated using a delayed assay or a decrease in radiation dose rate, was more clearly observed among the Q than total cells. These changes in radiosensitivity were suppressed following carbon ion beam and neutron beam-only irradiaton. In the BNCR, the use of a (10)B-carrier, especially L-para-boronophenylalanine-(10)B, enhanced the sensitivity of the pimonidazole-unlabelled cells more clearly in the Q than total cells. The radiosensitivity of the pimonidazole-unlabelled cell fraction depends on the quality of radiation delivered and characteristics of the (10)B-carrier used in the BNCR. The pimonidazole-unlabelled subfraction of Q tumour cells may be a critical target in tumour control.

  7. Epigenetic therapy with inhibitors of histone methylation suppresses DNA damage signaling and increases glioma cell radiosensitivity.

    PubMed

    Gursoy-Yuzugullu, Ozge; Carman, Chelsea; Serafim, Rodolfo Bortolozo; Myronakis, Marios; Valente, Valeria; Price, Brendan D

    2017-04-11

    Radiation therapy is widely used to treat human malignancies, but many tumor types, including gliomas, exhibit significant radioresistance. Radiation therapy creates DNA double-strand breaks (DSBs), and DSB repair is linked to rapid changes in epigenetic modifications, including increased histone methylation. This increased histone methylation recruits DNA repair proteins which can then alter the local chromatin structure and promote repair. Consequently, combining inhibitors of specific histone methyltransferases with radiation therapy may increase tumor radiosensitivity, particularly in tumors with significant therapeutic resistance. Here, we demonstrate that inhibitors of the H4K20 methyltransferase SETD8 (UNC-0379) and the H3K9 methyltransferase G9a (BIX-01294) are effective radiosensitizers of human glioma cells. UNC-0379 blocked H4K20 methylation and reduced recruitment of the 53BP1 protein to DSBs, although this loss of 53BP1 caused only limited changes in radiosensitivity. In contrast, loss of H3K9 methylation through G9a inhibition with BIX-01294 increased radiosensitivity of a panel of glioma cells (SER2Gy range: 1.5 - 2.9). Further, loss of H3K9 methylation reduced DSB signaling dependent on H3K9, including reduced activation of the Tip60 acetyltransferase, loss of ATM signaling and reduced phosphorylation of the KAP-1 repressor. In addition, BIX-0194 inhibited DSB repair through both the homologous recombination and nonhomologous end-joining pathways. Inhibition of G9a and loss of H3K9 methylation is therefore an effective approach for increasing radiosensitivity of glioma cells. These results suggest that combining inhibitors of histone methyltransferases which are critical for DSB repair with radiation therapy may provide a new therapeutic route for sensitizing gliomas and other tumors to radiation therapy.

  8. Nbn and atm cooperate in a tissue and developmental stage-specific manner to prevent double strand breaks and apoptosis in developing brain and eye.

    PubMed

    Rodrigues, Paulo M G; Grigaravicius, Paulius; Remus, Martina; Cavalheiro, Gabriel R; Gomes, Anielle L; Rocha-Martins, Maurício; Martins, Mauricio R; Frappart, Lucien; Reuss, David; McKinnon, Peter J; von Deimling, Andreas; Martins, Rodrigo A P; Frappart, Pierre-Olivier

    2013-01-01

    Nibrin (NBN or NBS1) and ATM are key factors for DNA Double Strand Break (DSB) signaling and repair. Mutations in NBN or ATM result in Nijmegen Breakage Syndrome and Ataxia telangiectasia. These syndromes share common features such as radiosensitivity, neurological developmental defects and cancer predisposition. However, the functional synergy of Nbn and Atm in different tissues and developmental stages is not yet understood. Here, we show in vivo consequences of conditional inactivation of both genes in neural stem/progenitor cells using Nestin-Cre mice. Genetic inactivation of Atm in the central nervous system of Nbn-deficient mice led to reduced life span and increased DSBs, resulting in increased apoptosis during neural development. Surprisingly, the increase of DSBs and apoptosis was found only in few tissues including cerebellum, ganglionic eminences and lens. In sharp contrast, we showed that apoptosis associated with Nbn deletion was prevented by simultaneous inactivation of Atm in developing retina. Therefore, we propose that Nbn and Atm collaborate to prevent DSB accumulation and apoptosis during development in a tissue- and developmental stage-specific manner.

  9. Radiation effects on bovine taste bud membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatzman, A.R.; Mossman, K.L.

    1982-11-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enrichedmore » fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy.« less

  10. Nuclear 3D organization and radiosensitivity

    NASA Astrophysics Data System (ADS)

    Eidelman, Y. A.; Slanina, S. V.; Aleshchenko, A. V.; Sen'ko, O. V.; Kononkova, A. D.; Andreev, S. G.

    2017-01-01

    Current mechanisms of radiation-induced chromosomal aberration (CA) formation suggest misrepair of chromosomal lesions being in spatial proximity. In this case CAs have to depend on pattern of chromosomal contacts and on chromosome spatial organization in a cell nucleus. We were interested in whether variation of nucleus 3D organization results in difference of radiation induced CA formation frequency. Experimental data available do not provide information sufficient for definite conclusions. To have more deep insight in this issue we developed the biophysical modeling technique taking into account different levels of chromosome/nuclear organization and radiation damage of DNA and chromosomes. Computer experiments on gamma irradiation were carried out for two types of cells with different 3D organization of nuclei, preferentially peripheral and internal. CA frequencies were found to depend on spatial positioning of chromosomes within a nucleus which determines a pattern of interchromosomal contacts. For individual chromosomes this effect can be more pronounced than for genome averaged. Since significant part of aberrations, for example dicentrics, results in cell death, the proposed technique is capable of evaluating radiosensitivity of cells, both normal and cancer, with the incorporation of 3D genome information. This predictive technology allows to reduce uncertainties of prognosis of biological effects of radiation compared to phenomenological methods and may have variety of biomedical applications, in particular, in cancer radiation therapy.

  11. Survivin, a target to modulate the radiosensitivity of Ewing's sarcoma.

    PubMed

    Greve, B; Sheikh-Mounessi, F; Kemper, B; Ernst, I; Götte, M; Eich, H T

    2012-11-01

    Radiotherapy constitutes an essential element in the multimodal therapy of Ewing's sarcoma. Compared to other sarcomas, Ewing tumors normally show a good response to radiotherapy. However, there are consistently tumors with a radioresistant phenotype, and the underlying mechanisms are not known in detail. Here we investigated the association between survivin protein expression and the radiosensitivity of Ewing's sarcoma in vitro. An siRNA-based knockdown approach was used to investigate the influence of survivin expression on cell proliferation, double-strand break (DSB) induction and repair, apoptosis and colony-forming ability in four Ewing's sarcoma cell lines with and without irradiation. Survivin protein and mRNA were upregulated in all cell lines tested in a dose-dependent manner. As a result of survivin knockdown, STA-ET-1 cells showed reduced cell proliferation, an increased number of radiation-induced DSBs, and reduced repair. Apoptosis was increased by knockdown alone and increased further in combination with irradiation. Colony formation was significantly reduced by survivin knockdown in combination with irradiation. Survivin is a radiation-inducible protein in Ewing's sarcoma and its down-regulation sensitizes cells toward irradiation. Survivin knockdown in combination with radiation inhibits cell proliferation, repair, and colony formation significantly and increases apoptosis more than each single treatment alone. This might open new perspectives in the radiation treatment of Ewing's sarcoma.

  12. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose determined (0.29 mSv) is comparable to diagnostic procedures involving the head, such as an x-ray or CT scan. Thus, the computational assessment performed indicates that a previously established therapeutic dose can be delivered effectively to the macula with IRay(TM) without the potential for secondary complications.

  13. Phosphorylation of p53 modifies sensitivity to ionizing radiation.

    PubMed

    Okaichi, Kumio; Nose, Kanako; Kotake, Takako; Izumi, Nanaka; Kudo, Takashi

    2011-06-01

    Phosphorylation is an important modification involved in the control of p53 activity. We examined the relationship between p53 phosphorylation and cell radiosensitivity. We prepared H1299 cells (p53-null) with various mutations of p53 at three sites (serine 15, 20 and 46) and examined the radiosensitivity of the cells. In three mutant forms of p53--S15A, S20A and S46A--serine was converted to alanine at these sites to prevent phosphorylation, and in two other mutant forms, S15D and S20D, serine was converted to aspartic acid to mimic phosphorylation. H1299 cells were more radioresistant than cells with wild-type p53. Cells with the S15A and S46A mutant forms of p53 were radiosensitive, whereas those with the S15D, S20A and S20D forms showed medium radiosensitivity. Thus the sensitivity of cells to ionizing radiation varies according to the site of phosphorylation of p53.

  14. Biomarkers of Radiosensitivity in A-Bomb Survivors Pregnant at the Time of Bombings in Hiroshima and Nagasaki

    DOE PAGES

    Miles, Edward F.; Tatsukawa, Yoshimi; Funamoto, Sachiyo; ...

    2011-01-01

    Purpose . There is evidence in the literature of increased maternal radiosensitivity during pregnancy. Materials and Methods . We tested this hypothesis using information from the atomic-bomb survivor cohort, that is, the Adult Health Study database at the Radiation Effects Research Foundation, which contains data from a cohort of women who were pregnant at the time of the bombings of Hiroshima and Nagasaki. Previous evaluation has demonstrated long-term radiation dose-response effects. Results/Conclusions . Data on approximately 250 women were available to assess dose-response rates for serum cholesterol, white blood cell count, erythrocyte sedimentation rate, and serum hemoglobin, and on approximatelymore » 85 women for stable chromosome aberrations, glycophorin A locus mutations, and naïve CD4 T-cell counts. Although there is no statistically significant evidence of increased radiosensitivity in pregnant women, the increased slope of the linear trend line in the third trimester with respect to stable chromosome aberrations is suggestive of an increased radiosensitivity.« less

  15. Gallium containing composites as a tunable material to understand neuronal behavior under variable stiffness and radiation conditions.

    PubMed

    Berg, Nora G; Pearce, Brady L; Rohrbaugh, Nathaniel; Jiang, Lin; Nolan, Michael W; Ivanisevic, Albena

    2017-02-01

    We report a composite biomaterial containing nanostructured GaOOH and Matrigel™ that can be modulated with respect to its stiffness and radiosensitization properties. A variety of concentrations of GaOOH were added to the composite to alter the mechanical properties of the material as well as to tune the radiosensitizing properties to the composite. PC-12 cells were used to study the combined effects of different stimuli on cell behavior. NGF was given to the cells to record their morphology as well as viability. An increase in the substrate stiffness caused an increase in neurite outgrowth but a decrease in cell viability. In addition, increasing the radiation dose decreased neurite outgrowth but increased cell viability when radiosensitizing particles were present. A subtractive effect between radiosensitizing and mechanical stimuli was observed when PC-12 cells were grown on the GaOOH containing composite. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization.

    PubMed

    Fan, Wenpei; Shen, Bo; Bu, Wenbo; Zheng, Xiangpeng; He, Qianjun; Cui, Zhaowen; Zhao, Kuaile; Zhang, Shengjian; Shi, Jianlin

    2015-03-01

    Clinically applied chemotherapy and radiotherapy is sometimes not effective due to the limited dose acting on DNA chains resident in the nuclei of cancerous cells. Herein, we develop a new theranostic technique of "intranuclear radiosensitization" aimed at directly damaging the DNA within the nucleus by a remarkable synergetic chemo-/radiotherapeutic effect based on intranuclear chemodrug-sensitized radiation enhancement. To achieve this goal, a sub-50 nm nuclear-targeting rattle-structured upconversion core/mesoporous silica nanotheranostic system was firstly constructed to directly transport the radiosensitizing drug Mitomycin C (MMC) into the nucleus for substantially enhanced synergetic chemo-/radiotherapy and simultaneous magnetic/upconversion luminescent (MR/UCL) bimodal imaging, which can lead to efficient cancer treatment as well as multi-drug resistance circumvention in vitro and in vivo . We hope the technique of intranuclear radiosensitization along with the design of nuclear-targeting nanotheranostics will contribute greatly to the development of cancer theranostics as well as to the improvement of the overall therapeutic effectiveness.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Sheryl A., E-mail: sflan@umich.edu; Cooper, Kristin S.; Mannava, Sudha

    Purpose: To determine the effect of short hairpin ribonucleic acid (shRNA)-mediated suppression of thymidylate synthase (TS) on cytotoxicity and radiosensitization and the mechanism by which these events occur. Methods and Materials: shRNA suppression of TS was compared with 5-fluoro-2 Prime -deoxyuridine (FdUrd) inactivation of TS with or without ionizing radiation in HCT116 and HT29 colon cancer cells. Cytotoxicity and radiosensitization were measured by clonogenic assay. Cell cycle effects were measured by flow cytometry. The effects of FdUrd or shRNA suppression of TS on dNTP deoxynucleotide triphosphate imbalances and consequent nucleotide misincorporations into deoxyribonucleic acid (DNA) were analyzed by high-pressure liquidmore » chromatography and as pSP189 plasmid mutations, respectively. Results: TS shRNA produced profound ({>=}90%) and prolonged ({>=}8 days) suppression of TS in HCT116 and HT29 cells, whereas FdUrd increased TS expression. TS shRNA also produced more specific and prolonged effects on dNTPs deoxynucleotide triphosphates compared with FdUrd. TS shRNA suppression allowed accumulation of cells in S-phase, although its effects were not as long-lasting as those of FdUrd. Both treatments resulted in phosphorylation of Chk1. TS shRNA alone was less cytotoxic than FdUrd but was equally effective as FdUrd in eliciting radiosensitization (radiation enhancement ratio: TS shRNA, 1.5-1.7; FdUrd, 1.4-1.6). TS shRNA and FdUrd produced a similar increase in the number and type of pSP189 mutations. Conclusions: TS shRNA produced less cytotoxicity than FdUrd but was equally effective at radiosensitizing tumor cells. Thus, the inhibitory effect of FdUrd on TS alone is sufficient to elicit radiosensitization with FdUrd, but it only partially explains FdUrd-mediated cytotoxicity and cell cycle inhibition. The increase in DNA mismatches after TS shRNA or FdUrd supports a causal and sufficient role for the depletion of dTTP thymidine triphosphate and consequent DNA mismatches underlying radiosensitization. Importantly, shRNA suppression of TS avoids FP-mediated TS elevation and its negative prognostic role. These studies support the further exploration of TS suppression as a novel radiosensitizing strategy.« less

  18. Effect of salt solutions on radiosensitivity of mammalian cells. I. Specific ion effects.

    PubMed

    Raaphorst, G P; Kruuv, J

    1977-07-01

    The radiation isodose survival curve of cells subjected to a wide concentration range of sucrose solutions has two maxima separated by a minimum. Both cations and anions can alter the cellular radiosensitivity above and beyond the osmotic effect observed for cells treated with sucrose solutions. The basic shape of the isodose curve can also be modulated by changes in temperature and solution exposure times. Some of these alterations in radiosensitivity may be related to changes in the amount and structure of cellular water or macromolecular conformation or to the direct effect of the ions, expecially at high solute concentrations.

  19. USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance

    PubMed Central

    Lee, Jin-Ku; Chang, Nakho; Yoon, Yeup; Yang, Heekyoung; Cho, Heejin; Kim, Eunhee; Shin, Yongjae; Kang, Wonyoung; Oh, Young Taek; Mun, Gyeong In; Joo, Kyeung Min; Nam, Do-Hyun; Lee, Jeongwu

    2016-01-01

    Background Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to intrinsic radio- and chemoresistance of GBM and inefficient targeting of GBM stem-like cells (GSCs). Novel therapeutic approaches that overcome treatment resistance and diminish stem-like properties of GBM are needed. Methods We determined the expression levels of ubiquitination-specific proteases (USPs) by transcriptome analysis and found that USP1 is highly expressed in GBM. Using the patient GBM-derived primary tumor cells, we inhibited USP1 by shRNA-mediated knockdown or its specific inhibitor pimozide and evaluated the effects on stem cell marker expression, proliferation, and clonogenic growth of tumor cells. Results USP1 was highly expressed in gliomas relative to normal brain tissues and more preferentially in GSC enrichment marker (CD133 or CD15) positive cells. USP1 positively regulated the protein stability of the ID1 and CHEK1, critical regulators of DNA damage response and stem cell maintenance. Targeting USP1 by RNA interference or treatment with a chemical USP1 inhibitor attenuated clonogenic growth and survival of GSCs and enhanced radiosensitivity of GBM cells. Finally, USP1 inhibition alone or in combination with radiation significantly prolonged the survival of tumor-bearing mice. Conclusion USP1-mediated protein stabilization promotes GSC maintenance and treatment resistance, thereby providing a rationale for USP1 inhibition as a potential therapeutic approach against GBM. PMID:26032834

  20. In vivo combination of misonidazole and the chemotherapeutic agent CCNU.

    PubMed Central

    Siemann, D. W.

    1981-01-01

    The response of intramuscularly growing KHT sarcomas to the chemotherapeutic agent (1-(2-cloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) alone or simultaneously with the chemical radio-sensitizer misonidazole (MISO) was assessed using either a tumour growth-delay assay or an in vivo-in vitro tumour-excision assay. Median tumour growth delay following the combination of 20 mg/kg CCNU and either 0.5 or 1.0 mg/g MISO was 19.5 and 21.5 days, compared to 10 days for this CCNU dose alone. A similar degree of enhanced tumour response by MISO (factor of approximately 2 in tumour growth delay) was seen in RIF-1 tumours treated with 20 mg/kg CCNU plus 1.0 mg/g MISO. Clonogenic cell-survival studies with KHT sarcomas demonstrated that MISO at doses of 0.25, 0.5 or 1.0 mg/g given simultaneously with a range of CCNU doses produced dose-modifying factors (DMFs) of 1.9, 2.1 and 2.4 respectively. Normal tissue toxicity assessed by an LD50/7 assay led to DMFs of 1.2 and 1.4 for CCNU doses combined with 0.5 and 1.0 mg/g MISO. Thus in this animal tumour model the combination of CCNU and MISO appears to lead to a potential gain by a factor of approximately 1.7. PMID:7225287

  1. Nontoxic concentration of DNA-PK inhibitor NU7441 radio-sensitizes lung tumor cells with little effect on double strand break repair.

    PubMed

    Sunada, Shigeaki; Kanai, Hideki; Lee, Younghyun; Yasuda, Takeshi; Hirakawa, Hirokazu; Liu, Cuihua; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2016-09-01

    High-linear energy transfer (LET) heavy ions have been increasingly employed as a useful alternative to conventional photon radiotherapy. As recent studies suggested that high LET radiation mainly affects the nonhomologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair, we further investigated this concept by evaluating the combined effect of an NHEJ inhibitor (NU7441) at a non-toxic concentration and carbon ions. NU7441-treated non-small cell lung cancer (NSCLC) A549 and H1299 cells were irradiated with X-rays and carbon ions (290 MeV/n, 50 keV/μm). Cell survival was measured by clonogenic assay. DNA DSB repair, cell cycle distribution, DNA fragmentation and cellular senescence induction were studied using a flow cytometer. Senescence-associated protein p21 was detected by western blotting. In the present study, 0.3 μM of NU7441, nontoxic to both normal and tumor cells, caused a significant radio-sensitization in tumor cells exposed to X-rays and carbon ions. This concentration did not seem to cause inhibition of DNA DSB repair but induced a significant G2/M arrest, which was particularly emphasized in p53-null H1299 cells treated with NU7441 and carbon ions. In addition, the combined treatment induced more DNA fragmentation and a higher degree of senescence in H1299 cells than in A549 cells, indicating that DNA-PK inhibitor contributes to various modes of cell death in a p53-dependent manner. In summary, NSCLC cells irradiated with carbon ions were radio-sensitized by a low concentration of DNA-PK inhibitor NU7441 through a strong G2/M cell cycle arrest. Our findings may contribute to further effective radiotherapy using heavy ions. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less

  3. Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism.

    PubMed

    Yu, Li; Sun, Yifan; Li, Jingjing; Wang, Yan; Zhu, Yuxing; Shi, Yong; Fan, Xiaojun; Zhou, Jianda; Bao, Ying; Xiao, Jie; Cao, Ke; Cao, Peiguo

    2017-08-15

    Radiotherapy has been used increasingly to treat primary hepatocellular carcinoma. Clinically, the main cause of radiotherapy failure is cellular radioresistance, conferred via glycolytic metabolism. Our previous study demonstrated that Girdin is upregulated in primary hepatocellular carcinoma and promotes the invasion and metastasis of tumor cells. However, whether Girdin underlies the radio-sensitivity of hepatocellular carcinoma remains unclear. A short hairpin RNA (shRNA) was used to silence CCDC88A (encoding Girdin), and real-time PCR was performed to determine CCDC88A mRNA expression. Then, cell proliferation, colony formation, flow cytometric, scratch, and transwell assays were to examine the influence of Girdin silencing on cellular radiosensitivity. Glycolysis assays were conducted to exam cell glycolysis process. Western blotting was performed to explore the signaling pathway downstream of Girdin. Finally, animal experiments were performed to demonstrate the effect of CCDC88A silencing on the radiosensitivity of hepatoma in vivo. shRNA-induced Girdin silencing suppressed glycolysis and enhanced the radio-sensitivity of hepatic cell lines, HepG2 and Huh-7. Furthermore, silencing of Girdin inhibited the PI3K/AKT/HIF-1α signaling pathway, which is a central regulator of glycolysis. Girdin can regulate glycolysis in hepatocellular carcinoma cells through the PI3K/AKT/HIF-1α signaling pathway, which decreases the sensitivity of tumor cells to radiotherapy.

  4. Roadmap to clinical use of gold nanoparticles for radiosensitization

    PubMed Central

    Schuemann, J.; Berbeco, R.; Chithrani, B. D.; Cho, S.; Kumar, R.; McMahon, S.; Sridhar, S.; Krishnan, S.

    2015-01-01

    The past decade has seen a dramatic increase in interest in the use of Gold Nanoparticles (GNPs) as radiation sensitizers for radiotherapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs’ efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X-rays as well as charged particles. Despite this experimental validation, there has been limited translation of GNP-mediated radiosensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes and preparations. As a result, mechanisms of uptake and radiosensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiosensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage. PMID:26700713

  5. Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-κB signaling pathway.

    PubMed

    Li, Gang; Wang, Ziming; Chong, Tie; Yang, Jie; Li, Hongliang; Chen, Haiwen

    2017-10-01

    The radiation resistance of renal cell carcinoma (RCC) remains the primary obstacle to improve patient survival. This study aimed to investigate the effects of curcumin on the radiosensitivity of RCC cells. Human RCC cell (ACHN) was exposed to irradiation (IR) and/or curcumin treatment. Cell viability, DNA repair, cell cycle, and apoptosis, were evaluated by MTT, immunofluoresence staining and flow cytometry. Moreover, ACHN cells were xenografted into nude mice and subjected to IR and/or curcumin treatment. The expression of NF-κB signaling related proteins in ACHN cells and xenografts was detected by western blot analysis. The results showed that curcumin significantly increased radiosensitivity of ACHN cells by inhibiting the cell proliferation and DNA damage repair, causing cell cycle arrest at G2/M phase, inducing apoptosis in vitro, and suppressing the growth of xenografts in vivo. In addition, curcumin enhanced radiosensitivity was through markedly inhibiting IR-induced NF-κB signaling by modulating the related protein expressions including NF-κBP65, I-κB, VEGF, COX2, and Bcl-2 in ACHN cells, which was further strengthened by NF-κB inhibitor PDTC treatment. Thus, curcumin may confer radiosensitivity on RCC via inhibition of NF-κB activation and its downstream regulars, suggesting the potential application of curcumin as an adjuvant in radiotherapy of RCC. Copyright © 2017. Published by Elsevier Masson SAS.

  6. Late G1 accumulation after 2 Gy of gamma-irradiation is related to endogenous Raf-1 protein expression and intrinsic radiosensitivity in human cells.

    PubMed Central

    Warenius, H. M.; Jones, M.; Jones, M. D.; Browning, P. G.; Seabra, L. A.; Thompson, C. C.

    1998-01-01

    We have previously reported a correlation between high endogenous expression of the protein product of the RAF-1 proto-oncogene, intrinsic cellular radiosensitivity and rapid exit from a G2/M delay induced by 2 Gy of gamma-irradiation. Raf1 is a positive serine/threonine kinase signal transduction factor that relays signals from the cell membrane to the MAP kinase system further downstream and is believed to be involved in an ionizing radiation signal transduction pathway modulating the G1/S checkpoint. We therefore extended our flow cytometric studies to investigate relationships between radiosensitivity, endogenous expression of the Raf1 protein and perturbation of cell cycle checkpoints, leading to alterations in the G1, S and G2/M populations after 2 Gy of gamma-irradiation. Differences in intrinsic radiosensitivity after modulation of the G1/S checkpoint have generally been understood to involve p53 function up to the present time. A role for dominant oncogenes in control of G1/S transit in radiation-treated cells has not been identified previously. Here, we show in 12 human in vitro cancer cell lines that late G1 accumulation after 2 Gy of radiation is related to both Raf1 expression (r = 0.91, P = 0.0001) and the radiosensitivity parameter SF2 (r = -0.71, P = 0.009). PMID:9579826

  7. Estimation of breast dose reduction potential for organ-based tube current modulated CT with wide dose reduction arc

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Sturgeon, Gregory M.; Agasthya, Greeshma; Segars, W. Paul; Kapadia, Anuj J.; Samei, Ehsan

    2017-03-01

    This study aimed to estimate the organ dose reduction potential for organ-dose-based tube current modulated (ODM) thoracic CT with wide dose reduction arc. Twenty-one computational anthropomorphic phantoms (XCAT, age range: 27- 75 years, weight range: 52.0-105.8 kg) were used to create a virtual patient population with clinical anatomic variations. For each phantom, two breast tissue compositions were simulated: 50/50 and 20/80 (glandular-to-adipose ratio). A validated Monte Carlo program was used to estimate the organ dose for standard tube current modulation (TCM) (SmartmA, GE Healthcare) and ODM (GE Healthcare) for a commercial CT scanner (Revolution, GE Healthcare) with explicitly modeled tube current modulation profile, scanner geometry, bowtie filtration, and source spectrum. Organ dose was determined using a typical clinical thoracic CT protocol. Both organ dose and CTDIvol-to-organ dose conversion coefficients (h factors) were compared between TCM and ODM. ODM significantly reduced all radiosensitive organ doses (p<0.01). The breast dose was reduced by 30+/-2%. For h factors, organs in the anterior region (e.g. thyroid, stomach) exhibited substantial decreases, and the medial, distributed, and posterior region either saw an increase or no significant change. The organ-dose-based tube current modulation significantly reduced organ doses especially for radiosensitive superficial anterior organs such as the breasts.

  8. Next generation radiotherapy biomaterials loaded with high-Z nanoparticles

    NASA Astrophysics Data System (ADS)

    Cifter, Gizem

    This research investigates the dosimetric feasibility of using high-Z nanoparticles as localized radiosensitizers to boost the dose to the residual tumor cells during accelerated partial breast irradiation while minimizing the dose to surrounding healthy tissue. Analytical microdosimetry calculations were carried out to calculate dose enhancement (DEF) in the presence of high-Z nanoparticles. It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. Prototype smart biomaterials were produced by incorporating the GNPs in poly (D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. In vitro release of GNPs was monitored over time by optical/spectroscopy methods as a function of various design parameters. The prototype smart biomaterials displayed sustained customizable release of NPs in-vitro, reaching a burst release profile approximately after 25 days. The results also show that customizable release profiles can be achievable by varying GNP concentrations that are embedded within smart biomaterials, as well as other design parameters. This would potentially allow customizable local dose boost resulting in diverse treatment planning opportunities for individual cases. Considered together, the results provide preliminary data for development of next generation of RT biomaterials, which can be employed at no additional inconvenience to RT patients.

  9. Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Q. L.; Si, J. L.; Guo, Z. Y.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Li, X. Y.; Guo, X.; Zhong, H. Q.; Li, L. Q.

    2011-01-01

    We report our pilot results on quantification of glucose (G) diffusion permeability in human normal esophagus and ESCC tissues in vitro by using OCT technique. The permeability coefficient of 40% aqueous solution of G was found to be (1.74±0.04)×10-5 cm/s in normal esophagus and (2.45±0.06)×10-5 cm/s in ESCC tissues. The results from this study indicate that ESCC tissues had a higher permeability coefficient compared to normal esophageal tissues, and the light penetration depths gradually increase with the increase of applied topically with G time for the normal esophageal and ESCC tissues. The results indicate that the permeability coefficient of G in cancer tissues was 1.41-fold than that in normal tissues, and the light penetration depth for the ESCC tissues is significantly smaller than that of normal esophagus tissues in the same time range. These results demonstrate that the optical clearing of normal and cancer esophagus tissues are improved after application of G.

  10. Radiosensitization of Aspergillus niger and Penicillium chrysogenum using basil essential oil and ionizing radiation for food decontamination.

    USDA-ARS?s Scientific Manuscript database

    The Minimum Inhibitory Concentration (MIC) of basil oil, was determined for two pathogenic fungi of rice, Aspergillus niger and Penicillium chrysogenum. The antifungal activity of the basil oil in combination with ionising radiation was then investigated to determine if basil oil caused radiosensit...

  11. Everything Old Is New Again: Using Nelfinavir to Radiosensitize Rectal Cancer

    PubMed Central

    Meyn, Raymond E.; Krishnan, Sunil; Skinner, Heath D.

    2016-01-01

    Summary Repurposing agents approved for other indications to radiosensitize tumors may be advantageous. The study by Hill and colleagues utilizes Nelfinavir, an HIV protease inhibitor, in combination with radiotherapy in rectal cancer in a prospective study. This combination may improve tumor perfusion and regression compared to radiotherapy alone. PMID:26920893

  12. Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy.

    PubMed

    Zhao, Jun; Zhou, Min; Li, Chun

    2016-01-01

    Radiotherapy has been, and will continue to be, a critical modality to treat cancer. Since the discovery of radiation-induced cytotoxicity in the late 19th century, both external and internal radiation sources have provided tremendous benefits to extend the life of cancer patients. Despite the dramatic improvement of radiation techniques, however, one challenge persists to limit the anti-tumor efficacy of radiotherapy, which is to maximize the deposited dose in tumor while sparing the rest of the healthy vital organs. Nanomedicine has stepped into the spotlight of cancer diagnosis and therapy during the past decades. Nanoparticles can potentiate radiotherapy by specifically delivering radionuclides or radiosensitizers into tumors, therefore enhancing the efficacy while alleviating the toxicity of radiotherapy. This paper reviews recent advances in synthetic nanoparticles for radiotherapy and radiosensitization, with a focus on the enhancement of in vivo anti-tumor activities. We also provide a brief discussion on radiation-associated toxicities as this is an area that, up to date, has been largely missing in the literature and should be closely examined in future studies involving nanoparticle-mediated radiosensitization.

  13. Vascular endothelial growth factor-C enhances radiosensitivity of lymphatic endothelial cells

    PubMed Central

    Kesler, Cristina T.; Kuo, Angera; Wong, Hon-Kit; Masuck, David J.; Shah, Jennifer L.; Kozak, Kevin; Held, Kathryn D.; Padera, Timothy P.

    2013-01-01

    Radiation therapy after lymph node dissection increases the risk of developing painful and incurable lymphedema in breast cancer patients. Lymphedema occurs when lymphatic vessels become unable to maintain proper fluid balance. The sensitivity of lymphatic endothelial cells (LECs) to ionizing radiation has not been reported to date. Here, the radiosensitivity of LECs in vitro has been determined using clonogenic survival assays. The ability of various growth factors to alter LEC radiosensitivity was also examined. Vascular endothelial growth factor (VEGF)-C enhanced radiosensitivity when LECs were treated prior to radiation. VEGF-C-treated LECs exhibited higher levels of entry into the cell cycle at the time of radiation, with a greater number of cells in the S and G2/M phases. These LECs showed higher levels of H2A.X—an indicator of DNA damage—after radiation. VEGF-C did not increase cell death as a result of radiation. Instead, it increased the relative number of quiescent LECs. These data suggest that abundant VEGF-C or lymphangiogenesis may predispose patients to radiation-induced lymphedema by impairing lymphatic vessel repair through induction of LEC quiescence. PMID:24201897

  14. Comprehensive Profiling of Radiosensitive Human Cell Lines with DNA Damage Response Assays Identifies the Neutral Comet Assay as a Potential Surrogate for Clonogenic Survival

    PubMed Central

    Nahas, Shareef A.; Davies, Robert; Fike, Francesca; Nakamura, Kotoka; Du, Liutao; Kayali, Refik; Martin, Nathan T.; Concannon, Patrick; Gatti, Richard A.

    2015-01-01

    In an effort to explore the possible causes of human radiosensitivity and identify more rapid assays for cellular radiosensitivity, we interrogated a set of assays that evaluate cellular functions involved in recognition and repair of DNA double-strand breaks: (1) neutral comet assay, (2) radiation-induced γ-H2AX focus formation, (3) the temporal kinetics of structural maintenance of chromosomes 1 phosphorylation, (4) intra-S-phase checkpoint integrity, and (5) mitochondrial respiration. We characterized a unique panel of 19 “radiosensitive” human lymphoblastoid cell lines from individuals with undiagnosed diseases suggestive of a DNA repair disorder. Radiosensitivity was defined by reduced cellular survival using a clonogenic survival assay. Each assay identified cell lines with defects in DNA damage response functions. The highest concordance rate observed, 89% (17/19), was between an abnormal neutral comet assay and reduced survival by the colony survival assay. Our data also suggested that the neutral comet assay would be a more rapid surrogate for analyzing DNA repair/processing disorders. PMID:21962002

  15. 53BP1 loss suppresses the radiosensitizing effect of icotinib hydrochloride in colorectal cancer cells.

    PubMed

    Huang, Ai; Yao, Jing; Liu, Tao; Lin, Zhenyu; Zhang, Sheng; Zhang, Tao; Ma, Hong

    2018-04-01

    This study aimed to investigate the influence of the expression of P53-binding protein 1 (53BP1), a key component in DNA damage repair pathways, on the radiosensitizing effect of icotinib hydrochloride in colorectal cancer and to elucidate the mechanisms underlying this influence. Real-time RT-PCR and Western blotting were performed to verify the gene-knockout effect of 53BP1 small hairpin RNA (ShRNA), and colony formation assay was employed to investigate the influence of 53BP1 downregulation on the radiosensitizing effect of icotinib hydrochloride in HCT116 cells. Cell apoptosis, cell cycle distributions, and histone H2AX (γ-H2AX) fluorescence foci after 53BP1 knockdown were evaluated. Relative protein expression in the ataxia telangiectasia mutated kinase (ATM)-checkpoint kinase-2 (CHK2)-P53 pathway was measured by Western blot analysis to unravel the molecular mechanisms linking the pathway to the above phenomena. Icotinib hydrochloride increased the radiosensitivity of HCT116 cells; however, this effect was suppressed by the downregulation of 53BP1 expression, a change that inhibited cell apoptosis, increased the percentage of HCT116 cells arrested in S-phase and inhibited the protein expression of key molecules in the ATM-CHK2-P53 apoptotic pathway. Our studies confirmed that the loss of 53BP1 serves as a negative regulator of the radiosensitizing effect of icotinib in part by suppressing the ATM-CHK2-P53 apoptotic pathway.

  16. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    PubMed Central

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects of gold nanoparticles with ionizing radiation. PMID:24899803

  17. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    PubMed

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects of gold nanoparticles with ionizing radiation.

  18. WE-G-BRE-08: Radiosensitization by Olaparib Eluting Nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangutoori, S; Kumar, R; Sridhar, S

    2014-06-15

    Purpose: Permanent prostate brachytherapy often uses inert bio-absorbable spacers to achieve the desired geometric distribution of sources within the prostate. Transforming these spacers into implantable nanoplatforms for chemo-radiation therapy (INCeRT) provides a means of providing sustained in-situ release of radiosensitizers in the prostate to enhance the therapeutic ratio of the procedure. Olaparib, a PARP inhibitor, suppresses DNA repair processes present during low dose rate continuous irradiation. This work investigates the radiosensitizing/DNA damage repair inhibition by NanoOlaparib eluting nanospheres. Methods: Human cell line PC3 (from ATCC), was maintained in F12-k medium supplemented with fetal bovine serum. Clonogenic assay kit (from Fischermore » Scientific) was used to fix and stain the cells to determine the long term effects of irradiation. Nanoparticle size and zeta potential of nanospheres were determined using a Zeta particle size analyzer. The incorporation of Olaparib in nanospheres was evaluated by HPLC. Irradiation was performed in a small animal irradiator operating at 220 KeV.The long term effects of radio-sensitization with olaparib and nanoolaparib was determined using the clonogenic assay at 2 Gy and 4 Gy doses. The cells were allowed to grow for around 10 doubling cycles, The colonies were fixed and stained using clonogenic assay kit. The excess stain was washed off using DI water and the images were taken using a digital camera. Results: Radiosensitization studies were carried out in prostate cancer cell line, PC3 radiation at 0, 2 and 4Gy doses. Strongest dose response was observed with nanoolaparib treated cells compared to untreated cells. Conclusion: A two stage drug release of drug eluting nanospheres from a biodegradable spacer has been suggested for sustained in-situ release of Olaparib to suppress DNA repair processes during prostate brachytherapy. The Olaparib eluting nanospheres had the same in-vitro radiosensitizing effect as free olaparib. DOD 1R21CA16977501, A. David Mazzone Awards Program 2012PD164.« less

  19. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigdeli, Bahareh, E-mail: bhr.bigdeli@ut.ac.ir

    Introduction: Radiotherapy is a potent treatment against breast cancer, which is the most commonly diagnosed cancer among women. However, the emergence of radioresistance due to increased DNA repair leads to radiotherapeutic failure. Applying polyphenols combined with radiation is a more promising method leading to better survival. Enterolactone, a phytoestrogenic polyphenol, has been reported to inhibit an important radioresistance signaling pathway, therefore we conjectured that enterolactone could enhance radiosensitivity in breast cancer. To assess this hypothesis, radiation response of enterolactone treated MDA-MB-231 and T47D cell lines and corresponding cellular mechanisms were investigated. Methods: Cytotoxicity of enterolactone was measured via MTT assay.more » Cells were treated with enterolactone before X-irradiation, and clonogenic assay was used to evaluate radiosensitivity. Cell cycle distribution and apoptosis were measured by flow cytometric analysis. In addition, DNA damages and corresponding repair, chromosomal damages, and aberrations were assessed by comet, micronucleus, and cytogenetic assays, respectively. Results: Enterolactone decreased the viability of cells in a concentration- and time dependent manner. Enterolactone significantly enhanced radiosensitivity of cells by abrogating G2/M arrest, impairing DNA repair, and increasing radiation-induced apoptosis. Furthermore, increased chromosomal damages and aberrations were detected in cells treated with enterolactone combined with X-rays than X-ray alone. These effects were more prominent in T47D than MDA-MB-231 cells. Discussion: To our knowledge, this is the first report that enterolactone is a novel radiosensitizer for breast cancer irrespective of estrogen receptor status. Authors propose enterolactone as a candidate for combined therapy to decrease the radiation dose delivered to patients and subsequent side effects. - Highlights: • Enterolactone is proposed to be a novel radiosensitizer for human breast cancer. • Enterolactone pretreatment enhances radiation induced apoptosis. • Enterolactone pretreatment impairs repair of radiation-induced DNA damages. • Chromosomal aberrations increases in cells receiving enterolactone and X-ray. • Micronuclei formation is elevated after combined treatment with enterolactone.« less

  20. A radiosensitivity gene signature and PD-L1 status predict clinical outcome of patients with invasive breast carcinoma in The Cancer Genome Atlas (TCGA) dataset.

    PubMed

    Jang, Bum-Sup; Kim, In Ah

    2017-09-01

    We investigated the link between the radiosensitivity gene signature and programmed cell death ligand 1 (PD-L1) status and clinical outcome in order to identify a group of patients that would possibly receive clinical benefit of radiotherapy (RT) combined with anti-PD1/PD-L1 therapy. We validated the identified gene signature related to radiosensitivity and analyzed the PD-L1 status of invasive breast cancer in The Cancer Genome Atlas (TCGA) dataset. To validate the gene signature, 1045 patients were selected and divided into two clusters using a consensus clustering algorithm based on their radiosensitive (RS) or radioresistant (RR) designation according to their prognosis. Patients were also stratified as PD-L1-high or PD-L1-low based on the median value of CD274 mRNA expression level as surrogates of PD-L1. Patents assigned to the RS group had decreased risk of recurrence-free survival (RFS) rate than patients in the RR group by univariate analysis (HR 0.45, 95% CI 0.25-0.81, p=0.008) only when treated with RT. The RS group was independently associated with the PD-L1-high group, and CD274 mRNA expression was significantly higher in the RS group (p<0.001) than the RR group. In the PD-L1-high group, the RS group was associated with better RFS compared to the RR group (HR 0.37, 95% CI 0.16-0.87, p=0.022) in multivariate analysis. The level of PD-L1 expression may represent the immunogenicity of tumors, and thus, we speculated that the PD-L1-high group had more immunogenic tumors, which could be more sensitive to radiation-induced immunologic cell death. We first evaluated the predictive value of the radiosensitivity gene signature and described a relationship with this radiosensitivity gene signature and PD-L1. The radiosensitivity gene signature and PD-L1 status were important factors for prediction of the clinical outcome of RT in patients with invasive breast cancer and may be used for selecting patients who will benefit from RT combined with anti-PD1/PDL1 therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A novel small molecule inhibitor of MDM2-p53 (APG-115) enhances radiosensitivity of gastric adenocarcinoma.

    PubMed

    Yi, Hanjie; Yan, Xianglei; Luo, Qiuyun; Yuan, Luping; Li, Baoxia; Pan, Wentao; Zhang, Lin; Chen, Haibo; Wang, Jing; Zhang, Yubin; Zhai, Yifan; Qiu, Miao-Zhen; Yang, Da-Jun

    2018-05-02

    Gastric cancer is the leading cause of cancer related death worldwide. Radiation alone or combined with chemotherapy plays important role in locally advanced and metastatic gastric adenocarcinoma. MDM2-p53 interaction and downstream signaling affect cellular response to DNA damage which leads to cell cycle arrest and apoptosis. Therefore, restoring p53 function by inhibiting its interaction with MDM2 is a promising therapeutic strategy for cancer. APG-115 is a novel small molecule inhibitor which blocks the interaction of MDM2 and p53. In this study, we investigated that the radiosensitivity of APG-115 in gastric adenocarcinoma in vitro and in vivo. The role of APG-115 in six gastric cancer cells viability in vitro was determined by CCK-8 assay. The expression level of MDM2, p21, PUMA and BAX in AGS and MKN45 cell lines was measured via real-time PCR (RT-PCR). The function of treatment groups on cell cycle and cell apoptosis were detected through Flow Cytometry assay. Clonogenic assays were used to measure the radiosensitivity of APG-115 in p53 wild type gastric cancer cell lines. Western blot was conducted to detect the protein expressions of mdm2-p53 signal pathway. Xenograft models in nude mice were established to explore the radiosensitivity role of APG-115 in gastric cancer cells in vivo. We found that radiosensitization by APG-115 occurred in p53 wild-type gastric cancer cells. Increasing apoptosis and cell cycle arrest was observed after administration of APG-115 and radiation. Radiosensitivity of APG-115 was mainly dependent on MDM2-p53 signal pathway. In vivo, APG-115 combined with radiation decreased xenograft tumor growth much more significantly than either single treatment. Moreover, the number of proliferating cells (Ki-67) significantly decreased in combination group compared with single treatment group. In summary, we found that combination of MDM2-p53 inhibitor (APG-115) and radiotherapy can enhance antitumor effect both in vitro and in vivo. This is the first report on radiosensitivity of APG-115 which shed light on clinical trial of the combination therapy of radiation with APG-115 in gastric adenocarcinoma.

  2. SU-C-12A-07: Effect of Vertical Position On Dose Reduction Using X-Care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silosky, M; Marsh, R

    Purpose: Reduction of absorbed dose to radiosensitive tissues is an important goal in diagnostic radiology. Siemens Medical has introduced a technique (X-CARE) to lower CT dose to anterior anatomy by reducing the tube current during 80° of rotation over radiosensitive tissues. Phantom studies have shown 30-40% dose reduction when phantoms are positioned at isocenter. However, for CT face and sinus exams, the center of the head is commonly positioned below isocenter. This work investigated the effects of vertical patient positioning on dose reduction using X-CARE. Methods: A 16cm Computed Tomography Dose Index phantom was scanned on a Siemens Definition Flashmore » CT scanner using a routine head protocol, with the phantom positioned at scanner isocenter. Optically stimulated luminescent dosimeters were placed on the anterior and posterior sides of the phantom. The phantom was lowered in increments of 2cm and rescanned, up to 8cm below isocenter. The experiment was then repeated using the same scan parameters but adding the X-CARE technique. The mean dosimeter counts were determined for each phantom position, and the difference between XCARE and routine scans was plotted as a function of distance from isocenter. Results: With the phantom positioned at isocenter, using XCARE reduced dose to the anterior side of the phantom by 40%, compared to dose when X-CARE was not used. Positioned below isocenter, anterior dose was reduced by only 20-27%. Additionally, using X-CARE at isocenter reduced dose to the anterior portion of the phantom by 45.6% compared to scans performed without X-CARE 8cm below isocenter. Conclusion: While using X-CARE substantially reduced dose to the anterior side of the phantom, this effect was diminished when the phantom was positioned below isocenter, simulating common practice for face and sinus scans. This indicates that centering the head in the gantry will maximize the effect of X-CARE.« less

  3. Co-application of canavanine and irradiation uncouples anticancer potential of arginine deprivation from citrulline availability

    PubMed Central

    Kurlishchuk, Yuliya; Vynnytska-Myronovska, Bozhena; Grosse-Gehling, Philipp; Bobak, Yaroslav; Manig, Friederike; Chen, Oleg; Merker, Sebastian R.; Henle, Thomas; Löck, Steffen; Stange, Daniel E.; Stasyk, Oleh; Kunz, Leoni A.

    2016-01-01

    The moderate anticancer effect of arginine deprivation in clinical trials has been linked to an induced argininosuccinate synthetase (ASS1) expression in initially ASS1-negative tumors, and ASS1-positive cancers are anticipated as non-responders. Our previous studies indicated that arginine deprivation and low doses of the natural arginine analog canavanine can enhance radioresponse. However, the efficacy of the proposed combination in the presence of extracellular citrulline, the substrate for arginine synthesis by ASS1, remains to be elucidated, in particular for malignant cells with positive and/or inducible ASS1 as in colorectal cancer (CRC). Here, the physiological citrulline concentration of 0.05 mM was insufficient to overcome cell cycle arrest and radiosensitization triggered by arginine deficiency. Hyperphysiological citrulline (0.4 mM) did not entirely compensate for the absence of arginine and significantly decelerated cell cycling. Similar levels of canavanine-induced apoptosis were detected in the absence of arginine regardless of citrulline supplementation both in 2-D and advanced 3-D assays, while normal colon epithelial cells in organoid/colonosphere culture were unaffected. Notably, canavanine tremendously enhanced radiosensitivity of arginine-starved 3-D CRC spheroids even in the presence of hyperphysiological citrulline. We conclude that the novel combinatorial targeting strategy of metabolic-chemo-radiotherapy has great potential for the treatment of malignancies with inducible ASS1 expression. PMID:27689335

  4. Co-application of canavanine and irradiation uncouples anticancer potential of arginine deprivation from citrulline availability.

    PubMed

    Kurlishchuk, Yuliya; Vynnytska-Myronovska, Bozhena; Grosse-Gehling, Philipp; Bobak, Yaroslav; Manig, Friederike; Chen, Oleg; Merker, Sebastian R; Henle, Thomas; Löck, Steffen; Stange, Daniel E; Stasyk, Oleh; Kunz-Schughart, Leoni A

    2016-11-08

    The moderate anticancer effect of arginine deprivation in clinical trials has been linked to an induced argininosuccinate synthetase (ASS1) expression in initially ASS1-negative tumors, and ASS1-positive cancers are anticipated as non-responders. Our previous studies indicated that arginine deprivation and low doses of the natural arginine analog canavanine can enhance radioresponse. However, the efficacy of the proposed combination in the presence of extracellular citrulline, the substrate for arginine synthesis by ASS1, remains to be elucidated, in particular for malignant cells with positive and/or inducible ASS1 as in colorectal cancer (CRC). Here, the physiological citrulline concentration of 0.05 mM was insufficient to overcome cell cycle arrest and radiosensitization triggered by arginine deficiency. Hyperphysiological citrulline (0.4 mM) did not entirely compensate for the absence of arginine and significantly decelerated cell cycling. Similar levels of canavanine-induced apoptosis were detected in the absence of arginine regardless of citrulline supplementation both in 2-D and advanced 3-D assays, while normal colon epithelial cells in organoid/colonosphere culture were unaffected. Notably, canavanine tremendously enhanced radiosensitivity of arginine-starved 3-D CRC spheroids even in the presence of hyperphysiological citrulline. We conclude that the novel combinatorial targeting strategy of metabolic-chemo-radiotherapy has great potential for the treatment of malignancies with inducible ASS1 expression.

  5. Radiation-induced chromosome aberrations in ataxia telangiectasia cells: high frequency of deletions and misrejoining detected by fluorescence in situ hybridization

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Uno, Takashi; Isobe, Kouichi; Cucinotta, Francis A.

    2003-01-01

    The mechanisms underlying the hyper-radiosensitivity of AT cells were investigated by analyzing chromosome aberrations in the G(2) and M phases of the cell cycle using a combination of chemically induced premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH) with chromosome painting probes. Confluent cultures of normal fibroblast cells (AG1522) and fibroblast cells derived from an individual with AT (GM02052) were exposed to gamma rays and allowed to repair at 37 degrees C for 24 h. At doses that resulted in 10% survival, GM02052 cells were approximately five times more sensitive to gamma rays than AG1522 cells. For a given dose, GM02052 cells contained a much higher frequency of deletions and misrejoining than AG1522 cells. For both cell types, a good correlation was found between the percentage of aberrant cells and cell survival. The average number of color junctions, which represent the frequency of chromosome misrejoining, was also found to correlate well with survival. However, in a similar surviving population of GM02052 and AG1522 cells, induced by 1 Gy and 6 Gy, respectively, AG1522 cells contained four times more color junctions and half as many deletions as GM02052 cells. These results indicate that both repair deficiency and misrepair may be involved in the hyper-radiosensitivity of AT cells.

  6. Radiation-induced chromosome aberrations in ataxia telangiectasia cells: high frequency of deletions and misrejoining detected by fluorescence in situ hybridization.

    PubMed

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Uno, Takashi; Isobe, Kouichi; Cucinotta, Francis A

    2003-05-01

    The mechanisms underlying the hyper-radiosensitivity of AT cells were investigated by analyzing chromosome aberrations in the G(2) and M phases of the cell cycle using a combination of chemically induced premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH) with chromosome painting probes. Confluent cultures of normal fibroblast cells (AG1522) and fibroblast cells derived from an individual with AT (GM02052) were exposed to gamma rays and allowed to repair at 37 degrees C for 24 h. At doses that resulted in 10% survival, GM02052 cells were approximately five times more sensitive to gamma rays than AG1522 cells. For a given dose, GM02052 cells contained a much higher frequency of deletions and misrejoining than AG1522 cells. For both cell types, a good correlation was found between the percentage of aberrant cells and cell survival. The average number of color junctions, which represent the frequency of chromosome misrejoining, was also found to correlate well with survival. However, in a similar surviving population of GM02052 and AG1522 cells, induced by 1 Gy and 6 Gy, respectively, AG1522 cells contained four times more color junctions and half as many deletions as GM02052 cells. These results indicate that both repair deficiency and misrepair may be involved in the hyper-radiosensitivity of AT cells.

  7. Relative efficacy for radiation reducing methods in scoliotic patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikenhead, J.; Triano, J.; Baker, J.

    Radiation dosages to sensitive organs in full spine radiography have in recent years been a concern of physicians as well as the general public. The spine is the prime target for exposure in scoliosis radiography, though the exposure usually necessitates irradiation of several radio-sensitive organs. In recent studies, various protection techniques have been used including various lead and aluminum filtration systems, altered patient positioning and varied tube-film distances. The purpose of this study was to evaluate the efficiency for radiation dosage reduction of three filtration systems used frequently in the chiropractic profession. The systems tested were the Nolan Multiple X-raymore » Filters, the Clear-Pb system and the Sportelli Wedge system. These systems were tested in seven configurations varying breast shielding, distance and patient positioning. All systems tested demonstrated significant radiation reductions to organs, especially breast tissue. The Clear-Pb system appeared to be the most effective for all organs except the breast, and the Sportelli Wedge system demonstrated the greatest reduction to breast tissue.« less

  8. Evaluation of the efficacy of radiation-modifying compounds using γH2AX as a molecular marker of DNA double-strand breaks.

    PubMed

    Mah, Li-Jeen; Orlowski, Christian; Ververis, Katherine; Vasireddy, Raja S; El-Osta, Assam; Karagiannis, Tom C

    2011-01-25

    Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds.

  9. Evaluation of the efficacy of radiation-modifying compounds using γH2AX as a molecular marker of DNA double-strand breaks

    PubMed Central

    2011-01-01

    Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds. PMID:21261999

  10. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    PubMed

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P < 0.05) and higher than in middle and remote paraneoplastic tissue (P < 0.01). There was no statistically significant difference between the expression of these genes in middle and proximal paraneoplastic tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  11. Predicting Sensitivity of Breast Tumors to Src-targeted Therapies Through Assessment of Cas/Src/BCAR3 Activity

    DTIC Science & Technology

    2017-10-01

    expression is elevated in DCIS samples compared to normal mammary tissue, invasive ductal carcinoma (IDC) compared to normal mammary tissue, and DCIS... compared to IDC. (2) BCAR3 is significantly upregulated in triple negative breast cancer and normal tissue; (3) BCAR3 expression shows a modest...expression was seen to be elevated in DCIS samples compared to normal mammary tissue, invasive ductal carcinoma (IDC) compared to normal mammary tissue, and

  12. Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.-H. Y.; Cucinotta, F. A.; Badavi, F. F.; Atwell, W.

    1999-01-01

    The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.

  13. Distinctive Glycerophospholipid Profiles of Human Seminoma and Adjacent Normal Tissues by Desorption Electrospray Ionization Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Masterson, Timothy A.; Dill, Allison L.; Eberlin, Livia S.; Mattarozzi, Monica; Cheng, Liang; Beck, Stephen D. W.; Bianchi, Federica; Cooks, R. Graham

    2011-08-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) has been successfully used to discriminate between normal and cancerous human tissue from different anatomical sites. On the basis of this, DESI-MS imaging was used to characterize human seminoma and adjacent normal tissue. Seminoma and adjacent normal paired human tissue sections (40 tissues) from 15 patients undergoing radical orchiectomy were flash frozen in liquid nitrogen and sectioned to 15 μm thickness and thaw mounted to glass slides. The entire sample was two-dimensionally analyzed by the charged solvent spray to form a molecular image of the biological tissue. DESI-MS images were compared with formalin-fixed, hematoxylin and eosin (H&E) stained slides of the same material. Increased signal intensity was detected for two seminolipids [seminolipid (16:0/16:0) and seminolipid (30:0)] in the normal tubule testis tissue; these compounds were undetectable in seminoma tissue, as well as from the surrounding fat, muscle, and blood vessels. A glycerophosphoinositol [PI(18:0/20:4)] was also found at increased intensity in the normal testes tubule tissue when compared with seminoma tissue. Ascorbic acid (i.e., vitamin C) was found at increased amounts in seminoma tissue when compared with normal tissue. DESI-MS analysis was successfully used to visualize the location of several types of molecules across human seminoma and normal tissues. Discrimination between seminoma and adjacent normal testes tubules was achieved on the basis of the spatial distributions and varying intensities of particular lipid species as well as ascorbic acid. The increased presence of ascorbic acid within seminoma compared with normal seminiferous tubules was previously unknown.

  14. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttmann, David M.; Hart, Lori; Du, Kevin

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cellmore » lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.« less

  15. Antitumor and radiosensitizing synergistic effects of apigenin and cryptotanshinone against solid Ehrlich carcinoma in female mice.

    PubMed

    Medhat, Amina M; Azab, Khaled Sh; Said, Mahmoud M; El Fatih, Neama M; El Bakary, Nermeen M

    2017-10-01

    Considerable attention has been paid to the introduction of novel naturally occurring plant-derived radiosensitizer compounds in order to augment the radiation efficacy and improve the treatment outcome of different tumors. This study was therefore undertaken to evaluate the antitumor, antiangiogeneic, and synergistic radiosensitizing effects of apigenin, a dietary flavonoid, and/or cryptotanshinone, a terpenoid isolated from the roots of Salvia miltiorrhiza, against the growth of solid Ehrlich carcinoma in female mice. Apigenin (50 mg/kg body weight) and/or cryptotanshinone (40 mg/kg body weight) was intraperitoneally (i.p.) injected into non-irradiated or γ-irradiated (6.5 Gy whole-body γ-irradiation) solid Ehrlich carcinoma-bearing mice for 30 consecutive days. Investigations included molecular targets involved in proliferation, inflammation, angiogenesis, and tumor invasiveness. Treatment with apigenin and/or cryptotanshinone significantly suppressed the growth of solid Ehrlich carcinoma tumors and demonstrated a synergistic radiosensitizing efficacy together with γ-irradiation. These effects were achieved through downregulating the expression of angiogenic and lymphangiogenic regulators, including signal transducer and activator of transcription 3, vascular endothelial growth factor C, and tumor necrosis factor alpha, suppressing matrix metalloproteinase-2 and -9 activities, which play a key role in tumor invasion and metastasis, and enhancing apoptosis via inducing cleaved caspase-3 and granzyme B levels. Histological findings of solid Ehrlich carcinoma tumors verified the recorded data. In conclusion, a synergistic radiosensitizing efficacy for apigenin and cryptotanshinone was demonstrated against Ehrlich carcinoma in the current in vivo murine model, representing therefore a potential therapeutic strategy for increasing the radiation response of solid tumors.

  16. Inhibition of Hsp27 radiosensitizes head-and-neck cancer by modulating deoxyribonucleic acid repair.

    PubMed

    Guttmann, David M; Hart, Lori; Du, Kevin; Seletsky, Andrew; Koumenis, Constantinos

    2013-09-01

    To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer. Copyright © 2013. Published by Elsevier Inc.

  17. Effects of depletion of dihydropyrimidine dehydrogenase on focus formation and RPA phosphorylation.

    PubMed

    Someya, Masanori; Sakata, Koh-ichi; Matsumoto, Yoshihisa; Tauchi, Hiroshi; Kai, Masahiro; Hareyama, Masato; Fukushima, Masakazu

    2012-01-01

    Gimeracil, an inhibitor of dihydropyrimidine dehydrogenase (DPYD), partially inhibits homologous recombination (HR) repair and has a radiosensitizing effect as well as enhanced sensitivity to Camptothecin (CPT). DPYD is the target protein for radiosensitization by Gimeracil. We investigated the mechanisms of sensitization of radiation and CPT by DPYD inhibition using DLD-1 cells treated with siRNA for DPYD. We investigated the focus formation of various kinds of proteins involved in HR and examined the phosphorylation of RPA by irradiation using Western blot analysis. DPYD depletion by siRNA significantly restrained the formation of radiation-induced foci of Rad51 and RPA, whereas it increased the number of foci of NBS1. The numbers of colocalization of NBS1 and RPA foci in DPYD-depleted cells after radiation were significantly smaller than in the control cells. These results suggest that DPYD depletion is attributable to decreased single-stranded DNA generated by the Mre11/Rad50/NBS1 complex-dependent resection of DNA double-strand break ends. The phosphorylation of RPA by irradiation was partially suppressed in DPYD-depleted cells, suggesting that DPYD depletion may partially inhibit DNA repair with HR by suppressing phosphorylation of RPA. DPYD depletion showed a radiosensitizing effect as well as enhanced sensitivity to CPT. The radiosensitizing effect of DPYD depletion plus CPT was the additive effect of DPYD depletion and CPT. DPYD depletion did not have a cell-killing effect, suggesting that DPYD depletion may not be so toxic. Considering these results, the combination of CPT and drugs that inhibit DPYD may prove useful for radiotherapy as a method of radiosensitization.

  18. Andrographolide radiosensitizes human esophageal cancer cell line ECA109 to radiation in vitro.

    PubMed

    Wang, Z-M; Kang, Y-H; Yang, X; Wang, J-F; Zhang, Q; Yang, B-X; Zhao, K-L; Xu, L-P; Yang, L-P; Ma, J-X; Huang, G-H; Cai, J; Sun, X-C

    2016-01-01

    To explore the radiosensitivity of andrographolide on esophageal cancer cell line ECA109. The inhibition effects of andrographolide were measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. Clonogenic survival assay was used to evaluate the effects of andrographolide on the radiosensitivity of esophageal cancer cells. Immunofluorescence was employed to examine Bax expression. The changes in cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of NF-κb/Cleaved-Caspase3/Bax/Bcl-2 was measured using Western blot analysis. DNA damage was detected via γ-H2AX foci counting. With a clear dose and time effects, andrographolide was found to inhibit the proliferation of esophageal cell line ECA109. The results of the clonogenic survival assay show that andrographolide could markedly enhance radiosensitivity (P < 0.05) with a sensitizing enhancement ratio of 1.28. Andrographolide caused a dose-dependent increase in Cleaved-Caspase3/Bax protein expression and a decrease in Bcl-2/NF-κb expression. Apoptosis in andrographolide-treated ECA-109 increased significantly compared with the apoptosis in the simple drug and radiation combined with drug groups (P < 0.001; P < 0.05). Moreover, compared with the independent radiation group, the andrographolide combined with radiation group increased the number of DNA double chain breaks. Andrographolide can increase the radiosensitivity of esophageal cell line ECA109. This result may be associated with the decrease in the NF-κb level and the induced apoptosis of esophageal cancer cells. © 2014 International Society for Diseases of the Esophagus.

  19. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Shu-Jun, E-mail: chiusj@mail.tcu.edu.tw; Institute of Radiation Sciences, Tzu Chi Technology College, Hualien, Taiwan; Hsaio, Ching-Hui

    2010-04-09

    Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors {gamma} used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116more » cells, and prolonged radiation-induced G{sub 2}/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.« less

  20. TRAIL overexpression co-regulated by Egr1 and HRE enhances radiosensitivity of hypoxic A549 cells depending on its apoptosis inducing role.

    PubMed

    Yang, Yan-Ming; Fang, Fang; Li, Xin; Yu, Lei; Wang, Zhi-Cheng

    2017-01-01

    Ionizing radiation can upregulate the expression levels of TRAIL and enhance tumor cell apoptosis. While Early growth response 1 (Egr1) gene promoter has radiation inducible characteristics, the expression for exogenous gene controlled by Egr1 promoter could be enhanced by ionizing radiation, but its efficiency is limited by tissue hypoxia. Hypoxia response elements (HREs) are important hypoxic response regulatory sequences and sensitivity enhancers. Therefore, we chose TRAIL as the gene radiotherapy to observe whether it is regulated by Egr1 and HER and its effects on A549 cells and its mechanism. The pcDNA3.1-Egr1-TRAIL (pc-E-hsT) and pcDNA3.1-HRE/Egr1-TRAIL (pc-H/E-hsT) plasmids containing Egr1-hsTRAIL and HRE/Egr1-hsTRAIL were transfected into A549 cells, the cells were treated by hypoxia and radiation. The TRAIL mRNA in the cells and protein concentration in the culture supernatants were measured by RT-PCR and ELISA, respectively. Mean lethal dose D0 value was evaluated with colony forming assay. The cell apoptotic rates were analyzed by FCM and TUNEL assay. Expression of DR4, DR5 and cleaved caspase-3 proteins were analyzed by western blotting. It showed that TRAIL mRNA expression and TRAIL concentration all significantly increased under hypoxia and/or radiation. D0 value of pc-H/E‑hsT transfected cells under hypoxia was lowest, indicating more high radiosensitivity. Hypoxia could not cause the pc-E-hsT transfected cell apoptotic rate increase, but there were promoting effects in pc-H/E-hsT transfected cells. DR4 had not obvious change in pc-E-hsT and pc-H/E-hsT transfected cells under normoxic and hypoxic condition, otherwise, DR5 and cleaved caspase-3 increased mostly in pc-H/E-hsT transfected cells under hypoxic condition. TRAIL overexpression was co-regulated by Egr1 and HRE. TRAIL might promote hypoxic A549 cell radiosensitivity and induce apoptosis depending on DR5 to caspase-3 pathways.

  1. Medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and invention of boron tracedrugs as innovative future-architectural drugs.

    PubMed

    Hori, Hitoshi; Uto, Yoshihiro; Nakata, Eiji

    2010-09-01

    We describe herein for the first time our medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and boron tracedrugs as newly emerging drug classes. A new area of antineoplastic drugs and treatments has recently focused on neoplastic cells of the tumor environment/microenvironment involving accessory cells. This tumor hypoxic environment is now considered as a major factor that influences not only the response to antineoplastic therapies but also the potential for malignant progression and metastasis. We review our medicinal electronomics bricolage design of hypoxia-targeting drugs, antiangiogenic hypoxic cell radiosensitizers, sugar-hybrid hypoxic cell radiosensitizers, and hypoxia-targeting 10B delivery agents, in which we design drug candidates based on their electronic structures obtained by molecular orbital calculations, not based solely on pharmacophore development. These drugs include an antiangiogenic hypoxic cell radiosensitizer TX-2036, a sugar-hybrid hypoxic cell radiosensitizer TX-2244, new hypoxia-targeting indoleamine 2,3-dioxygenase (IDO) inhibitors, and a hypoxia-targeting BNCT agent, BSH (sodium borocaptate-10B)-hypoxic cytotoxin tirapazamine (TPZ) hybrid drug TX-2100. We then discuss the concept of boron tracedrugs as a new drug class having broad potential in many areas.

  2. Radiosensitization: enhancing the radiation inactivation of foodborne bacteria

    NASA Astrophysics Data System (ADS)

    Borsa, J.; Lacroix, M.; Ouattara, B.; Chiasson, F.

    2004-09-01

    Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D10. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.

  3. Radiosensitization of human glioma cells by tamoxifen is associated with the inhibition of PKC-ι activity in vitro.

    PubMed

    Yang, Lei; Yuan, Xiaopeng; Wang, Jie; Gu, Cheng; Zhang, Haowen; Yu, Jiahua; Liu, Fenju

    2015-07-01

    The present study aimed to investigate the radiosensitizing effects of tamoxifen (TAM), a non-steroidal anti-estrogen drug, in human glioma A172 and U251 cells in vitro . A colony-forming assay revealed that TAM enhances radiosensitivity in A172 and U251 cells. Treatment with TAM also increased the percentage of apoptotic cells subsequent to ionizing radiation, and increased the expression of apoptotic markers, including cleaved caspase-3 and poly(ADP-ribose) polymerase. Ionizing radiation induced G2/M phase arrest, which was alleviated within 24 h when the radiation-induced DNA damage was repaired. However, flow cytometry analysis revealed that TAM treatment delayed the recovery of cell cycle progression. Additional examination demonstrated that TAM-mediated protein kinase C-ι (PKC-ι) inhibition may lead to the activation of pro-apoptotic B-cell lymphoma 2-associated death promoter, and the dephosphorylation of cyclin-dependent kinase 7, resulting in increased cell apoptosis and sustained G2/M phase arrest following exposure to radiation. The present data indicate that the radiosensitizing effects of TAM on glioma cells are partly due to the inhibition of PKC-ι activity in vitro .

  4. Magnetic resonance imaging of pancreatitis: An update

    PubMed Central

    Manikkavasakar, Sriluxayini; AlObaidy, Mamdoh; Busireddy, Kiran K; Ramalho, Miguel; Nilmini, Viragi; Alagiyawanna, Madhavi; Semelka, Richard C

    2014-01-01

    Magnetic resonance (MR) imaging plays an important role in the diagnosis and staging of acute and chronic pancreatitis and may represent the best imaging technique in the setting of pancreatitis due to its unmatched soft tissue contrast resolution as well as non-ionizing nature and higher safety profile of intravascular contrast media, making it particularly valuable in radiosensitive populations such as pregnant patients, and patients with recurrent pancreatitis requiring multiple follow-up examinations. Additional advantages include the ability to detect early forms of chronic pancreatitis and to better differentiate adenocarcinoma from focal chronic pancreatitis. This review addresses new trends in clinical pancreatic MR imaging emphasizing its role in imaging all types of acute and chronic pancreatitis, pancreatitis complications and other important differential diagnoses that mimic pancreatitis. PMID:25356038

  5. Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples.

    PubMed

    Elloumi, Fathi; Hu, Zhiyuan; Li, Yan; Parker, Joel S; Gulley, Margaret L; Amos, Keith D; Troester, Melissa A

    2011-06-30

    Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification. To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors. Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability. Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.

  6. Particle Radiation signals the Expression of Genes in stress-associated Pathways

    NASA Astrophysics Data System (ADS)

    Blakely, E.; Chang, P.; Bjornstad, K.; Dosanjh, M.; Cherbonnel, C.; Rosen, C.

    The explosive development of microarray screening methods has propelled genome research in a variety of biological systems allowing investigators to examine large-scale alterations in gene expression for research in toxicology pathology and therapy The radiation environment in space is complex and encompasses a variety of highly energetic and charged particles Estimation of biological responses after exposure to these types of radiation is important for NASA in their plans for long-term manned space missions Instead of using the 10 000 gene arrays that are in the marketplace we have chosen to examine particle radiation-induced changes in gene expression using a focused DNA microarray system to study the expression of about 100 genes specifically associated with both the upstream and downstream aspects of the TP53 stress-responsive pathway Genes that are regulated by TP53 include functional clusters that are implicated in cell cycle arrest apoptosis and DNA repair A cultured human lens epithelial cell model Blakely et al IOVS 41 3808 2000 was used for these studies Additional human normal and radiosensitive fibroblast cell lines have also been examined Lens cells were grown on matrix-coated substrate and exposed to 55 MeV u protons at the 88 cyclotron in LBNL or 1 GeV u Iron ions at the NASA Space Radiation Laboratory The other cells lines were grown on conventional tissue culture plasticware RNA and proteins were harvested at different times after irradiation RNA was isolated from sham-treated or select irradiated populations

  7. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis

    DOE PAGES

    Almeida-Porada, Graca; Rodman, Christopher; Kuhlman, Bradford; ...

    2018-04-26

    The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human HSC to simulated SEP and GCRmore » radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In the present study, we performed the first in depth examination to define changes that occur in mesenchymal stem cells (MSC) present in the human BM niche following exposure to accelerated protons and iron ions, and assess the impact these changes have upon human hematopoiesis. Here, our data thus provides compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called “biological bystander effects” by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.« less

  8. Biology of high single doses of IORT: RBE, 5 R's, and other biological aspects.

    PubMed

    Herskind, Carsten; Ma, Lin; Liu, Qi; Zhang, Bo; Schneider, Frank; Veldwijk, Marlon R; Wenz, Frederik

    2017-01-19

    Intraoperative radiotherapy differs from conventional, fractionated radiotherapy in several aspects that may influence its biological effect. The radiation quality influences the relative biologic effectiveness (RBE), and the role of the five R's of radiotherapy (reassortment, repair, reoxygenation, repopulation, radiosensitivity) is different. Furthermore, putative special biological effects and the small volume receiving a high single dose may be important. The present review focuses on RBE, repair, and repopulation, and gives an overview of the other factors that potentially contribute to the efficacy. The increased RBE should be taken into account for low-energy X-rays while evidence of RBE < 1 for high-energy electrons at higher doses is presented. Various evidence supports a hypothesis that saturation of the primary DNA double-strand break (DSB) repair mechanisms leads to increasing use of an error-prone backup repair system leading to genomic instability that may contribute to inactivate tumour cells at high single doses. Furthermore, the elimination of repopulation of residual tumour cells in the tumour bed implies that some patients are likely to have very few residual tumour cells which may be cured even by low doses to the tumour bed. The highly localised dose distribution of IORT has the potential to inactivate tumour cells while sparing normal tissue by minimising the volume exposed to high doses. Whether special effects of high single doses also contribute to the efficacy will require further experimental and clinical studies.

  9. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida-Porada, Graca; Rodman, Christopher; Kuhlman, Bradford

    The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human HSC to simulated SEP and GCRmore » radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In the present study, we performed the first in depth examination to define changes that occur in mesenchymal stem cells (MSC) present in the human BM niche following exposure to accelerated protons and iron ions, and assess the impact these changes have upon human hematopoiesis. Here, our data thus provides compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called “biological bystander effects” by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.« less

  10. Mice heterozygous for the ATM gene are more sensitive to both X-ray and heavy ion exposure than are wildtypes

    NASA Astrophysics Data System (ADS)

    Worgul, B. V.; Smilenov, L.; Brenner, D. J.; Vazquez, M.; Hall, E. J.

    Previous studies have shown that the eyes of ATM heterozygous mice exposed to low-LET radiation (X-rays) are significantly more susceptible to the development of cataracts than are those of wildtype mice. The findings, as well as others, run counter to the assumption underpinning current radiation safety guidelines, that individuals are all equally sensitive to the biological effects of radiation. A question, highly relevant to human space activities is whether or not, in similar fashion there may exist a genetic predisposition to high-LET radiation damage. Mice haplodeficient for the ATM gene and wildtypes were exposed to 325 mGy of 1 GeV/amu 56Fe ions at the AGS facility of Brookhaven National Laboratory. The fluence was equivalent to 1 ion per lens epithelial cell nuclear area. Controls consisted of irradiated wildtype as well as unirradiated wildtype and heterozygous mice. Prevalence analyses for stage 0.5-3.0 cataracts indicated that not only cataract onset but also progression were accelerated in the mice haplo-deficient for the ATM gene. The data show that heterozygosity for the ATM gene predisposes the eye to the cataractogenic influence of heavy ions and suggest that ATM heterozygotes in the human population may also be radiosensitive. This may have to be considered in the selection of individuals who will be exposed to both HZE particles and low-LET radiation as they may be predisposed to increased late normal tissue damage.

  11. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis.

    PubMed

    Almeida-Porada, Graça; Rodman, Christopher; Kuhlman, Bradford; Brudvik, Egil; Moon, John; George, Sunil; Guida, Peter; Sajuthi, Satria P; Langefeld, Carl D; Walker, Stephen J; Wilson, Paul F; Porada, Christopher D

    2018-04-26

    The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human hematopoietic stem cells (HSC) to simulated solar energetic particle (SEP) and galactic cosmic ray (GCR) radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In this study, we performed the first in-depth examination to define changes that occur in mesenchymal stem cells present in the human BM niche following exposure to accelerated protons and iron ions and assess the impact these changes have upon human hematopoiesis. Our data provide compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called "biological bystander effects" by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.

  12. TH-E-BRD-01: Innovation in (gold) Nanoparticle-Enhanced Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, S; Chithrani, B; Berbeco, R

    2014-06-15

    Radiation therapy relies on the concept of delivering high dose to tumor volumes whilst simultaneously aiming to minimize irradiation of healthy tissue. Gold and other metallic nanoparticles (GNPs) have the potential to greatly enhance dose depositions in their close proximity. While it was originally thought that this effect would only be significant for kV photon beams, it has been shown that GNPs also enhance dose and increase cell killing and survival fraction for MV photons as well as protons. GNPs have been shown to be preferentially taken up in tumors, depending on the GNP properties either internalized in the tumormore » cells or clustering in the tumor vasculature. Therefore GNPs offer an intriguing additional option to target the tumor while sparing healthy tissue. While a growing amount of research shows GNP induced enhancement factors in the order of 1.5 and higher, GNPs have not yet entered into clinical routine. In this symposium we will have three presentations discussing the current status of GNP based research, the potential to include GNPs in radiation therapy and the limitations and problems to use GNPs in the clinic. Physical and biological underpinnings of radiosensitization with gold nano particles An evolving body of recent literature alludes to the potential to sensitize tumors to radiation therapy using metallic nanoparticles. In preclinical studies, the techniques that hold promise for eventual clinical deployment are nanoparticle-assisted radiation dose enhancement and hyperthermic radiosensitization. To understand the underlying nanoparticle-radiation interactions, computational techniques offer an explanation for and predict the biophysical consequences at a nano-/meso-scopic scale. Nonetheless, there are persisting gaps in knowledge relating to the molecular mechanism of action of these radiosensitization approaches — some of these issues will be addressed. Since the literature relating to the diverse disciplines involved in these efforts spans across multiple specialties (clinical radiation oncology, radiation physics, radiation biology, nanotechnology, material science, biomedical engineering, pharmacology, chemistry, and tumor biology) and numerous specialty journals, there is no single compilation of extant research in this arena or forum for merging analogous concepts and paradigms. This symposium will provide such a venue — my presentation will start with familiarizing the audience with the potential applications of metallic nanoparticles in radiation therapy using specific illustrative examples and begin to explore ways to understand the underlying mechanisms of the effects observed. Biological effects of Gold nanoparticles in radiation therapy Gold nanoparticles (GNP) have been investigated as platforms to carry drugs or radio-sensitizing agents to tumors due to the biocompatibility of gold and relative ease of conjugation with therapeutic and targeting moieties. Recently, there has been interest in exploiting the physical properties of gold, specifically the high atomic number, to enhance radiation therapy. When irradiated, gold atoms will produce low energy electrons, depositing energy within a short distance. The ratio of dose deposited in the presence of the GNP to the dose deposited in the absence of GNP is referred to as the dose enhancement factor (DEF). This factor has been shown to depend on the concentration of GNP and the energy of the incident photons. The physics of this process, preliminary in vitro and in vivo experiments and future directions for this nascent field are described in this presentation. Gold Nanoparticles for improved therapeutic outcome in radiation therapy The application of nanoparticles (NPs) for improved therapeutics is at the forefront of cancer nanotechnology. Among other NP systems, gold nanoparticles (GNPs) are extensively used due to its impressive ability to act as both an anticancer drug carrier in chemotherapy and as a dose enhancer in radiotherapy. Cellular uptake of GNPs was dependent on their size. Among GNPs of diameter between 14–74 nm, GNPs of size 50 nm has the highest uptake. Radiosensitization was dependent on the size of the GNPs as well. GNPs of size 50-nm showed the highest radiosensitization enhancement factor compared to GNPs of 14 and 74 nm for lower- (105 kVp) and higher- (6 MVp) energy photons. GNPs used in those studies were predominantly localized in the cell cytoplasm. However, the therapeutic response can be further enhanced if NPs can be effectively targeted into the nucleus. Here, we present an effective strategy for designing a GNP-peptide complex for nuclear targeting. Two peptides were conjugated onto a GNP: One peptide enhanced the uptake while the other peptide enhanced the nuclear delivery. The nuclear-targeted cells displayed a fourfold increase in the therapeutic response when treated with radiation as compared to untargeted ones. DNA double-strand breaks were quantified using radiation-induced foci of γ- H2AX and 53BP1, and a modest increase in the number of foci per nucleus was observed in irradiated cell populations with internalized GNPs. This research will establish a more aggressive NP-based treatment approach for improved outcome in cancer therapy. Learning Objectives: Introduce radiosensitization concepts of metallic nanoparticle and provide the theoretical basis Provide an overview over the size and coating dependence for GNP uptake in cells Provide a compilation of the extant, multi-discipline research on metallic nanoparticles Understand the prospects for future studies and innovations and the potential for applications of metallic nanoparticles in radiation therapy.« less

  13. A model to describe potential effects of chemotherapy on critical radiobiological treatments

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pérez, D.; Desco, M. M.; Antoranz, J. C.

    2016-08-01

    Although chemo- and radiotherapy can annihilate tumors on their own. they are also used in coadjuvancy: improving local effects of radiotherapy using chemotherapy as a radiosensit.izer. The effects of radiotherapy are well described by current radiobiological models. The goal of this work is to describe a discrete radiotherapy model, that has been previously used describe high radiation dose response as well as unusual radio-responses of some types of tumors (e.g. prostate cancer), to obtain a model of chemo+radiotherapy that can describe how the outcome of their combination is a more efficient removal of the tumor. Our hypothesis is that, although both treatments haven different mechanisms, both affect similar key points of cell metabolism and regulation, that lead to cellular death. Hence, we will consider a discrete model where chemotherapy may affect a fraction of the same targets destroyed by radiotherapy. Although radiotherapy reaches all cells equally, chemotherapy diffuses through a tumor attaining lower concentration in its center and higher in its surface. With our simulations we study the enhanced effect of combined therapy treatment and how it depends on the tissue critical parameters (the parameters of the lion-extensive radiobiological model), the number of “targets” aimed at by chemotherapy, and the concentration and diffusion rate of the drug inside the tumor. The results show that an equivalent, cliemo-radio-dose can be computed that allows the prediction of the lower radiation dose that causes the same effect than a radio-only treatment.

  14. The Exploitation of Low-Energy Electrons in Cancer Treatment.

    PubMed

    Rezaee, Mohammad; Hill, Richard P; Jaffray, David A

    2017-08-01

    Given the distinct characteristics of low-energy electrons (LEEs), particularly at energies less than 30 eV, they can be applied to a wide range of therapeutic modalities to improve cancer treatment. LEEs have been shown to efficiently produce complex molecular damage resulting in substantial cellular toxicities. Since LEEs are produced in copious amounts from high-energy radiation beam, including photons, protons and ions; the control of LEE distribution can potentially enhance the therapeutic radio of such beams. LEEs can play a substantial role in the synergistic effect between radiation and chemotherapy, particularly halogenated and platinum-based anticancer drugs. Radiosensitizing entities containing atoms of high atomic number such as gold nanoparticles can be a source of LEE production if high-energy radiation interacts with them. This can provide a high local density of LEEs in a cell and produce cellular toxicity. Auger-electron-emitting radionuclides also create a high number of LEEs in each decay, which can induce lethal damage in a cell. Exploitation of LEEs in cancer treatment, however, faces a few challenges, such as dosimetry of LEEs and selective delivery of radiosensitizing and chemotherapeutic molecules close to cellular targets. This review first discusses the rationale for utilizing LEEs in cancer treatment by explaining their mechanism of action, describes theoretical and experimental studies at the molecular and cellular levels, then discusses strategies for achieving modification of the distribution and effectiveness of LEEs in cancerous tissue and their associated clinical benefit.

  15. Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice

    NASA Astrophysics Data System (ADS)

    Xiong, Honglian; Guo, Zhouyi; Zeng, Changchun; Wang, Like; He, Yonghong; Liu, Songhao

    2009-03-01

    Noninvasive tumor imaging could lead to the early detection and timely treatment of cancer. Optical coherence tomography (OCT) has been reported as an ideal diagnostic tool for distinguishing tumor tissues from normal tissues based on structural imaging. In this study, the capability of OCT for functional imaging of normal and tumor tissues based on time- and depth-resolved quantification of the permeability of biomolecules through these tissues is investigated. The orthotopic graft model of gastric cancer in nude mice is used, normal and tumor tissues from the gastric wall are imaged, and a diffusion of 20% aqueous solution of glucose in normal stomach tissues and gastric tumor tissues is monitored and quantified as a function of time and tissue depth by an OCT system. Our results show that the permeability coefficient is (0.94+/-0.04)×10-5 cm/s in stomach tissues and (5.32+/-0.17)×10-5 cm/s in tumor tissues, respectively, and that tumor tissues have a higher permeability coefficient compared to normal tissues in optical coherence tomographic images. From the results, it is found that the accurate and sensitive assessment of the permeability coefficients of normal and tumor tissues offers an effective OCT image method for detection of tumor tissues and clinical diagnosis.

  16. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions.

    PubMed

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term "relative dose effect" (RDE). This ratio is advantageous, as it allows for simple comparison of dose-response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2-15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low doses, and approaching 1 at high doses. These results could have clinical implications as IR-induced DNA damage and the ensuing CAs and genomic instability can have significant cellular consequences that could potentially have profound implications for long-term human health after IR exposure, such as the emergence of secondary cancers and other pathobiological conditions after radiotherapy.

  17. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions

    PubMed Central

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M.; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term “relative dose effect” (RDE). This ratio is advantageous, as it allows for simple comparison of dose–response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2–15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low doses, and approaching 1 at high doses. These results could have clinical implications as IR-induced DNA damage and the ensuing CAs and genomic instability can have significant cellular consequences that could potentially have profound implications for long-term human health after IR exposure, such as the emergence of secondary cancers and other pathobiological conditions after radiotherapy. PMID:27379201

  18. β‑catenin nuclear translocation induced by HIF‑1α overexpression leads to the radioresistance of prostate cancer.

    PubMed

    Luo, Yong; Li, Mingchuan; Zuo, Xuemei; Basourakos, Spyridon P; Zhang, Jiao; Zhao, Jiahui; Han, Yili; Lin, Yunhua; Wang, Yongxing; Jiang, Yongguang; Lan, Ling

    2018-06-01

    Hypoxia-inducible factor‑1α (HIF‑1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF‑1α remain unclear. β‑catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF‑1α and β‑catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4‑2B, were grouped as follows: Negative control (no treatment), HIF‑1α overexpression group (transfected with HIF‑1α overexpression plasmid) and β‑catenin silenced group (transfected with HIF‑1α plasmids and β‑catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4‑2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4‑2B cells, transfection with HIF‑1α overexpression plasmid led to an enhanced β‑catenin nuclear translocation, while β‑catenin silencing inhibited β‑catenin nuclear translocation. The enhanced β‑catenin nuclear translocation induced by HIF‑1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non‑homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF‑1α overexpression enhanced β‑catenin nuclear translocation, which led to the activation of the β‑catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF‑1α overexpression promotes the radioresistance of PCa cells.

  19. Appropriate Use of Effective Dose in Radiation Protection and Risk Assessment.

    PubMed

    Fisher, Darrell R; Fahey, Frederic H

    2017-08-01

    Effective dose was introduced by the ICRP for the single, over-arching purpose of setting limits for radiation protection. Effective dose is a derived quantity or mathematical construct and not a physical, measurable quantity. The formula for calculating effective dose to a reference model incorporates terms to account for all radiation types, organ and tissue radiosensitivities, population groups, and multiple biological endpoints. The properties and appropriate applications of effective dose are not well understood by many within and outside the health physics profession; no other quantity in radiation protection has been more confusing or misunderstood. According to ICRP Publication 103, effective dose is to be used for "prospective dose assessment for planning and optimization in radiological protection, and retrospective demonstration of compliance for regulatory purposes." In practice, effective dose has been applied incorrectly to predict cancer risk among exposed persons. The concept of effective dose applies generally to reference models only and not to individual subjects. While conceived to represent a measure of cancer risk or heritable detrimental effects, effective dose is not predictive of future cancer risk. The formula for calculating effective dose incorporates committee-selected weighting factors for radiation quality and organ sensitivity; however, the organ weighting factors are averaged across all ages and both genders and thus do not apply to any specific individual or radiosensitive subpopulations such as children and young women. Further, it is not appropriate to apply effective dose to individual medical patients because patient-specific parameters may vary substantially from the assumptions used in generalized models. Also, effective dose is not applicable to therapeutic uses of radiation, as its mathematical underpinnings pertain only to observed late (stochastic) effects of radiation exposure and do not account for short-term adverse tissue reactions. The weighting factors incorporate substantial uncertainties, and linearity of the dose-response function at low dose is uncertain and highly disputed. Since effective dose is not predictive of future cancer incidence, it follows that effective dose should never be used to estimate future cancer risk from specific sources of radiation exposure. Instead, individual assessments of potential detriment should only be based on organ or tissue radiation absorbed dose, together with best scientific understanding of the corresponding dose-response relationships.

  20. Targeting DNA repair with PNKP inhibition sensitizes radioresistant prostate cancer cells to high LET radiation

    PubMed Central

    Srivastava, Pallavi; Sarma, Asitikantha

    2018-01-01

    High linear energy transfer (LET) radiation or heavy ion such as carbon ion radiation is used as a method for advanced radiotherapy in the treatment of cancer. It has many advantages over the conventional photon based radiotherapy using Co-60 gamma or high energy X-rays from a Linear Accelerator. However, charged particle therapy is very costly. One way to reduce the cost as well as irradiation effects on normal cells is to reduce the dose of radiation by enhancing the radiation sensitivity through the use of a radiomodulator. PNKP (polynucleotide kinase/phosphatase) is an enzyme which plays important role in the non-homologous end joining (NHEJ) DNA repair pathway. It is expected that inhibition of PNKP activity may enhance the efficacy of the charged particle irradiation in the radioresistant prostate cancer cell line PC-3. To test this hypothesis, we investigated cellular radiosensitivity by clonogenic cell survival assay in PC-3 cells.12Carbon ion beam of62 MeVenergy (equivalent 5.16 MeV/nucleon) and with an entrance LET of 287 kev/μm was used for the present study. Apoptotic parameters such as nuclear fragmentation and caspase-3 activity were measured by DAPI staining, nuclear ladder assay and colorimetric caspase-3method. Cell cycle arrest was determined by FACS analysis. Cell death was enhanced when carbon ion irradiation is combined with PNKPi (PNKP inhibitor) to treat cells as compared to that seen for PNKPi untreated cells. A low concentration (10μM) of PNKPi effectively radiosensitized the PC-3 cells in terms of reduction of dose in achieving the same survival fraction. PC-3 cells underwent significant apoptosis and cell cycle arrest too was enhanced at G2/M phase when carbon ion irradiation was combined with PNKPi treatment. Our findings suggest that combined treatment of carbon ion irradiation and PNKP inhibition could enhance cellular radiosensitivity in a radioresistant prostate cancer cell line PC-3. The synergistic effect of PNKPi and carbon ion irradiation could be used as a promising method for carbon-ion therapy in radioresistant cells. PMID:29320576

  1. SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, L; Tambasco, M

    2016-06-15

    Purpose: To study the effects of Clotrimazole (CLT) on radiosensitivity of MCF-7 Cells in correlation to detachment of Hexokinase II from the Voltage Dependent Anion Channel on the outer membrane of the mitochondria. Apoptotic fractions were also analyzed in relation to the detachment of Hexokinase. Methods: This study focused on the mammary adenocarcinoma cell line, MCF-7. Colony forming assays were used to analyze radiosensitization by CLT. Flow cytometry methods were used to analyze apoptotic vs necrotic fractions after treatment with CLT. Spectrophotometery was used to analyze the mitochondrial bound and soluble fraction of Hexokinase by means of relative enzymatic activity.more » Results: Our preliminary data have shown that CLT sensitizes MCF-7 cells to radiation in a dose and incubation time dependent manner up. We have also demonstrated that there are two radiosensitizing periods in MCF-7 cells with the first corresponding to the cycle arrest after 24 hours observed in other cell lines. The second radiosensitizing period occurs with incubation in CLT after irradiation which reaches maximum effect around 24 hours of incubation time. Preliminary data from our Hexokinase detachment assay show a factor of two increase in the ratio of unbound to bound Hexokinase when comparing incubation for 24 hours in media containing 0 and 20 µM CLT. Conclusion: This study and others indicate CLT as a possible radiosensitizing agent in cancer therapies. While CLT itself shows toxicity to the liver in high doses, this study further demonstrates that disruption of the Warburg Effect and unbinding of mitochondrial bound Hexokinase as a possible pathway for cancer treatment.« less

  2. The DNA-PK Inhibitor VX-984 Enhances the Radiosensitivity of Glioblastoma Cells Grown In Vitro and as Orthotopic Xenografts.

    PubMed

    Timme, Cindy R; Rath, Barbara H; O'Neill, John W; Camphausen, Kevin; Tofilon, Philip J

    2018-06-01

    Radiotherapy is a primary treatment modality for glioblastomas (GBM). Because DNA-PKcs is a critical factor in the repair of radiation-induced double strand breaks (DSB), this study evaluated the potential of VX-984, a new DNA-PKcs inhibitor, to enhance the radiosensitivity of GBM cells. Treatment of the established GBM cell line U251 and the GBM stem-like cell (GSC) line NSC11 with VX-984 under in vitro conditions resulted in a concentration-dependent inhibition of radiation-induced DNA-PKcs phosphorylation. In a similar concentration-dependent manner, VX-984 treatment enhanced the radiosensitivity of each GBM cell line as defined by clonogenic analysis. As determined by γH2AX expression and neutral comet analyses, VX-984 inhibited the repair of radiation-induced DNA double-strand break in U251 and NSC11 GBM cells, suggesting that the VX-984-induced radiosensitization is mediated by an inhibition of DNA repair. Extending these results to an in vivo model, treatment of mice with VX-984 inhibited radiation-induced DNA-PKcs phosphorylation in orthotopic brain tumor xenografts, indicating that this compound crosses the blood-brain tumor barrier at sufficient concentrations. For mice bearing U251 or NSC11 brain tumors, VX-984 treatment alone had no significant effect on overall survival; radiation alone increased survival. The survival of mice receiving the combination protocol was significantly increased as compared with control and as compared with radiation alone. These results indicate that VX-984 enhances the radiosensitivity of brain tumor xenografts and suggest that it may be of benefit in the therapeutic management of GBM. Mol Cancer Ther; 17(6); 1207-16. ©2018 AACR . ©2018 American Association for Cancer Research.

  3. [Exploration of relationship between the expression level of DNA polymerase beta and 60Co gamma-ray radiosensitivity].

    PubMed

    Cui, Jie; Xu, Xin; Yang, Mo; Chen, Chen; Zhao, Wei; Wu, Mei; Zhang, Zun-zhen

    2011-11-01

    To explore the relationship between the expression level of DNA polymerase beta (pol beta) and 60Co gamma-ray radiosensitivity and provide a basis on improving the efficiency of radiotherapy theoretically. pol beta wild-type cells (pol beta +/+), pol beta null cells (pol beta -/-) and pol beta overexpressed cells (polp beta oe) were applied as a model system. The radiosensitivity of 60Co gamma-ray on the cell was detected by MTT assay and clone formation assay. The DCFH-DA fluorescent probe was used to examine the cellular ROS after 60Co gamma-rays radiation. MTT assay showed that after radiation by 60Co gamma-rays followed with 72 h incubation, the cell viabilities in the three kinds of cells decreased significantly with a dose-response relationship (r-/+ = -0.976, r-/- = -0.977, r(oe) = -0.982, P<0.05). In addition, the viability of pol beta -/- cell was lower than those of other two kinds of cells at the same dose (P<0.05). Likewise, the colony number and colony formation rate in all tested cells also decreased after exposure to 60Co gamma-rays. The ROS level in the three kinds of cells was enhanced after treatment with 60Co gamma-ray, and the ROS level in pol beta -/- cells was much higher than that in the other two kinds of cells (P<0.05). Cell death caused by 60Co gamma-ray may associated with the DNA oxidative damage mediated by ROS; Overexpression of pol beta could protect against oxidative DNA damage, thus the cell apoptosis/death, thereby leading to reducing the radiosensitivity of 60Co gamma-rays, while null of DNA pol beta could increase radiosensitivity of 60Co gamma-rays by compromising the DNA repair.

  4. Icotinib enhances lung cancer cell radiosensitivity in vitro and in vivo by inhibiting MAPK/ERK and AKT activation.

    PubMed

    Fu, Yonghong; Zhang, Sen; Wang, Dongjie; Wang, Jing

    2018-05-16

    Icotinib hydrochloride is a small epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that was developed by Chinese scientists. While clinical trials have revealed its efficacy in the treatment of lung cancer, very little is known about its role in enhancing radiosensitivity. In this study, we investigated the effectiveness of Icotinib in enhancing lung cancer cell radiosensitivity and have detailed its underlying molecular mechanism. The lung cancer cell line H1650 was pretreated with or without Icotinib for 24 hours before radiation, and clonogenic survival assay was performed. Cell apoptosis was also analyzed by flow cytometry, while western blotting was performed to examine the activation of EGFR and its downstream kinases in H1650 cells after Icotinib and radiation treatment. Furthermore, a xenograft animal model was established to evaluate the radiosensitivity of Icotinib in vivo and to confirm its mechanism. Our results demonstrate that pretreatment with Icotinib reduced clonogenic survival after radiation, inhibited EGFR activation, and increased radiation-induced apoptosis in H1650 cells. The phosphorylation of protein kinase B (AKT), extracellular regulated protein kinase 1/2 (ERK1/2), and EGFR was inhibited after Icotinib and radiation combination treatment in vitro and in vivo compared with individual treatments. Combination treatment also affected the expression of the DNA repair protein H2A histone family member X (γ-H2AX). In conclusion, our results reveal that Icotinib enhances radiosensitivity in lung cancers in vitro and in vivo and the mechanism of this may involve blocking the EGFR-AKT and MAPK-ERK pathways and limiting DNA repair. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Inhibition of N-acetylglucosaminyltransferase V enhances the cetuximab-induced radiosensitivity of nasopharyngeal carcinoma cells likely through EGFR N-glycan alterations.

    PubMed

    Huang, Xiaomin; Liu, Ting; Wang, Qiongyao; Zhu, Weiliang; Meng, Hui; Guo, Linlang; Wei, Ting; Zhang, Jian

    2017-05-23

    N-acetylglucosaminyltransferase V (GnT-V), an enzyme that catalyses the formation of the N-linked β-1-6 branching of oligosaccharides, is related to the radiosensitivity of nasopharyngeal carcinoma (NPC). Cetuximab (C225) is an epidermal growth factor receptor (EGFR) inhibitor used as a radiosensitizer in the treatment of NPC. In this study, we used GnT-V as a molecular target to further sensitize cetuximab-treated NPC cells to radiation. The results from two NPC cell lines (CNE1 and CNE2) revealed that the silencing of GnT-V enhanced cetuximab-induced radiosensitivity by decreasing the β-1-6 branching of oligosaccharides on the EGFR. GnT-V down-regulation combined with cetuximab decreased the survival fraction, healing rate and cell viability and increased the apoptosis rate. Concomitantly, the combination of cetuximab and irradiation did not change the EGFR mRNA and protein levels and decreased the β-1-6 branching on the EGFR. Subsequently, we further explored the signalling downstream of EGF, particularly the PI3K/Akt signalling pathway, and discovered that treatment consisting of GnT-V down-regulation, irradiation and cetuximab was negatively correlated with phospho-Akt and phspho-PI3K. Finally, an in vivo experiment with radiotherapy revealed that the combination of GnT-V down-regulation and cetuximab decelerated tumour growth. In summary, our study demonstrated that the combination of decreased GnT-V activity and cetuximab enhanced NPC radiosensitivity, and the possible mechanism underlying this effect might involve the N-linked β1-6 branching of the EGFR. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Differential response of DU145 and PC3 prostate cancer cells to ionizing radiation: role of reactive oxygen species, GSH and Nrf2 in radiosensitivity.

    PubMed

    Jayakumar, Sundarraj; Kunwar, Amit; Sandur, Santosh K; Pandey, Badri N; Chaubey, Ramesh C

    2014-01-01

    Radioresistance is the major impediment in radiotherapy of many cancers including prostate cancer, necessitating the need to understand the factors contributing to radioresistance in tumor cells. In the present study, the role of cellular redox and redox sensitive transcription factor, Nrf2 in the radiosensitivity of prostate cancer cell lines PC3 and DU145, has been investigated. Differential radiosensitivity of PC3 and DU145 cells was assessed using clonogenic assay, flow cytometry, and comet assay. Their redox status was measured using DCFDA and DHR probes. Expression of Nrf2 and its dependent genes was measured by EMSA and real time PCR. Knockdown studies were done using shRNA transfection. PC3 and DU145 cells differed significantly in their radiosensitivity as observed by clonogenic survival, apoptosis and neutral comet assays. Both basal and inducible levels of ROS were higher in PC3 cells than that of DU145 cells. DU145 cells showed higher level of basal GSH content and GSH/GSSG ratio than that of PC3 cells. Further, significant increase in both basal and induced levels of Nrf2 and its dependent genes was observed in DU145 cells. Knock-down experiments and pharmacological intervention studies revealed the involvement of Nrf2 in differential radio-resistance of these cells. Cellular redox status and Nrf2 levels play a causal role in radio-resistance of prostate cancer cells. The pivotal role Nrf2 has been shown in the radioresistance of tumor cells and this study will further help in exploiting this factor in radiosensitization of other tumor cell types. © 2013.

  7. Andrographolide Sensitizes Ras-Transformed Cells to Radiation in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Shih-Kai; Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan; Tzu Chi University School of Medicine, Hualian, Taiwan

    2010-07-15

    Purpose: Increasing the sensitivity of tumor cells to radiation is a major goal of radiotherapy. The present study investigated the radiosensitizing effects of andrographolide and examined the molecular mechanisms of andrographolide-mediated radiosensitization. Methods and Materials: An H-ras-transformed rat kidney epithelial (RK3E) cell line was used to measure the radiosensitizing effects of andrographolide in clonogenic assays, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide assays, and a xenograft tumor growth model. The mechanism of andrographolide-sensitized cell death was analyzed using annexin V staining, caspase 3 activity assays, and terminal transferase uridyl nick end labeling assays. The roles of nuclear factor kappa B (NF-{kappa}B) and Akt inmore » andrographolide-mediated sensitization were examined using reporter assays, electrophoretic mobility shift assays, and Western blotting. Results: Concurrent andrographolide treatment (10 {mu}M, 3 h) sensitized Ras-transformed cells to radiation in vitro (sensitizer enhancement ratio, 1.73). Andrographolide plus radiation (one dose of 300 mg/kg peritumor andrographolide and one dose of 6 Gy radiation) resulted in significant tumor growth delay (27 {+-} 2.5 days) compared with radiation alone (22 {+-} 1.5 days; p <.05). Radiation induced apoptotic markers (e.g., caspase-3, membrane reversion, DNA fragmentation), and andrographolide treatment did not promote radiation-induced apoptosis. However, the protein level of activated Akt was significantly reduced by andrographolide. NF-{kappa}B activity was elevated in irradiated Ras-transformed cells, and andrographolide treatment significantly reduced radiation-induced NF-{kappa}B activity. Conclusion: Andrographolide sensitized Ras-transformed cells to radiation both in vitro and in vivo. Andrographolide-mediated radiosensitization was associated with downregulation of Akt and NF-{kappa}B activity. These observations indicate that andrographolide is a novel radiosensitizing agent with potential application in cancer radiotherapy.« less

  8. WE-AB-202-10: Modelling Individual Tumor-Specific Control Probability for Hypoxia in Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, S; Warren, DR; Wilson, JM

    Purpose: To investigate hypoxia-guided dose-boosting for increased tumour control and improved normal tissue sparing using FMISO-PET images Methods: Individual tumor-specific control probability (iTSCP) was calculated using a modified linear-quadratic model with rectal-specific radiosensitivity parameters for three limiting-case assumptions of the hypoxia / FMISO uptake relationship. {sup 18}FMISO-PET images from 2 patients (T3N0M0) from the RHYTHM trial (Investigating Hypoxia in Rectal Tumours NCT02157246) were chosen to delineate a hypoxic region (GTV-MISO defined as tumor-to-muscle ratio > 1.3) within the anatomical GTV. Three VMAT treatment plans were created in Eclipse (Varian): STANDARD (45Gy / 25 fractions to PTV4500); BOOST-GTV (simultaneous integrated boostmore » of 60Gy / 25fr to GTV +0.5cm) and BOOST-MISO (60Gy / 25fr to GTV-MISO+0.5cm). GTV mean dose (in EQD2), iTSCP and normal tissue dose-volume metrics (small bowel, bladder, anus, and femoral heads) were recorded. Results: Patient A showed small hypoxic volume (15.8% of GTV) and Patient B moderate hypoxic volume (40.2% of GTV). Dose escalation to 60Gy was achievable, and doses to femoral heads and small bowel in BOOST plans were comparable to STANDARD plans. For patient A, a reduced maximum bladder dose was observed in BOOST-MISO compared to BOOST-GTV (D0.1cc 49.2Gy vs 54.0Gy). For patient B, a smaller high dose volume was observed for the anus region in BOOST-MISO compared to BOOST-GTV (V55Gy 19.9% vs 100%), which could potentially reduce symptoms of fecal incontinence. For BOOST-MISO, the largest iTSCPs (A: 95.5% / B: 90.0%) assumed local correlation between FMISO uptake and hypoxia, and approached iTSCP values seen for BOOST-GTV (A: 96.1% / B: 90.5%). Conclusion: Hypoxia-guided dose-boosting is predicted to improve local control in rectal tumors when FMISO is spatially correlated to hypoxia, and to reduce dose to organs-at-risk compared to boosting the whole GTV. This could lead to organ-preserving treatment strategies for locally-advanced rectal cancer, thereby improving quality of life. Oxford Cancer Imaging Centre (OCIC); Cancer Research UK (CRUK); Medical Research Council (MRC)« less

  9. Optimising the therapeutic ratio of radioimmunotherapy; an investigation of the roles of chimerisation, fractionation and radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Violet, John Albert

    2007-12-01

    Radioimmunotherapy (RIT) is a targeted form of treatment for cancer which uses tumour-associated antibodies to selectively deliver a therapeutic radionuclide to sites of disease. In lymphoma, radioimmunotherapy has proved a remarkably effective agent due to the high radiosensitivity of the tumour and its propensity to undergo apoptosis following irradiation. However, success in the treatment of the more radioresistant common solid tumours has been less successful, and for these patients RIT remains investigative. The effectiveness of RIT is limited by non-specific irradiation of normal tissues whilst antibody remains in the circulation, in particular bone marrow, and also by immunogenicity of antibody which does not allow for repeated therapy. In the first chapter I have hypothesised that lymphomas expressing the interleukin-2 receptor might be effectively treated using a radiolabeled antibody to this receptor. In a phase I/II clinical study, 131I labelled CHT-25, a chimeric antibody against the IL-2Ra chain, has shown encouraging evidence of efficacy in the 9 patients with multiply- relapsed lymphomas treated so far. In addition, use of this antibody has been associated with low immunogenicity allowing for repeated therapies to be given. In the second chapter I have hypothesised that dosimetry led, individual patient therapy, might further optimise 1311 CHT-25 treatment. To investigate this I have used marrow toxicity as a biological assay of absorbed dose and shown that simple, but individual, patient biodistribution indices correlate better with observed toxicity than the population-based dose estimates currently employed. I have proposed that adoption of individual patient dosimetry using tracer studies is worthy of further investigation for the future development of 131I- CHT-25. In the third chapter I have hypothesised that dose fractionation might improve the therapeutic ratio of RIT. This has been investigated in a pre-clinical human colorectal xenograft model in nude mice using 131I-A5B7, a murine antibody against CEA. In this setting fractionation neither reduces normal tissue toxicity nor increases the effectiveness of therapy. This thesis demonstrates, using both pre-clinical and clinical data, how the therapeutic ratio of RIT might be improved through antibody design, leading to reduced immunogenicity, dose fractionation and radiation dosimetry, and proposes how these approaches might be used to optimise the effectiveness of RIT in the clinic.

  10. A deficiency in DNA repair and DNA-PKcs expression in the radiosensitive BALB/c mouse

    NASA Technical Reports Server (NTRS)

    Okayasu, R.; Suetomi, K.; Yu, Y.; Silver, A.; Bedford, J. S.; Cox, R.; Ullrich, R. L.

    2000-01-01

    We have studied the efficiency of DNA double strand break (DSB) rejoining in primary cells from mouse strains that show large differences in in vivo radiosensitivity and tumor susceptibility. Cells from radiosensitive, cancer-prone BALB/c mice showed inefficient end joining of gamma ray-induced DSBs as compared with cells from all of the other commonly used strains and F1 hybrids of C57BL/6 and BALB/c mice. The BALB/c repair phenotype was accompanied by a significantly reduced expression level of DNA-PKcs protein as well as a lowered DNA-PK activity level as compared with the other strains. In conjunction with published reports, these data suggest that natural genetic variation in nonhomologous end joining processes may have a significant impact on the in vivo radiation response of mice.

  11. Comparison of chromosome aberration frequencies in pre- and post-flight astronaut lymphocytes irradiated in vitro with gamma rays

    NASA Technical Reports Server (NTRS)

    Wu, H.; George, K.; Willingham, V.; Cucinotta, F. A.

    2001-01-01

    If radiosensitivity is altered in a microgravity environment, it will affect the accuracy of assessing astronauts' risk from exposure to space radiation. To investigate the effects of space flight on radiosensitivity, we exposed a crewmember's blood to gamma rays at doses ranging from 0 to 3 Gy and analyzed chromosome aberrations in mitotic lymphocytes. The blood samples were collected 10 days prior to an 8-day Shuttle mission, the day the flight returned, and 14 days after the flight. After exposure, lymphocytes were stimulated to grow in media containing phytohaemagglutinin (PHA) and mitotic cells were harvested for chromosome analysis using a fluorescence in situ hybridization (FISH) with whole chromosome specific probes. The dose response of total exchanges showed no changes in the radiosensitivity after the mission.

  12. The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors

    NASA Astrophysics Data System (ADS)

    Dufort, Sandrine; Le Duc, Géraldine; Salomé, Murielle; Bentivegna, Valerie; Sancey, Lucie; Bräuer-Krisch, Elke; Requardt, Herwig; Lux, François; Coll, Jean-Luc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2016-07-01

    We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps.

  13. SOME PECULIARITIES IN INCLUSION AND DISTRIBUTION OF P$sup 32$ IN THE RABBIT EYE TISSUES (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedovskaya, Ts.P.; Likharev, I.A.

    1963-11-01

    Data on levels of inclusion and correlations between the activities of P/ sup 32/ in the eye tissue of rabbits at different periods during two months after a single introduction of the isotope are presented. Experiments were staged on 21 rabbits (42 eyes). P/sup 32/ was introduced subcutaneously in a concentration of 250 C/kg. Distribution of the isotope was studied with the radiometric method. The content of the activity in the eye tissues was calculated in mu C and in percentage relation to the total activity of the eyeball The initial quantity of the isotope in the eye tissues inmore » percentage relation to the originally introduced amount was also calculated, as well as the content of activity in the tissues per 1 g of humid weight in mu C. In single subcutaneous introduction of P/sup 32/ it penetrates into all tissues of the rabbit eye. The eyeball recieves a total of 0.01%, of the activity introduced. On the first day the greatest concentration of activity is seen in the eye tissues with a rich vascular network, where intensive metabolic processes take place. The share of the crystalline lens in the included P/sup 32/ is negligible. Later on the named tissues rapidly eliminated P/sup 32/, whereas in the crystalline lens it is only on the 6th day that the maximum activity sets on. In a month and later about 50% of the activity preserved in the eye is concentrated in the crystalline lens. The most radiosensitive sections of the crystalline lens mainly accumulate P/sup 32/. (auth)« less

  14. [Identification and management of intra-operative suspicious tissues in 20 transsphenoidal surgery cases].

    PubMed

    Liu, Jun-Feng; Ke, Chang-Shu; Chen, Xi; Xu, Yu; Zhang, Hua-Qiu; Chen, Juan; Gan, Chao; Li, Chao-Xi; Lei, Ting

    2013-05-01

    To determine appropriate protocols for the identification and management of intra operative suspicious tissues during transsphenoidal surgery. Clinical data and pathological reports of 20 patients with intra-operative suspicious tissues during transsphenoidal surgeries were analyzed retrospectively. The methods for discriminating between adenoma and normal pituitary tissues were reviewed. The postoperative pathological reports revealed that adenoma and normal pituitary tissues coexisted in 9 samples, while 5 samples were identified as normal pituitary tissues, 2 as adenoma tissues, and 4 as other tissues. Adenomas were distinguished from normal pituitary tissues on the basis of intra-operative appearance, texture, blood supply and possible existence of boundary. If decisions are difficult to made during surgeries from the appearance of the suspicious tissues, pathological examinations are advised as a guidance for the next steps.

  15. Fluorescence spectroscopy using excitation and emission matrix for quantification of tissue native fluorophores and cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Gayen, S. K.; Xu, M.

    2014-03-01

    Native fluorescence spectrum of normal and cancerous human prostate tissues is studied to distinguish between normal and cancerous tissues, and cancerous tissues at different cancer grade. The tissue samples were obtained from Cooperative Human Tissue Network (CHTN) and National Disease Research Interchange(NDRI). An excitation and emission matrix (EEM) was generated for each tissue sample by acquiring native fluorescence spectrum of the sample using multiple excitation wavelengths. The non-negative matrix factorization algorithm was used to generate fluorescence EEMs that correspond to the fluorophores in biological tissues, including tryptophan, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and the background paraffin. We hypothesize that, as a consequence of metabolic changes associated with the development of cancer, the concentrations of NADH and FAD are different in normal and cancerous tissues, and also different for different cancer grades. We used the ratio of the abundances of FAD and NADH to distinguish between normal and cancerous tissues, and the tissue cancer grade. The FAD-to-NADH ratio was found to be the highest for normal tissue and decreased as the cancer grade increased.

  16. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator.

    PubMed

    Puchalska, Monika; Sihver, Lembit

    2015-06-21

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  17. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Puchalska, Monika; Sihver, Lembit

    2015-06-01

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  18. The RBE-LET relationship for rodent intestinal crypt cell survival, testes weight loss, and multicellular spheroid cell survival after heavy-ion irradiation

    NASA Technical Reports Server (NTRS)

    Rodriguez, A.; Alpen, E. L.; Powers-Risius, P.

    1992-01-01

    This report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns. These studies examine the RBE-LET relationship for two normal tissues and for an in vitro tissue model, multicellular spheroids. When the RBE values are plotted as a function of LET, the resulting curve is characterized by a region in which RBE increases with LET, a peak RBE at an LET value of 100 keV/microns, and a region of decreasing RBE at LETs greater than 100 keV/microns. Inactivation cross sections (sigma) for these three biological systems have been calculated from the exponential terminal slope of the dose-response relationship for each ion. For this determination the dose is expressed as particle fluence and the parameter sigma indicates effect per particle. A plot of sigma versus LET shows that the curve for testes weight loss is shifted to the left, indicating greater radiosensitivity at lower LETs than for crypt cell and spheroid cell survival. The curves for cross section versus LET for all three model systems show similar characteristics with a relatively linear portion below 100 keV/microns and a region of lessened slope in the LET range above 100 keV/microns for testes and spheroids. The data indicate that the effectiveness per particle increases as a function of LET and, to a limited extent, Z, at LET values greater than 100 keV/microns. Previously published results for spread Bragg peaks are also summarized, and they suggest that RBE is dependent on both the LET and the Z of the particle.

  19. CT breast dose reduction with the use of breast positioning and organ-based tube current modulation.

    PubMed

    Fu, Wanyi; Tian, Xiaoyu; Sturgeon, Gregory M; Agasthya, Greeshma; Segars, William Paul; Goodsitt, Mitchell M; Kazerooni, Ella A; Samei, Ehsan

    2017-02-01

    This study aimed to investigate the breast dose reduction potential of a breast-positioning (BP) technique for thoracic CT examinations with organ-based tube current modulation (OTCM). This study included 13 female anthropomorphic computational phantoms (XCAT, age range: 27-65 y.o., weight range: 52-105.8 kg). Each phantom was modified to simulate three breast sizes in standard supine geometry. The modeled breasts were then morphed to emulate BP that constrained the majority of the breast tissue inside the 120° anterior tube current (mA) reduction zone. The OTCM mA value was modeled using a ray-tracing program, which reduced the mA to 20% in the anterior region with a corresponding increase to the posterior region. The organ doses were estimated by a validated Monte Carlo program for a typical clinical CT system (SOMATOM Definition Flash, Siemens Healthcare). The simulated organ doses and organ doses normalized by CTDI vol were used to compare three CT protocols: attenuation-based tube current modulation (ATCM), OTCM, and OTCM with BP (OTCM BP ). On average, compared to ATCM, OTCM reduced breast dose by 19.3 ± 4.5%, whereas OTCM BP reduced breast dose by 38.6 ± 8.1% (an additional 23.8 ± 9.4%). The dose saving of OTCM BP was more significant for larger breasts (on average 33, 38, and 44% reduction for 0.5, 1, and 2 kg breasts, respectively). Compared to ATCM, OTCM BP also reduced thymus and heart dose by 15.1 ± 7.4% and 15.9 ± 6.2% respectively. In thoracic CT examinations, OTCM with a breast-positioning technique can markedly reduce unnecessary exposure to radiosensitive organs in anterior chest wall, specifically breast tissue. The breast dose reduction is more notable for women with larger breasts. © 2016 American Association of Physicists in Medicine.

  20. Evaluating the Usefulness of a Novel 10B-Carrier Conjugated With Cyclic RGD Peptide in Boron Neutron Capture Therapy

    PubMed Central

    Masunaga, Shin-ichiro; Kimura, Sadaaki; Harada, Tomohiro; Okuda, Kensuke; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Nagasawa, Hideko; Ono, Koji

    2012-01-01

    Background To evaluate the usefulness of a novel 10B-carrier conjugated with an integrin-binding cyclic RGD peptide (GPU-201) in boron neutron capture therapy (BNCT). Methods GPU-201 was synthesized from integrin-binding Arg-Gly-Asp (RGD) consensus sequence of matrix proteins and a 10B cluster 1, 2-dicarba-closo-dodecaborane-10B. Mercaptododecaborate-10B (BSH) dissolved in physiological saline and BSH and GPU-201 dissolved with cyclodextrin (CD) as a solubilizing and dispersing agent were intraperitoneally administered to SCC VII tumor-bearing mice. Then, the 10B concentrations in the tumors and normal tissues were measured by γ-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells in the tumors, then treated with GPU-201, BSH-CD, or BSH. Immediately after reactor neutron beam or γ-ray irradiation, during which intratumor 10B concentrations were kept at levels similar to each other, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. Results The 10B from BSH was washed away rapidly in all these tissues and the retention of 10B from BSH-CD and GPU-201 was similar except in blood where the 10B concentration from GPU-201 was higher for longer. GPU-201 showed a significantly stronger radio-sensitizing effect under neutron beam irradiation on both total and Q cell populations than any other 10B-carrier. Conclusion A novel 10B-carrier conjugated with an integrin-binding RGD peptide (GPU-201) that sensitized tumor cells more markedly than conventional 10B-carriers may be a promising candidate for use in BNCT. However, its toxicity needs to be tested further. PMID:29147290

  1. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Serduc, Raphaël; van de Looij, Yohan; Francony, Gilles; Verdonck, Olivier; van der Sanden, Boudewijn; Laissue, Jean; Farion, Régine; Bräuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda; Segebarth, Christoph; Rémy, Chantal; Lahrech, Hana

    2008-03-01

    Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p < 0.05) was observed in the irradiated cortex 1 day after exposure to 312 Gy, (2) a 0.7% increase (p < 0.05) in the CWC was measured in the irradiated hemispheres 1 day after exposure to 1000 Gy. The results demonstrate the presence of a minor and transient cellular edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org

  2. MicroRNA-9 functions as a tumor suppressor and enhances radio-sensitivity in radio-resistant A549 cells by targeting neuropilin 1.

    PubMed

    Xiong, Kai; Shao, Li Hong; Zhang, Hai Qin; Jin, Linlin; Wei, Wei; Dong, Zhuo; Zhu, Yue Quan; Wu, Ning; Jin, Shun Zi; Xue, Li Xiang

    2018-03-01

    Radiotherapy is commonly used to treat lung cancer but may not kill all cancer cells, which may be attributed to the radiotherapy resistance that often occurs in non-small cell lung cancer (NSCLC). At present, the molecular mechanism of radio-resistance remains unclear. Neuropilin 1 (NRP1), a co-receptor for vascular endothelial growth factor (VEGF), was demonstrated to be associated with radio-resistance of NSCLC cells via the VEGF-phosphoinositide 3-kinase-nuclear factor-κB pathway in our previous study. It was hypothesized that certain microRNAs (miRs) may serve crucial functions in radio-sensitivity by regulating NRP1. Bioinformatics predicted that NRP1 was a potential target of miR-9, and this was validated by luciferase reporter assays. Functionally, miR-9-transfected A549 cells exhibited a decreased proliferation rate, increased apoptosis rate and attenuated migratory and invasive abilities. Additionally, a high expression of miR-9 also significantly enhanced the radio-sensitivity of A549 cells in vitro and in vivo . These data improve understanding of the mechanisms of cell radio-resistance, and suggest that miR-9 may be a molecular target for the prediction of radio-sensitivity in NSCLC.

  3. GADD45α sensitizes cervical cancer cells to radiotherapy via increasing cytoplasmic APE1 level.

    PubMed

    Li, Qing; Wei, Xi; Zhou, Zhi-Wei; Wang, Shu-Nan; Jin, Hua; Chen, Kui-Jun; Luo, Jia; Westover, Kenneth D; Wang, Jian-Min; Wang, Dong; Xu, Cheng-Xiong; Shan, Jin-Lu

    2018-05-09

    Radioresistance remains a major clinical challenge in cervical cancer therapy. However, the mechanism for the development of radioresistance in cervical cancer is unclear. Herein, we determined that growth arrest and DNA-damage-inducible protein 45α (GADD45α) is decreased in radioresistant cervical cancer compared to radiosensitive cancer both in vitro and in vivo. In addition, silencing GADD45α prevents cervical cancer cells from undergoing radiation-induced DNA damage, cell cycle arrest, and apoptosis. More importantly, our data show that the overexpression of GADD45α significantly enhances the radiosensitivity of radioresistant cervical cancer cells. These data show that GADD45α decreases the cytoplasmic distribution of APE1, thereby enhancing the radiosensitivity of cervical cancer cells. Furthermore, we show that GADD45α inhibits the production of nitric oxide (NO), a nuclear APE1 export stimulator, by suppressing both endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) in cervical cancer cells. In conclusion, our findings suggest that decreased GADD45α expression significantly contributes to the development of radioresistance and that ectopic expression of GADD45α sensitizes cervical cancer cells to radiotherapy. GADD45α inhibits the NO-regulated cytoplasmic localization of APE1 through inhibiting eNOS and iNOS, thereby enhancing the radiosensitivity of cervical cancer cells.

  4. A ruthenium polypyridyl intercalator stalls DNA replication forks, radiosensitizes human cancer cells and is enhanced by Chk1 inhibition

    NASA Astrophysics Data System (ADS)

    Gill, Martin R.; Harun, Siti Norain; Halder, Swagata; Boghozian, Ramon A.; Ramadan, Kristijan; Ahmad, Haslina; Vallis, Katherine A.

    2016-08-01

    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)]2+ (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)]2+ before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.

  5. A ruthenium polypyridyl intercalator stalls DNA replication forks, radiosensitizes human cancer cells and is enhanced by Chk1 inhibition.

    PubMed

    Gill, Martin R; Harun, Siti Norain; Halder, Swagata; Boghozian, Ramon A; Ramadan, Kristijan; Ahmad, Haslina; Vallis, Katherine A

    2016-08-25

    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.

  6. Pharmacological Inhibition of the Protein Kinase MRK/ZAK Radiosensitizes Medulloblastoma.

    PubMed

    Markowitz, Daniel; Powell, Caitlin; Tran, Nhan L; Berens, Michael E; Ryken, Timothy C; Vanan, Magimairajan; Rosen, Lisa; He, Mingzu; Sun, Shan; Symons, Marc; Al-Abed, Yousef; Ruggieri, Rosamaria

    2016-08-01

    Medulloblastoma is a cerebellar tumor and the most common pediatric brain malignancy. Radiotherapy is part of the standard care for this tumor, but its effectiveness is accompanied by significant neurocognitive sequelae due to the deleterious effects of radiation on the developing brain. We have previously shown that the protein kinase MRK/ZAK protects tumor cells from radiation-induced cell death by regulating cell-cycle arrest after ionizing radiation. Here, we show that siRNA-mediated MRK depletion sensitizes medulloblastoma primary cells to radiation. We have, therefore, designed and tested a specific small molecule inhibitor of MRK, M443, which binds to MRK in an irreversible fashion and inhibits its activity. We found that M443 strongly radiosensitizes UW228 medulloblastoma cells as well as UI226 patient-derived primary cells, whereas it does not affect the response to radiation of normal brain cells. M443 also inhibits radiation-induced activation of both p38 and Chk2, two proteins that act downstream of MRK and are involved in DNA damage-induced cell-cycle arrest. Importantly, in an animal model of medulloblastoma that employs orthotopic implantation of primary patient-derived UI226 cells in nude mice, M443 in combination with radiation achieved a synergistic increase in survival. We hypothesize that combining radiotherapy with M443 will allow us to lower the radiation dose while maintaining therapeutic efficacy, thereby minimizing radiation-induced side effects. Mol Cancer Ther; 15(8); 1799-808. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Elastic light single-scattering spectroscopy for detection of dysplastic tissues

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda

    2013-11-01

    Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.

  8. Nicotinamide Phosphoribosyltransferase Upregulation by Phenylephrine Reduces Radiation Injury in Submandibular Gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Bin, E-mail: xiangbin72@163.com; Han, Lichi; Wang, Xinyue

    Purpose: Radiation therapy for head and neck cancer commonly leads to radiation sialadenitis. Emerging evidence has indicated that phenylephrine pretreatment reduces radiosensitivity in the salivary gland; however, the underlying cytoprotective mechanism remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT) is not only a key enzyme for the nicotinamide adenine dinucleotide salvage pathway, but also a cytokine participating in cell survival, metabolism, and longevity, with a broad effect on cellular functions in physiology and pathology. However, the regulatory events of NAMPT in response to the irradiated salivary gland are unknown. Methods and Materials: The cell viability of primary cultured submandibular gland cells was determinedmore » using the PrestoBlue assay. NAMPT expression was measured using reverse transcriptase polymerase chain reaction and Western blotting in vitro and in vivo. Silent information regulator 1 (SIRT1) and phosphorylated Akt protein levels were examined by Western blotting. The cellular locations of NAMPT and SIRT1 were detected by immunohistochemistry. NAMPT promoter activity was assessed using the luciferase reporter gene assay. Results: NAMPT was mainly distributed in the cytoplasm of granular convoluted tubule cells and ductal cells in normal submandibular glands. mRNA and protein expression of NAMPT was downregulated after radiation but upregulated with phenylephrine pretreatment both in vivo and in vitro. Moreover, the protein expression of phosphorylated Akt and SIRT1 was decreased in irradiated glands, and phenylephrine pretreatment restored the expression of both. SIRT1 was mainly located in the cell nucleus and cytoplasm in the normal submandibular gland. Phenylephrine dramatically enhanced the expression of SIRT1, which was significantly reduced by radiation. Furthermore, phenylephrine induced a marked increase of NAMPT promoter activity. Conclusions: These findings reveal the regulatory mechanisms of NAMPT expression, which help to understand the mechanism of the cytoprotective role of phenylephrine on irradiated tissues.« less

  9. SU-C-BRB-02: Automatic Planning as a Potential Strategy for Dose Escalation for Pancreas SBRT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S; Zheng, D; Ma, R

    Purpose: Stereotactic body radiation therapy (SBRT) has been suggested to provide high rates of local control for locally advanced pancreatic cancer. However, the close proximity of highly radiosensitive normal tissues usually causes the labor-intensive planning process, and may impede further escalation of the prescription dose. The present study evaluates the potential of an automatic planning system as a dose escalation strategy. Methods: Ten pancreatic cancer patients treated with SBRT were studied retrospectively. SBRT was delivered over 5 consecutive fractions with 6 ∼ 8Gy/fraction. Two plans were generated by Pinnacle Auto-Planning with the original prescription and escalated prescription, respectively. Escalated prescriptionmore » adds 1 Gy/fraction to the original prescription. Manually-created planning volumes were excluded in the optimization goals in order to assess the planning efficiency and quality simultaneously. Critical organs with closest proximity were used to determine the plan normalization to ensure the OAR sparing. Dosimetric parameters including D100, and conformity index (CI) were assessed. Results: Auto-plans directly generate acceptable plans for 70% of the cases without necessity of further improvement, and two more iterations at most are necessary for the rest of the cases. For the pancreas SBRT plans with the original prescription, autoplans resulted in favorable target coverage and PTV conformity (D100 = 96.3% ± 1.48%; CI = 0.88 ± 0.06). For the plans with the escalated prescriptions, no significant target under-dosage was observed, and PTV conformity remains reasonable (D100 = 93.3% ± 3.8%, and CI = 0.84 ± 0.05). Conclusion: Automatic planning, without substantial human-intervention process, results in reasonable PTV coverage and PTV conformity on the premise of adequate OAR sparing for the pancreas SBRT plans with escalated prescription. The results highlight the potential of autoplanning as a dose escalation strategy for pancreas SBRT treatment planning. Further investigations with a larger number of patients are necessary. The project is partially supported by Philips Medical Systems.« less

  10. A NTCP approach for estimating the outcome in radioiodine treatment of hyperthyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strigari, L.; Sciuto, R.; Benassi, M.

    2008-09-15

    Radioiodine has been in use for over 60 years as a treatment for hyperthyroidism. Major changes in clinical practice have led to accurate dosimetry capable of avoiding the risks of adverse effects and the optimization of the treatment. The aim of this study was to test the capability of a radiobiological model, based on normal tissue complication probability (NTCP), to predict the outcome after oral therapeutic {sup 131}I administration. Following dosimetric study, 79 patients underwent treatment for hyperthyroidism using radioiodine and then 67 had at least a one-year follow up. The delivered dose was calculated using the MIRD formula, takingmore » into account the measured maximum uptake of administered iodine transferred to the thyroid, U0, and the effective clearance rate, T{sub eff} and target mass. The dose was converted to normalized total dose delivered at 2 Gy per fraction (NTD{sub 2}). Furthermore, the method to take into account the reduction of the mass of the gland during radioiodine therapy was also applied. The clinical outcome and dosimetric parameters were analyzed in order to study the dose-response relationship for hypothyroidism. The TD{sub 50} and m parameters of the NTCP model approach were then estimated using the likelihood method. The TD{sub 50}, expressed as NTD{sub 2}, resulted in 60 Gy (95% C.I.: 45-75 Gy) and 96 Gy (95% C.I.: 86-109 Gy) for patients affected by Graves or autonomous/multinodular disease, respectively. This supports the clinical evidence that Graves' disease should be characterized by more radiosensitive cells compared to autonomous nodules. The m parameter for all patients was 0.27 (95% C.I.: 0.22-0.36). These parameters were compared with those reported in the literature for hypothyroidism induced after external beam radiotherapy. The NTCP model correctly predicted the clinical outcome after the therapeutic administration of radioiodine in our series.« less

  11. Genomic Changes in Normal Breast Tissue in Women at Normal Risk or at High Risk for Breast Cancer

    PubMed Central

    Danforth, David N.

    2016-01-01

    Sporadic breast cancer develops through the accumulation of molecular abnormalities in normal breast tissue, resulting from exposure to estrogens and other carcinogens beginning at adolescence and continuing throughout life. These molecular changes may take a variety of forms, including numerical and structural chromosomal abnormalities, epigenetic changes, and gene expression alterations. To characterize these abnormalities, a review of the literature has been conducted to define the molecular changes in each of the above major genomic categories in normal breast tissue considered to be either at normal risk or at high risk for sporadic breast cancer. This review indicates that normal risk breast tissues (such as reduction mammoplasty) contain evidence of early breast carcinogenesis including loss of heterozygosity, DNA methylation of tumor suppressor and other genes, and telomere shortening. In normal tissues at high risk for breast cancer (such as normal breast tissue adjacent to breast cancer or the contralateral breast), these changes persist, and are increased and accompanied by aneuploidy, increased genomic instability, a wide range of gene expression differences, development of large cancerized fields, and increased proliferation. These changes are consistent with early and long-standing exposure to carcinogens, especially estrogens. A model for the breast carcinogenic pathway in normal risk and high-risk breast tissues is proposed. These findings should clarify our understanding of breast carcinogenesis in normal breast tissue and promote development of improved methods for risk assessment and breast cancer prevention in women. PMID:27559297

  12. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron resolution and a dose range over several orders of magnitude. This paper will give an overview of all dosimeters tested in the past at the ESRF with their advantages and drawbacks. These detectors comprise: Ionization chambers, Alanine Dosimeters, MOSFET detectors, Gafchromic® films, Radiochromic polymers, TLDs, Polymer gels, Fluorescent Nuclear Track Detectors (Al2O3:C, Mg single crystal detectors), OSL detectors and Floating Gate-based dosimetry system. The aim of such a comparison shall help with a decision on which of these approaches is most suitable for high resolution dose measurements in MRT. The principle of these detectors will be presented including a comparison for some dosimeters exposed with the same irradiation geometry, namely a 1×1 cm5 field size with microbeam exposures at the surface, 0.1 cm and 1 cm in depth of a PMMA phantom. For these test exposures, the most relevant irradiation parameters for future clinical trials have been chosen: 50 micron FWHM and 400 micron c-t-c distance. The experimental data are compared with Monte Carlo calculations.

  13. Effects of radiocobalt irradiation of unfertilized or fertilized rabbit OVA in vitro on subsequent fertilization and development in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, M C; Hunt, D M; Romanoff, E B

    Freshly shed rabbit ova recovered from the Fallopian tubes were irradiated with a radiocobalt source at 45 r to 32,000 r and then transplanted into the left tube of mated rabbits. The ova were recovered and examined microscopically 10 hours to 24 hours, two days and 6 days after transplantation for the determination of fertilization, cleavage, and blastocyst formation. The fetus and uterine contents were examined macroscopically 22 to 25 days after transplantation. The proportion of fertilized ova decreased from 71% at a very low dosage, 45 r, to 46% at a very high dosage, 32,000 r. The proportion ofmore » normally cleaved ova and normal lilastocysts decreased from about 95% at 45 r, to about 3% at 500 r, to 0% at 6,500 r. The proportion of embryonic development decreased from 49% at 45 r, to 21% at 90 r, to 0% at 800 r. A chromosomal bridge was observed in an ovum irradiated at 6,500 r. Failure of second polar body division in one out of 23 ova irradiated at 6,500 r and polyspermy in one out of 32 ova irradiated at 32,000 r before fertilization was observed. When fertilized rabbit ova at the two cell stage were irradiated at 45 r to 6,500 r and examined at various times after transplantation, it was found that the proportion of normal cleavage decreased from 78% at 45 r to 33% at 800 r, to 0% at 6,500 r. The proportion of normal blastocysts decreased from 61% at 45 r, to 20% at 800 r, to 0% at 6,500 r. The proportion of normal embryonic development decreased from 46% at 45 r, to 12% at 500 r, to 0% at 6,500 r. In combination with data from a previous study of the irraiation of rabbit sper matozoa in vitro the following points are revealed: No abnormal fetus, no high proportion of degeneration after implantation, and no disturbance of the sex ratio were observed whether spermatozoa, or ova, unfertilized, or fertilized, were irradiated from 45 r to 800 r. Although there may be a differential sensitivity to various dosages for the subsequent cleavage and blastocyst formation following the irradiation of spermatozoa, unfertilized or fertilized ova at 45 r to 6,500 r, as far as subsequent embryonic development is concerned, the spermatozoa are more radioresistant than either unfertilized or fertilized ova and the unfertilized ova are more radiosensitive than fertilized ova. The chemical constituents of gametes necessary for the future development of the zygotes are more radiosensitive than are those for their fertilization and other activities.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meijne, E.I.; van der Winden-van Groenewegen, R.J.; Ploemacher, R.E.

    The sensitivity for x-irradiation of a series of hematopoietic stem cell populations has been determined. The most primitive cells identified, cells with marrow-repopulating ability (MRA), showed the highest degree of radioresistance. These MRA cells which generate many secondary day-twelve spleen colony-forming units (MRA(CFU-S-12)) or colony-forming units in culture (MRA(CFU-C)) in the marrow of primary recipients had Do values equal to 1.18 and 1.13 Gy, respectively. The more mature CFU-S-12 had intermediate radiosensitivity (Do = 0.94 Gy), whereas the less primitive CFU-S-7 were the most radiosensitive (Do = 0.71 Gy). The in vitro colony-forming precursor cells (CFU-C) showed low radiosensitivity. Thesemore » data clearly show that the most primitive hematopoietic stem cell measured is less sensitive to ionizing radiation than generally has been assumed on the basis of measurements on CFU-S-7 or CFU-S-12.« less

  15. THE RADIOSENSITIVITY OF BIRDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushnuruk, V.A.

    1962-01-01

    ABS>Earlier reports suggest that the radiosensitivity of birds varies according to the systematic position of the species in question. To study this question in greater detail, birds belonging to different species were exposed to x rays and the LD/sub 50/ for 30 days recorded. During exposure, the birds were kept in a small cage but could move freely. Five different species were investigated: the greenfinch (Chloris chloris L.), goldfinch (Carduelis carduelis L.), linnet (Acantis cannabina L.), house sparrow (Passer domesticus), and the canary (Serinus canarina L.). It appeared that the radiosensitivity of the birds moved within a fairly narrow rangemore » quite independently of the species. The LD/ sub 50/ for 30 days varied in the 5 species in question between 400 and 625 r. All birds showed disorders of the coordination of movements, in the reflex governing the picking of food, in flight, and in perching. (OTS)« less

  16. Variation in tumor response to fluosol-DA (20%)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasai, K.; Ono, K.; Nishidai, T.

    1989-05-01

    The effects of Fluosol-DA 20% (FDA) and carbogen (95% O2/5% CO/sub 2/) on radiosensitivity of the three experimental tumors, SCC VII tumor, RIF-I tumor, and transplanted mammary tumor of C/sub 3/H/He mouse, subcutaneously inoculated in the leg were examined. The effect of FDA plus carbogen, and carbogen alone on radiosensitivity of SCC VII and RIF-I tumors was tested using the in vivo-in vitro assay. The growth curves were obtained for both SCC VII tumor and transplanted mammary tumor. The effect of the combination of FDA and carbogen was only observed in the transplanted mammary tumor. In the other two tumors,more » only the effect of inspiring carbogen was observed. We concluded that the effect of FDA on the radiosensitivity of experimental tumors varies with the kind of tumor systems.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, Edward F.; Tatsukawa, Yoshimi; Funamoto, Sachiyo

    Purpose . There is evidence in the literature of increased maternal radiosensitivity during pregnancy. Materials and Methods . We tested this hypothesis using information from the atomic-bomb survivor cohort, that is, the Adult Health Study database at the Radiation Effects Research Foundation, which contains data from a cohort of women who were pregnant at the time of the bombings of Hiroshima and Nagasaki. Previous evaluation has demonstrated long-term radiation dose-response effects. Results/Conclusions . Data on approximately 250 women were available to assess dose-response rates for serum cholesterol, white blood cell count, erythrocyte sedimentation rate, and serum hemoglobin, and on approximatelymore » 85 women for stable chromosome aberrations, glycophorin A locus mutations, and naïve CD4 T-cell counts. Although there is no statistically significant evidence of increased radiosensitivity in pregnant women, the increased slope of the linear trend line in the third trimester with respect to stable chromosome aberrations is suggestive of an increased radiosensitivity.« less

  18. Enhancement of radiosensitizing effect of the nitroimidazole derivative RK28 on the proliferation of MethA tumor cells in combined use with diethyldithiocarbamate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashiba, Harukazu; Matsunaga, Keiko; Hata, Kazuo

    1991-01-01

    The radiosensitizing effect of the nitroimidazole derivative RK28 and diethyldithiocarbamate (DDC), which is an inhibitor of superoxide dismutase activity, was examined in vitro by using Meth A tumor cells. The radiosensitizing effect of 0.5 mM RK28 was observed in both of 10 Gy and 15 Gy irradiated groups. The addition of 5 {times} 10{sup {minus}7} M DDC also enhanced the radiation-induced proliferation inhibition. Marked enhancement of the anti-proliferative effect was observed in combined use of 0.2 mM or 0.5 mM RK28 with 2 {times} 10 M or 5 {times} 10{sup {minus}7} M DDC. These results suggest that enhanced oxygen effectmore » could be expected through combined use of the ionizing irradiation with both of these agents.« less

  19. Rockets, radiosensitizers, and RRx-001: an origin story part I.

    PubMed

    Oronsky, Bryan; Scicinski, Jan; Ning, Shoucheng; Peehl, Donna; Oronsky, Arnold; Cabrales, Pedro; Bednarski, Mark; Knox, Susan

    2016-03-01

    From Adam and Eve, to Darwinism, origin stories attempt to fill in the blanks, connect the dots, and define the turning points that are fundamental to subsequent developments. The purpose of this review is to present the origin story of a one-of-a-kind anticancer agent, RRx-001, which emerged from the aerospace industry as a putative radiosensitizer; not since the dynamite-to-dilator transformation of nitroglycerin in 1878 or the post-World War II explosive-to-elixir conversion of hydralazine, an ingredient in rocket fuel, to an antihypertensive, an antidepressant and an antituberculant, has energetic chemistry been harnessed for therapeutic purposes. This is Part 1 of the radiosensitization story; Parts 2 and 3, which detail the crossover activity of RRx-001 as a chemosensitizer in multiple tumor types and disease states including malaria, hemorrhagic shock and sickle cell anemia, are the subject of future reviews.

  20. Mechanism of radiosensitization by porphyrins.

    PubMed

    Luksiene, Zivile; Labeikyte, Danute; Juodka, Benediktas; Moan, Johan

    2006-01-01

    According to our previous data, hematoporphyrin dimethyl ether (HPde) at concentrations useful for photodynamic therapy can radiosensitize aggressive Ehrlich ascite carcinoma (EAT) to 2Gy irradiation inducing total tumour growth inhibition. The aim of this study was to further investigate the possible mechanism of radiosensitization of EAT by dicarboxylic porphyrin-HPde. Our results reveal that HPde is inducing several rearrangements in the EAT cells: 1.2 x 10-6 M of the photosensitizer diminishes the number of cells in mitosis by a factor of 3, increases the number of cells in the S phase of the cell cycle, modifies the activities of antioxidant enzymes glutation S-transferase (GST) and DT-diaphorase (DTD), and eventually induces slight apoptosis. Moreover, it was shown that HPde is a ligand of peripheral benzodiazepine receptor (PBR). Named "house keeper," PBR is usually responsible for all these perturbations, which, in our case, act in concert with the following ionizing radiation, producing the interaction of two antiproliferative/destructive factors.

  1. Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation.

    PubMed

    He, Gang; Wang, Yan; Pang, Xueli; Zhang, Bo

    2014-02-01

    Radiotherapy is one of the main treatments for clinical cancer therapy. However, its application was limited due to lack of radiosensitivity in some cancers. Trichostatin A (TSA) is a classic histone deacetylases inhibitor (HDACi) that specifically inhibits the biochemical functions of HDAC and is demonstrated to be an active anticancer drug. However, whether it could sensitize colon cancer to radiation is not clear. Our results showed that TSA enhanced the radiosensitivity of colon cancer cells as determined by CCK-8 and clonogenic survival assay. Moreover, apoptotic cell death induced by radiation was enhanced by TSA treatment. Additionally, TSA also induced autophagic response in colon cancer cells, while autophagy inhibition led to cell apoptosis and enhanced the radiosensitivity of colon cancer cells. Our data suggested that inhibition of cytoprotective autophagy sensitizes cancer cell to radiation, which might be further investigated for clinical cancer radiotherapy.

  2. The temporal organization of processes of cell reproduction and its connection with rhythms of radiosensitivity of the body

    NASA Technical Reports Server (NTRS)

    Druzhinin, Y. P.; Romanov, Y. A.; Vatsek, A.

    1974-01-01

    Radiosensitivity of individual phases of the mitotic cycle was studied in synchronous cell cultures and in several biological objects. It was found that radiosensitivity changed essentially according to phases of the mitotic cycle, depending on the kind of cells, evaluation criteria and the radiation dosage. Tests on partially synchronized HeLa cell populations, according to the criterion of survival, showed them most sensitive during mitosis, as well as in later G sub 1- or early DNA-synthesizing stages. With radiation in doses of 300 rad, the proportion of surviving cells showed a sensitivity directly before DNA synthesis of approximately 4 times higher than the later S-phase and during the major portion of G sub 1- and G sub 2-periods. Sensitivity of cells in mitosis was approximately 3 times higher than in late G sub 1- and early S-phases.

  3. Modelling carcinogenesis after radiotherapy using Poisson statistics: implications for IMRT, protons and ions.

    PubMed

    Jones, Bleddyn

    2009-06-01

    Current technical radiotherapy advances aim to (a) better conform the dose contours to cancers and (b) reduce the integral dose exposure and thereby minimise unnecessary dose exposure to normal tissues unaffected by the cancer. Various types of conformal and intensity modulated radiotherapy (IMRT) using x-rays can achieve (a) while charged particle therapy (CPT)-using proton and ion beams-can achieve both (a) and (b), but at greater financial cost. Not only is the long term risk of radiation related normal tissue complications important, but so is the risk of carcinogenesis. Physical dose distribution plans can be generated to show the differences between the above techniques. IMRT is associated with a dose bath of low to medium dose due to fluence transfer: dose is effectively transferred from designated organs at risk to other areas; thus dose and risk are transferred. Many clinicians are concerned that there may be additional carcinogenesis many years after IMRT. CPT reduces the total energy deposition in the body and offers many potential advantages in terms of the prospects for better quality of life along with cancer cure. With C ions there is a tail of dose beyond the Bragg peaks, due to nuclear fragmentation; this is not found with protons. CPT generally uses higher linear energy transfer (which varies with particle and energy), which carries a higher relative risk of malignant induction, but also of cell death quantified by the relative biological effect concept, so at higher dose levels the frank development of malignancy should be reduced. Standard linear radioprotection models have been used to show a reduction in carcinogenesis risk of between two- and 15-fold depending on the CPT location. But the standard risk models make no allowance for fractionation and some have a dose limit at 4 Gy. Alternatively, tentative application of the linear quadratic model and Poissonian statistics to chromosome breakage and cell kill simultaneously allows estimation of relative changes in carcinogenesis that incorporate fractionation and relative biological effects (RBE). This alternative modelling approach allows absolute and relative risk estimations per cell and can be extended to tissues. The classical turnover point in carcinogenesis occurring after a single exposure is a feature of the model; also, the dose-response relationship becomes pseudo-linear with extended fractionation and when heterogeneity of the radiosensitivity parameters is introduced; there is also an inverse relationship between dose per fraction and cancer induction. In principle, this new approach might influence the conduct of proton and ion beam therapy, particularly beam placements and fractionation policies. The theoretical implications for future radiotherapy are considerable, but these predictions should be subjected to cellular and tissue experiments that simulate these forms of treatment, including any secondary neutron production in some cases depending on the beam delivery technique, e.g. in tissue equivalent humanoid phantoms using cell transformation techniques. Since the UK has no working high energy particle beam facility over 100 MeV, British scientists would require use of particle beam facilities in Europe, USA or Japan to perform experiments.

  4. Ninth international symposium on radiopharmacology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The goal of this Symposium is to provide a forum for those international scientists involved in applying the principles of pharmacology and radiation biology to the development of agents for the diagnosis and treatment of disease. The program will highlight state-of-the-art progress in the development of those agents used in conjunction with some form of radiation such as radiopharmaceuticals, radiopaques, photo- and radiosensitizing drugs, and neutron capture agents. An underlying pharmacokinetic parameter associated with all these agents is the need for site-specific delivery to an organ or tumor. Therefore, a major goal of the symposium will be to address thosemore » pharmacologic principles for targeting molecules to specific tissue sites. Accordingly, session themes will include receptor-mediated processes, membrane transporters, antibody interactions, metabolic trapping, and oligonucleotide-antisense mechanisms.« less

  5. WE-G-303-00: Nanotechnology for Imaging and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Over the last decade, there has been a growing interest in applying nanotechnology to cancer detection, treatment, and treatment monitoring. Advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes and sizes. Nanoparticles can be accumulated preferentially within tumors by either “passive targeting” through a phenomenon typically known as “enhanced permeability and retention” or “active targeting” in which nanoparticles are conjugated with antibodies or peptides directed against tumor and/or stromal markers. The tumor specificity of nanoparticles in conjunction with their unique physicochemical properties offers many novel strategies for cancer treatment and detection. For example, notablemore » approaches in the radiation oncology setting include the use of gold nanoparticles for radiation response modulation of tumor or normal tissue and thermal ablation or hyperthermia treatment of tumors. Some of these approaches are currently being tested either on humans or on animals and, very likely, will become the clinical reality in the near future. Various computational and experimental techniques have also been applied to address unique research issues associated with nanoparticles and may become the standard tools for future investigations and clinical translations. Therefore, both clinicians and researchers may need to be properly educated about the basic principles as well as the promise of nanoparticle-based applications with regard to the future of cancer diagnostics and therapeutics. This symposium will familiarize the audience with the potential applications of nanoparticles in oncologic imaging and therapy using specific illustrative examples. The audience will be properly oriented by these illustrative examples to the multiple avenues for collaborative research amongst interdisciplinary teams of physicists, clinicians, engineers, chemists, and biologists in industry and academia. Learning Objectives: Understand the physical bases of gold nanoparticle applications for radiosensitization and x-ray fluorescence imaging Understand the parameters that define gold nanoparticle-mediated radiosensitization in biological systems Understand the potential of magnetic nanoparticle characterization of the microenvironment Understand the various strategies for radiolabeling of nanoparticles and their applications S.C. and S.K. acknowledge support from MD Anderson Cancer Center, NIH (R01CA155446 and P30CA16672) and DoD (W81XWH-12-1-0198); J.W. acknowledges support from NIH (U54CA151662-01); W.C. acknowledges support from the University of Wisconsin-Madison, NIH (R01CA169365, P30CA014520, and T32CA009206), DoD (W81XWH-11-1-0644 and W81XWH-11-1-0648), and ACS (125246-RSG-13-099-01-CCE)« less

  6. WE-G-303-03: Advances in in Vivo Magnetic NanoparticleSensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, J.

    2015-06-15

    Over the last decade, there has been a growing interest in applying nanotechnology to cancer detection, treatment, and treatment monitoring. Advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes and sizes. Nanoparticles can be accumulated preferentially within tumors by either “passive targeting” through a phenomenon typically known as “enhanced permeability and retention” or “active targeting” in which nanoparticles are conjugated with antibodies or peptides directed against tumor and/or stromal markers. The tumor specificity of nanoparticles in conjunction with their unique physicochemical properties offers many novel strategies for cancer treatment and detection. For example, notablemore » approaches in the radiation oncology setting include the use of gold nanoparticles for radiation response modulation of tumor or normal tissue and thermal ablation or hyperthermia treatment of tumors. Some of these approaches are currently being tested either on humans or on animals and, very likely, will become the clinical reality in the near future. Various computational and experimental techniques have also been applied to address unique research issues associated with nanoparticles and may become the standard tools for future investigations and clinical translations. Therefore, both clinicians and researchers may need to be properly educated about the basic principles as well as the promise of nanoparticle-based applications with regard to the future of cancer diagnostics and therapeutics. This symposium will familiarize the audience with the potential applications of nanoparticles in oncologic imaging and therapy using specific illustrative examples. The audience will be properly oriented by these illustrative examples to the multiple avenues for collaborative research amongst interdisciplinary teams of physicists, clinicians, engineers, chemists, and biologists in industry and academia. Learning Objectives: Understand the physical bases of gold nanoparticle applications for radiosensitization and x-ray fluorescence imaging Understand the parameters that define gold nanoparticle-mediated radiosensitization in biological systems Understand the potential of magnetic nanoparticle characterization of the microenvironment Understand the various strategies for radiolabeling of nanoparticles and their applications S.C. and S.K. acknowledge support from MD Anderson Cancer Center, NIH (R01CA155446 and P30CA16672) and DoD (W81XWH-12-1-0198); J.W. acknowledges support from NIH (U54CA151662-01); W.C. acknowledges support from the University of Wisconsin-Madison, NIH (R01CA169365, P30CA014520, and T32CA009206), DoD (W81XWH-11-1-0644 and W81XWH-11-1-0648), and ACS (125246-RSG-13-099-01-CCE)« less

  7. WE-G-303-04: Intrinsically Radiolabeled Nanoparticles: An Emerging Paradigm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, W.

    2015-06-15

    Over the last decade, there has been a growing interest in applying nanotechnology to cancer detection, treatment, and treatment monitoring. Advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes and sizes. Nanoparticles can be accumulated preferentially within tumors by either “passive targeting” through a phenomenon typically known as “enhanced permeability and retention” or “active targeting” in which nanoparticles are conjugated with antibodies or peptides directed against tumor and/or stromal markers. The tumor specificity of nanoparticles in conjunction with their unique physicochemical properties offers many novel strategies for cancer treatment and detection. For example, notablemore » approaches in the radiation oncology setting include the use of gold nanoparticles for radiation response modulation of tumor or normal tissue and thermal ablation or hyperthermia treatment of tumors. Some of these approaches are currently being tested either on humans or on animals and, very likely, will become the clinical reality in the near future. Various computational and experimental techniques have also been applied to address unique research issues associated with nanoparticles and may become the standard tools for future investigations and clinical translations. Therefore, both clinicians and researchers may need to be properly educated about the basic principles as well as the promise of nanoparticle-based applications with regard to the future of cancer diagnostics and therapeutics. This symposium will familiarize the audience with the potential applications of nanoparticles in oncologic imaging and therapy using specific illustrative examples. The audience will be properly oriented by these illustrative examples to the multiple avenues for collaborative research amongst interdisciplinary teams of physicists, clinicians, engineers, chemists, and biologists in industry and academia. Learning Objectives: Understand the physical bases of gold nanoparticle applications for radiosensitization and x-ray fluorescence imaging Understand the parameters that define gold nanoparticle-mediated radiosensitization in biological systems Understand the potential of magnetic nanoparticle characterization of the microenvironment Understand the various strategies for radiolabeling of nanoparticles and their applications S.C. and S.K. acknowledge support from MD Anderson Cancer Center, NIH (R01CA155446 and P30CA16672) and DoD (W81XWH-12-1-0198); J.W. acknowledges support from NIH (U54CA151662-01); W.C. acknowledges support from the University of Wisconsin-Madison, NIH (R01CA169365, P30CA014520, and T32CA009206), DoD (W81XWH-11-1-0644 and W81XWH-11-1-0648), and ACS (125246-RSG-13-099-01-CCE)« less

  8. WE-G-303-01: Physical Bases for Gold Nanoparticle Applications in Radiation Oncology and X-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, S.

    2015-06-15

    Over the last decade, there has been a growing interest in applying nanotechnology to cancer detection, treatment, and treatment monitoring. Advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes and sizes. Nanoparticles can be accumulated preferentially within tumors by either “passive targeting” through a phenomenon typically known as “enhanced permeability and retention” or “active targeting” in which nanoparticles are conjugated with antibodies or peptides directed against tumor and/or stromal markers. The tumor specificity of nanoparticles in conjunction with their unique physicochemical properties offers many novel strategies for cancer treatment and detection. For example, notablemore » approaches in the radiation oncology setting include the use of gold nanoparticles for radiation response modulation of tumor or normal tissue and thermal ablation or hyperthermia treatment of tumors. Some of these approaches are currently being tested either on humans or on animals and, very likely, will become the clinical reality in the near future. Various computational and experimental techniques have also been applied to address unique research issues associated with nanoparticles and may become the standard tools for future investigations and clinical translations. Therefore, both clinicians and researchers may need to be properly educated about the basic principles as well as the promise of nanoparticle-based applications with regard to the future of cancer diagnostics and therapeutics. This symposium will familiarize the audience with the potential applications of nanoparticles in oncologic imaging and therapy using specific illustrative examples. The audience will be properly oriented by these illustrative examples to the multiple avenues for collaborative research amongst interdisciplinary teams of physicists, clinicians, engineers, chemists, and biologists in industry and academia. Learning Objectives: Understand the physical bases of gold nanoparticle applications for radiosensitization and x-ray fluorescence imaging Understand the parameters that define gold nanoparticle-mediated radiosensitization in biological systems Understand the potential of magnetic nanoparticle characterization of the microenvironment Understand the various strategies for radiolabeling of nanoparticles and their applications S.C. and S.K. acknowledge support from MD Anderson Cancer Center, NIH (R01CA155446 and P30CA16672) and DoD (W81XWH-12-1-0198); J.W. acknowledges support from NIH (U54CA151662-01); W.C. acknowledges support from the University of Wisconsin-Madison, NIH (R01CA169365, P30CA014520, and T32CA009206), DoD (W81XWH-11-1-0644 and W81XWH-11-1-0648), and ACS (125246-RSG-13-099-01-CCE)« less

  9. Fractionation in normal tissues: the (α/β)eff concept can account for dose heterogeneity and volume effects.

    PubMed

    Hoffmann, Aswin L; Nahum, Alan E

    2013-10-07

    The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.

  10. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    PubMed

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to <10 cGy h(-1) and involve multiple patients to detect patient variability. Results may suggest a preference for high dose rate brachytherapy or LDR brachytherapy without permanent retention of the implant seeds (hence the dose rates in peripheral tissues and organs remain above IDRE thresholds).

  11. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.

    1996-01-01

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

  12. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

    1996-12-03

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, S.E.; Russell, E.S.; Barker, J.E.

    Hereditary anemias of mice have been investigated including four macrocytic anemias, three hemolytic anemias, nonhemolytic microcytic anemia, transitory siderocytic anemia, sex-linked iron-transport anemia, an ..cap alpha..-thalassemia, and a new target-cell anemia. Each of these blood dyscrasias is caused by the action of a unique mutant gene, which determines the structure of different intracellular molecules controlling a different metabolic process. Thus the wide range of different hereditary anemias has considerable potential for uncovering many different aspects of hemopoietic homeostatic mechanisms in the mouse and by extension to man from an understanding of mammalian mechanisms utilized in the control of erythropoiesis. Eachmore » of the different anemias is studied through: (a) biochemical and biophysical characterization of peripheral blood cells; (b) determinations of cellular and organismic radiosensitivity under a variety of conditions; (c) measurements of iron metabolism and heme biosynthesis; (d) morphological and biochemical study of blood-forming tissue; (e) functional tests of the stem cell component; (f) examination of responses to erythroid stimuli and inhibitors; and (g) physiological complementation analysis via transplantation of tissue between individuals of differently affected genotypes.« less

  14. Measurement of glutathione S-transferase and its class-pi in plasma and tissue biopsies obtained after laparoscopy and endoscopy from subjects with esophagus and gastric cancer.

    PubMed

    Mohammadzadeh, G S; Nasseri Moghadam, S; Rasaee, M J; Zaree, A B; Mahmoodzadeh, H; Allameh, A

    2003-06-01

    To develop an indirect enzyme-linked immunosorbent assay (ELISA) for measuring class-pi glutathione S-transferase (GST) in plasma, and tissue biopsies obtained from upper gastrointestinal cancer (UGI Ca) patients. GST activity and GST-pi concentration were detected in normal human squamous esophageal epithelium, normal gastric cardia and their corresponding malignant tumor biopsies. Plasma GST was significantly higher (p < 0.05) in UGI Ca patients as compared to those obtained from normal individuals. Plasma GST-pi concentration in normal subjects was 6.6 +/- 1.9 ng/mg protein, whereas it was higher in UGI Ca patients (esophageal, 10.0 +/- 1.8; gastric, 10.7 +/- 1.7 ng/mL, p

  15. Preferential expression of cystein-rich secretory protein-3 (CRISP-3) in chronic pancreatitis.

    PubMed

    Liao, Q; Kleeff, J; Xiao, Y; Guweidhi, A; Schambony, A; Töpfer-Petersen, E; Zimmermann, A; Büchler, M W; Friess, H

    2003-04-01

    Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocrine pancreatic insufficiency in advanced stages. Cysteine-rich secretory protein (CRISP-3) has been identified as a defense-associated molecule with predominant expression in the salivary gland, pancreas and prostate. In this study, we investigated CRISP-3 expression in normal pancreatic tissues, chronic pancreatitis tissues, pancreatic cancer tissues and pancreatic cancer cell lines, as well as in other gastrointestinal organs. 15 normal pancreatic tissues, 14 chronic pancreatitis tissues and 14 pancreatic cancer tissues as well as three pancreatic cancer cell lines were analyzed. Moreover, hepatocellular carcinoma and esophageal, stomach and colon cancers were also analyzed together with the corresponding normal controls. CRISP-3 was expressed at moderate to high levels in chronic pancreatitis tissues and at moderate levels in pancreatic cancer tissues but at low levels in normal pancreatic tissues, and was absent in three pancreatic cancer cell lines. CRISP-3 expression was below the level of detection in all cancerous gastrointestinal tissues and in all normal tissues except 2 of 16 colon tissue samples. CRISP-3 mRNA signals and immunoreactivity were strongly present in the cytoplasm of degenerating acinar cells and in small proliferating ductal cells in CP tissues and CP-like lesions in pancreatic cancer tissues. In contrast, CRISP-3 expression was weak to absent in the cytoplasm of cancer cells as well as in acinar cells and ductal cells in pancreatic cancer tissues and normal pancreatic tissues. These results reveal that the distribution of CRISP-3 in gastrointestinal tissues is predominantly in the pancreas. High levels of CRISP-3 in acinar cells dedifferentiating into small proliferating ductal cells in CP and CP-like lesions in pancreatic cancer suggests a role of this molecule in the pathophysiology of CP.

  16. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    NASA Astrophysics Data System (ADS)

    Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B.; Lindstrom, Mary J.; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M.; Temple, Walley; Mew, Daphne; Booske, John H.; Okoniewski, Michal; Hagness, Susan C.

    2007-10-01

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.

  17. Radiosensitizing effects of miR-18a-5p on lung cancer stem-like cells via downregulating both ATM and HIF-1α.

    PubMed

    Chen, Xu; Wu, Lei; Li, Dezhi; Xu, Yanmei; Zhang, Luping; Niu, Kai; Kong, Rui; Gu, Jiaoyang; Xu, Zihan; Chen, Zhengtang; Sun, Jianguo

    2018-06-02

    Lung cancer is one of the main causes of cancer mortality globally. Most patients received radiotherapy during the course of disease. However, radioresistance generally occurs in the majority of these patients, leading to poor curative effect, and the underlying mechanism remains unclear. In the present study, miR-18a-5p expression was downregulated in irradiated lung cancer cells. Overexpression of miR-18a-5p increased the radiosensitivity of lung cancer cells and inhibited the growth of A549 xenografts after radiation exposure. Dual luciferase report system and miR-18a-5p overexpression identified ataxia telangiectasia mutated (ATM) and hypoxia inducible factor 1 alpha (HIF-1α) as the targets of miR-18a-5p. The mRNA and protein expressions of ATM and HIF-1α were dramatically downregulated by miR-18a-5p in vitro and in vivo. Clinically, plasma miR-18a-5p expression was significantly higher in radiosensitive than in radioresistant group (P < .001). The cutoff value of miR-18a-5p >2.28 was obtained from receiver operating characteristic (ROC) curve. The objective response rate (ORR) was significantly higher in miR-18a-5p-high group than in miR-18a-5p-low group (P < .001). A tendency demonstrated that the median local progression-free survival (PFS) from radiotherapy was longer in miR-18a-5p-high than in miR-18a-5p-low group (P = .082). The median overall survival (OS) from radiotherapy was numerically longer in miR-18a-5p-high than in miR-18a-5p-low group (P = .281). The sensitivity and specificity of plasma miR-18a-5p to predict radiosensitivity was 87% and 95%, respectively. Collectively, these results indicate that miR-18a-5p increases the radiosensitivity in lung cancer cells and CD133 + stem-like cells via downregulating ATM and HIF-1α expressions. Plasma miR-18a-5p would be an available indicator of radiosensitivity in lung cancer patients. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe.

    PubMed

    O'Rourke, Ann P; Lazebnik, Mariya; Bertram, John M; Converse, Mark C; Hagness, Susan C; Webster, John G; Mahvi, David M

    2007-08-07

    Hepatic malignancies have historically been treated with surgical resection. Due to the shortcomings of this technique, there is interest in other, less invasive, treatment modalities, such as microwave hepatic ablation. Crucial to the development of this technique is the accurate knowledge of the dielectric properties of human liver tissue at microwave frequencies. To this end, we characterized the dielectric properties of in vivo and ex vivo normal, malignant and cirrhotic human liver tissues from 0.5 to 20 GHz. Analysis of our data at 915 MHz and 2.45 GHz indicates that the dielectric properties of ex vivo malignant liver tissue are 19 to 30% higher than normal tissue. The differences in the dielectric properties of in vivo malignant and normal liver tissue are not statistically significant (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 16% higher than normal). Also, the dielectric properties of in vivo normal liver tissue at 915 MHz and 2.45 GHz are 16 to 43% higher than ex vivo. No statistically significant differences were found between the dielectric properties of in vivo and ex vivo malignant tissue (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 28% higher than normal). We report the one-pole Cole-Cole parameters for ex vivo normal, malignant and cirrhotic liver tissue in this frequency range. We observe that wideband dielectric properties of in vivo liver tissue are different from the wideband dielectric properties of ex vivo liver tissue, and that the in vivo data cannot be represented in terms of a Cole-Cole model. Further work is needed to uncover the mechanisms responsible for the observed wideband trends in the in vivo liver data.

  19. Time-Resolved Spectroscopy and Near Infrared Imaging for Prostate Cancer Detection: Receptor-targeted and Native Biomarker

    NASA Astrophysics Data System (ADS)

    Pu, Yang

    Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time-resolved fluorescence spectroscopy of Cybesin (Cytate) in solution, and in cancerous and normal prostate tissues were studied. It was found that more Cybesin (Cytate) was uptaken in the cancerous prostate tissue than those in the normal tissue. The preferential uptake of Cybesin (Cytate) in cancerous tissue was used to image and distinguish cancerous areas from the normal tissue. To investigate rotational dynamics and fluorescence polarization anisotropy of the contrast agents in prostate tissues, an analytical model was used to extract the rotational times and polarization anisotropies, which were observed for higher values of Cybesin (Cytate)-stained cancerous prostate tissue in comparison with the normal tissue. These reflect changes of microstructures of cancerous and normal tissues and their different binding affinity with contrast agents. The results indicate that the use of optical spectroscopy and imaging combined with receptor-targeted contrast agents is a valuable tool to study microenvironmental changes of tissue, and detect prostate cancer in early stage.

  20. Screening for ATM Mutations in an African-American Population to Identify a Predictor of Breast Cancer Susceptibility

    DTIC Science & Technology

    2006-07-01

    ATM genetic variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for each mutation examined. 15. SUBJECT...women without breast cancer. An additional objective is to determine the functional impact upon the protein encoded by the ATM gene for each mutation ...each ATM variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for mutations identified. Body STATEMENT

  1. Radiosensitization of HT-29 cells and xenografts by the nitric oxide donor DETANONOate.

    PubMed

    Gao, Xiaohuan; Saha, Debabrata; Kapur, Payal; Anthony, Thomas; Livingston, Edward H; Huerta, Sergio

    2009-08-01

    Mechanisms of radioresistance in rectal cancer remain unclear. To determine mechanisms of radioresistance in rectal cancer cells and to assess the role of the nitric oxide donor DETANONOate as a radiosensitizing agent. Survival was determined by clonogenic assays, apoptosis by PARP-1 cleavage, and phenotypic differences by Western blot analysis. SCID mice bearing HT-29 xenografts were treated with ionizing radiation (IR) [2.0 Gy x 5], DETANONOate [0.4 mg/kg i.p.], or combination treatment. Colorectal cancer HT-29-p53-null cells were resistant and HCT-116-p53 wild-type cells sensitive to IR, which correlated with cleaved PARP-1. Increased levels of p21 occurred in HCT-116 cells, while Bcl-2 and survivin were elevated in HT-29 cells. Radiosensitization was achieved with a substantial elevation of cleaved PARP-1 in DETANONOate-HT-29-treated versus control cells, which was accompanied by elevation of p21, p27, and BAX, and a concomitant decrease in Bcl-2. SCID mice bearing HT-29 xenografts demonstrated a 37.6%, 51.1%, and 70.1% inhibition in tumor growth in mice receiving IR, DETANONOate, and combination treatment versus control, respectively. Radioresistant HT-29 cells are p53-null and have substantially decreased levels of p21. DETANONOate radiosensitized HT-29 cells in vitro and in vivo by an additive effect in apoptosis.

  2. Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair.

    PubMed

    Ihara, Makoto; Takeshita, Satoshi; Okaichi, Kumio; Okumura, Yutaka; Ohnishi, Takeo

    2014-03-01

    From the role of double strand DNA dependent protein kinase (DNA-PKcs) activity of non-homologous end joining (NHEJ) repair for DNA double strand breaks (DSBs), we aim to define possible associations between thermo-sensitisation and the enzyme activities in X-ray irradiated cells. DNA-PKcs deficient mouse, Chinese hamster and human cultured cells were compared to the parental wild-type cells. The radiosensitivities, the number of DSBs and DNA-PKcs activities after heat-treatment were measured. Both DNA-PKcs deficient cells and the wild-type cells showed increased radiosensitivities after heat-treatment. The wild-type cells have two repair processes; fast repair and slow repair. In contrast, DNA-PKcs deficient cells have only the slow repair process. The fast repair component apparently disappeared by heat-treatment in the wild-type cells. In both cell types, additional heat exposure enhanced radiosensitivities. Although DNA-PKcs activity was depressed by heat, the inactivated DNA-PKcs activity recovered during an incubation at 37 °C. DSB repair efficiency was dependent on the reactivation of DNA-PKcs activity. It was suggested that NHEJ is the major process used to repair X-ray-induced DSBs and utilises DNA-PKcs activity, but homologous recombination repair provides additional secondary levels of DSB repair. The thermo-sensitisation in X-ray-irradiated cells depends on the inhibition of NHEJ repair through the depression of DNA-PKcs activities.

  3. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound.

    PubMed

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-11-06

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications.

  4. Uroporphyrinogen decarboxylase is a radiosensitizing target for head and neck cancer.

    PubMed

    Ito, Emma; Yue, Shijun; Moriyama, Eduardo H; Hui, Angela B; Kim, Inki; Shi, Wei; Alajez, Nehad M; Bhogal, Nirmal; Li, Guohua; Datti, Alessandro; Schimmer, Aaron D; Wilson, Brian C; Liu, Peter P; Durocher, Daniel; Neel, Benjamin G; O'Sullivan, Brian; Cummings, Bernard; Bristow, Rob; Wrana, Jeff; Liu, Fei-Fei

    2011-01-26

    Head and neck cancer (HNC) is the eighth most common malignancy worldwide, comprising a diverse group of cancers affecting the head and neck region. Despite advances in therapeutic options over the last few decades, treatment toxicities and overall clinical outcomes have remained disappointing, thereby underscoring a need to develop novel therapeutic approaches in HNC treatment. Uroporphyrinogen decarboxylase (UROD), a key regulator of heme biosynthesis, was identified from an RNA interference-based high-throughput screen as a tumor-selective radiosensitizing target for HNC. UROD knockdown plus radiation induced caspase-mediated apoptosis and cell cycle arrest in HNC cells in vitro and suppressed the in vivo tumor-forming capacity of HNC cells, as well as delayed the growth of established tumor xenografts in mice. This radiosensitization appeared to be mediated by alterations in iron homeostasis and increased production of reactive oxygen species, resulting in enhanced tumor oxidative stress. Moreover, UROD was significantly overexpressed in HNC patient biopsies. Lower preradiation UROD mRNA expression correlated with improved disease-free survival, suggesting that UROD could potentially be used to predict radiation response. UROD down-regulation also radiosensitized several different models of human cancer, as well as sensitized tumors to chemotherapeutic agents, including 5-fluorouracil, cisplatin, and paclitaxel. Thus, our study has revealed UROD as a potent tumor-selective sensitizer for both radiation and chemotherapy, with potential relevance to many human malignancies.

  5. Theranostic gold-magnetite hybrid nanoparticles for MRI-guided radiosensitization.

    PubMed

    Maniglio, D; Benetti, F; Minati, L; Jovicich, J; Valentini, A; Speranza, G; Migliaresi, C

    2018-08-03

    The main limitation of drug-enhanced radiotherapy concerns the difficulty to evaluate the effectiveness of cancer targeting after drug administration hindering the standardization of therapies based on current radiosensitizing compounds. The challenge regards the development of systems able to combine imaging and radiotherapy enhancement in order to perform highly reliable cancer theragnosis. For these reasons, gold-magnetite hybrid nanoparticles (H-NPs) are proposed as innovative theranostic nanotools for imaging-guided radiosensitization in cancer treatment. In this work we propose a novel method for the synthesis of hydrophilic and superparamagnetic Tween20-stabilized gold-magnetite H-NPs. Morphology and chemical composition of nanoparticles were assessed by transmission electron microscopy, x-ray diffraction analysis and ion-coupled plasma optical emission spectroscopy. Colloidal stability and magnetic properties of nanoparticles were determined by dynamic light scattering and magnetometry. The potentialities of H-NPs for magnetic resonance imaging were studied using a human 4T-MRI scanner. Nanoparticles were proven to induce concentration-dependent contrast enhancement in T2*-weighted MR-images. The cytotoxicity, the cellular uptake and the radiosensitization activity of H-NPs were investigated in human osteosarcoma MG63 cell cultures and murine 3T3 fibroblasts, using specific bioassays and laser scanning confocal microscopy. H-NPs did not exhibit significant toxicity and were demonstrated to be internalized by cells. A significant x-ray enhancement at specific H-NPs exposure concentrations was evidenced on MG63 cell line.

  6. Radiation-induced radioresistance of mammals and risk assessment

    NASA Astrophysics Data System (ADS)

    Smirnova, O.; Yonezawa, M.

    It is shown experimentally that a preliminary low dose exposure can induce radioresistance in mice in two (early and late) periods after preirradiation. The manifestation of such effects is reduced mortality of pre-exposed specimens after challenge acute irradiation, the reason of the animal death being the hematopoietic subsyndrome of the acute radiation syndrome. Therefore, proceeding from the radiobiological concept of the critical system, the theoretical investigation of the influence of preirradiation on mammalian radiosensitivity is conducted by making use of mathematical models of the vital body system, hematopoiesis. Modeling results make it possible to elucidate the mechanisms of the radioprotection effect of low level priming irradiation on mammals. Specifically, the state of acquired radioresistance in mice is caused by reduced radiosensitivity of lymphopoietic and thrombocytopoietic systems in the early period and by reduced radiosensitivity of granulocytopoietic system in the late period after preirradiation. It is important to emphasize that the evaluations of the duration of the early and late periods of postirradiation radioresistance in mice, carried out on the basis of the modeling and experimental investigations, practically coincide. All this demonstrates the effectiveness of joint modeling and experimental methods in studies and predictions of modification effects of preirradiation on mammalian radiosensitivity. The results obtained show the importance of accounting such effects in radiation risk assessments for cosmonauts and astronauts on long-term missions.

  7. Roscovitine strongly enhances the effect of olaparib on radiosensitivity for HPV neg. but not for HPV pos. HNSCC cell lines.

    PubMed

    Ziemann, Frank; Seltzsam, Steve; Dreffke, Kristin; Preising, Stefanie; Arenz, Andrea; Subtil, Florentine S B; Rieckmann, Thorsten; Engenhart-Cabillic, Rita; Dikomey, Ekkehard; Wittig, Andrea

    2017-12-01

    At present, advanced stage human Papillomavirus (HPV) negative and positive head and neck squamous cell carcinoma (HNSCC) are treated by intense multimodal therapy that includes radiochemotherapy, which are associated with relevant side effects. Patients with HPV positive tumors possess a far better prognosis than those with HPV negative cancers. Therefore, new therapeutic strategies are needed to improve the outcome especially of the latter one as well as quality of life for all HNSCC patients. Here we tested whether roscovitine, an inhibitor of cyclin-dependent kinases (CDKs), which hereby also blocks homologous recombination (HR), can be used to enhance the radiation sensitivity of HNSCC cell lines. In all five HPV negative and HPV positive cell lines tested, roscovitine caused inhibition of CDK1 and 2. Surprisingly, all HPV positive cell lines were found to be defective in HR. In contrast, HPV negative strains demonstrated efficient HR, which was completely suppressed by roscovitine. In line with this, for HPV negative but not for HPV positive cell lines, treatment with roscovitine resulted in a pronounced enhancement of the radiation-induced G2 arrest as well as a significant increase in radiosensitivity. Due to a defect in HR, all HPV positive cell lines were efficiently radiosensitized by the PARP-1 inhibitor olaparib. In contrast, in HPV negative cell lines a significant radiosensitization by olaparib was only achieved when combined with roscovitine.

  8. The nitric oxide donor JS-K sensitizes U87 glioma cells to repetitive irradiation.

    PubMed

    Heckler, Max; Osterberg, Nadja; Guenzle, Jessica; Thiede-Stan, Nina Kristin; Reichardt, Wilfried; Weidensteiner, Claudia; Saavedra, Joseph E; Weyerbrock, Astrid

    2017-06-01

    As a potent radiosensitizer nitric oxide (NO) may be a putative adjuvant in the treatment of malignant gliomas which are known for their radio- and chemoresistance. The NO donor prodrug JS-K (O2-(2.4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate) allows cell-type specific intracellular NO release via enzymatic activation by glutathione-S-transferases overexpressed in glioblastoma multiforme. The cytotoxic and radiosensitizing efficacy of JS-K was assessed in U87 glioma cells in vitro focusing on cell proliferation, induction of DNA damage, and cell death. In vivo efficacy of JS-K and repetitive irradiation were investigated in an orthotopic U87 xenograft model in mice. For the first time, we could show that JS-K acts as a potent cytotoxic and radiosensitizing agent in U87 cells in vitro. This dose- and time-dependent effect is due to an enhanced induction of DNA double-strand breaks leading to mitotic catastrophe as the dominant form of cell death. However, this potent cytotoxic and radiosensitizing effect could not be confirmed in an intracranial U87 xenograft model, possibly due to insufficient delivery into the brain. Although NO donor treatment was well tolerated, neither a retardation of tumor growth nor an extended survival could be observed after JS-K and/or radiotherapy.

  9. Individual Genetic Susceptibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric J. Hall

    2008-12-08

    Risk estimates derived from epidemiological studies of exposed populations, as well as the maximum permissible doses allowed for occupational exposure and exposure of the public to ionizing radiation are all based on the assumption that the human population is uniform in its radiosensitivity, except for a small number of individuals, such as ATM homozygotes who are easily identified by their clinical symptoms. The hypothesis upon which this proposal is based is that the human population is not homogeneous in radiosensitiviry, but that radiosensitive sub-groups exist which are not easy to identify. These individuals would suffer an increased incidence of detrimentalmore » radiation effects, and distort the shape of the dose response relationship. The radiosensitivity of these groups depend on the expression levels of specific proteins. The plan was to investigate the effect of 3 relatively rare, high penetrate genes available in mice, namely Atm, mRad9 & Brca1. The purpose of radiation protection is to prevent! deterministic effects of clinical significance and limit stochastic effects to acceptable levels. We plan, therefore to compare with wild type animals the radiosensitivity of mice heterozygous for each of the genes mentioned above, as well as double heterozygotes for pairs of genes, using two biological endpoints: a) Ocular cataracts as an important and relevant deterministic effect, and b) Oncogenic transformation in cultured embryo fibroblasts, as a surrogate for carcinogenesis, the most relevant stochastic effect.« less

  10. Analysis of esophageal cancer cell lines exposed to X-ray based on radiosensitivity influence by tumor necrosis factor-α.

    PubMed

    Wang, Buhai; Ge, Yizhi; Gu, Xiang

    2016-10-06

    Assess the effects of tumor necrosis factor-α (TNF-α) in enhancing the radiosensitivity of esophageal cancer cell line in vitro. Three esophageal cancer cell line cells were exposed to X-ray with or without TNF-α treatment. MTT assay was used to evaluate the cell growth curve, and flow cytometry was performed to assess the cell apoptosis. The radiosensitizing effects of TNF-α were detected by cell colony formation assay. Western blotting was applied to observe the expression of NF-κB and caspase-3 protein in the exposed cells. Our results indicated that cellular inhibition rate increased over time, the strongest is combined group (P < 0.05). Western blotting showed that the decline expression of NF-κB protein was stated between only rhTNF-α and only X-ray radiation group and the maximum degree was manifested in combined group. Caspase-3 protein content expression just works opposite. Three kinds of cells in the NF-κB protein were similar without rhTNF-α. Then SEG1 NF-κB protein content was reduced more than other two kinds. We concluded that the cells treated with TNF-α showed significantly suppressed cell proliferation, increasing the cell apoptosis, and caspase-3 protein expression after X-ray exposure. TNF-α can enhance the radiosensitivity of esophageal cancer to enhancing the effect of the former.

  11. DEFINING MOLECULAR AND CELLULAR RESPONSES AFTER LOW AND HIGH LINEAR ENERGY TRANSFER RADIATIONS TO DEVELOP BIOMARKERS OF CARCINOGENIC RISK OR THERAPEUTIC OUTCOME

    PubMed Central

    Story, Michael; Ding, Liang-hao; Brock, William A.; Ang, K. Kian; Alsbeih, Ghazi; Minna, John; Park, Seongmi; Das, Amit

    2015-01-01

    The variability in radiosensitivity across the human population is in part governed by genetic factors. The ability to predict therapeutic response, identify individuals at greatest risk for adverse clinical responses after therapeutic radiation doses, or identify individuals at high risk for carcinogenesis from environmental or medical radiation exposures has a medical and economic impact on both the individual and society at-large. As radiotherapy incorporates particles, particularly particles larger than protons, into therapy the need for such discriminators, that is, biomarkers will become ever more important. Cellular assays for survival, DNA repair or chromatid/chromosomal analysis have been used to identify at risk individuals but they are not clinically applicable. Newer approaches such as genome wide analysis of gene expression or single nucleotide polymorphisms, and small copy number variations within chromosomes are examples of technologies being applied to the discovery process. Gene expression analysis of primary or immortalized human cells suggests that there are distinct gene expression patterns associated with radiation exposure to both low and high linear energy transfer radiations and that those most radiosensitive are discernible by their basal gene expression patterns. However, because the genetic alterations that drive radioresponse may be subtle and cumulative, the need for large sample sizes of specific cell or tissue types is required. A systems biology approach will ultimately be necessary. Potential biomarkers from cell lines or animal models will require validation in a human setting where possible, and before being considered as a credible biomarker some understanding of the molecular mechanism is necessary. PMID:23032890

  12. Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma.

    PubMed

    Meier, Jeremy D; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D Gregory

    2010-06-01

    The objectives of this study were to 1) determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract, and 2) evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). Cross-sectional study. University-based medical center. Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700-picosecond pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared with the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than that of normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360 to approximately 660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7 +/- 0.06 ns [not significant] for normal and 1.3 +/- 0.06 ns for tumor, P = 0.0025) and the second-order Laguerre expansion coefficient (LEC-2) (i.e., at 460 nm: 0.135 +/- 0.001 for normal and 0.155 +/- 0.007 for tumor, P < 0.05). These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a noninvasive diagnostic technique for HNSCC. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  13. Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma

    PubMed Central

    Meier, Jeremy D.; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D. Gregory

    2011-01-01

    OBJECTIVE 1) Determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract. 2) Evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN Cross-sectional study. SETTING University-based medical center. SUBJECTS AND METHODS Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700 ps pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared to the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. RESULTS Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than the normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360~660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7±0.06 ns for normal and 1.3±0.06 ns for tumor, P=0.0025), and the Laguerre coefficients, LEC-2 (i.e., at 460 nm: 0.135±0.001 for normal and 0.155±0.007 for tumor, P<0.05). CONCLUSION These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a non-invasive diagnostic technique for HNSCC. PMID:20493355

  14. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation.

    PubMed

    Haemmerich, Dieter; Schutt, David J; Wright, Andrew W; Webster, John G; Mahvi, David M

    2009-05-01

    We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm(-1) at 10 Hz, to 5.33 versus 2.88 mS cm(-1) at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and -7% at 10 Hz and 1 MHz after ablation (0.23-0.29 at 10 Hz, and 0.43-0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09-0.32 at 10 Hz and 0.37-0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.

  15. Developmental-stage-dependent radiosensitivity of neural cells in the ventricular zone of telencephalon in mouse and rat fetuses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, K.; Kameyama, Y.

    1988-03-01

    Pregnant ICR mice were treated with single whole-body X-radiation at a dose of 0.24 Gy on day 10, 13, or 15 of gestation. Fetuses were obtained from mothers during 1 and 24 hours after irradiation. Pyknotic cells in the ventricular zone of telencephalon were counted in serial histological sections. Incidence of pyknotic cells peaked during 6 and 9 hours after irradiation in each gestation day group. Then, dose-response curves were obtained 6 hours after 0-0.48 Gy of irradiation. All three dose-response curves showed clear linearity in the dose range lower than 0.24 Gy. Ratios of radiosensitivity estimated from the slopesmore » of dose-response curves in day 10, 13, and 15 groups were 1, 1.4, and 0.4, respectively. These demonstrated that ventricular cells in the day 13 fetal telencephalon were the most radiosensitive among the three different age groups. In order to confirm the presence of the highly radiosensitive stage common to mammalian cerebral cortical histogenesis, pregnant F344 rats were treated with single whole-body gamma-irradiation at a dose of 0.48 Gy on day 13, 14, 15, 17, or 19 of gestation. The incidence of pyknotic cells in the ventricular zone of telencephalon was examined microscopically during 1 and 24 hours after irradiation. The peak incidence was shown 6 hours after irradiation in all the treated groups, and the highest peak incidence was shown in day-15-treated group. The developmental stage of telencephalon of day 15 rat fetuses was comparable to that of day 13 mouse fetuses. Thus, the highest radiosensitivity in terms of acute cell death was shown in the same developmental stage of brain development, i.e., the beginning phase of cerebral cortical histogenesis, in both mice and rats.« less

  16. Insulin-Like Growth Factor-Type 1 Receptor Inhibitor NVP-AEW541 Enhances Radiosensitivity of PTEN Wild-Type but Not PTEN-Deficient Human Prostate Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isebaert, Sofie F., E-mail: sofie.isebaert@med.kuleuven.be; Swinnen, Johannes V.; McBride, William H.

    2011-09-01

    Purpose: During the past decade, many clinical trials with both monoclonal antibodies and small molecules that target the insulin-like growth factor-type 1 receptor (IGF-1R) have been launched. Despite the important role of IGF-1R signaling in radioresistance, studies of such agents in combination with radiotherapy are lagging behind. Therefore, the aim of this study was to investigate the effect of the small molecule IGF-1R kinase inhibitor NVP-AEW541 on the intrinsic radioresistance of prostate cancer cells. Methods and Materials: The effect of NVP-AEW541 on cell proliferation, cell viability, IGF-1R signaling, radiosensitivity, cell cycle distribution, and double strand break repair was determined inmore » three human prostate cancer cell lines (PC3, DU145, 22Rv1). Moreover, the importance of the PTEN pathway status was explored by means of transfection experiments with constitutively active Akt or inactive kinase-dead Akt. Results: NVP-AEW541 inhibited cell proliferation and decreased cell viability in a time-and dose-dependent manner in all three cell lines. Radiosensitization was observed in the PTEN wild-type cell lines DU145 and 22Rv1 but not in the PTEN-deficient PC3 cell line. NVP-AEW541-induced radiosensitization coincided with downregulation of phospho-Akt levels and high levels of residual double strand breaks. The importance of PTEN status in the radiosensitization effect was confirmed by transfection experiments with constitutively active Akt or inactive kinase-dead Akt. Conclusions: NVP-AEW541 enhances the effect of ionizing radiation in PTEN wild-type, but not in PTEN-deficient, prostate cancer cells. Proper patient selection based on the PTEN status of the tumor will be critical to the achievement of optimal results in clinical trials in which the combination of radiotherapy and this IGF-1R inhibitor is being explored.« less

  17. SU-F-J-59: Assessment of Dose Response Distribution in Individual Human Tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, D; Chen, S; Krauss, D

    Purpose: To fulfill precision radiotherapy via adaptive dose painting by number, voxel-by-voxel dose response or radio-sensitivity in individual human tumor needs to be determined in early treatment to guide treatment adaptation. In this study, multiple FDG PET images obtained pre- and weekly during the treatment course were utilized to determine the distribution/spectrum of dose response parameters in individual human tumors. Methods: FDG PET/CT images of 18 HN cancer patients were used in the study. Spatial parametric image of tumor metabolic ratio (dSUV) was created following voxel by voxel deformable image registration. Each voxel value in dSUV was a function ofmore » pre-treatment baseline SUV and treatment delivered dose, and used as a surrogate of tumor survival fraction (SF). Regression fitting with break points was performed using the LQ-model with tumor proliferation for the control and failure group of tumors separately. The distribution and spectrum of radiation sensitivity and growth in individual tumors were determined and evaluated. Results: Spectrum of tumor dose-sensitivity and proliferation in the controlled group was broad with α in tumor survival LQ-model from 0.17 to 0.8. It was proportional to the baseline SUV. Tlag was about 21∼25 days, and Tpot about 0.56∼1.67 days respectively. Commonly tumor voxels with high radio-sensitivity or larger α had small Tlag and Tpot. For the failure group, the radio-sensitivity α was low within 0.05 to 0.3, but did not show clear Tlag. In addition, tumor voxel radio-sensitivity could be estimated during the early treatment weeks. Conclusion: Dose response distribution with respect to radio-sensitivity and growth in individual human tumor can be determined using FDG PET imaging based tumor metabolic ratio measured in early treatment course. The discover is critical and provides a potential quantitative objective to implement tumor specific precision radiotherapy via adaptive dose painting by number.« less

  18. Targeting radiosensitizers to DNA by attachment of an intercalating group: Nitroimidazole-linked phenanthridines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, D.S.; Panicucci, R.; McClelland, R.A.

    The nitroimidazole-linked phenanthridine series of compounds (NLP-1, 2, and 3) were synthesized under the assumption that it should be possible to enhance the molar efficiency of 2-nitroimidazoles as hypoxic cell radiosensitizers and cytotoxins by targeting them to their likely site of action, DNA. The targeting group chosen was the phenanthridine moiety, the major component of the classical DNA intercalating compound, ethidium bromide. The sole difference between the compounds is the length of the hydrocarbon chain linking the nitroimidazole to the phenanthridine. The phenanthridine group with a three-carbon side chain, P-1, was also synthesized to allow studies on the effect ofmore » the targeting group by itself. The ability of the compounds to bind to DNA is inversely proportional to their linker chain length with binding constant values ranging from approximately 1 {times} 10(5) mol-1 for NLP-2 to 6 {times} 10(5) mol-1 for NLP-3. The NLP compounds show selective toxicity to hypoxic cells at 37 degrees C at external drug concentrations 10-40 times lower than would be required for untargeted 2-nitroimidazoles such as misonidazole in vitro. Toxicity to both hypoxic and aerobic cells is dependent on the linker chain: the shorter the chain, the greater the toxicity. In addition, the NLP compounds radiosensitize hypoxic cells at external drug concentrations as low as 0.05 mM with almost the full oxygen effect being observed at a concentration of 0.5 mM. These concentrations are 10-100 times lower than would be required for similar radiosensitization using misonidazole. Radiosensitizing ability is independent of linker chain length. The present compounds represent prototypes for further studies of the efficacy and mechanism of action of 2-nitroimidazoles targeted to DNA by linkage to an intercalating group.« less

  19. A new approach for modeling patient overall radiosensitivity and predicting multiple toxicity endpoints for breast cancer patients.

    PubMed

    Mbah, Chamberlain; De Ruyck, Kim; De Schrijver, Silke; De Sutter, Charlotte; Schiettecatte, Kimberly; Monten, Chris; Paelinck, Leen; De Neve, Wilfried; Thierens, Hubert; West, Catharine; Amorim, Gustavo; Thas, Olivier; Veldeman, Liv

    2018-05-01

    Evaluation of patient characteristics inducing toxicity in breast radiotherapy, using simultaneous modeling of multiple endpoints. In 269 early-stage breast cancer patients treated with whole-breast irradiation (WBI) after breast-conserving surgery, toxicity was scored, based on five dichotomized endpoints. Five logistic regression models were fitted, one for each endpoint and the effect sizes of all variables were estimated using maximum likelihood (MLE). The MLEs are improved with James-Stein estimates (JSEs). The method combines all the MLEs, obtained for the same variable but from different endpoints. Misclassification errors were computed using MLE- and JSE-based prediction models. For associations, p-values from the sum of squares of MLEs were compared with p-values from the Standardized Total Average Toxicity (STAT) Score. With JSEs, 19 highest ranked variables were predictive of the five different endpoints. Important variables increasing radiation-induced toxicity were chemotherapy, age, SATB2 rs2881208 SNP and nodal irradiation. Treatment position (prone position) was most protective and ranked eighth. Overall, the misclassification errors were 45% and 34% for the MLE- and JSE-based models, respectively. p-Values from the sum of squares of MLEs and p-values from STAT score led to very similar conclusions, except for the variables nodal irradiation and treatment position, for which STAT p-values suggested an association with radiosensitivity, whereas p-values from the sum of squares indicated no association. Breast volume was ranked as the most significant variable in both strategies. The James-Stein estimator was used for selecting variables that are predictive for multiple toxicity endpoints. With this estimator, 19 variables were predictive for all toxicities of which four were significantly associated with overall radiosensitivity. JSEs led to almost 25% reduction in the misclassification error rate compared to conventional MLEs. Finally, patient characteristics that are associated with radiosensitivity were identified without explicitly quantifying radiosensitivity.

  20. Microarray expression profiling in adhesion and normal peritoneal tissues.

    PubMed

    Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P

    2012-05-01

    To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Matthews, Q.; Jirasek, A.; Lum, J. J.; Brolo, A. G.

    2011-11-01

    This work applies noninvasive single-cell Raman spectroscopy (RS) and principal component analysis (PCA) to analyze and correlate radiation-induced biochemical changes in a panel of human tumour cell lines that vary by tissue of origin, p53 status and intrinsic radiosensitivity. Six human tumour cell lines, derived from prostate (DU145, PC3 and LNCaP), breast (MDA-MB-231 and MCF7) and lung (H460), were irradiated in vitro with single fractions (15, 30 or 50 Gy) of 6 MV photons. Remaining live cells were harvested for RS analysis at 0, 24, 48 and 72 h post-irradiation, along with unirradiated controls. Single-cell Raman spectra were acquired from 20 cells per sample utilizing a 785 nm excitation laser. All spectra (200 per cell line) were individually post-processed using established methods and the total data set for each cell line was analyzed with PCA using standard algorithms. One radiation-induced PCA component was detected for each cell line by identification of statistically significant changes in the PCA score distributions for irradiated samples, as compared to unirradiated samples, in the first 24-72 h post-irradiation. These RS response signatures arise from radiation-induced changes in cellular concentrations of aromatic amino acids, conformational protein structures and certain nucleic acid and lipid functional groups. Correlation analysis between the radiation-induced PCA components separates the cell lines into three distinct RS response categories: R1 (H460 and MCF7), R2 (MDA-MB-231 and PC3) and R3 (DU145 and LNCaP). These RS categories partially segregate according to radiosensitivity, as the R1 and R2 cell lines are radioresistant (SF2 > 0.6) and the R3 cell lines are radiosensitive (SF2 < 0.5). The R1 and R2 cell lines further segregate according to p53 gene status, corroborated by cell cycle analysis post-irradiation. Potential radiation-induced biochemical response mechanisms underlying our RS observations are proposed, such as (1) the regulated synthesis and degradation of structured proteins and (2) the expression of anti-apoptosis factors or other survival signals. This study demonstrates the utility of RS for noninvasive radiobiological analysis of tumour cell radiation response, and indicates the potential for future RS studies designed to investigate, monitor or predict radiation response.

  2. USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance.

    PubMed

    Lee, Jin-Ku; Chang, Nakho; Yoon, Yeup; Yang, Heekyoung; Cho, Heejin; Kim, Eunhee; Shin, Yongjae; Kang, Wonyoung; Oh, Young Taek; Mun, Gyeong In; Joo, Kyeung Min; Nam, Do-Hyun; Lee, Jeongwu

    2016-01-01

    Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to intrinsic radio- and chemoresistance of GBM and inefficient targeting of GBM stem-like cells (GSCs). Novel therapeutic approaches that overcome treatment resistance and diminish stem-like properties of GBM are needed. We determined the expression levels of ubiquitination-specific proteases (USPs) by transcriptome analysis and found that USP1 is highly expressed in GBM. Using the patient GBM-derived primary tumor cells, we inhibited USP1 by shRNA-mediated knockdown or its specific inhibitor pimozide and evaluated the effects on stem cell marker expression, proliferation, and clonogenic growth of tumor cells. USP1 was highly expressed in gliomas relative to normal brain tissues and more preferentially in GSC enrichment marker (CD133 or CD15) positive cells. USP1 positively regulated the protein stability of the ID1 and CHEK1, critical regulators of DNA damage response and stem cell maintenance. Targeting USP1 by RNA interference or treatment with a chemical USP1 inhibitor attenuated clonogenic growth and survival of GSCs and enhanced radiosensitivity of GBM cells. Finally, USP1 inhibition alone or in combination with radiation significantly prolonged the survival of tumor-bearing mice. USP1-mediated protein stabilization promotes GSC maintenance and treatment resistance, thereby providing a rationale for USP1 inhibition as a potential therapeutic approach against GBM. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Expression of BMI-1 and Mel-18 in breast tissue - a diagnostic marker in patients with breast cancer

    PubMed Central

    2010-01-01

    Background Polycomb Group (PcG) proteins are epigenetic silencers involved in maintaining cellular identity, and their deregulation can result in cancer. Expression of Mel-18 and Bmi-1 has been studied in tumor tissue, but not in adjacent non-cancerous breast epithelium. Our study compares the expression of the two genes in normal breast epithelium of cancer patients and relates it to the level of expression in the corresponding tumors as well as in breast epithelium of healthy women. Methods A total of 79 tumors, of which 71 malignant tumors of the breast, 6 fibroadenomas, and 2 DCIS were studied and compared to the reduction mammoplastic specimens of 11 healthy women. In addition there was available adjacent cancer free tissue for 23 of the malignant tumors. The tissue samples were stored in RNAlater, RNA was isolated to create expression microarray profile. These two genes were then studied more closely first on mRNA transcription level by microarrays (Agilent 44 K) and quantitative RT-PCR (TaqMan) and then on protein expression level using immunohistochemistry. Results Bmi-1 mRNA is significantly up-regulated in adjacent normal breast tissue in breast cancer patients compared to normal breast tissue from noncancerous patients. Conversely, mRNA transcription level of Mel-18 is lower in normal breast from patients operated for breast cancer compared to breast tissue from mammoplasty. When protein expression of these two genes was evaluated, we observed that most of the epithelial cells were positive for Bmi-1 in both groups of tissue samples, although the expression intensity was stronger in normal tissue from cancer patients compared to mammoplasty tissue samples. Protein expression of Mel-18 showed inversely stronger intensity in tissue samples from mammoplasty compared to normal breast tissue from patients operated for breast cancer. Conclusion Bmi-1 mRNA level is consistently increased and Mel-18 mRNA level is consistently decreased in adjacent normal breast tissue of cancer patients as compared to normal breast tissue in women having had reduction mammoplasties. Bmi-1/Mel-18 ratio can be potentially used as a tool for stratifying women at risk of developing malignancy. PMID:21162745

  4. Radiosensitization of biologically active DNA in cellular extracts by oxygen. Evidence that the presence of SH-compounds is not required

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhemmen, J.J.; Meuling, W.J.A.; Bleichrodt, J.F.

    1974-01-01

    The radiosensitization by oxygen of biological active bacteriophage DNA in bacterial extracts was studied. The oxygen effect in such a system appeared not to be due or due only to a minor extent to the presence of endogenous sulfhydryl compounds. The components in a cell extract which enable oxygen and other sensitizers to sensitize DNA could not be destroyed by extremely high doses of gamma radiation. (Author) (GRA)

  5. Radiosensitization of Hypoxic Tumor Cells by Depletion of Intracellular Glutathione

    NASA Astrophysics Data System (ADS)

    Bump, Edward A.; Yu, Ning Y.; Brown, J. Martin

    1982-08-01

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  6. Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bump, E.A.; Yu, N.Y.; Brown, J.M.

    1982-08-06

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  7. Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies

    NASA Astrophysics Data System (ADS)

    Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali

    2011-12-01

    Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.

  8. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines

    PubMed Central

    2010-01-01

    Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues. PMID:20964822

  9. Cell Radiation Experiment System

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2010-01-01

    The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

  10. Variant forms of ataxia telangiectasia.

    PubMed Central

    Taylor, A M; Flude, E; Laher, B; Stacey, M; McKay, E; Watt, J; Green, S H; Harding, A E

    1987-01-01

    Two ataxia telangiectasia patients with unusual clinical and cellular features are described. Cultured fibroblasts and PHA stimulated lymphocytes from these two patients showed a smaller increase of radiosensitivity than cells from other A-T patients, as measured by colony forming ability or induced chromosome damage respectively, after exposure to ionising radiation. The response of DNA synthesis to irradiation of these cells was, however, the same as for other A-T patients. Cells from a third patient with some clinical features of A-T but with a very protracted course also showed low levels of radiation induced chromosome damage, but colony forming ability and the response of DNA synthesis after irradiation were no different from cells of normal subjects. There was, however, an increased level of translocations and unstable chromosomal rearrangements in this patient's lymphocytes. Images PMID:3430541

  11. Development of the technique of terahertz pulse spectroscopy for diagnostic malignant tumors during gastrointestinal surgeries

    NASA Astrophysics Data System (ADS)

    Goryachuk, A. A.; Khodzitsky, M. K.; Borovkova, M. A.; Khamid, A. K.; Dutkinskii, P. S.; Shishlo, D. A.

    2016-08-01

    Samples of fresh excised tissues obtained from patients who had undergone gastric cancer have been investigated. Samples were consisted of cancer zone, normal zone and zone mixed of normal and cancer tissues. Their optical properties and spectral features were investigated by terahertz time-domain spectroscopy (TDS) in reflection mode. It was found that waveforms of reflected signals from normal and cancer tissues were well distinguished so it can be concluded that it is easy to discriminate gastric cancer tissue from normal by using THz TDS.

  12. A computational framework to detect normal and tuberculosis infected lung from H and E-stained whole slide images

    NASA Astrophysics Data System (ADS)

    Niazi, M. Khalid Khan; Beamer, Gillian; Gurcan, Metin N.

    2017-03-01

    Accurate detection and quantification of normal lung tissue in the context of Mycobacterium tuberculosis infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.

  13. Heat treatment of human esophageal tissues: Effect on esophageal cancer detection using oxygenated hemoglobin diffuse reflectance ratio

    NASA Astrophysics Data System (ADS)

    Zhao, Q. L.; Guo, Z. Y.; Si, J. L.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Guo, X.; Zhong, H. Q.; Li, L. Q.; Li, X. Y.

    2011-03-01

    The main objective of the present work is to study the influence of heat treatment on the esophageal cancer detection using the diffuse reflectance (DR) spectral intensity ratio R540/R575 of oxygenated hemoglobin (HbO2) absorption bands to distinguish the epithelial tissues of normal human esophagus and moderately differentiated esophageal squamous cell carcinoma (ESCC) at different heat treatment temperature of 20, 37, 42, 50, and 60°C, respectively. The DR spectra for the epithelial tissues of the normal esophagus and ESCC in vitro at different heat-treatment temperature in the wavelength range 400-650 nm were measured with a commercial optical fiber spectrometer. The results indicate that the average DR spectral intensity overall enhancement with concomitant increase of heat-treatment temperature for the epithelial tissues of normal esophagus and ESCC, but the average DR spectral intensity for the normal esophageal epithelial tissues is relatively higher than that for ESCC epithelial tissues at the same heat-treatment temperature. The mean R540/R575 ratios of ESCC epithelial tissues were always lower than that of normal esophageal epithelial tissues at the same temperature, and the mean R540/R575 ratios of the epithelial tissues of the normal esophagus and ESCC were decreasing with the increase of different heat-treatment temperatures. The differences in the mean R540/R575 ratios between the epithelial tissues of normal esophagus and ESCC were 13.33, 13.59, 11.76, and 11.11% at different heat-treatment temperature of 20, 37, 42, and 50°C, respectively. These results also indicate that the DR intensity ratio R540/R575 of the hemoglobin bands is a useful tool for discrimination between the epithelial tissues of normal esophagus and ESCC in the temperature range from room temperature to 50°C, but it was non-effective at 60°C or over 60°C.

  14. Radiosensitivity and thermosensitization of thermotolerant Chinese hamster cells and RIF-1 tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartson-Eaton, M.; Malcolm, A.W.; Hahn, G.M.

    1984-07-01

    CHO cells subline HA-1 were made thermotolerant by a priming heat treatment(43/sup 0/C, 30 min). Later, 4, 16, or 24 hr, they were either irradiated or heated (43/sup 0/C, 30 min) and irradiated. Thermotolerance had no effect on the radiation sensitivity of the cells as measured by the D/sub 0/ value of the clonogenic survival curve. However the N value of the curve (width of shoulder) showed a significant increase at 24 hr, indicating an increased capacity to accumulate sublethal damage. The same priming treatment was given to RIF-1 tumors growing in C3H mice. Later, 24 hr, when the tumorsmore » were either irradiated or heated (43/sup 0/C, 30 min) and irradiated, it was found that thermotolerance had no effect on the radiosensitivity of the cells as measured by in vitro assay. However, thermal radiosensitization was not apparent 24 hr after the priming treatment.« less

  15. [Radiotherapy and chaos theory: the tit bird and the butterfly...].

    PubMed

    Denis, F; Letellier, C

    2012-09-01

    Although the same simple laws govern cancer outcome (cell division repeated again and again), each tumour has a different outcome before as well as after irradiation therapy. The linear-quadratic radiosensitivity model allows an assessment of tumor sensitivity to radiotherapy. This model presents some limitations in clinical practice because it does not take into account the interactions between tumour cells and non-tumoral bystander cells (such as endothelial cells, fibroblasts, immune cells...) that modulate radiosensitivity and tumor growth dynamics. These interactions can lead to non-linear and complex tumor growth which appears to be random but that is not since there is not so many tumors spontaneously regressing. In this paper we propose to develop a deterministic approach for tumour growth dynamics using chaos theory. Various characteristics of cancer dynamics and tumor radiosensitivity can be explained using mathematical models of competing cell species. Copyright © 2012 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  16. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells

    PubMed Central

    Liu, Yan; Zhang, Pengcheng; Li, Feifei; Jin, Xiaodong; Li, Jin; Chen, Weiqiang; Li, Qiang

    2018-01-01

    Radiotherapy is one of the major therapeutic strategies for cancer treatment. In the past decade, there has been growing interest in using high Z (atomic number) elements (materials) as radiosensitizers. New strategies in nanomedicine could help to improve cancer diagnosis and therapy at cellular and molecular levels. Metal-based nanoparticles usually exhibit chemical inertness in cellular and subcellular systems and may play a role in radiosensitization and synergistic cell-killing effects for radiation therapy. This review summarizes the efficacy of metal-based NanoEnhancers against cancers in both in vitro and in vivo systems for a range of ionizing radiations including gamma-rays, X-rays, and charged particles. The potential of translating preclinical studies on metal-based nanoparticles-enhanced radiation therapy into clinical practice is also discussed using examples of several metal-based NanoEnhancers (such as CYT-6091, AGuIX, and NBTXR3). Also, a few general examples of theranostic multimetallic nanocomposites are presented, and the related biological mechanisms are discussed. PMID:29556359

  17. DNA-Targeted 2-Nitroimidazoles: Studies of the Influence of the Phenanthridine-Linked Nitroimidazoles, 2-NLP-3 and 2-NLP-4, on DNA Damage Induced by Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Weinfeld, Michael

    The nitroimidazole-linked phenanthridines 2-NLP-3 (5-[3-(2-nitro-1-imidazoyl)-propyl]-phenanthridinium bromide) and 2-NLP-4 (5-[3-(2-nitro-1-imidazoyl)-butyl1]-phenanthridinium bromide) are composed of the radiosensitizer, 2-nitroimidazole, attached to the DNA intercalator phenanthridine via a 3- and 4-carbon linker, respectively. Previous in vitro assays show both compounds to be 10 - 100 times more efficient as hypoxic cell radiosensitizer, misonidazole[Cowan et al., Radiat. Res. 127, 81-89, 1991]. Here we have used a 32P postlabeling assay and 5'-end labeled oligonucleotide assay to compare the radiogenic DNA damage generated in the presence of 2-NLP-3, 2-NLP-4 compared to irradiation in the presence of misonidazole. This may account, at least in part, for the greatermore » cellular radiosensitization shown by the nitroimidazole-linked phenanthridines over misonidazole.« less

  18. Automated classification of tissue by type using real-time spectroscopy

    NASA Astrophysics Data System (ADS)

    Benaron, David A.; Cheong, Wai-Fung; Duckworth, Joshua L.; Noles, Kenneth; Nezhat, Camran; Seidman, Daniel; Hintz, Susan R.; Levinson, Carl J.; Murphy, Aileen L.; Price, John W., Jr.; Liu, Frank W.; Stevenson, David K.; Kermit, Eben L.

    1997-12-01

    Each tissue type has a unique spectral signature (e.g. liver looks distinct from bowel due to differences in both absorbance and in the way the tissue scatters light). While differentiation between normal tissues and tumors is not trivial, automated discrimination among normal tissue types (e.g. nerve, artery, vein, muscle) is feasible and clinically important, as many medical errors in medicine involve the misidentification of normal tissues. In this study, we have found that spectroscopic differentiation of tissues can be successfully applied to tissue samples (kidney and uterus) and model systems (fruit). Such optical techniques may usher in use of optical tissue diagnosis, leading to automated and portable diagnostic devices which can identify tissues, and guide use of medical instruments, such as during ablation or biopsy.

  19. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.

    PubMed

    Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A

    2009-05-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.

  20. Diagnosis of breast cancer by tissue analysis

    PubMed Central

    Bhattacharyya, Debnath; Bandyopadhyay, Samir Kumar

    2013-01-01

    In this paper, we propose a technique to locate abnormal growth of cells in breast tissue and suggest further pathological test, when require. We compare normal breast tissue with malignant invasive breast tissue by a series of image processing steps. Normal ductal epithelial cells and ductal/lobular invasive carcinogenic cells also consider for comparison here in this paper. In fact, features of cancerous breast tissue (invasive) are extracted and analyses with normal breast tissue. We also suggest the breast cancer recognition technique through image processing and prevention by controlling p53 gene mutation to some extent. PMID:23372340

  1. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries.

    PubMed

    Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-05-21

    The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties.

  2. Preliminary calculation of solar cosmic ray dose to the female breast in space mission

    NASA Technical Reports Server (NTRS)

    Shavers, Mark; Poston, John W.; Atwell, William; Hardy, Alva C.; Wilson, John W.

    1991-01-01

    No regulatory dose limits are specifically assigned for the radiation exposure of female breasts during manned space flight. However, the relatively high radiosensitivity of the glandular tissue of the breasts and its potential exposure to solar flare protons on short- and long-term missions mandate a priori estimation of the associated risks. A model for estimating exposure within the breast is developed for use in future NASA missions. The female breast and torso geometry is represented by a simple interim model. A recently developed proton dose-buildup procedure is used for estimating doses. The model considers geomagnetic shielding, magnetic-storm conditions, spacecraft shielding, and body self-shielding. Inputs to the model include proton energy spectra, spacecraft orbital parameters, STS orbiter-shielding distribution at a given position, and a single parameter allowing for variation in breast size.

  3. Hydrated electrons react with high specificity with cisplatin bound to single-stranded DNA.

    PubMed

    Behmand, B; Cloutier, P; Girouard, S; Wagner, J R; Sanche, L; Hunting, D J

    2013-12-19

    Short oligonucleotides TTTTTGTGTTT and TTTTTTTGTTT in solution with and without cisplatin (cisPt) bound to the guanine bases were irradiated with γ-rays at doses varying from 0 to 2500 Gy. To determine the effect of hydrated electrons from water radiolysis on the oligonucleotides, we quenched (•)OH radicals with ethylenediaminetetraacetic acid (EDTA) and displaced oxygen, which reacts with hydrated electrons, by bubbling the solution with wet nitrogen. DNA strand breaks and platinum detachment were quantified by gel electrophoresis. Our results demonstrate that hydrated electrons react almost exclusively at the position of the cisPt adduct, where they induce cisPt detachment from one or both guanines in the oligonucleotide. Given the high yield of hydrated electrons in irradiated tissues, this reaction may be an important step in the mechanism of radiosensitization of DNA by cisPt.

  4. Inhibition of STAT-3 Results in Radiosensitization of Human Squamous Cell Carcinoma

    PubMed Central

    Bonner, James A.; Trummell, Hoa Q.; Willey, Christopher D.; Plants, Brian A.; Raisch, Kevin P.

    2009-01-01

    Background Signal Transducer and Activator of Transcription – 3 (STAT-3) is a downstream component of the Epidermal Growth Factor Receptor (EGFr) signaling process that may facilitate the resistance of tumor cells to conventional cancer treatments. Studies were performed to determine if inhibition of this downstream protein may produce radiosensitization. Methods/Results A431 cells (human squamous cell carcinoma cells with EGFr overexpression) were found to be sensitized to radiation after treatment with STAT-3 small interfering RNA (siRNA). Therefore, a short hairpin RNA (shRNA) against STAT-3 was designed and cloned into a pBABE vector system modified for shRNA expression. Following transfection, clone 2.1 was selected for further study as it showed a dramatic reduction of STAT-3 protein (and mRNA) when compared to A431 parental cells or a negative control shRNA cell line (transfected with STAT-3 shRNA with 2 base pairs mutated). A431 2.1 showed doubling times of 25-31 h as compared to 18-24 h for the parental cell line. The A431 shRNA knockdown STAT-3 cells A431 were more sensitive to radiation than A431 parental or negative STAT-3 control cells. Conclusion A431 cells stably transfected with shRNA against STAT-3 resulted in enhanced radiosensitivity. Further work will be necessary to determine whether inhibition of STAT-3 phosphorylation is a necessary step for the radiosensitization that is induced by inhibition of EGFr. PMID:19616333

  5. Fundamental mechanisms of DNA radiosensitization: damage induced by low-energy electrons in brominated oligonucleotide trimers.

    PubMed

    Park, Yeunsoo; Polska, Katarzyna; Rak, Janusz; Wagner, J Richard; Sanche, Léon

    2012-08-16

    The replacement of nucleobases with brominated analogs enhances DNA radiosensitivity. We examine the chemistry of low-energy electrons (LEEs) in this sensitization process by experiments with thin films of the oligonucleotide trimers TBrXT, where BrX = 5-BrU (5-bromouracil), 5-BrC (5-bromocytosine), 8-BrA (8-bromoadenine), or 8-BrG (8-bromoguanine). The products induced from irradiation of thin (∼ 2.5 nm) oligonucleotide films, with 10 eV electrons, under ultrahigh vacuum (UHV) are analyzed by HPLC-UV. The number of damaged brominated trimers ranges from about 12 to 15 × 10(-3) molecules per incident electron, whereas under the identical conditions, these numbers drop to 4-7 × 10(-3) for the same, but nonbrominated oligonucleotides. The results of HPLC analysis show that the main degradation pathway of trinucleotides containing brominated bases involve debromination (i.e., loss of the bromine atom and its replacement with a hydrogen atom). The electron-induced sum of products upon bromination increases by factors of 2.1 for the pyrimidines and 3.2 for the purines. Thus, substitution of any native nucleobase with a brominated one in simple models of DNA increases LEE-induced damage to DNA and hence its radiosensitivity. Furthermore, besides the brominated pyrimidines that have already been tested in clinical trials, brominated purines not only appear to be promising sensitizers for radiotherapy, but could provide a higher degree of radiosensitization.

  6. Effect of Antisense Oligodeoxynucleotides Glucose Transporter-1 on Enhancement of Radiosensitivity of Laryngeal Carcinoma

    PubMed Central

    Yan, Sen-Xiang; Luo, Xing-Mei; Zhou, Shui-Hong; Bao, Yang-Yang; Fan, Jun; Lu, Zhong-Jie; Liao, Xin-Biao; Huang, Ya-Ping; Wu, Ting-Ting; Wang, Qin-Ying

    2013-01-01

    Purpose: Laryngeal carcinomas always resist to radiotherapy. Hypoxia is an important factor in radioresistance of laryngeal carcinoma. Glucose transporter-1 (GLUT-1) is considered to be a possible intrinsic marker of hypoxia in malignant tumors. We speculated that the inhibition of GLUT-1 expression might improve the radiosensitivity of laryngeal carcinoma. Methods: We assessed the effect of GLUT-1 expression on radioresistance of laryngeal carcinoma and the effect of GLUT-1 expressions by antisense oligodeoxynucleotides (AS-ODNs) on the radiosensitivity of laryngeal carcinoma in vitro and in vivo. Results: After transfection of GLUT-1 AS-ODNs: MTS assay showed the survival rates of radiation groups were reduced with the prolongation of culture time (p<0.05); Cell survival rates were significantly reduced along with the increasing of radiation dose (p<0.05). There was significant difference in the expression of GLUT-1mRNA and protein in the same X-ray dose between before and after X-ray radiation (p<0.05). In vivo, the expressions of GLUT-1 mRNA and protein after 8Gy radiation plus transfection of GLUT-1 AS-ODNs were significant decreased compared to 8Gy radiation alone (p<0.001). Conclusion: Radioresistance of laryngeal carcinoma may be associated with increased expression of GLUT-1 mRNA and protein. GLUT-1 AS-ODNs may enhance the radiosensitivity of laryngeal carcinoma mainly by inhibiting the expression of GLUT-1. PMID:23983599

  7. Comparison of intestine and bone marrow radiosensitivity of the BALB/c and the C57BL/6 mouse strains and their B6CF1 offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, W.R.; Fry, R.J.; Sallese, A.R.

    1987-06-01

    The radiosensitivity as measured by LD50/6 or LD50/30 of the F1 hybrid B6CF1 (C57BL/6 X BALB/c) is similar to that of C57BL/6 mice but markedly different from BALB/c. The LD50/6 for BALB/c mice was about 8.8 Gy compared to 16.4 Gy for the B6CF1. The difference in LD50/6 between the parent strains or between BALB/c and the F1 hybrid could not be explained by any differences in crypt cell number, cell cycle time, or transit time. Likewise, the observed differences in the LD50/6 do not appear to result from marked differences in the radiosensitivity of marrow stem cells (CFU-S) sincemore » the D0's for the three genotypes of mice were similar. Also, there were no apparent differences in the red blood cell contents of several enzymes associated with antioxidant defenses. The microcolony assay was used to determine the D0 for the crypt clonogenic cells and the D0 values for 60Co gamma rays were about 0.8 Gy for BALB/c mice and 1.4 Gy for B6CF1 mice. However, the D0 values for JANUS fission neutrons were similar; 0.6 Gy for the BALB/c mice and 0.5 for the B6CF1 mice. A comparison of clonogenic cell kinetics, using prolonged colcemid block to distinguish between slowly and rapidly cycling cells suggest that, normally, the stem cells are slowly cycling in both the BALB/c and the B6CF1 hybrid. However, the stem cells of the B6CF1 appear to go into rapid cell cycle more rapidly than those of the BALB/c following irradiation or prolonged colcemid treatment. The more rapid recovery in intestinal epihelial cell production in the B6CF1 hybrid after irradiation may provide an increased mucosal barrier and may, in part, explain the difference in the response to radiation compared to that in the BALB/c.« less

  8. Inhibition of DNA-PKcs enhances radiosensitivity and increases the levels of ATM and ATR in NSCLC cells exposed to carbon ion irradiation.

    PubMed

    Yang, Lina; Liu, Yuanyuan; Sun, Chao; Yang, Xinrui; Yang, Zhen; Ran, Juntao; Zhang, Qiuning; Zhang, Hong; Wang, Xinyu; Wang, Xiaohu

    2015-11-01

    Non-small cell lung cancer (NSCLC) exhibits radioresistance to conventional rays, due to its DNA damage repair systems. NSCLC may potentially be sensitized to radiation treatment by reducing those factors that continuously enhance the repair of damaged DNA. In the present study, normal lung fibroblast MRC-5 and lung cancer A549 cells were treated with NU7026 and CGK733, which are inhibitors of the DNA-dependent protein kinase catalytic subunit (PKcs) and ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR), respectively, followed by exposure to X-rays and carbon ion irradiation. The cytotoxic activity, cell survival rate, DNA damage repair ability, cell cycle arrest and apoptosis rate of the treated cells were analyzed with MTT assay, colony formation assay, immunofluorescence and flow cytometry, respectively. The transcription and translation levels of the ATM, ATR and DNA-PKcs genes were detected by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The results indicated that the radiosensitivity and DNA repair ability of A549 cells were reduced, and the percentages of apoptotic cells and those arrested at the G 2 /M phase of the cell cycle were significantly increased, following ionizing radiation with inhibitor-pretreatment. The expression levels of ATM, ATR, DNA-PKcs and phosphorylated histone H2AX, a biomarker for DNA double-strand breaks, were all upregulated at the transcriptional or translational level in A549 cells treated with carbon ion irradiation, compared with the control and X-rays-treated cells. In addition, the treatment with 5-50 µM NU7026 or CGK733 did not produce any obvious cytotoxicity in MRC-5 cells, and the effect of the DNA-PKcs-inhibitor on enhancing the radiosensitivity of A549 cells was stronger than that observed for the ATM and ATR-inhibitor. These findings demonstrated a minor role for ATM and ATR in radiation-induced cell death, since the upregulation of ATM and ATR did not rescue the A549 cells subjected to ionizing irradiation. Therefore, future studies on DNA-PKcs, ATM and ATR may lead to novel specific therapies that supplement general radiotherapy for the treatment of lung cancer.

  9. Iodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers.

    PubMed

    Abend, M; Pfeiffer, R M; Ruf, C; Hatch, M; Bogdanova, T I; Tronko, M D; Hartmann, J; Meineke, V; Mabuchi, K; Brenner, A V

    2013-10-15

    A strong, consistent association between childhood irradiation and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis. We evaluated gene expression in 63 paired RNA specimens from frozen normal and tumour thyroid tissues with individual iodine-131 (I-131) doses (0.008-8.6 Gy, no unirradiated controls) received from Chernobyl fallout during childhood (Ukrainian-American cohort). Approximately half of these randomly selected samples (32 tumour/normal tissue RNA specimens) were hybridised on 64 whole-genome microarrays (Agilent, 4 × 44 K). Associations between I-131 dose and gene expression were assessed separately in normal and tumour tissues using Kruskal-Wallis and linear trend tests. Of 155 genes significantly associated with I-131 after Bonferroni correction and with ≥2-fold increase per dose category, we selected 95 genes. On the remaining 31 RNA samples these genes were used for validation purposes using qRT-PCR. Expression of eight genes (ABCC3, C1orf9, C6orf62, FGFR1OP2, HEY2, NDOR1, STAT3, and UCP3) in normal tissue and six genes (ANKRD46, CD47, HNRNPH1, NDOR1, SCEL, and SERPINA1) in tumour tissue was significantly associated with I-131. PANTHER/DAVID pathway analyses demonstrated significant over-representation of genes coding for nucleic acid binding in normal and tumour tissues, and for p53, EGF, and FGF signalling pathways in tumour tissue. The multistep process of radiation carcinogenesis begins in histologically normal thyroid tissue and may involve dose-dependent gene expression changes.

  10. PIXE analysis of tumors and localization behavior of a lanthanide in nude mice

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Jiun; Yang, Czau-Siung; Chou, Ming-Ji; Wei, Chau-Chin; Hsu, Chu-Chung; Wang, Chia-Yu

    1984-04-01

    We have used particle induced X-ray emission (PIXE) to analyze the elemental compositions and uptakes of a lanthanide, yttrium in this report, in tumors and normal tissues of nude mice. A small amount of yttrium nitrate was injected into nude mice with tumors. Samples of normal and malignant tissues taken from these mice were bombarded by the 2 MeV proton beam from a 3 MeV Van de Graaff accelerator with a Ge detector system to determine the relative elemental compositions of tissues and the relative concentrations of yttrium taken up by these tissues. We found that the uptakes of yttrium by tumors were at least five times more than those by normal tissues. Substantial differences were often observed between the trace element weight (or concentration) pattern of the cancerous and normal tissues. The present result is compared with human tissues.

  11. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.

    PubMed

    Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L

    2017-05-01

    Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

  12. Lateral variations of radiobiological properties of therapeutic fields of 1H, 4He, 12C and 16O ions studied with Geant4 and microdosimetric kinetic model

    NASA Astrophysics Data System (ADS)

    Dewey, Sophie; Burigo, Lucas; Pshenichnov, Igor; Mishustin, Igor; Bleicher, Marcus

    2017-07-01

    As known, in cancer therapy with ion beams the relative biological effectiveness (RBE) of ions changes in the course of their propagation in tissues. Such changes are caused not only by increasing the linear energy transfer (LET) of beam particles with the penetration depth towards the Bragg peak, but also by nuclear reactions induced by beam nuclei leading to the production of various secondary particles. Although the changes of RBE along the beam axis have been studied quite well, much less attention has been paid to the evolution of RBE in the transverse direction, perpendicular to the beam axis. In order to fill this gap, we simulated radiation fields of 1H, 4He, 12C and 16O nuclei of 20 mm in diameter by means of a Geant4-based Monte Carlo model for heavy-ion therapy connected with the modified microdosimetric kinetic model to describe the response of normal ((α/β)_x-rays=3.8 Gy) and early-responding ((α/β)_x-rays=10 Gy) tissues. Depth and radial distributions of saturation-corrected dose-mean lineal energy, RBE and RBE-weighted dose are investigated for passive beam shaping and active beam scanning. The field of 4He has a small lateral spread as compared with 1H field, and it is characterised by a modest lateral variation of RBE suggesting the use of fixed RBE values across the field transverse cross section at each depth. Reduced uncertainties of RBE on the boundary of a 4He treatment field can be advantageous in a specific case of an organ at risk located in lateral proximity to the target volume. It is found that the lateral distributions of RBE calculated for 12C and 16O fields demonstrate fast variations in the radial direction due to changes of dose and composition of secondary fragments in the field penumbra. Nevertheless, the radiation fields of all four projectiles at radii larger than 20 mm can be characterized by a common RBE value defined by tissue radiosensitivity. These findings can help, in particular, in accessing the transverse homogeneity of radiation fields of ions used in studies in vitro.

  13. Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism.

    PubMed

    Filetti, S; Bidart, J M; Arturi, F; Caillou, B; Russo, D; Schlumberger, M

    1999-11-01

    The recent cloning of the gene encoding the sodium/iodide symporter (NIS) has enabled better characterization of the molecular mechanisms underlying iodide transport, thus opening the way to clarifying its role in thyroid diseases. Several studies, at both the mRNA and the protein expression levels, have demonstrated that TSH, the primary regulator of iodide uptake, upregulates NIS gene expression and NIS protein abundance, both in vitro and in vivo. However, other factors, including iodide, retinoic acid, transforming growth factor-beta, interleukin-1alpha and tumour necrosis factor alpha, may participate in the regulation of NIS expression. Investigation of NIS mRNA expression in different thyroid tissues has revealed increased levels of expression in Graves' disease and toxic adenomas, whereas a reduction or loss of NIS transcript was detected in differentiated thyroid carcinomas, despite the expression of other specific thyroid markers. NIS mRNA was also detected in non-thyroid tissues able to concentrate radioiodine, including salivary glands, stomach, thymus and breast. The production of specific antibodies against the NIS has facilitated study of the expression of the symporter protein. Despite of the presence of high levels of human (h)NIS mRNA, normal thyroid glands exhibit a heterogeneous expression of NIS protein, limited to the basolateral membrane of the thyrocytes. By immunohistochemistry, staining of hNIS protein was stronger in Graves' and toxic adenomas and reduced in thyroid carcinomas. Measurement of iodide uptake by thyroid cancer cells is the cornerstone of the follow-up and treatment of patients with thyroid cancer. However, radioiodide uptake is found only in about 67% of patients with persistent or recurrent disease. Several studies have demonstrated a decrease in or a loss of NIS expression in primary human thyroid carcinomas, and immunohistochemical studies have confirmed this considerably decreased expression of the NIS protein in thyroid cancer tissues, suggesting that the low expression of NIS may represent an early abnormality in the pathway of thyroid cell transformation, rather than being a consequence of cancer progression. The relationship between radioiodine uptake and NIS expression by thyroid cancer cells require further study. New strategies, based on manipulation of NIS expression, to obtain NIS gene reactivation or for use as NIS gene therapy in the treatment of radiosensitive cancer, are also being investigated.

  14. Resonance Raman of BCC and normal skin

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-hui; Sriramoju, Vidyasagar; Boydston-White, Susie; Wu, Binlin; Zhang, Chunyuan; Pei, Zhe; Sordillo, Laura; Beckman, Hugh; Alfano, Robert R.

    2017-02-01

    The Resonance Raman (RR) spectra of basal cell carcinoma (BCC) and normal human skin tissues were analyzed using 532nm laser excitation. RR spectral differences in vibrational fingerprints revealed skin normal and cancerous states tissues. The standard diagnosis criterion for BCC tissues are created by native RR biomarkers and its changes at peak intensity. The diagnostic algorithms for the classification of BCC and normal were generated based on SVM classifier and PCA statistical method. These statistical methods were used to analyze the RR spectral data collected from skin tissues, yielding a diagnostic sensitivity of 98.7% and specificity of 79% compared with pathological reports.

  15. Comparison of stretched-Exponential and monoexponential model diffusion-Weighted imaging in prostate cancer and normal tissues.

    PubMed

    Liu, Xiaohang; Zhou, Liangping; Peng, Weijun; Wang, He; Zhang, Yong

    2015-10-01

    To compare stretched-exponential and monoexponential model diffusion-weighted imaging (DWI) in prostate cancer and normal tissues. Twenty-seven patients with prostate cancer underwent DWI exam using b-values of 0, 500, 1000, and 2000 s/mm(2) . The distributed diffusion coefficients (DDC) and α values of prostate cancer and normal tissues were obtained with stretched-exponential model and apparent diffusion coefficient (ADC) values using monoexponential model. The ADC, DDC (both in 10(-3) mm(2)/s), and α values (range, 0-1) were compared among different prostate tissues. The ADC and DDC were also compared and correlated in each tissue, and the standardized differences between DDC and ADC were compared among different tissues. Data were obtained for 31 cancers, 36 normal peripheral zone (PZ) and 26 normal central gland (CG) tissues. The ADC (0.71 ± 0.12), DDC (0.60 ± 0.18), and α value (0.64 ± 0.05) of tumor were all significantly lower than those of the normal PZ (1.41 ± 0.22, 1.47 ± 0.20, and 0.85 ± 0.09) and CG (1.25 ± 0.14, 1.32 ± 0.13, and 0.82 ± 0.06) (all P < 0.05). ADC was significantly higher than DDC in cancer, but lower than DDC in the PZ and CG (all P < 0.05). The ADC and DDC were strongly correlated (R(2)  = 0.99, 0.98, 0.99, respectively, all P < 0.05) in all the tissue, and standardized difference between ADC and DDC of cancer was slight but significantly higher than that in normal tissue. The stretched-exponential model DWI provides more parameters for distinguishing prostate cancer and normal tissue and reveals slight differences between DDC and ADC values. © 2015 Wiley Periodicals, Inc.

  16. The Resistance of Certain Tissues to Invasion

    PubMed Central

    Eisenstein, Reuben; Sorgente, Nino; Soble, Lawrence W.; Miller, Alexander; Kuettner, Klaus E.

    1973-01-01

    If puppy tissues are explanted onto the chick chorioallantoic membrane, those tissues which normally have a blood supply are rapidly invaded by vascularized mesenchyme of host origin. Hyaline cartilage, a tissue virtually devoid of blood vessels, is impenetrable by proliferating mesenchyme of the host, while calcified cartilage, which normally is vascularized, is penetrable. The stroma of the cornea, another normally avascular tissue, is readily penetrable, but Descemet's membrane forms a barrier to invasion by host tissues. The experimental system used permits the design of experiments in which the study of factors responsible for the resistance of tissues such as cartilage to invasion can be undertaken. ImagesFig 1Fig 2Fig 3Fig 4 PMID:4129060

  17. Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique

    NASA Astrophysics Data System (ADS)

    Naga Raju, G. J.; John Charles, M.; Bhuloka Reddy, S.; Sarita, P.; Seetharami Reddy, B.; Rama Lakshmi, P. V. B.; Vijayan, V.

    2005-04-01

    PIXE technique was employed to estimate the trace elemental concentrations in the biological samples of cancerous penis and testis. A 3 MeV proton beam was employed to excite the samples. From the present results it can be seen that the concentrations of Cl, Fe and Co are lower in the cancerous tissue of the penis when compared with those in normal tissue while the concentrations of Cu, Zn and As are relatively higher. The concentrations of K, Ca, Ti, Cr, Mn, Br, Sr and Pb are in agreement within standard deviations in both cancerous and normal tissues. In the cancerous tissue of testis, the concentrations of K, Cr and Cu are higher while the concentrations of Fe, Co and Zn are lower when compared to those in normal tissue of testis. The concentrations of Cl, Ca, Ti and Mn are in agreement in both cancerous and normal tissues of testis. The higher levels of Cu lead to the development of tumor. Our results also support the underlying hypothesis of an anticopper, antiangiogenic approach to cancer therapy. The Cu/Zn ratios of both penis and testis were higher in cancer tissues compared to that of normal.

  18. Damage to cellular DNA from particulate radiations, the efficacy of its processing and the radiosensitivity of mammalian cells. Emphasis on DNA double strand breaks and chromatin breaks

    NASA Technical Reports Server (NTRS)

    Lett, J. T.

    1992-01-01

    For several years, it has been evident that cellular radiation biology is in a necessary period of consolidation and transition (Lett 1987, 1990; Lett et al. 1986, 1987). Both changes are moving apace, and have been stimulated by studies with heavy charged particles. From the standpoint of radiation chemistry, there is now a consensus of opinion that the DNA hydration shell must be distinguished from bulk water in the cell nucleus and treated as an integral part of DNA (chromatin) (Lett 1987). Concomitantly, sentiment is strengthening for the abandonment of the classical notions of "direct" and "indirect" action (Fielden and O'Neill 1991; O'Neill 1991; O'Neill et al. 1991; Schulte-Frohlinde and Bothe 1991 and references therein). A layer of water molecules outside, or in the outer edge of, the DNA (chromatin) hydration shell influences cellular radiosensitivity in ways not fully understood. Charge and energy transfer processes facilitated by, or involving, DNA hydration must be considered in rigorous theories of radiation action on cells. The induction and processing of double stand breaks (DSBs) in DNA (chromatin) seem to be the predominant determinants of the radiotoxicity of normally radioresistant mammalian cells, the survival curves of which reflect the patterns of damage induced and the damage present after processing ceases, and can be modelled in formal terms by the use of reaction (enzyme) kinetics. Incongruities such as sublethal damage are neither scientifically sound nor relevant to cellular radiation biology (Calkins 1991; Lett 1990; Lett et al. 1987a). Increases in linear energy transfer (LET infinity) up to 100-200 keV micron-1 cause increases in the extents of neighboring chemical and physical damage in DNA denoted by the general term DSB. Those changes are accompanied by decreasing abilities of cells normally radioresistant to sparsely ionizing radiations to process DSBs in DNA and chromatin and to recover from radiation exposure, so they make significant contributions to the relative biological effectiveness (RBE) of a given radiation.(ABSTRACT TRUNCATED AT 400 WORDS).

  19. Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation.

    PubMed

    Schilling-Tóth, Boglárka; Sándor, Nikolett; Kis, Eniko; Kadhim, Munira; Sáfrány, Géza; Hegyesi, Hargita

    2011-11-01

    One of the key issues of current radiation research is the biological effect of low doses. Unfortunately, low dose science is hampered by the unavailability of easily performable, reliable and sensitive quantitative biomarkers suitable detecting low frequency alterations in irradiated cells. We applied a quantitative real time polymerase chain reaction (qRT-PCR) based protocol detecting common deletions (CD) in the mitochondrial genome to assess direct and non-targeted effects of radiation in human fibroblasts. In directly irradiated (IR) cells CD increased with dose and was higher in radiosensitive cells. Investigating conditioned medium-mediated bystander effects we demonstrated that low and high (0.1 and 2Gy) doses induced similar levels of bystander responses and found individual differences in human fibroblasts. The bystander response was not related to the radiosensitivity of the cells. The importance of signal sending donor and signal receiving target cells was investigated by placing conditioned medium from a bystander response positive cell line (F11-hTERT) to bystander negative cells (S1-hTERT) and vice versa. The data indicated that signal sending cells are more important in the medium-mediated bystander effect than recipients. Finally, we followed long term effects in immortalized radiation sensitive (S1-hTERT) and normal (F11-hTERT) fibroblasts up to 63 days after IR. In F11-hTERT cells CD level was increased until 35 days after IR then reduced back to control level by day 49. In S1-hTERT cells the increased CD level was also normalized by day 42, however a second wave of increased CD incidence appeared by day 49 which was maintained up to day 63 after IR. This second CD wave might be the indication of radiation-induced instability in the mitochondrial genome of S1-hTERT cells. The data demonstrated that measuring CD in mtDNA by qRT-PCR is a reliable and sensitive biomarker to estimate radiation-induced direct and non-targeted effects. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. TU-H-CAMPUS-TeP3-01: Gold Nanoparticle-Enhanced Radiation Therapy in In Vitro A549 Lung Carcinoma: Studies in Both Traditional Monolayer and Three Dimensional Cell Culture Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oumano, M; University of Massachusetts Lowell, Lowell, MA; Ngwa, W

    Purpose: To measure the increase in in vitro radiosensitivity for A549 lung carcinoma cells due to gold nanoparticle (GNP) radiation dose enhancement in both traditional monolayer and three dimensional (3D) cell culture models. Methods: A γH2AX immunofluorescence assay is performed on monolayer A549 cell culture and quantitatively analyzed to measure the increase in double strand breaks (DSBs) resulting from GNP dose enhancement. A clonogenic survival assay (CSA) is then performed on monolayer A549 cell culture to assess true viability after treatment. And lastly, another γH2AX assay is performed on 3D A549 multicellular nodules overlaid on a bed of growth factormore » reduced matrigel to measure dose response in a model that better recapitulates treatment response to actual tumors in vivo. Results: The first γH2AX assay performed on the monolayer cell culture shows a significant increase in DSBs due to GNP dose enhancement. The maximum average observed increase in normalized fluorescent intensity for monolayer cell culture is 171% for the 6Gy-treatment groups incubated in 0.556 mg Au/ml solution. The CSA performed on monolayer cell culture also shows considerable GNP dose enhancement. The maximum decrease in the normalized surviving fraction is 12% for the 4Gy-treatment group incubated in 0.556 mg Au/ml. And lastly, the GNP dose enhancement is confirmed to be mitigated in three dimensional cell culture models as compared to the traditional monolayer model. The maximum average observed dose enhancement for 3D cell culture is 19% for the 6Gy-treatment groups and incubated in 0.556 mg Au/ml. Conclusion: A marked increase in radiosensitivity is observed for A549 lung carcinoma cells when treated with GNPs plus radiation as opposed to radiation alone. Traditional monolayer cell culture also shows a much more pronounced radiation dose enhancement than 3D cell culture.« less

Top