Science.gov

Sample records for radiosensitizes glioblastoma cells

  1. Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization.

    PubMed

    Rath, Barbara H; Wahba, Amy; Camphausen, Kevin; Tofilon, Philip J

    2015-11-01

    Toward developing a model system for investigating the role of the microenvironment in the radioresistance of glioblastoma (GBM), human glioblastoma stem-like cells (GSCs) were grown in coculture with human astrocytes. Using a trans-well assay, survival analyses showed that astrocytes significantly decreased the radiosensitivity of GSCs compared to standard culture conditions. In addition, when irradiated in coculture, the initial level of radiation-induced γH2AX foci in GSCs was reduced and foci dispersal was enhanced suggesting that the presence of astrocytes influenced the induction and repair of DNA double-strand breaks. These data indicate that astrocytes can decrease the radiosensitivity of GSCs in vitro via a paracrine-based mechanism and further support a role for the microenvironment as a determinant of GBM radioresponse. Chemokine profiling of coculture media identified a number of bioactive molecules not present under standard culture conditions. The gene expression profiles of GSCs grown in coculture were significantly different as compared to GSCs grown alone. These analyses were consistent with an astrocyte-mediated modification in GSC phenotype and, moreover, suggested a number of potential targets for GSC radiosensitization that were unique to coculture conditions. Along these lines, STAT3 was activated in GSCs grown with astrocytes; the JAK/STAT3 inhibitor WP1066 enhanced the radiosensitivity of GSCs under coculture conditions and when grown as orthotopic xenografts. Further, this coculture system may also provide an approach for identifying additional targets for GBM radiosensitization.

  2. Cytosine Deaminase/5-Fluorocytosine Exposure Induces Bystander and Radiosensitization Effects in Hypoxic Glioblastoma Cells in vitro

    SciTech Connect

    Chen, Jennifer K.; Hu, Lily J.; Wang Dongfang; Lamborn, Kathleen R.; Deen, Dennis F. . E-mail: dennisdeen@juno.com

    2007-04-01

    Purpose: Treatment of glioblastoma (GBM) is limited by therapeutic ratio; therefore, successful therapy must be specifically cytotoxic to cancer cells. Hypoxic cells are ubiquitous in GBM, and resistant to radiation and chemotherapy, and, thus, are logical targets for gene therapy. In this study, we investigated whether cytosine deaminase (CD)/5-fluorocytosine (5-FC) enzyme/prodrug treatment induced a bystander effect (BE) and/or radiosensitization in hypoxic GBM cells. Methods and Materials: We stably transfected cells with a gene construct consisting of the SV40 minimal promoter, nine copies of a hypoxia-responsive element, and the yeast CD gene. During hypoxia, a hypoxia-responsive element regulates expression of the CD gene and facilitates the conversion of 5-FC to 5-fluorouracil, a highly toxic antimetabolite. We used colony-forming efficiency (CFE) and immunofluorescence assays to assess for BE in co-cultures of CD-expressing clone cells and parent, pNeo- or green fluorescent protein-stably transfected GBM cells. We also investigated the radiosensitivity of CD clone cells treated with 5-FC under hypoxic conditions, and we used flow cytometry to investigate treatment-induced cell cycle changes. Results: Both a large BE and radiosensitization occurred in GBM cells under hypoxic conditions. The magnitude of the BE depended on the number of transfected cells producing CD, the functionality of the CD, the administered concentration of 5-FC, and the sensitivity of cell type to 5-fluorouracil. Conclusion: Hypoxia-inducible CD/5-FC therapy in combination with radiation therapy shows both a pronounced BE and a radiosensitizing effect under hypoxic conditions.

  3. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    SciTech Connect

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-11-15

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated {gamma}-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of {gamma}-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 {mu}mol/L (AMC-3046), 3 {mu}mol/L (VU-109), and 2.5 {mu}mol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to {gamma}-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gen000.

  4. Proton and photon beams interaction with radiosensitizing agents in human glioblastoma cells

    NASA Astrophysics Data System (ADS)

    Lafiandra, M.

    2016-03-01

    In oncological field, chemoradiotherapy treatments that combine radiations to radiosensitizing chemical agents are spreading out. The aim of this kind of treatment is to obtain a better tumor local control and at the same time to reduce the distant failure. The combination of radiation with microtubule-stabilizing agents is very promising in cancer therapy. In the present study, the combination of clinical proton beams and the microtubule-stabilizing agent Epothilone B has been investigated in human glioblastoma cells cultured in vitro. Photon beams have been used for comparison. Cell survival has been evaluated by colony forming assay and the interaction mechanism between radiation and Epothilone B has been investigated: survival curves relative to the combined treatment (protons or photons with Epothilone B) showed a linear trend, different from the linear quadratic behavior found with radiation alone. The analysis performed showed a synergism in the radiation-drug interaction. Thus, Epothilone B in conjunction with radiation acts as a radiosensitizer. Finally proton Relative Biological Effectiveness has been determined and results are reported in this paper.

  5. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound

    PubMed Central

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-01-01

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications. PMID:26542881

  6. MiR-26a enhances the radiosensitivity of glioblastoma multiforme cells through targeting of ataxia–telangiectasia mutated

    SciTech Connect

    Guo, Pin; Lan, Jin; Ge, Jianwei; Nie, Quanmin; Guo, Liemei; Qiu, Yongming; Mao, Qing

    2014-01-15

    Glioblastoma multiforme (GBM) is notoriously resistant to radiation, and consequently, new radiosensitizers are urgently needed. MicroRNAs are a class of endogenous gene modulators with emerging roles in DNA repair. We found that overexpression of miR-26a can enhance radiosensitivity and reduce the DNA repair ability of U87 cells. However, knockdown miR-26a in U87 cells could act the converse manner. Mechanistically, this effect is mediated by direct targeting of miR-26a to the 3′UTR of ATM, which leads to reduced ATM levels and consequent inhibition of the homologous recombination repair pathway. These results suggest that miR-26a may act as a new radiosensitizer of GBM. - Highlights: ●miR-26a directly target ATM in GBM cells. ●miR-26a enhances the radiosensitivity of GBM cells. ●miR-26a could reduce the DNA repair capacity of GBM cells.

  7. Modulation of Sonic hedgehog signaling and WW domain containing oxidoreductase WOX1 expression enhances radiosensitivity of human glioblastoma cells.

    PubMed

    Chiang, Ming-Fu; Chen, Hsin-Hong; Chi, Chih-Wen; Sze, Chun-I; Hsu, Ming-Ling; Shieh, Hui-Ru; Lin, Chin-Ping; Tsai, Jo-Ting; Chen, Yu-Jen

    2015-03-01

    WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further

  8. Radiosensitization of Glioblastoma Cell Lines by the Dual PI3K and mTOR Inhibitor NVP-BEZ235 Depends on Drug-Irradiation Schedule12

    PubMed Central

    Kuger, Sebastian; Graus, Dorothea; Brendtke, Rico; Günther, Nadine; Katzer, Astrid; Lutyj, Paul; Polat, Bülent; Chatterjee, Manik; Sukhorukov, Vladimir L; Flentje, Michael; Djuzenova, Cholpon S

    2013-01-01

    Previous studies have shown that the dual phosphatidylinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) inhibitor NVP-BEZ235 radiosensitizes tumor cells if added shortly before ionizing radiation (IR) and kept in culture medium thereafter. The present study explores the impact of inhibitor and IR schedule on the radiosensitizing ability of NVP-BEZ235 in four human glioblastoma cell lines. Two different drug-IR treatment schedules were compared. In schedule I, cells were treated with NVP-BEZ235 for 24 hours before IR and the drug was removed before IR. In schedule II, the cells were exposed to NVP-BEZ235 1 hour before, during, and up to 48 hours after IR. The cellular response was analyzed by colony counts, expression of marker proteins of the PI3K/AKT/mTOR pathway, cell cycle, and DNA damage. We found that under schedule I, NVP-BEZ235 did not radiosensitize cells, which were mostly arrested in G1 phase during IR exposure. In addition, the drug-pretreated and irradiated cells exhibited less DNA damage but increased expressions of phospho-AKT and phospho-mTOR, compared to controls. In contrast, NVP-BEZ235 strongly enhanced the radiosensitivity of cells treated according to schedule II. Possible reasons of radiosensitization by NVP-BEZ235 under schedule II might be the protracted DNA repair, prolonged G2/M arrest, and, to some extent, apoptosis. In addition, the PI3K pathway was downregulated by the NVP-BEZ235 at the time of irradiation under schedule II, as contrasted with its activation in schedule I. We found that, depending on the drug-IR schedule, the NVP-BEZ235 can act either as a strong radiosensitizer or as a cytostatic agent in glioblastoma cells. PMID:23544169

  9. Sustained radiosensitization of hypoxic glioma cells after oxygen pretreatment in an animal model of glioblastoma and in vitro models of tumor hypoxia.

    PubMed

    Clarke, Ryon H; Moosa, Shayan; Anzivino, Matthew; Wang, Yi; Floyd, Desiree Hunt; Purow, Benjamin W; Lee, Kevin S

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation

  10. The radiosensitivity index predicts for overall survival in glioblastoma

    PubMed Central

    Ahmed, Kamran A.; Chinnaiyan, Prakash; Fulp, William J.; Eschrich, Steven; Torres-Roca, Javier F.; Caudell, Jimmy J.

    2015-01-01

    We have previously developed a multigene expression model of tumor radiosensitivity (RSI) with clinical validation in multiple cohorts and disease sites. We hypothesized RSI would identify glioblastoma patients who would respond to radiation and predict treatment outcomes. Clinical and array based gene expression (Affymetrix HT Human Genome U133 Array Plate Set) level 2 data was downloaded from the cancer genome atlas (TCGA). A total of 270 patients were identified for the analysis: 214 who underwent radiotherapy and temozolomide and 56 who did not undergo radiotherapy. Median follow-up for the entire cohort was 9.1 months (range: 0.04–92.2 months). Patients who did not receive radiotherapy were more likely to be older (p < 0.001) and of poorer performance status (p < 0.001). On multivariate analysis, RSI is an independent predictor of OS (HR = 1.64, 95% CI 1.08–2.5; p = 0.02). Furthermore, on subset analysis, radiosensitive patients had significantly improved OS in the patients with high MGMT expression (unmethylated MGMT), 1 year OS 84.1% vs. 53.7% (p = 0.005). This observation held on MVA (HR = 1.94, 95% CI 1.19–3.31; p = 0.008), suggesting that RT has a larger therapeutic impact in these patients. In conclusion, RSI predicts for OS in glioblastoma. These data further confirm the value of RSI as a disease-site independent biomarker. PMID:26451615

  11. The radiosensitivity index predicts for overall survival in glioblastoma.

    PubMed

    Ahmed, Kamran A; Chinnaiyan, Prakash; Fulp, William J; Eschrich, Steven; Torres-Roca, Javier F; Caudell, Jimmy J

    2015-10-27

    We have previously developed a multigene expression model of tumor radiosensitivity (RSI) with clinical validation in multiple cohorts and disease sites. We hypothesized RSI would identify glioblastoma patients who would respond to radiation and predict treatment outcomes. Clinical and array based gene expression (Affymetrix HT Human Genome U133 Array Plate Set) level 2 data was downloaded from the cancer genome atlas (TCGA). A total of 270 patients were identified for the analysis: 214 who underwent radiotherapy and temozolomide and 56 who did not undergo radiotherapy. Median follow-up for the entire cohort was 9.1 months (range: 0.04-92.2 months). Patients who did not receive radiotherapy were more likely to be older (p < 0.001) and of poorer performance status (p < 0.001). On multivariate analysis, RSI is an independent predictor of OS (HR = 1.64, 95% CI 1.08-2.5; p = 0.02). Furthermore, on subset analysis, radiosensitive patients had significantly improved OS in the patients with high MGMT expression (unmethylated MGMT), 1 year OS 84.1% vs. 53.7% (p = 0.005). This observation held on MVA (HR = 1.94, 95% CI 1.19-3.31; p = 0.008), suggesting that RT has a larger therapeutic impact in these patients. In conclusion, RSI predicts for OS in glioblastoma. These data further confirm the value of RSI as a disease-site independent biomarker.

  12. PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance.

    PubMed

    Quan, Jun-Jie; Song, Jin-Ning; Qu, Jian-Qiang

    2015-11-01

    Poly(ADP-ribose) polymerase 3 (PARP3), a critical player in cellular response to DNA double-strand breaks (DSBs), plays an essential role in the maintenance of genome integrity. However, the role of PARP3 in tumorigenesis especially in glioblastoma remains largely unknown. In the present study, we found that the mRNA and protein levels of PARP3 were upregulated in primary glioblastoma tissues. Knockdown of PARP3 expression by lentivirus-based shRNA decreased cell glioblastoma proliferation and inhibited tumor growth in vivo by using a xenograft mouse model. Furthermore, we found that silencing the expression of PARP3 resulted in a synergistic radiosensitizing effect when combined with radiotherapy in glioblastoma cell lines. At the molecular level, we found that PARP3 interacted with FoxM1 to enhance its transcriptional activity and conferred glioblastoma cell radioresistance. Thus, our data suggest that PARP3 could be a therapeutic target to overcome radioresistance in glioblastoma.

  13. 5-Iodo-2-Pyrimidinone-2'-Deoxyribose-Mediated Cytotoxicity and Radiosensitization in U87 Human Glioblastoma Xenografts

    SciTech Connect

    Kinsella, Timothy J. Kinsella, Michael T.; Seo, Yuji; Berk, Gregory

    2007-11-15

    Purpose: 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is a novel orally administered (p.o.) prodrug of 5-iododeoxyuridine. Because p.o. IPdR is being considered for clinical testing as a radiosensitizer in patients with high-grade gliomas, we performed this in vivo study of IPdR-mediated cytotoxicity and radiosensitization in a human glioblastoma xenograft model, U87. Methods and Materials: Groups of 8 or 9 athymic male nude mice (6-8 weeks old) were implanted with s.c. U87 xenograft tumors (4 x 10{sup 6} cells) and then randomized to 10 treatment groups receiving increasing doses of p.o. IPdR (0, 100, 250, 500, and 1000 mg/kg/d) administered once daily (q.d.) x 14 days with or without radiotherapy (RT) (0 or 2 Gy/d x 4 days) on days 11-14 of IPdR treatment. Systemic toxicity was determined by body weight measurements during and after IPdR treatment. Tumor response was assessed by changes in tumor volumes. Results: IPdR alone at doses of {>=}500 mg/kg/d resulted in moderate inhibition of tumor growth. The combination of IPdR plus RT resulted in a significant IPdR dose-dependent tumor growth delay, with the maximum radiosensitization using {>=}500 mg/kg/d. IPdR doses of 500 and 1000 mg/kg/d resulted in transient 5-15% body weight loss during treatment. Conclusions: In U87 human glioblastoma s.c. xenografts, p.o. IPdR given q.d. x 14 days and RT given 2 Gy/d x 4 days (days 11-14 of IPdR treatment) results in a significant tumor growth delay in an IPdR dose-dependent pattern. The use of p.o. IPdR plus RT holds promise for Phase I/II testing in patients with high-grade gliomas.

  14. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    SciTech Connect

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua Liu, Fenju

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  15. Neural Stem Cells and Glioblastoma

    PubMed Central

    Rispoli, Rossella; Conti, Carlo; Celli, Paolo; Caroli, Emanuela; Carletti, Sandro

    2014-01-01

    Summary Glioblastoma multiforme represents one of the most common brain cancers with a rather heterogeneous cellular composition, as indicated by the term “multiforme". Recent reports have described the isolation and identification of cancer neural stem cells from human adult glioblastoma multiforme, which possess the capacity to establish, sustain, and expand these tumours, even under the challenging settings posed by serial transplantation experiments. Our study focused on the distribution of neural cancer stem cells inside the tumour. The study is divided into three phases: removal of tumoral specimens in different areas of the tumour (centre, periphery, marginal zone) in an operative room equipped with a 1.5 T scanner; isolation and characterization of neural cancer stem cells from human adult glioblastoma multiforme; identification of neural cancer stem cell distribution inside the tumour. PMID:24750704

  16. Differential radiosensitivity among B cell subpopulations

    SciTech Connect

    Riggs, J.E.; Lussier, A.M.; Lee, S.K.; Appel, M.C.; Woodland, R.T.

    1988-09-15

    We have previously shown that low doses of ionizing radiation selectively impair a functionally defined B cell subpopulation. Normal mice, after exposure to 200 rad of ionizing radiation, have normal or near normal splenic plaque-forming cell responses to thymus-independent type 1 Ag, but reduced responses to thymus-independent type 2 Ag. Here, we confirm and extend the original findings by using hapten-specific serum RIA to demonstrate this differential radiosensitivity is systemic. We also examined splenocytes stained with a panel of lymphocyte surface Ag by FACS analysis to determine if these functional changes are accompanied by a physical alteration of the B cell pool of irradiated mice. Single-parameter FACS analyses demonstrate a diminution in both B cell number and the heterogeneity of membrane Ag expression within the surviving B cell pool after irradiation. In contrast, T cells are relatively radioresistant as the relative percentage of T cells in the irradiated splenocyte pool increases, whereas the heterogeneity of membrane Ag expression remains constant. Multiparameter FACS analyses indicate that B cells with the sIgM much greater than sIgD phenotype are more radiosensitive than B cells of the sIgM much less than sIgD phenotype. In addition, immunohistochemical analysis of splenic sections stained with anti-IgM or anti-IgD reveal the enhanced radiosensitivity of marginal zone B cells.

  17. Differential radiosensitivity among B cell subpopulations

    SciTech Connect

    Riggs, J.E.

    1988-01-01

    The selective radiosensitivity of sIgM >> sIgD marginal zone B cells is associated with the selective loss of B cell function. The simultaneous restoration of impaired function and recovery of these cells with time supports this premise. B cell recovery, delayed one week after irradiation, is in progress at two weeks, and virtually complete by three weeks. XID mice reveal similar recovery kinetics although there are fewer recovering cells and these bear reduced levels of Ia. This observation represents additional evidence that xid B cells are distinct from those of normal mice. The simultaneous loss, and concurrent recovery, of sIgM >> sIgD B cells and TI-2 responsiveness in irradiated mice suggests the existence of a unique B cell subpopulation possessing both phenotypes. Additional support for this hypothesis is provided by demonstrating that splenocytes, depleted of IgD{sup +} cells adoptively reconstitute this response in XID mice. The peritoneal B cell pool, which, compared to the spleen, consist of increased numbers of sIgM >> sIgD B cells, is shown to be a source of radiosensitive B cells that are TI-2 responsive. These observations represent additional evidence for an association between sIgM >> sIgD B cells and TI-2 responsiveness.

  18. Radiosensitivity of cultured insect cells: II. Diptera

    SciTech Connect

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five dipteran cell lines representing three mosquito genera and one fruit fly genus were examined. These lines are: (1) ATC-10, Aedes aegypti; (2) RU-TAE-14, Toxorhynchites amboinensis; (3) RU-ASE-2A, Anopheles stephensi; (4) WR69-DM-1, Drosophila melanogaster; and (5) WR69-DM-2, Drosophila melanogaster. Population doubling times for these lines range from approximately 16 to 48 hr. Diploid chromosome numbers are six for the mosquito cells and eight for the fruit fly cells D/sub 0/ values are 5.1 and 6.5 Gy for the Drosophila cell lines and 3.6, 6.2, and 10.2 Gy for the mosquito cell lines. The results of this study demonstrate that dipteran insect cells are a few times more resistant to radiation than mammalian cells, but not nearly as radioresistant as lepidopteran cells.

  19. Replication-Dependent Radiosensitization of Human Glioma Cells by Inhibition of Poly(ADP-Ribose) Polymerase: Mechanisms and Therapeutic Potential

    SciTech Connect

    Dungey, Fiona A.; Loeser, Dana A.; Chalmers, Anthony J.

    2008-11-15

    Purpose: Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. Methods and Materials: Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence of this effect and its therapeutic potential. Results: KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in {gamma}H2AX and Rad51 foci. Conclusion: The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.

  20. Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones.

    PubMed

    Séhédic, Delphine; Cikankowitz, Annabelle; Hindré, François; Davodeau, François; Garcion, Emmanuel

    2015-04-01

    Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.

  1. Evaluation of nitrobenzimidazoles as hypoxic cell radiosensitizers

    SciTech Connect

    Wright, J.; Frank, L.R.; Bush, D.; Harrison, G.H.

    1983-07-01

    Radiobiological and pharmacokinetic assays were performed to determine the potential of 2-nitrobenzimidazole (NBI) as a hypoxic cell radiosensitizing agent. As judged by comparing survival curve slopes of Serratia marcescens irradiated under aerated and hypoxic conditions, the NBI enhancement ratio (ER) at 2 mM concentration was 2.4 +/- 0.2, compared with an oxygen enhancement ratio of 3.3 +/- 0.3. 2,5-Dinitrobenzimidazole (DNBI) was investigated in vitro; its ER was 3.0 +/- 0.3 at 4 mM concentration. Very poor tissue penetration of DNBI precluded further testing in vivo. Acute toxic signs appeared in C3H/HeJ mice following ip injection of NBI at 100 mg/kg. These would be partly attributable to the stress caused by the high pH of the injection vehicle. The LD50 was estimated to be 125-150 mg/kg. Mammary adenocarcinoma tumors grown in the flanks of these mice exhibited maximum NBI levels at 5 min postinjection (ip). Peak tumor radiosensitization occurred in the interval between 5 and 10 min postinjection. The ER for tumor regrowth delay was 2.1 +/- 0.3 following 50 mg/kg injected into mice 5 min before irradiation. Functional evaluation up to 40 days after treatment revealed no evidence of neurological deficit.

  2. New role of osteopontin in DNA repair and impact on human glioblastoma radiosensitivity

    PubMed Central

    Henry, Aurélie; Nokin, Marie-Julie; Leroi, Natacha; Lallemand, François; Lambert, Jérémy; Goffart, Nicolas; Roncarati, Patrick; Bianchi, Elettra; Peixoto, Paul; Blomme, Arnaud; Turtoi, Andrei; Peulen, Olivier; Habraken, Yvette; Scholtes, Félix; Martinive, Philippe; Delvenne, Philippe; Rogister, Bernard; Castronovo, Vincent; Bellahcène, Akeila

    2016-01-01

    Glioblastoma (GBM) represents the most aggressive and common solid human brain tumor. We have recently demonstrated the importance of osteopontin (OPN) in the acquisition/maintenance of stemness characters and tumorigenicity of glioma initiating cells. Consultation of publicly available TCGA database indicated that high OPN expression correlated with poor survival in GBM patients. In this study, we explored the role of OPN in GBM radioresistance using an OPN-depletion strategy in U87-MG, U87-MG vIII and U251-MG human GBM cell lines. Clonogenic experiments showed that OPN-depleted GBM cells were sensitized to irradiation. In comet assays, these cells displayed higher amounts of unrepaired DNA fragments post-irradiation when compared to control. We next evaluated the phosphorylation of key markers of DNA double-strand break repair pathway. Activating phosphorylation of H2AX, ATM and 53BP1 was significantly decreased in OPN-deficient cells. The addition of recombinant OPN prior to irradiation rescued phospho-H2AX foci formation thus establishing a new link between DNA repair and OPN expression in GBM cells. Finally, OPN knockdown improved mice survival and induced a significant reduction of heterotopic human GBM xenograft when combined with radiotherapy. This study reveals a new function of OPN in DNA damage repair process post-irradiation thus further confirming its major role in GBM aggressive disease. PMID:27563812

  3. Adoptive Cell Therapies for Glioblastoma

    PubMed Central

    Bielamowicz, Kevin; Khawja, Shumaila; Ahmed, Nabil

    2013-01-01

    Glioblastoma (GBM) is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard of care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients (1). Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly “self,” it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer cells, natural killer cells, cytotoxic T lymphocytes, and transgenic chimeric antigen receptor or αβ T cell receptor grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system toward the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts. PMID:24273748

  4. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    SciTech Connect

    Lopez, Carlos A. Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-09-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G{sub 1} arrest, increase in sub-G{sub 1} fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios ({+-} SE) of 1.5 ({+-} 0.2) and 1.3 ({+-} 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53.

  5. Cancer stem cells in glioblastoma

    PubMed Central

    Lathia, Justin D.; Mack, Stephen C.; Mulkearns-Hubert, Erin E.; Valentim, Claudia L.L.; Rich, Jeremy N.

    2015-01-01

    Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial. PMID:26109046

  6. The potential origin of glioblastoma initiating cells

    PubMed Central

    Chesler, David A.; Berger, Mitchell S.; Quinones-Hinojosa, Alfredo

    2013-01-01

    Despite intensive clinical and laboratory research and effort, Glioblastoma remains the most common and invariably lethal primary cancer of the central nervous system. The identification of stem cell and lineage-restricted progenitor cell populations within the adult human brain in conjunction with the discovery of stem-like cells derived from gliomas which are themselves tumorigenic and have been shown to have properties of self-renewal and multipotency, has led to the hypothesis that this population of cells may represent glioma initiating cells. Extensive research characterizing the anatomic distribution and phenotype of neural stem cells in the adult brain, and the genetic underpinnings needed for malignant transformation may ultimately lead to the identification of the cellular origin for glioblastoma. Defining the cellular origin of this lethal disease may ultimately provide new therapeutic targets and modalities finally altering an otherwise bleak outcome for patients with glioblastoma. PMID:22202053

  7. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    SciTech Connect

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun; Juhn, Kyoung-Mi; Woo, Seon Rang; Kim, Hee-Young; Han, Young-Hoon; Hwang, Sang-Gu; Hong, Sung-Hee; Kang, Chang-Mo; Yoo, Young-Do; Park, Won-Bong; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2010-11-12

    Research highlights: {yields} In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. {yields} The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. {yields} The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. {yields} P53 status is not associated with the occurrence of unsensitized clone. {yields} Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC{sup -/-} cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC{sup -/-} clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.

  8. Cellular and molecular portrait of eleven human glioblastoma cell lines under photon and carbon ion irradiation.

    PubMed

    Ferrandon, S; Magné, N; Battiston-Montagne, P; Hau-Desbat, N-H; Diaz, O; Beuve, M; Constanzo, J; Chargari, C; Poncet, D; Chautard, E; Ardail, D; Alphonse, G; Rodriguez-Lafrasse, C

    2015-04-28

    This study aimed to examine the cellular and molecular long-term responses of glioblastomas to radiotherapy and hadrontherapy in order to better understand the biological effects of carbon beams in cancer treatment. Eleven human glioblastoma cell lines, displaying gradual radiosensitivity, were irradiated with photons or carbon ions. Independently of p53 or O(6)-methylguanine-DNA methyltransferase(1) status, all cell lines responded to irradiation by a G2/M phase arrest followed by the appearance of mitotic catastrophe, which was concluded by a ceramide-dependent-apoptotic cell death. Statistical analysis demonstrated that: (i) the SF2(2) and the D10(3) values for photon are correlated with that obtained in response to carbon ions; (ii) regardless of the p53, MGMT status, and radiosensitivity, the release of ceramide is associated with the induction of late apoptosis; and (iii) the appearance of polyploid cells after photon irradiation could predict the Relative Biological Efficiency(4) to carbon ions. This large collection of data should increase our knowledge in glioblastoma radiobiology in order to better understand, and to later individualize, appropriate radiotherapy treatment for patients who are good candidates.

  9. Histone Deacetylation Critically Determines T-cell Subset Radiosensitivity1

    PubMed Central

    Pugh, Jason L.; Sukhina, Alona S.; Seed, Thomas M.; Manley, Nancy R.; Sempowski, Gregory A.; van den Brink, Marcel R.M.; Smithey, Megan J.; Nikolich-Zugich, Janko

    2014-01-01

    Lymphocytes are sensitive to ionizing radiation and naïve lymphocytes are more radiosensitive than their memory counterparts. Less is known about radiosensitivity of memory cell subsets. We examined the radiosensitivity of naïve (TN), effector memory (TEM), and central memory (TCM) T cell subsets in C57BL/6 mice, and found TEM to be more resistant to radiation-induced apoptosis than either TN or TCM. Surprisingly, we found no correlation between the extent of radiation-induced apoptosis in T cell subsets and : (i) levels of pro- and anti-apoptotic Bcl-2 family members; or (ii) the H2-AX content and maximal γH2-AX fold change. Rather, TEM cell survival correlated with higher levels of immediate γH2-AX marking, immediate break binding and genome-wide open chromatin structure. T cells were able to mark DNA damage seemingly instantly (30 s), even if kept on ice. Relaxing chromatin with the histone deacetylase inhibitor valproic acid following radiation or etoposide treatment, improved the survival of TCM and TN cells up to levels seen in the resistant TEM cells, but did not improve survival from caspase-mediated apoptosis. We conclude that an open genome-wide chromatin state is the key determinant of efficient immediate repair of DNA damage in T cells, explaining the observed T cell subset radiosensitivity differences. PMID:24990082

  10. Targeting DNA repair and the cell cycle in glioblastoma.

    PubMed

    Alexander, Brian M; Pinnell, Nancy; Wen, Patrick Y; D'Andrea, Alan

    2012-05-01

    Glioblastoma is a disease with poor outcomes despite standard therapy. Specific targeting of the DNA damage response is a strategy that is becoming increasingly employed in oncology and has intriguing potential for improving outcomes in glioblastoma. DNA damage targeting has implications for improving current therapy as well as the potential to leverage inherent differences in glioblastoma cells to widen the therapeutic window.

  11. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells

    PubMed Central

    Podergajs, Neža; Motaln, Helena; Rajčević, Uroš; Verbovšek, Urška; Koršič, Marjan; Obad, Nina; Espedal, Heidi; Vittori, Miloš; Herold-Mende, Christel; Miletic, Hrvoje; Bjerkvig, Rolf; Turnšek, Tamara Lah

    2016-01-01

    The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene. CD9 encodes the transmembrane protein tetraspanin which is involved in tumor cell invasion, apoptosis and resistance to chemotherapy. Using the public REMBRANDT database for brain tumors, we confirmed the prognostic value of CD9, whereby a more than two fold up-regulation correlates with shorter patient survival. We validated CD9 gene and protein expression showing selective up-regulation in glioblastoma stem cells isolated from primary biopsies and in primary organotypic glioblastoma spheroids as well as in U87-MG and U373 glioblastoma cell lines. In contrast, no or low CD9 gene expression was observed in normal human astrocytes, normal brain tissue and neural stem cells. CD9 silencing in three CD133+ glioblastoma cell lines (NCH644, NCH421k and NCH660h) led to decreased cell proliferation, survival, invasion, and self-renewal ability, and altered expression of the stem-cell markers CD133, nestin and SOX2. Moreover, CD9-silenced glioblastoma stem cells showed altered activation patterns of the Akt, MapK and Stat3 signaling transducers. Orthotopic xenotransplantation of CD9-silenced glioblastoma stem cells into nude rats promoted prolonged survival. Therefore, CD9 should be further evaluated as a target for glioblastoma treatment. PMID:26573230

  12. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells.

    PubMed

    Podergajs, Neža; Motaln, Helena; Rajčević, Uroš; Verbovšek, Urška; Koršič, Marjan; Obad, Nina; Espedal, Heidi; Vittori, Miloš; Herold-Mende, Christel; Miletic, Hrvoje; Bjerkvig, Rolf; Turnšek, Tamara Lah

    2016-01-05

    The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene. CD9 encodes the transmembrane protein tetraspanin which is involved in tumor cell invasion, apoptosis and resistance to chemotherapy. Using the public REMBRANDT database for brain tumors, we confirmed the prognostic value of CD9, whereby a more than two fold up-regulation correlates with shorter patient survival. We validated CD9 gene and protein expression showing selective up-regulation in glioblastoma stem cells isolated from primary biopsies and in primary organotypic glioblastoma spheroids as well as in U87-MG and U373 glioblastoma cell lines. In contrast, no or low CD9 gene expression was observed in normal human astrocytes, normal brain tissue and neural stem cells. CD9 silencing in three CD133+ glioblastoma cell lines (NCH644, NCH421k and NCH660h) led to decreased cell proliferation, survival, invasion, and self-renewal ability, and altered expression of the stem-cell markers CD133, nestin and SOX2. Moreover, CD9-silenced glioblastoma stem cells showed altered activation patterns of the Akt, MapK and Stat3 signaling transducers. Orthotopic xenotransplantation of CD9-silenced glioblastoma stem cells into nude rats promoted prolonged survival. Therefore, CD9 should be further evaluated as a target for glioblastoma treatment.

  13. Radiosensitization of EMT6 cells by four platinum complexes

    SciTech Connect

    Teicher, B.A.; Rockwell, S.; Lee, J.B.

    1985-05-01

    The compounds described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 ..mu..M and 400 ..mu..M trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 ..mu..M and 1.8 at 400 ..mu..M. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 ..mu..M Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 ..mu..M and 400 ..mu..M Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 ..mu..M PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands.

  14. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status.

    PubMed

    Li, W; Guo, F; Wang, P; Hong, S; Zhang, C

    2014-01-01

    Glioblastoma is highly resistant to radiation therapy. The underlying molecular mechanism is not completely understood. The DNA damage response (DDR) pathway plays a crucial role in radioresistance of glioablastoma cells. Growing evidence has demonstrated that radiation induces alterations in microRNA (miR) profiles. However, how radiation induces specific miRs and how they might regulate the DDR remain elusive. In our study, we found that radiation induced c-jun transcription of miR-221 and miR-222. miR-221 and miR- 222 modulated DNA-PKcs expression to affect DNA damage repair by activating Akt independent of PTEN status. Knocking down of miR-221/222 significantly increased radiosensitivity of glioblastoma cells. Inhibition of Akt by RNAi or LY294002 treatment may overcome miR-221/222 induced radioresistance. Notably, combined anti-miR-221/222 and radiotherapy has remarkably inhibited tumor growth compared with anti-miR-221/222 or radiotherapy alone in a subcutaneous mouse model. Our results suggest that radio-induced c-jun promotes transcription of miR-221/222, which mediates DNA damage repair of glioblastoma cells independent of PTEN. These data indicate for the first time that miR-221/222 play an important role in mediating radio-induced DNA damage repair and that miR-221/222 could serve as potential therapeutic targets for increasing radiosensitivity of glioblastoma cells.

  15. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme

    PubMed Central

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM’s cancer biology. PMID:27148537

  16. Radiosensitization of non-small cell lung cancer by kaempferol.

    PubMed

    Kuo, Wei-Ting; Tsai, Yuan-Chung; Wu, His-Chin; Ho, Yung-Jen; Chen, Yueh-Sheng; Yao, Chen-Han; Yao, Chun-Hsu

    2015-11-01

    The aim of the present study was to determine whether kaempferol has a radiosensitization potential for lung cancer in vitro and in vivo. The in vitro radio-sensitization activity of kaempferol was elucidated in A-549 lung cancer cells by using an MTT (3-(4 5-dimethylthiazol-2-yl)-25-diphenyl-tetrazolium bromide) assay, cell cycle analysis and clonogenic assay. The in vivo activity was evaluated in the BALB/c nude mouse xenograft model of A-549 cells by hematoxylin and eosin staining and immunohistochemistry, and the tumor volume was recorded. Protein levels of the apoptotic pathway were detected by western blot analysis. Treatment with kaempferol inhibited the growth of A-549 cells through activation of apoptotic pathway. However, the same doses did not affect HFL1 normal lung cell growth. Kaempferol induced G2/M cell cycle arrest and the enhancement of radiation-induced death and clonogenic survival inhibition. The in vivo data showed that kaempferol increased tumor cell apoptosis and killing of radiation. In conclusion, the findings demonstrated that kaempferol increased tumor cell killing by radiation in vitro and in vivo through inhibition of the AKT/PI3K and ERK pathways and activation of the mitochondria apoptosis pathway. The results of the present study provided solid evidence that kaempferol is a safe and potential radiosensitizer.

  17. Genetically Modified T Cells to Target Glioblastoma

    PubMed Central

    Krebs, Simone; Rodríguez-Cruz, Tania G.; DeRenzo, Christopher; Gottschalk, Stephen

    2013-01-01

    Despite advances in surgical procedures, radiation, and chemotherapy the outcome for patients with glioblastoma (GBM) remains poor. While GBM cells express antigens that are potentially recognized by T cells, GBMs prevent the induction of GBM-specific immune responses by creating an immunosuppressive microenvironment. The advent of gene transfer has allowed the rapid generation of antigen-specific T cells as well as T cells with enhanced effector function. Here we review recent advances in the field of cell therapy with genetically modified T cells and how these advances might improve outcomes for patients with GBM in the future. PMID:24427741

  18. FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells

    PubMed Central

    Maachani, Uday B.; Shankavaram, Uma; Kramp, Tamalee; Tofilon, Philip J.; Camphausen, Kevin; Tandle, Anita T.

    2016-01-01

    Glioblastoma multiforme (GBM) continues to be the most frequently diagnosed and lethal primary brain tumor. Adjuvant chemo-radiotherapy remains the standard of care following surgical resection. In this study, using reverse phase protein arrays (RPPAs), we assessed the biological effects of radiation on signaling pathways to identify potential radiosensitizing molecular targets. We identified subsets of proteins with clearly concordant/discordant behavior between irradiated and non-irradiated GBM cells in vitro and in vivo. Moreover, we observed high expression of Forkhead box protein M1 (FOXM1) in irradiated GBM cells both in vitro and in vivo. Recent evidence of FOXM1 as a master regulator of metastasis and its important role in maintaining neural, progenitor, and GBM stem cells, intrigued us to validate it as a radiosensitizing target. Here we show that FOXM1 inhibition radiosensitizes GBM cells by abrogating genes associated with cell cycle progression and DNA repair, suggesting its role in cellular response to radiation. Further, we demonstrate that radiation induced stimulation of FOXM1 expression is dependent on STAT3 activation. Co-immunoprecipitation and co-localization assays revealed physical interaction of FOXM1 with phosphorylated STAT3 under radiation treatment. In conclusion, we hypothesize that FOXM1 regulates radioresistance via STAT3 in GBM cells. We also, show GBM patients with high FOXM1 expression have poor prognosis. Collectively our observations might open novel opportunities for targeting FOXM1 for effective GBM therapy. PMID:27764801

  19. PCDH10 is required for the tumorigenicity of glioblastoma cells

    SciTech Connect

    Echizen, Kanae; Nakada, Mitsutoshi; Hayashi, Tomoatsu; Sabit, Hemragul; Furuta, Takuya; Nakai, Miyuki; Koyama-Nasu, Ryo; Nishimura, Yukiko; Taniue, Kenzui; Morishita, Yasuyuki; Hirano, Shinji; Terai, Kenta; Todo, Tomoki; Ino, Yasushi; Mukasa, Akitake; Takayanagi, Shunsaku; Ohtani, Ryohei; Saito, Nobuhito; Akiyama, Tetsu

    2014-01-31

    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma.

  20. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  1. Sorafenib inhibits cell growth but fails to enhance radio- and chemosensitivity of glioblastoma cell lines

    PubMed Central

    Riedel, Matthias; Struve, Nina; Müller-Goebel, Justus; Köcher, Sabrina; Petersen, Cordula; Dikomey, Ekkehard; Rothkamm, Kai; Kriegs, Malte

    2016-01-01

    Background Glioblastomas (GBM) are the most common malignant type of primary brain tumor. GBM are intensively treated with surgery and combined radiochemotherapy using X-irradiation and temozolomide (TMZ) but they are still associated with an extremely poor prognosis, urging for the development of new treatment strategies. To improve the outcome of GBM patients, the small molecule multi-kinase inhibitor sorafenib has moved into focus of recent research. Sorafenib has already been shown to enhance the radio- and radiochemosensitivity of other tumor entities. Whether sorafenib is also able to sensitize GBM cells to radio- and chemotherapy is still an unsolved question which we have addressed in this study. Methods The effect of sorafenib on signaling, proliferation, radiosensitivity, chemosensitivity and radiochemosensitivity was analyzed in six glioblastoma cell lines using Western blot, proliferation- and colony formation assays. Results In half of the cell lines sorafenib clearly inhibited MAPK signaling. We also observed a strong blockage of proliferation, which was, however, not associated with MAPK pathway inhibition. Sorafenib had only minor effects on cell survival when administered alone. Most importantly, sorafenib treatment failed to enhance GBM cell killing by irradiation, TMZ or combined treatment, and instead rather caused resistance in some cell lines. Conclusion Our data suggest that sorafenib treatment may not improve the efficacy of radiochemotherapy in GBM. PMID:27542273

  2. SU11657 Enhances Radiosensitivity of Human Meningioma Cells

    SciTech Connect

    Milker-Zabel, Stefanie Bois, Angelika Zabel-du; Ranai, Gholamreza; Trinh, Thuy; Unterberg, Andreas; Debus, Juergen; Lipson, Kenneth E.; Abdollahi, Amir; Huber, Peter E.

    2008-03-15

    Purpose: To analyze the effect of the multireceptor tyrosine kinase inhibitor SU11657 (primarily vascular endothelial growth factor, platelet-derived growth factor) in combination with irradiation in freshly isolated primary human meningioma cells. Methods and Materials: Tumor specimens were obtained from meningioma patients undergoing surgery at the Department of Neurosurgery, University of Heidelberg, Germany. For the present study only cells up to passage 6 were used. Benign and atypical meningioma cells and human umbilical vein endothelial cells (HUVEC) were treated with SU11657 alone and in combination with 6-MV photons (0-10 Gy). Clonogenic survival and cell proliferation were determined alone and in coculture assays to determine direct and paracrine effects. Results: Radiation and SU11657 alone reduced cell proliferation in atypical and benign meningioma cells as well as in HUVEC in a dose-dependent manner. SU11657 alone also reduced clonogenic survival of benign and atypical meningioma cells. SU11657 increased radiosensitivity of human meningioma cells in clonogenic survival and cell number/proliferation assays. The anticlonogenic and antiproliferative effects alone and the radiosensitization effects of SU11657 were more pronounced in atypical meningioma cells compared with benign meningioma cells. Conclusion: Small-molecule tyrosine kinase inhibitors like SU11657 are capable of amplifying the growth inhibitory effects of irradiation in meningioma cells. These data provide a rationale for further clinical evaluation of this combination concept, especially in atypical and malignant meningioma patients.

  3. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants.

    PubMed

    Asaad, N A; Zeng, Z C; Guan, J; Thacker, J; Iliakis, G

    2000-11-23

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  4. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants

    NASA Technical Reports Server (NTRS)

    Asaad, N. A.; Zeng, Z. C.; Guan, J.; Thacker, J.; Iliakis, G.

    2000-01-01

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  5. HMGCR positively regulated the growth and migration of glioblastoma cells.

    PubMed

    Qiu, Zhihua; Yuan, Wen; Chen, Tao; Zhou, Chenzhi; Liu, Chao; Huang, Yongkai; Han, Deqing; Huang, Qinghui

    2016-01-15

    The metabolic program of cancer cells is significant different from the normal cells, which makes it possible to develop novel strategies targeting cancer cells. Mevalonate pathway and its rate-limiting enzyme HMG-CoA reductase (HMGCR) have shown important roles in the progression of several cancer types. However, their roles in glioblastoma cells remain unknown. In this study, up-regulation of HMGCR in the clinical glioblastoma samples was observed. Forced expression of HMGCR promoted the growth and migration of U251 and U373 cells, while knocking down the expression of HMGCR inhibited the growth, migration and metastasis of glioblastoma cells. Molecular mechanism studies revealed that HMGCR positively regulated the expression of TAZ, an important mediator of Hippo pathway, and the downstream target gene connective tissue growth factor (CTGF), suggesting HMGCR might activate Hippo pathway in glioblastoma cells. Taken together, our study demonstrated the oncogenic roles of HMGCR in glioblastoma cells and HMGCR might be a promising therapeutic target.

  6. Glioblastoma

    MedlinePlus

    ... most common form of glioblastoma; it is very aggressive. Secondary: These tumors have a longer, somewhat slower growth history, but still are very aggressive. They may begin as lower-grade tumors which ...

  7. Glioblastoma.

    PubMed

    Wirsching, Hans-Georg; Galanis, Evanthia; Weller, Michael

    2016-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults. Defining histopathologic features are necrosis and endothelial proliferation, resulting in the assignment of grade IV, the highest grade in the World Health Organization (WHO) classification of brain tumors. The classic clinical term "secondary glioblastoma" refers to a minority of glioblastomas that evolve from previously diagnosed WHO grade II or grade III gliomas. Specific point mutations of the genes encoding isocitrate dehydrogenase (IDH) 1 or 2 appear to define molecularly these tumors that are associated with younger age and more favorable outcome; the vast majority of glioblastomas are IDH wild-type. Typical molecular changes in glioblastoma include mutations in genes regulating receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma protein (RB) signaling. Standard treatment of glioblastoma includes surgery, radiotherapy, and alkylating chemotherapy. Promoter methylation of the gene encoding the DNA repair protein, O(6)-methylguanyl DNA methyltransferase (MGMT), predicts benefit from alkylating chemotherapy with temozolomide and guides choice of first-line treatment in elderly patients. Current developments focus on targeting the molecular characteristics that drive the malignant phenotype, including altered signal transduction and angiogenesis, and more recently, various approaches of immunotherapy.

  8. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update

    PubMed Central

    Sultana, Misbah; Qazi, Aamer; Qazi, Mahmood Husain; Parveen, Gulshan; Waquar, Sulayman; Ashraf, Abdul Basit; Rasool, Mahmood

    2016-01-01

    Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds. PMID:26998418

  9. Direct effect of bevacizumab on glioblastoma cell lines in vitro.

    PubMed

    Simon, Thomas; Coquerel, Bérénice; Petit, Alexandre; Kassim, Yusra; Demange, Elise; Le Cerf, Didier; Perrot, Valérie; Vannier, Jean-Pierre

    2014-12-01

    Bevacizumab is a humanized monoclonal antibody directed against the pro-angiogenic factor vascular and endothelial growth factor-A (VEGF-A) used in the treatment of glioblastomas. Although most patients respond initially to this treatment, studies have shown that glioblastomas eventually recur. Several non-mutually exclusive theories based on the anti-angiogenic effect of bevacizumab have been proposed to explain these mechanisms of resistance. In this report, we studied whether bevacizumab can act directly on malignant glioblastoma cells. We observe changes in the expression profiles of components of the VEGF/VEGF-R pathway and in the response to a VEGF-A stimulus following bevacizumab treatment. In addition, we show that bevacizumab itself acts on glioblastoma cells by activating the Akt and Erks survival signaling pathways. Bevacizumab also enhances proliferation and invasiveness of glioblastoma cells in hyaluronic acid hydrogel. We propose that the paradoxical effect of bevacizumab on glioblastoma cells could be due to changes in the VEGF-A-dependent autocrine loop as well as in the intracellular survival pathways, leading to the enhancement of tumor aggressiveness. Investigation of how bevacizumab interacts with glioblastoma cells and the resulting downstream signaling pathways will help targeting populations of resistant glioblastoma cells.

  10. Glioblastoma Circulating Cells: Reality, Trap or Illusion?

    PubMed

    Lombard, A; Goffart, N; Rogister, B

    2015-01-01

    Metastases are the hallmark of cancer. This event is in direct relationship with the ability of cancer cells to leave the tumor mass and travel long distances within the bloodstream and/or lymphatic vessels. Glioblastoma multiforme (GBM), the most frequent primary brain neoplasm, is mainly characterized by a dismal prognosis. The usual fatal issue for GBM patients is a consequence of local recurrence that is observed most of the time without any distant metastases. However, it has recently been documented that GBM cells could be isolated from the bloodstream in several studies. This observation raises the question of the possible involvement of glioblastoma-circulating cells in GBM deadly recurrence by a "homing metastasis" process. Therefore, we think it is important to review the already known molecular mechanisms underlying circulating tumor cells (CTC) specific properties, emphasizing their epithelial to mesenchymal transition (EMT) abilities and their possible involvement in tumor initiation. The idea is here to review these mechanisms and speculate on how relevant they could be applied in the forthcoming battles against GBM.

  11. Glioblastoma Circulating Cells: Reality, Trap or Illusion?

    PubMed Central

    Lombard, A.; Goffart, N.; Rogister, B.

    2015-01-01

    Metastases are the hallmark of cancer. This event is in direct relationship with the ability of cancer cells to leave the tumor mass and travel long distances within the bloodstream and/or lymphatic vessels. Glioblastoma multiforme (GBM), the most frequent primary brain neoplasm, is mainly characterized by a dismal prognosis. The usual fatal issue for GBM patients is a consequence of local recurrence that is observed most of the time without any distant metastases. However, it has recently been documented that GBM cells could be isolated from the bloodstream in several studies. This observation raises the question of the possible involvement of glioblastoma-circulating cells in GBM deadly recurrence by a “homing metastasis” process. Therefore, we think it is important to review the already known molecular mechanisms underlying circulating tumor cells (CTC) specific properties, emphasizing their epithelial to mesenchymal transition (EMT) abilities and their possible involvement in tumor initiation. The idea is here to review these mechanisms and speculate on how relevant they could be applied in the forthcoming battles against GBM. PMID:26078762

  12. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    PubMed Central

    Ma, Debin; Jia, Hui; Qin, Mengmeng; Dai, Wenjie; Wang, Tao; Liang, Erguang; Dong, Guofu; Wang, Zuojun; Zhang, Zhiyuan; Feng, Fan

    2015-01-01

    MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR) on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy. PMID:26389880

  13. Radiosensitization by Inhibiting STAT1 in Renal Cell Carcinoma

    SciTech Connect

    Hui Zhouguang; Tretiakova, Maria; Zhang Zhongfa; Li Yan; Wang Xiaozhen; Zhu, Julie Xiaohong; Gao Yuanhong; Mai Weiyuan; Furge, Kyle; Qian Chaonan; Amato, Robert; Butler, E. Brian

    2009-01-01

    Purpose: Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. Methods and Materials: The expressions of STAT1 and STAT3 in 164 human clear cell RCC samples, 47 papillary RCC samples, and 15 normal kidney tissue samples were examined by microarray expression profiling and immunohistochemistry. Western blotting was performed to evaluate the total and phosphorylated STAT1 expression in CRL-1932 (786-O) (human clear cell RCC), SKRC-39 (human papillary RCC), CCL-116 (human fibroblast), and CRL-1441 (G-401) (human Wilms tumor). STAT1 was reduced or inhibited by fludarabine and siRNA, respectively, and the effects on radiation-induced cell death were investigated using clonogenic assays. Results: STAT1 expression, but not STAT3 expression, was significantly greater in human RCC samples (p = 1.5 x 10{sup -8} for clear cell; and p = 3.6 x 10{sup -4} for papillary). Similarly, the expression of STAT1 was relatively greater in the two RCC cell lines. STAT1 expression was reduced by both fludarabine and siRNA, significantly increasing the radiosensitivity in both RCC cell lines. Conclusion: This is the first study reporting the overexpression of STAT1 in human clear cell and papillary RCC tissues. Radiosensitization in RCC cell lines was observed by a reduction or inhibition of STAT1 signaling, using fludarabine or siRNA. Our data suggest that STAT1 may play a key role in RCC radioresistance and manipulation of this pathway may enhance the efficacy of radiotherapy.

  14. Resveratrol sensitizes glioblastoma-initiating cells to temozolomide by inducing cell apoptosis and promoting differentiation.

    PubMed

    Li, Hao; Liu, Yaodong; Jiao, Yumin; Guo, Anchen; Xu, Xiaoxue; Qu, Xianjun; Wang, Shuo; Zhao, Jizong; Li, Ye; Cao, Yong

    2016-01-01

    Glioblastoma-initiating cells play crucial roles in the origin, growth, and recurrence of glioblastoma multiforme. The elimination of glioblastoma-initiating cells is believed to be a key strategy for achieving long-term survival of glioblastoma patients due to the highly resistant property of glioblastoma-initiating cells to temozolomide. Resveratrol, a naturally occurring polyphenol, has been widely studied as a promising candidate for cancer prevention and treatment. Whether resveratrol could enhance the sensitivity of glioblastoma-initiating cells to temozolomide therapy has not yet been reported. Here, using patient-derived glioblastoma-initiating cell lines, we found that resveratrol sensitized glioblastoma-initiating cells to temozolomide both in vitro and in vivo. Furthermore, we showed that resveratrol enhanced glioblastoma-initiating cells to temozolomide-induced apoptosis through DNA double-stranded breaks/pATM/pATR/p53 pathway activation, and promoted glioblastoma-initiating cell differentiation involving p-STAT3 inactivation. Our results propose that temozolomide and resveratrol combination strategy may be effective in the management of glioblastoma patients, particularly for those patients who have been present with a high abundance of glioblastoma-initiating cells in their tumors and show slight responsiveness to temozolomide.

  15. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  16. Dual PI3K- and mTOR-inhibitor PI-103 can either enhance or reduce the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in tumor cells: The role of drug-irradiation schedule

    PubMed Central

    Djuzenova, Cholpon S.; Fiedler, Vanessa; Katzer, Astrid; Michel, Konstanze; Deckert, Stefanie; Zimmermann, Heiko; Sukhorukov, Vladimir L.; Flentje, Michael

    2016-01-01

    Inhibition of Hsp90 can increase the radiosensitivity of tumor cells. However, inhibition of Hsp90 alone induces the anti-apoptotic Hsp70 and thereby decreases radiosensitivity. Therefore, preventing Hsp70 induction can be a promising strategy for radiosensitization. PI-103, an inhibitor of PI3K and mTOR, has previously been shown to suppress the up-regulation of Hsp70. Here, we explore the impact of combining PI-103 with the Hsp90 inhibitor NVP-AUY922 in irradiated glioblastoma and colon carcinoma cells. We analyzed the cellular response to drug-irradiation treatments by colony-forming assay, expression of several marker proteins, cell cycle progression and induction/repair of DNA damage. Although PI-103, given 24 h prior to irradiation, slightly suppressed the NVP-AUY922-mediated up-regulation of Hsp70, it did not cause radiosensitization and even diminished the radiosensitizing effect of NVP-AUY922. This result can be explained by the activation of PI3K and ERK pathways along with G1-arrest at the time of irradiation. In sharp contrast, PI-103 not only exerted a radiosensitizing effect but also strongly enhanced the radiosensitization by NVP-AUY922 when both inhibitors were added 3 h before irradiation and kept in culture for 24 h. Possible reasons for the observed radiosensitization under this drug-irradiation schedule may be a down-regulation of PI3K and ERK pathways during or directly after irradiation, increased residual DNA damage and strong G2/M arrest 24 h thereafter. We conclude that duration of drug treatment before irradiation plays a key role in the concomitant targeting of PI3K/mTOR and Hsp90 in tumor cells. PMID:27224913

  17. Dual PI3K- and mTOR-inhibitor PI-103 can either enhance or reduce the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in tumor cells: The role of drug-irradiation schedule.

    PubMed

    Djuzenova, Cholpon S; Fiedler, Vanessa; Katzer, Astrid; Michel, Konstanze; Deckert, Stefanie; Zimmermann, Heiko; Sukhorukov, Vladimir L; Flentje, Michael

    2016-06-21

    Inhibition of Hsp90 can increase the radiosensitivity of tumor cells. However, inhibition of Hsp90 alone induces the anti-apoptotic Hsp70 and thereby decreases radiosensitivity. Therefore, preventing Hsp70 induction can be a promising strategy for radiosensitization. PI-103, an inhibitor of PI3K and mTOR, has previously been shown to suppress the up-regulation of Hsp70. Here, we explore the impact of combining PI-103 with the Hsp90 inhibitor NVP-AUY922 in irradiated glioblastoma and colon carcinoma cells. We analyzed the cellular response to drug-irradiation treatments by colony-forming assay, expression of several marker proteins, cell cycle progression and induction/repair of DNA damage. Although PI-103, given 24 h prior to irradiation, slightly suppressed the NVP-AUY922-mediated up-regulation of Hsp70, it did not cause radiosensitization and even diminished the radiosensitizing effect of NVP-AUY922. This result can be explained by the activation of PI3K and ERK pathways along with G1-arrest at the time of irradiation. In sharp contrast, PI-103 not only exerted a radiosensitizing effect but also strongly enhanced the radiosensitization by NVP-AUY922 when both inhibitors were added 3 h before irradiation and kept in culture for 24 h. Possible reasons for the observed radiosensitization under this drug-irradiation schedule may be a down-regulation of PI3K and ERK pathways during or directly after irradiation, increased residual DNA damage and strong G2/M arrest 24 h thereafter. We conclude that duration of drug treatment before irradiation plays a key role in the concomitant targeting of PI3K/mTOR and Hsp90 in tumor cells.

  18. TGF-B3 Dependent Modification of Radiosensitivity in Reporter Cells Exposed to Serum From Whole-Body Low Dose-Rate Irradiated Mice.

    PubMed

    Edin, Nina Jeppesen; Altaner, Čestmír; Altanerova, Veronica; Ebbesen, Peter

    2015-01-01

    Prior findings in vitro of a TGF-β3 dependent mechanism induced by low dose-rate irradiation and resulting in increased radioresistance and removal of low dose hyper-radiosensitivity (HRS) was tested in an in vivo model. DBA/2 mice were given whole-body irradiation for 1 h at low dose-rates (LDR) of 0.3 or 0.03 Gy/h. Serum was harvested and added to RPMI (4% mouse serum and 6% bovine serum).This medium was transferred to reporter cells (T-47D breast cancer cells or T98G glioblastoma cells). The response to subsequent challenge irradiation of the reporter cells was measured by the colony assay. While serum from unirradiated control mice had no effect on the radiosensitivity in the reporter cells, serum from mice given 0.3 Gy/h or 0.03 Gy/h for 1 h removed HRS and also increased survival in response to doses up to 5 Gy. The effect lasted for at least 15 months after irradiation. TGF-β3 neutralizer added to the medium containing mouse serum inhibited the effect. Serum from mice given irradiation of 0.3 Gy/h for 1 h and subsequently treated with iNOS inhibitor 1400W did not affect radiosensitivity in reporter cells; neither did serum from the unirradiated progeny of mice given 1h LDR whole-body irradiation.

  19. TGF-B3 Dependent Modification of Radiosensitivity in Reporter Cells Exposed to Serum From Whole-Body Low Dose-Rate Irradiated Mice

    PubMed Central

    Altaner, Čestmír; Altanerova, Veronica; Ebbesen, Peter

    2015-01-01

    Prior findings in vitro of a TGF-β3 dependent mechanism induced by low dose-rate irradiation and resulting in increased radioresistance and removal of low dose hyper-radiosensitivity (HRS) was tested in an in vivo model. DBA/2 mice were given whole-body irradiation for 1 h at low dose-rates (LDR) of 0.3 or 0.03 Gy/h. Serum was harvested and added to RPMI (4% mouse serum and 6% bovine serum).This medium was transferred to reporter cells (T-47D breast cancer cells or T98G glioblastoma cells). The response to subsequent challenge irradiation of the reporter cells was measured by the colony assay. While serum from unirradiated control mice had no effect on the radiosensitivity in the reporter cells, serum from mice given 0.3 Gy/h or 0.03 Gy/h for 1 h removed HRS and also increased survival in response to doses up to 5 Gy. The effect lasted for at least 15 months after irradiation. TGF-β3 neutralizer added to the medium containing mouse serum inhibited the effect. Serum from mice given irradiation of 0.3 Gy/h for 1 h and subsequently treated with iNOS inhibitor 1400W did not affect radiosensitivity in reporter cells; neither did serum from the unirradiated progeny of mice given 1h LDR whole-body irradiation. PMID:26673923

  20. NETRIN-4 protects glioblastoma cells FROM temozolomide induced senescence.

    PubMed

    Li, Li; Hu, Yizhou; Ylivinkka, Irene; Li, Huini; Chen, Ping; Keski-Oja, Jorma; Hyytiäinen, Marko

    2013-01-01

    Glioblastoma multiforme is the most common primary tumor of the central nervous system. The drug temozolomide (TMZ) prolongs lifespan in many glioblastoma patients. The sensitivity of glioblastoma cells to TMZ is interfered by many factors, such as the expression of O-6-methylguanine-DNA methyltransferase (MGMT) and activation of AKT signaling. We have recently identified the interaction between netrin-4 (NTN4) and integrin beta-4 (ITGB4), which promotes glioblastoma cell proliferation via activating AKT-mTOR signaling pathway. In the current work we have explored the effect of NTN4/ITGB4 interaction on TMZ induced glioblastoma cell senescence. We report here that the suppression of either ITGB4 or NTN4 in glioblastoma cell lines significantly enhances cellular senescence. The sensitivity of GBM cells to TMZ was primarily determined by the expression of MGMT. To omit the effect of MGMT, we concentrated on the cell lines devoid of expression of MGMT. NTN4 partially inhibited TMZ induced cell senescence and rescued AKT from dephosphorylation in U251MG cells, a cell line bearing decent levels of ITGB4. However, addition of exogenous NTN4 displayed no significant effect on TMZ induced senescence rescue or AKT activation in U87MG cells, which expressed ITGB4 at low levels. Furthermore, overexpression of ITGB4 combined with exogenous NTN4 significantly attenuated U87MG cell senescence induced by TMZ. These data suggest that NTN4 protects glioblastoma cells from TMZ induced senescence, probably via rescuing TMZ triggered ITGB4 dependent AKT dephosphorylation. This suggests that interfering the interaction between NTN4 and ITGB4 or concomitant use of the inhibitors of the AKT pathway may improve the therapeutic efficiency of TMZ.

  1. Ionizing Radiation in Glioblastoma Initiating Cells

    PubMed Central

    Rivera, Maricruz; Sukhdeo, Kumar; Yu, Jennifer

    2013-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a median survival of 12–15 months with treatment consisting of surgical resection followed by ionizing radiation (IR) and chemotherapy. Even aggressive treatment is often palliative due to near universal recurrence. Therapeutic resistance has been linked to a subpopulation of GBM cells with stem cell-like properties termed GBM initiating cells (GICs). Recent efforts have focused on elucidating resistance mechanisms activated in GICs in response to IR. Among these, GICs preferentially activate the DNA damage response (DDR) to result in a faster rate of double-strand break (DSB) repair induced by IR as compared to the bulk tumor cells. IR also activates NOTCH and the hepatic growth factor (HGF) receptor, c-MET, signaling cascades that play critical roles in promoting proliferation, invasion, and resistance to apoptosis. These pathways are preferentially activated in GICs and represent targets for pharmacologic intervention. While IR provides the benefit of improved survival, it paradoxically promotes selection of more malignant cellular phenotypes of GBM. As reviewed here, finding effective combinations of radiation and molecular inhibitors to target GICs and non-GICs is essential for the development of more effective therapies. PMID:23579692

  2. Targeting Aggressive Cancer Stem Cells in Glioblastoma

    PubMed Central

    Seymour, Tracy; Nowak, Anna; Kakulas, Foteini

    2015-01-01

    Glioblastoma (GBM) is the most common and fatal type of primary brain tumor. Gliosarcoma (GSM) is a rarer and more aggressive variant of GBM that has recently been considered a potentially different disease. Current clinical treatment for both GBM and GSM includes maximal surgical resection followed by post-operative radiotherapy and concomitant and adjuvant chemotherapy. Despite recent advances in treating other solid tumors, treatment for GBM and GSM still remains palliative, with a very poor prognosis and a median survival rate of 12–15 months. Treatment failure is a result of a number of causes, including resistance to radiotherapy and chemotherapy. Recent research has applied the cancer stem cells theory of carcinogenesis to these tumors, suggesting the existence of a small subpopulation of glioma stem-like cells (GSCs) within these tumors. GSCs are thought to contribute to tumor progression, treatment resistance, and tumor recapitulation post-treatment and have become the focus of novel therapy strategies. Their isolation and investigation suggest that GSCs share critical signaling pathways with normal embryonic and somatic stem cells, but with distinct alterations. Research must focus on identifying these variations as they may present novel therapeutic targets. Targeting pluripotency transcription factors, SOX2, OCT4, and Nanog homeobox, demonstrates promising therapeutic potential that if applied in isolation or together with current treatments may improve overall survival, reduce tumor relapse, and achieve a cure for these patients. PMID:26258069

  3. Molecular genetic analysis of giant cell glioblastomas.

    PubMed Central

    Meyer-Puttlitz, B.; Hayashi, Y.; Waha, A.; Rollbrocker, B.; Boström, J.; Wiestler, O. D.; Louis, D. N.; Reifenberger, G.; von Deimling, A.

    1997-01-01

    Glioblastomas (GBMs) are a heterogeneous group of tumors. Recently, distinct molecular genetic alterations have been linked to subgroups of patients with GBM. Giant cell (gc)GBMs are a rare variant of GBM characterized by a marked preponderance of multinucleated giant cells. Several reports have associated this entity with a more favorable prognosis than the majority of GBMs. To evaluate whether gcGBM may also represent a genetically defined subgroup of GBM, we analyzed a series of 19 gcGBMs for mutations in the TP53 gene for amplification of the EGFR and CDK4 genes and for homozygous deletions in the CDKN2A (p16/MTS1) gene. Seventeen of nineteen gcGBMs carried TP53 mutations whereas EGFR and CDK4 gene amplification was seen in only one tumor each and homozygous deletion of CDKN2A was not observed at all. The strikingly high incidence of TP53 mutations and the relative absence of other genetic alterations groups gcGBM together with a previously recognized molecular genetic variant of GBM (type 1 GBM). It is tempting to speculate that the better prognosis of gcGBM patients may result from the low incidence of EGFR amplification and CDKN2A deletion, changes known for their growth-promoting potential. Images Figure 1 PMID:9284834

  4. Inhibiting CD146 by its Monoclonal Antibody AA98 Improves Radiosensitivity of Cervical Cancer Cells

    PubMed Central

    Cheng, Huawen

    2016-01-01

    Background Cervical cancer is one of the major causes of cancer death of females worldwide. Radiotherapy is considered effective for cervical cancer treatment, but the low radiosensitivity found in some cases severely affects therapeutic outcomes. This study aimed to reveal the role of CD146, an important adhesion molecule facilitating tumor angiogenesis, in regulating radiosensitivity of cervical cancer cells. Material/Methods CD146 protein expression was compared in normal cells, cervical cancer cells with lower radiosensitivity, and cervical cancer cells with higher sensitivity from cervical squamous cell carcinoma patients. Anti-CD146 monoclonal antibody AA98 was used to inhibit CD146 in human cervical cancer SiHa cells with relatively low radiosensitivity, and then the cell survival and apoptosis changes after radiation were detected by colony formation assay and flow cytometry. Results CD146 protein was significantly up-regulated in cervical cancer cells (P<0.001), especially in cancer cells with lower radiosensitivity. The SiHa cells treated with AA98 showed more obvious inhibition in cell survival (P<0.05) and promotion in cell apoptosis (P<0.01) after radiation, compared to the untreated cells. More dramatic changes in apoptotic factors Caspase 3 and Bcl-XL were also detected in AA98-treated cells. Conclusions These results indicate that inhibiting CD146 improves the effect of radiation in suppressing SiHa cells. This study shows the potential of CD146 as a target for increasing radiosensitivity of cervical cancer cells, which might allow improvement in treatment outcome in cervical cancer. Further studies are necessary for understanding the detailed mechanism of CD146 in regulating radiosensitivity. PMID:27647179

  5. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells.

    PubMed

    Klein, Stefanie; Dell'Arciprete, Maria L; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Gonzalez, Mónica C; Kryschi, Carola

    2013-05-03

    The applicability of ultrasmall uncapped and aminosilanized oxidized silicon nanoparticles (SiNPs and NH2-SiNPs) as radiosensitizer was studied by internalizing these nanoparticles into human breast cancer (MCF-7) and mouse fibroblast cells (3T3) that were exposed to X-rays at a single dose of 3 Gy. While SiNPs did not increase the production of reactive oxygen species (ROS) in X-ray treated cells, the NH2-SiNPs significantly enhanced the ROS formation. This is due to the amino functionality as providing positive surface charges in aqueous environment. The NH2-SiNPs were observed to penetrate into the mitochondrial membrane, wherein these nanoparticles provoked oxidative stress. The NH2-SiNPs induced mitochondrial ROS production was confirmed by the determination of an increased malondialdehyde level as representing a gauge for the extent of membrane lipid peroxidation. X-ray exposure of NH2-SiNPs incubated MCF-7 and 3T3 cells increased the ROS concentration for 180%, and 120%, respectively. Complementary cytotoxicity studies demonstrate that these silicon nanoparticles are more cytotoxic for MCF-7 than for 3T3 cells.

  6. Differentiation and radiosensitivity of hemopoietic stem cells of mice during hypokinesia

    NASA Technical Reports Server (NTRS)

    Shvets, V. N.

    1980-01-01

    The potential for differentiation and radiosensitivity of the stem hemopoietic cells (KOE) under conditions of initial and later hypokinesia is examined. It is established that in the initial period of hypokinesia (3 days) when a stress reaction prevails, changes occur in the erythroid differentiation and radiosensitivity of KOE. This effect is associated with redistribution of T-lymphocytes that increase in number in the bone marrow of mice during hypokinesia. At later periods of hypokinesia (30 days) when changes in the organism are related to hypokinesia proper, differentiation and radiosensitivity of KOE were normalized.

  7. Enhanced radiosensitization of p53 mutant cells by oleamide

    SciTech Connect

    Lee, Yoon-Jin; Chung, Da Yeon; Lee, Su-Jae; Ja Jhon, Gil; Lee, Yun-Sil . E-mail: yslee@kcch.re.kr

    2006-04-01

    Purpose: Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. Methods and Materials: NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Results: Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Conclusions: Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.

  8. Radiosensitivity of testicular cells in the fetal mouse

    SciTech Connect

    Vergouwen, R.P.F.A.; Roepers-Gajadien, H.L.; Rooij, D.G. de; Huiskamp, R.; Bas, R.J.; Davids, J.A.G.

    1995-01-01

    The effects of prenatal X irradiation on postnatal development of the CBA/P mouse testis was studied. At days 14, 15 and 18 post coitus pregnant female mice were exposed to single doses of X rays ranging from 0.25-1.5 Gy. Higher doses resulted in extensive loss of fetal mice. In the male offspring, at days 3 and 31 post partum, the numbers of gonocytes, type A spermatogonia and Sertoli cells per testis were determined using the disector method. Furthermore, after irradiation at day 15 post coitus, the numbers of Leydig cells, mesenchymal cells, macrophages, myoid cells, lymphatic endothelial cells, endothelial cells and perivascular cells per testis were also determined at days 3 and 31 post partum. At day 3 post partum, the number of germ cells was decreased after irradiation at days 14 and 15 post coitus. A D{sub o} value of 0.7 Gy was determined for the radiosensitivity of the gonocytes at day 14 post coitus. A D{sub o} value of 0.8 Gy was determined for the gonocytes at day 15 post coitus which, however, seems to be less accurate. No accurate D{sub o} value could be determined for the gonocytes at day 18 post coitus. At day 31 post partum, the repopulation of the seminiferous epithelium as well as testis weights and tubular diameters were more affected by irradiation with increasing age of the mice at the time of irradiation. The percentage of tubular cross sections showing spermatids decreased with increasing dose after irradiation at days 15 and 18 post coitus, but not after irradiation at day 14 post coitus. Furthermore, in tubular cross sections showing spermatids, exposure of testes to 1.25 and 1.5 Gy at day 18 post coitus resulted in significantly lower numbers of spermatids per cross section when compared to those testes exposed to the same doses at day 15 post coitus. 30 refs., 7 figs., 1 tab.

  9. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    PubMed Central

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  10. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  11. The Dynamics of Interactions Among Immune and Glioblastoma Cells.

    PubMed

    Eder, Katalin; Kalman, Bernadette

    2015-12-01

    Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies.

  12. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells.

    PubMed

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G; Li, Xiaoyan; Moran, Meena S

    2013-02-08

    The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F+RT). This study was conducted to assess the effects of fulvestrant alone vs. F+RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F+RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F+RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F+RT was 0.885±0.013 vs. 0.622±0.029 @2 Gy, 0.599±0.045 vs. 0.475±0.054 @4 Gy, and 0.472±0.021 vs. 0.380±0.018 @6 Gy RT (p=0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F+RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p<0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F+RT compared with irradiation alone. F+RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F+RT increases breast cancer cell radiosensitivity compared with radiation alone. These findings have salient implications for designing clinical trials using fulvestrant and radiation therapy.

  13. Pharmacological effects of asiatic acid in glioblastoma cells under hypoxia.

    PubMed

    Thakor, Flourina Kumar; Wan, Ka-Wai; Welsby, Philip John; Welsby, Gail

    2017-02-15

    Glioblastoma multiforme is the most common and malignant primary brain tumor in adults. Despite current treatment options including surgery followed by radiation and chemotherapy with temozolomide and cisplatin, the median survival rate remains low (<16 months). Combined with increasing drug resistance and the inability of some compounds to cross the blood-brain barrier, novel compounds are being sought for the treatment of this disease. Here, we aimed to examine the pharmacological effect of Asiatic acid (AA) in glioblastoma under hypoxia. To investigate the effects of AA on cell viability, proliferation, apoptosis, and wound healing, SVG p12 fetal glia and U87-MG grade IV glioblastoma cells were cultured under normoxic (21% O2) and hypoxic (1% O2) conditions. In normoxia, AA reduced cell viability in U87-MG cells in a time and concentration-dependent manner. A significant decrease in viability, compared to cisplatin, was observed following 2 h of AA treatment with no significant changes in cell proliferation or cell cycle progression observed. Under hypoxia, a significantly greater number of cells underwent apoptosis in comparison to cisplatin. While cisplatin showed a reduction in wound healing in normoxia, a significantly greater reduction was observed following AA treatment. An overall reduction in wound healing was observed under hypoxia. The results of this study show that AA has cytotoxic effects on glioma cell lines and has the potential to become an alternative treatment for glioblastoma.

  14. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells.

    PubMed

    Ramanauskiene, Kristina; Raudonis, Raimondas; Majiene, Daiva

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80-130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM-200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies.

  15. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    PubMed Central

    Ramanauskiene, Kristina; Raudonis, Raimondas

    2016-01-01

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies. PMID:27688825

  16. Differential radiosensitivity in cultured B-16 melanoma cells following interrupted melanogenesis induced by glucosamine

    SciTech Connect

    Mileo, A.M.; Mattei, E.; Fanuele, M.; Delpino, A.; Ferrini, U. )

    1989-05-01

    The relationship between cell pigmentation and radiosensitivity was investigated in a cell model in which melanogenesis was suppressed by a glycosylation inhibitor. It was found that X-irradiation of melanotic B-16 melanoma cells and their amelanotic counterparts, obtained by glucosamine treatment, showed an inverse correlation between radiosensitivity and melanin contents. Since melanogenesis interruption by glucosamine does not affect the DNA repair capacity of nonpigmented cells, it is likely that intracellular melanins play a role in the relative resistance of pigmented cells to X-irradiation.

  17. Salinomycin encapsulated nanoparticles as a targeting vehicle for glioblastoma cells.

    PubMed

    Tığlı Aydın, R Seda; Kaynak, Gökçe; Gümüşderelioğlu, Menemşe

    2016-02-01

    Salinomycin has been introduced as a novel alternative to traditional anti-cancer drugs. The aim of this study was to test a strategy designed to deliver salinomycin to glioblastoma cells in vitro. Salinomycin-encapsulated polysorbate 80-coated poly(lactic-co-glycolic acid) nanoparticles (P80-SAL-PLGA) were prepared and characterized with respect to particle size, morphology, thermal properties, drug encapsulation efficiency and controlled salinomycin-release behaviour. The in vitro cellular uptake of P80-SAL-PLGA (5 and 10 µM) or uncoated nanoparticles was assessed in T98G human glioblastoma cells, and the cell viability was investigated with respect to anti-growth activities. SAL, which was successfully transported to T98G glioblastoma cells via P80 coated nanoparticles (∼14% within 60 min), greatly decreased (p < 0.01) the cellular viability of T98G cells. Substantial morphological changes were observed in the T98G cells with damaged actin cytoskeleton. Thus, P80-SAL-PLGA nanoparticles induced cell death, suggesting a potential therapeutic role for this salinomycin delivery system in the treatment of human glioblastoma.

  18. Radiosensitization Effect of STI-571 on Pancreatic Cancer Cells In Vitro

    SciTech Connect

    Chung, Hye Won; Wen, Jing; Lim, Jong-Baeck; Bang, Seung Min; Park, Seung Woo; Song, Si Young

    2009-11-01

    Purpose: To examine STI-571-induced radiosensitivity in human pancreatic cancer cells in vitro. Methods and Materials: Three human pancreatic cancer cell lines (Bxpc-3, Capan-1, and MiaPaCa-2) exhibiting different expression levels of c-Kit and platelet-derived growth factor receptor beta (PDGFRbeta) and showing different K-ras mutation types were used. For evaluation of the antitumor activity of STI-571 in combination with radiation, clonogenic survival assays, Western blot analysis, and the annexin V/propidium iodide assay with microscopic evaluation by 4',6-diamidino-2-phenylindole were conducted. Results: Dramatic phosphorylated (p)-c-Kit and p-PDGFRbeta attenuation, a modest dose- and time-dependent growth inhibition, and significant radiosensitization were observed after STI-571 treatment in view of apoptosis, although the levels of growth inhibition and increased radiosensitization were different according to cell lines. The grades of radiosensitivity corresponded to the attenuation levels of p-c-Kit and p-PDGFRbeta by STI-571, particularly to those of p-c-Kit, and the radiosensitivity was partially affected by K-ras mutation in pancreatic cancer cells. Among downstream pathways associated with c-Kit or PDGFRbeta, p-PLCgamma was more closely related to radiosensitivity compared with p-Akt1 or p-extracellular signal-regulated kinase 1. Conclusion: STI-571 enhances radiation response in pancreatic cancer cells. This effect is affected by the attenuation levels of p-c-Kit or p-PDGFRbeta, and K-ras mutation status. Among them, p-c-Kit plays more important roles in the radiosensitivity in pancreatic cancer compared with p-PDGFRbeta or K-ras mutation status.

  19. MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells

    PubMed Central

    Bridges, Kathleen A.; Chen, Xingxing; Liu, Huifeng; Rock, Crosby; Buchholz, Thomas A.; Shumway, Stuart D.; Skinner, Heath D.; Meyn, Raymond E.

    2016-01-01

    Radiotherapy is commonly used to treat a variety of solid tumors but improvements in the therapeutic ratio are sorely needed. The aim of this study was to assess the Chk1 kinase inhibitor, MK-8776, for its ability to radiosensitize human tumor cells. Cells derived from NSCLC and HNSCC cancers were tested for radiosensitization by MK-8776. The ability of MK-8776 to abrogate the radiation-induced G2 block was determined using flow cytometry. Effects on repair of radiation-induced DNA double strand breaks (DSBs) were determined on the basis of rad51, γ-H2AX and 53BP1 foci. Clonogenic survival analyses indicated that MK-8776 radiosensitized p53-defective tumor cells but not lines with wild-type p53. Abrogation of the G2 block was evident in both p53-defective cells and p53 wild-type lines indicating no correlation with radiosensitization. However, only p53-defective cells entered mitosis harboring unrepaired DSBs. MK-8776 appeared to inhibit repair of radiation-induced DSBs at early times after irradiation. A comparison of MK-8776 to the wee1 inhibitor, MK-1775, suggested both similarities and differences in their activities. In conclusion, MK-8776 radiosensitizes tumor cells by mechanisms that include abrogation of the G2 block and inhibition of DSB repair. Our findings support the clinical evaluation of MK-8776 in combination with radiation. PMID:27690219

  20. Radiosensitization of Human Colorectal Cancer Cells by MLN4924: An Inhibitor of NEDD8-Activating Enzyme.

    PubMed

    Wan, Juefeng; Zhu, Ji; Li, Guichao; Zhang, Zhen

    2016-08-01

    Colorectal cancer is the third most frequently diagnosed cancer and the combination of radiation with capecitabine has been shown to achieve only 15% to 25% of pathologic complete response. This study aimed to investigate the effect of MLN4924, a potent small molecule inhibitor of SKP1-Cullin-F-box proteins E3 ubiquitin ligases, as a novel radiosensitizing agent in colorectal cancer cells. Indeed, we found that MLN4924 effectively sensitized colorectal cancer cells to radiation with a sensitivity-enhancement ratio of 1.61 for HT-29 cells and 1.35 for HCT-116 cells. Mechanistically, MLN4924 significantly enhanced radiation-induced G2/M arrest, apoptosis, and DNA damage response through accumulation of p27. Knockdown of p27 via small interfering RNA partially inhibited MLN4924-induced radiosensitization, indicating a causal role played by p27. Our study suggested that MLN4924 could be further developed as a novel radiosensitizing agent against colorectal cancer.

  1. Radiosensitizing effect of the histone acetyltransferase inhibitor anacardic acid on various mammalian cell lines

    PubMed Central

    CATE, ROSEMARIE TEN; KRAWCZYK, PRZEMEK; STAP, JAN; ATEN, JACOB A.; FRANKEN, NICOLAAS A.P.

    2010-01-01

    Agents that enhance the effectiveness of ionizing radiation have been investigated over many decades. A relatively new group of potential radiosensitizers consists of agents that inhibit histone acetyltransferases (HATs). This study evaluated the radiosensitizing properties of the HAT inhibitor anacardic acid (AA), used at a low-toxic concentration of 100 μM in V79, SW1573 and U2OS cells. Radiation survival curves were analyzed according to the linear quadratic model. Significant radiosensitization by AA was only obtained in U2OS cells. AA significantly increased the value of the linear parameter α, but not of the quadratic parameter β, indicating fixation of potentially lethal damage and an intact repair function of sublethal damage. The increase of the α value was also observed in SW1573 cells, but was not accompanied by a significant radiosensitization. A likely explanation for the enhancement of the α value may be an increase in the amount of lethal lesions due to the compacted chromatin structure. Despite the conflicting results of the radiosensitizing effect of AA in the three cell lines tested, the ability of AA to increase the α value suggests potential advantages for clinical application. PMID:22966377

  2. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells.

    PubMed

    Jiang, Xiaochun; Yan, Yukui; Hu, Minghua; Chen, Xiande; Wang, Yaxian; Dai, Yi; Wu, Degang; Wang, Yongsheng; Zhuang, Zhixiang; Xia, Hongping

    2016-01-01

    OBJECT Increased levels of H19 long noncoding RNA (lncRNA) have been observed in many cancers, suggesting that overexpression of H19 may be important in the development of carcinogenesis. However, the role of H19 in human glioblastoma is still unclear. The object of this study was to examine the level of H19 in glioblastoma samples and investigate the role of H19 in glioblastoma carcinogenesis. METHODS Glioblastoma and nontumor brain tissue specimens were obtained from tissue obtained during tumor resection in 30 patients with glioblastoma. The level of H19 lncRNA was detected by real-time quantitative reverse transcription polymerase chain reaction. The role of H19 in invasion, angiogenesis, and stemness of glioblastoma cells was then investigated using commercially produced cell lines (U87 and U373). The effects of H19 overexpression on glioblastoma cell invasion and angiogenesis were detected by in vitro Matrigel invasion and endothelial tube formation assay. The effects of H19 on glioblastoma cell stemness and tumorigenicity were investigated by neurosphere formation and an in vivo murine xenograft model. RESULTS The authors found that H19 is significantly overexpressed in glioblastoma tissues, and the level of expression was associated with patient survival. In the subsequent investigations, the authors found that overexpression of H19 promotes glioblastoma cell invasion and angiogenesis in vitro. Interestingly, H19 was also significantly overexpressed in CD133(+) glioblastoma cells, and overexpression of H19 was associated with increased neurosphere formation of glioblastoma cells. Finally, stable overexpression of H19 was associated with increased tumor growth in the murine xenograft model. CONCLUSIONS The results of this study suggest that increased expression of H19 lncRNA promotes invasion, angiogenesis, stemness, and tumorigenicity of glioblastoma cells. Taken together, these findings indicate that H19 plays an important role in tumorigenicity and

  3. In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines.

    PubMed

    Zhang, Mei; Rose, Barbara; Lee, C Soon; Hong, Angela M

    2015-01-01

    The incidence of oropharyngeal squamous cell carcinoma (OSCC) is increasing due to the rising prevalence of human papillomavirus (HPV) positive OSCC. HPV positive OSCC is associated with better outcomes than HPV negative OSCC. Our aim was to explore the possibility that this favorable prognosis is due to the enhanced radiosensitivity of HPV positive OSCC. HPV positive OSCC cell lines were generated from the primary OSCCs of 2 patients, and corresponding HPV positive cell lines generated from nodal metastases following xenografting in nude mice. Monolayer and 3 dimensional (3D) culture techniques were used to compare the radiosensitivity of HPV positive lines with that of 2 HPV negative OSCC lines. Clonogenic and protein assays were used to measure survival post radiation. Radiation induced cell cycle changes were studied using flow cytometry. In both monolayer and 3D culture, HPV positive cells exhibited a heterogeneous appearance whereas HPV negative cells tended to be homogeneous. After irradiation, HPV positive cells had a lower survival in clonogenic assays and lower total protein levels in 3D cultures than HPV negative cells. Irradiated HPV positive cells showed a high proportion of cells in G1/S phase, increased apoptosis, an increased proliferation rate, and an inability to form 3D tumor clumps. In conclusion, HPV positive OSCC cells are more radiosensitive than HPV negative OSCC cells in vitro, supporting a more radiosensitive nature of HPV positive OSCC.

  4. [Modification of the radiosensitivity of cultured "Vero" cells by cumene hydroperoxide].

    PubMed

    Drancourt, N; Waultier, S; Paulin, R; Feugeas, C

    1993-12-01

    Cumene-hydroperoxide is a radical reaction promoter. Vero cells monolayers treated with this compound were irradiated with gamma-rays and their radiosensitization was compared with that of irradiated, non-treated control cells. Cumene-hydroperoxide treated cells showed a paradoxal radioresistance. We propose a possible buffer-like effect of cumene-hydroperoxide to explain these results.

  5. Radiosensitizing Effects of Temozolomide Observed in vivo only in a Subset of O6-Methylguanine-DNA Methyltransferase Methylated Glioblastoma Multiforme Xenografts

    SciTech Connect

    Carlson, Brett L.; Grogan, Patrick T.; Mladek, Ann C.; Schroeder, Mark A.; Kitange, Gaspar J.; Decker, Paul A.; Giannini, Caterina; Wu Wenting; Ballman, Karla A.; James, C. David; Sarkaria, Jann N.

    2009-09-01

    Purpose: Concurrent temozolomide (TMZ) and radiation therapy (RT) followed by adjuvant TMZ is standard treatment for patients with glioblastoma multiforme (GBM), although the relative contribution of concurrent versus adjuvant TMZ is unknown. In this study, the efficacy of TMZ/RT was tested with a panel of 20 primary GBM xenografts. Methods and Materials: Mice with intracranial xenografts were treated with TMZ, RT, TMZ/RT, or placebo. Survival ratio for a given treatment/line was defined as the ratio of median survival for treatment vs. placebo. Results: The median survival ratio was significantly higher for O6-methylguanine-DNA methyltransferase (MGMT) methylated tumors versus unmethylated tumors following treatment with TMZ (median survival ratio, 3.6 vs. 1.5, respectively; p = 0.008) or TMZ/RT (5.7 vs. 2.3, respectively; p = 0.001) but not RT alone (1.7 vs. 1.6; p = 0.47). In an analysis of variance, MGMT methylation status and p53 mutation status were significantly associated with treatment response. When we analyzed the additional survival benefit conferred specifically by combined therapy, only a subset (5 of 11) of MGMT methylated tumors derived substantial additional benefit from combined therapy, while none of the MGMT unmethylated tumors did. Consistent with a true radiosensitizing effect of TMZ, sequential treatment in which RT (week 1) was followed by TMZ (week 2) proved significantly less effective than TMZ followed by RT or concurrent TMZ/RT (survival ratios of 4.0, 9.6 and 12.9, respectively; p < 0.0001). Conclusions: Concurrent treatment with TMZ and RT provides significant survival benefit only in a subset of MGMT methylated tumors and provides superior antitumor activity relative to sequential administration of RT and TMZ.

  6. Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration and invasion and induced apoptosis in glioblastoma SNB19 cells and glioblastoma stem cells.

    PubMed

    Chakrabarti, Mrinmay; Ray, Swapan K

    2015-12-10

    Glioblastoma is the most lethal brain tumor. Failure of conventional chemotherapies prompted the search for natural compounds for treatment of glioblastoma. Plant-derived flavonoids could be alternative medicine for inhibiting not only glioblastoma cells but also glioblastoma stem cells (GSC). Two plant-derived flavonoids are luteolin (LUT) and silibinin (SIL). We investigated anti-tumor mechanisms of LUT and SIL in different human glioblastoma cells and GSC and found significant synergistic inhibition of human glioblastoma LN18 and SNB19 cells and GSC following treatment with combination of 20µM LUT and 50µM SIL. Combination of 20µM LUT and 50µM SIL was more effective than a conventional chemotherapeutic agent (BCNU or TMZ). We continued our studies with SNB19 cells and GSC and found dramatic inhibition of cell migration from spheroids and also cell invasion through matrigel following treatment with combination of LUT and SIL. This combination was highly effective to block angiogenesis and survival pathways leading to induction of apoptosis. Inhibition of PKCα, XIAP, and iNOS ultimately caused induction of extrinsic and intrinsic pathways of apoptosis. Collectively, synergistic efficacy of LUT and SIL could be a promising therapy to inhibit cell migration and invasion and induce apoptosis in different glioblastoma cells including GSC.

  7. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    SciTech Connect

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F1-+/+ mice after various doses of irradiation and injected into the skin of the congenic W/Wv mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bgJ/bgJ. Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the back of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosensitive than those localized in the skin. D0 value was about 100 rad for the former and about 800 rad for the latter.

  8. Radiosensitisation by pharmacological ascorbate in glioblastoma multiforme cells, human glial cells, and HUVECs depends on their antioxidant and DNA repair capabilities and is not cancer specific.

    PubMed

    Castro, M Leticia; McConnell, Melanie J; Herst, Patries M

    2014-09-01

    We previously showed that 5 mM ascorbate radiosensitized early passage radioresistant glioblastoma multiforme (GBM) cells derived from one patient tumor. Here we investigate the sensitivity of a panel of cell lines to 5 mM ascorbate and 6 Gy ionizing radiation, made up of three primary human GBM cells, three GBM cell lines, a human glial cell line, and primary human vascular endothelial cells. The response of different cells lines to ascorbate and/or radiation was determined by measuring viability, colony-forming ability, generation and repair of double-stranded DNA breaks (DSBs), cell cycle progression, antioxidant capacity and generation of reactive oxygen species. Individually, radiation and ascorbate both decreased viability and clonogenicity by inducing DNA damage, but had differential effects on cell cycle progression. Radiation led to G2/M arrest in most cells whereas ascorbate caused accumulation in S phase, which was moderately associated with poor DSB repair. While high dose ascorbate radiosensitized all cell lines in clonogenic assays, the sensitivity to radiation, high dose ascorbate, and combined treatment varied between cell lines. Normal glial cells were similar to GBM cells with respect to free radical scavenging potential and effect of treatment on DNA damage and repair, viability, and clonogenicity. Both GBM cells and normal cells coped equally poorly with oxidative stress caused by radiation and/or high dose ascorbate, dependent primarily on their antioxidant and DSB repair capacity.

  9. Macrophages enhance the radiosensitizing activity of lipid A: A novel role for immune cells in tumor cell radioresponse

    SciTech Connect

    Ridder, Mark de . E-mail: Mark.De.Ridder@vub.ac.be; Verovski, Valeri N.; Darville, Martine I.; Berge, Dirk L. van den; Monsaert, Christinne; Eizirik, Decio L.; Storme, Guy A.

    2004-10-01

    Purpose: This study examines whether activated macrophages may radiosensitize tumor cells through the release of proinflammatory mediators. Methods and materials: RAW 264.7 macrophages were activated by lipid A, and the conditioned medium (CM) was analyzed for the secretion of cytokines and the production of nitric oxide (NO) through inducible nitric oxide synthase (iNOS). EMT-6 tumor cells were exposed to CM and analyzed for hypoxic cell radiosensitivity. The role of nuclear factor (NF)-{kappa}B in the transcriptional activation of iNOS was examined by luciferase reporter gene assay. Results: Clinical immunomodulator lipid A, at a plasma-relevant concentration of 3 {mu}g/mL, stimulated RAW 264.7 macrophages to release NO, tumor necrosis factor (TNF)-{alpha}, and other cytokines. This in turn activated iNOS-mediated NO production in EMT-6 tumor cells and drastically enhanced their radiosensitivity. Radiosensitization was abrogated by the iNOS inhibitor aminoguanidine but not by a neutralizing anti-TNF-{alpha} antibody. The mechanism of iNOS induction was linked to NF-{kappa}B but not to JAK/STAT signaling. Interferon-{gamma} further increased the NO production by macrophages to a level that caused radiosensitization of EMT-6 cells through the bystanding effect of diffused NO. Conclusions: We demonstrate for the first time that activated macrophages may radiosensitize tumor cells through the induction of NO synthesis, which occurs in both tumor and immune cells.

  10. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    SciTech Connect

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-08-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of {gamma}-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G{sub 2}/M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  11. Downregulation of a novel human gene, ROGDI, increases radiosensitivity in cervical cancer cells

    PubMed Central

    Chen, Yi-Fan; Cho, Jonathan J.; Huang, Tsai-Hua; Tseng, Chao-Neng; Huang, Eng-Yen; Cho, Chung-Lung

    2016-01-01

    ABSTRACT ROGDI is a protein that contains a leucine zipper domain and may be involved in cell proliferation. In addition, ROGDI is associated with genome stability by regulating the activity of a DNA damage marker, γ-H2AX. The role of ROGDI in tumor radiosensitization has not been investigated. Previous studies have indicated that radiosensitivity is associated with DNA repair and the cell cycle. In general, the G2/M DNA damage checkpoint is more sensitive to radiation, whereas the G1/S phase transition is more resistant to radiation. Inhibition of cyclin-dependent kinases (CDKs) can lead to a halt of cell cycle progression and a stay at different phases or checkpoints. Our data show that the downregulation of ROGDI led to a decreased expression of CDK 1, 2, cyclin A, B and resulted in a G2/M phase transition block. In addition, the downregulation of ROGDI increased cell accumulation at the G2 phase as detected using flow cytometry and decreased cell survival as revealed by clonogenic assay in HeLa and C33A cells following irradiation. These findings suggest that the downregulation of ROGDI can mediate radiosensitivity by blocking cells at G2/M, the most radiosensitive phase of the cell cycle, as well as exerting deleterious effects in the form of DNA damage, as shown by increased γ-H2AX activation. PMID:27636029

  12. Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines

    PubMed Central

    2014-01-01

    Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Despite a multimodal therapy consisting of resection followed by fractionated radiotherapy (RT) combined with the chemotherapeutic agent (CT) temozolomide (TMZ), its recurrence is almost inevitable. Since the immune system is capable of eliminating small tumor masses, a therapy should also aim to stimulate anti-tumor immune responses by induction of immunogenic cell death forms. The histone deacetylase inhibitor valproic acid (VPA) might foster this. Methods Reflecting therapy standards, we applied in our in vitro model fractionated RT with a single dose of 2Gy and clinically relevant concentrations of CT. Not only the impact of RT and/or CT with TMZ and/or VPA on the clonogenic potential and cell cycle of the glioblastoma cell lines T98G, U251MG, and U87MG was analyzed, but also the resulting cell death forms and release of danger signals such as heat-shock protein70 (Hsp70) and high-mobility group protein B1 (HMGB1). Results The clonogenic assays revealed that T98G and U251MG, having mutated tumor suppressor protein p53, are more resistant to RT and CT than U87MG with wild type (WT) p53. In all glioblastoma cells lines, fractionated RT induced a G2 cell cycle arrest, but only in the case of U87MG, TMZ and/or VPA alone resulted in this cell cycle block. Further, fractionated RT significantly increased the number of apoptotic and necrotic tumor cells in all three cell lines. However, only in U87MG, the treatment with TMZ and/or VPA alone, or in combination with fractionated RT, induced significantly more cell death compared to untreated or irradiated controls. While necrotic glioblastoma cells were present after VPA, TMZ especially led to significantly increased amounts of U87MG cells in the radiosensitive G2 cell cycle phase. While CT did not impact on the release of Hsp70, fractionated RT resulted in significantly increased extracellular concentrations of Hsp70 in p53

  13. Numb/Notch signaling pathway modulation enhances human pancreatic cancer cell radiosensitivity.

    PubMed

    Bi, Yi-Liang; Min, Min; Shen, Wei; Liu, Yan

    2016-11-01

    The present study aims to evaluate whether repression of the Numb/Notch signaling pathway affects the radiosensitivity of human pancreatic cancer cell lines. Different doses of X-rays (0, 2, 3, 4, and 5 Gy) were applied to the PANC-1, SW1990, and MIA PaCa-2 human pancreatic cancer cell lines, and the Numb/Notch pathway inhibitor DAPT was added at different doses (0, 1, 3, and 5 μmol/l). MTT assay, colony formation assay, flow cytometry, scratch assay, and Transwell experiments were performed, and qRT-PCR and Western blot were conducted for the detection of Numb expression. Tumorigenicity assay in nude mice was carried out to verify the influence of blocker of the Numb/Notch signaling pathway on the radiosensitivity of xenograft tumors. The MTT assay, colony formation assay and flow cytometry experiments revealed that proliferation decreased as radiation dose increased. The viability of PANC-1 cells at 5 Gy, SW 1990 cells at 4 Gy and 5 Gy, and MIA PaCa-2 cells at 2-5 Gy was significantly lower than that of non-irradiated cells (all P < 0.05). The migration and invasion assays indicated that the PANC-1 cell line was least radiosensitive, while the MIA PaCa-2 cell line was the most radiosensitive. Numb expression significantly increased with increasing radiation dose, whereas the expression of Hes1, Notch1, and Hes5 significantly decreased compared to non-irradiated cells (P < 0.05). Compared to untreated control cells, DAPT dose dependently increased Numb expression and inhibited Notch1, Hes1, and Hes5 expressions at 2 Gy (P < 0.05). Subcutaneous tumorigenicity assay in nude mice demonstrated that DAPT increased the radiosensitivity of PANC-1, SW 1990, and MIA PaCa-2 cells. These findings suggest that Numb/Notch signaling in pancreatic cancer cells is associated with X-ray radiation and that inhibition of the Numb/Notch signaling pathway can enhance radiosensitivity, suggesting that inhibition of the Numb/Notch signaling pathway may serve as a potential

  14. Synergistic Effect of Immunoliposomal Gemcitabine and Bevacizumab in Glioblastoma Stem Cell-Targeted Therapy.

    PubMed

    Shin, Dae Hwan; Lee, Sang-Jin; Kim, Jung Seok; Ryu, Jae-Ha; Kim, Jin-Seok

    2015-11-01

    Glioblastoma stem cells have been shown to confer chemoresistance and radioresistance, leading to angiogenesis and the recurrence of tumors in glioblastoma multiforme. Combination therapy targeting glioblastoma stem cells and anti-angiogenesis has been a focus of treatment strategies because of the enhanced efficacy achieved by dual inhibition of tumor proliferation and nutrient delivery. In this study, glioblastoma stem cells and glioblastoma stem cell-induced angiogenesis in glioblastoma multiforme were challenged by combined treatment with anti-CD133 monoclonal antibody conjugated liposomes encapsulating gemcitabine and bevacizumab. Both liposomal encapsulation and conjugation of an anti-CD133 antibody significantly enhanced the cytotoxicity of gemcitabine toward glioblastoma stem cells in vitro. Moreover, combined treatment with this gemcitabine formulation and bevacizumab significantly inhibited tube formation, migration, and proliferation of endothelial cells in vitro. The antitumor efficacy of immunoliposomal gemcitabine and bevacizumab combination therapy in a xenograft model was significantly greater than that of monotherapy, presumably reflecting the enhanced effects on glioblastoma stem cells themselves and glioblastoma stem cell-induced angiogenesis caused by synergistic interactions between the two drugs. Moreover, combination therapy prolonged the mean survival time of xenografted mice. Taken altogether, our results suggest that combined therapy with immunoliposomal gemcitabine and bevacizumab shows promise for the treatment of glioblastoma multiforme.

  15. Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources

    DTIC Science & Technology

    2013-10-01

    AD_________________ Award Number: W81XWH-11-1-0756 TITLE: Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources PRINCIPAL...TITLE AND SUBTITLE Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11...TERMS Glioblastoma multiforme , glioma stem cell, brain tumor-initiating cell, pediatric brain tumor, RNAi, functional genetics 16. SECURITY

  16. Metformin treatment reduces temozolomide resistance of glioblastoma cells

    PubMed Central

    Lu, Guangrong; Xue, Haipeng; Kim, Dong H.

    2016-01-01

    It has been reported that metformin acts synergistically with temozolomide (TMZ) to inhibit proliferation of glioma cells including glioblastoma multiforme (GBM). However, the molecular mechanism underlying how metformin exerts its anti-cancer effects remains elusive. We used a combined experimental and bioinformatics approach to identify genes and complex regulatory/signal transduction networks that are involved in restoring TMZ sensitivity of GBM cells after metformin treatment. First, we established TMZ resistant GBM cell lines and found that the resistant cells regained TMZ sensitivity after metformin treatment. We further identified that metformin down-regulates SOX2 expression in TMZ-resistant glioma cells, reduces neurosphere formation capacity of glioblastoma cells, and inhibits GBM xenograft growth in vivo. Finally, the global gene expression profiling data reveals that multiple pathways are involved in metformin treatment related gene expression changes, including fatty acid metabolism and RNA binding and splicing pathways. Our work provided insight of the mechanisms on potential synergistic effects of TMZ and metformin in the treatment of glioblastoma, which will in turn yield potentially translational value for clinical applications. PMID:27791206

  17. Cell cycle-dependent radiosensitivity in two-cell mouse embryos in culture

    SciTech Connect

    Domon, M.

    1980-02-01

    The radiosensitivity in embryo systems varies depending on factors such as genetic background, oxygen environment, developmental stage, and age of the embryo in cell cycle. This paper is concerned with the involvement of cell cycle age in radiosensitivity of two-cell mouse embryos. Thus the doses needed for 50% killing of blastocyst formation in vitro (LD/sub 50/) of X rays for the two-cell mouse embryos in culture were measured during their cell cycle. The cell cycle in the two-cell embryos was quite peculiar; the cell cycle time of 18 h was divided into a long DNA post synthesis phase (G/sub 2/) plus mitosis (M) of 14 h and a short DNA synthesis phase (S) of 4 h. Results indicate that the LD/sub 50/ varies roughly from 100 to 600 rad within the cell cycle. Thus a major factor in determining the sensitivity to ionizing radiation of two-cell mouse embryos in vitro and perhaps in vivo is their position in the cell division cycle at the time of irradiation.

  18. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    SciTech Connect

    Oike, Takahiro; Ogiwara, Hideaki; Torikai, Kohta; Nakano, Takashi; Yokota, Jun; Kohno, Takashi

    2012-11-01

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated {beta}-galactosidase (SA-{beta}-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that

  19. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    PubMed

    Dolman, M Emmy M; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N; Molenaar, Jan J

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  20. Fenofibrate Induces Ketone Body Production in Melanoma and Glioblastoma Cells

    PubMed Central

    Grabacka, Maja M.; Wilk, Anna; Antonczyk, Anna; Banks, Paula; Walczyk-Tytko, Emilia; Dean, Matthew; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2016-01-01

    Ketone bodies [beta-hydroxybutyrate (bHB) and acetoacetate] are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly, its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa) agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of non-transformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and downregulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic) therapeutic approaches against glioblastoma. PMID:26869992

  1. Opposing roles of glutaminase isoforms in determining glioblastoma cell phenotype.

    PubMed

    Szeliga, Monika; Albrecht, Jan

    2015-09-01

    Glutamine (Gln) and glutamate (Glu) play pivotal roles in the malignant phenotype of brain tumors via multiple mechanisms. Glutaminase (GA, EC 3.5.1.2) metabolizes Gln to Glu and ammonia. Human GA isoforms are encoded by two genes: GLS gene codes for kidney-type isoforms, KGA and GAC, whereas GLS2 codes for liver-type isoforms, GAB and LGA. The expression pattern of both genes in different neoplastic cell lines and tissues implicated that the kidney-type isoforms are associated with cell proliferation, while the liver-type isoforms dominate in, and contribute to the phenotype of quiescent cells. GLS gene has been demonstrated to be regulated by oncogene c-Myc, whereas GLS2 gene was identified as a target gene of p53 tumor suppressor. In glioblastomas (GBM, WHO grade IV), the most aggressive brain tumors, high levels of GLS and only traces or lack of GLS2 transcripts were found. Ectopic overexpression of GLS2 in human glioblastoma T98G cells decreased their proliferation and migration and sensitized them to the alkylating agents often used in the chemotherapy of gliomas. GLS silencing reduced proliferation of glioblastoma T98G cells and strengthen the antiproliferative effect evoked by previous GLS2 overexpression.

  2. Slug inhibition increases radiosensitivity of oral squamous cell carcinoma cells by upregulating PUMA.

    PubMed

    Jiang, Fangfang; Zhou, Lijie; Wei, Changbo; Zhao, Wei; Yu, Dongsheng

    2016-08-01

    As a new strategy, radio-gene therapy was widely used for the treatment of cancer patients in recent few years. Slug was involved in the radioresistance of various cancers and has been found to have an anti-apoptotic effect. This study aims to investigate whether the modulation of Slug expression by siRNA affects oral squamous cell carcinoma sensitivity to X-ray irradiation through upregulating PUMA. Two oral squamous cell carcinoma cell lines (HSC3 and HSC6) were transfected with small interfering RNA (siRNA) targeting Slug and subjected to radiotherapy in vitro. After transfection with Slug siRNA, both HSC3 and HSC6 cells showed relatively lower expression of Slug and higher expression of PUMA. The Slug siRNA transfected cells showed decreased survival and proliferation rates, an increased apoptosis rate and enhanced radiosensitivity to X-ray irradiation. Our results revealed that Slug siRNA transfection in combination with radiation increased the expression of PUMA, which contributed to radiosensitivity of oral squamous cell carcinoma cells. Thus, controlling the expression of Slug might contribute to enhance sensitivity of HSC3 and HSC6 cells toward X-ray irradiation in vitro by upregulating PUMA.

  3. Residual tumor cells are unique cellular targets in glioblastoma.

    PubMed

    Glas, Martin; Rath, Barbara H; Simon, Matthias; Reinartz, Roman; Schramme, Anja; Trageser, Daniel; Eisenreich, Ramona; Leinhaas, Anke; Keller, Mihaela; Schildhaus, Hans-Ulrich; Garbe, Stephan; Steinfarz, Barbara; Pietsch, Torsten; Steindler, Dennis A; Schramm, Johannes; Herrlinger, Ulrich; Brüstle, Oliver; Scheffler, Björn

    2010-08-01

    Residual tumor cells remain beyond the margins of every glioblastoma (GBM) resection. Their resistance to postsurgical therapy is considered a major driving force of mortality, but their biology remains largely uncharacterized. In this study, residual tumor cells were derived via experimental biopsy of the resection margin after standard neurosurgery for direct comparison with samples from the routinely resected tumor tissue. In vitro analysis of proliferation, invasion, stem cell qualities, GBM-typical antigens, genotypes, and in vitro drug and irradiation challenge studies revealed these cells as unique entities. Our findings suggest a need for characterization of residual tumor cells to optimize diagnosis and treatment of GBM.

  4. Blockage of Autophagy in C6 Glioma Cells Enhanced Radiosensitivity Possibly by Attenuating DNA-PK-Dependent DSB Due to Limited Ku Nuclear Translocation and DNA Binding.

    PubMed

    Liu, C; He, W; Jin, M; Li, H; Xu, H; Liu, H; Yang, K; Zhang, T; Wu, G; Ren, J

    2015-01-01

    Glioblastoma multiforme (GBM) is the most lethal brain tumor and notorious for its resistance to ionizing radiation (IR). Recent evidence suggests that one possible mechanism that enables resistance to IR and protects cells against therapeutic stress is cellular autophagy. The molecular basis for this pro-survival function, however, remains elusive. Herein, we report a molecular mechanism by which IR-induced autophagy accelerates the repair of DNA double-strand breaks (DSB). We demonstrate that IR induces the accumulation of autophagosomes, which is accompanied by elevated expression of autophagyrelated genes beclin-1, atg5, atg7, and atg12. Beclin-1 knockdown impaired the induction of IR-mediated autophagy and significantly sensitized glioma cells to radiation therapy in vitro and in vivo. Furthermore, our data is the first to demonstrate that the radiosensitizing effect of beclin-1 knockdown may result from the disruption of nuclear translocation and DNA binding activity of Ku proteins and consequent attenuation of DSB repair. Our findings help advance our understanding of the molecular mechanisms underlying IR-induced autophagy and provide a promising adjunctive therapeutic strategy for the radiosensitization of malignant glioma.

  5. JNK contributes to temozolomide resistance of stem-like glioblastoma cells via regulation of MGMT expression.

    PubMed

    Okada, Masashi; Sato, Atsushi; Shibuya, Keita; Watanabe, Eriko; Seino, Shizuka; Suzuki, Shuhei; Seino, Manabu; Narita, Yoshitaka; Shibui, Soichiro; Kayama, Takamasa; Kitanaka, Chifumi

    2014-02-01

    While elimination of the cancer stem cell population is increasingly recognized as a key to successful treatment of cancer, the high resistance of cancer stem cells to conventional chemoradiotherapy remains a therapeutic challenge. O6-methylguanine DNA methyltransferase (MGMT), which is frequently expressed in cancer stem cells of glioblastoma, has been implicated in their resistance to temozolomide, the first-line chemotherapeutic agent against newly diagnosed glioblastoma. However, much remains unknown about the molecular regulation that underlies MGMT expression and temozolomide resistance of glioblastoma cancer stem cells. Here, we identified JNK as a novel player in the control of MGMT expression and temozolomide resistance of glioblastoma cancer stem cells. We showed that inhibition of JNK, either pharmacologically or by RNA interference, in stem-like glioblastoma cells derived directly from glioblastoma tissues reduces their MGMT expression and temozolomide resistance. Importantly, sensitization of stem-like glioblastoma cells to temozolomide by JNK inhibition was dependent on MGMT expression, implying that JNK controls temozolomide resistance of stem-like glioblastoma cells through MGMT expression. Our findings suggest that concurrent use of JNK inhibitors with temozolomide may be a rational therapeutic approach to effectively target the cancer stem cell population in the treatment of glioblastoma.

  6. Sulfasalazine intensifies temozolomide cytotoxicity in human glioblastoma cells.

    PubMed

    Ignarro, Raffaela Silvestre; Facchini, Gustavo; Vieira, André Schwambach; De Melo, Daniela Rodrigues; Lopes-Cendes, Iscia; Castilho, Roger Frigério; Rogerio, Fabio

    2016-07-01

    Temozolomide (TMZ) is an alkylating agent used to treat glioblastoma. This tumor type synthesizes the antioxidant glutathione through system X c (-) , which is inhibited by sulfasalazine (SAS). We exposed A172 and T98G human glioblastoma cells to a presumably clinically relevant concentration of TMZ (25 µM) and/or 0.5 mM SAS for 1, 3, or 5 days and assessed cell viability. For both cell lines, TMZ alone did not alter viability at any time point, while the coadministration of TMZ and SAS significantly reduced cell viability after 5 days. The drug combination exerted a synergistic effect on A172 cells after 3 and 5 days. Therefore, this particular lineage was subjected to complementary analyses on the genetic (transcriptome) and functional (glutathione and proliferating cell nuclear antigen (PCNA) protein) levels. Cellular pathways containing differentially expressed genes related to the cell cycle were modified by TMZ alone. On the other hand, SAS regulated pathways associated with glutathione metabolism and synthesis, irrespective of TMZ. Moreover, SAS, but not TMZ, depleted the total glutathione level. Compared with the vehicle-treated cells, the level of PCNA protein was lower in cells treated with TMZ alone or in combination with SAS. In conclusion, our data showed that the association of TMZ and SAS is cytotoxic to T98G and A172 cells, thus providing useful insights for improving TMZ clinical efficacy through testing this novel drug combination. Moreover, the present study not only reports original information on differential gene expression in glioblastoma cells exposed to TMZ and/or SAS but also describes an antiproliferative effect of TMZ, which has not yet been observed in A172 cells.

  7. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    SciTech Connect

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D/sub 0/ values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F/sub 1/+/+ mice after various doses of irradiation and injected into the skin of the congenic W/W/sup v/ mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bg/sup J//bg/sup J/, Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the backs of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosenitive than those localized in the skin. D/sup 0/ value was about 100 rad for the former and about 800 rad for the latter.

  8. Bacillus calmette-guerin cell wall cytoskeleton enhances colon cancer radiosensitivity through autophagy.

    PubMed

    Yuk, Jae-Min; Shin, Dong-Min; Song, Kyoung-Sub; Lim, Kyu; Kim, Ki-Hye; Lee, Sang-Hee; Kim, Jin-Man; Lee, Ji-Sook; Paik, Tae-Hyun; Kim, Jun-Sang; Jo, Eun-Kyeong

    2010-01-01

    The cell wall skeleton of Mycobacterium bovis Bacillus Calmette-Guerin (BCG/CWS) is an effective antitumor immunotherapy agent. Here, we demonstrate that BCG/CWS has a radiosensitizing effect on colon cancer cells through the induction of autophagic cell death. Exposure of HCT116 colon cancer cells to BCG/CWS before ionizing radiation (IR) resulted in increased cell death in a caspase-independent manner. Treatment with BCG/CWS plus IR resulted in the induction of autophagy in colon cancer cells. Either the autophagy inhibitor 3-methyladenine or knockdown of beclin 1 or Atg7 significantly reduced tumor cell death induced by BCG/CWS plus IR, whereas the caspase inhibitor z-VAD-fmk failed to do so. BCG/CWS plus IR-mediated autophagy and cell death was mediated predominantly by the generation of reactive oxygen species (ROS). The c-Jun NH(2)-terminal kinase pathway functioned upstream of ROS generation in the induction of autophagy and cell death in HCT116 cells after co-treatment with BCG/CWS and IR. Furthermore, toll-like receptor (TLR) 2, and in part, TLR4, were responsible for BCG/CWS-induced radiosensitization. In vivo studies revealed that BCG/CWS-mediated radiosensitization of HCT116 xenograft growth is accompanied predominantly by autophagy. Our data suggest that BCG/CWS in combination with IR is a promising therapeutic strategy for enhancing radiation therapy in colon cancer cells through the induction of autophagy.

  9. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    PubMed

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  10. Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor.

    PubMed

    Wei, Dongping; Li, Hua; Yu, Jie; Sebolt, Jonathan T; Zhao, Lili; Lawrence, Theodore S; Smith, Peter G; Morgan, Meredith A; Sun, Yi

    2012-01-01

    Radiotherapy is used in locally advanced pancreatic cancers in which it can improve survival in combination with gemcitabine. However, prognosis is still poor in this setting in which more effective therapies remain needed. MLN4924 is an investigational small molecule currently in phase I clinical trials. MLN4924 inhibits NAE (NEDD8 Activating Enzyme), a pivotal regulator of the E3 ubiquitin ligase SCF (SKP1, Cullins, and F-box protein), that has been implicated recently in DNA damage and repair. In this study, we provide evidence that MLN4924 can be used as an effective radiosensitizer in pancreatic cancer. Specifically, MLN4924 (20-100 nmol/L) effectively inhibited cullin neddylation and sensitized pancreatic cancer cells to ionizing radiation in vitro with a sensitivity enhancement ratio of approximately 1.5. Mechanistically, MLN4924 treatment stimulated an accumulation of several SCF substrates, including CDT1, WEE1, and NOXA, in parallel with an enhancement of radiation-induced DNA damage, aneuploidy, G(2)/M phase cell-cycle arrest, and apoptosis. RNAi-mediated knockdown of CDT1 and WEE1 partially abrogated MLN4924-induced aneuploidy, G(2)/M arrest, and radiosensitization, indicating a causal effect. Furthermore, MLN4924 was an effective radiosensitizer in a mouse xenograft model of human pancreatic cancer. Our findings offer proof-of-concept for use of MLN4924 as a novel class of radiosensitizer for the treatment of pancreatic cancer.

  11. HLF/miR-132/TTK axis regulates cell proliferation, metastasis and radiosensitivity of glioma cells.

    PubMed

    Chen, Shu; Wang, Yang; Ni, Chunxia; Meng, Ge; Sheng, Xiaofang

    2016-10-01

    Glioma is a malignant cancer with high mortality. A key prognostic factor of glioma is radiosensitivity. It has also been known that microRNAs (miR) significantly contribute to the development of glioma. miR-132 has been previously reported to inhibit tumor growth in some cancers, but not well studied in glioma. It is necessary to understand the association between miR-132 and glioma, including miR-132 expression in glioma, effects of miR-132 on cancer metastasis and radiosensitivity, and the involved molecular mechanism. We first explored the expression levels of miR-132 in human normal and glioma tissues, then correlated the expression levels with different stages of glioma. Utilizing human glioma U87 cells, lentiviral transduction technique, luciferase reporter assay, wound healing assay, transwell invasion assay and clonogenic assay, we investigated the effects of hepatic leukemia factor (HLF), miR-132 and TTK protein kinase (TTK) on cancer cell viability, proliferation, migration, invasion and radiosensitivity. The expression of miR-132 was low in human glioma tissues, and the downregulated expression was associated with advanced glioma grades. HLF directly bound to the BS1 site of miR-132 promoter to enhance the expression of miR-132. HLF-mediated miR-132 was able to directly target and inhibit a downstream factor TTK, which had an oncogenic role. Overexpression of TTK could reverse the inhibitory effects of either miR-132 or HLF on cancer cell proliferation, metastasis and radioresistance. TTK acts as an oncogene in glioma. HLF-mediated miR-132 directly suppresses TTK expression, thus exerting inhibitory effects on cancer cell proliferation, metastasis and radioresistance.

  12. HAP1 gene expression is associated with radiosensitivity in breast cancer cells

    SciTech Connect

    Wu, Jing; Zhang, Jun-ying; Yin, Li; Wu, Jian-zhong; Guo, Wen-jie; Wu, Jian-feng; Chen, Meng; Xia, You-you; Tang, Jin-hai; Ma, Yong-chao; He, Xia

    2015-01-02

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosis were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity.

  13. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells

    SciTech Connect

    Chiu, Shu-Jun; Hsaio, Ching-Hui; Tseng, Ho-Hsing; Su, Yu-Han; Shih, Wen-Ling; Lee, Jeng-Woei; Chuah, Jennifer Qiu-Yu

    2010-04-09

    Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors {gamma} used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116 cells, and prolonged radiation-induced G{sub 2}/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.

  14. Effects of stratospheric radiations on human glioblastoma cells.

    PubMed

    Cerù, Maria Paola; Amicarelli, Fernanda; Cristiano, Loredana; Colafarina, Sabrina; Aimola, Pierpaolo; Falone, Stefano; Cinque, Benedetta; Ursini, Ornella; Moscardelli, Roberto; Ragni, Pietro

    2005-01-01

    The aim of this work was to evaluate the effect of stratospheric radiations on neural tumour cells. ADF human glioblastoma cells were hosted on a stratospheric balloon within the 2002 biological experiment campaign of the Italian Space Agency. The flight at an average height of 37 km lasted about 24 hrs. Cell morphology, number and viability, cell cycle and apoptosis, some antioxidant enzymes and proteins involved in cell cycle regulation, DNA repair and gene expression were studied. Stratospheric radiations caused a significant decrease in cell number, as well as a block of proliferation, but not apoptosis or necrosis. Radiations also induced activation and induction of some antioxidant enzymes, increase in DNA repair-related proteins (p53 and Proliferating Cell Nuclear Antigen) and variations of the transcription factors Peroxisome Proliferator-Activated Receptors. Morphologically, test cells exhibited more electron dense cytoplasm and less condensed chromatin than controls and modification of their surfaces. Our results indicate that glioblastoma cells, exposed to continuous stratospheric radiations for 24 hrs, show activation of cell cycle check point, decrease of cell number, variations of Peroxisome Proliferator-Activated Receptors and increase of Reactive Oxygen Species-scavenging enzymes.

  15. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines.

    PubMed

    Chen, Xuan; Wang, Cong; Guan, Shanghui; Liu, Yuan; Han, Lihui; Cheng, Yufeng

    2016-07-01

    Telomerase is a type of reverse transcriptase that is overexpressed in almost all human tumor cells, but not in normal tissues, which provides an opportunity for radiosensitization targeting telomerase. Zidovudine, abacavir and lamivudine are reverse transcriptase inhibitors that have been applied in clinical practice for several years. We sought to explore the radiosensitization effect of these three drugs on human esophageal cancer cell lines. Eca109 and Eca9706 cells were treated with zidovudine, abacavir and lamivudine for 48 h before irradiation was administered. Samples were collected 1 h after irradiation. Clonal efficiency assay was used to evaluate the effect of the combination of these drugs with radiation doses of 2, 4, 6 and 8 Gy. DNA damage was measured by comet assay. Telomerase activity (TA) and relative telomere length (TL) were detected and evaluated by real-time PCR. Apoptosis rates were assessed by flow cytometric analysis. The results showed that all the drugs tested sensitized the esophageal squamous cell carcinoma (ESCC) cell lines to radiation through an increase in radiation-induced DNA damage and cell apoptosis, deregulation of TA and decreasing the shortened TL caused by radiation. Each of the drugs investigated (zidovudine, abacavir and lamivudine) could be used for sensitizing human esophageal cancer cell lines to radiation. Consequently, the present study supports the potential of these three drugs as therapeutic agents for the radiosensitization of esophageal squamous cell cancer.

  16. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays

    NASA Astrophysics Data System (ADS)

    Xie, W. Z.; Friedland, W.; Li, W. B.; Li, C. Y.; Oeh, U.; Qiu, R.; Li, J. L.; Hoeschen, C.

    2015-08-01

    Abundant studies have focused on the radiosensitization effect of gold nanoparticles (GNPs) in the cellular environment with x-ray irradiation. To better understand the physical foundation and to initially study the molecular radiosensitization effect within the nucleus, a simple cell model with detailed DNA structure in the central nucleus was set up and complemented with different distributions of single and multiple GNPs in this work. With the biophysical Monte Carlo simulation code PARTRAC, the radiosensitization effects on both physical quantities and primary biological responses (DNA strand breaks) were simulated. The ratios of results under situations with GNPs compared to those without GNPs were defined as the enhancement factors (EFs). The simulation results show that the presence of GNP can cause a notable enhancement effect on the energy deposition within a few micrometers from the border of GNP. The greatest upshot appears around the border and is mostly dominated by Auger electrons. The enhancement effect on the DNA strand breakage becomes smaller because of the DNA distribution inside the nucleus, and the corresponding EFs are between 1 and 1.5. In the present simulation, multiple GNPs on the nucleus surface, the 60 kVp x-ray spectrum and the diameter of 100 nm are relatively more effective conditions for both physical and biological radiosensitization effects. These results preliminarily indicate that GNP can be a good radiosensitizer in x-ray radiotherapy. Nevertheless, further biological responses (repair process, cell survival, etc) need to be studied to give more accurate evaluation and practical proposal on GNP’s application in clinical treatment.

  17. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays.

    PubMed

    Xie, W Z; Friedland, W; Li, W B; Li, C Y; Oeh, U; Qiu, R; Li, J L; Hoeschen, C

    2015-08-21

    Abundant studies have focused on the radiosensitization effect of gold nanoparticles (GNPs) in the cellular environment with x-ray irradiation. To better understand the physical foundation and to initially study the molecular radiosensitization effect within the nucleus, a simple cell model with detailed DNA structure in the central nucleus was set up and complemented with different distributions of single and multiple GNPs in this work. With the biophysical Monte Carlo simulation code PARTRAC, the radiosensitization effects on both physical quantities and primary biological responses (DNA strand breaks) were simulated. The ratios of results under situations with GNPs compared to those without GNPs were defined as the enhancement factors (EFs). The simulation results show that the presence of GNP can cause a notable enhancement effect on the energy deposition within a few micrometers from the border of GNP. The greatest upshot appears around the border and is mostly dominated by Auger electrons. The enhancement effect on the DNA strand breakage becomes smaller because of the DNA distribution inside the nucleus, and the corresponding EFs are between 1 and 1.5. In the present simulation, multiple GNPs on the nucleus surface, the 60 kVp x-ray spectrum and the diameter of 100 nm are relatively more effective conditions for both physical and biological radiosensitization effects. These results preliminarily indicate that GNP can be a good radiosensitizer in x-ray radiotherapy. Nevertheless, further biological responses (repair process, cell survival, etc) need to be studied to give more accurate evaluation and practical proposal on GNP's application in clinical treatment.

  18. Cell-Specific Radiosensitization by Gold Nanoparticles at Megavoltage Radiation Energies

    SciTech Connect

    Jain, Suneil; Coulter, Jonathan A.; Hounsell, Alan R.; Butterworth, Karl T.; McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Dickson, Glenn R.; Prise, Kevin M.; Currell, Fred J.; O'Sullivan, Joe M.; Hirst, David G.

    2011-02-01

    Purpose: Gold nanoparticles (GNPs) have been shown to cause sensitization with kilovoltage (kV) radiation. Differences in the absorption coefficient between gold and soft tissue, as a function of photon energy, predict that maximum enhancement should occur in the kilovoltage (kV) range, with almost no enhancement at megavoltage (MV) energies. Recent studies have shown that GNPs are not biologically inert, causing oxidative stress and even cell death, suggesting a possible biological mechanism for sensitization. The purpose of this study was to assess GNP radiosensitization at clinically relevant MV X-ray energies. Methods and Materials: Cellular uptake, intracellular localization, and cytotoxicity of GNPs were assessed in normal L132, prostate cancer DU145, and breast cancer MDA-MB-231 cells. Radiosensitization was measured by clonogenic survival at kV and MV photon energies and MV electron energies. Intracellular DNA double-strand break (DSB) induction and DNA repair were determined and GNP chemosensitization was assessed using the radiomimetic agent bleomycin. Results: GNP uptake occurred in all cell lines and was greatest in MDA-MB-231 cells with nanoparticles accumulating in cytoplasmic lysosomes. In MDA-MB-231 cells, radiation sensitizer enhancement ratios (SERs) of 1.41, 1.29, and 1.16 were achieved using 160 kVp, 6 MV, and 15 MV X-ray energies, respectively. No significant effect was observed in L132 or DU145 cells at kV or MV energies (SER 0.97-1.08). GNP exposure did not increase radiation-induced DSB formation or inhibit DNA repair; however, GNP chemosensitization was observed in MDA-MB-231 cells treated with bleomycin (SER 1.38). Conclusions: We have demonstrated radiosensitization in MDA-MB-231 cells at MV X-ray energies. The sensitization was cell-specific with comparable effects at kV and MV energies, no increase in DSB formation, and GNP chemopotentiation with bleomycin, suggesting a possible biological mechanism of radiosensitization.

  19. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    SciTech Connect

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  20. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon; Kim, In-Ah

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression and radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.

  1. Histone deacetylase enzyme silencing using shRNAs enhances radiosensitivity of SW579 thyroid cancer cells

    PubMed Central

    Wang, Ye; Jin, Tao; Dai, Xueming; Yan, Dongwang; Peng, Zhihai

    2016-01-01

    The aim of the present study was to screen the enzymes that are associated with the radiosensitivity of SW579 thyroid cancer cells, and investigate whether radiation, combined with specific RNA interference on the screened enzymes, enhances radiosensitivity of SW579 thyroid cancer cells. Quantitative polymerase chain reaction (qPCR) was used to analyze epigenetic enzyme expression changes before and after radiotherapy, and four enzymes, histone deacetylase 1 (HDAC1), HDAC2, HDAC4 and HDAC6 were screened. Western blot analysis was performed to analyze the change in HDAC1, HDAC2, HDAC4 and HDAC6 protein expression following radiotherapy. Short hairpin RNA (ShRNA)-HDAC1, shRNA-HDAC2, shRNA-HDAC4 and shRNA-HDAC6 plasmids were constructed and SW579 cells were transfected with corresponding shRNA-HDACs. Reverse transcription-qPCR was used to detect whether downregulation of HDAC mRNAs had been effective. In addition, shRNA and shRNA negative control (NC) pools were established and transfected into the SW579 cells. The samples were divided into four groups; control, trichostatin A, shRNA pool and shRNA NC pool, to analyze the effective enhancement of specific shRNA on radiosensitivity in thyroid cancer cells. The morphological changes were observed in the SW579 cells, and the number of tumor cells decreased markedly in the shRNA pool group compared with that of the other three groups. Therefore, it was concluded that HDACs present a potential target for increasing the sensitivity of thyroid cancer cells to radiotherapy, and shRNA-HDAC interference combined with radiotherapy promotes the radiosensitivity of tumors. PMID:27600599

  2. Radiosensitization of Oropharyngeal Squamous Cell Carcinoma Cells by Human Papillomavirus 16 Oncoprotein E6*I

    SciTech Connect

    Pang, Ervinna; Delic, Naomi C.; Hong, Angela; Zhang Mei; Rose, Barbara R.; Lyons, J. Guy

    2011-03-01

    Purpose: Patients with oropharyngeal squamous cell carcinoma (OSCC) whose disease is associated with high-risk human papillomavirus (HPV) infection have a significantly better outcome than those with HPV-negative disease, but the reasons for the better outcome are not known. We postulated that they might relate to an ability of HPV proteins to confer a better response to radiotherapy, a commonly used treatment for OSCC. Methods and Materials: We stably expressed the specific splicing-derived isoforms, E6*I and E6*II, or the entire E6 open reading frame (E6total), which gives rise to both full length and E6*I isoforms, in OSCC cell lines. Radiation resistance was measured in clonogenicity assays, p53 activity was measured using transfected reporter genes, and flow cytometry was used to analyze cell cycle and apoptosis. Results: E6*I and E6total sensitized the OSCC cells to irradiation, E6*I giving the greatest degree of radiosensitization (approximately eightfold lower surviving cell fraction at 10 Gy), whereas E6*II had no effect. In contrast to radiosensitivity, E6*I was a weaker inhibitor than E6total of tumor suppressor p53 transactivator activity in the same cells. Flow cytometric analyses showed that irradiated E6*I expressing cells had a much higher G2M:G1 ratio than control cells, indicating that, after G2, cells were diverted from the cell cycle to programmed cell death. Conclusion: This study supports a role for E6*I in the enhanced responsiveness of HPV-positive oropharyngeal carcinomas to p53-independent radiation-induced death.

  3. The Cytoskeletal Adapter Protein Spinophilin Regulates Invadopodia Dynamics and Tumor Cell Invasion in Glioblastoma.

    PubMed

    Cheerathodi, Mujeeburahiman; Avci, Naze G; Guerrero, Paola A; Tang, Leung K; Popp, Julia; Morales, John E; Chen, Zhihua; Carnero, Amancio; Lang, Frederick F; Ballif, Bryan A; Rivera, Gonzalo M; McCarty, Joseph H

    2016-12-01

    Glioblastoma is a primary brain cancer that is resistant to all treatment modalities. This resistance is due, in large part, to invasive cancer cells that disperse from the main tumor site, escape surgical resection, and contribute to recurrent secondary lesions. The adhesion and signaling mechanisms that drive glioblastoma cell invasion remain enigmatic, and as a result there are no effective anti-invasive clinical therapies. Here we have characterized a novel adhesion and signaling pathway comprised of the integrin αvβ8 and its intracellular binding partner, Spinophilin (Spn), which regulates glioblastoma cell invasion in the brain microenvironment. We show for the first time that Spn binds directly to the cytoplasmic domain of β8 integrin in glioblastoma cells. Genetically targeting Spn leads to enhanced invasive cell growth in preclinical models of glioblastoma. Spn regulates glioblastoma cell invasion by modulating the formation and dissolution of invadopodia. Spn-regulated invadopodia dynamics are dependent, in part, on proper spatiotemporal activation of the Rac1 GTPase. Glioblastoma cells that lack Spn showed diminished Rac1 activities, increased numbers of invadopodia, and enhanced extracellular matrix degradation. Collectively, these data identify Spn as a critical adhesion and signaling protein that is essential for modulating glioblastoma cell invasion in the brain microenvironment.

  4. DIETARY ISOTHIOCYANATE IBERIN INHIBITS GROWTH AND INDUCES APOPTOSIS IN HUMAN GLIOBLASTOMA CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we evaluated the antiproliferative and proapoptotic effects of the isothiocyanate iberin, a bioactive agent in Brassicaceae species, in human glioblastoma cells. The human glioblastoma cell cultures were treated with different concentrations of iberin and tested for growth inhibition...

  5. Genetic and functional diversity of propagating cells in glioblastoma.

    PubMed

    Piccirillo, Sara G M; Colman, Sue; Potter, Nicola E; van Delft, Frederik W; Lillis, Suzanne; Carnicer, Maria-Jose; Kearney, Lyndal; Watts, Colin; Greaves, Mel

    2015-01-13

    Glioblastoma (GBM) is a lethal malignancy whose clinical intransigence has been linked to extensive intraclonal genetic and phenotypic diversity and the common emergence of therapeutic resistance. This interpretation embodies the implicit assumption that cancer stem cells or tumor-propagating cells are themselves genetically and functionally diverse. To test this, we screened primary GBM tumors by SNP array to identify copy number alterations (a minimum of three) that could be visualized in single cells by multicolor fluorescence in situ hybridization. Interrogation of neurosphere-derived cells (from four patients) and cells derived from secondary transplants of these same cells in NOD-SCID mice allowed us to infer the clonal and phylogenetic architectures. Whole-exome sequencing and single-cell genetic analysis in one case revealed a more complex clonal structure. This proof-of-principle experiment revealed that subclones in each GBM had variable regenerative or stem cell activity, and highlighted genetic alterations associated with more competitive propagating activity in vivo.

  6. Robust Cell Segmentation for Histological Images of Glioblastoma

    PubMed Central

    Kong, Jun; Zhang, Pengyue; Liang, Yanhui; Teodoro, George; Brat, Daniel J.; Wang, Fusheng

    2016-01-01

    Glioblastoma (GBM) is a malignant brain tumor with uniformly dismal prognosis. Quantitative analysis of GBM cells is an important avenue to extract latent histologic disease signatures to correlate with molecular underpinnings and clinical outcomes. As a prerequisite, a robust and accurate cell segmentation is required. In this paper, we present an automated cell segmentation method that can satisfactorily address segmentation of overlapped cells commonly seen in GBM histology specimens. This method first detects cells with seed connectivity, distance constraints, image edge map, and a shape-based voting image. Initialized by identified seeds, cell boundaries are deformed with an improved variational level set method that can handle clumped cells. We test our method on 40 histological images of GBM with human annotations. The validation results suggest that our cell segmentation method is promising and represents an advance in quantitative cancer research.

  7. The Effect of Metformin and GANT61 Combinations on the Radiosensitivity of Prostate Cancer Cells

    PubMed Central

    Gonnissen, Annelies; Isebaert, Sofie; McKee, Chad M.; Muschel, Ruth J.; Haustermans, Karin

    2017-01-01

    The anti-diabetes drug metformin has been shown to have anti-neoplastic effects in several tumor models through its effects on energy metabolism and protein synthesis. Recent studies show that metformin also targets Hedgehog (Hh) signaling, a developmental pathway re-activated in several tumor types, including prostate cancer (PCa). Furthermore, we and others have shown that Hh signaling is an important target for radiosensitization. Here, we evaluated the combination of metformin and the Hh inhibitor GANT61 (GLI-ANTagonist 61) with or without ionizing radiation in three PCa cell lines (PC3, DU145, 22Rv1). The effect on proliferation, radiosensitivity, apoptosis, cell cycle distribution, reactive oxygen species production, DNA repair, gene and protein expression was investigated. Furthermore, this treatment combination was also assessed in vivo. Metformin was shown to interact with Hh signaling by inhibiting the effector protein glioma-associated oncogene homolog 1 (GLI1) in PCa cells both in vitro and in vivo. The combination of metformin and GANT61 significantly inhibited PCa cell growth in vitro and enhanced the radiation response of 22Rv1 cells compared to either single agent. Nevertheless, neither the growth inhibitory effect nor the radiosensitization effect of the combination treatment observed in vitro was seen in vivo. Although the interaction between metformin and Hh signaling seems to be promising from a therapeutic point of view in vitro, more research is needed when implementing this combination strategy in vivo. PMID:28208838

  8. The Hsp70 inhibiting peptide aptamer A17 potentiates radiosensitization of tumor cells by Hsp90 inhibition.

    PubMed

    Schilling, Daniela; Garrido, Carmen; Combs, Stephanie E; Multhoff, Gabriele

    2017-04-01

    The inhibition of heat shock protein 90 (Hsp90) is a promising strategy to increase the radiosensitivity of tumor cells. However, Hsp90 inhibition induces the expression of Hsp70 which is a prominent cytoprotective protein. Therefore, dual targeting of Hsp70 and Hsp90 might be beneficial to increase the radiosensitivity of tumor cells. Hsp70 inhibiting peptide aptamers have been shown to increase the sensitivity of tumor cells to apoptosis induced by different anticancer drugs. Herein, we studied the radiosensitizing activity of the Hsp70 inhibiting peptide aptamer A17 in combination with the Hsp90 inhibitor NVP-AUY922. Whereas A17 significantly increased apoptosis induction by NVP-AUY922 it did not significantly affect the radiosensitivity of human lung and breast cancer cells. However, Hsp70 inhibition by the aptamer A17 potentiated the radiosensitizing effects of the Hsp90 inhibitor NVP-AUY922. Mechanistically we speculate that an increased number of DNA double strand breaks and an enhanced G2/M arrest might be responsible for the increased radiosensitization in A17 expressing tumor cells. Therefore, the simultaneous inhibition of Hsp90 and Hsp70 combined with radiotherapy might provide a promising anti-cancer strategy.

  9. Radiosensitization by the investigational NEDD8-activating enzyme inhibitor MLN4924 (pevonedistat) in hormone-resistant prostate cancer cells.

    PubMed

    Wang, Xiaofang; Zhang, Wenjuan; Yan, Zi; Liang, Yupei; Li, Lihui; Yu, Xiaoli; Feng, Yan; Fu, Shen; Zhang, Yanmei; Zhao, Hu; Yu, Jinha; Jeong, Lak Shin; Guo, Xiaomao; Jia, Lijun

    2016-06-21

    Salvage radiotherapy (SRT) is the first-line treatment for prostate cancer patients with biochemical recurrence following radical prostatectomy, and new specific radiosensitizers are in urgent need to enhance SRT effect. MLN4924 (also known as Pevonedistat), a specific inhibitor of NEDD8-activating enzyme, has recently entered phase I/II clinical trials in several malignancies. By inhibiting cullin neddylation, MLN4924 inactivates Cullin-RING ligases (CRL), which have been validated as an attractive radiosensitizing target. In our study, we demonstrate that MLN4924 can be used as a potent radiosensitizer in hormone-resistant prostate cancer cells. We found that MLN4924 inhibited cullin neddylation and sensitized prostate cancer cells to irradiation (IR). Mechanistically, MLN4924 enhanced IR-induced G2 cell-cycle arrest, by inducing accumulation of WEE1/p21/p27, three well-known CRL substrates. Importantly, siRNA knockdown of WEE1/p21/p27 partially abrogated MLN4924-induced G2 cell-cycle arrest, indicating a causal role of WEE1/p21/p27 in MLN4924-induced radiosensitization. Further mechanistic studies revealed that induction of DNA damage and apoptosis also contributed to MLN4924 radiosensitization in hormone-resistant prostate cancer cells. Our findings lay the foundation for future application of MLN4924 as a potential radiosensitizer in hormone refractory prostate cancer (HRPC).

  10. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    SciTech Connect

    Tian, Junqiang; Doi, Hiroshi; Saar, Matthias; Santos, Jennifer; Li, Xuejun; Peehl, Donna M.; Knox, Susan J.

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.

  11. Association between SET expression and glioblastoma cell apoptosis and proliferation.

    PubMed

    He, Kunyan; Shi, Lihong; Jiang, Tingting; Li, Qiang; Chen, Yao; Meng, Chuan

    2016-10-01

    Glioblastoma multiforme (GBM) was one of the first cancer types systematically studied at a genomic and transcriptomic level due to its high incidence and aggressivity; however, the detailed mechanism remains unclear, even though it is known that numerous cytokines are involved in the occurrence and development of GBM. The present study aimed to determine whether the SET gene has a role in human glioblastoma carcinogenesis. A total of 32 samples, including 18 cases of glioma, 2 cases of meningioma and 12 normal brain tissue samples, were detected using the streptavidin-peroxidase method through immunohistochemistry. To reduce SET gene expression in U251 and U87MG cell lines, the RNA interference technique was used and transfection with small interfering (si)RNA of the SET gene was performed. Cell apoptosis was detected by flow cytometry, cell migration was examined by Transwell migration assay and cell proliferation was determined by Cell Counting Kit-8. SET, Bcl-2, Bax and caspase-3 mRNA and protein expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Positive protein expression of SET was observed in the cell nucleus, with the expression level of SET significantly higher in glioma tissues compared with normal brain tissue (P=0.001). Elevated expression of SET was significantly associated with gender (P=0.002), tumors classified as World Health Organization grade II (P=0.031), III (P=0.003) or IV (P=0.001), and moderately (P=0.031) or poorly differentiated (P=0.001) tumors. Compared with the negative and non-treatment (blank) control cells, SET gene expression was significantly inhibited (P=0.006 and P<0.001), cell apoptosis was significantly increased (P=0.001 and P<0.001), cell proliferation was significantly inhibited (P=0.002 and P=0.015), and cell migration was significantly decreased (P=0.001 and P=0.001) in siRNA-transfected U87MG(-SET) and U251(-SET) cells, respectively. In

  12. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells

    PubMed Central

    Klumpp, Lukas; Haehl, Erik; Schilbach, Karin; Lukowski, Robert; Kühnle, Matthias; Bernhardt, Günther; Buschauer, Armin; Zips, Daniel; Ruth, Peter; Huber, Stephan M.

    2016-01-01

    Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy. PMID:26893360

  13. Calpain 2 Is Required for the Invasion of Glioblastoma Cells in the Zebrafish Brain Microenvironment

    PubMed Central

    Lal, Sangeet; La Du, Jane; Tanguay, Robert L.; Greenwood, Jeffrey A.

    2012-01-01

    Glioblastoma is an aggressive primary brain tumor with a 5-year survival rate of less than 5%. The ability of glioblastoma cells to invade surrounding brain tissue presents the primary challenge for the success of focal therapeutic approaches. We previously reported that the calcium-activated protease calpain 2 is critical for glioblastoma cell invasion in vitro. Here, we show that expression of calpain 2 is required for the dispersal of glioblastoma cells in a living brain microenvironment. Knockdown of calpain 2 resulted in a 2.9-fold decrease in the invasion of human glioblastoma cells in zebrafish brain. Control cells diffusely migrated up to 450 μm from the site of injection, whereas knockdown cells remained confined in clusters. The invasion study was repeated in organotypic mouse brain tissues, and calpain 2 knockdown cells demonstrated a 2.3-fold lower area of dispersal compared with control cells. In zebrafish brain, glioblastoma cells appeared to migrate in part along the blood vessels of the host. Furthermore, angiogenesis was detected in 27% of zebrafish injected with control cells, whereas only 12.5% of fish receiving knockdown cells showed the formation of new vessels, suggesting a role for calpain 2 in tumor cell angiogenesis. Consistent with the progression of glioblastoma in humans, transplanted tumor cells were not observed to metastasize outside the brain of zebrafish. This study demonstrates that calpain 2 expression is required for the dispersal of glioblastoma cells within the dynamic microenvironment of the brain, identifying zebrafish as a valuable orthotopic system for studying glioblastoma cell invasion. PMID:22183788

  14. Effect of Corilagin on the Proliferation and NF-κB in U251 Glioblastoma Cells and U251 Glioblastoma Stem-Like Cells

    PubMed Central

    Yang, Wen-Tao; Li, Gen-Hua; Li, Zheng-You; Feng, Song; Liu, Xue-Qin; Han, Guang-Kui; Zhang, Hao; Qin, Xian-Yun; Zhang, Ran; Nie, Quan-Min; Jin, Feng

    2016-01-01

    Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P < 0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P < 0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P < 0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P < 0.05). Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell

  15. Oncogenic effects of miR-10b in glioblastoma stem cells

    PubMed Central

    Guessous, Fadila; Alvarado-Velez, Melissa; Marcinkiewicz, Lukasz; Zhang, Ying; Kim, Jungeun; Heister, Simon; Kefas, Benjamin; Godlewski, Jakub; Schiff, David; Purow, Benjamin

    2013-01-01

    MicroRNAs and cancer stem cells have emerged as critical players in glioblastoma, one of the deadliest human cancers. In this study, we investigated the expression and function of microRNA-10b in glioblastoma cells and stem cells. An analysis of The Cancer Genome Atlas data revealed a correlation between high miR-10b levels and poor prognosis in glioblastoma patients. We measured the levels of miR-10b and found that it is upregulated in human glioblastoma tissues, glioblastoma cell and stem cell lines as compared to normal human tissues or astrocytes. Inhibition of miR-10b with a specific antagomir inhibited the proliferation of glioblastoma established and stem cell lines. Inhibition of miR-10b strongly reduced cell invasion and migration in glioblastoma cell and stem cell lines while overexpression of miR-10b induced cell migration and invasion. We also investigated several predicted targets of miR-10b but could not verify any of them experimentally. Additionally, miR-10b inhibition significantly decreased the in vivo growth of stem cell-derived orthotopic GBM xenografts. Altogether, our findings confirm the oncogenic effects of miR-10b in GBM cells and show for the first time a role of this microRNA in GBM stem cells. Targeting miR-10b might therefore inhibit glioblastoma stem cells, which are thought to be at the origin of glioblastoma and to contribute its recurrence and resistance to therapy. PMID:23307328

  16. Effect of downregulation of survivin expression on radiosensitivity of human epidermoid carcinoma cells

    SciTech Connect

    Sah, Nand K.; Munshi, Anupama; Hobbs, Marvette B.A.; Carter, Bing Z.; Andreeff, Michael; Meyn, Raymond E. . E-mail: rmeyn@mdanderson.org

    2006-11-01

    Purpose: The expression of survivin, a member of the inhibitor-of-apoptosis protein family, is elevated in many types of human cancer. High survivin expression has been associated with poor patient prognosis and tumor resistance to chemotherapy and radiotherapy. The purpose of this study was to compare the radiosensitizing effects of five agents that target survivin on their relative ability to downregulate survivin expression. Methods and Materials: The human epidermoid carcinoma cell line A431 was treated with adenoviral-mediated wild-type p53, antisense to survivin, the mitogen-activated protein kinase inhibitor PD98059, the cyclin-dependent kinase inhibitor Purvalanol A, or the histone deacetylase inhibitor trichostatin A. The radiosensitizing effects of these treatments were determined by clonogenic survival curve analysis and their abilities to suppress survivin expression by Western blot analysis. Results: All the strategies were shown to radiosensitize A431 cells. This effect correlated with their abilities to downregulate survivin. Conclusion: Expression of survivin appears to confer a radioresistant phenotype that can be overcome using several clinically achievable strategies that target survivin either specifically or nonspecifically.

  17. Salinomycin radiosensitizes human nasopharyngeal carcinoma cell line CNE-2 to radiation.

    PubMed

    Zhang, Yongqin; Zuo, Yun; Guan, Zhifeng; Lu, Weidong; Xu, Zheng; Zhang, Hao; Yang, Yan; Yang, Meilin; Zhu, Hongcheng; Chen, Xiaochen

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is primarily treated by chemoradiation. However, how to promote radiation sensitivity in NPC remains a challenge. Salinomycin is potentially useful for the treatment of cancer. This study aimed to explore the radiosensitivity of salinomycin on human nasopharyngeal carcinoma cell line CNE-2. CNE-2 were treated with salinomycin or irradiation, alone or in combination. The cytotoxicity effects of salinomycin were measured using CCK-8 assay. Clonogenic survival assay was used to evaluate the effects of salinomycin on the radiosensitivity of CNE-2. The changes of cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of Caspase3/Bax/Bal-2 was detected by Western blotting. DNA damage was detected via γ-H2AX foci counting. The results showed that salinomycin induced apoptosis and G2/M arrest, increased Bax and cleaved Caspase3, decreased Bcl-2 expression, and increased the formation of γ-H2AX nuclear foci. These data suggest that salinomycin may be a radiosensitizer for NPC radiotherapy.

  18. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    SciTech Connect

    Oka, Naoki; Soeda, Akio . E-mail: ccd29400@nyc.odn.ne.jp; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-08-31

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche.

  19. Inhibition of HAS2 induction enhances the radiosensitivity of cancer cells via persistent DNA damage

    SciTech Connect

    Shen, Yan Nan; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Kim, Su-Hyeon; Hwang, Sang-Gu; Park, Sang Jun; Kim, Chun-Ho; Lee, Kee-Ho

    2014-01-17

    Highlights: •HAS2 may be a promising target for the radiosensitization of human cancer. •HAS2 is elevated (up to ∼10-fold) in irradiated radioresistant and -sensitive cancer cells. •HAS2 knockdown sensitizes cancer cells to radiation. •HAS2 knockdown potentiates irradiation-induced DNA damage and apoptotic death. •Thus, the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. -- Abstract: Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells.

  20. Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1

    PubMed Central

    YANG, LIANG; LIU, REN; MA, HONG-BIN; YING, MING-ZHEN; WANG, YA-JIE

    2015-01-01

    The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 (GSTP1) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G2/M phase arrest in the GSTP1-expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1-expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G2/M phase arrest. PMID:26622693

  1. Rapid fluorescence-based assay for radiosensitivity and chemosensitivity testing in mammalian cells in vitro

    SciTech Connect

    Begg, A.C.; Mooren, E.

    1989-02-01

    An efficient and rapid cytotoxicity assay has been developed, particularly for radiobiological studies, utilizing 96-well microtiter plates. Several days after treatment, cell numbers per well were measured by fluorescent intensity using an automatic reader after staining with the DNA specific dye Hoechst 33258. For radiobiological applications, a microtiter plate irradiation box was designed and built which allowed a variable number of wells (minimum 4, maximum 16) to be irradiated at one time. In this manner, complete dose-response curves could be obtained from one plate. The assay depends on the growth of surviving and untreated cells, and by appropriate choice of conditions (cell numbers plated, time of assay), cell survival curves for this quick fluorescence assay were in reasonable agreement with those from a clonogenic assay for cisplatin and X-ray-induced cell killing. The assay can span 1.5-2 decades of cell survival and is suitable for any cell line which grows as a monolayer. Radiobiological applications were tested using agents or conditions which modified radiation damage. Firstly, sublethal damage repair could be demonstrated in RIF1 mouse tumor cells by comparing the survival curve for a single X-ray dose with that for two fractions separated by 4 h. Secondly, incorporation of 5-iodo-2'-deoxyuridine into cellular DNA was shown to radiosensitize Chinese Hamster cells, with similar enhancement ratios obtained from the fluorescence and clonogenic assays. Thirdly, radiosensitization by cisplatin and radioprotection by cysteamine could be readily measured using the quick fluorescence assay. The ability to have multiple dose groups per plate makes it an efficient assay for both radiosensitivity and chemosensitivity testing.

  2. Pharmacology of novel small-molecule tubulin inhibitors in glioblastoma cells with enhanced EGFR signalling.

    PubMed

    Phoa, Athena F; Browne, Stephen; Gurgis, Fadi M S; Åkerfeldt, Mia C; Döbber, Alexander; Renn, Christian; Peifer, Christian; Stringer, Brett W; Day, Bryan W; Wong, Chin; Chircop, Megan; Johns, Terrance G; Kassiou, Michael; Munoz, Lenka

    2015-12-15

    We recently reported that CMPD1, originally developed as an inhibitor of MK2 activation, primarily inhibits tubulin polymerisation and induces apoptosis in glioblastoma cells. In the present study we provide detailed pharmacological investigation of CMPD1 analogues with improved molecular properties. We determined their anti-cancer efficacy in glioblastoma cells with enhanced EGFR signalling, as deregulated EGFR often leads to chemoresistance. Eight analogues of CMPD1 with varying lipophilicity and basicity were synthesised and tested for efficacy in the cell viability assay using established glioblastoma cell lines and patient-derived primary glioblastoma cells. The mechanism of action for the most potent analogue 15 was determined using MK2 activation and tubulin polymerisation assays, together with the immunofluorescence analysis of the mitotic spindle formation. Apoptosis was analysed by Annexin V staining, immunoblotting analysis of bcl-2 proteins and PARP cleavage. The apoptotic activity of CMPD1 and analogue 15 was comparable across glioblastoma cell lines regardless of the EGFR status. Primary glioblastoma cells of the classical subtype that are characterized by enhanced EGFR activity were most sensitive to the treatment with CMPD1 and 15. In summary, we present mechanism of action for a novel small molecule tubulin inhibitor, compound 15 that inhibits tubulin polymerisation and mitotic spindle formation, induces degradation of anti-apoptotic bcl-2 proteins and leads to apoptosis of glioblastoma cells. We also demonstrate that the enhanced EGFR activity does not decrease the efficacy of tubulin inhibitors developed in this study.

  3. Glioblastoma Stem-Like Cells: Characteristics, Microenvironment, and Therapy

    PubMed Central

    Yi, Yang; Hsieh, I-Yun; Huang, Xiaojia; Li, Jie; Zhao, Wei

    2016-01-01

    Glioblastoma multiforme (GBM), grade IV astrocytoma, is the most fatal malignant primary brain tumor. GBM contains functional subsets of cells called glioblastoma stem-like cells (GSCs), which are radioresistant and chemoresistant and eventually lead to tumor recurrence. Recent studies showed that GSCs reside in particular tumor niches that are necessary to support their behavior. To successfully eradicate GBM growth and recurrence, new strategies selectively targeting GSCs and/or their microenvironmental niche should be designed. In this regard, here we focus on elucidating the molecular mechanisms that govern these GSC properties and on understanding the mechanism of the microenvironmental signals within the tumor mass. Moreover, to overcome the blood–brain barrier, which represents a critical limitation of GBM treatments, a new drug delivery system should be developed. Nanoparticles can be easily modified by different methods to facilitate delivery efficiency of chemotherapeutics, to enhance the accumulation within the tumors, and to promote the capacity for targeting the GSCs. Therefore, nanotechnology has become the most promising approach to GSC-targeting therapy. Additionally, we discussed the future of nanotechnology-based targeted therapy and point out the disadvantages that should be overcome. PMID:28003805

  4. Sialidase NEU4 is involved in glioblastoma stem cell survival

    PubMed Central

    Silvestri, I; Testa, F; Zappasodi, R; Cairo, C W; Zhang, Y; Lupo, B; Galli, R; Di Nicola, M; Venerando, B; Tringali, C

    2014-01-01

    The human sialidase, NEU4, has emerged as a possible regulator of neuronal differentiation and its overexpression has been demonstrated to promote the acquisition of a stem cell-like phenotype in neuroblastoma cells. In this paper, we demonstrated that glioblastoma stem cells (GSCs) isolated from glioblastoma multiforme (GBM) cell lines and patients' specimens as neurospheres are specifically marked by the upregulation of NEU4; in contrast, the expression of NEU4 is very low in non-neurosphere-differentiated GBM cells. We showed that NEU4 silencing by miRNA or a chemical inhibitor of its catalytic activity triggered key events in GSCs, including (a) the activation of the glycogen synthase kinase 3β, with the consequent inhibition of Sonic Hedgehog and Wnt/β-catenin signalling pathways; (b) the decrease of the stem cell-like gene expression and marker signatures, evidenced by the reduction of NANOG, OCT-4, SOX-2, CD133 expression, ganglioside GD3 synthesis, and an altered protein glycosylation profile; and (c) a significant decrease in GSCs survival. Consistent with this finding, increased NEU4 activity and expression induced in the more differentiated GBM cells by the NEU4 agonist thymoquinone increased the expression of OCT-4 and GLI-1. Thus, NEU4 expression and activity appeared to help to determine the molecular signature of GSCs and to be closely connected with their survival properties. Given the pivotal role played by GSCs in GBM lethality, our results strongly suggest that NEU4 inhibition could significantly improve current therapies against this tumour. PMID:25144716

  5. Radiosensitivity of human natural killer cells: Binding and cytotoxic activities of natural killer cell subsets

    SciTech Connect

    Rana, R.; Vitale, M.; Mazzotti, G.; Manzoli, L.; Papa, S. )

    1990-10-01

    The sensitivity of human natural killer (NK) cell activities (both binding and killing) after exposure of peripheral blood mononuclear cells to different doses of gamma radiation was studied. A panel of monoclonal antibodies was used to identify the NK and T-lymphocyte subsets and to evaluate their radiosensitivity. Peripheral blood mononuclear cells were irradiated with low (2-6 Gy) and high (10-30 Gy) doses and NK cell binding and cytotoxic activity against K562 target cells were studied after 3 h and 48 h in culture. The primary damage to NK cell activity was identified at the postbinding level and affected mainly the lytic machinery. After 48 h culture postirradiation, an overall depression of cytotoxic activity was observed, but ionizing radiation produced either a selection of the more cytotoxic NK cell subsets, which therefore might be considered more resistant to radiation damage than the less cytotoxic NK cells, or a long-term stimulation of cytotoxic activity in surviving cells.

  6. Celecoxib enhances the radiosensitivity of HCT116 cells in a COX-2 independent manner by up-regulating BCCIP

    PubMed Central

    Xu, Xiao-Ting; Hu, Wen-Tao; Zhou, Ju-Ying; Tu, Yu

    2017-01-01

    It has been reported that celecoxib, a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug (NSAID), regulates the radiosensitivity of several cancer cells. BCCIP (BRCA2 and CDKN1A interacting protein) plays a critical role in maintaining the critical functions of p53 in tumor suppression and response to therapy. However, whether the effect of celecoxib on the radiosensitivity of colorectal cancer (CRC) cells is dependent on BCCIP is largely unclear. In this study, we found that celecoxib enhanced the radiosensitivity of HeLa (a human cervical carcinoma cell line), A549 (a human lung carcinoma cell line), and HCT116 cells (a human CRC cells line). Among these cells, COX-2 expression was undetected in HCT116 cells. Treatment with celecoxib significantly increased BCCIP expression in COX-2 negative HCT116 cells. Knockdown of BCCIP obviously abrogated the enhanced radiosensitivity of HCT116 cells induced by celecoxib. A combination of celecoxib and irradiation treatment induced much more γ-H2AX foci formation, higher levels of radiation injury-related proteins phosphorylation, G2/M arrest, apoptosis, and p53 and p21 expression, and lower levels of Cyclin B1 in HCT116 cells than those in cells treated with irradiation alone. However, these changes were undetected in BCCIP-silenced HCT116 cells. Therefore, these data suggest that BCCIP gene may be a radiosensitivity-related gene in CRC. Celecoxib affects the functions of p53 and inhibits the recovery from the irradiation-induced injury by up-regulating the expression of BCCIP, and subsequently regulates the expressions of genes such as p21 and Cyclin B1 to enhance the radiosensitivity of HCT116 cells in a COX-2 independent manner. PMID:28386336

  7. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line

    PubMed Central

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-01-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in “DNA damage response”, “direct p53 effectors” and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols. PMID:27245205

  8. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line.

    PubMed

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-06-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in "DNA damage response", "direct p53 effectors" and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols.

  9. REST regulates oncogenic properties of glioblastoma stem cells

    PubMed Central

    Kamal, Mohamed M.; Sathyan, Pratheesh; Singh, Sanjay K.; Zinn, Pascal O.; Marisetty, Anantha L.; Liang, Shoudan; Gumin, Joy; El-Mesallamy, Hala Osman; Suki, Dima; Colman, Howard; Fuller, Gregory N.; Lang, Frederick F.; Majumder, Sadhan

    2013-01-01

    Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor REST, suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM. PMID:22228704

  10. CELL-SPECIFIC RADIOSENSITIZATION BY GOLD NANOPARTICLES AT MEGAVOLTAGE RADIATION ENERGIES

    PubMed Central

    Jain, Suneil; Coulter, Jonathan A.; Hounsell, Alan R.; Butterworth, Karl T.; McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Dickson, Glenn R.; Prise, Kevin M.; Currell, Fred J.; O'Sullivan, Joe M.; Hirst, David G.

    2010-01-01

    Purpose Gold nanoparticles (GNPs) have been shown to cause sensitization with kilovoltage (kV) radiation. Differences in the absorption coefficient between gold and soft tissue, as a function of photon energy, predict that maximum enhancement should occur in the kilovoltage (kV) range, with almost no enhancement at megavoltage (MV) energies. Recent studies have shown that GNPs are not biologically inert, causing oxidative stress and even cell death, suggesting a possible biological mechanism for sensitization. The purpose of this study was to assess GNP radiosensitization at clinically relevant MV X-ray energies. Methods and Materials Cellular uptake, intracellular localization, and cytotoxicity of GNPs were assessed in normal L132, prostate cancer DU145, and breast cancer MDA-MB-231 cells. Radiosensitization was measured by clonogenic survival at kV and MV photon energies and MVelectron energies. Intracellular DNA double-strand break (DSB) induction and DNA repair were determined and GNP chemosensitization was assessed using the radiomimetic agent bleomycin. Results GNP uptake occurred in all cell lines and was greatest in MDA-MB-231 cells with nanoparticles accumulating in cytoplasmic lysosomes. In MDA-MB-231 cells, radiation sensitizer enhancement ratios (SERs) of 1.41, 1.29, and 1.16 were achieved using 160 kVp, 6 MV, and 15 MV X-ray energies, respectively. No significant effect was observed in L132 or DU145 cells at kV or MV energies (SER 0.97-1.08). GNP exposure did not increase radiation-induced DSB formation or inhibit DNA repair; however, GNP chemosensitization was observed in MDA-MB-231 cells treated with bleomycin (SER 1.38). Conclusions We have demonstrated radiosensitization in MDA-MB-231 cells at MV X-ray energies. The sensitization was cell-specific with comparable effects at kV and MV energies, no increase in DSB formation, and GNP chemopotentiation with bleomycin, suggesting a possible biological mechanism of radiosensitization. PMID:21095075

  11. Tat-SmacN7 induces radiosensitization in cancer cells through the activation of caspases and induction of apoptosis.

    PubMed

    Chen, Fenghua; Xu, Chang; Du, Liqing; Wang, Yan; Cao, Jia; Fu, Yue; Guo, Yanting; Liu, Qiang; Fan, Feiyue

    2013-03-01

    A major concern in cancer therapy is resistance of tumors such as human non-small cell lung cancer and esophageal cancer to radiotherapy. Intrinsic radioresistance of these cancer cells limits therapeutic efficiency. Here, we determined in two cancer cell lines the potential radiosensitizing activity of Tat-SmacN7, a small molecule compound, which mimics the activity of Smac, a mitochondrial protein released during apoptosis. We found that Tat-SmacN7 can enter the cells and promote RNA expression and the activity of caspase-3, -8 and -9 and sensitized the cancer cells to radiation with a sensitization enhancement ratio (SER) of 1.5-1.6. Tat-SmacN7 radiosensitization was mediated by both extrinsic and intrinsic apoptosis pathways through activation of caspases. Consistently, blockage of caspase activation, through treatment with a caspase inhibitor, z-VAD-fmk, inhibited apoptosis and abrogated Tat-SmacN7 radiosensitization. Our study demonstrates that Tat-SmacN7 also has radiosensitization effects in vivo, so it could be further developed as a novel class of radiosensitizers for the treatment of radioresistant human non-small cell lung cancer and esophageal cancer.

  12. The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells.

    PubMed

    Koyama-Nasu, R; Haruta, R; Nasu-Nishimura, Y; Taniue, K; Katou, Y; Shirahige, K; Todo, T; Ino, Y; Mukasa, A; Saito, N; Matsui, M; Takahashi, R; Hoshino-Okubo, A; Sugano, H; Manabe, E; Funato, K; Akiyama, T

    2014-04-24

    Increasing evidence suggests that brain tumors arise from the transformation of neural stem/precursor/progenitor cells. Much current research on human brain tumors is focused on the stem-like properties of glioblastoma. Here we show that anaplastic lymphoma kinase (ALK) and its ligand pleiotrophin are required for the self-renewal and tumorigenicity of glioblastoma stem cells (GSCs). Furthermore, we demonstrate that pleiotrophin is transactivated directly by SOX2, a transcription factor essential for the maintenance of both neural stem cells and GSCs. We speculate that the pleiotrophin-ALK axis may be a promising target for the therapy of glioblastoma.

  13. [Radiation-induces increased tumor cell aggressiveness of tumors of the glioblastomas?].

    PubMed

    Falk, Alexander T; Moncharmont, Coralie; Guilbert, Matthieu; Guy, Jean-Baptiste; Alphonse, Gersende; Trone, Jane-Chloé; Rivoirard, Romain; Gilormini, Marion; Toillon, Robert-Alain; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2014-09-01

    Glioblastoma multiform is the most common and aggressive brain tumor with a worse prognostic. Ionizing radiation is a cornerstone in the treatment of glioblastome with chemo-radiation association being the actual standard. As a paradoxal effect, it has been suggested that radiotherapy could have a deleterious effect on local recurrence of cancer. In vivo studies have studied the effect of radiotherapy on biological modification and pathogenous effect of cancer cells. It seems that ionizing radiations with photon could activate oncogenic pathways in glioblastoma cell lines. We realized a review of the literature of photon-enhanced effect on invasion and migration of glioblastoma cells by radiotherapy.

  14. Growth factors from tumor microenvironment possibly promote the proliferation of glioblastoma-derived stem-like cells in vitro.

    PubMed

    Guo, JingJing; Niu, Rui; Huang, Wenhui; Zhou, Mengliang; Shi, Jixing; Zhang, Luyong; Liao, Hong

    2012-10-01

    Glioblastoma multiform is a lethal brain glial tumor characterized by low survival and high recurrence, partially attributed to the glioblastoma stem cells according to recent researches. Microenvironment or niche in tumor tissue is believed to provide essential support for the aberrant growth of tumor stem cells. In order to explore the effect of growth factors in tumor microenvironment on glioblastoma stem cells behavior, glioblastoma-derived stem-like cells (GDSCs) were isolated from adult human glioblastoma specimen with antibody against surface marker CD133 and were co-cultured with various tumor cells including U87MG cells, unsorted glioblastoma tumor cells, CD133(-) cells and normal rat primary astrocytes. Results suggested that tumor cells could promote GDSCs proliferation while non-tumor cells could not, and several growth factors were exclusively detected in the co-culture system with tumor cells. It was concluded that growth factors derived from tumor microenvironment possibly contributed to the uncontrolled proliferation of GDSCs.

  15. Inhibition of glioblastoma cell proliferation, migration and invasion by the proteasome antagonist carfilzomib.

    PubMed

    Areeb, Zammam; Stylli, Stanley S; Ware, Thomas M B; Harris, Nicole C; Shukla, Lipi; Shayan, Ramin; Paradiso, Lucia; Li, Bo; Morokoff, Andrew P; Kaye, Andrew H; Luwor, Rodney B

    2016-05-01

    Glioblastoma multiforme is the most aggressive and lethal tumor of the central nervous system with limited treatment strategies on offer, and as such the identification of effective novel therapeutic agents is paramount. To examine the efficacy of proteasome inhibitors, we tested bortezomib, carfilzomib, nafamostat mesylate, gabexate mesylate and acetylsalicylic acid on glioblastoma cell viability, migration and invasion. Both bortezomib and carfilzomib produced significant reduction of cell viability, while nafamostat mesylate, gabexate mesylate and acetylsalicylic acid did not. Subsequent testing showed that carfilzomib significantly reduced cell viability at nM concentrations. Carfilzomib also reduced cell migration, secretion and activation of MMP2 and also cell invasion of all four glioblastoma cells tested. In summary, carfilzomib represents a novel, yet FDA-approved agent for the treatment of glioblastoma multiforme.

  16. Radiosensitizing effect of PSMC5, a 19S proteasome ATPase, in H460 lung cancer cells.

    PubMed

    Yim, Ji-Hye; Yun, Hong Shik; Lee, Su-Jae; Baek, Jeong-Hwa; Lee, Chang-Woo; Song, Ji-Young; Um, Hong-Duck; Park, Jong Kuk; Kim, Jae-Sung; Park, In-Chul; Hwang, Sang-Gu

    2016-01-01

    The function of PSMC5 (proteasome 26S subunit, ATPase 5) in tumors, particularly with respect to cancer radioresistance, is not known. Here, we identified PSMC5 as a novel radiosensitivity biomarker, demonstrating that radiosensitive H460 cells were converted to a radioresistance phenotype by PSMC5 depletion. Exposure of H460 cells to radiation induced a marked accumulation of cell death-promoting reactive oxygen species, but this effect was blocked in radiation-treated H460 PSMC5-knockdown cells through downregulation of the p53-p21 pathway. Interestingly, PSMC5 depletion in H460 cells enhanced both AKT activation and MDM2 transcription, thereby promoting the degradation of p53 and p21 proteins. Furthermore, specific inhibition of AKT with triciribine or knockdown of MDM2 with small interfering RNA largely restored p21 expression in PSMC5-knockdown H460 cells. Our data suggest that PSMC5 facilitates the damaging effects of radiation in radiation-responsive H460 cancer cells and therefore may serve as a prognostic indicator for radiotherapy and molecular targeted therapy in lung cancer patients.

  17. Porfimer-sodium (Photofrin-II) in combination with ionizing radiation inhibits tumor-initiating cell proliferation and improves glioblastoma treatment efficacy

    PubMed Central

    Benayoun, Liat; Schaffer, Moshe; Bril, Rotem; Gingis-Velitski, Svetlana; Segal, Ehud; Nevelsky, Alexsander; Satchi-Fainaro, Ronit; Shaked, Yuval

    2013-01-01

    Tumor relapse and tumor cell repopulation has been explained partially by the drug-free break period between successive conventional treatments. Strategies to overcome tumor relapse have been proposed, such as the use of chemotherapeutic drugs or radiation in small, frequent fractionated doses without an extended break period between treatment intervals. Yet, tumors usually acquire resistance and eventually escape the therapy. Several mechanisms have been proposed to explain the resistance of tumors to therapy, one of which involves the cancer stem cell or tumor-initiating cell (TIC) concept. TICs are believed to resist many conventional therapies, in part due to their slow proliferation and self-renewal capacities. Therefore, emerging efforts to eradicate TICs are being undertaken. Here we show that treatment with Photofrin II, among the most frequently used photosensitizers, sensitized a TIC-enriched U-87MG human glioblastoma cell to radiation, and improve treatment outcome when used in combination with radiotherapy. A U-87MG tumor cell population enriched with radiation-resistant TICs becomes radio-sensitive, and an inhibition of cell proliferation and an increase in apoptosis are found in the presence of Photofrin II. Furthermore, U-87MG tumors implanted in mice treated with Photofrin II and radiation exhibit a significant reduction in angiogenesis and vasculogenesis, and an increased percentage of apoptotic TICs when compared with tumors grown in mice treated with radiation alone. Collectively, our results offer a new possible explanation for the therapeutic effects of radiosensitizing agents, and suggest that combinatorial treatment modalities can effectively prolong treatment outcome of glioblastoma tumors by inhibiting tumor growth mediated by TICs. PMID:23114641

  18. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo.

    PubMed

    Karpel-Massler, Georg; Banu, Matei A; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N; Canoll, Peter; Siegelin, Markus D

    2016-03-15

    It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective.

  19. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo

    PubMed Central

    Karpel-Massler, Georg; Banu, Matei A.; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N.; Canoll, Peter; Siegelin, Markus D.

    2016-01-01

    It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective. PMID:26872380

  20. Cell survival curve for primary hepatic carcinoma cells and relationship between SF2 of hepatic carcinoma cells and radiosensitivity

    PubMed Central

    Liu, Zhi-Zhong; Huang, Wen-Ying; Lin, Ju-Sheng; Li, Xiao-Sheng; Lan, Xiao; Cai, Xiao-Kun; Liang, Kuo-Huan; Zhou, Hai-Jun

    2005-01-01

    AIM: To establish the cell survival curve for primary hepatic carcinoma cells and to study the relationship between SF2 of primary hepatic carcinoma cells and radiosensitivity. METHODS: Hepatic carcinoma cells were cultured in vitro using 39 samples of hepatic carcinoma at stages II-IV. Twenty-nine samples were cultured successfully in the fifth generation cells. After these cells were radiated with different dosages, the cell survival ratio and SF2 were calculated by clonogenic assay and SF2 model respectively. The relationship between SF2 and the clinical pathological feature was analyzed. RESULTS: Twenty-nine of thirty-nine samples were successfully cultured. After X-ray radiation of the fifth generation cells with 0, 2, 4, 6, 8 Gy, the cell survival rate was 41%, 36.5%, 31.0%, 26.8%, and 19%, respectively. There was a negative correlation between cell survival and irradiation dosage (r = -0.973, P<0.05). SF2 ranged 0.28-0.78 and correlated with the clinical stage and pathological grade of hepatic carcinoma (P<0.05). There was a positive correlation between SF2 and D0.5 (r = 0.773, P<0.05). CONCLUSION: SF2 correlates with the clinical stage and pathological grade of hepatic carcinoma and is a marker for predicting the radiosensitivity of hepatic carcinomas. PMID:16437614

  1. Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles.

    PubMed

    Rima, Wael; Sancey, Lucie; Aloy, Marie-Thérèse; Armandy, Emma; Alcantara, Gustavo B; Epicier, Thierry; Malchère, Annie; Joly-Pottuz, Lucile; Mowat, Pierre; Lux, François; Tillement, Olivier; Burdin, Béatrice; Rivoire, Annie; Boulé, Christelle; Anselme-Bertrand, Isabelle; Pourchez, Jérémie; Cottier, Michèle; Roux, Stéphane; Rodriguez-Lafrasse, Claire; Perriat, Pascal

    2013-01-01

    Over the last few decades, nanoparticles have been studied in theranostic field with the objective of exhibiting a long circulation time through the body coupled to major accumulation in tumor tissues, rapid elimination, therapeutic potential and contrast properties. In this context, we developed sub-5 nm gadolinium-based nanoparticles that possess in vitro efficient radiosensitizing effects at moderate concentration when incubated with head and neck squamous cell carcinoma cells (SQ20B). Two main cellular internalization mechanisms were evidenced and quantified: passive diffusion and macropinocytosis. Whereas the amount of particles internalized by passive diffusion is not sufficient to induce in vitro a significant radiosensitizing effect, the cellular uptake by macropinocytosis leads to a successful radiotherapy in a limited range of particles incubation concentration. Macropinocytosis processes in two steps: formation of agglomerates at vicinity of the cell followed by their collect via the lamellipodia (i.e. the "arms") of the cell. The first step is strongly dependent on the physicochemical characteristics of the particles, especially their zeta potential that determines the size of the agglomerates and their distance from the cell. These results should permit to control the quantity of particles internalized in the cell cytoplasm, promising ambitious opportunities towards a particle-assisted radiotherapy using lower radiation doses.

  2. Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone.

    PubMed

    Piccirillo, Sara G M; Spiteri, Inmaculada; Sottoriva, Andrea; Touloumis, Anestis; Ber, Suzan; Price, Stephen J; Heywood, Richard; Francis, Nicola-Jane; Howarth, Karen D; Collins, Vincent P; Venkitaraman, Ashok R; Curtis, Christina; Marioni, John C; Tavaré, Simon; Watts, Colin

    2015-01-01

    Glioblastoma, the most common and aggressive adult brain tumor, is characterized by extreme phenotypic diversity and treatment failure. Through fluorescence-guided resection, we identified fluorescent tissue in the sub-ependymal zone (SEZ) of patients with glioblastoma. Histologic analysis and genomic characterization revealed that the SEZ harbors malignant cells with tumor-initiating capacity, analogous to cells isolated from the fluorescent tumor mass (T). We observed resistance to supramaximal chemotherapy doses along with differential patterns of drug response between T and SEZ in the same tumor. Our results reveal novel insights into glioblastoma growth dynamics, with implications for understanding and limiting treatment resistance.

  3. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer.

    PubMed

    Sears, Catherine R; Cooney, Sean A; Chin-Sinex, Helen; Mendonca, Marc S; Turchi, John J

    2016-04-01

    Non-small cell lung cancers (NSCLC) are commonly treated with a platinum-based chemotherapy such as cisplatin (CDDP) in combination with ionizing radiation (IR). Although clinical trials have demonstrated that the combination of CDDP and IR appear to be synergistic in terms of therapeutic efficacy, the mechanism of synergism remains largely uncharacterized. We investigated the role of the DNA damage response (DDR) in CDDP radiosensitization using two NSCLC cell lines. Using clonogenic survival assays, we determined that the cooperative cytotoxicity of CDDP and IR treatment is sequence dependent, requiring administration of CDDP prior to IR (CDDP-IR). We identified and interrogated the unique time and agent-dependent activation of the DDR in NSCLC cells treated with cisplatin-IR combination therapy. Compared to treatment with CDDP or IR alone, CDDP-IR combination treatment led to persistence of γH2Ax foci, a marker of DNA double-strand breaks (DSB), for up to 24h after treatment. Interestingly, pharmacologic inhibition of DDR sensor kinases revealed the persistence of γ-H2Ax foci in CDDP-IR treated cells is independent of kinase activation. Taken together, our data suggest that delayed repair of DSBs in NSCLC cells treated with CDDP-IR contributes to CDDP radiosensitization and that alterations of the DDR pathways by inhibition of specific DDR kinases can augment CDDP-IR cytotoxicity by a complementary mechanism.

  4. Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells.

    PubMed

    Babar, Imran A; Czochor, Jennifer; Steinmetz, Allison; Weidhaas, Joanne B; Glazer, Peter M; Slack, Frank J

    2011-11-15

    miR-155 is a prominent microRNA (miRNA) that regulates genes involved in immunity and cancer-related pathways. miR-155 is overexpressed in lung cancer, which correlates with poor patient prognosis. It is unclear how miR-155 becomes increased in lung cancers and how this increase contributes to reduced patient survival. Here, we show that hypoxic conditions induce miR-155 expression in lung cancer cells and trigger a corresponding decrease in a validated target, FOXO3A. Furthermore, we find that increased levels of miR-155 radioprotects lung cancer cells, while inhibition of miR-155 radiosensitizes these cells. Moreover, we reveal a therapeutically important link between miR-155 expression, hypoxia, and irradiation by demonstrating that anti-miR-155 molecules also sensitize hypoxic lung cancer cells to irradiation. Our study helps explain how miR-155 becomes elevated in lung cancers, which contain extensive hypoxic microenvironments, and demonstrates that inhibition of miR-155 may have important therapeutic potential as a means to radiosensitize hypoxic lung cancer cells.

  5. Enhancing radiosensitization in EphB4 receptor-expressing Head and Neck Squamous Cell Carcinomas

    PubMed Central

    Bhatia, Shilpa; Hirsch, Kellen; Sharma, Jaspreet; Oweida, Ayman; Griego, Anastacia; Keysar, Stephen; Jimeno, Antonio; Raben, David; Krasnoperov, Valery; Gill, Parkash S.; Pasquale, Elena B.; Wang, Xiao-Jing; Karam, Sana D.

    2016-01-01

    Members of the Eph family of receptor tyrosine kinases have been implicated in a wide array of human cancers. The EphB4 receptor is ubiquitously expressed in head and neck squamous cell carcinoma (HNSCC) and has been shown to impart tumorigenic and invasive characteristics to these cancers. In this study, we investigated whether EphB4 receptor targeting can enhance the radiosensitization of HNSCC. Our data show that EphB4 is expressed at high to moderate levels in HNSCC cell lines and patient-derived xenograft (PDX) tumors. We observed decreased survival fractions in HNSCC cells following EphB4 knockdown in clonogenic assays. An enhanced G2 cell cycle arrest with activation of DNA damage response pathway and increased apoptosis was evident in HNSCC cells following combined EphB4 downregulation and radiation compared to EphB4 knockdown and radiation alone. Data using HNSCC PDX models showed significant reduction in tumor volume and enhanced delay in tumor regrowth following sEphB4-HSA administration with radiation compared to single agent treatment. sEphB4-HSA is a protein known to block the interaction between the EphB4 receptor and its ephrin-B2 ligand. Overall, our findings emphasize the therapeutic relevance of EphB4 targeting as a radiosensitizer that can be exploited for the treatment of human head and neck carcinomas. PMID:27941840

  6. Relating Intercellular Variability in Nanoparticle Uptake with Biological Consequence: A Quantitative X-ray Fluorescence Study for Radiosensitization of Cells.

    PubMed

    Turnbull, Tyron; Douglass, Michael; Paterson, David; Bezak, Eva; Thierry, Benjamin; Kempson, Ivan

    2015-11-03

    Internalized gold nanoparticles were quantified in large numbers of individual prostate cancer cells using large area synchrotron X-ray fluorescence microscopy. Cells were also irradiated with a 6 MV linear accelerator to assess the biological consequence of radiosensitization with gold nanoparticles. A large degree of heterogeneity in nanoparticle uptake between cells resulted in influenced biological effect.

  7. Boswellic acid activity against glioblastoma stem-like cells

    PubMed Central

    SCHNEIDER, HANNAH; WELLER, MICHAEL

    2016-01-01

    Boswellic acids (BAs) have long been considered as useful adjunct pharmacological agents for the treatment of patients with malignant brain tumors, notably glioblastoma. Two principal modes of action associated with BAs have been postulated: i) Anti-inflammatory properties, which are useful for containing edema formation, and ii) intrinsic antitumor cell properties, with a hitherto ill-defined mode of action. The present study assessed the effects of various BA derivatives on the viability and clonogenicity of a panel of nine long-term glioma cell lines and five glioma-initiating cell lines, studied cell cycle progression and the mode of cell death induction, and explored potential synergy with temozolomide (TMZ) or irradiation. BA induced the concentration-dependent loss of viability and clonogenicity that was independent of tumor protein 53 status and O6-methylguanine DNA methyltransferase expression. The treatment of glioma cells with BA resulted in cell death induction, prior to or upon S phase entry, and exhibited features of apoptotic cell death. Synergy with irradiation or TMZ was detected at certain concentrations; however, the inhibitory effects were mostly additive, and never antagonistic. While the intrinsic cytotoxic properties of BA at low micromolecular concentrations were confirmed and the potential synergy with irradiation and TMZ was identified, the proximate pharmacodynamic target of BA remains to be identified. PMID:27313764

  8. Exosome Proteome of U-87MG Glioblastoma Cells

    PubMed Central

    Chun, Sohyun; Ahn, Seunghyun; Yeom, Chang-Hwan; Park, Seyeon

    2016-01-01

    Exosomes are small membrane vesicles between 30 and 100 nm in diameter secreted by many cell types, and are associated with a wide range of physiological and/or pathological processes. Exosomes containing proteins, lipids, mRNA, and microRNA contribute to cell-to-cell communication and cell-to-environment regulation, however, their biological functions are not yet fully understood. In this report, exosomes in the glioblastoma cell line, U-87MG, were isolated and the proteome was investigated. In addition, exosome proteome changes in U-87MG cells exposed to a low temperature were investigated to elucidate whether the exosome proteome could respond to an external stimulus. Cell culture medium was collected, and exosomes were isolated by continuous centrifugation eliminating cell debris, nucleic acids, and other particles. The morphology of exosomes was observed by cryo-tunneling electron microscopy. According to 2-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, certain proteins including collagen type VI alpha 1, putative RNA-binding protein 15B chain A, substrate induced remodeling of the active site regulates HTRA1, coatomer protein complex-subunit beta 2, myosin-heavy chain 1, and keratin-type I cytoskeletal 9 showed differences between the control proteome and the low temperature-exposed proteome. PMID:27929413

  9. Chromosomal radiosensitivity during the G2 cell-cycle period of skin fibroblasts from individuals with familial cancer

    SciTech Connect

    Parshad, R.; Sanford, K.K.; Jones, G.M.

    1985-08-01

    The authors reported previously that human cells after neoplastic transformation in culture had acquired an increased susceptibility to chromatid damage induced by x-irradiation during the G2 phase of the cell cycle. Evidence suggested that this results from deficient DNA repair during G2 phase. Cells derived from human tumors also showed enhanced G2-phase chromosomal radiosensitivity. Furthermore, skin fibroblasts from individuals with genetic diseases predisposing to a high risk of cancer, including ataxia-telangiectasia, Bloom syndrome, Fanconi anemia, and xeroderma pigmentosum exhibited enhanced G2-phase chromosomal radiosensitivity. The present study shows that apparently normal skin fibroblasts from individuals with familial cancer--i.e., from families with a history of neoplastic disease--also exhibit enhanced G2-phase chromosomal radiosensitivity. This radiosensitivity appears, therefore, to be associated with both a genetic predisposition to cancer and a malignant neoplastic state. Furthermore, enhanced G2-phase chromosomal radiosensitivity may provide the basis for an assay to detect genetic susceptibility to cancer.

  10. Immunosuppression by hypoxic cell radiosensitizers: a phenomenon of potential clinical importance

    SciTech Connect

    Rockwell, S.; Kapp, D.S.

    1982-06-01

    The nitroimidazoles metronidazole, misonidazol, and desmethyl misonidazole are currently undergoing clinical trials as possible adjuncts to radiotherapy. Ongoing clinical trials are evaluating the effectiveness of these agents and also documenting the pharmacokinetics and toxicities of radiosensitizing doses of these drugs in man. A variety of toxic effects have been noted in man, including anorexia, nausea and vomiting, peripheral neuropathy, central nervous system symptoms, ototoxicity, allergy, and fear. Laboratory studies have also suggested that these agents have potential to be mutagenic, carcinogenic, and teratogenic. In the editorial presented, the author attempts to draw attention to an additional toxic effect of nitroimidazoles - the inhibition of cell-mediated immune responses. (JMT)

  11. Identification of Novel Radiosensitizers in a High-Throughput, Cell-Based Screen for DSB Repair Inhibitors

    PubMed Central

    Goglia, Alexander G.; Delsite, Robert; Luz, Antonio N.; Shahbazian, David; Salem, Ahmed F.; Sundaram, Ranjini K.; Chiaravalli, Jeanne; Hendrikx, Petrus J.; Wilshire, Jennifer A.; Jasin, Maria; Kluger, Harriet; Glickman, J. Fraser; Powell, Simon N.; Bindra, Ranjit S.

    2014-01-01

    Most cancer therapies involve a component of treatment which inflicts DNA damage in tumor cells, such as double-strand breaks (DSBs), which are considered the most serious threat to genomic integrity. Complex systems have evolved to repair these lesions, and successful DSB repair is essential for tumor cell survival after exposure to ionizing radiation (IR) and other DNA damaging agents. As such, inhibition of DNA repair is a potentially efficacious strategy for chemo- and radio-sensitization. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) represent the two major pathways by DSBs are repaired in mammalian cells. Here, we report the design and execution of a high-throughput, cell-based small molecule screen for novel DSB repair inhibitors. We miniaturized our recently developed dual NHEJ and HR reporter system into a 384-well plate-based format and interrogated a diverse library of 20,000 compounds for molecules which selectively modulate NHEJ and HR repair in tumor cells. We identified a collection of novel hits which potently inhibit DSB repair, and we have validated their functional activity in comprehensive panel of orthogonal secondary assays. A selection of these inhibitors were found to radiosensitize cancer cell lines in vitro, which suggests they may be useful as novel chemo- and radio-sensitizers. Surprisingly, we identified several FDA-approved drugs, including the calcium channel blocker, mibefradil dihydrochloride, which demonstrated activity as DSB repair inhibitors and radiosensitizers. These findings suggest the possibility for repurposing them as tumor cell radiosensitizers in the future. Accordingly, we recently initiated a Phase I clinical trial testing mibefradil as glioma radiosensitizer. PMID:25512618

  12. Radiosensitization of Prostate Tumor Cells by Prenyltransferase Inhibitors

    DTIC Science & Technology

    1999-10-01

    and predicts a positive effect on the response to radiotherapy. Reportable Outcomes: 1. Development of new cell lines derived from immortalized human ...548-552. 14 Employment 1993 - 1996 Biologist, Laboratory of Mammalian Genes and Development , National Institute of Child Health and Human ...the use of prenyltransferase inhibitors. We have examined both rodent and human prostate tumor cell lines in vitro and determined that radiation

  13. Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates

    SciTech Connect

    Michaels, H.B.; Ling, C.C.; Epp, E.R.; Peterson, E.C.

    1981-03-01

    When CHO cells, equilibrated with 0.44% oxygen, are irradiated with single 3-nsec pulses of electrons from a 600-kV-field emission source, a breaking survival curve is observed. The breaking behavior, believed to be the result of radiolytic oxygen depletion, can be prevented by the presence of a relatively low concentration of the hypoxic cell sensitizer misonidazole; similar results are obtained with metronidazole and Ro-05-9963. The resulting survival curves exhibit a sensitized response similar to that obtained with conventional dose rate radiation for CHO cells under this oxygen concentration. This degree of sensitization is greater than that observed for CHO cells irradiated at ultrahigh dose rates under the same concentration of sensitizer in nitrogen. The data suggest that the nitroimidazole compounds interfere with the radiation chemical oxygen depletion process and that the radiosensitization observed in the nonbreaking survival curve is the consequence of sensitization by both the nitroimidazole and, primarily, the oxygen rather than a direct subsitution for oxygen by the sensitizer. This conclusion is also supported by data obtained in double-pulse experiments. The results are discussed with regard to the mechanisms of the oxygen depletion process and radiosensitization.

  14. EGFR Amplification and Glioblastoma Stem-Like Cells

    PubMed Central

    Liffers, Katrin; Lamszus, Katrin

    2015-01-01

    Glioblastoma (GBM), the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like phenotype (GS-cells). GS-cells can be maintained in vitro using serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth Factor Receptor (EGFR) gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retained EGFR amplification could overcome the limitations of current in vitro model systems and contribute significantly to preclinical research on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with different EGFR status in order to maintain EGFR-dependent intratumoral heterogeneity in vitro. Further, it will summarize the current knowledge about the impact of EGFR amplification and overexpression on the stem-like phenotype of GBM-derived GS-cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM. PMID:26136784

  15. Selection of DNA Aptamers against Glioblastoma Cells with High Affinity and Specificity

    PubMed Central

    Kang, Dezhi; Wang, Jiangjie; Zhang, Weiyun; Song, Yanling; Li, Xilan; Zou, Yuan; Zhu, Mingtao; Zhu, Zhi; Chen, Fuyong; Yang, Chaoyong James

    2012-01-01

    Background Glioblastoma is the most common and most lethal form of brain tumor in human. Unfortunately, there is still no effective therapy to this fatal disease and the median survival is generally less than one year from the time of diagnosis. Discovery of ligands that can bind specifically to this type of tumor cells will be of great significance to develop early molecular imaging, targeted delivery and guided surgery methods to battle this type of brain tumor. Methodology/Principal Findings We discovered two target-specific aptamers named GBM128 and GBM131 against cultured human glioblastoma cell line U118-MG after 30 rounds selection by a method called cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX). These two aptamers have high affinity and specificity against target glioblastoma cells. They neither recognize normal astraglial cells, nor do they recognize other normal and cancer cell lines tested. Clinical tissues were also tested and the results showed that these two aptamers can bind to different clinical glioma tissues but not normal brain tissues. More importantly, binding affinity and selectivity of these two aptamers were retained in complicated biological environment. Conclusion/Significance The selected aptamers could be used to identify specific glioblastoma biomarkers. Methods of molecular imaging, targeted drug delivery, ligand guided surgery can be further developed based on these ligands for early detection, targeted therapy, and guided surgery of glioblastoma leading to effective treatment of glioblastoma. PMID:23056171

  16. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells

    PubMed Central

    Huayin, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-01-01

    Background The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. Material/Methods A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. Results Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. Conclusions KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms. PMID:28002389

  17. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells.

    PubMed

    Huaying, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-12-21

    BACKGROUND The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. MATERIAL AND METHODS A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. RESULTS Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. CONCLUSIONS KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms.

  18. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: an in vitro study

    PubMed Central

    Rezaee, Zohre; Yadollahpour, Ali; Bayati, Vahid; Negad Dehbashi, Fereshteh

    2017-01-01

    Background and objective Radiation therapy (RT) is the gold standard treatment for more than half of known tumors. Despite recent improvements in RT efficiency, the side effects of ionizing radiation (IR) in normal tissues are a dose-limiting factor that restricts higher doses in tumor treatment. One approach to enhance the efficiency of RT is the application of radiosensitizers to selectively increase the dose at the tumor site. Gold nanoparticles (GNPs) and electroporation (EP) have shown good potential as radiosensitizers for RT. This study aims to investigate the sensitizing effects of EP, GNPs, and combined GNPs-EP on the dose enhancement factor (DEF) for 6 MV photon energy. Methods Radiosensitizing effects of EP, GNPs, and combinations of GNPs-EP were comparatively investigated in vitro for intestinal colon cancer (HT-29) and Chinese hamster ovary (CHO) cell lines by MTT assay and colony formation assay at 6 MV photon energy in six groups: IR (control group), GNPs+IR, GNPs (24 h)+IR, EP+IR, GNPs+EP+IR, and GNPs (24 h)+EP+IR. Results Treatment of both cell lines with EP, GNPs, and combined GNPs-EP significantly enhanced the response of cells to irradiation. However, the HT-29 showed higher DEF values for all groups. In addition, the DEF value for HT-29 cells for GNPs+IR, GNPs (24 h)+IR, EP+IR, GNPs+EP+IR, and GNPs (24 h)+EP+IR was, respectively, 1.17, 1.47, 1.36, 2.61, and 2.89, indicating synergistic radiosensitizing effect for the GNPs (24 h)+EP+IR group. Furthermore, the synergistic effect was observed just for HT-29 tumor cell lines. Conclusion Combined GNPs-EP protocols induced synergistic radiosensitizing effect in HT-29 cells, and the effect is also tumor specific. This combined therapy can be beneficially used for the treatment of intrinsically less radiosensitive tumors. PMID:28260889

  19. Glioblastoma: A Pathogenic Crosstalk between Tumor Cells and Pericytes

    PubMed Central

    Redondo-Garcia, Carolina; Martinez, Salvador

    2014-01-01

    Cancers likely originate in progenitor zones containing stem cells and perivascular stromal cells. Much evidence suggests stromal cells play a central role in tumor initiation and progression. Brain perivascular cells (pericytes) are contractile and function normally to regulate vessel tone and morphology, have stem cell properties, are interconvertible with macrophages and are involved in new vessel formation during angiogenesis. Nevertheless, how pericytes contribute to brain tumor infiltration is not known. In this study we have investigated the underlying mechanism by which the most lethal brain cancer, Glioblastoma Multiforme (GBM) interacts with pre-existing blood vessels (co-option) to promote tumor initiation and progression. Here, using mouse xenografts and laminin-coated silicone substrates, we show that GBM malignancy proceeds via specific and previously unknown interactions of tumor cells with brain pericytes. Two-photon and confocal live imaging revealed that GBM cells employ novel, Cdc42-dependent and actin-based cytoplasmic extensions, that we call flectopodia, to modify the normal contractile activity of pericytes. This results in the co-option of modified pre-existing blood vessels that support the expansion of the tumor margin. Furthermore, our data provide evidence for GBM cell/pericyte fusion-hybrids, some of which are located on abnormally constricted vessels ahead of the tumor and linked to tumor-promoting hypoxia. Remarkably, inhibiting Cdc42 function impairs vessel co-option and converts pericytes to a phagocytic/macrophage-like phenotype, thus favoring an innate immune response against the tumor. Our work, therefore, identifies for the first time a key GBM contact-dependent interaction that switches pericyte function from tumor-suppressor to tumor-promoter, indicating that GBM may harbor the seeds of its own destruction. These data support the development of therapeutic strategies directed against co-option (preventing incorporation and

  20. PPARα Antagonist AA452 Triggers Metabolic Reprogramming and Increases Sensitivity to Radiation Therapy in Human Glioblastoma Primary Cells.

    PubMed

    Benedetti, Elisabetta; d'Angelo, Michele; Ammazzalorso, Alessandra; Gravina, Giovanni Luca; Laezza, Chiara; Antonosante, Andrea; Panella, Gloria; Cinque, Benedetta; Cristiano, Loredana; Dhez, Anne Chloè; Astarita, Carlo; Galzio, Renato; Cifone, Maria Grazia; Ippoliti, Rodolfo; Amoroso, Rosa; Di Cesare, Ernesto; Giordano, Antonio; Cimini, Annamaria

    2017-06-01

    Glioblastoma (GB) is the most common cancer in the brain and with an increasing incidence. Despite major advances in the field, there is no curative therapy for GB to date. Many solid tumors, including GB, experienced metabolic reprogramming in order to sustain uncontrolled proliferation, hypoxic conditions, and angiogenesis. PPARs, member of the steroid hormone receptor superfamily, are particularly involved in the control of energetic metabolism, particularly lipid metabolism, which has been reported deregulated in gliomas. PPARα was previously indicated by us as a potential therapeutic target for this neoplasm, due to the malignancy grade dependency of its expression, being particularly abundant in GB. In this work, we used a new PPARα antagonist on patient-derived GB primary cells, with particular focus on the effects on lipid metabolism and response to radiotherapy. The results obtained demonstrated that blocking PPARα results in cell death induction, increase of radiosensitivity, and decrease of migration. Therefore, AA452 is proposed as a new adjuvant for the gold standard therapies for GB, opening the possibility for preclinical and clinical trials for this class of compounds. J. Cell. Physiol. 232: 1458-1466, 2017. © 2016 Wiley Periodicals, Inc.

  1. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis

    PubMed Central

    Kim, Eun Ho; Song, Hyo Sook; Yoo, Seung Hoon; Yoon, Myonggeun

    2016-01-01

    Treatment with alternating electric fields at an intermediate frequency (100–300 kHz), referred to as tumor treating fields (TTF) therapy, inhibits cancer cell proliferation. In the present study, we demonstrated that TTF application suppressed the metastatic potential of U87 and U373 glioblastoma cell lines via the NF-kB, MAPK and PI3K/AKT signaling pathways. Wound-healing and transwell assays showed that TTF suppressed cell migration and invasion compared with controls. Soft agar and three-dimensional culture assays showed that TTF inhibited both anchorage-dependent (cell proliferation) and anchorage-independent (colony formation) GBM cell growth. TTF dysregulated epithelial-to-mesenchymal transition-related genes, such as vimentin and E-cadherin, which partially accounted for TTF inhibition of cell migration and invasion. We further demonstrated that TTF application suppressed angiogenesis by downregulating VEGF, HIF1α and matrix metalloproteinases 2 and 9. TTF also inhibited NF-kB transcriptional activity. Collectively, our findings show that TTF represents a promising novel anti-invasion and anti-angiogenesis therapeutic strategy for use in GBM patients. PMID:27556184

  2. Annexin 2A sustains glioblastoma cell dissemination and proliferation

    PubMed Central

    Maule, Francesca; Bresolin, Silvia; Rampazzo, Elena; Boso, Daniele; Puppa, Alessandro Della; Esposito, Giovanni; Porcù, Elena; Mitola, Stefania; Lombardi, Giuseppe; Accordi, Benedetta; Tumino, Manuela; Basso, Giuseppe; Persano, Luca

    2016-01-01

    Glioblastoma (GBM) is the most devastating tumor of the brain, characterized by an almost inevitable tendency to recur after intensive treatments and a fatal prognosis. Indeed, despite recent technical improvements in GBM surgery, the complete eradication of cancer cell disseminated outside the tumor mass still remains a crucial issue for glioma patients management. In this context, Annexin 2A (ANXA2) is a phospholipid-binding protein expressed in a variety of cell types, whose expression has been recently associated with cell dissemination and metastasis in many cancer types, thus making ANXA2 an attractive putative regulator of cell invasion also in GBM. Here we show that ANXA2 is over-expressed in GBM and positively correlates with tumor aggressiveness and patient survival. In particular, we associate the expression of ANXA2 to a mesenchymal and metastatic phenotype of GBM tumors. Moreover, we functionally characterized the effects exerted by ANXA2 inhibition in primary GBM cultures, demonstrating its ability to sustain cell migration, matrix invasion, cytoskeletal remodeling and proliferation. Finally, we were able to generate an ANXA2-dependent gene signature with a significant prognostic potential in different cohorts of solid tumor patients, including GBM. In conclusion, we demonstrate that ANXA2 acts at multiple levels in determining the disseminating and aggressive behaviour of GBM cells, thus proving its potential as a possible target and strong prognostic factor in the future management of GBM patients. PMID:27429043

  3. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels

    PubMed Central

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P.; Reynolds, Brent A.; Lei, Yuguo

    2016-01-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery. PMID:27549983

  4. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P.; Reynolds, Brent A.; Lei, Yuguo

    2016-08-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery.

  5. A Zebrafish Live Imaging Model Reveals Differential Responses of Microglia Toward Glioblastoma Cells In Vivo

    PubMed Central

    Hamilton, Lloyd; Astell, Katy R.; Velikova, Gergana

    2016-01-01

    Abstract Glioblastoma multiforme is the most common and deadliest form of brain cancer. Glioblastomas are infiltrated by a high number of microglia, which promote tumor growth and surrounding tissue invasion. However, it is unclear how microglia and glioma cells physically interact and if there are differences, depending on glioma cell type. Hence, we have developed a novel live imaging assay to study microglia–glioma interactions in vivo in the zebrafish brain. We transplanted well-established human glioblastoma cell lines, U87 and U251, into transgenic zebrafish lines with labelled macrophages/microglia. Our confocal live imaging results show distinct interactions between microglia and U87, as well as U251 glioblastoma cells that differ in number and nature. Importantly these interactions do not appear to be antitumoral as zebrafish microglia do not engulf and phagocytose the human glioblastoma cells. Finally, xenotransplants into the irf8−/− zebrafish mutant that lacks microglia, as well as pharmacological inhibition of the CSF-1 receptor (CSF-1R) on microglia, confirm a prominent role for zebrafish microglia in promoting human glioblastoma cell growth. This new model will be an important tool for drug screening and the development of future immunotherapeutics targeting microglia within glioma. PMID:27779463

  6. Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide

    PubMed Central

    Murphy, Susan F; Varghese, Robin T; Lamouille, Samy; Guo, Sujuan; Pridham, Kevin J; Kanabur, Pratik; Osimani, Alyssa M; Sharma, Shaan; Jourdan, Jane; Rodgers, Cara M; Simonds, Gary R; Gourdie, Robert G; Sheng, Zhi

    2015-01-01

    Resistance of glioblastoma (GBM) to the front-line chemotherapeutic agent temozolomide (TMZ) continues to challenge GBM treatment efforts. The repair of TMZ-induced DNA damage by O-6-methylguanine-DNA methyltransferase (MGMT) confers one mechanism of TMZ resistance. Paradoxically, MGMT-deficient GBM patients survive longer despite still developing resistance to TMZ. Recent studies indicate that the gap junction protein connexin 43 (Cx43) renders GBM cells resistant to TMZ through its carboxyl terminus (CT). In this study, we report insights into how Cx43 promotes TMZ resistance. Cx43 levels were inversely correlated with TMZ sensitivity of GBM cells, including GBM stem cells. Moreover, Cx43 levels inversely correlated with patient survival, including as observed in MGMT-deficient GBM patients. Addition of the C-terminal peptide mimetic αCT1, a selective inhibitor of Cx43 channels, sensitized human MGMT-deficient and TMZ-resistant GBM cells to TMZ treatment. Moreover, combining αCT1 with TMZ blocked AKT/mTOR signaling, induced autophagy and apoptosis in TMZ-resistant GBM cells. Our findings suggest that Cx43 may offer a biomarker to predict the survival of patients with MGMT-independent TMZ resistance, and that combining a Cx43 inhibitor with TMZ could enhance therapeutic responses in GBM and perhaps other TMZ-resistant cancers. PMID:26542214

  7. Stereotactic Ablative Radiotherapy Should Be Combined With a Hypoxic Cell Radiosensitizer

    SciTech Connect

    Brown, J. Martin; Diehn, Maximilian; Loo, Billy W.

    2010-10-01

    Purpose: To evaluate the effect of tumor hypoxia on the expected level of cell killing by regimens of stereotactic ablative radiotherapy (SABR) and to determine the extent to which the negative effect of hypoxia could be prevented using a clinically available hypoxic cell radiosensitizer. Results and Discussion: We have calculated the expected level of tumor cell killing from regimens of SABR, both with and without the assumption that 20% of the tumor cells are hypoxic, using the standard linear quadratic model and the universal survival curve modification. We compare the results obtained with our own clinical data for lung tumors of different sizes and with published data from other studies. We also have calculated the expected effect on cell survival of adding the hypoxic cell sensitizer etanidazole at clinically achievable drug concentrations. Modeling tumor cell killing with any of the currently used regimens of SABR produces results that are inconsistent with the majority of clinical findings if tumor hypoxia is not considered. However, with the assumption of tumor hypoxia, the expected level of cell killing is consistent with clinical data. For only some of the smallest tumors are the clinical data consistent with no tumor hypoxia, but there could be other reasons for the sensitivity of these tumors. The addition of etanidazole at clinically achievable tumor concentrations produces a large increase in the expected level of tumor cell killing from the large radiation doses used in SABR. Conclusions: The presence of tumor hypoxia is a major negative factor in limiting the curability of tumors by SABR at radiation doses that are tolerable to surrounding normal tissues. However, this negative effect of hypoxia could be overcome by the addition of clinically tolerable doses of the hypoxic cell radiosensitizer etanidazole.

  8. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    SciTech Connect

    Aloy, Marie-Therese Hadchity, Elie; Bionda, Clara; Diaz-Latoud, Chantal; Claude, Line; Rousson, Robert; Arrigo, Andre-Patrick; Rodriguez-Lafrasse, Claire

    2008-02-01

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively or in response to {gamma}-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors.

  9. miR-195 enhances the radiosensitivity of colorectal cancer cells by suppressing CARM1

    PubMed Central

    Zheng, Li; Chen, Jiangtao; Zhou, Zhongyong; He, Zhikuan

    2017-01-01

    Background microRNAs (miRNAs) can regulate the sensitivity of cancer cells to chemotherapy and radiotherapy. Aberrant expression of miR-195 has been found to be involved in colorectal cancer (CRC); however, its function and underlying mechanism in the radioresistance of CRC remains unclear. Methods The levels of miR-195 and CARM1 were detected by quantitative reverse transcription-polymerase chain reaction and Western blot analysis in HCT-116 and HT-29 cells, respectively. Colony survival and apoptosis were determined by clonogenic assay and flow cytometry analysis, respectively. The apoptosis-related proteins Bax, Bcl-2, and γ-H2AX were detected using Western blot. The targets of miR-195 were identified by bioinformatic prediction and luciferase reporter assays. CRC cells in vitro and in vivo were exposed to different doses of X-ray radiations. Results miR-195 was downregulated, and CARM1 was upregulated in HCT-116 and HT-29 cells. miR-195 overexpression or CARM1 knockdown suppressed colony survival, induced apoptosis, promoted expression of Bax and γ-H2AX, and inhibited Bcl-2 expression in CRC cells. CARM1 was identified and validated to be a functional target of miR-195. Moreover, restored expression of CARM1 reversed the enhanced radiosensitivity of CRC cells induced by miR-195. Furthermore, miR-195 increased the sensitivity of CRC cells to radiation in vivo. Conclusion miR-195 enhances radiosensitivity of CRC cells through suppressing CARM1. Therefore, miR-195 acts as a potential regulator of radioresistance for CRC cells and as a promising therapeutic target for CRC patients. PMID:28255246

  10. Prediction of cellular radiosensitivity from DNA damage induced by gamma-rays and carbon ion irradiation in canine tumor cells.

    PubMed

    Wada, Seiichi; Van Khoa, Tran; Kobayashi, Yasuhiko; Funayama, Tomoo; Ogihara, Kikumi; Ueno, Shunji; Ito, Nobuhiko

    2005-11-01

    Diseases of companion animals are shifting from infectious diseases to neoplasms (cancer), and since radiation therapy is one of the effective choices available for cancer treatment, the application of radiotherapy in veterinary medicine is likely to increase. However tumor tissues have different radiosensitivities, and therefore it is important to determine the intrinsic radiosensitivity of tumors in individual patients in advance of radiotherapy. We have studied the relationship between the surviving cell fraction measured by a clonogenic assay and DNA double strand breaks detected by a comet assay under neutral conditions in three canine tumor cell lines, after gamma-ray and carbon ion irradiation. In all the cell lines, cell death assessed by the clonogenic assay was much higher following irradiation with carbon ions than with gamma-rays. The initial and residual (4 hr) DNA damage due to gamma-ray and carbon ion irradiation were higher in a radiosensitive cell line than in a radioresistant cell line. The surviving cell fraction at 2 Gy (SF2) showed a tendency for correlation with both the initial and residual DNA damage. In particular, the residual damage per Gy was significantly correlated with SF2, regardless of the type of radiation. This indicates that cellular radiosensitivity can be predicted by detection of radiation-induced residual DNA damage.

  11. Relationship between genetic polymorphisms of DNA ligase 1 and non-small cell lung cancer susceptibility and radiosensitivity.

    PubMed

    Tian, H; He, X; Yin, L; Guo, W J; Xia, Y Y; Jiang, Z X

    2015-06-26

    The aim of this study was to examine the relationship between genetic polymorphisms in DNA ligase 1 (LIG1) and non-small cell lung cancer (NSCLC) susceptibility and radiosensitivity in a Chinese population. This was a case-control study that included 352 NSCLC patients and 448 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism analysis was conducted to detect HaeIII polymorphisms in exon 6 of the LIG1 gene in this popula-tion. This information was used to observe the effects of radiation in pa-tients with different genotypes in order to determine the genotypes as-sociated with radiosensitivity. The CC genotype and C allele frequency were significantly higher in the NSCLC group than in the control group (P = 0.012 and P = 0.023, respectively). The relative risk of experienc-ing NSCLC was 2.55 [95% confidence interval (CI), 1.12-3.98] for CC homozygous patients and 0.87 (95%CI, 0.46-1.88) for AA homozygous patients. Analysis of LIG1 genetic polymorphisms and radiosensitiv-ity of NSCLC patients showed that AA homozygous patients were sig-nificantly more radiosensitive than the control group (AA vs AC, P = 0.014; AA vs CC, P < 0.001; AC vs CC, P = 0.023). Therefore, the LIG1 CC genotype was associated with susceptibility to NSCLC, and the AA genotype demonstrated increased radiosensitivity compared to the AC and CC genotypes.

  12. N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial-mesenchymal transition.

    PubMed

    Huang, Chunyue; Huang, Miaojuan; Chen, Wenxia; Zhu, Weiliang; Meng, Hui; Guo, Linlang; Wei, Ting; Zhang, Jian

    2015-11-01

    N-acetylglucosaminyltransferase V (Gnt-V) has been linked to the migration of various human cancers. Recently we have found that inhibition of Gnt-V increases the radiosensitivity of cancer cells. However, the mechanisms by which Gnt-V mediates radiosensitivity and migration, especially in small cell lung cancer (SCLC) remain unknown. In our study, two SCLC cell lines (H1688 and H146) were used to investigate whether Gnt-V modulated the radiosensitivity and migration of SCLC cells through the epithelial-mesenchymal transition (EMT). The results showed that the expression of Gnt-V correlated with the N stage in patients with SCLC. Overexpression of Gnt-V led to a further increase in the relative viable cell number and survival fraction with a decrease in apoptosis rate and Bax/Bcl-2 ratio, when the cells were treated with irradiation. By contrast, knockdown of Gnt-V with irradiation resulted in a further decrease in the relative viable cell number and survival fraction but an increase in apoptosis rate and Bax/Bcl-2 ratio. Cells expressing high levels of Gnt-V increased migration whereas low levels of Gnt-V suppressed cell migration. Besides, the transient knockdown of ZEB2 led to an increase in radiosensitivity and an inhibition in the migration of SCLC cells. Furthermore, Gnt-V was negatively correlated with E-cadherin expression but positively correlated with N-cadherin, vimentin and ZEB2 expression. Finally, an in vivo study revealed that upregulation of Gnt-V caused tumour growth more quickly, as well as the expression of EMT-related markers (N-cadherin, vimentin and ZEB2). Taken together, the study suggested that an elevation of Gnt-V could lead to the radiosensitivity and migration of SCLC cells by inducing EMT, thereby highlighting Gnt-V as a potential therapeutic target for the prevention of EMT-associated tumour radioresistance and migration.

  13. Tumor-initiating cell frequency is relevant for glioblastoma aggressiveness

    PubMed Central

    Richichi, Cristina; Osti, Daniela; Del Bene, Massimiliano; Fornasari, Lorenzo; Patanè, Monica; Pollo, Bianca; DiMeco, Francesco; Pelicci, Giuliana

    2016-01-01

    Glioblastoma (GBM) is maintained by a small subpopulation of tumor-initiating cells (TICs). The arduous assessment of TIC frequencies challenges the prognostic role of TICs in predicting the clinical outcome in GBM patients. We estimated the TIC frequency in human GBM injecting intracerebrally in mice dissociated cells without any passage in culture. All GBMs contained rare TICsand were tumorigenic in vivo but only 54% of them grew in vitro as neurospheres. We demonstrated that neurosphere formation in vitro did not foretell tumorigenic ability in vivo and frequencies calculated in vitro overestimated the TIC content. Our findings assert the pathological significance of GBM TICs. TIC number correlated positively with tumor incidence and inversely with survival of tumor-bearing mice. Stratification of GBM patients according to TIC content revealed that patients with low TIC frequency experienced a trend towards a longer progression free survival. The expression of either putative stem-cell markers or markers associated with different GBM molecular subtypes did not associate with either TIC content or neurosphere formation underlying the limitations of TIC identification based on the expression of some putative stem cell-markers. PMID:27582543

  14. The effects of antiepileptic drugs on the growth of glioblastoma cell lines.

    PubMed

    Lee, Ching-Yi; Lai, Hung-Yi; Chiu, Angela; Chan, She-Hung; Hsiao, Ling-Ping; Lee, Shih-Tseng

    2016-05-01

    To determine the effects of antiepileptic drug compounds on glioblastoma cellular growth, we exposed glioblastoma cell lines to select antiepileptic drugs. The effects of selected antiepileptic drugs on glioblastoma cells were measured by MTT assay. For compounds showing significant inhibition, cell cycle analysis was performed. Statistical analysis was performed using SPSS. The antiepileptic compounds selected for screening included carbamazepine, ethosuximide, gabapentin, lamotrigine, levetiracetam, magnesium sulfate, oxcarbazepine, phenytoin, primidone, tiagabine, topiramate, valproic acid, and vigabatrin. Dexamethasone and temozolomide were used as a negative and positive control respectively. Our results showed temozolomide and oxcarbazepine significantly inhibited glioblastoma cell growth and reached IC50 at therapeutic concentrations. The other antiepileptic drugs screened were unable to reach IC50 at therapeutic concentrations. The metabolites of oxcarbazepine were also unable to reach IC50. Dexamethasone, ethosuximide, levetiracetam, and vigabatrin showed some growth enhancement though they did not reach statistical significance. The growth enhancement effects of ethosuximide, levetiracetam, and vigabatrin found in the study may indicate that these compounds should not be used for prophylaxis or short term treatment of epilepsy in glioblastoma. While valproic acid and oxcarbazepine were effective, the required dose of valproic acid was far above that used for the treatment of epilepsy and the metabolites of oxcarbazepine failed to reach significant growth inhibition ruling out the use of oral oxcarbazepine or valproic acid as monotherapy in glioblastoma. The possibility of using these compounds as local treatment is a future area of study.

  15. ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells.

    PubMed

    Meidanchi, Alireza; Akhavan, Omid; Khoei, Samideh; Shokri, Ali A; Hajikarimi, Zahra; Khansari, Nakisa

    2015-01-01

    Nanoparticles of high-Z elements exhibit stronger photoelectric effects than soft tissues under gamma irradiation. Hence, they can be used as effective radiosensitizers for increasing the efficiency of current radiotherapy. In this work, superparamagnetic zinc ferrite spinel (ZnFe2O4) nanoparticles were synthesized by a hydrothermal reaction method and used as radiosensitizers in cancer therapy. The magnetic nanoparticles showed fast separation from solutions (e.g., ~1 min for 2 mg mL(-1) of the nanoparticles in ethanol) by applying an external magnetic field (~1T). The ZnFe2O4 nanoparticles were applied in an in vitro radiotherapy of lymph node carcinoma of prostate cells (as high radioresistant cells) under gamma irradiation of (60)Co source. The nanoparticles exhibited no significant effects on the cancer cells up to the high concentration of 100 μg mL(-1), in the absence of gamma irradiation. The gamma irradiation alone (2Gy dose) also showed no significant effects on the cells. However, gamma irradiation in the presence of 100 μg mL(-1) ZnFe2O4 nanoparticles resulted in ~53% inactivation of the cells (~17 times higher than the inactivation that occurred under gamma irradiation alone) after 24h. The higher cell inactivation was assigned to interaction of gamma radiation with nanoparticles (photoelectric effect), resulting in a high level electron release in the media of the radioresistant cells. Our results indicated that ZnFe2O4 nanoparticles not only can be applied in increasing the efficiency of radiotherapy, but also can be easily separated from the cell environment by using an external magnetic field after the radiotherapy.

  16. Niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells

    PubMed Central

    Bridges, Kathleen A.; Toniatti, Carlo; Buser, Carolyn A.; Liu, Huifeng; Buchholz, Thomas A.; Meyn, Raymond E.

    2014-01-01

    The aim of this study was to assess niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase (PARP) inhibitor, for its ability to radiosensitize human tumor cells. Human tumor cells derived from lung, breast and prostate cancers were tested for radiosensitization by niraparib using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of niraparib to alter the repair of radiation-induced DNA double strand breaks (DSBs) was determined using detection of γ-H2AX foci and RAD51 foci. Clonogenic survival analyses indicated that micromolar concentrations of niraparib radiosensitized tumor cell lines derived from lung, breast, and prostate cancers independently of their p53 status but not cell lines derived from normal tissues. Niraparib also sensitized tumor cells to H2O2 and converted H2O2-induced single strand breaks (SSBs) into DSBs during DNA replication. These results indicate that human tumor cells are significantly radiosensitized by the potent and selective PARP-1 inhibitor, niraparib, in the in vitro setting. The mechanism of this effect appears to involve a conversion of sublethal SSBs into lethal DSBs during DNA replication due to the inhibition of base excision repair by the drug. Taken together, our findings strongly support the clinical evaluation of niraparib in combination with radiation. PMID:24970803

  17. Inhibition on Numb/Notch signal pathway enhances radiosensitivity of lung cancer cell line H358.

    PubMed

    Song, Shi-Gang; Yu, Hong-Yang; Ma, Yan-Wei; Zhang, Feng; Xu, Xiang-Ying

    2016-10-01

    The objective of the study is to investigate the effects of the Numb/Notch signal pathway on the radiosensitivity of lung cancer cell line H358. MTT assay and colony forming assay were used to detect the effects of different doses of X-rays and MW167 on the in vitro proliferation of the lung cancer cell line H358. Flow cytometry was applied to evaluate the effects of X rays on the apoptosis of H358. Scratch assay and Transwell invasion assay were used to examine the effects of X-rays on the migration and invasion abilities of H358. The mRNA and protein expressions in the signal pathway were detected by real-time PCR and western blot. Assays in vitro confirmed the effects of the Numb/Notch pathway inhibitor on the radiosensitivity to lung cancer. MW167 enhanced the inhibiting effects of X-ray on the proliferation of H358 cell line. After the addition of MW167, the apoptosis rates significantly increased, but the invasion and migration abilities decreased significantly. Meanwhile, MW167 could dose-dependently promote the increase of expression of Numb, which is the upstream gene of the Numb/Notch signaling pathway, but inhibit the expression of and HES1. In vivo experiments revealed that cell proliferation was suppressed in the radiation, pathway inhibitor, and pathway inhibitor + radiation groups, and the pathway inhibitor + radiation group exhibited more active anti-tumor ability when compared with the blank group (all P < 0.05); Numb expression was up-regulated, but Notch1 and HES1 expressions were down-regulated in those three groups, and also, the pathway inhibitor + radiation group exhibited more significant alternation when compared with the blank group (all P < 0.05); cell apoptosis was promoted in those three groups, and the pathway inhibitor + radiation group showed more active apoptosis when compared with the blank group (all P < 0.05). Repression of the Numb/Notch pathway enhances the effects of radiotherapy on the radiosensitivity of the lung

  18. Kynurenine signaling increases DNA polymerase kappa expression and promotes genomic instability in glioblastoma cells

    PubMed Central

    Bostian, April C.L.; Maddukuri, Leena; Reed, Megan R.; Savenka, Tatsiana; Hartman, Jessica H.; Davis, Lauren; Pouncey, Dakota L.; Miller, Grover P.; Eoff, Robert L.

    2015-01-01

    Over-expression of the translesion synthesis polymerase (TLS pol) hpol κ in glioblastomas has been linked to a poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by the AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating the AhR in glioblastomas, led to a decrease in the endogenous AhR agonist kynurenine (Kyn) and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling and the resulting over-expression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that up-regulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors. PMID:26651356

  19. Ultrastructural evidence for differentiation in a human glioblastoma cell line treated with inhibitors of eicosanoid metabolism

    SciTech Connect

    Wilson, D.E.; Anderson, K.M. ); Seed, T.M. )

    1990-01-01

    Human glioblastoma cells incubated in the presence of inhibitors of eicosanoid biosynthesis show decreased cellular proliferation without cytotoxicity. The authors studied the ultrastructural morphology of a human glioblastoma cell line cultured with nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, or 5,8,11,14-eicosatetraynoic acid, a cyclooxygenase and lipoxygenase inhibitor. When glioblastoma cells were treated for 3 days with antiproliferative concentrations of either agent, they shared many morphological characteristics, including evidence for increased astrocytic differentiation with only limited signs of toxicity. The inhibited glioma cells demonstrated an increase in the number and length of astrocytic processes containing greater numbers of glial filaments, and the NDGA-treated cells also demonstrated extensive lateral pseudopod formation along the processes. The glioblastoma cell shape also become more elongated, losing the usual nuclear lobularity and nuclear inclusions, especially in NDGA-treated cells. Many cytoplasmic organelles packed the cytosol of the inhibited glioma cells, including prominent Golgi apparatus, dilated smooth endoplasmic reticulum evolving into dilated vesicles, cytoplasmic vacuoles, and numerous concentric laminations. There was limited evidence for toxicity, however, as the mitochondria were more pleomorphic with some mitochondrial distension and disruption of the cristae along with an increase in cytoplasmic vacuolization. The authors conclude that the inhibitors of eicosanoid biosynthesis. NDGA and 5,8,11,14-eicosatetraynoic acid, not only suppress glioblastoma cell proliferation, but also include increased astrocytic differentiation.

  20. Radiosensitizing effect of lapatinib in human epidermal growth factor receptor 2-positive breast cancer cells

    PubMed Central

    Park, Ji Min; Kim, Dan Hyo; Kim, In Ah

    2016-01-01

    Trastuzumab has been widely used for the treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer, however, it cannot easily cross the blood-brain barrier (BBB) and is known to increase the incidence of brain metastases. In contrast, lapatinib has a low molecular weight and can cross the BBB and it could be useful to treat brain metastases in patients with HER2-positive breast cancer. To explore the impact of lapatinib on radiation response, we conducted an in vitro experiment using SKBR3 and BT474 breast carcinoma cells exhibiting HER2/neu amplification. Lapatinib down-regulated phosphorylated (p)-HER2, p-epidermal growth factor receptor, p-AKT, and p-extracellular signal-regulated kinase. Pretreatment of lapatinib increased the radiosensitivity of SKBR3 (sensitizer enhancement ratio [SER]: 1.21 at a surviving fraction of 0.5) and BT474 (SER: 1.26 at a surviving fraction of 0.5) cells and hindered the repair of DNA damage, as suggested by the prolongation of radiation-induced γH2AX foci and the down-regulation of phosphorylated DNA-dependent protein kinase, catalytic subunit (p-DNAPKcs). Increases in radiation-induced apoptosis and senescence were suggested to be the major modes of cell death induced by the combination of lapatinib and radiation. Furthermore, lapatinib did not radiosensitize a HER2- negative breast cancer cell line or normal human astrocytes. These findings suggest that lapatinib can potentiate radiation-induced cell death in HER2-overexpressing breast cancer cells and may increase the efficacy of radiotherapy. A phase II clinical trial using lapatinib concurrently with whole-brain radiation therapy (WBRT) is currently being conducted. PMID:27738326

  1. Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC).

    PubMed

    Ivanov, Vladimir N; Hei, Tom K

    2014-12-01

    Ionizing radiation alone or in combination with chemotherapy is the main treatment modality for brain tumors including glioblastoma. Adult neurons and astrocytes demonstrate substantial radioresistance; in contrast, human neural stem cells (NSC) are highly sensitive to radiation via induction of apoptosis. Irradiation of tumor cells has the potential risk of affecting the viability and function of NSC. In this study, we have evaluated the effects of irradiated glioblastoma cells on viability, proliferation and differentiation potential of non-irradiated (bystander) NSC through radiation-induced signaling cascades. Using media transfer experiments, we demonstrated significant effects of the U87MG glioblastoma secretome after gamma-irradiation on apoptosis in non-irradiated NSC. Addition of anti-TRAIL antibody to the transferred media partially suppressed apoptosis in NSC. Furthermore, we observed a dramatic increase in the production and secretion of IL8, TGFβ1 and IL6 by irradiated glioblastoma cells, which could promote glioblastoma cell survival and modify the effects of death factors in bystander NSC. While differentiation of NSC into neurons and astrocytes occurred efficiently with the corresponding differentiation media, pretreatment of NSC for 8 h with medium from irradiated glioblastoma cells selectively suppressed the differentiation of NSC into neurons, but not into astrocytes. Exogenous IL8 and TGFβ1 increased NSC/NPC survival, but also suppressed neuronal differentiation. On the other hand, IL6 was known to positively affect survival and differentiation of astrocyte progenitors. We established a U87MG neurosphere culture that was substantially enriched by SOX2(+) and CD133(+) glioma stem-like cells (GSC). Gamma-irradiation up-regulated apoptotic death in GSC via the FasL/Fas pathway. Media transfer experiments from irradiated GSC to non-targeted NSC again demonstrated induction of apoptosis and suppression of neuronal differentiation of NSC. In

  2. Enhancement of radiosensitivity by CpG-oligodeoxyribonucleotide-7909 in human non-small cell lung cancer A549 cells.

    PubMed

    Zha, Lin; Qiao, Tiankui; Yuan, Sujuan; Lei, Linjie

    2010-04-01

    CpG-oligodeoxyribonucleotides (CpG-ODNs), which induce signaling through the toll-like receptor 9, are currently under investigation as immunity stimulators against cancer. It has recently been suggested that CpG-ODNs may also enhance sensitivity to traditional therapies including chemotherapy in certain cancer-cell lines. The purpose of this study was to define the activity of CpG-ODN7909 in increasing radiosensitivity of the human non-small cell lung cancer cell line A549 in vitro. First, a dose- and time-dependent inhibitory effect on cell viability was observed after A549 cells were treated with different concentrations of CpG-ODN7909 (5, 10, 30, and 60 microg/mL). Second, decreased cell clonogenic survival, enhanced cell apoptotic index, accumulated percentage of cells in the G2/M phase, and increased tumor necrosis factor (TNF)-alpha secretion were found after combined treatments with 10 microg/mL of CpG-ODN7909 and radiation compared to either treatment alone (p < 0.05). Furthermore, the toll-like receptor 9 mRNA was found to express in A549. The results suggest that CpG-ODN7909 can increase the radiosensitivity of human non-small cell lung cancer A549 cells, which may be associated with reduced cell clonogenic survival, enhanced apoptosis, prolonged cell-cycle arrest in G2/M, and stimulation of TNF-alpha secretion.

  3. Malignant behaviorial characteristics of CD133(+/-) glioblastoma cells from a Northern Chinese population.

    PubMed

    Liu, Xiaozhi; Chen, Lei; Jiang, Zhongmin; Wang, Junfei; Su, Zhiguo; Li, Gang; Yu, Shizhu; Liu, Zhenlin

    2013-01-01

    Following emergence of the tumor stem cell theory, the increasing number of related studies demonstrates the theory's growing importance in cancer research and its potential for clinical applications. Few studies have addressed the in vitro or in vivo properties of glioma stem cells from a Han Chinese population. In the present study, surgically obtained glioblastoma tissue was classified into two subtypes, CD133(+) and CD133(-). The hierarchy, invasiveness, growth tolerance under low nutrient conditions and colony forming abilities of the tissue samples were analyzed. Additionally, the characteristics of tumor cells transplanted subcutaneously or re-transplanted into nude mice were observed. The results demonstrated that CD133(+) glioblastoma cells derived from Han Chinese glioma specimens were more prone to primitive cell differentiation and more invasive than CD133(-) glioblastoma cells, leading to increased tumor malignancy compared with CD133(-) cells. The tumor formation rates of CD133(+) and CD133(-) cells in mice were 26/30 and 2/30, respectively. A comparison of tumor subtypes demonstrated that CD133(+) glioblastoma cells had a lower incidence of cell apoptosis in the tumor tissue and higher protein expression levels of Oct4, Sox2, PCNA, EGFR, Ang2, MMP2 and MMP9 compared with CD133(-) cells. Flow cytometry revealed that in the CD133(+) and CD133(-) glioblastoma cell-induced tumors, the percentage of CD133(+) cells was 2.47±0.67 and 0.44±0.14%, respectively. The tumor formation rates following the re-transplantation of CD133(+) or CD133(-) tumors into nude mice were 10/10 and 4/10, respectively. These findings suggest that the CD133(+) glioblastoma cell subpopulation has a stronger malignant cell phenotype than the CD133(-) subpopulation and that its recurrence rate is increased compared with the primitive tumorigenic rate following in vivo transplantation.

  4. Identification of novel radiosensitizers in a high-throughput, cell-based screen for DSB repair inhibitors.

    PubMed

    Goglia, Alexander G; Delsite, Robert; Luz, Antonio N; Shahbazian, David; Salem, Ahmed F; Sundaram, Ranjini K; Chiaravalli, Jeanne; Hendrikx, Petrus J; Wilshire, Jennifer A; Jasin, Maria; Kluger, Harriet M; Glickman, J Fraser; Powell, Simon N; Bindra, Ranjit S

    2015-02-01

    Most cancer therapies involve a component of treatment that inflicts DNA damage in tumor cells, such as double-strand breaks (DSBs), which are considered the most serious threat to genomic integrity. Complex systems have evolved to repair these lesions, and successful DSB repair is essential for tumor cell survival after exposure to ionizing radiation (IR) and other DNA-damaging agents. As such, inhibition of DNA repair is a potentially efficacious strategy for chemo- and radiosensitization. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) represent the two major pathways by which DSBs are repaired in mammalian cells. Here, we report the design and execution of a high-throughput, cell-based small molecule screen for novel DSB repair inhibitors. We miniaturized our recently developed dual NHEJ and HR reporter system into a 384-well plate-based format and interrogated a diverse library of 20,000 compounds for molecules that selectively modulate NHEJ and HR repair in tumor cells. We identified a collection of novel hits that potently inhibit DSB repair, and we have validated their functional activity in a comprehensive panel of orthogonal secondary assays. A selection of these inhibitors was found to radiosensitize cancer cell lines in vitro, which suggests that they may be useful as novel chemo- and radio sensitizers. Surprisingly, we identified several FDA-approved drugs, including the calcium channel blocker mibefradil dihydrochloride, that demonstrated activity as DSB repair inhibitors and radiosensitizers. These findings suggest the possibility for repurposing them as tumor cell radiosensitizers in the future. Accordingly, we recently initiated a phase I clinical trial testing mibefradil as a glioma radiosensitizer.

  5. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    SciTech Connect

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke

    2015-03-15

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  6. Effect of epithermal neutrons on viability of glioblastoma tumor cells in vitro.

    PubMed

    Mostovich, L A; Gubanova, N V; Kutsenko, O S; Aleinik, V I; Kuznetsov, A S; Makarov, A N; Sorokin, I N; Taskaev, S Yu; Nepomnyashchikh, G I; Grigor'eva, E V

    2011-06-01

    We studied in vitro effect of epithermal neutrons in various doses on viability of glioblastoma U87 tumor cells. Increasing the dose from 1.9 to 4.1 Sv promoted cell death. Cytofluorimetric analysis revealed no activation of apoptosis in the irradiated cells, which attested to necrotic death of the tumor cells exposed to epithermal neutron radiation.

  7. Ethynyldeoxyuridine (EdU) suppresses in vitro population expansion and in vivo tumor progression of human glioblastoma cells.

    PubMed

    Ross, Heather H; Rahman, Maryam; Levkoff, Lindsay H; Millette, Sebastien; Martin-Carreras, Teresa; Dunbar, Erin M; Reynolds, Brent A; Laywell, Eric D

    2011-12-01

    Thymidine analogs (TAs) are synthetic nucleosides that incorporate into newly synthesized DNA. Halogenated pyrimidines (HPs), such as bromodeoxyuridine (BrdU), are a class of TAs that can be detected with antibodies and are commonly used for birthdating individual cells and for assessing the proliferative index of cell populations. It is well established that HPs can act as radiosensitizers when incorporated into DNA chains, but they are generally believed not to impair normal cell function in the absence of secondary stressors. However, we and others have shown that HP incorporation leads to a sustained suppression of cell cycle progression in mammalian cells, resulting in cellular senescence in somatic cells. In addition, we have shown that HP incorporation results in delayed tumor progression in a syngeneic rat model of glioma. Here we examine ethynyldeoxyuridine (EdU), a newly developed and alkylated TA, for its anti-cancer activity, both in vitro and in vivo. We show that EdU, like HPs, leads to a severe reduction in the proliferation rate of normal and transformed cells in vitro. Unlike HPs, however, EdU incorporation also causes DNA damage resulting in the death of a substantial subset of treated cells. When administered over an extended time as a monotherapy to mice bearing subcutaneous xenografts of human glioblastoma multiforme tumors, EdU significantly reduces tumor volume and increases survival without apparent significant toxicity. These results, combined with the fact that EdU readily crosses the blood-brain barrier, support the continued investigation of EdU as a potential therapy for malignant brain tumors.

  8. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    SciTech Connect

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  9. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  10. Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis.

    PubMed

    Sanvoranart, Tanwarat; Supokawej, Aungkura; Kheolamai, Pakpoom; U-Pratya, Yaowalak; Poungvarin, Niphon; Sathornsumetee, Sith; Issaragrisil, Surapol

    2016-11-01

    Glioblastoma (GBM) is an aggressive malignant brain tumor that still lacks effective therapy. Glioblastoma stem cells (GBM-SCs) were identified to contribute to aggressive phenotypes and poor clinical outcomes for GBM. Netrin-1, an axon guidance molecule, has been found in several tumors in adults. However, the role of Netrin-1 in GBM-SCs remains largely unknown. In this study, CD133-positive U251 GBM cells were used as a putative GBM-SC population to identify the functions of Netrin-1. Using lentiviral transduction, Netrin-1 miR RNAi vectors were transduced into CD133-positive U251 cells. We demonstrated that cell proliferation and survival were decreased following targeted deletion of Netrin-1. Cell invasion was dramatically diminished in Netrin-1 knockdown GBM-SCs. Moreover, Netrin-1 knockdown GBM-SCs exhibited less proangiogenic activity. In conclusion, Netrin-1 may represent a therapeutic target in glioblastoma.

  11. Molecular Mechanisms of Fenofibrate-Induced Metabolic Catastrophe and Glioblastoma Cell Death

    PubMed Central

    Wilk, Anna; Wyczechowska, Dorota; Zapata, Adriana; Dean, Matthew; Mullinax, Jennifer; Marrero, Luis; Parsons, Christopher; Peruzzi, Francesca; Culicchia, Frank; Ochoa, Augusto; Grabacka, Maja

    2014-01-01

    Fenofibrate (FF) is a common lipid-lowering drug and a potent agonist of the peroxisome proliferator-activated receptor alpha (PPARα). FF and several other agonists of PPARα have interesting anticancer properties, and our recent studies demonstrate that FF is very effective against tumor cells of neuroectodermal origin. In spite of these promising anticancer effects, the molecular mechanism(s) of FF-induced tumor cell toxicity remains to be elucidated. Here we report a novel PPARα-independent mechanism explaining FF's cytotoxicity in vitro and in an intracranial mouse model of glioblastoma. The mechanism involves accumulation of FF in the mitochondrial fraction, followed by immediate impairment of mitochondrial respiration at the level of complex I of the electron transport chain. This mitochondrial action sensitizes tested glioblastoma cells to the PPARα-dependent metabolic switch from glycolysis to fatty acid β-oxidation. As a consequence, prolonged exposure to FF depletes intracellular ATP, activates the AMP-activated protein kinase–mammalian target of rapamycin–autophagy pathway, and results in extensive tumor cell death. Interestingly, autophagy activators attenuate and autophagy inhibitors enhance FF-induced glioblastoma cytotoxicity. Our results explain the molecular basis of FF-induced glioblastoma cytotoxicity and reveal a new supplemental therapeutic approach in which intracranial infusion of FF could selectively trigger metabolic catastrophe in glioblastoma cells. PMID:25332241

  12. Molecular mechanisms of fenofibrate-induced metabolic catastrophe and glioblastoma cell death.

    PubMed

    Wilk, Anna; Wyczechowska, Dorota; Zapata, Adriana; Dean, Matthew; Mullinax, Jennifer; Marrero, Luis; Parsons, Christopher; Peruzzi, Francesca; Culicchia, Frank; Ochoa, Augusto; Grabacka, Maja; Reiss, Krzysztof

    2015-01-01

    Fenofibrate (FF) is a common lipid-lowering drug and a potent agonist of the peroxisome proliferator-activated receptor alpha (PPARα). FF and several other agonists of PPARα have interesting anticancer properties, and our recent studies demonstrate that FF is very effective against tumor cells of neuroectodermal origin. In spite of these promising anticancer effects, the molecular mechanism(s) of FF-induced tumor cell toxicity remains to be elucidated. Here we report a novel PPARα-independent mechanism explaining FF's cytotoxicity in vitro and in an intracranial mouse model of glioblastoma. The mechanism involves accumulation of FF in the mitochondrial fraction, followed by immediate impairment of mitochondrial respiration at the level of complex I of the electron transport chain. This mitochondrial action sensitizes tested glioblastoma cells to the PPARα-dependent metabolic switch from glycolysis to fatty acid β-oxidation. As a consequence, prolonged exposure to FF depletes intracellular ATP, activates the AMP-activated protein kinase-mammalian target of rapamycin-autophagy pathway, and results in extensive tumor cell death. Interestingly, autophagy activators attenuate and autophagy inhibitors enhance FF-induced glioblastoma cytotoxicity. Our results explain the molecular basis of FF-induced glioblastoma cytotoxicity and reveal a new supplemental therapeutic approach in which intracranial infusion of FF could selectively trigger metabolic catastrophe in glioblastoma cells.

  13. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo

    PubMed Central

    Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-01-01

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na+/K+ ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers. PMID:25400117

  14. Targeting ROR1 inhibits the self-renewal and invasive ability of glioblastoma stem cells.

    PubMed

    Jung, Eun-Hwa; Lee, Han-Na; Han, Gi-Yeon; Kim, Min-Jung; Kim, Chan-Wha

    2016-04-01

    Glioblastoma is the most malignant of brain tumours and is difficult to cure because of interruption of drug delivery by the blood-brain barrier system, its high metastatic capacity and the existence of cancer stem cells (CSCs). Although CSCs are present as a small population in malignant tumours, CSCs have been studied as they are responsible for causing recurrence, metastasis and resistance to chemotherapy and radiotherapy for cancer. CSCs have self-renewal characteristics like normal stem cells. The aim of this study was to investigate whether receptor tyrosine kinase-like orphan receptor 1 (ROR1) is involved in stem cell maintenance and malignant properties in human glioblastoma. Knockdown of ROR1 caused reduction of stemness and sphere formation capacity. Moreover, down-regulation of ROR1 suppressed the expression of epithelial-mesenchymal transition-related genes and the tumour migratory and invasive abilities. The results of this study indicate that targeting ROR1 can induce differentiation of CSCs and inhibit metastasis in glioblastoma. In addition, ROR1 may be used as a potential marker for glioblastoma stem cells as well as a potential target for glioblastoma stem cell therapy.

  15. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma

    PubMed Central

    Liu, Peidang; Jin, Haizhen; Guo, Zhirui; Ma, Jun; Zhao, Jing; Li, Dongdong; Wu, Hao; Gu, Ning

    2016-01-01

    Radiotherapy performs an important function in the treatment of cancer, but resistance of tumor cells to radiation still remains a serious concern. More research on more effective radiosensitizers is urgently needed to overcome such resistance and thereby improve the treatment outcome. The goal of this study was to evaluate and compare the radiosensitizing efficacies of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) on glioma at clinically relevant megavoltage energies. Both AuNPs and AgNPs potentiated the in vitro and in vivo antiglioma effects of radiation. AgNPs showed more powerful radiosensitizing ability than AuNPs at the same mass and molar concentrations, leading to a higher rate of apoptotic cell death. Furthermore, the combination of AgNPs with radiation significantly increased the levels of autophagy as compared with AuNPs plus radiation. These findings suggest the potential application of AgNPs as a highly effective nano-radiosensitizer for the treatment of glioma. PMID:27757033

  16. Radiosensitization of human breast cancer cells to ultraviolet light by 5-fluorouracil

    PubMed Central

    SASAKI, KAZUHITO; TSUNO, NELSON H.; SUNAMI, EIJI; KAWAI, KAZUSHIGE; SHUNO, YASUTAKA; HONGO, KUMIKO; HIYOSHI, MASAYA; KANEKO, MANABU; MURONO, KOJI; TADA, NORIKO; NIREI, TAKAKO; KITAYAMA, JOJI; TAKAHASHI, KOKI; NAGAWA, HIROKAZU

    2011-01-01

    Ultraviolet light B (UVB) phototherapy is widely used to treat dermatological diseases and therefore may be a potential optional strategy in the treatment of a skin lesion infiltrated by a malignant tumor. Currently, little is known regarding the effect of UVB phototherapy on human breast cancer cells. The present study aimed to investigate the effect of UVB phototherapy, as well as the potential effect of 5-fluorouracil (5-FU), the first-line anticancer drug for breast cancer, on radiosensitizing MCF-7 human breast cancer cells, in an attempt to develop new therapeutic strategies for the treatment of locoregional recurrence of breast cancer. MCF-7 cells were incubated in the presence of 5-FU for 48 h, and UVB irradiation at 750 mJ/cm2 was administered in the midterm of 5-FU treatment. The viability of MCF-7 cells was analyzed by the trypan blue staining method. Apoptosis was quantified by flow cytometry and Hoechst 33258 staining. The cell cycle was evaluated by flow cytometry after the staining of cells with propidium iodide. The combination treatment of 5-FU and UVB resulted in a strong potentiation of the inhibitory effect of MCF-7 cell growth, dependent on the intra-S phase cell cycle arrest and induction of apoptosis, when compared to treatment with 5-FU or UVB alone. In conclusion, 5-FU sensitized human breast cancer cells to UVB phototherapy, and this combination therapy is an effective and promising strategy for the treatment of breast cancer, particularly for locoregional recurrence. PMID:22866105

  17. Radiosensitivity of hepatoma cell lines and human normal liver cell lines exposed to 12C6+ ions

    NASA Astrophysics Data System (ADS)

    Jing, X.; Yang, J.; Li, W.; Guo, C.; Dang, B.; Wang, J.; Zhou, L.; Wei, W.; Gao, Q.

    AIM To investigate the radiosensitivity of hepatoma cell lines and human normal liver cell lines METHODS Accelerated carbon ions by heavy ion research facility in Lanzhou HIRFL have high LET We employed it to study the radiosensitivity of hepatoma cell lines SMMC-7721 and human normal liver cell lines L02 using premature chromosome condensation technique PCC Cell survive was documented by a colony assay Chromatid breaks were measured by counting the number of chromatid breaks and isochromatid breaks immediately after prematurely chromosome condensed by Calyculin-A RESULTS The survival curve of the two cell lines presented a good linear relationship and the survival fraction of L02 is higher than that of SMMC-7721 Additionally the two types of G 2 phase chromosome breaks chromatid breaks and isochromatid breaks of L02 are lower than that of SMMC-7721 CONCLUSION Human normal liver cell line have high radioresistance than that of hepatoma cell line It imply that it is less damage to normal organs when radiotherapy to hepatoma

  18. Cell progression and radiosensitivity of T1-prospermatogonia in Wistar rats.

    PubMed

    Hilscher, W M; Trott, K R; Hilscher, W

    1982-05-01

    T1-prospermatogonia pass through a quiescent stage which lasts from before birth until day 4 after birth (p.n.). They progress into DNA synthesis and mitosis in two synchronous waves which are separated by 24 hours in the evenings of day 4 and 5. The first wave contains about 25 per cent of the total population, the second 75 per cent. The mean duration of S-phase is 10 hours, the mean duration of G2-phase is 4 hours. After irradiation, the capacity of T1-prospermatogonia to produce the normal number of proliferating and differentiating cells in the testes is reduced. During maturation, between day 21 post-conception (p.c.) and day 5 p.n. the radiosensitivity of T1-prospermatogonia decreases by a factor of over 5.

  19. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme

    PubMed Central

    Bryukhovetskiy, Igor S.; Dyuizen, Inessa V.; Shevchenko, Valeriy E.; Bryukhovetskiy, Andrey S.; Mischenko, Polina V.; Milkina, Elena V.; Khotimchenko, Yuri S.

    2016-01-01

    Glioblastoma multiforme is an aggressive malignant brain tumor with terminal consequences. A primary reason for its resistance to treatment is associated with cancer stem cells (CSCs), of which there are currently no effective ways to destroy. It remains unclear what cancer cells become a target of stem cell migration, what the role of this process is in oncogenesis and what stem cell lines should be used in developing antitumor technologies. Using modern post-genome technologies, the present study investigated the migration of human stem cells to cancer cells in vitro, the comparative study of cell proteomes of certain stem cells (including CSCs) was conducted and stem cell migration in vivo was examined. Of all glioblastoma cells, CSCs have the stability to attract normal stem cells. Critical differences in cell proteomes allow the consideration of hematopoietic stem cells (HSCs) as an instrument for interaction with glioblastoma CSCs. Following injection into the bloodstream of animals with glioblastoma, the majority of HSCs migrated to the tumor-containing brain hemisphere and penetrated the tumor tissue. HSCs therefore are of potential use in the development of methods to target CSCs. PMID:27748891

  20. Neuronatin in a Subset of Glioblastoma Multiforme Tumor Progenitor Cells Is Associated with Increased Cell Proliferation and Shorter Patient Survival

    PubMed Central

    Bründl, Elisabeth; Brawanski, Alexander; Fang, Xueping; Lee, Cheng S.; Weil, Robert J.; Zhuang, Zhengping; Lonser, Russell R.

    2012-01-01

    Glioblastoma multiforme is the most common and malignant primary brain tumor. Recent evidence indicates that a subset of glioblastoma tumor cells have a stem cell like phenotype that underlies chemotherapy resistance and tumor recurrence. We utilized a new “multidimensional” capillary isoelectric focusing nano-reversed-phase liquid chromatography platform with tandem mass spectrometry to compare the proteomes of isolated glioblastoma tumor stem cell and differentiated tumor cell populations. This proteomic analysis yielded new candidate proteins that were differentially expressed. Specifically, two isoforms of the membrane proteolipid neuronatin (NNAT) were expressed exclusively within the tumor stem cells. We surveyed the expression of NNAT across 10 WHO grade II and III gliomas and 23 glioblastoma (grade IV) human tumor samples and found NNAT was expressed in a subset of primary glioblastoma tumors. Through additional in vitro studies utilizing the U87 glioma cell line, we found that expression of NNAT is associated with significant increases in cellular proliferation. Paralleling the in vitro results, when NNAT levels were evaluated in tumor specimens from a consecutive cohort of 59 glioblastoma patients, the presence of increased levels of NNAT were found to be a an independent risk factor (P = 0.006) for decreased patient survival through Kaplan-Meier and multivariate analysis. These findings indicate that NNAT may have utility as a prognostic biomarker, as well as a cell-surface target for chemotherapeutic agents. PMID:22624064

  1. Enhancement of radiosensitivity in H1299 cancer cells by actin-associated protein cofilin

    SciTech Connect

    Lee, Y.-J. . E-mail: lee_yi_jang@hotmail.com; Sheu, T.-J.; Keng, Peter C.

    2005-09-23

    Cofilin is an actin-associated protein that belongs to the actin depolymerization factor/cofilin family and is important for regulation of actin dynamics. Cofilin can import actin monomers into the nucleus under certain stress conditions, however the biological effects of nuclear transport are unclear. In this study, we found that over-expression of cofilin led to increased radiation sensitivity in human non-small lung cancer H1299 cells. Cell survival as determined by colony forming assay showed that cells over-expressing cofilin were more sensitive to ionizing radiation (IR) than normal cells. To determine whether the DNA repair capacity was altered in cofilin over-expressing cells, comet assays were performed on irradiated cells. Repair of DNA damage caused by ionizing radiation was detected in cofilin over-expressing cells after 24 h of recovery. Consistent with this observation, the key components for repair of DNA double-strand breaks, including Rad51, Rad52, and Ku70/Ku80, were down-regulated in cofilin over-expressing cells after IR exposure. These findings suggest that cofilin can influence radiosensitivity by altering DNA repair capacity.

  2. MicroRNAs in Cancer: Glioblastoma and Glioblastoma Cancer Stem Cells

    PubMed Central

    Brower, Jeffrey; Clark, Paul A.; Lyon, Will

    2015-01-01

    MicroRNAs represent an abundant class of endogenously expressed 18–25 nucleotide non-coding RNA molecules that function to silence gene expression through a process of post-transcriptional modification. They exhibit varied and widespread functions during normal development and tissue homeostasis, and accordingly their dysregulation plays major roles in many cancer types. Gliomas are cancers arising from the central nervous system. The most malignant and common glioma is glioblastoma multiforme (GBM), and even with aggressive treatment (surgical resection, chemotherapy, and radiation), average patient survival remains less than two years. In this review we will summarize the current findings regarding microRNAs in GBM and the biological and clinical implications of this data. PMID:24937770

  3. The temporal organization of processes of cell reproduction and its connection with rhythms of radiosensitivity of the body

    NASA Technical Reports Server (NTRS)

    Druzhinin, Y. P.; Romanov, Y. A.; Vatsek, A.

    1974-01-01

    Radiosensitivity of individual phases of the mitotic cycle was studied in synchronous cell cultures and in several biological objects. It was found that radiosensitivity changed essentially according to phases of the mitotic cycle, depending on the kind of cells, evaluation criteria and the radiation dosage. Tests on partially synchronized HeLa cell populations, according to the criterion of survival, showed them most sensitive during mitosis, as well as in later G sub 1- or early DNA-synthesizing stages. With radiation in doses of 300 rad, the proportion of surviving cells showed a sensitivity directly before DNA synthesis of approximately 4 times higher than the later S-phase and during the major portion of G sub 1- and G sub 2-periods. Sensitivity of cells in mitosis was approximately 3 times higher than in late G sub 1- and early S-phases.

  4. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells.

    PubMed

    Bai, Yun; Lathia, Justin D; Zhang, Peisu; Flavahan, William; Rich, Jeremy N; Mattson, Mark P

    2014-10-01

    Glioblastoma is the most prevalent primary brain tumor and is essentially universally fatal within 2 years of diagnosis. Glioblastomas contain cellular hierarchies with self-renewing glioblastoma stem cells (GSCs) that are often resistant to chemotherapy and radiation therapy. GSCs express high amounts of repressor element 1 silencing transcription factor (REST), which may contribute to their resistance to standard therapies. Telomere repeat-binding factor 2 (TRF2) stablizes telomeres and REST to maintain self-renewal of neural stem cells and tumor cells. Here we show viral vector-mediated delivery of shRNAs targeting TRF2 mRNA depletes TRF2 and REST from GSCs isolated from patient specimens. As a result, GSC proliferation is reduced and the level of proteins normally expressed by postmitotic neurons (L1CAM and β3-tubulin) is increased, suggesting that loss of TRF2 engages a cell differentiation program in the GSCs. Depletion of TRF2 also sensitizes GSCs to temozolomide, a DNA-alkylating agent currently used to treat glioblastoma. Targeting TRF2 significantly increased the survival of mice bearing GSC xenografts. These findings reveal a role for TRF2 in the maintenance of REST-associated proliferation and chemotherapy resistance of GSCs, suggesting that TRF2 is a potential therapeutic target for glioblastoma.

  5. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy

    PubMed Central

    Pollak, Julia; Rai, Karan G.; Funk, Cory C.; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D.; Paddison, Patrick J.; Ramirez, Jan-Marino; Rostomily, Robert C.

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. PMID:28264064

  6. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway.

    PubMed

    Peng, Honghai; Du, Bin; Jiang, Huili; Gao, Jun

    2016-01-22

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  7. Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide

    PubMed Central

    Sales, Thais Torquato; Resende, Fernando Francisco Borges; Chaves, Natália Lemos; Titze-De-Almeida, Simoneide Souza; Báo, Sônia Nair; Brettas, Marcella Lemos; Titze-De-Almeida, Ricardo

    2016-01-01

    Glioblastoma multiforme (GBM) is the most aggressive type of human primary brain tumor. The standard treatment protocol includes radiotherapy in combination with temozolomide (TMZ). Despite advances in GBM treatment, the survival time of patients diagnosed with glioma is 14.5 months. Regarding tumor biology, various types of cancer cell overexpress the ether à go-go 1 (Eag1) potassium channel. Therefore, the present study examined the role of Eag1 in the cell damage caused by TMZ on the U87MG glioblastoma cell line. Eag1 was inhibited using a channel blocker (astemizole) or silenced by a short-hairpin RNA expression vector (pKv10.1-3). pKv10.1-3 (0.2 µg) improved the Eag1 silencing caused by 250 µM TMZ, as determined by reverse transcription-quantitative polymerase chain reaction and immunocytochemistry. Additionally, inhibiting Eag1 with the vector or astemizole (5 µM) reduced glioblastoma cell viability and sensitized cells to TMZ. Cell viability decreased by 63% for pKv10.1-3 + TMZ compared with 34% for TMZ alone, and by 77% for astemizole + TMZ compared with 46% for TMZ alone, as determined by MTT assay. In addition, both the vector and astemizole increased the apoptosis rate of glioblastoma cells triggered by TMZ, as determined by an Annexin V apoptosis assay. Collectively, the current data reveal that Eag1 has a role in the damage caused to glioblastoma by TMZ. Furthermore, suppression of this channel can improve the action of TMZ on U87MG glioblastoma cells. Thus, silencing Eag1 is a promising strategy to improve GBM treatment and merits additional studies in animal models of glioma. PMID:27698831

  8. Cytogenetic characterization of low-dose hyper-radiosensitivity in Cobalt-60 irradiated human lymphoblastoid cells.

    PubMed

    Joshi, Gnanada S; Joiner, Michael C; Tucker, James D

    2014-12-01

    The dose-effect relationships of cells exposed to ionizing radiation are frequently described by linear quadratic (LQ) models over an extended dose range. However, many mammalian cell lines, when acutely irradiated in G2 at doses ≤0.3Gy, show hyper-radiosensitivity (HRS) as measured by reduced clonogenic cell survival, thereby indicating greater cell lethality than is predicted by extrapolation from high-dose responses. We therefore hypothesized that the cytogenetic response in G2 cells to low doses would also be steeper than predicted by LQ extrapolation from high doses. We tested our hypothesis by exposing four normal human lymphoblastoid cell lines to 0-400cGy of Cobalt-60 gamma radiation. The cytokinesis block micronucleus assay was used to determine the frequencies of micronuclei and nucleoplasmic bridges. To characterize the dependence of the cytogenetic damage on dose, univariate and multivariate regression analyses were used to compare the responses in the low- (HRS) and high-dose response regions. Our data indicate that the slope of the response for all four cell lines at ≤20cGy during G2 is greater than predicted by an LQ extrapolation from the high-dose responses for both micronuclei and bridges. These results suggest that the biological consequences of low-dose exposures could be underestimated and may not provide accurate risk assessments following such exposures.

  9. Down-regulation of survivin expression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity

    PubMed Central

    Guan, Hai-Tao; Xue, Xing-Huan; Dai, Zhi-Jun; Wang, Xi-Jing; Li, Ang; Qin, Zhao-Yin

    2006-01-01

    AIM: To investigate the inhibitory effect of small interfering RNA (siRNA) on the expression of survivin in pancreatic cancer cell line PC-2 and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity. METHODS: A siRNA plasmid expression vector against survivin was constructed and transfected into PC-2 cells with LipofectamineTM 2000. The down regulation of survivin expression was detected by semi-quantitive RT-PCR and immunohistochemical SP method and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity was detected by flow cytometry. RESULTS: The sequence-specific siRNA efficiently and specifically down-regulated the expression of survivin at both mRNA and protein levels. The expression inhibition ratio was 81.25% at mRNA level detected by semi-quantitive RT-PCR and 74.24% at protein level detected by immunohistochemical method. Forty-eight hours after transfection,apoptosis was induced in 7.03% cells by siRNA and in 14.58% cells by siRNA combined with radiation. CONCLUSION: The siRNA plasmid expression vector against survivin can inhibit the expression of survivin in PC-2 cells efficiently and specifically. Inhibiting the expression of survivin can induce apoptosis of PC-2 cells and enhance its radiosensitivity significantly. RNAi against survivin is of potential value in gene therapy of pancreatic cancer. PMID:16718816

  10. MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme.

    PubMed

    Li, Wen-Bo; Ma, Min-Wang; Dong, Li-Jie; Wang, Fei; Chen, Lu-Xia; Li, Xiao-Rong

    2011-09-15

    Aberrant expression of microRNAs (miRNAs) has been implicated in cancer initiation and progression. In this study, we found that microRNA-34a (miR-34a) is significantly downregulated in glioblastoma multiforme (GBM) specimens compared with normal brain tissues. Growth curve and colony formation assays revealed that miR-34a suppresses proliferation of U373MG and SHG44 glioblastoma cells. Overexpression of miR-34a could induce apoptosis of glioblastoma cells. Also, we identified notch1 as a direct target gene of miR-34a. Knockdown of notch1 showed similar cellular functions as overexpression of miR-34a both in vitro and in vivo. Collectively, our findings show that miR-34a is downregulated in GBM cells and inhibits GBM growth by targeting notch1.

  11. Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells.

    PubMed Central

    Gladson, C L; Cheresh, D A

    1991-01-01

    Glioblastoma multiforme, the most malignant astroglial-derived tumor, grows as an adherent mass and locally invades normal brain. An examination of adult cerebral glioblastoma biopsy material for the expression of adhesive proteins that might potentiate adhesion and invasion demonstrated tumor cell-associated vitronectin (5/5). In contrast, vitronectin was not detected associated with glial cells in low grade astroglial tumors (0/4), reactive astrogliosis (0/4), or in normal adult cortex and cerebral white matter (0/5). Also, a wide variety of other adhesive ligands were absent from the glioblastoma tumor parenchyma. The alpha v beta 3 integrin was the only vitronectin receptor identified in glioblastoma tumors in situ, and was also not expressed on low grade astroglial-derived tumors, reactive astrogliosis, or on glia or neurons in normal adult cortex and cerebral white matter. In a cell attachment assay, cultured glioblastoma cells attached to the parenchyma of glioblastoma tumor cryostat sections at the sites of vitronectin expression, but failed to attach to normal brain. This adhesion was inhibited by antibodies directed against vitronectin, the alpha v beta 3 integrin, and with an Arg-Gly-Asp-containing peptide. These data provide evidence for a cell adhesion mechanism in glioblastoma tumors that might potentiate glioblastoma cell invasion of normal brain. Images PMID:1721625

  12. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype

    PubMed Central

    Duan, Shunlei; Yuan, Guohong; Liu, Xiaomeng; Ren, Ruotong; Li, Jingyi; Zhang, Weizhou; Wu, Jun; Xu, Xiuling; Fu, Lina; Li, Ying; Yang, Jiping; Zhang, Weiqi; Bai, Ruijun; Yi, Fei; Suzuki, Keiichiro; Gao, Hua; Esteban, Concepcion Rodriguez; Zhang, Chuanbao; Belmonte, Juan Carlos Izpisua; Chen, Zhiguo; Wang, Xiaomin; Jiang, Tao; Qu, Jing; Tang, Fuchou; Liu, Guang-Hui

    2015-01-01

    PTEN is a tumour suppressor frequently mutated in many types of cancers. Here we show that targeted disruption of PTEN leads to neoplastic transformation of human neural stem cells (NSCs), but not mesenchymal stem cells. PTEN-deficient NSCs display neoplasm-associated metabolic and gene expression profiles and generate intracranial tumours in immunodeficient mice. PTEN is localized to the nucleus in NSCs, binds to the PAX7 promoter through association with cAMP responsive element binding protein 1 (CREB)/CREB binding protein (CBP) and inhibits PAX7 transcription. PTEN deficiency leads to the upregulation of PAX7, which in turn promotes oncogenic transformation of NSCs and instates ‘aggressiveness' in human glioblastoma stem cells. In a large clinical database, we find increased PAX7 levels in PTEN-deficient glioblastoma. Furthermore, we identify that mitomycin C selectively triggers apoptosis in NSCs with PTEN deficiency. Together, we uncover a potential mechanism of how PTEN safeguards NSCs, and establish a cellular platform to identify factors involved in NSC transformation, potentially permitting personalized treatment of glioblastoma. PMID:26632666

  13. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma.

    PubMed

    Kessler, Tobias; Sahm, Felix; Blaes, Jonas; Osswald, Matthias; Rübmann, Petra; Milford, David; Urban, Severino; Jestaedt, Leonie; Heiland, Sabine; Bendszus, Martin; Hertenstein, Anne; Pfenning, Philipp-Niclas; Ruiz de Almodóvar, Carmen; Wick, Antje; Winkler, Frank; von Deimling, Andreas; Platten, Michael; Wick, Wolfgang; Weiler, Markus

    2015-10-13

    Loss of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a prerequisite for tumor cell-specific expression of vascular endothelial growth factor receptor (VEGFR)-2 in glioblastoma defining a subgroup prone to develop evasive resistance towards antiangiogenic treatments. Immunohistochemical analysis of human tumor tissues showed VEGFR-2 expression in glioma cells in 19% of specimens examined, mainly in the infiltration zone. Glioma cell VEGFR-2 positivity was restricted to PTEN-deficient tumor specimens. PTEN overexpression reduced VEGFR-2 expression in vitro, as well as knock-down of raptor or rictor. Genetic interference with VEGFR-2 revealed proproliferative, antiinvasive and chemoprotective functions for VEGFR-2 in glioma cells. VEGFR-2-dependent cellular effects were concomitant with activation of 'kappa-light-chain-enhancer' of activated B-cells, protein kinase B, and N-myc downstream regulated gene 1. Two-photon in vivo microscopy revealed that expression of VEGFR-2 in glioma cells hampers antiangiogenesis. Bevacizumab induces a proinvasive response in VEGFR-2-positive glioma cells. Patients with PTEN-negative glioblastomas had a shorter survival after initiation of bevacizumab therapy compared with PTEN-positive glioblastomas. Conclusively, expression of VEGFR-2 in glioma cells indicates an aggressive glioblastoma subgroup developing early resistance to temozolomide or bevacizumab. Loss of PTEN may serve as a biomarker identifying those tumors upfront by routine neuropathological methods.

  14. Coibamide A Induces mTOR-Independent Autophagy and Cell Death in Human Glioblastoma Cells

    PubMed Central

    Hau, Andrew M.; Greenwood, Jeffrey A.; Löhr, Christiane V.; Serrill, Jeffrey D.; Proteau, Philip J.; Ganley, Ian G.; McPhail, Kerry L.; Ishmael, Jane E.

    2013-01-01

    Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and “COMPARE-negative” profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50<100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs). This activity was lost upon linearization of the molecule, highlighting the importance of the cyclized structure for both anti-proliferative and cytotoxic responses. We show that coibamide A induces autophagosome accumulation in human glioblastoma cell types and MEFs via an mTOR-independent mechanism; no change was observed in the phosphorylation state of ULK1 (Ser-757), p70 S6K1 (Thr-389), S6 ribosomal protein (Ser-235/236) and 4EBP-1 (Thr-37/46). Coibamide A also induces morphologically and biochemically distinct forms of cell death according to cell type. SF-295 glioblastoma cells showed caspase-3 activation and evidence of apoptotic cell death in a pattern that was also seen in wild-type and autophagy-deficient (ATG5-null) MEFs. In contrast, cell death in U87-MG glioblastoma cells was characterized by extensive cytoplasmic vacuolization and lacked clear apoptotic features. Cell death was attenuated, but still triggered, in Apaf-1-null MEFs lacking a functional mitochondria-mediated apoptotic pathway. From the study of ATG5-null MEFs we conclude that a conventional autophagy response is not required for coibamide A-induced cell death, but likely occurs in dying cells in response to treatment. Coibamide A represents a natural product scaffold with potential for the study of mTOR-independent signaling and cell death

  15. miR-25 modulates NSCLC cell radio-sensitivity through directly inhibiting BTG2 expression

    SciTech Connect

    He, Zhiwei Liu, Yi Xiao, Bing Qian, Xiaosen

    2015-02-13

    A large proportion of the NSCLC patients were insensitive to radiotherapy, but the exact mechanism is still unclear. This study explored the role of miR-25 in regulating sensitivity of NSCLC cells to ionizing radiation (IR) and its downstream targets. Based on measurement in tumor samples from NSCLC patients, this study found that miR-25 expression is upregulated in both NSCLC and radio-resistant NSCLC patients compared the healthy and radio-sensitive controls. In addition, BTG expression was found negatively correlated with miR-25a expression in the both tissues and cells. By applying luciferase reporter assay, we verified two putative binding sites between miR-25 and BTG2. Therefore, BTG2 is a directly target of miR-25 in NSCLC cancer. By applying loss-and-gain function analysis in NSCLC cell lines, we demonstrated that miR-25-BTG2 axis could directly regulated BTG2 expression and affect radiotherapy sensitivity of NSCLC cells. - Highlights: • miR-25 is upregulated, while BTG2 is downregulated in radioresistant NSCLC patients. • miR-25 modulates sensitivity to radiation induced apoptosis. • miR-25 directly targets BTG2 and suppresses its expression. • miR-25 modulates sensitivity to radiotherapy through inhibiting BTG2 expression.

  16. Betulinyl Sulfamates as Anticancer Agents and Radiosensitizers in Human Breast Cancer Cells

    PubMed Central

    Bache, Matthias; Münch, Christin; Güttler, Antje; Wichmann, Henri; Theuerkorn, Katharina; Emmerich, Daniel; Paschke, Reinhard; Vordermark, Dirk

    2015-01-01

    Betulinic acid (BA), a natural compound of birch bark, is cytotoxic for many tumors. Recently, a betulinyl sulfamate was described that inhibits carbonic anhydrases (CA), such as CAIX, an attractive target for tumor-selective therapy strategies in hypoxic cancer cells. Data on combined CAIX inhibition with radiotherapy are rare. In the human breast cancer cell lines MDA-MB231 and MCF7, the effects of BA and betulinyl sulfamates on cellular and radiobiological behavior under normoxia and hypoxia were evaluated. The two most effective betulinyl sulfamates CAI 1 and CAI 3 demonstrated a 1.8–2.8-fold higher cytotoxicity than BA under normoxia in breast cancer cells, with IC50 values between 11.1 and 18.1 µM. BA exhibits its strongest cytotoxicity with IC50 values of 8.2 and 16.4 µM under hypoxia. All three substances show a dose-dependent increase in apoptosis, inhibition of migration, and inhibition of hypoxia-induced gene expression. In combination with irradiation, betulinyl sulfamates act as radiosensitizers, with DMF10 values of 1.47 (CAI 1) and 1.75 (CAI 3) under hypoxia in MDA-MB231 cells. BA showed additive effects in combination with irradiation. Taken together; our results suggest that BA and betulinyl sulfamates seem to be attractive substances to combine with radiotherapy; particularly for hypoxic breast cancer. PMID:26540049

  17. Oxygen-dependent regulation of NDRG1 in human glioblastoma cells in vitro and in vivo.

    PubMed

    Said, Harun M; Stein, Susanne; Hagemann, Carsten; Polat, Buelent; Staab, Adrian; Anacker, Jelena; Schoemig, Beate; Theobald, Matthias; Flentje, Michael; Vordermark, Dirk

    2009-01-01

    NDRG1 is a member of the N-myc downregulated gene (NDRG) family. Its induction occurs via diverse physiological and pathological conditions (hypoxia, cellular differentiation, heavy metal, N-myc, neoplasia) which modulate NDRG1 transcription, mRNA stability and translation. Hypoxia, among other factors, induces NDRG1 expression and plays an important role in its regulation of expression. To date, the complete detailed function of this protein in humans remains unknown. Hypoxia represents a common feature of solid tumors. In our study, differences in NDRG1 expression between different WHO grades of astrocytic tumors were comparatively examined in vivo in human low-grade astrocytoma (WHO grade 2) and glioblastoma (WHO grade 4) at both the protein and mRNA level by Western blot analysis and semi-quantitative RT-PCR, respectively. Furthermore, the same proteins were determined in vitro in U373, U251 and GaMG human glioblastoma cells using the same methods. HIF-1alpha protein and mRNA regulation under hypoxia was also determined in vitro in U251, U373 and GaMG cells. This regulation was shown at the same levels in vivo in human low-grade astrocytoma (WHO grade 2) and glioblastoma which showed a higher NDRG1 overexpression level in glioblastoma than in low-grade astrocytoma. siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements (HREs) bound by nuclear HIF-1alpha in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. Due to its clear regulatory behavior under hypoxic condition in human tumor cells, NDRG1 represents an additional

  18. The radiosensitizing effect of immunoadjuvant OM-174 requires cooperation between immune and tumor cells through interferon-gamma and inducible nitric oxide synthase

    SciTech Connect

    Ridder, Mark de . E-mail: Mark.De.Ridder@vub.ac.be; Verovski, Valeri N.; Chiavaroli, Carlo; Berge, Dirk L. van den; Monsaert, Christinne; Law, Kalun; Storme, Guy A.

    2006-12-01

    Purpose: To explore whether antitumor immunoadjuvant OM-174 can stimulate immune cells to produce interferon-{gamma} (IFN-{gamma}) and thereby radiosensitize tumor cells. Methods and Materials: Splenocytes from BALB/c mice were stimulated by OM-174 at plasma-achievable concentrations (0.03-3 {mu}g/mL), and afterward analyzed for the expression and secretion of IFN-{gamma} by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Stimulated splenocytes were used as a source of IFN-{gamma} to radiosensitize hypoxic EMT-6 tumor cells through the cytokine-inducible isoform of nitric oxide synthase (iNOS). Results: OM-174 activated the production of IFN-{gamma} at high levels that reached 70 ng/mL in normoxia (21% oxygen) and 27 ng/mL in tumor-relevant hypoxia (1% oxygen). This caused up to 2.1-fold radiosensitization of EMT-6 tumor cells, which was associated with the iNOS-mediated production of the radiosensitizing molecule nitric oxide, as confirmed by accumulation of its oxidative metabolite nitrite, Western blot analysis, and reverse transcriptase-polymerase chain reaction. Both iNOS activation and radiosensitization were counteracted by neutralizing antibodies against IFN-{gamma}. The same mechanism of radiosensitization through the IFN-{gamma} secretion pathway was identified for IL-12 + IL-18, which are known to mediate IFN-{gamma} responses. Hypoxia displayed a dual effect on the immune-tumor cell interaction, by downregulating the expression of the IFN-{gamma} gene while upregulating iNOS at transcriptional level. Conclusion: Immunoadjuvant OM-174 is an efficient radiosensitizer of tumor cells through activation of the IFN-{gamma} secretion pathway in immune cells. This finding indicates a rationale for combining immunostimulatory and radiosensitizing strategies and extends the potential therapeutic applications of OM-174.

  19. Bevacizumab radiosensitizes non-small cell lung cancer xenografts by inhibiting DNA double-strand break repair in endothelial cells.

    PubMed

    Gao, Hui; Xue, Jianxin; Zhou, Lin; Lan, Jie; He, Jiazhuo; Na, Feifei; Yang, Lifei; Deng, Lei; Lu, You

    2015-08-28

    The aims of this study were to evaluate the effects of biweekly bevacizumab administration on a tumor microenvironment and to investigate the mechanisms of radiosensitization that were induced by it. Briefly, bevacizumab was administered intravenously to Balb/c nude mice bearing non-small cell lung cancer (NSCLC) H1975 xenografts; in addition, bevacizumab was added to NSCLC or endothelial cells (ECs) in vitro, followed by irradiation (IR). The anti-tumor efficacy, anti-angiogenic efficacy and repair of DNA double-strand breaks (DSBs) were evaluated. The activation of signaling pathways was determined using immunoprecipitation (IP) and WB analyses. Finally, biweekly bevacizumab administration inhibited the growth of H1975 xenografts and induced vascular normalization periodically. Bevacizumab more significantly increased cellular DSB and EC apoptosis when administered 1 h prior to 12 Gy/1f IR than when administered 5 days prior to IR, thereby inhibiting tumor angiogenesis and growth. In vitro, bevacizumab more effectively increased DSBs and apoptosis prior to IR and inhibited the clonogenic survival of ECs but not NSCLC cells. Using IP and WB analyses, we confirmed that bevacizumab can directly inhibit the phosphorylation of components of the VEGR2/PI3K/Akt/DNA-PKcs signaling pathway that are induced by IR in ECs. In conclusion, bevacizumab radiosensitizes NSCLC xenografts mainly by inhibiting DSB repair in ECs rather than by inducing vascular normalization.

  20. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype.

    PubMed

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M; Maiti, Sourindra N; Thomas, Ginu; Zhou, Shouhao; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D; Yaghi, Nasser K; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S; Prabhu, Sujit S; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A; Bruner, Janet M; Fuller, Gregory N; Bar-Or, Amit; Li, Wei; Colen, Rivka R; Curran, Michael A; Bhat, Krishna P; Antel, Jack P; Cooper, Laurence J; Sulman, Erik P; Heimberger, Amy B

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b(+) cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages.

  1. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

    PubMed Central

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M.; Maiti, Sourindra N.; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D.; Yaghi, Nasser K.; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S.; Prabhu, Sujit S.; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A.; Bruner, Janet M.; Fuller, Gregory N.; Bar-Or, Amit; Li, Wei; Colen, Rivka R.; Curran, Michael A.; Bhat, Krishna P.; Antel, Jack P.; Cooper, Laurence J.; Sulman, Erik P.; Heimberger, Amy B.

    2016-01-01

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages. PMID:26973881

  2. Tumor-targeted Chlorotoxin-coupled Nanoparticles for Nucleic Acid Delivery to Glioblastoma Cells: A Promising System for Glioblastoma Treatment

    PubMed Central

    Costa, Pedro M; Cardoso, Ana L; Mendonça, Liliana S; Serani, Angelo; Custódia, Carlos; Conceição, Mariana; Simões, Sérgio; Moreira, João N; Pereira de Almeida, Luís; Pedroso de Lima, Maria C

    2013-01-01

    The present work aimed at the development and application of a lipid-based nanocarrier for targeted delivery of nucleic acids to glioblastoma (GBM). For this purpose, chlorotoxin (CTX), a peptide reported to bind selectively to glioma cells while showing no affinity for non-neoplastic cells, was covalently coupled to liposomes encapsulating antisense oligonucleotides (asOs) or small interfering RNAs (siRNAs). The resulting targeted nanoparticles, designated CTX-coupled stable nucleic acid lipid particles (SNALPs), exhibited excellent features for in vivo application, namely small size (<180 nm) and neutral surface charge. Cellular association and internalization studies revealed that attachment of CTX onto the liposomal surface enhanced particle internalization into glioma cells, whereas no significant internalization was observed in noncancer cells. Moreover, nanoparticle-mediated miR-21 silencing in U87 human GBM and GL261 mouse glioma cells resulted in increased levels of the tumor suppressors PTEN and PDCD4, caspase 3/7 activation and decreased tumor cell proliferation. Preliminary in vivo studies revealed that CTX enhances particle internalization into established intracranial tumors. Overall, our results indicate that the developed targeted nanoparticles represent a valuable tool for targeted nucleic acid delivery to cancer cells. Combined with a drug-based therapy, nanoparticle-mediated miR-21 silencing constitutes a promising multimodal therapeutic approach towards GBM. PMID:23778499

  3. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    NASA Astrophysics Data System (ADS)

    Basanta, David; Scott, Jacob G.; Rockne, Russ; Swanson, Kristin R.; Anderson, Alexander R. A.

    2011-02-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints.

  4. c-MYC is a radiosensitive locus in human breast cells

    PubMed Central

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-01-01

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  5. Expression and stability of c-sis mRNA in human glioblastoma cells

    SciTech Connect

    Press, R.D.; Samols, D.; Goldthwait, D.A.

    1988-07-26

    The production of platelet-derived growth factor like (PDGF-like) material by glioblastomas may be involved in the conversion of normal cells to tumor cells. In an investigation of this problem, the authors have examined some of the properties of the platelet-derived growth factor B-chain mRNA (c-sis mRNA) by a sensitive and quantitative RNA-RNA solution hybridization method. In 5 out of 8 human glioblastoma cell lines, c-sis mRNA was present, and in the line with the highest level, there were approximately 4-10 molecules per cell. The half-lives of the c-sis mRNA in two glioblastoma cell lines were 2.6 and 3.4 h, while in human umbilical vein endothelial (HUVE) and bladder carcinoma (T24) cells they were 1.6 and 2.5 h, respectively. Inhibiting protein synthesis produced no significant alteration of the c-sis mRNA half-lives in the glioblastoma or HUVE cells. The A-U-rich sequence at the 3' end of the c-sis mRNA therefore does not appear to affect the mRNA stability in the presence of cycloheximide as it does in other transcripts. The similarity of the c-sis mRNA half-lives in normal and tumor cells suggests that regulation of stability of c-sis mRNA is not a major factor in tumorigenesis in the glioblastoma cell lines examined.

  6. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    SciTech Connect

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results: IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.

  7. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    SciTech Connect

    Eke, Iris; Storch, Katja; Kaestner, Ina; Vehlow, Anne; Faethe, Christina; Mueller-Klieser, Wolfgang; Taucher-Scholz, Gisela; Temme, Achim; Schackert, Gabriele

    2012-11-15

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.

  8. Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells

    PubMed Central

    Isokpehi, Raphael D; Wollenberg Valero, Katharina C; Graham, Barbara E; Pacurari, Maricica; Sims, Jennifer N; Udensi, Udensi K; Ndebele, Kenneth

    2015-01-01

    Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0–AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phenotypic features and expression levels revealed that inverse expression levels of AQP1 and AQP4 correlate with distinct phenotypes in a set of cell lines grouped into full and restricted stem-like phenotypes. Discriminant function analysis further revealed that AQP1 and AQP4 expression are better predictors for tumor formation and growth types in glioblastoma stem-like cells than are CXCR4 and PROM1. Future investigations are needed to characterize the molecular mechanisms for inverse expression levels of AQP1 and AQP4 in the glioblastoma stem-like neurospheres. PMID:26279619

  9. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    SciTech Connect

    Dittmann, Klaus H. Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.

  10. Radiosensitizers, radioprotectors, and radiation mitigators.

    PubMed

    Raviraj, Jayam; Bokkasam, Vijay Kumar; Kumar, Venkata Suneel; Reddy, Uday Shankar; Suman, Venkata

    2014-01-01

    Radiotherapy is regarded as one of the most important therapeutic modality for the treatment of malignant lesions. This field is undergoing rapid advancements in the recent times. With the use of radiosensitizers and radioprotective agents, the course of radiotherapy has improved the sensitization of tumor cells and protection of normal cells, respectively. The aim of this paper was to critically review and analyze the available compounds used as radiosensitizers, radioprotectors, and radiation mitigators. For reviewing, the author used the electronic search for the keywords 'Radiosensitizers', 'Radioprotectors', 'Radiation mitigators' on PubMed for inclusion of previously published articles and further search of reference papers on individual radiosensitizing and radioprotecting agents was done. Radiosensitizers are agents that sensitize the tumor cells to radiation. These compounds apparently promote fixation of the free radicals produced by radiation damage at the molecular level. The mechanism of action is similar to the oxygen effect, in which biochemical reactions in the damaged molecules prevent repair of the cellular radiation damage. Free radicals such as OH + are captured by the electron affinity of the radiosensitizers, rendering the molecules incapable of repair. Radioprotectors are compounds that are designed to reduce the damage in normal tissues caused by radiation. These compounds are often antioxidants and must be present before or at the time of radiation for effectiveness. Other agents, termed mitigators, may be used to minimize toxicity even after radiation has been delivered. This article tries to discuss the various aspects of radiosensitizers, radioprotectors, and radiation mitigators including the newer agents.

  11. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    SciTech Connect

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay; Shirsat, Neelam Vishwanath

    2014-05-30

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effect of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy

  12. MicroRNA-197 inhibits cell proliferation by targeting GAB2 in glioblastoma.

    PubMed

    Tian, Li-Qiang; Liu, En-Qin; Zhu, Xi-De; Wang, Xin-Gong; Li, Jian; Xu, Guang-Ming

    2016-05-01

    Glioblastoma is the most common type of primary brain tumor in adults, and is usually fatal in a short duration. Acquiring a better understanding of the pathogenic mechanisms of glioblastoma is essential to the design of effective therapeutic strategies. Grb2-associated binding protein 2 (GAB2) is a member of the daughter of sevenless/Gab family of scaffolding adapters, and has been reported to be important in the development and progression of human cancer. Previously, it has been reported that GAB2 is expressed at high levels in glioma, and may serve as a useful prognostic marker for glioma and a novel therapeutic target for glioma invasion intervention. Elucidating why GAB2 is overexpressed in glioma, and investigating how to downregulate it will assist in further understanding the pathogenesis and progression of the disease, and to offer novel targets for therapy. The present study used in situ hybridization to detect microRNA (miR)‑197 expression levels and Targetscan to predict that the 3'-UTR of GAB2 was targeted by miR-197. Northern blotting and reverse transcription‑quantitative polymerase chain reaction were also conducted in the current study. miR-197 is downregulated in glioblastoma tissues, compared with adjacent normal tissues, however it involvement continues to be detected in the disease. The results of the present study demonstrated that miR‑197, as a tumor suppressor gene, inhibited proliferation by regulating GAB2 in glioblastoma cells. Furthermore, GAB2 was not only upregulated in glioma, but its expression levels were also associated with the grades of glioma severity. In addition, overexpression of GAB2 suppressed the expression of miR‑197 in glioblastoma cells. Therefore, restoration of miR‑197 and targeting GAB2 may be used, in conjunction with other therapies, to prevent the progression of glioblastoma.

  13. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration

    SciTech Connect

    Michaud-Levesque, Jonathan; Bousquet-Gagnon, Nathalie; Beliveau, Richard

    2012-05-01

    Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we show that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.

  14. Cannabidiol enhances the inhibitory effects of Δ9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival

    PubMed Central

    Marcu, Jahan P.; Christian, Rigel T.; Lau, Darryl; Zielinski, Anne J.; Horowitz, Maxx P.; Lee, Jasmine; Pakdel, Arash; Allison, Juanita; Limbad, Chandani; Moore, Dan H.; Yount, Garret L.; Desprez, Pierre-Yves; McAllister, Sean D.

    2009-01-01

    The cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor agonist, Δ9-tetrahydrocannabinol (THC), has been shown to be a broad range inhibitor of cancer in culture and in vivo, and is currently being used in a clinical trial for the treatment of glioblastoma. It has been suggested that other plant-derived cannabinoids, which do not interact efficiently with CB1 and CB2 receptors, can modulate the actions of Δ9-THC. However, there are conflicting reports as to what extent other cannabinoids can modulate Δ9-THC activity, and most importantly, it is not clear whether other cannabinoid compounds can either potentiate or inhibit the actions of Δ9-THC. We therefore tested cannabidiol (CBD), the second most abundant plant derived cannabiniod, in combination with Δ9-THC. In U251 and SF126 glioblastoma cell lines, Δ9-THC and CBD acted synergistically to inhibit cell proliferation. The treatment of glioblastoma cells with both compounds led to significant modulations of the cell cycle and induction of reactive oxygen species (ROS) and apoptosis as well as specific modulations of extracellular signal-regulated kinase (ERK) and caspase activities. These specific changes were not observed with either compound individually, indicating that the signal transduction pathways affected by the combination treatment were unique. Our results suggest that the addition of CBD to Δ9-THC may improve the overall effectiveness of Δ9-THC in the treatment of glioblastoma in cancer patients. PMID:20053780

  15. β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability

    PubMed Central

    Harford-Wright, Elizabeth; Bidère, Nicolas; Gavard, Julie

    2016-01-01

    Glioblastoma multiforme (GBM) is a highly aggressive tumour of the central nervous system and is associated with an extremely poor prognosis. Within GBM exists a subpopulation of cells, glioblastoma-initiating cells (GIC), which possess the characteristics of progenitor cells, have the ability to initiate tumour growth and resist to current treatment strategies. We aimed at identifying novel specific inhibitors of GIC expansion through use of a large-scale chemical screen of approved small molecules. Here, we report the identification of the natural compound β-escin as a selective inhibitor of GIC viability. Indeed, β-escin was significantly cytotoxic in nine patient-derived GIC, whilst exhibiting no substantial effect on the other human cancer or control cell lines tested. In addition, β-escin was more effective at reducing GIC growth than current clinically used cytotoxic agents. We further show that β-escin triggers caspase-dependent cell death combined with a loss of stemness properties. However, blocking apoptosis could not rescue the β-escin-induced reduction in sphere formation or stemness marker activity, indicating that β-escin directly modifies the stem identity of GIC, independent of the induction of cell death. Thus, this study has repositioned β-escin as a promising potential candidate to selectively target the aggressive population of initiating cells within GBM. PMID:27589691

  16. Respiration of mammalian cells at low concentrations of oxygen: I. Effect of hypoxic-cell radiosensitizing drugs.

    PubMed Central

    Koch, C. J.; Biaglow, J. E.

    1978-01-01

    Drugs which sensitize hypoxic mammalian cells to radiation damage in vitro can also affect the cellular respiration rate. This phenomenon was studied in detail to determine whether the changes in oxygen consumption occur at low oxygen concentrations and under optimal nutritional conditions. We have found that cells in tissue culture can undergo adaptive changes in respiration (electron flow) which make them insensitive to the effects of radiosensitizing drugs and even respiration uncouplers such as dinitrophenol, and the inhibitors rotenone and cyanide. At low cell densities, where nutrient depletion in the medium would be negligible, the drugs have reduced effects, particularly at low oxygen concentrations (below 40 mmHg oxygen partial pressure). Parallel cytotoxicity and growht inhibition studies indicate that most drugs are unlikely to have substantial effect on respiration at non-cytotoxic levels. PMID:277219

  17. The potential value of the neutral comet assay and the expression of genes associated with DNA damage in assessing the radiosensitivity of tumor cells.

    PubMed

    Jayakumar, Sundarraj; Bhilwade, Hari N; Pandey, Badri N; Sandur, Santosh K; Chaubey, Ramesh C

    2012-10-09

    The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; P<0.05; 6Gy) than evaluated by alkaline comet assay (r=-0.73; P<0.05; 6Gy). Further, a significant correlation between the clonogenic survival and DNA damage was observed in cells exposed to fractionated doses of radiation. Of 15 genes investigated in the gene expression study, HSP70, KU80 and RAD51 all showed significant positive correlations (r=0.9; P<0.05) with tumor radiosensitivity. Our study clearly demonstrated that the neutral comet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation.

  18. Radiosensitization of TPGS-emulsified docetaxel-loaded poly(lactic-co-glycolic acid) nanoparticles in CNE-1 and A549 cells.

    PubMed

    Shi, Wei; Yuan, Yin; Chu, Min; Zhao, Shuang; Song, Qingle; Mu, Xiaoqian; Xu, Shuangbing; Zhang, Zhiping; Yang, Kunyu

    2016-03-01

    Docetaxel is among the most effective radiosensitizers. It is widely used as radiosensitizer in many tumors, including head and neck carcinoma. Nevertheless, poor solubility and severe hypersensitivity limit its clinical use and its therapeutic effect remains to be improved. In this study, docetaxel-loaded polymeric nanoparticles were prepared by nanoprecipitation method to be new radiosensitizer with lower side effects and higher efficacy. The physiochemical characteristics of the nanoparticles were studied. Two human tumor cell lines which are resistant to radiotherapy were used in this research. We have compared the radioenhancement efficacy of docetaxel-loaded nanoparticles with docetaxel in A549 and CNE-1 cells. Compared with docetaxel, radiosensitization of docetaxel-loaded nanoparticles was improved significantly (sensitization enhancement ratio in A549 increased 1.24-fold to 1.68-fold when the radiation was applied 2 h after the drug, p < 0.01, sensitization enhancement ratio in CNE-1 increased 1.32-fold to 1.61-fold, p < 0.05). We explored the mechanisms for the radiosensitization efficiency and the difference between docetaxel and docetaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The improved radiosensitization efficacy was associated with enhanced G2/M arrest, promoted apoptosis and the role of D-alpha-tocopheryl polyethylene glycol 1000 succinate which will enhance the cell uptake and inhibit the multiple drug resistance. Moreover, the radiosensitization efficacy of docetaxel-loaded nanoparticles was more prominent than docetaxel. In conclusion, tocopheryl polyethylene glycol 1000 succinate-emulsified docetaxel-loaded PLGA nanoparticles were more efficacious and fewer adverse effects were observed than with the commercial docetaxel formulation. Thus, PLGA nanoparticles hold promise as a radiosensitizing agent.

  19. Cytotoxic and apoptotic effects of bortezomib and gefitinib compared to alkylating agents on human glioblastoma cells.

    PubMed

    Pédeboscq, Stéphane; L'Azou, Béatrice; Passagne, Isabelle; De Giorgi, Francesca; Ichas, François; Pometan, Jean-Paul; Cambar, Jean

    2008-01-01

    Glioblastoma is a malignant astrocytic tumor with a median survival of about 12 months for which new therapeutic strategies are required. We therefore examined the cytotoxicity of anticancer drugs with different mechanisms of action on two human glioblastoma cell lines expressing various levels of EGFR (epidermal growth factor receptor). Apoptosis induced by these anticancer agents was evaluated by flow cytometry. The cytotoxicity of alkylating drugs followed a dose-effect curve and cytotoxicity index values were lower with carboplatin than with BCNU and temozolomide. Anti-EGFR gefitinib (10 microM) cytotoxicity on DBTRG.05-MG expressing high levels of EGFR was significantly higher than on U87-MG expressing low levels of EGFR. Carboplatin and temozolomide cytotoxicity was potentiated with the addition of gefitinib on DBTRG.05-MG. Among the anticancer agents tested, the proteasome inhibitor bortezomib was the most cytotoxic with very low IC50 on the two cell lines. Moreover, all anticancer drugs tested induced apoptosis in a concentration-dependent manner. Bortezomib proved to be a more potent inductor of apoptosis than gefitinib and alkylating agents. These results show the efficacy of bortezomib and of the association between conventional chemotherapy and gefitinib on glioblastoma cells and therefore suggest the interest of these molecules in the treatment of glioblastoma.

  20. p73 promotes glioblastoma cell invasion by directly activating POSTN (periostin) expression

    PubMed Central

    Landré, Vivien; Antonov, Alexey; Knight, Richard; Melino, Gerry

    2016-01-01

    Glioblastoma Multiforme is one of the most highly metastatic cancers and constitutes 70% of all gliomas. Despite aggressive treatments these tumours have an exceptionally bad prognosis, mainly due to therapy resistance and tumour recurrence. Here we show that the transcription factor p73 confers an invasive phenotype by directly activating expression of POSTN (periostin, HGNC:16953) in glioblastoma cells. Knock down of endogenous p73 reduces invasiveness and chemo-resistance, and promotes differentiation in vitro. Using chromatin immunoprecipitation and reporter assays we demonstrate that POSTN, an integrin binding protein that has recently been shown to play a major role in metastasis, is a transcriptional target of TAp73. We further show that POSTN overexpression is sufficient to rescue the invasive phenotype of glioblastoma cells after p73 knock down. Additionally, bioinformatics analysis revealed that an intact p73/POSTN axis, where POSTN and p73 expression is correlated, predicts bad prognosis in several cancer types. Taken together, our results support a novel role of TAp73 in controlling glioblastoma cell invasion by regulating the expression of the matricellular protein POSTN. PMID:26930720

  1. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells.

    PubMed

    Zhang, Li; Wang, Handong; Ding, Ke; Xu, Jianguo

    2015-07-02

    FTY720 is a potent immunosuppressant which has preclinical antitumor efficacy in various cancer models. However, its role in glioblastoma remains unclear. In the present study, we found that FTY720 induced extrinsic apoptosis, necroptosis and autophagy in human glioblastoma cells. Inhibition of autophagy by either RNA interference or chemical inhibitors attenuated FTY720-induced apoptosis and necrosis. Furthermore, autophagy, apoptosis and necrosis induction were dependent on reactive oxygen species-c-Jun N-terminal kinase-protein 53 (ROS-JNK-p53) loop mediated phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) pathway. In addition, receptor-interacting protein 1 and 3 (RIP1 and RIP3) served as an upstream of ROS-JNK-p53 loop. However, the phosphorylation form of FTY720 induced autophagy but not apoptosis and necroptosis. Finally, the in vitro results were validated in vivo in xenograft mouse of glioblastoma cells. In conclusion, the current study provided novel insights into understanding the mechanisms and functions of FTY720-induced apoptosis, necroptosis and autophagy in human glioblastoma cells.

  2. Effects of Flavonoids from Food and Dietary Supplements on Glial and Glioblastoma Multiforme Cells.

    PubMed

    Vidak, Marko; Rozman, Damjana; Komel, Radovan

    2015-10-23

    Quercetin, catechins and proanthocyanidins are flavonoids that are prominently featured in foodstuffs and dietary supplements, and may possess anti-carcinogenic activity. Glioblastoma multiforme is the most dangerous form of glioma, a malignancy of the brain connective tissue. This review assesses molecular structures of these flavonoids, their importance as components of diet and dietary supplements, their bioavailability and ability to cross the blood-brain barrier, their reported beneficial health effects, and their effects on non-malignant glial as well as glioblastoma tumor cells. The reviewed flavonoids appear to protect glial cells via reduction of oxidative stress, while some also attenuate glutamate-induced excitotoxicity and reduce neuroinflammation. Most of the reviewed flavonoids inhibit proliferation of glioblastoma cells and induce their death. Moreover, some of them inhibit pro-oncogene signaling pathways and intensify the effect of conventional anti-cancer therapies. However, most of these anti-glioblastoma effects have only been observed in vitro or in animal models. Due to limited ability of the reviewed flavonoids to access the brain, their normal dietary intake is likely insufficient to produce significant anti-cancer effects in this organ, and supplementation is needed.

  3. MSX1 inhibits cell migration and invasion through regulating the Wnt/β-catenin pathway in glioblastoma.

    PubMed

    Tao, Haiquan; Guo, Li; Chen, Lifeng; Qiao, Guangyu; Meng, Xianghui; Xu, Bainan; Ye, Wei

    2016-01-01

    Glioblastoma is a type of primary brain tumor with poor prognosis. The hallmark phenotype of glioblastoma is its aggressive invasion. Understanding the molecular mechanism of the invasion behavior of glioblastoma is essential for the development of effective treatment of the disease. In our present study, we found that the expression levels of a homeobox transcription factor, MSX1, were significantly reduced in glioblastoma compared to normal brain tissues. The levels of MSX1 in glioblastoma tissues were also correlated with the survival of the patients. In cultured glioblastoma cells, MSX1 was a negative regulator of cell migration and invasion. Loss of MSX1 enhanced cell migration and induced mesenchymal transition as characterized by the downregulation of E-cadherin and the upregulation of N-cadherin. Overexpression of MSX1 on the other hand led to the inhibition of both cell migration and mesenchymal transition. We also found that MSX1 was able to inhibit the Wnt/β-catenin signaling pathway, and that the ability to regulate the Wnt/β-catenin signaling pathway is critical for MSX1 to suppress glioblastoma cell migration and invasion.

  4. Cytotoxic activity of interferon alpha induced dendritic cells as a biomarker of glioblastoma

    NASA Astrophysics Data System (ADS)

    Mishinov, S. V.; Stupak, V. V.; Tyrinova, T. V.; Leplina, O. Yu.; Ostanin, A. A.; Chernykh, E. R.

    2016-08-01

    Dendritic cells (DCs) are the most potent antigen presenting cells that can play direct role in anti-tumor immune response as killer cells. DC tumoricidal activity can be stimulated greatly by type I IFN (IFNα and IFNβ). In the present study, we examined cytostatic and cytotoxic activity of monocyte-derived IFNα-induced DCs generated from patients with brain glioma and evaluated the potential use of these parameters in diagnostics of high-grade gliomas. Herein, we demonstrated that patient DCs do not possess the ability to inhibit the growth of tumor HEp-2 cell line but low-grade and high-grade glioma patients do not differ significantly in DC cytostatic activity. However, glioma patient DCs are characterized by reduced cytotoxic activity against HEp-2 cells. The impairment of DC cytotoxic function is observed mainly in glioblastoma patients. The cytotoxic activity of DCs against HEp-2 cells below 9% is an informative marker for glioblastomas.

  5. 3-Methyl pyruvate enhances radiosensitivity through increasing mitochondria-derived reactive oxygen species in tumor cell lines.

    PubMed

    Nishida, Naoya; Yasui, Hironobu; Nagane, Masaki; Yamamori, Tohru; Inanami, Osamu

    2014-05-01

    Considerable interest has recently been focused on the special characteristics of cancer metabolism, and several drugs designed to modulate cancer metabolism have been tested as potential anticancer agents. To date, however, very few studies have been conducted to investigate the combined effects of anticancer drugs and radiotherapy. In this study, to evaluate the role of mitochondria-derived reactive oxygen species (ROS) in the radiation-induced cell death of tumor cells, we have examined the effect of 3-methyl pyruvate (MP). MP is a membrane-permeable pyruvate derivative that is capable of activating mitochondrial energy metabolism in human lung carcinoma A549 cells and murine squamous carcinoma SCCVII cells. Pretreatment with MP significantly enhanced radiation-induced cell death in both cell lines, and also led to increases in the mitochondrial membrane potential, intracellular adenosine triphosphate content, and mitochondria-derived ROS production following the exposure of the cells to X-rays. In A549 cells, MP-induced radiosensitization was completely abolished by vitamin C. In contrast, it was partially abolished in SCCVII cells. These results therefore suggest that the treatment of the cells with MP induced radiosensitization via the production of excess mitochondria-derived ROS in tumor cells.

  6. Radiosensitizing effect of carboplatin and paclitaxel to carbon-ion beam irradiation in the non-small-cell lung cancer cell line H460.

    PubMed

    Kubo, Nobuteru; Noda, Shin-ei; Takahashi, Akihisa; Yoshida, Yukari; Oike, Takahiro; Murata, Kazutoshi; Musha, Atsushi; Suzuki, Yoshiyuki; Ohno, Tatsuya; Takahashi, Takeo; Nakano, Takashi

    2015-03-01

    The present study investigated the ability of carboplatin and paclitaxel to sensitize human non-small-cell lung cancer (NSCLC) cells to carbon-ion beam irradiation. NSCLC H460 cells treated with carboplatin or paclitaxel were irradiated with X-rays or carbon-ion beams, and radiosensitivity was evaluated by clonogenic survival assay. Cell proliferation was determined by counting the number of viable cells using Trypan blue. Apoptosis and senescence were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and senescence-associated β-galactosidase (SA-β-gal) staining, respectively. The expression of cleaved caspase-3, Bax, p53 and p21 was analyzed by western blotting. Clonogenic survival assays demonstrated a synergistic radiosensitizing effect of carboplatin and paclitaxel with carbon-ion beams; the sensitizer enhancement ratios (SERs) at the dose giving a 10% survival fraction (D10) were 1.21 and 1.22, respectively. Similarly, carboplatin and paclitaxel showed a radiosensitizing effect with X-rays; the SERs were 1.41 and 1.29, respectively. Cell proliferation assays validated the radiosensitizing effect of carboplatin and paclitaxel with both carbon-ion beam and X-ray irradiation. Carboplatin and paclitaxel treatment combined with carbon-ion beams increased TUNEL-positive cells and the expression of cleaved caspase-3 and Bax, indicating the enhancement of apoptosis. The combined treatment also increased SA-β-gal-positive cells and the expression of p53 and p21, indicating the enhancement of senescence. In summary, carboplatin and paclitaxel radiosensitized H460 cells to carbon-ion beam irradiation by enhancing irradiation-induced apoptosis and senescence.

  7. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion.

    PubMed

    Chen, Wen-Liang; Barszczyk, Andrew; Turlova, Ekaterina; Deurloo, Marielle; Liu, Baosong; Yang, Burton B; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo

    2015-06-30

    Glioblastomas are progressive brain tumors with devastating proliferative and invasive characteristics. Ion channels are the second largest target class for drug development. In this study, we investigated the effects of the TRPM7 inhibitor carvacrol on the viability, resistance to apoptosis, migration, and invasiveness of the human U87 glioblastoma cell line.The expression levels of TRPM7 mRNA and protein in U87 cells were detected by RT-PCR, western blotting and immunofluorescence. TRPM7 currents were recorded using whole-cell patch-clamp techniques. An MTT assay was used to assess cell viability and proliferation. Wound healing and transwell experiments were used to evaluate cell migration and invasion. Protein levels of p-Akt/t-Akt, p-ERK1/2/t-ERK1/2, cleaved caspase-3, MMP-2 and phosphorylated cofilin were also detected.TRPM7 mRNA and protein expression in U87 cells is higher than in normal human astrocytes. Whole-cell patch-clamp recording showed that carvacrol blocks recombinant TRPM7 current in HEK293 cells and endogenous TRPM7-like current in U87 cells. Carvacrol treatment reduced the viability, migration and invasion of U87 cells. Carvacrol also decreased MMP-2 protein expression and promoted the phosphorylation of cofilin. Furthermore, carvacrol inhibited the Ras/MEK/MAPK and PI3K/Akt signaling pathways.Therefore, carvacrol may have therapeutic potential for the treatment of glioblastomas through its inhibition of TRPM7 channels.

  8. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    PubMed Central

    Hansberg-Pastor, Valeria

    2017-01-01

    Progesterone-induced blocking factor (PIBF) is a progesterone (P4) regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM) from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM) blocked this effect. PIBF (100 ng/mL) increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h) and U251 (24 and 48 h) cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells. PMID:28168193

  9. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion

    PubMed Central

    Chen, Wen-Liang; Barszczyk, Andrew; Turlova, Ekaterina; Deurloo, Marielle; Liu, Baosong; Yang, Burton B.; Rutka, James T.; Feng, Zhong-Ping; Sun, Hong-Shuo

    2015-01-01

    Glioblastomas are progressive brain tumors with devastating proliferative and invasive characteristics. Ion channels are the second largest target class for drug development. In this study, we investigated the effects of the TRPM7 inhibitor carvacrol on the viability, resistance to apoptosis, migration, and invasiveness of the human U87 glioblastoma cell line. The expression levels of TRPM7 mRNA and protein in U87 cells were detected by RT-PCR, western blotting and immunofluorescence. TRPM7 currents were recorded using whole-cell patch-clamp techniques. An MTT assay was used to assess cell viability and proliferation. Wound healing and transwell experiments were used to evaluate cell migration and invasion. Protein levels of p-Akt/t-Akt, p-ERK1/2/t-ERK1/2, cleaved caspase-3, MMP-2 and phosphorylated cofilin were also detected. TRPM7 mRNA and protein expression in U87 cells is higher than in normal human astrocytes. Whole-cell patch-clamp recording showed that carvacrol blocks recombinant TRPM7 current in HEK293 cells and endogenous TRPM7-like current in U87 cells. Carvacrol treatment reduced the viability, migration and invasion of U87 cells. Carvacrol also decreased MMP-2 protein expression and promoted the phosphorylation of cofilin. Furthermore, carvacrol inhibited the Ras/MEK/MAPK and PI3K/Akt signaling pathways. Therefore, carvacrol may have therapeutic potential for the treatment of glioblastomas through its inhibition of TRPM7 channels. PMID:25965832

  10. 99mTc-Tetrofosmin Uptake Correlates with the Sensitivity of Glioblastoma Cell Lines to Temozolomide

    PubMed Central

    Alexiou, George A.; Xourgia, Xanthi; Gerogianni, Paraskevi; Vartholomatos, Evrysthenis; Kalef-Ezra, John A.; Fotopoulos, Andreas D.; Kyritsis, Athanasios P.

    2017-01-01

    99mTc-tetrofosmin (99mTc-TF) is a single-photon emission computed tomography tracer that has been used for brain tumor imaging. The aim of the study was to assess if 99mTc-TF uptake by glioblastoma cells correlates with their response to temozolomide (TMZ). We investigated the correlation of TMZ antitumor effect with the 99mTc-TF uptake in two glioblastoma cell lines. The U251MG cell line is sensitive to TMZ, whereas T98G is resistant. Viability and proliferation of the cells were examined by trypan blue exclusion assay and xCELLigence system. Cell cycle was analyzed with flow cytometry. The radioactivity in the cellular lysate was measured with a gamma scintillation counter. TMZ induced G2/M cell cycle arrest in U251MG cells, whereas there was no effect on cell cycle in T98G cells. Lower 99mTc-TF uptake was observed in U251MG cells that were exposed to TMZ compared to control (P = 0.0159). No significant difference in respect to 99mTc-TF uptake was found in T98G cells when exposed to TMZ compared to control (P = 0.8). With 99mTc-TF, it was possible to distinguish between TMZ-sensitive and resistant glioblastoma cells within 6 h of treatment initiation. Thus, 99mTc-TF uptake may consist a novel approach to assess an early response of glioblastoma to chemotherapy and deserves further investigation. PMID:28217019

  11. PTEN loss represses glioblastoma tumor initiating cell differentiation via inactivation of Lgl1

    PubMed Central

    Gont, Alexander; Hanson, Jennifer E L; Lavictoire, Sylvie J; Parolin, Doris A E; Daneshmand, Manijeh; Restall, Ian J; Soucie, Mathieu; Nicholas, Garth; Woulfe, John; Kassam, Amin; Da Silva, Vasco F; Lorimer, Ian AJ

    2013-01-01

    Glioblastoma multiforme is an aggressive and incurable type of brain tumor. A subset of undifferentiated glioblastoma cells, known as glioblastoma tumor initiating cells (GTICs), has an essential role in the malignancy of this disease and also appears to mediate resistance to radiation therapy and chemotherapy. GTICs retain the ability to differentiate into cells with reduced malignant potential, but the signaling pathways controlling differentiation are not fully understood at this time. PTEN loss is a very common in glioblastoma multiforme and leads to aberrant activation of the phosphoinositide 3-kinase pathway. Increased signalling through this pathway leads to activation of multiple protein kinases, including atypical protein kinase C. In Drosophila, active atypical protein kinase C has been shown to promote the self-renewal of neuroblasts, inhibiting their differentiation along a neuronal lineage. This effect is mediated by atypical protein kinase c-mediated phosphorylation and inactivation of Lgl, a protein that was first characterized as a tumour suppressor in Drosophila. The effects of the atypical protein kinase C/Lgl pathway on the differentiation status of GTICs, and its potential link to PTEN loss, have not been assessed previously. Here we show that PTEN loss leads to the phosphorylation and inactivation of Lgl by atypical protein kinase C in glioblastoma cells. Re-expression of PTEN in GTICs promoted their differentiation along a neuronal lineage. This effect was also seen when atypical protein kinase C was knocked down using RNA interference, and when a non-phosphorylatable, constitutively active form of Lgl was expressed in GTICs. Thus PTEN loss, acting via atypical protein kinase C activation and Lgl inactivation, helps to maintain GTICs in an undifferentiated state. PMID:23907540

  12. PTEN loss represses glioblastoma tumor initiating cell differentiation via inactivation of Lgl1.

    PubMed

    Gont, Alexander; Hanson, Jennifer E L; Lavictoire, Sylvie J; Parolin, Doris A; Daneshmand, Manijeh; Restall, Ian J; Soucie, Mathieu; Nicholas, Garth; Woulfe, John; Kassam, Amin; Da Silva, Vasco F; Lorimer, Ian A J

    2013-08-01

    Glioblastoma multiforme is an aggressive and incurable type of brain tumor. A subset of undifferentiated glioblastoma cells, known as glioblastoma tumor initiating cells (GTICs), has an essential role in the malignancy of this disease and also appears to mediate resistance to radiation therapy and chemotherapy. GTICs retain the ability to differentiate into cells with reduced malignant potential, but the signaling pathways controlling differentiation are not fully understood at this time. PTEN loss is a very common in glioblastoma multiforme and leads to aberrant activation of the phosphoinositide 3-kinase pathway. Increased signalling through this pathway leads to activation of multiple protein kinases, including atypical protein kinase C. In Drosophila, active atypical protein kinase C has been shown to promote the self-renewal of neuroblasts, inhibiting their differentiation along a neuronal lineage. This effect is mediated by atypical protein kinase c-mediated phosphorylation and inactivation of Lgl, a protein that was first characterized as a tumour suppressor in Drosophila. The effects of the atypical protein kinase C/Lgl pathway on the differentiation status of GTICs, and its potential link to PTEN loss, have not been assessed previously. Here we show that PTEN loss leads to the phosphorylation and inactivation of Lgl by atypical protein kinase C in glioblastoma cells. Re-expression of PTEN in GTICs promoted their differentiation along a neuronal lineage. This effect was also seen when atypical protein kinase C was knocked down using RNA interference, and when a non-phosphorylatable, constitutively active form of Lgl was expressed in GTICs. Thus PTEN loss, acting via atypical protein kinase C activation and Lgl inactivation, helps to maintain GTICs in an undifferentiated state.

  13. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    SciTech Connect

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G. )

    1989-11-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity.

  14. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines

    PubMed Central

    Mahé, Cécile; Bernhard, Michel; Bobirnac, Ionel; Keser, Corinna; Loetscher, Erika; Feuerbach, Dominik; Dev, Kumlesh K; Schoeffter, Philippe

    2004-01-01

    Serotonin 5-HT7 receptors are present in astrocytes. Understanding their role in this type of cell would greatly benefit from the identification of astroglial cell lines expressing this receptor type. The aim of the present study was to assess the expression of native 5-HT7 receptors and 5-HT7 receptor mRNA in a number of human glioblastoma cell lines, by means of cAMP measurements, Western blot analysis and reverse transcriptase–polymerase chain reaction (RT–PCR) analysis. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human glioblastoma cell lines, U-373 MG, U-138 MG, U-87 MG, DBTRG-05MG, T98G, H4, CCF-STTG1 and Hs 683. The rank order of potency was 5-CT>5-HT=5-MeOT≫8-OH-DPAT. The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT7 receptor antagonist SB-269970 in all human glioblastoma cells. Schild analyses yielded slope factors close to unity (0.89–1.13) and pA2 values of 8.69–9.05. Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT7 receptor in extracts of all human glioblastoma cell lines. The presence of the three splice variants of the 5-HT7 receptor (5-HT7(a/b/d)) was visualized by RT–PCR analysis with specific primers in all human glioblastoma cell lines. In conclusion, human glioblastoma cell lines express functional 5-HT7 receptors and the three splice variants of the corresponding mRNA. These cell lines could serve as model systems of native 5-HT7 receptors in glial cells to investigate their putative role in processes like release of neurotrophic factors or inflammatory cytokines. PMID:15339860

  15. Genetically engineered T cells to target EGFRvIII expressing glioblastoma

    PubMed Central

    Bullain, Szofia S.; Sahin, Ayguen; Szentirmai, Oszkar; Sanchez, Carlos; Lin, Ning; Baratta, Elizabeth; Waterman, Peter; Weissleder, Ralph; Mulligan, Richard C.

    2009-01-01

    Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-ζ). After in vitro selection and expansion, MR1-ζ genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-γ secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-ζ) or signaling (MR1-delζ). MR1-ζ expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications. PMID:19387557

  16. ATM-Dependent Hyper-Radiosensitivity in Mammalian Cells Irradiated by Heavy Ions

    SciTech Connect

    Xue Lian; Yu Dong Furusawa, Yoshiya; Cao Jianping; Okayasu, Ryuichi; Fan Saijun

    2009-09-01

    Purpose: Low-dose hyper-radiosensitivity (HRS) and the later appearing radioresistance (termed induced radioresistance [IRR]) was mainly studied in low linear energy transfer (LET) radiation with survival observation. The aim of this study was to find out whether equivalent hypersensitivity occurred in high LET radiation, and the roles of ataxia telangiectasia mutated (ATM) kinase. Methods and Materials: Survival and mutation were measured by clonogenic assay and HPRT mutation assay. ATM Ser1981 activation was detected by Western blotting and immunofluorescent staining. Pretreatment of specific ATM inhibitor (10 {mu}M KU55933) and activator (20 {mu}g/mL chloroquine) before carbon radiation were adopted to explore the involvement of ATM. The roles of ATM were also investigated in its G2/M checkpoint function with histone H3 phosphorylation analysis and flow cytometric assay, and DNA double strand break (DSB) repair function measured using {gamma}-H2AX foci assay. Results: HRS/IRR was observed with survival and mutation in normal human skin fibroblast cells by carbon ions, while impaired in cells with intrinsic ATM deficiency or normal cells modified with specific ATM activator or inhibitor before irradiation. The dose-response pattern of ATM kinase activation was concordant with the transition from HRS to IRR. The ATM-dependent 'early' G2 checkpoint arrest and DNA DSB repair efficiency could explain the difference between HRS and IRR. Conclusions: These data demonstrate that the HRS/IRR by carbon ion radiation is an ATM-dependent phenomenon in the cellular response to DNA damage.

  17. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    SciTech Connect

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  18. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    SciTech Connect

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra; De Ridder, Mark

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.

  19. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    SciTech Connect

    Tian Junqiang; Ning Shouchen; Knox, Susan J.

    2010-09-01

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5 Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.

  20. The radiosensitizing effect of the aurora kinase inhibitors, ENMD-2076, on canine mast cell tumours in vitro.

    PubMed

    Shiomitsu, K; Sajo, E; Rubin, C; Sehgal, I

    2016-03-01

    ENMD-2076 is an aurora kinase inhibitor that also has multi-target tyrosine kinase inhibitor properties. In this study, the mRNA and the protein expression of aurora-A and aurora-B were evaluated in three canine mast cell tumour cell lines. Dose-dependent cytotoxicity was seen in the cells treated, and it affected the cell cycle with cells in the G2/M phase being selectively killed. The cells were also evaluated for radiosensitivity with/without ENMD-2076, and radiosensitization was seen after 3 Gy and 6 Gy exposures with ENMD-2076 for 48 h. Protein expression of caspase-3 was gradually increased, and the expression intensity was highest at 24 h post irradiation in cells without ENMD-2076 treatment, which indicates that radiation exposure with ENMD-2076-induced cell death faster than radiation treatment alone. Our study results suggest the potential usefulness of treating canine mast cell tumours with aurora kinase inhibitors alone or in conjunction with radiation therapy.

  1. Increased chemosensitivity and radiosensitivity of human breast cancer cell lines treated with novel functionalized single-walled carbon nanotubes

    PubMed Central

    Jia, Yijun; Weng, Ziyi; Wang, Chuanying; Zhu, Mingjie; Lu, Yunshu; Ding, Longlong; Wang, Yongkun; Cheng, Xianhua; Lin, Qing; Wu, Kejin

    2017-01-01

    Hypoxia is a major cause of treatment resistance in breast cancer. Single-walled carbon nanotubes (SWCNTs) exhibit unique properties that make them promising candidates for breast cancer treatment. In the present study, a new functionalized single-walled carbon nanotube carrying oxygen was synthesized; it was determined whether this material could increase chemosensitivity and radiosensitivity of human breast cancer cell lines, and the underlying mechanisms were investigated. MDA-MB-231 cells growing in folic acid (FA) free medium, MDA-MB-231 cells growing in medium containing FA and ZR-75-1 cells were treated with chemotherapy drugs or radiotherapy with or without tombarthite-modified-FA-chitosan (R-O2-FA-CHI)-SWCNTs under hypoxic conditions, and the cell viability was determined by water-soluble tetrazolium salts-1 assay. The cell surviving fractions were determined by colony forming assay. Cell apoptosis induction was monitored by flow cytometry. Expression of B-cell lymphoma 2 (Bcl-2), survivin, hypoxia-inducible factor 1-α (HIF-1α), multidrug resistance-associated protein 1 (MRP-1), P-glycoprotein (P-gp), RAD51 and Ku80 was monitored by western blotting. The novel synthesized R-O2-FA-CHI-SWCNTs were able to significantly enhance the chemosensitivity and radiosensitivity of human breast cancer cell lines and the material exhibited its expected function by downregulating the expression of Bcl-2, survivin, HIF-1α, P-gp, MRP-1, RAD51 and Ku80. PMID:28123543

  2. Unique spectral markers discern recurrent Glioblastoma cells from heterogeneous parent population

    PubMed Central

    Kaur, Ekjot; Sahu, Aditi; Hole, Arti R.; Rajendra, Jacinth; Chaubal, Rohan; Gardi, Nilesh; Dutt, Amit; Moiyadi, Aliasgar; Krishna, C. Murali; Dutt, Shilpee

    2016-01-01

    An inability to discern resistant cells from bulk tumour cell population contributes to poor prognosis in Glioblastoma. Here, we compared parent and recurrent cells generated from patient derived primary cultures and cell lines to identify their unique molecular hallmarks. Although morphologically similar, parent and recurrent cells from different samples showed variable biological properties like proliferation and radiation resistance. However, total RNA-sequencing revealed transcriptional landscape unique to parent and recurrent populations. These data suggest that global molecular differences but not individual biological phenotype could differentiate parent and recurrent cells. We demonstrate that Raman Spectroscopy a label-free, non-invasive technique, yields global information about biochemical milieu of recurrent and parent cells thus, classifying them into distinct clusters based on Principal-Component-Analysis and Principal-Component-Linear-Discriminant-Analysis. Additionally, higher lipid related spectral peaks were observed in recurrent population. Importantly, Raman spectroscopic analysis could further classify an independent set of naïve primary glioblastoma tumour tissues into non-responder and responder groups. Interestingly, spectral features from the non-responder patient samples show a considerable overlap with the in-vitro generated recurrent cells suggesting their similar biological behaviour. This feasibility study necessitates analysis of a larger cohort of naïve primary glioblastoma samples to fully envisage clinical utility of Raman spectroscopy in predicting therapeutic response. PMID:27221528

  3. Second Generation Amphiphilic Poly-Lysine Dendrons Inhibit Glioblastoma Cell Proliferation without Toxicity for Neurons or Astrocytes

    PubMed Central

    Janiszewska, Jolanta; Posadas, Inmaculada; Játiva, Pablo; Bugaj-Zarebska, Marta; Urbanczyk-Lipkowska, Zofia; Ceña, Valentín

    2016-01-01

    Glioblastomas are the most common malignant primary brain tumours in adults and one of the most aggressive and difficult-to-treat cancers. No effective treatment exits actually for this tumour and new therapeutic approaches are needed for this disease. One possible innovative approach involves the nanoparticle-mediated specific delivery of drugs and/or genetic material to glioblastoma cells where they can provide therapeutic benefits. In the present work, we have synthesised and characterised several second generation amphiphilic polylysine dendrons to be used as siRNA carriers. We have found that, in addition to their siRNA binding properties, these new compounds inhibit the proliferation of two glioblastoma cell lines while being nontoxic for non-tumoural central nervous system cells like neurons and glia, cell types that share the anatomical space with glioblastoma cells during the course of the disease. The selective toxicity of these nanoparticles to glioblastoma cells, as compared to neurons and glial cells, involves mitochondrial depolarisation and reactive oxygen species production. This selective toxicity, together with the ability to complex and release siRNA, suggests that these new polylysine dendrons might offer a scaffold in the development of future nanoparticles designed to restrict the proliferation of glioblastoma cells. PMID:27832093

  4. RNA interference for epidermal growth factor receptor enhances the radiosensitivity of esophageal squamous cell carcinoma cell line Eca109.

    PubMed

    Zhang, Heping; Li, Jiancheng; Cheng, Wenfang; Liu, D I; Chen, Cheng; Wang, Xiaoying; Lu, Xujing; Zhou, Xifa

    2015-09-01

    The present study investigated the effects of small interfering RNAs (siRNAs) specific to the epidermal growth factor receptor (EGFR) gene, on the radiosensitivity of esophageal squamous cell carcinoma cells. EGFR gene siRNAs (EGFR-siRNA) were introduced into esophageal cancer Eca109 cells using Lipofectamine® 2000. The EGFR messenger (m)RNA expression levels, EGFR protein expression and cell growth were assessed using reverse transcription-polymerase chain reaction analysis, western blot analysis and a Cell Counting Kit-8 (CCK-8), respectively. In addition, colony assays were used to determine the inhibitory effects of X-ray radiation on EGFR-silenced cells. EGFR mRNA and protein levels were reduced in the Eca109 cells transfected with EGFR-siRNA. The relative EGFR mRNA expression levels were reduced to 26.74, 9.52 and 4.61% in Eca109 cells transfected with EGFR-siRNA1, 2 and 3, respectively. These mRNA levels were significantly reduced compared with the those of the control group (42.44%; P<0.0001). Transfection with siRNA3 resulted in the greatest reduction in EGFR mRNA expression, with an inhibition rate of 85%. The relative EGFR protein expression levels were reduced to 24.05, 34.91 and 34.14% in Eca109 cells transfected with EGFR-siRNA1, 2 and 3, respectively. These protein levels were significantly reduced compared with those of the control group (78.57%; P<0.0001). Transfection with siRNA1 resulted in the greatest reduction in EGFR protein expression, with an inhibition rate of 72.84%. This reduction in EGFR expression inhibited the proliferation of Eca109 cells, which was identified using the CCK-8 assay. The proliferation inhibition ratio was 28.2%. The cells treated with irradiation in addition to EGFR-siRNA, demonstrated reduced radiobiological parameters (D0, Dq and SF2) compared with those of cells treated with irradiation only, with a sensitization enhancing ratio of 1.5. In conclusion, suppression of EGFR expression may enhance the radiosensitivity

  5. Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart

    SciTech Connect

    Serakinci, Nedime . E-mail: nserakinci@health.sdu.dk; Christensen, Rikke; Graakjaer, Jesper; Cairney, Claire J.; Keith, W. Nicol; Alsner, Jan; Saretzki, Gabriele; Kolvraa, Steen

    2007-03-10

    During the past several years increasing evidence indicating that the proliferation capacity of mammalian cells is highly radiosensitive, regardless of the species and the tissue of origin of the cells, has accumulated. It has also been shown that normal bone marrow cells of mice have a similar radiosensitivity to other mammalian cells so far tested. In this study, we investigated the genetic effects of ionizing radiation (2.5-15 Gy) on normal human mesenchymal stem cells and their telomerised counterpart hMSC-telo1. We evaluated overall genomic integrity, DNA damage/repair by applying a fluorescence-detected alkaline DNA unwinding assay together with Western blot analyses for phosphorylated H2AX and Q-FISH was applied for investigation of telomeric damage. Our results indicate that hMSC and TERT-immortalized hMSCs can cope with relatively high doses of {gamma}-rays and that overall DNA repair is similar in the two cell lines. The telomeres were extensively destroyed after irradiation in both cell types suggesting that telomere caps are especially sensitive to radiation. The TERT-immortalized hMSCs showed higher stability at telomeric regions than primary hMSCs indicating that cells with long telomeres and high telomerase activity have the advantage of re-establishing the telomeric caps.

  6. Pharmacological WNT Inhibition Reduces Proliferation, Survival and Clonogenicity of Glioblastoma Cells

    PubMed Central

    Kahlert, Ulf D.; Suwala, Abigail K.; Koch, Katharina; Natsumeda, Manabu; Orr, Brent A.; Hayashi, Masanori; Maciaczyk, Jarek; Eberhart, Charles G.

    2015-01-01

    Wingless (WNT) signaling has been shown to be an important pathway in gliomagenesis and in the growth of stem-like glioma cells. Using immunohistochemistry to assess translocation of β-catenin protein, we identified intranuclear staining, which suggest WNT pathway activation, in 8 of 43 (19%) adult and 9 of 30 (30%) pediatric glioblastoma patient surgical samples. WNT activity, evidenced by nuclear β-catenin in our cohort and high expression of its target AXIN2 in published glioma datasets, was associated with shorter patient survival, although this was not statistically significant. We determined the effects of the porcupine inhibitor LGK974 in 3 glioblastoma cell lines with elevated AXIN2 and found that it reduced WNT pathway activity by 50% or more as assessed by T cell factor-luciferase reporters. WNT inhibition led to suppression of growth and proliferation in the cultures and a modest induction of cell death. LGK974 reduced NANOG mRNA levels and the fraction of cells expressing the stem cell marker CD133 in neurosphere cultures, induced glial differentiation, and suppressed clonogenicity. These data indicate that LGK974 represents a promising new agent that can inhibit the canonical WNT pathway in vitro, slow tumor growth and deplete stem-like clonogenic cells, thereby providing further support for targeting WNT in patients with glioblastoma. PMID:26222502

  7. From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis.

    PubMed

    Giusti, Ilaria; Delle Monache, Simona; Di Francesco, Marianna; Sanità, Patrizia; D'Ascenzo, Sandra; Gravina, Giovanni Luca; Festuccia, Claudio; Dolo, Vincenza

    2016-09-01

    Glioblastoma has one of the highest mortality rates among cancers, and it is the most common and malignant form of brain cancer. Among the typical features of glioblastoma tumors, there is an aberrant vascularization: all gliomas are among the most vascularized/angiogenic tumors. In recent years, it has become clear that glioblastoma cells can secrete extracellular vesicles which are spherical and membrane-enclosed particles released, in vitro or in vivo, by both normal and tumor cells; they are involved in the regulation of both physiological and pathological processes; among the latter, cancer is the most widely studied. Extracellular vesicles from tumor cells convey messages to other tumor cells, but also to normal stromal cells in order to create a microenvironment that supports cancer growth and progression and are implicated in drug resistance, escape from immunosurveillance and from apoptosis, as well as in metastasis formation; they are also involved in angiogenesis stimulation, inducing endothelial cells proliferation, and other pro-angiogenic activities. To this aim, the present paper assesses in detail the extracellular vesicles phenomenon in the human glioblastoma cell line U251 and evaluates extracellular vesicles ability to promote the processes required to achieve the formation of new blood vessels in human brain microvascular endothelial cells, highlighting that they stimulate proliferation, motility, and tube formation in a dose-response manner. Moreover, a molecular characterization shows that extracellular vesicles are fully equipped for angiogenesis stimulation in terms of proteolytic enzymes (gelatinases and plasminogen activators), pro-angiogenic growth factors (VEGF and TGFβ), and the promoting-angiogenic CXCR4 chemokine receptor.

  8. MiR-134 regulates the proliferation and invasion of glioblastoma cells by reducing Nanog expression.

    PubMed

    Niu, Chao Shi; Yang, Yang; Cheng, Chuan-Dong

    2013-05-01

    MiR-134 is a brain-enriched miRNA that plays an essential role in the development of the embryonic stem cell-orientated differentiation to central nervous system by suppression of Nanog and neural development (including neurons, cylindraxile and dendrites) and has been shown to be downregulated in oligodendrogliomas (ODG) and glioblastomas (GBM), suggesting its possible involvement in brain tumor progression. In this study, we defined the expression and function of miR-134, which we found to be downregulated in glioma samples and the glioblastoma cell line U87 by SYBR green real-time quantitative reverse transcription-PCR (real-time PCR). Early reports have characterized Nanog as a direct target of miR-134 by a dual-luciferase reporter assay in 293T cells. In our study, overexpression of miR-134 in U87 glioblastoma cells resulted in significant downregulation of Nanog mRNA levels as well as protein levels. miR-134 overexpression reduced the proliferation, invasiveness and migration capability of U87 cells while promoted apoptosis of these cells in vitro and suppressed the growth of tumor xenografts in vivo. These findings demonstrated that miR-134 deregulation is common in human gliomas. Restoration of its function inhibits cell proliferation, invasion and migration capability and promotes apoptosis, which could be partly due to its inhibitory effect on Nanog protein expression in glioblastoma cells. MiR-134 could play an important role as a tumor suppressor relying on its direct translational attenuation of Nanog.

  9. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    SciTech Connect

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  10. AZD5438, an Inhibitor of Cdk1, 2, and 9, Enhances the Radiosensitivity of Non-Small Cell Lung Carcinoma Cells

    SciTech Connect

    Raghavan, Pavithra; Tumati, Vasu; Yu Lan; Chan, Norman; Tomimatsu, Nozomi; Burma, Sandeep; Bristow, Robert G.; Saha, Debabrata

    2012-11-15

    Purpose: Radiation therapy (RT) is one of the primary modalities for treatment of non-small cell lung cancer (NSCLC). However, due to the intrinsic radiation resistance of these tumors, many patients experience RT failure, which leads to considerable tumor progression including regional lymph node and distant metastasis. This preclinical study evaluated the efficacy of a new-generation cyclin-dependent kinase (Cdk) inhibitor, AZD5438, as a radiosensitizer in several NSCLC models that are specifically resistant to conventional fractionated RT. Methods and Materials: The combined effect of ionizing radiation and AZD5438, a highly specific inhibitor of Cdk1, 2, and 9, was determined in vitro by surviving fraction, cell cycle distribution, apoptosis, DNA double-strand break (DSB) repair, and homologous recombination (HR) assays in 3 NSCLC cell lines (A549, H1299, and H460). For in vivo studies, human xenograft animal models in athymic nude mice were used. Results: Treatment of NSCLC cells with AZD5438 significantly augmented cellular radiosensitivity (dose enhancement ratio rangeing from 1.4 to 1.75). The degree of radiosensitization by AZD5438 was greater in radioresistant cell lines (A549 and H1299). Radiosensitivity was enhanced specifically through inhibition of Cdk1, prolonged G{sub 2}-M arrest, inhibition of HR, delayed DNA DSB repair, and increased apoptosis. Combined treatment with AZD5438 and irradiation also enhanced tumor growth delay, with an enhancement factor ranging from 1.2-1.7. Conclusions: This study supports the evaluation of newer generation Cdk inhibitors, such as AZD5438, as potent radiosensitizers in NSCLC models, especially in tumors that demonstrate variable intrinsic radiation responses.

  11. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    SciTech Connect

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  12. Circulating Endothelial Cells and Procoagulant Microparticles in Patients with Glioblastoma: Prognostic Value

    PubMed Central

    Reynés, Gaspar; Vila, Virtudes; Fleitas, Tania; Reganon, Edelmiro; Font de Mora, Jaime; Jordá, María; Martínez-Sales, Vicenta

    2013-01-01

    Aim Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. Methods Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. Results Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001). After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004). Conclusion Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma. PMID:23922679

  13. Pulsed Electromagnetic Field with Temozolomide Can Elicit an Epigenetic Pro-apoptotic Effect on Glioblastoma T98G Cells.

    PubMed

    Pasi, Francesca; Fassina, Lorenzo; Mognaschi, Maria Evelina; Lupo, Giuseppe; Corbella, Franco; Nano, Rosanna; Capelli, Enrica

    2016-11-01

    Treatment with pulsed electromagnetic fields (PEMFs) is emerging as an interesting therapeutic option for patients with cancer. The literature has demonstrated that low-frequency/low-energy electromagnetic fields do not cause predictable effects on DNA; however, they can epigenetically act on gene expression. The aim of the present work was to study a possible epigenetic effect of a PEMF, mediated by miRNAs, on a human glioblastoma cell line (T98G). We tested a PEMF (maximum magnetic induction, 2 mT; frequency, 75 Hz) that has been demonstrated to induce autophagy in glioblastoma cells. In particular, we studied the effect of PEMF on the expression of genes involved in cancer progression and a promising synergistic effect with temozolomide, a frequently used drug to treat glioblastoma multiforme. We found that electromagnetic stimulation in combination with temozolomide can elicit an epigenetic pro-apoptotic effect in the chemo- and radioresistant T98G glioblastoma cell line.

  14. Immunosuppressive mechanisms in glioblastoma.

    PubMed

    Nduom, Edjah K; Weller, Michael; Heimberger, Amy B

    2015-11-01

    Despite maximal surgical and medical therapy, the treatment of glioblastoma remains a seriously vexing problem, with median survival well under 2 years and few long-term survivors. Targeted therapy has yet to produce significant advances in treatment of these lesions in spite of advanced molecular characterization of glioblastoma and glioblastoma cancer stem cells. Recently, immunotherapy has emerged as a promising mode for some of the hardest to treat tumors, including metastatic melanoma. Although immunotherapy has been evaluated in glioblastoma in the past with limited success, better understanding of the failures of these therapies could lead to more successful treatments in the future. Furthermore, there is a persistent challenge for the use of immune therapy to treat glioblastoma secondary to the existence of redundant mechanisms of tumor-mediated immune suppression. Here we will address these mechanisms of immunosuppression in glioblastoma and therapeutic approaches.

  15. Stage-specific embryonic antigen: determining expression in canine glioblastoma, melanoma, and mammary cancer cells.

    PubMed

    Lin, Weiming; Modiano, Jaime F; Ito, Daisuke

    2017-03-30

    The expression of stage-specific embryonic antigens (SSEAs) was determined in several types of canine cancer cells. Flow cytometry showed SSEA-1 expression in glioblastoma, melanoma, and mammary cancer cells, although none expressed SSEA-3 or SSEA-4. Expression of SSEA-1 was not detected in lymphoma, osteosarcoma, or hemangiosarcoma cell lines. Relatively stable SSEA-1 expression was observed between 24 and 72 h of culture. After 8 days in culture, sorted SSEA-1(-) and SSEA-1(+) cells re-established SSEA-1 expression to levels comparable to those observed in unsorted cells. Our results document, for the first time, the expression of SSEA-1 in several canine cancer cell lines.

  16. Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance.

    PubMed

    Liau, Brian B; Sievers, Cem; Donohue, Laura K; Gillespie, Shawn M; Flavahan, William A; Miller, Tyler E; Venteicher, Andrew S; Hebert, Christine H; Carey, Christopher D; Rodig, Scott J; Shareef, Sarah J; Najm, Fadi J; van Galen, Peter; Wakimoto, Hiroaki; Cahill, Daniel P; Rich, Jeremy N; Aster, Jon C; Suvà, Mario L; Patel, Anoop P; Bernstein, Bradley E

    2017-02-02

    Glioblastoma, the most common and aggressive malignant brain tumor, is propagated by stem-like cancer cells refractory to existing therapies. Understanding the molecular mechanisms that control glioblastoma stem cell (GSC) proliferation and drug resistance may reveal opportunities for therapeutic interventions. Here we show that GSCs can reversibly transition to a slow-cycling, persistent state in response to targeted kinase inhibitors. In this state, GSCs upregulate primitive developmental programs and are dependent upon Notch signaling. This transition is accompanied by widespread redistribution of repressive histone methylation. Accordingly, persister GSCs upregulate, and are dependent on, the histone demethylases KDM6A/B. Slow-cycling cells with high Notch activity and histone demethylase expression are present in primary glioblastomas before treatment, potentially contributing to relapse. Our findings illustrate how cancer cells may hijack aspects of native developmental programs for deranged proliferation, adaptation, and tolerance. They also suggest strategies for eliminating refractory tumor cells by targeting epigenetic and developmental pathways.

  17. Celecoxib Enhances the Radiosensitizing Effect of 7-Hydroxystaurosporine (UCN-01) in Human Lung Cancer Cell Lines

    SciTech Connect

    Kim, Young-Mee; Jeong, In-Hye; Pyo, Hongryull

    2012-07-01

    Purpose: 7-Hydroxystaurosporine (UCN-01), a Chk1-specific inhibitor, showed promising in vitro and in vivo chemo- or radiosensitizing activity. However, there have been concerns about its limited therapeutic efficacy and risk of side effects. A method of enhancing the treatment efficacy of UCN-01 while not increasing its side effects on normal tissue may therefore be required to apply this drug in clinical settings. Celecoxib is a cyclooxygenase-2 (COX-2)-specific inhibitor that downregulates ataxia telangiectasia and rad3-related (ATR) protein, an upstream kinase of Chk1. In this study, we investigated whether the addition of celecoxib can potentiate the radiosensitizing effect of UCN-01. Methods and Materials: The cooperative radiosensitizing effects and the underlying molecular mechanisms of UCN-01 plus celecoxib were determined by clonogenic assay, tumor growth delay assay, flow cytometry, and Western blotting. Synergism of the three agents combined (UCN-01 plus celecoxib plus radiation) were evaluated using median drug effect analysis and drug-independent action model analysis. Results: The combination of UCN-01 and celecoxib could induce synergistic cytotoxicity and radiosensitizing effects in in vitro and in vivo systems. The combination of both drugs also cooperatively inhibited IR-induced G{sub 2}/M arrest, and increased the G{sub 2} to mitotic transition. Conclusions: Combined treatment with UCN-01 and celecoxib can exert synergistically enhanced radiosensitizing effects via cooperative inhibition of the ionizing radiation-activated G{sub 2} checkpoint. We propose that this combination strategy may be useful in clinical applications of UCN-01 for radiotherapy of cancer patients.

  18. The medicinal fungus Antrodia cinnamomea regulates DNA repair and enhances the radiosensitivity of human esophageal cancer cells

    PubMed Central

    Liu, Yu-Ming; Liu, Yu-Kuo; Wang, Ling-Wei; Huang, Yu-Chuen; Huang, Pin-I; Tsai, Tung-Hu; Chen, Yu-Jen

    2016-01-01

    This study investigated the adjunctive effects of Antrodia cinnamomea mycelial fermentation broth (AC-MFB), a Taiwanese medicinal fungus, in enhancing the radiosensitivity of esophageal cancer cells. Human CE81T/VGH squamous and BE3 adenocarcinoma esophageal cancer cells were used in this study. A colony formation assay showed that pretreatment with AC-MFB decreased the survival of irradiated esophageal cancer cells, with a maximum sensitizer enhancement ratio of 1.91% and 37% survival. A DNA histogram study showed that AC-MFB pretreatment enhanced cell cycle arrest at the G2/M phase, the most radiosensitive phase. An immunofluorescence assay and a Western blotting assay showed that AC-MFB delayed the abrogation of γ-H2AX, upregulated p21 expression, and attenuated the radiation-induced phosphorylation of ataxia telangiectasia-mutated kinase and checkpoint kinase 2. An in vivo validation study showed that AC-MFB treatment tended to have a synergistic effect with radiation on the tumor growth delay of CE81T/VGH cells in BALB/c mice. These data suggest that this edible fungus product could enhance the effect of radiotherapy against esophageal cancer. PMID:27826196

  19. CpG oligodeoxyribonucleotide 7909 enhances radiosensitivity via downregulating Oct-4 expression in radioresistant lung cancer cells

    PubMed Central

    Xing, Na; Qiao, Tiankui; Zhuang, Xibing; Yuan, Sujuan; Zhang, Qi; Xu, Guoxiong

    2015-01-01

    Radiotherapy is a powerful cure for local advanced non-small cell lung cancer. However, radioresistance and tumor relapse still occur in a high proportion of patients. Octamer-4 (Oct-4), a transcription factor of the POU family, plays a key role in maintaining chemoradioresistant properties and regulating cancer progression. In this study, we demonstrated that Oct-4 expression was significantly increased in radioresistant H460 (H460R) cell line. CpG oligodeoxyribonucleotide (CpG-ODN) 7909 sensitized H460R cells when combined with irradiation treatment. The clonogenic capacity was significantly decreased, and the values of D0 and Dq were lower than those of irradiation alone group. The sensitive enhancement ratio (SER) of D0 was 1.224. This combined treatment led to a dramatic reduction in Oct-4 expression in a dose-dependent manner and also showed increased percentage of cells in the radiosensitive G2/M phase relative to either treatment alone. These results identified that Oct-4 was involved in radioresistance. CpG-ODN 7909 could enhance radiosensitivity partly through downregulating Oct-4 expression in radioresistant lung cancer cells. PMID:26109868

  20. CpG oligodeoxyribonucleotide 7909 enhances radiosensitivity via downregulating Oct-4 expression in radioresistant lung cancer cells.

    PubMed

    Xing, Na; Qiao, Tiankui; Zhuang, Xibing; Yuan, Sujuan; Zhang, Qi; Xu, Guoxiong

    2015-01-01

    Radiotherapy is a powerful cure for local advanced non-small cell lung cancer. However, radioresistance and tumor relapse still occur in a high proportion of patients. Octamer-4 (Oct-4), a transcription factor of the POU family, plays a key role in maintaining chemoradioresistant properties and regulating cancer progression. In this study, we demonstrated that Oct-4 expression was significantly increased in radioresistant H460 (H460R) cell line. CpG oligodeoxyribonucleotide (CpG-ODN) 7909 sensitized H460R cells when combined with irradiation treatment. The clonogenic capacity was significantly decreased, and the values of D0 and Dq were lower than those of irradiation alone group. The sensitive enhancement ratio (SER) of D0 was 1.224. This combined treatment led to a dramatic reduction in Oct-4 expression in a dose-dependent manner and also showed increased percentage of cells in the radiosensitive G2/M phase relative to either treatment alone. These results identified that Oct-4 was involved in radioresistance. CpG-ODN 7909 could enhance radiosensitivity partly through downregulating Oct-4 expression in radioresistant lung cancer cells.

  1. Tissue transglutaminase 2 inhibition promotes cell death and chemosensitivity in glioblastomas.

    PubMed

    Yuan, Liya; Choi, Kihang; Khosla, Chaitan; Zheng, Xiao; Higashikubo, Ryuji; Chicoine, Michael R; Rich, Keith M

    2005-09-01

    Tissue transglutaminase 2 belongs to a family of transglutaminase proteins that confers mechanical resistance from proteolysis and stabilizes proteins. Transglutaminase 2 promotes transamidation between glutamine and lysine residues with the formation of covalent linkages between proteins. Transglutaminase 2 also interacts and forms complexes with proteins important in extracellular matrix organization and cellular adhesion. We have identified the novel finding that treatment of glioblastoma cells with transglutaminase 2 inhibitors promotes cell death and enhances sensitivity to chemotherapy. Treatment with either the competitive transglutaminase 2 inhibitor, monodansylcadaverine, or with highly specific small-molecule transglutaminase 2 inhibitors, KCA075 or KCC009, results in induction of apoptosis in glioblastoma cells. Treatment with these transglutaminase 2 inhibitors resulted in markedly decreased levels of the prosurvival protein, phosphorylated Akt, and its downstream targets. These changes promote a proapoptotic profile with altered levels of multiple intracellular proteins that determine cell survival. These changes include decreased levels of the antiapoptotic proteins, survivin, phosphorylated Bad, and phosphorylated glycogen synthetase kinase 3beta (GSK-3beta), and increased levels of the proapoptotic BH3-only protein, Bim. In vivo studies with s.c. murine DBT glioblastoma tumors treated with transglutaminase 2 inhibitors combined with the chemotherapeutic agent, N-N'-bis (2-chloroethyl)-N-nitrosourea (BCNU), decreased tumor size based on weight by 50% compared with those treated with BCNU alone. Groups treated with transglutaminase 2 inhibitors showed an increased incidence of apoptosis determined with deoxynucleotidyl transferase-mediated biotin nick-end labeling staining. These studies identify inhibition of transglutaminase 2 as a potential target to enhance cell death and chemosensitivity in glioblastomas.

  2. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance

    PubMed Central

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T.

    2015-01-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  3. Puerarin inhibits proliferation and induces apoptosis in human glioblastoma cell lines

    PubMed Central

    Yang, Ji-An; Li, Ji-Qiang; Shao, Ling-Min; Yang, Qian; Liu, Bao-Hui; Wu, Ting-Feng; Wu, Peng; Yi, Wei; Chen, Qian-Xue

    2015-01-01

    Puerarin has been widely used in clinical treatment and experiment research and is considered to exert an anticancer effect recently. The present study investigated the anticancer activity of puerarin in U251 and U87 human glioblastoma cells. The cells were treated with puerarin at various concentrations for different times. Cell viability and cell proliferation were detected by cell counting kit-8 (CCK-8) assay and 5-ethynyl-2’-deoxyuridine (EdU) staining respectively. Cell cycle and apoptosis were measured separately with PI staining and Annexin V-FITC/PI double staining method by flow cytometry. DNA damage of glioblastoma cells caused by puerarin exposure was evaluated by γ-H2AX foci detection, and the expressions of p-AKT, caspase-3 and apoptosis-related proteins were detected by Western blotting after puerarin treatment. Cell viability and proliferation of glioblastoma cells treated with puerarin were significantly lower than that of the control group; the apoptosis rate increased obviously compared to the control group. Puerarin significantly decreased the proportion at G1 phase of cell cycling accompanied by increased populations at the S and G2/M phases in both cell lines. At the same time, DNA damage level of puerarin treated cells was significantly higher than that in the control cells. Moreover, puerarin treatment suppressed the expression of p-Akt and Bcl-2 and promoted the expression of Bax and cleaved caspase-3 in U251 cells. These findings indicate that puerarin exerts antitumor effects both in U251 and U87 cells. PMID:26309712

  4. Exogenous cathepsin G upregulates cell surface MHC class I molecules on immune and glioblastoma cells

    PubMed Central

    Giese, Madleen; Turiello, Nadine; Molenda, Nicole; Palesch, David; Meid, Annika; Schroeder, Roman; Basilico, Paola; Benarafa, Charaf; Halatsch, Marc-Eric; Zimecki, Michal; Westhoff, Mike-Andrew; Wirtz, Christian Rainer; Burster, Timo

    2016-01-01

    Major histocompatibility complex (MHC) class I molecules present antigenic peptides to cytotoxic T cells. During an adaptive immune response, MHC molecules are regulated by several mechanisms including lipopolysaccharide (LPS) and interferon gamma (IFN-g). However, it is unclear whether the serine protease cathepsin G (CatG), which is generally secreted by neutrophils at the site of inflammation, might regulate MHC I molecules. We identified CatG, and to a higher extend CatG and lactoferrin (LF), as an exogenous regulator of cell surface MHC I expression of immune cells and glioblastoma stem cells. In addition, levels of MHC I molecules are reduced on dendritic cells from CatG deficient mice compared to their wild type counterparts. Furthermore, cell surface CatG on immune cells, including T cells, B cells, and NK cells triggers MHC I on THP-1 monocytes suggesting a novel mechanism for CatG to facilitate intercellular communication between infiltrating cells and the respective target cell. Subsequently, our findings highlight the pivotal role of CatG as a checkpoint protease which might force target cells to display their intracellular MHC I:antigen repertoire. PMID:27806341

  5. Preclinical Evaluation of Genexol-PM, a Nanoparticle Formulation of Paclitaxel, as a Novel Radiosensitizer for the Treatment of Non-Small Cell Lung Cancer

    SciTech Connect

    Werner, Michael E.; Cummings, Natalie D.; Sethi, Manish; Wang, Edina C.; Sukumar, Rohit; Moore, Dominic T.; Wang, Andrew Z.

    2013-07-01

    Purpose: A key research objective in radiation oncology is to identify agents that can improve chemoradiation therapy. Nanoparticle (NP) chemotherapeutics possess several properties, such as preferential accumulation in tumors, that are uniquely suited for chemoradiation therapy. To facilitate the clinical translation of NP chemotherapeutics in chemoradiation therapy, we conducted preclinical evaluation of Genexol-PM, the only clinically approved NP chemotherapeutic with a controlled drug release profile, as a radiosensitizer using non-small cell lung cancer (NSCLC) as a model disease. Methods and Materials: The physical characteristics and drug release profile of Genexol-PM were characterized. Genexol-PM's efficacy as a radiosensitizer was evaluated in vitro using NSCLC cell lines and in vivo using mouse xenograft models of NSCLC. Paclitaxel dose to normal lung and liver after Genexol-PM administration were quantified and compared with that after Taxol administration. Results: Genexol-PM has a size of 23.91 ± 0.41 nm and surface charge of −8.1 ± 3.1 mV. It releases paclitaxel in a controlled release profile. In vitro evaluation of Genexol-PM as a radiosensitizer showed it is an effective radiosensitizer and is more effective than Taxol, its small molecule counterpart, at the half maximal inhibitory concentration. In vivo study of Genexol-PM as a radiosensitizer demonstrated that it is more effective as a radiosensitizer than Taxol. We also found that Genexol-PM leads to lower paclitaxel exposure to normal lung tissue than Taxol at 6 hours postadministration. Conclusions: We have demonstrated that Genexol-PM is more effective than Taxol as a radiosensitizer in the preclinical setting and holds high potential for clinical translation. Our data support the clinical evaluation of Genexol-PM in chemoradiation therapy for NSCLC.

  6. Glioblastoma Therapy with Cytotoxic Mesenchymal Stromal Cells Optimized by Bioluminescence Imaging of Tumor and Therapeutic Cell Response

    PubMed Central

    Alieva, Maria; Bagó, Juli R.; Aguilar, Elisabet; Soler-Botija, Carolina; Vila, Olaia F.; Molet, Joan; Gambhir, Sanjiv S.; Rubio, Nuria; Blanco, Jerónimo

    2012-01-01

    Genetically modified adipose tissue derived mesenchymal stromal cells (hAMSCs) with tumor homing capacity have been proposed for localized therapy of chemo- and radiotherapy resistant glioblastomas. We demonstrate an effective procedure to optimize glioblastoma therapy based on the use of genetically modified hAMSCs and in vivo non invasive monitoring of tumor and therapeutic cells. Glioblastoma U87 cells expressing Photinus pyralis luciferase (Pluc) were implanted in combination with hAMSCs expressing a trifunctional Renilla reniformis luciferase-red fluorescent protein-thymidine kinase reporter in the brains of SCID mice that were subsequently treated with ganciclovir (GCV). The resulting optimized therapy was effective and monitoring of tumor cells by bioluminescence imaging (BLI) showed that after 49 days GCV treatment reduced significantly the hAMSC treated tumors; by a factor of 104 relative to controls. Using a Pluc reporter regulated by an endothelial specific promoter and in vivo BLI to image hAMSC differentiation we gained insight on the therapeutic mechanism. Implanted hAMSCs homed to tumor vessels, where they differentiated to endothelial cells. We propose that the tumor killing efficiency of genetically modified hAMSCs results from their association with the tumor vascular system and should be useful vehicles to deliver localized therapy to glioblastoma surgical borders following tumor resection. PMID:22529983

  7. Radiosensitivity and capacity for radiation-induced sublethal damage repair of canine transitional cell carcinoma (TCC) cell lines.

    PubMed

    Parfitt, S L; Milner, R J; Salute, M E; Hintenlang, D E; Farese, J P; Bacon, N J; Bova, F J; Rajon, D A; Lurie, D M

    2011-09-01

    Understanding the inherent radiosensitivity and repair capacity of canine transitional cell carcinoma (TCC) can aid in optimizing radiation protocols to treat this disease. The objective of this study was to evaluate the parameters surviving fraction at 2 Gy (SF(2) ), α/β ratio and capacity for sublethal damage repair (SLDR) in response to radiation. Dose-response and split-dose studies were performed using the clonogenic assay. The mean SF(2) for three established TCC cell lines was high at 0.61. All the three cell lines exhibited a low to moderate α/β ratio, with the mean being 3.27. Two cell lines exhibited statistically increased survival at 4 and 24 h in the dose-response assay. Overall, our results indicate that the cell lines are moderately radioresistant, have a high repair capacity and behave similarly to a late-responding normal tissue. These findings indicate that the radiation protocols utilizing higher doses with less fractionation may be more effective for treating TCC.

  8. Molecular mechanisms of the effect of TGF-β1 on U87 human glioblastoma cells

    PubMed Central

    Bryukhovetskiy, Igor; Shevchenko, Valeriy

    2016-01-01

    Glioblastoma multiforme (GBM) is the most widespread and aggressive type of primary brain tumor. The prognosis following diagnosis with GBM is poor, with a median survival time of 14 months. Tumor cell invasion, metastasis and proliferation are the major causes of mortality in patients with GBM. In order to develop effective GBM treatment methods it is necessary to identify novel targets involved in these processes. Recently, there has been increasing interest in investigating the signaling pathways involved in GBM development, and the transforming growth factor-β (TGF-β) signaling pathway is understood to be significant for regulating the behavior of GBM, as well as stimulating its invasion and metastatic development. Particular interest has been given to investigating the modulation of TGF-β-induced epithelial-to-mesenchymal transition (EMT); during this process, epithelial cells transdifferentiate into mobile cells with a mesenchymal phenotype. The induction of EMT increases the invasiveness of various types of carcinoma; however, the role of TGF-β in this process remains to be elucidated, particularly in the case of GBM. The current study presents a comparative proteome mapping of the U87 human glioblastoma cell line, with and without TGF-β1 treatment. Proteome analysis identified numerous proteins involved in the molecular mechanisms of GBM oncogenesis and TGF-β1 signaling in glioblastoma. The results of the present study facilitated the identification of novel potential markers of metastasis and candidates for targeted glioblastoma therapy, which may potentially be validated and used in clinical medicine to develop improved approaches for GBM diagnosis and treatment. PMID:27446475

  9. p21+/+ (CDKN1A+/+) and p21-/- (CDKN1A-/-) human colorectal carcinoma cells display equivalent amounts of thermal radiosensitization.

    PubMed

    Larsson, Carey; Ng, Cheng E

    2003-08-01

    The mechanism of thermal radiosensitization is related to the inhibition of repair of radiation-induced DNA damage by heat. Due to the interaction of the gene p21/WAF1/CIP1 (now known as CDKN1A) with a variety of DNA repair proteins, its involvement in thermal radiosensitization was investigated. Two isogenetic human colorectal cancer cell lines with wild-type TP53 status were used. The 80S4 cell line was deficient in CDKN1A and the HCT116 cells were CDKN1A proficient. Both cell lines were significantly more sensitive to 44 degrees C than 42 degrees C heating (P < 0.01), and both cell lines expressed thermotolerance for heating times longer than about 2 h at the lower temperature. There were no significant differences in the X-radiation response of the two cell lines. Further, the two cell lines displayed similar cell survival levels after hyperthermia given before or after X radiation for both hyperthermia temperatures. Comparison of thermal enhancement ratios confirmed that there was no difference in the amount of thermal radiosensitization induced in the two cell lines. The induction and subsequent repair of DNA double-strand breaks, as measured by clamped homogeneous gel electrophoresis, was also the same in both cell lines. These findings strongly suggest that the gene CDKN1A does not play an important role in the expression of thermal radiosensitization.

  10. Inhibition of UBE2D3 Expression Attenuates Radiosensitivity of MCF-7 Human Breast Cancer Cells by Increasing hTERT Expression and Activity

    PubMed Central

    Hu, Liu; Li, Fen; Ren, Li; Yu, Haijun; Liu, Yu; Xia, Ling; Lei, Han; Liao, Zhengkai; Zhou, Fuxiang; Xie, Conghua; Zhou, Yunfeng

    2013-01-01

    The known functions of telomerase in tumor cells include replenishing telomeric DNA and maintaining cell immortality. We have previously shown the existence of a negative correlation between human telomerase reverse transcriptase (hTERT) and radiosensitivity in tumor cells. Here we set out to elucidate the molecular mechanisms underlying regulation by telomerase of radiosensitivity in MCF-7 cells. Toward this aim, yeast two-hybrid (Y2H) screening of a human laryngeal squamous cell carcinoma radioresistant (Hep2R) cDNA library was first performed to search for potential hTERT interacting proteins. We identified ubiquitin-conjugating enzyme E2D3 (UBE2D3) as a principle hTERT-interacting protein and validated this association biochemically. ShRNA-mediated inhibition of UBE2D3 expression attenuated MCF-7 radiosensitivity, and induced the accumulation of hTERT and cyclin D1 in these cells. Moreover, down-regulation of UBE2D3 increased hTERT activity and cell proliferation, accelerating G1 to S phase transition in MCF-7 cells. Collectively these findings suggest that UBE2D3 participates in the process of hTERT-mediated radiosensitivity in human breast cancer MCF-7 cells by regulating hTERT and cyclin D1. PMID:23741361

  11. Gene expression profile correlates with T cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy

    PubMed Central

    Prins, Robert M.; Soto, Horacio; Konkankit, Vera; Odesa, Sylvia K.; Eskin, Ascia; Yong, William H.; Nelson, Stanley F.; Liau, Linda M.

    2010-01-01

    Purpose To assess the feasibility, safety, and toxicity of autologous tumor lysate-pulsed dendritic cell (DC) vaccination and toll-like receptor (TLR) agonists in patients with newly diagnosed and recurrent glioblastoma. Clinical and immune responses were monitored and correlated with tumor gene expression profiles. Experimental Design Twenty-three patients with glioblastoma (WHO grade IV) were enrolled in this dose-escalation study and received three biweekly injections of glioma lysate-pulsed DCs followed by booster vaccinations with either imiquimod or poly-ICLC adjuvant every three months until tumor progression. Gene expression profiling, IHC, FACS, and cytokine bead arrays were performed on patient tumors and PBMC. Results DC vaccinations are safe and not associated with any dose-limiting toxicity. The median overall survival from the time of initial surgical diagnosis of glioblastoma was 31.4 months, with a one-, two-, and three-year survival rate of 91%, 55% and 47%, respectively. Patients whose tumors had mesenchymal gene expression signatures exhibited increased survival following DC vaccination compared to historical controls of the same genetic subtype. Tumor samples with a mesenchymal gene expression signature had a higher number of CD3+ and CD8+ tumor infiltrating lymphocytes (TILs) compared with glioblastomas of other gene expression signatures (p = 0.006). Conclusion Autologous tumor lysate-pulsed DC vaccination in conjunction with TLR agonists is safe as adjuvant therapy in newly diagnosed and recurrent glioblastoma patients. Our results suggest that the mesenchymal gene expression profile may identify an immunogenic subgroup of glioblastoma that may be more responsive to immune-based therapies. PMID:21135147

  12. Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity.

    PubMed

    Rasper, Michael; Schäfer, Andrea; Piontek, Guido; Teufel, Julian; Brockhoff, Gero; Ringel, Florian; Heindl, Stefan; Zimmer, Claus; Schlegel, Jürgen

    2010-10-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor and is resistant to all therapeutic regimens. Relapse occurs regularly and might be caused by a poorly characterized tumor stem cell (TSC) subpopulation escaping therapy. We suggest aldehyde dehydrogenase 1 (ALDH1) as a novel stem cell marker in human GBM. Using the neurosphere formation assay as a functional method to identify brain TSCs, we show that high protein levels of ALDH1 facilitate neurosphere formation in established GBM cell lines. Even single ALDH1 positive cells give rise to colonies and neurospheres. Consequently, the inhibition of ALDH1 in vitro decreases both the number of neurospheres and their size. Cell lines without expression of ALDH1 do not form tumor spheroids under the same culturing conditions. High levels of ALDH1 seem to keep tumor cells in an undifferentiated, stem cell-like state indicated by the low expression of beta-III-tubulin. In contrast, ALDH1 inhibition induces premature cellular differentiation and reduces clonogenic capacity. Primary cell cultures obtained from fresh tumor samples approve the established GBM cell line results.

  13. miR-22 inhibits the proliferation, motility, and invasion of human glioblastoma cells by directly targeting SIRT1.

    PubMed

    Chen, Hanchun; Lu, Qiong; Fei, Xifeng; Shen, Likui; Jiang, Dongyi; Dai, Dongwei

    2016-05-01

    Recently, microRNAs (miRNAs), a kind of small and non-coding RNA, can target the downstream molecules. Increasing evidence demonstrates that miRNAs meditate the onset and progression of a variety of tumors. In the present study, we carried out gene transfection, western blot, and reverse transcription PCR (RT-PCR) to explore the role of miR-22 in glioblastoma tissues and cell lines. Here, we verified that the expression of miR-22 was downregulated in glioblastoma tissues and cells rather than matched non-tumor tissues and normal human astrocyte (NHA) cells (p < 0.001). By contrast, SIRT1 messenger RNA (mRNA) and protein were upregulated in glioblastoma tissues and cells (p < 0.001). In vitro miR-22 mimics interfered with cell proliferation, migration, and invasion of U87 and U251 cells. Mechanically, the 3'-untranslated regions (3'-UTRs) of SIRT1 were a direct target of miR-22, leading to the decreased expression of SIRT1 protein in U87 and U251 cells. Meanwhile, miR-22 mimics also inhibited the expression of epidermal growth factor receptor (EGFR) and matrix metallopeptidase 9 (MMP9). In conclusion, miR-22 inhibited cell proliferation, migration, and invasion via targeting the 3'-UTR of SIRT1 in the progression of glioblastoma and miR-22-SIRT1 pathway can be recommended as a potential target for treatment of glioblastoma.

  14. The involvement of mitochondrial apoptotic pathway in eugenol-induced cell death in human glioblastoma cells.

    PubMed

    Liang, Wei-Zhe; Chou, Chiang-Ting; Hsu, Shu-Shong; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Tseng, Hui-Wen; Kuo, Chun-Chi; Jan, Chung-Ren

    2015-01-05

    Eugenol, a natural phenolic constituent of clove oil, has a wide range of applications in medicine as a local antiseptic and anesthetic. However, the effect of eugenol on human glioblastoma is unclear. This study examined whether eugenol elevated intracellular free Ca(2+) levels ([Ca(2+)]i) and induced apoptosis in DBTRG-05MG human glioblastoma cells. Eugenol evoked [Ca(2+)]i rises which were reduced by removing extracellular Ca(2+). Eugenol-induced [Ca(2+)]i rises were not altered by store-operated Ca(2+) channel blockers but were inhibited by the PKC inhibitor GF109203X and the transient receptor potential channel melastatin 8 (TRPM8) antagonist capsazepine. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished eugenol-induced [Ca(2+)]i rises. The phospholipase C (PLC) inhibitor U73122 significantly inhibited eugenol-induced [Ca(2+)]i rises. Eugenol killed cells which were not reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Eugenol induced apoptosis through increasing reactive oxygen species (ROS) production, decreasing mitochondrial membrane potential, releasing cytochrome c and activating caspase-9/caspase-3. Together, in DBTRG-05MG cells, eugenol evoked [Ca(2+)]i rises by inducing PLC-dependent release of Ca(2+) from the endoplasmic reticulum and caused Ca(2+) influx possibly through TRPM8 or PKC-sensitive channels. Furthermore, eugenol induced the mitochondrial apoptotic pathway.

  15. CCAAT/enhancer binding protein β negatively regulates progesterone receptor expression in human glioblastoma cells.

    PubMed

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Camacho-Arroyo, Ignacio

    2017-01-05

    Many progesterone (P4) actions are mediated by its intracellular receptor (PR), which has two isoforms (PR-A and PR-B) differentially transcribed from separate promoters of a single gene. In glioblastomas, the most frequent and aggressive brain tumors, PR-B is the predominant isoform. In an in silico analysis we showed putative CCAAT/Enhancer Binding Protein (C/EBP) binding sites at PR-B promoter. We evaluated the role of C/EBPβ in PR-B expression regulation in glioblastoma cell lines, which expressed different ratios of PR and C/EBPβ isoforms (LAP1, LAP2, and LIP). ChIP assays showed a significant basal binding of C/EBPβ, specific protein 1 (Sp1) and estrogen receptor alpha (ERα) to PR-B promoter. C/EBPβ knockdown increased PR-B expression and treatment with estradiol (E2) reduced C/EBPβ binding to the promoter and up-regulated PR-B expression. P4 induced genes were differently regulated when CEBP/β was silenced. These data show that C/EBPβ negatively regulates PR-B expression in glioblastoma cells.

  16. Vascular Transdifferentiation in the CNS: A Focus on Neural and Glioblastoma Stem-Like Cells

    PubMed Central

    Bauchet, Luc; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Glioblastomas are devastating and extensively vascularized brain tumors from which glioblastoma stem-like cells (GSCs) have been isolated by many groups. These cells have a high tumorigenic potential and the capacity to generate heterogeneous phenotypes. There is growing evidence to support the possibility that these cells are derived from the accumulation of mutations in adult neural stem cells (NSCs) as well as in oligodendrocyte progenitors. It was recently reported that GSCs could transdifferentiate into endothelial-like and pericyte-like cells both in vitro and in vivo, notably under the influence of Notch and TGFβ signaling pathways. Vascular cells derived from GBM cells were also observed directly in patient samples. These results could lead to new directions for designing original therapeutic approaches against GBM neovascularization but this specific reprogramming requires further molecular investigations. Transdifferentiation of nontumoral neural stem cells into vascular cells has also been described and conversely vascular cells may generate neural stem cells. In this review, we present and discuss these recent data. As some of them appear controversial, further validation will be needed using new technical approaches such as high throughput profiling and functional analyses to avoid experimental pitfalls and misinterpretations. PMID:27738435

  17. Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells

    PubMed Central

    Said, Harun M; Polat, Buelent; Stein, Susanne; Guckenberger, Mathias; Hagemann, Carsten; Staab, Adrian; Katzer, Astrid; Anacker, Jelena; Flentje, Michael; Vordermark, Dirk

    2012-01-01

    AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5’-GCATTATTGGCATGGGAAC-3’ and 5’-ATGCAGAGTAACGTGGAAG-3’. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor (HIF)-1α mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant). RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human

  18. Effect of Recombinant Human Endostatin on Radiosensitivity in Patients With Non-Small-Cell Lung Cancer

    SciTech Connect

    Jiang Xiaodong; Dai Peng; Wu Jin; Song Daan; Yu Jinming

    2012-07-15

    Purpose: To observe the effects of recombinant human endostatin (RHES) on the radiosensitivity of non-small cell lung cancer (NSCLC). Methods and Materials: First, 10 hypoxia-positive cases of pathology-diagnosed NSCLC selected from 15 patients were used to determine the normalization window, a period during which RHES improves NSCLC hypoxia. Second, 50 hypoxia-positive cases of pathology-diagnosed NSCLC (Stages I-III) were randomly divided into a RHES plus radiotherapy group (25 cases) and a radiotherapy-alone group (25 cases). Intensity = modulated radiotherapy with a total dose of 60 Gy in 30 fractions for 6 weeks was adopted in the two groups. The target area included primary foci and metastatic lymph nodes. In the RHES plus radiotherapy group, RHES (15 mg/day) was intravenously given during the normalization window. Results: After RHES administration, the tumor-to=normal tissue radioactivity ratio and capillary permeability surface were first decreased and then increased, with their lowest points on the fifth day compared with the first day (all p < 0.01). Blood flow was first increased and then decreased, with the highest point on the fifth day, compared with the first and tenth day (all p < 0.01). In the RHES plus radiotherapy group and the radiotherapy-alone group, the total effective rates (complete response plus partial response) were 80% and 44% (p = 0.009), respectively. The median survival times were 21.1 {+-} 0.97 months and 16.5 {+-} 0.95 months (p = 0.004), respectively. The 1-year and 2-year local control rates were 78.9 {+-} 8.4% and 68.1 {+-} 7.8% (p = 0.027) and 63.6 {+-} 7.2% and 43.4 {+-} 5.7% (p = 0.022), respectively. The 1-year and 2-year overall survival rates were 83.3 {+-} 7.2% and 76.6 {+-} 9.3% (p = 0.247) and 46.3 {+-} 2.4% and 37.6 {+-} 9.1% (p = 0.218), respectively. Conclusion: The RHES normalization window is within about 1 week after administration. RHES combined with radiotherapy within the normalization window has better short

  19. MiR-27a Modulates Radiosensitivity of Triple-Negative Breast Cancer (TNBC) Cells by Targeting CDC27

    PubMed Central

    Ren, Yong-qiang; Fu, Fengkui; Han, Jianjun

    2015-01-01

    Background MiR-27a is significantly overexpressed in triple-negative breast cancer (TNBC). However, the exact biological function of MiR-27a in TNBC is not fully understood. In this study, we verified miR-27a expression in TNBC cells and explored how its overexpression modulates radiosensitivity of the cells. Material/Method qRT-PCR analysis was performed to study miR-27a expression in TNBC lines MDA-MB-435 and MDA-MB-231 and in normal human breast epithelial cell line MCF10A. Dual luciferase assay was performed to verify a putative downstream target of miR-27a, CDC27. CCK-8 assay was used to assess the influence of miR-27a-CDC27 axis on cell proliferation under irradiation (IR) treatment. Results We confirmed significantly higher miR-27a expression in 2 TNBC cell lines – MDA-MB-435 and MDA-MB-231 – than in human breast epithelial cell line MCF10A. miR-27a could modulate proliferation and radiosensitivity of TNBC cells. CDC-27 is a direct target of miR-27a and its downregulation conferred increased radioresistance of the cells. Conclusions The miR-27a-CDC27 axis might play an important role in modulating response to radiotherapy in TNBC cells. Testing miR-27a expression might be a useful way to identify a subgroup of patients who will benefit from an IR-based therapeutic approach. PMID:25943633

  20. Gamma-secretase-independent role for cadherin-11 in neurotrophin receptor p75 (p75(NTR)) mediated glioblastoma cell migration.

    PubMed

    Berghoff, Janina; Jaisimha, Anirudh Vinay; Duggan, Stephen; MacSharry, John; McCarthy, Justin V

    2015-11-01

    The p75 neurotrophin receptor (p75(NTR)) undergoes γ-secretase-mediated regulated intramembrane proteolysis and is involved in glioblastoma cell migration and invasion. Consistent with previous reports, in this study we show that p75NTR increases U87-MG glioblastoma cell migration, which is reversed by inhibition of γ-secretase activity. However, we show that expression or stabilization of the γ-secretase-generated p75(NTR) intracellular domain (ICD) is not sufficient to induce U87-MG glioblastoma cell migration, and that exogenous expression of p75(NTR) ICD inhibits p75(NTR)-mediated glioblastoma cell (U87-MG and U373-MG) migration. To identify pathways and to determine how p75(NTR) mediates glioblastoma migration we utilized a microarray approach to assess differential gene expression profiles between parental U87-MG and cells stably expressing wild-type p75(NTR), a γ-secretase cleavage-resistant chimeric p75(NTR) mutant (p75FasTM) and the γ-secretase-generated p75(NTR)-ICD, which mimics constitutively cleaved p75(NTR) receptor. In our microarray data analysis we identified a subset of genes that were constitutively up-regulated in wild-type p75(NTR) cells, which were also repressed in p75(NTR) ICD expressing cells. Furthermore, our data revealed among the many differentially expressed genes, cadherin-11 (Cdh-11), matrix metalloproteinase 12 and relaxin/insulin-like family peptide receptor 2 as constitutively up-regulated in wild-type p75(NTR) cells, independent of γ-secretase activity. Consistent with a role in glioblastoma migration, we found that U87-p75(NTR) cells express higher levels of Cdh-11 protein and that siRNA-mediated knockdown of Cdh-11 resulted in a significant decrease in p75(NTR)-mediated glioblastoma cell migration. Therefore, we hypothesize that p75(NTR) can impact U87-MG glioblastoma cell migration in a γ-secretase-independent manner through modulation of specific genes, including Cdh-11, and that both γ-secretase-independent and

  1. [Effects and its mechanism of Nimotuzumab on radiosensitivity of esophageal carcinoma ECA-109 and TE-13 cell lines].

    PubMed

    Wang, J; Wang, W; Guo, Y; Jing, S W; Shang, K; Miao, M C; Wang, J; Wu, Y J; Liu, L N; Yu, J M

    2016-10-23

    Objective: To investigate the effects of nimotuzumab on radiosensitivity of ECA-109 and TE-13 esophageal carcinoma cell lines and explore its possible mechanism. Methods: The ECA-109 and TE-13 cells were divided into control group, irradiation group, medicine group, and combined group (irradiation + medicine). In the combined group, ECA-109 and TE-13 cells were treated with nimotuzumab for 24 h before irradiation, and the cells were collected 2 h after irradiation. The radiosensitizing effects of nimotuzumab on ECA-109 and TE-13 cells were evaluated by clone formation assay. Cell apoptosis was detected by flow cytometry. Western blotting was used to evaluate the expression of EGFR, p-EGFR, DNA-PKcs, p-DNA-PKcs and γH2AX. Results: The values of Dq (quasithreshold dose), D0(mean lethal dose)and SF2 (surviving fraction at 2 Gy) of ECA-109 and TE-13 cells in the combined group were significantly lower than those of the radiation group (for ECA-109 cells, 1.11 vs. 1.72, 1.40 vs. 2.14, 0.42 vs. 0.66, respectively; for TE-13 cells, 0.41 vs. 0.46, 0.43 vs. 0.65, 0.40 vs. 0.71, respectively (all P<0.05). The sensitivity enhancement ratio (SER) of ECA-109 and TE-13 cells were 1.35 and 1.43, respectively. Flow cytometry showed that the apoptosis rate of ECA-109 and TE-13 cells in the combined group were significantly higher than those of the radiation group [for ECA-109 cells, (41.31±1.52)% vs. (9.54±0.52)%; for TE-13 cells, (46.28±0.28)% vs. (11.32±0.31)%, both P<0.01]. Western blotting showed that the expression levels of EGFR and DNA-PKcs were not significantly different in all groups (all P>0.05). Compared with those of the control group, p-EGFR and p-DNA-PKcs of the radiation group were significantly higher in both cell lines (P<0.05), and the γH2AX levels in the radiation group and medicine group were significantly higher than that of the control group (P<0.05). Compared with those of the radiation group and medicine group, p-EGFR and p-DNA-PKcs protein expression

  2. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells.

    PubMed

    Han, Jianfeng; Chu, Jianhong; Keung Chan, Wing; Zhang, Jianying; Wang, Youwei; Cohen, Justus B; Victor, Aaron; Meisen, Walter H; Kim, Sung-hak; Grandi, Paola; Wang, Qi-En; He, Xiaoming; Nakano, Ichiro; Chiocca, E Antonio; Glorioso, Joseph C; Kaur, Balveen; Caligiuri, Michael A; Yu, Jianhua

    2015-07-09

    Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB.

  3. Dendrosomal nanocurcumin and p53 overexpression synergistically trigger apoptosis in glioblastoma cells

    PubMed Central

    Keshavarz, Reihaneh; Bakhshinejad, Babak; Babashah, Sadegh; Baghi, Narges; Sadeghizadeh, Majid

    2016-01-01

    Objective(s): Glioblastoma is the most lethal tumor of the central nervous system. Here, we aimed to evaluate the effects of exogenous delivery of p53 and a nanoformulation of curcumin called dendrosomal curcumin (DNC), alone and in combination, on glioblastoma tumor cells. Materials and Methods: MTT assay was exploited to measure the viability of U87-MG cells against DNC treatment. Cells were separately subjected to DNC treatment and transfected with p53-containing vector and then were co-exposed to DNC and p53 overexpression[A GA1][B2]. Annexin-V-FLUOS staining followed by flow cytometry and real-time PCR were applied to examine apoptosis and analyze the expression levels of the genes involved in cell cycle and oncogenesis, respectively. Results: The results of cell viability assay through MTT indicated that DNC inhibits the proliferation of U87-MG cells in a time- and dose-dependent manner. Apoptosis evaluation revealed that p53 overexpression accompanied by DNC treatment can act in a synergistic manner to significantly enhance the number of apoptotic cells (90%) compared with their application alone (15% and 38% for p53 overexpression and DNC, respectively). Also, real-time PCR data showed that the concomitant exposure of cells to both DNC and p53 overexpression leads to an enhanced expression of GADD45 and a reduced expression of NF-κB and c-Myc. Conclusion: The findings of the current study suggest that our combination strategy, which merges two detached gene (p53) and drug (curcumin) delivery systems into an integrated platform, may represent huge potential as a novel and efficient modality for glioblastoma treatment. PMID:28096969

  4. Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells

    PubMed Central

    Corsaro, Alessandro; Bajetto, Adriana; Thellung, Stefano; Begani, Giulia; Villa, Valentina; Nizzari, Mario; Pattarozzi, Alessandra; Solari, Agnese; Gatti, Monica; Pagano, Aldo; Würth, Roberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2016-01-01

    Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype. PMID:27229535

  5. Active Ras Triggers Death in Glioblastoma Cells Through Hyperstimulation of Macropinocytosis

    PubMed Central

    Overmeyer, Jean H.; Kaul, Aparna; Johnson, Erin E.; Maltese, William A.

    2010-01-01

    Expression of activated Ras in glioblastoma cells induces accumulation of large phase-lucent cytoplasmic vacuoles, followed by cell death. This was previously described as autophagic cell death. However, unlike autophagosomes, the Ras-induced vacuoles are not bounded by a double membrane and do not sequester organelles or cytoplasm. Moreover, they are not acidic and do not contain the autophagosomal membrane protein, LC3-II. Here we show that the vacuoles are enlarged macropinosomes. They rapidly incorporate extracellular fluid-phase tracers, but do not sequester transferrin or the endosomal protein, EEA1. Ultimately, the cells expressing activated Ras detach from the substratum and rupture, coincident with the displacement of cytoplasm with huge macropinosome-derived vacuoles. These changes are accompanied by caspase activation, but the broad-spectrum caspase inhibitor, z-VAD, does not prevent cell death. Moreover, the majority of degenerating cells do not exhibit chromatin condensation typical of apoptosis. These observations provide evidence for a necrosis-like form of cell death initiated by dysregulation of macropinocytosis, which we have dubbed ‘methuosis’. An activated form of the Rac1 GTPase induces a similar form of cell death, suggesting that Ras acts through Rac-dependent signaling pathways to hyperstimulate macropinocytosis in glioblastoma. Further study of these signaling pathways may lead to the identification of other chemical and physiological triggers for this unusual form of cell death. PMID:18567800

  6. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients.

    PubMed

    Mitchell, Duane A; Batich, Kristen A; Gunn, Michael D; Huang, Min-Nung; Sanchez-Perez, Luis; Nair, Smita K; Congdon, Kendra L; Reap, Elizabeth A; Archer, Gary E; Desjardins, Annick; Friedman, Allan H; Friedman, Henry S; Herndon, James E; Coan, April; McLendon, Roger E; Reardon, David A; Vredenburgh, James J; Bigner, Darell D; Sampson, John H

    2015-03-19

    After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.

  7. The Unreliability of MTT Assay in the Cytotoxic Test of Primary Cultured Glioblastoma Cells.

    PubMed

    Jo, Hwa Yeon; Kim, Yona; Park, Hyung Woo; Moon, Hyo Eun; Bae, Seongtae; Kim, JinWook; Kim, Dong Gyu; Paek, Sun Ha

    2015-09-01

    MTT assay is commonly used to assess the cellular cytotoxicity caused by anticancer drugs in glioblastomas. However, there have been some reports insisting that MTT assay exhibited non-specific intracellular reduction of tetrazolium which led to underestimated results of cytotoxicity. Here, we examine whether or not MTT assay can lead to incorrect information regarding alcohol-induced cytotoxicity on immortalized and primary glioblastoma cells. MTT assay was applied to assess the ethanol-induced cytotoxicity at various ethanol concentrations. The cellular cytotoxicity induced by different doses of ethanol was analyzed and compared through several cytotoxic assays. Ethanol-induced cytotoxicity observed through MTT assay on both cell types was shown to be ethanol dose-dependent below a 3% concentration. However, the cytotoxicity was shown to be markedly underestimated only in primary cells at a 5% concentration. RT-PCR and Western Blot showed increased expressions of pro-apoptotic proteins and decreased expressions of anti-apoptotic proteins in an ethanol dose-dependent manner in both cell types. Furthermore, we present a possible mechanism for the unreliable result of MTT assay. A high concentration of ethanol induces more severe membrane damage and increased intracellular concentration of NADH in primary cells which enhances the nonspecific reduction of tetrazolium salt. Together, our findings demonstrate that the cytotoxicity on primary cells could inaccurately be assessed when detected through MTT assay. Therefore, a careful interpretation is needed when one would analyze the cytotoxic results of MTT assay, and it is suggested that other assays must be accompanied to produce more reliable and accurate cytotoxic results on primary glioblastoma cells.

  8. GlioLab-a space system for Glioblastoma multiforme cells on orbit behavior study

    NASA Astrophysics Data System (ADS)

    Cappelletti, Chantal; Twiggs, Robert J.

    Microgravity conditions and ionizing radiation pose significant health risks for human life in space. This is a concern for future missions and also for future space tourism flights. Nev-ertheless, at the same time it is very interesting to study the effects of these conditions in unhealthy organism like biological samples affected by cancer. It is possible that space envi-ronment increases, decreases or doesn't have any effect on cancer cells. In any case the test results give important informations about cancer treatment or space tourism flight for people affected by cancer. GlioLab is a joint project between GAUSS-Group of Astrodynamics at the "Sapienza" University of Roma and the Morehead State University (MSU) Space Science Center in Kentucky. The main goal of this project is the design and manufacturing of an autonomous space system to investigate potential effects of the space environment exposure on a human glioblastoma multiforme cell line derived from a 65-year-old male and on Normal Human Astrocytes (NHA). In particular the samples are Glioblastoma multiforme cancer cells because the radiotherapy using ionizing radiation is the only treatment after surgery that can give on ground an improvement on the survival rate for this very malignant cancer. During a mission on the ISS, GlioLab mission has to test the in orbit behavior of glioblastoma cancer cells and healthy neuronal cells, which are extremely fragile and require complex experimentation and testing. In this paper engineering solutions to design and manufacturing of an autonomous space system that can allow to keep alive these kind of cells are described. This autonomous system is characterized also by an optical device dedicated to cells behavior analysis and by microdosimeters for monitoring space radiation environment.

  9. IL22/IL-22R pathway induces cell survival in human glioblastoma cells.

    PubMed

    Akil, Hussein; Abbaci, Amazigh; Lalloué, Fabrice; Bessette, Barbara; Costes, Léa M M; Domballe, Linda; Charreau, Sandrine; Guilloteau, Karline; Karayan-Tapon, Lucie; Bernard, François-Xavier; Morel, Franck; Jauberteau, Marie-Odile; Lecron, Jean-Claude

    2015-01-01

    Interleukin-22 (IL-22) is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1) and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM). Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.

  10. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy

    PubMed Central

    Ulasov, Ilya V.; Shah, Nameeta; Kaverina, Natalya V.; Lee, Hwahyang; Lin, Biaoyang; Lieber, Andre; Kadagidze, Zaira G.; Yoon, Jae-Guen; Schroeder, Brett; Hothi, Parvinder; Ghosh, Dhimankrishna; Baryshnikov, Anatoly Y.; Cobbs, Charles S.

    2015-01-01

    Oncolytic gene therapy using viral vectors may provide an attractive therapeutic option for malignant gliomas. These viral vectors are designed in a way to selectively target tumor cells and spare healthy cells. To determine the translational impact, it is imperative to assess the factors that interfere with the anti-glioma effects of the oncolytic adenoviral vectors. In the current study, we evaluated the efficacy of survivin-driven oncolytic adenoviruses pseudotyping with adenoviral fiber knob belonging to the adenoviral serotype 3, 11 and 35 in their ability to kill glioblastoma (GBM) cells selectively without affecting normal cells. Our results indicate that all recombinant vectors used in the study can effectively target GBM in vitro with high specificity, especially the 3 knob-modified vector. Using intracranial U87 and U251 GBM xenograft models we have also demonstrated that treatment with Conditionally Replicative Adenovirus (CRAd-S-5/3) vectors can effectively regress tumor. However, in several patient-derived GBM cell lines, cells exhibited resistance to the CRAd infection as evident from the diminishing effects of autophagy. To improve therapeutic response, tumor cells were pretreated with tamoxifen. Our preliminary data suggest that tamoxifen sensitizes glioblastoma cells towards oncolytic treatment with CRAd-S-5/3, which may prove useful for GBM in future experimental therapy. PMID:25738357

  11. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition.

    PubMed

    Krishnan, Shanmugarajan; Szabo, Emese; Burghardt, Isabel; Frei, Karl; Tabatabai, Ghazaleh; Weller, Michael

    2015-09-08

    Glioblastoma are among the most angiogenic tumors. The molecular mechanisms that control blood vessel formation by endothelial cells (EC) in glioblastoma remain incompletely understood. Transforming growth factor-β (TGF-β) is a key regulatory cytokine that has proinvasive and stemness-maintaining autocrine properties in glioblastoma and confers immunosuppression to the tumor microenvironment. Here we characterize potential pro- and anti-angiogenic activities of TGF-β in the context of glioblastoma in vitro, using human brain-derived microvascular endothelial cells (hCMEC/D3) and glioblastoma-derived endothelial cells (GMEC) as model systems. We find that TGF-β induces vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) mRNA expression and protein release in a TGF-β receptor (TβR) II / activin-like kinase (ALK)-5-dependent manner under normoxia and hypoxia, defining potential indirect proangiogenic activity of TGF-β in glioblastoma. In parallel, exogenous TGF-β has also inhibitory effects on EC properties and induces endothelial-mesenchymal transition (EndMT) in hCMEC and GMEC. Accordingly, direct inhibition of endogenous TGF-β/ALK-5 signalling increases EC properties such as tube formation, von-Willebrand factor (vWF) and claudin (CLDN) 5 expression. Yet, the supernatant of TGF-β-stimulated hCMEC and GMEC strongly promotes EC-related gene expression and tube formation in a cediranib-sensitive manner. These observations shed light on the complex pro- and anti-angiogenic pathways involving the cross-talk between TGF-β and VEGF/PLGF signalling in glioblastoma which may involve parallel stimulation of angiogenesis and EndMT in distinct target cell populations.

  12. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals

    PubMed Central

    Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui

    2017-01-01

    Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood–brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p-aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood–brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p-aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells. PMID:28260885

  13. Simvastatin radiosensitizes differentiated and stem-like breast cancer cell lines and is associated with improved local control in inflammatory breast cancer patients treated with postmastectomy radiation.

    PubMed

    Lacerda, Lara; Reddy, Jay P; Liu, Diane; Larson, Richard; Li, Li; Masuda, Hiroko; Brewer, Takae; Debeb, Bisrat G; Xu, Wei; Hortobágyi, Gabriel N; Buchholz, Thomas A; Ueno, Naoto T; Woodward, Wendy A

    2014-07-01

    Reported rates of local failure after adjuvant radiation for women with inflammatory breast cancer (IBC) and triple-negative non-IBC are higher than those of women with receptor-expressing non-IBC. These high rates of locoregional recurrence are potentially influenced by the contribution of radioresistant cancer stem cells to these cancers. Statins have been shown to target stem cells and improve disease-free survival among IBC patients. We examined simvastatin radiosensitization of multiple subtypes of breast cancer cell lines in vitro in monolayer and mammosphere-based clonogenic assays and examined the therapeutic benefit of statin use on local control after postmastectomy radiation (PMRT) among IBC patients. We found that simvastatin radiosensitizes mammosphere-initiating cells (MICs) of IBC cell lines (MDA-IBC3, SUM149, SUM190) and of the metaplastic, non-IBC triple-negative receptor cell line (SUM159). However, simvastatin radioprotects MICs of non-IBC cell lines MCF-7 and SKBR3. In a retrospective clinical study of 519 IBC patients treated with PMRT, 53 patients used a statin. On univariate analysis, actuarial 3-year local recurrence-free survival (LRFS) was higher among statin users, and on multivariate analysis, triple negative breast cancer, absence of lymphatic invasion, neoadjuvant pathological tumor response to preoperative chemotherapy, and statin use were independently associated with higher LRFS. In conclusion, patients with IBC and triple-negative non-IBC breast cancer have the highest rates of local failure, and there are no available known radiosensitizers. We report significant improvement in local control after PMRT among statin users with IBC and significant radiosensitization across triple-negative and IBC cell lines of multiple subtypes using simvastatin. These data suggest that simvastatin should be justified as a radiosensitizing agent by a prospective clinical trial.

  14. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques

    NASA Astrophysics Data System (ADS)

    Khoshgard, Karim; Hashemi, Bijan; Arbabi, Azim; Javad Rasaee, Mohammad; Soleimani, Masoud

    2014-05-01

    Due to the high atomic number of gold nanoparticles (GNPs), they are known as new radiosensitizer agents for enhancing the efficiency of superficial radiotherapy techniques by increasing the dose absorbed in tumor cells wherein they can be accumulated selectively. The aim of this study was to compare the effect of various common low energy levels of orthovoltage x-rays and megavoltage γ-rays (Co-60) on enhancing the therapeutic efficiency of HeLa cancer cells in the presence of conjugated folate and non-conjugated (pegylated) GNPs. To achieve this, GNPs with an average diameter of 52 nm were synthesized and conjugated to folic acid molecules. Pegylated GNPs with an average diameter of 47 nm were also synthesized and used as non-conjugated folate GNPs. Cytotoxicity assay of the synthesized folate-conjugated and pegylated GNPs was performed using different levels of nanoparticle concentration incubated with HeLa cells for 24 h. The radiosensitizing effect of both the conjugated and pegylated GNPs on the cells at a concentration of 50 µM was compared using MTT as well as clonogenic assays after exposing them to 2 Gy ionizing radiation produced by an orthovoltage x-ray machine at four different kVps and γ-rays of a Co-60 unit. Significant differences were noted among various irradiated groups with and without the folate conjugation, with an average dose enhancement factor (DEF) of 1.64 ± 0.05 and 1.35 ± 0.05 for the folate-conjugated and pegylated GNPs, respectively. The maximum DEF was obtained with the 180 kVp x-ray beam for both of the GNPs. Folate-conjugated GNPs can significantly enhance the cell killing potential of orthovoltage x-ray energies (especially at 180 kVp) in folate receptor-expressing cancer cells, such as HeLa, in superficial radiotherapy techniques.

  15. Methoxyamine sensitizes the resistant glioblastoma T98G cell line to the alkylating agent temozolomide.

    PubMed

    Montaldi, Ana P; Sakamoto-Hojo, Elza T

    2013-11-01

    Chemoresistance represents a major obstacle to successful treatment for malignant glioma with temozolomide. N (7)-methyl-G and N (3)-methyl-A adducts comprise more than 80 % of DNA lesions induced by temozolomide and are processed by the base excision repair, suggesting that the cellular resistance could be caused, in part, by this efficient repair pathway, although few studies have focused on this subject. The aim of this study was to evaluate the cellular responses to temozolomide treatment associated with methoxyamine (blocker of base excision repair) in glioblastoma cell lines, in order to test the hypothesis that the blockage of base excision repair pathway might sensitize glioblastoma cells to temozolomide. For all the tested cell lines, only T98G showed significant differences between temozolomide and temozolomide plus methoxyamine treatment, observed by reduced survival rates, enhanced the levels of DNA damage, and induced an arrest at G2-phase. In addition, ~10 % of apoptotic cells (sub-G1 fraction) were observed at 48 h. Western blot analysis demonstrated that APE1 and FEN1 presented a slightly reduced expression levels under the combined treatment, probably due to AP sites blockade by methoxyamine, thus causing a minor requirement of base excision repair pathway downstream to the AP removal by APE1. On the other hand, PCNA expression in temozolomide plus methoxyamine-treated cells does not rule out the possibility that such alteration might be related to the blockage of cell cycle (G2-phase), as observed at 24 h of recovery time. The results obtained in the present study demonstrated the efficiency of methoxyamine to overcome glioblastoma resistance to temozolomide treatment.

  16. Patient-derived glioblastoma stem cells respond differentially to targeted therapies

    PubMed Central

    Kanabur, Pratik; Guo, Sujuan; Rodgers, Cara M.; Simonds, Gary R.; Kelly, Deborah F.; Gourdie, Robert G.; Verbridge, Scott S.

    2016-01-01

    The dismal prognosis of glioblastoma is, at least in part, attributable to the difficulty in eradicating glioblastoma stem cells (GSCs). However, whether this difficulty is caused by the differential responses of GSCs to drugs remains to be determined. To address this, we isolated and characterized ten GSC lines from established cell lines, xenografts, or patient specimens. Six lines formed spheres in a regular culture condition, whereas the remaining four lines grew as monolayer. These adherent lines formed spheres only in plates coated with poly-2-hydroxyethyl methacrylate. The self-renewal capabilities of GSCs varied, with the cell density needed for sphere formation ranging from 4 to 23.8 cells/well. Moreover, a single non-adherent GSC either remained quiescent or divided into two cells in four-seven days. The stem cell identity of GSCs was further verified by the expression of nestin or glial fibrillary acidic protein. Of the two GSC lines that were injected in immunodeficient mice, only one line formed a tumor in two months. The protein levels of NOTCH1 and platelet derived growth factor receptor alpha positively correlated with the responsiveness of GSCs to γ-secretase inhibitor IX or imatinib, two compounds that inhibit these two proteins, respectively. Furthermore, a combination of temozolomide and a connexin 43 inhibitor robustly inhibited the growth of GSCs. Collectively, our results demonstrate that patient-derived GSCs exhibit different growth rates in culture, possess differential capabilities to form a tumor, and have varied responses to targeted therapies. Our findings underscore the importance of patient-derived GSCs in glioblastoma research and therapeutic development. PMID:27863440

  17. A Core Regulatory Circuit in Glioblastoma Stem Cells Links MAPK Activation to a Transcriptional Program of Neural Stem Cell Identity.

    PubMed

    Riddick, Gregory; Kotliarova, Svetlana; Rodriguez, Virginia; Kim, H S; Linkous, Amanda; Storaska, Andrew J; Ahn, Susie; Walling, Jennifer; Belova, Galina; Fine, Howard A

    2017-03-03

    Glioblastoma, the most common primary malignant brain tumor, harbors a small population of tumor initiating cells (glioblastoma stem cells) that have many properties similar to neural stem cells. To investigate common regulatory networks in both neural and glioblastoma stem cells, we subjected both cell types to in-vitro differentiation conditions and measured global gene-expression changes using gene expression microarrays. Analysis of enriched transcription factor DNA-binding sites in the promoters of differentially expressed genes was used to reconstruct regulatory networks involved in differentiation. Computational predictions, which were biochemically validated, show an extensive overlap of regulatory circuitry between cell types including a network centered on the transcription factor KLF4. We further demonstrate that EGR1, a transcription factor previously shown to be downstream of the MAPK pathway, regulates KLF4 expression and that KLF4 in turn transcriptionally activates NOTCH as well as SOX2. These results demonstrate how known genomic alterations in glioma that induce constitutive activation of MAPK are transcriptionally linked to master regulators essential for neural stem cell identify.

  18. A Core Regulatory Circuit in Glioblastoma Stem Cells Links MAPK Activation to a Transcriptional Program of Neural Stem Cell Identity

    PubMed Central

    Riddick, Gregory; Kotliarova, Svetlana; Rodriguez, Virginia; Kim, H. S.; Linkous, Amanda; Storaska, Andrew J.; Ahn, Susie; Walling, Jennifer; Belova, Galina; Fine, Howard A.

    2017-01-01

    Glioblastoma, the most common primary malignant brain tumor, harbors a small population of tumor initiating cells (glioblastoma stem cells) that have many properties similar to neural stem cells. To investigate common regulatory networks in both neural and glioblastoma stem cells, we subjected both cell types to in-vitro differentiation conditions and measured global gene-expression changes using gene expression microarrays. Analysis of enriched transcription factor DNA-binding sites in the promoters of differentially expressed genes was used to reconstruct regulatory networks involved in differentiation. Computational predictions, which were biochemically validated, show an extensive overlap of regulatory circuitry between cell types including a network centered on the transcription factor KLF4. We further demonstrate that EGR1, a transcription factor previously shown to be downstream of the MAPK pathway, regulates KLF4 expression and that KLF4 in turn transcriptionally activates NOTCH as well as SOX2. These results demonstrate how known genomic alterations in glioma that induce constitutive activation of MAPK are transcriptionally linked to master regulators essential for neural stem cell identify. PMID:28256619

  19. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate.

    PubMed

    Hovinga, Koos E; Shimizu, Fumiko; Wang, Rong; Panagiotakos, Georgia; Van Der Heijden, Maartje; Moayedpardazi, Hamideh; Correia, Ana Sofia; Soulet, Denis; Major, Tamara; Menon, Jayanthi; Tabar, Viviane

    2010-06-01

    Glioblastoma multiforme (GBM) is a highly heterogeneous malignant tumor. Recent data suggests the presence of a hierarchical organization within the GBM cell population that involves cancer cells with stem-like behavior, capable of repopulating the tumor and contributing to its resistance to therapy. Tumor stem cells are thought to reside within a vascular niche that provides structural and functional support. However, most GBM studies involve isolated tumor cells grown under various culture conditions. Here, we use a novel three-dimensional organotypic "explant" system of surgical GBM specimens that preserves cytoarchitecture and tumor stroma along with tumor cells. Notch inhibition in explants results in decreased proliferation and self-renewal of tumor cells but is also associated with a decrease in endothelial cells. When endothelial cells are selectively eliminated from the explants via a toxin conjugate, we also observed a decrease in self-renewal of tumor stem cells. These findings support a critical role for tumor endothelial cells in GBM stem cell maintenance, mediated at least in part by Notch signaling. The explant system further highlighted differences in the response to radiation between explants and isolated tumor neurospheres. Combination treatment with Notch blockade and radiation resulted in a substantial decrease in proliferation and in self-renewal in tumor explants while radiation alone was less effective. This data suggests that the Notch pathway plays a critical role in linking angiogenesis and cancer stem cell self-renewal and is thus a potential therapeutic target. Three-dimensional explant systems provide a novel approach for the study of tumor and microenvironment interactions.

  20. Assessment of genetic markers and glioblastoma stem-like cells in activation of dendritic cells.

    PubMed

    Yurtsever, Aysel; Haydaroglu, Ayfer; Biray Avci, Cigir; Gunduz, Cumhur; Oktar, Nezih; Dalbasti, Tayfun; Caglar, Hasan Onur; Attar, Rukset; Kitapcioglu, Gul

    2013-09-01

    Glioblastoma (GBM) is the most common and aggressive intraparenchymal primary brain tumor in adults. The principal reasons for the poor outcomes of GBM are the high rates of recurrence and resistance to chemotherapy. The aim of this study was to determine the role of tailored cellular therapy for GBM with a poor prognosis and compare the activity of dendritic cells (DCs) that have encountered GBM cells. Detecting the correlations between methylation and expression of MGMT and PTEN genes and GBM cancer stem cells (CSCs) markers after co-cultures with a mononuclear cell cocktail are also aims for this study. Allogenic umbilical cord blood (UCB)-derived DCs were labeled with the CD11a and CD123 for immature DCs, and CD80 and CD11c for mature DCs. CD34, CD45, and CD56 cells were isolated from allogenic UCB for using in DCs maturation. GBM CSCs were detected with CD133/1 and CD111 antibodies after co-culture studies. DC activation was carried out via GBM cells including CD133 and CD111 cells and a mononuclear cells cocktail including CD34, CD45, and CD56 natural killer cells. Real-time PCR was performed to detect the expression and promoter methylation status of PTEN and MGMT genes. The expression of CSCs markers was found in all GBM cases, and a statistically significant correlation was found among them after co-culture studies. The most pronounced affinity of DCs to GBM cells was observed at dilutions between 1/4 and 1/256 in co-cultures. There was a statistically significant correlation between cellularity and granularity ratios for CD123 and CD11c. PTEN and MGMT gene expression and methylation values were evaluated with respect to CSCs expression and no statistical significance was found. Activation of DCs might associate with CSCs and the mononuclear cells cocktail including CD34, CD45, and CD56 cells which were obtained from allogenic UCB.

  1. Interindividual differences in anticancer drug cytotoxicity in primary human glioblastoma cells.

    PubMed

    Pédeboscq, Stéphane; L'Azou, Béatrice; Liguoro, Dominique; Pometan, Jean-Paul; Cambar, Jean

    2007-01-01

    Glioblastoma multiforme is a malignant astrocytic tumor characterized by rapid growth, extensive invasiveness and high vascularity. Despite advances in surgical techniques and in the development of new protocols in radio- and chemotherapy, the prognosis for patients suffering from this malignancy remains poor. Since the clinical response to chemotherapy varies greatly owing to different interindividual gene expression profiles, it would be of considerable interest to develop an in vitro model able to evaluate anticancer drug toxicity and the effectiveness of therapeutic strategies on cells obtained from individual patients. In the protocol for obtaining primary cultures of glioblastoma cells described in this report, a confluent monolayer of cells can be obtained within 1 or 2 weeks. A complementary immunocytochemical assay using glial fibrillary acidic protein (GFAP) to reliably mark glial cells confirms the glial origin of the cultured cells. A cytotoxicity test based on mitochondrial activity is then used to evaluate in vitro drug efficacy. Cell dedifferentiation as evidenced by loss of GFAP expression after a few passages requires determination of drug toxicity before the fourth passage. Data show a wide range of response to temozolomide (1000 microM) after 72 h with 24-81% cell death depending on patients. Results presented confirm the heterogeneity of response to anticancer drugs between the patients and methods described allow to carry out cytotoxicity studies in order to determine the individualized most effective treatment.

  2. 3-Bromopyruvate treatment induces alterations of metabolic and stress-related pathways in glioblastoma cells.

    PubMed

    Chiasserini, Davide; Davidescu, Magdalena; Orvietani, Pier Luigi; Susta, Federica; Macchioni, Lara; Petricciuolo, Maya; Castigli, Emilia; Roberti, Rita; Binaglia, Luciano; Corazzi, Lanfranco

    2017-01-30

    Glioblastoma (GBM) is the most common and aggressive brain tumour of adults. The metabolic phenotype of GBM cells is highly dependent on glycolysis; therefore, therapeutic strategies aimed at interfering with glycolytic pathways are under consideration. 3-Bromopyruvate (3BP) is a potent antiglycolytic agent, with a variety of targets and possible effects on global cell metabolism. Here we analyzed the changes in protein expression on a GBM cell line (GL15 cells) caused by 3BP treatment using a global proteomic approach. Validation of differential protein expression was performed with immunoblotting and enzyme activity assays in GL15 and U251 cell lines. The results show that treatment of GL15 cells with 3BP leads to extensive changes in the expression of glycolytic enzymes and stress related proteins. Importantly, other metabolisms were also affected, including pentose phosphate pathway, aminoacid synthesis, and glucose derivatives production. 3BP elicited the activation of stress response proteins, as shown by the phosphorylation of HSPB1 at serine 82, caused by the concomitant activation of the p38 pathway. Our results show that inhibition of glycolysis in GL15 cells by 3BP influences different but interconnected pathways. Proteome analysis may help in the molecular characterization of the glioblastoma response induced by pharmacological treatment with antiglycolytic agents.

  3. A disintegrin and metalloproteinases 10 and 17 modulate the immunogenicity of glioblastoma-initiating cells

    PubMed Central

    Wolpert, Fabian; Tritschler, Isabel; Steinle, Alexander; Weller,, Michael; Eisele, Günter

    2014-01-01

    Background There are emerging reports that the family of a disintegrin and metalloproteinases (ADAM) are involved in the maintenance of the malignant phenotype of glioblastomas. Notably, ADAM proteases 10 and 17 might impair the immune recognition of glioma cells via the activating immunoreceptor NKG2D by cleavage of its ligands from the cell surface. Glioblastoma-initiating cells (GIC) with stem cell properties have been identified as an attractive target for immunotherapy. However, GIC immunogenicity seems to be low. Methods and Results Here,we show that ADAM10 and ADAM17 are expressed on the cell surface of GIC and contribute to an immunosuppressive phenotype by cleavage of ULBP2. The cell surface expression of ULBP2 is enhanced upon blocking ADAM10 and ADAM17, and treatment with ADAM10 and ADAM17specific inhibitors leads to enhanced immunerecognition of GIC by natural killer cells. Conclusions Therefore, ADAM10 and ADAM17 constitute suitable targets to boost an immune response against GIC. PMID:24327582

  4. Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: Inhibition of tumor angiogenesis with extensive tumor necrosis

    SciTech Connect

    Kang, Khong Bee . E-mail: dmskkb@nccs.com.sg; Wang, Ting Ting; Woon, Chow Thai; Cheah, Elizabeth S.; Moore, Xiao Lei; Zhu Congju; Wong, Meng Cheong

    2007-03-01

    Purpose: Toward improved glioblastoma multiforme treatment, we determined whether celecoxib, a selective cyclooxygenase (COX)-2 inhibitor, could enhance glioblastoma radiosensitivity by inducing tumor necrosis and inhibiting tumor angiogenesis. Methods and Materials: U-87MG cells treated with celecoxib, irradiation, or both were assayed for clonogenic survival and angiogenic factor protein analysis (angiopoietin-1, angiopoietin-2, and vascular endothelial growth factor [VEGF]). In vivo, survival of mice intracranially implanted with U-87MG cells and treated with celecoxib and/or irradiation was monitored. Isolated tumors were assessed for tumor necrosis and tumor microvascular density by von Williebrand's factor (vWF) immunohistochemical staining. Results: Celecoxib (4 and 30 {mu}M; 24, 48, and 72 h) enhanced U-87MG cell radiosensitivity by significantly reducing clonogenic survival of irradiated cells. Angiopoietin-1 and VEGF proteins were decreased, whereas angiopoietin-2 expression increased after 72 h of celecoxib alone and when combined with irradiation. In vivo, median survival of control mice intracranially implanted with U-87MG cells was 18 days. Celecoxib (100 mg/kg/day, 2 weeks) significantly extended median survival of irradiated mice (24 Gy total) from 34 to 41 days, with extensive tumor necrosis [24.5 {+-} 8.6% of tumor region, compared with irradiation alone (2.7 {+-} 1.8%)]. Tumor microvascular density was significantly reduced in combined celecoxib and irradiated tumors (52.5 {+-} 2.9 microvessels per mm{sup 2} tumor region), compared with irradiated tumors alone (65.4 {+-} 4.0 microvessels per mm{sup 2}). Conclusion: Celecoxib significantly enhanced glioblastoma radiosensitivity, reduced clonogenic survival, and prolonged survival of glioblastoma-implanted mice by inhibition of tumor angiogenesis with extensive tumor necr0010os.

  5. The p21-dependent radiosensitization of human breast cancer cells by MLN4924, an investigational inhibitor of NEDD8 activating enzyme.

    PubMed

    Yang, Dong; Tan, Mingjia; Wang, Gongxian; Sun, Yi

    2012-01-01

    Radiotherapy is a treatment choice for local control of breast cancer. However, intrinsic radioresistance of cancer cells limits therapeutic efficacy. We have recently validated that SCF (SKP1, Cullins, and F-box protein) E3 ubiquitin ligase is an attractive radiosensitizing target. Here we tested our hypothesis that MLN4924, a newly discovered investigational small molecule inhibitor of NAE (NEDD8 Activating Enzyme) that inactivates SCF E3 ligase, could act as a novel radiosensitizing agent in breast cancer cells. Indeed, we found that MLN4924 effectively inhibited cullin neddylation, and sensitized breast cancer cells to radiation with a sensitivity enhancement ratio (SER) of 1.75 for SK-BR-3 cells and 1.32 for MCF7 cells, respectively. Mechanistically, MLN4924 significantly enhanced radiation-induced G2/M arrest in SK-BR-3 cells, but not in MCF7 cells at early time point, and enhanced radiation-induced apoptosis in both lines at later time point. However, blockage of apoptosis by Z-VAD failed to abrogate MLN4924 radiosensitization, suggesting that apoptosis was not causally related. We further showed that MLN4924 failed to enhance radiation-induced DNA damage response, but did cause minor delay in DNA damage repair. Among a number of tested SCF E3 substrates known to regulate growth arrest, apoptosis and DNA damage response, p21 was the only one showing an enhanced accumulation in MLN4924-radiation combination group, as compared to the single treatment groups. Importantly, p21 knockdown via siRNA partialy inhibited MLN4924-induced G2/M arrest and radiosensitization, indicating a causal role played by p21. Our study suggested that MLN4924 could be further developed as a novel class of radiosensitizer for the treatment of breast cancer.

  6. Induction of Hsp70 in tumor cells treated with inhibitors of the Hsp90 activity: A predictive marker and promising target for radiosensitization.

    PubMed

    Kudryavtsev, Vladimir A; Khokhlova, Anna V; Mosina, Vera A; Selivanova, Elena I; Kabakov, Alexander E

    2017-01-01

    We studied a role of the inducible heat shock protein 70 (Hsp70) in cellular response to radiosensitizing treatments with inhibitors of the heat shock protein 90 (Hsp90) chaperone activity. Cell lines derived from solid tumors of different origin were treated with the Hsp90 inhibitors (17AAG, geldanamycin, radicicol, NVP-AUY922) or/and γ-photon radiation. For comparison, human cells of the non-cancerous origin were subjected to the same treatments. We found that the Hsp90 inhibitors yielded considerable radiosensitization only when they cause early and pronounced Hsp70 induction; moreover, a magnitude of radiosensitization was positively correlated with the level of Hsp70 induction. The quantification of Hsp70 levels in Hsp90 inhibitor-treated normal and cancer cells enabled to predict which of them will be susceptible to any Hsp90-inhibiting radiosensitizer as well as what concentrations of the inhibitors ensure the preferential cytotoxicity in the irradiated tumors without aggravating radiation damage to adjacent normal tissues. Importantly, the Hsp70 induction in the Hsp90 inhibitor-treated cancer cells appears to be their protective response that alleviates the tumor-sensitizing effects of the Hsp90 inactivation. Combination of the Hsp70-inducing inhibitors of Hsp90 with known inhibitors of the Hsp induction such as quercetin, triptolide, KNK437, NZ28 prevented up-regulation of Hsp70 in the cancer cells thereby increasing their post-radiation apoptotic/necrotic death and decreasing their post-radiation viability/clonogenicity. Similarly, co-treatment with the two inhibitors conferred the enhanced radiosensitization of proliferating rather than quiescent human vascular endothelial cells which may be used for suppressing the tumor-stimulated angiogenesis. Thus, the easily immunodetectable Hsp70 induction can be a useful marker for predicting effects of Hsp90-inhibiting radiosensitizers on tumors and normal tissues exposed to ionizing radiation. Moreover

  7. Induction of Hsp70 in tumor cells treated with inhibitors of the Hsp90 activity: A predictive marker and promising target for radiosensitization

    PubMed Central

    Kudryavtsev, Vladimir A.; Khokhlova, Anna V.; Mosina, Vera A.; Selivanova, Elena I.

    2017-01-01

    We studied a role of the inducible heat shock protein 70 (Hsp70) in cellular response to radiosensitizing treatments with inhibitors of the heat shock protein 90 (Hsp90) chaperone activity. Cell lines derived from solid tumors of different origin were treated with the Hsp90 inhibitors (17AAG, geldanamycin, radicicol, NVP-AUY922) or/and γ-photon radiation. For comparison, human cells of the non-cancerous origin were subjected to the same treatments. We found that the Hsp90 inhibitors yielded considerable radiosensitization only when they cause early and pronounced Hsp70 induction; moreover, a magnitude of radiosensitization was positively correlated with the level of Hsp70 induction. The quantification of Hsp70 levels in Hsp90 inhibitor-treated normal and cancer cells enabled to predict which of them will be susceptible to any Hsp90-inhibiting radiosensitizer as well as what concentrations of the inhibitors ensure the preferential cytotoxicity in the irradiated tumors without aggravating radiation damage to adjacent normal tissues. Importantly, the Hsp70 induction in the Hsp90 inhibitor-treated cancer cells appears to be their protective response that alleviates the tumor-sensitizing effects of the Hsp90 inactivation. Combination of the Hsp70-inducing inhibitors of Hsp90 with known inhibitors of the Hsp induction such as quercetin, triptolide, KNK437, NZ28 prevented up-regulation of Hsp70 in the cancer cells thereby increasing their post-radiation apoptotic/necrotic death and decreasing their post-radiation viability/clonogenicity. Similarly, co-treatment with the two inhibitors conferred the enhanced radiosensitization of proliferating rather than quiescent human vascular endothelial cells which may be used for suppressing the tumor-stimulated angiogenesis. Thus, the easily immunodetectable Hsp70 induction can be a useful marker for predicting effects of Hsp90-inhibiting radiosensitizers on tumors and normal tissues exposed to ionizing radiation. Moreover

  8. Pluronic-based micelle encapsulation potentiates myricetin-induced cytotoxicity in human glioblastoma cells

    PubMed Central

    Tang, Xiang-Jun; Huang, Kuan-Ming; Gui, Hui; Wang, Jun-Jie; Lu, Jun-Ti; Dai, Long-Jun; Zhang, Li; Wang, Gang

    2016-01-01

    As one of the natural herbal flavonoids, myricetin has attracted much research interest, mainly owing to its remarkable anticancer properties and negligible side effects. It holds great potential to be developed as an ideal anticancer drug through improving its bioavailability. This study was performed to investigate the effects of Pluronic-based micelle encapsulation on myricetin-induced cytotoxicity and the mechanisms underlying its anticancer properties in human glioblastoma cells. Cell viability was assessed using a methylthiazol tetrazolium assay and a real-time cell analyzer. Immunoblotting and quantitative reverse transcriptase polymerase chain reaction techniques were used for determining the expression levels of related molecules in protein and mRNA. The results indicated that myricetin-induced cytotoxicity was highly potentiated by the encapsulation of myricetin. Mitochondrial apoptotic pathway was demonstrated to be involved in myricetin-induced glioblastoma cell death. The epidermal growth factor receptor (EGFR)/PI3K/Akt pathway located in the plasma membrane and cytosol and the RAS-ERK pathway located in mitochondria served as upstream and downstream targets, respectively, in myricetin-induced apoptosis. MiR-21 inhibitors interrupted the expression of EGFR, p-Akt, and K-Ras in the same fashion as myricetin-loaded mixed micelles (MYR-MCs) and miR-21 expression were dose-dependently inhibited by MYR-MCs, indicating the interaction of miR-21 with MYR-MCs. This study provided evidence supportive of further development of MYR-MC formulation for preferentially targeting mitochondria of glioblastoma cells. PMID:27757032

  9. Pluronic-based micelle encapsulation potentiates myricetin-induced cytotoxicity in human glioblastoma cells.

    PubMed

    Tang, Xiang-Jun; Huang, Kuan-Ming; Gui, Hui; Wang, Jun-Jie; Lu, Jun-Ti; Dai, Long-Jun; Zhang, Li; Wang, Gang

    As one of the natural herbal flavonoids, myricetin has attracted much research interest, mainly owing to its remarkable anticancer properties and negligible side effects. It holds great potential to be developed as an ideal anticancer drug through improving its bioavailability. This study was performed to investigate the effects of Pluronic-based micelle encapsulation on myricetin-induced cytotoxicity and the mechanisms underlying its anticancer properties in human glioblastoma cells. Cell viability was assessed using a methylthiazol tetrazolium assay and a real-time cell analyzer. Immunoblotting and quantitative reverse transcriptase polymerase chain reaction techniques were used for determining the expression levels of related molecules in protein and mRNA. The results indicated that myricetin-induced cytotoxicity was highly potentiated by the encapsulation of myricetin. Mitochondrial apoptotic pathway was demonstrated to be involved in myricetin-induced glioblastoma cell death. The epidermal growth factor receptor (EGFR)/PI3K/Akt pathway located in the plasma membrane and cytosol and the RAS-ERK pathway located in mitochondria served as upstream and downstream targets, respectively, in myricetin-induced apoptosis. MiR-21 inhibitors interrupted the expression of EGFR, p-Akt, and K-Ras in the same fashion as myricetin-loaded mixed micelles (MYR-MCs) and miR-21 expression were dose-dependently inhibited by MYR-MCs, indicating the interaction of miR-21 with MYR-MCs. This study provided evidence supportive of further development of MYR-MC formulation for preferentially targeting mitochondria of glioblastoma cells.

  10. Resveratrol-Induced Apoptosis and Increased Radiosensitivity in CD133-Positive Cells Derived From Atypical Teratoid/Rhabdoid Tumor

    SciTech Connect

    Kao, C.-L.; Huang, P.-I; Tsai, P.-H.; Tsai, M.-L.; Lo, J.-F.; Lee, Y.-Y.; Chen, Y.-J.; Chen, Y.-W.; Chiou, S.-H.

    2009-05-01

    Purpose: CD133 has recently been proposed as a marker for cancer stem-like cells (CSC) in brain tumors. The aim of the present study was to investigate the possible role of resveratrol (RV) in radiosensitivity of CD133-positive/-negative cells derived from atypical teratoid/rhabdoid tumors (AT/RT-CD133{sup +/-}). Materials and Methods: AT/RT-CD133{sup +/-} were isolated and characterized by flow cytometry and quantitative real-time reverse transcription-polymerase chain reaction, and then treated with RV at different doses. Migratory ability, colony formation, apoptotic activity, and xenotransplantation were assessed for RV alone, ionizing radiation (IR) alone, and IR with RV conditions. Results: AT/RT-CD133{sup +} displayed enhanced self-renewal and highly coexpressed 'stem cell' genes and drug-resistant genes, in addition to showing significant resistance to chemotherapeutic agents and radiotherapy as compared with CD133{sup -} cells. After treatment with 200 {mu}M RV, the in vitro proliferation rates and in vivo tumor restoration abilities of ATRT-CD133{sup +} were dramatically inhibited. Importantly, treatment with 150 {mu}M RV can effectively inhibit the expression of drug-resistant genes in AT/RT-CD133{sup +}, and further facilitate to the differentiation of CD133{sup +} into CD133{sup -}. In addition, treatment with 150 {mu}M RV could significantly enhance the radiosensitivity and IR-mediated apoptosis in RV-treated ATRT-CD133{sup +/-}. Kaplan-Meier survival analysis indicated that the mean survival rate of mice with ATRT-CD133{sup +} that were treated with IR could be significantly improved when IR was combined with 150 {mu}M RV treatment. Conclusions: AT/RT-CD133{sup +} exhibit CSC properties and are refractory to IR treatment. Our results suggest that RV treatment plays crucial roles in antiproliferative, proapoptotic, and radiosensitizing effects on treated-CD133{sup +/-}; RV may therefore improve the clinical treatment of AT/RT.

  11. PB-100: a potent and selective inhibitor of human BCNU resistant glioblastoma cell multiplication.

    PubMed

    Beljanski, M; Crochet, S; Beljanski, M S

    1993-01-01

    Major drawbacks to present-day cancer chemotherapy are its intrinsic lack of selectivity for tumour cells, resulting in severe damage to normal rapidly dividing cells, and the widespread emergence of drug resistance. Here experimental evidence is presented demonstrating that PB-100, a beta-carboline alkaloid, selectively inhibits in vitro multiplication of human BCNU-resistant glioblastoma cells (U251), but has no effect on normal astrocyte (CRL 1656) multiplication. PB-100 activity is dose-dependent. In the presence of ferritin or CaCl2, which are highly mitogenic for glioblastoma cells, higher doses of the alkaloid are required to inhibit multiplication completely. PB-100 is one of several compounds which were selected for their specific action on cancer DNA and cells, together with lack of activity on normal DNA and cells. Both the selectivity of PB-100 and its ability to overcome drug resistance stem from its effect on cancer DNA secondary structure. This activity is described and discussed, and therapeutic applications are mentioned.

  12. Assessment of the intrinsic radiosensitivity of glioma cells and monitoring of metabolite ratio changes after irradiation by 14.7-T high-resolution ¹H MRS.

    PubMed

    Zhang, Zhaotao; Zeng, Qingshi; Liu, Yun; Li, Chuanfu; Feng, Dechao; Wang, Jianzheng

    2014-05-01

    Gliomas are the most common type of primary brain tumor. Radiation therapy (RT) is the primary adjuvant treatment to eliminate residual tumor tissue after surgery. However, the current RT guided by conventional imaging is unsatisfactory. A fundamental question is whether it is possible to further enhance the effectiveness and efficiency of RT based on individual radiosensitivity. In this research, to probe the correlation between radiosensitivity and the metabolite characteristics of glioma cells in vitro, a perchloric acid (PCA) extracting method was used to obtain water-soluble metabolites [such as N-acetylaspartate (NAA), choline (Cho), creatine (Cr) and succinate (Suc)]. Spectral patterns from these processed water-soluble metabolite samples were acquired by in vitro 14.7-T high-resolution ¹H MRS. Survival fraction analysis was performed to test the intrinsic radiosensitivity of glioma cell lines. Good ¹H MRS of PCA extracts from glioma cells was obtained. The radiosensitivity of glioma cells correlated positively with the Cho/Cr and Cho/NAA ratios, but negatively with the Suc/Cr ratio. Irradiation of the C6 cell line at different X-ray dosages led to changes in metabolite ratios and apoptotic rates. A plateau phase of metabolite ratio change and a decrease in apoptotic rate were found in the C6 cell line. We conclude that in vitro high-resolution ¹H MRS possesses the sensitivity required to detect subtle biochemical changes at the cellular level. ¹H MRS may aid in the assessment of the individual radiosensitivity of brain tumors, which is pivotal in the identification of the biological target volume.

  13. Guanine nucleotide exchange factor Dock7 mediates HGF-induced glioblastoma cell invasion via Rac activation

    PubMed Central

    Murray, D W; Didier, S; Chan, A; Paulino, V; Van Aelst, L; Ruggieri, R; Tran, N L; Byrne, A T; Symons, M

    2014-01-01

    Background: Glioblastoma multiforme (GBM), a highly invasive primary brain tumour, remains an incurable disease. Rho GTPases and their activators, guanine nucleotide exchange factors (GEFs), have central roles in GBM invasion. Anti-angiogenic therapies may stimulate GBM invasion via HGF/c-Met signalling. We aim to identify mediators of HGF-induced GBM invasion that may represent targets in a combination anti-angiogenic/anti-invasion therapeutic paradigm. Methods: Guanine nucleotide exchange factor expression was measured by microarray analysis and western blotting. Specific depletion of proteins was accomplished using siRNA. Cell invasion was determined using matrigel and brain slice assays. Cell proliferation and survival were monitored using sulforhodamine B and colony formation assays. Guanine nucleotide exchange factor and GTPase activities were determined using specific affinity precipitation assays. Results: We found that expression of Dock7, a GEF, is elevated in human GBM tissue in comparison with non-neoplastic brain. We showed that Dock7 mediates serum- and HGF-induced glioblastoma cell invasion. We also showed that Dock7 co-immunoprecipitates with c-Met and that this interaction is enhanced upon HGF stimulation in a manner that is dependent on the adaptor protein Gab1. Dock7 and Gab1 also co-immunoprecipitate in an HGF-dependent manner. Furthermore, Gab1 is required for HGF-induced Dock7 and Rac1 activation and glioblastoma cell invasion. Conclusions: Dock7 mediates HGF-induced GBM invasion. Targeting Dock7 in GBM may inhibit c-MET-mediated invasion in tumours treated with anti-angiogenic regimens. PMID:24518591

  14. Expression profile of genes modulated by Aloe emodin in human U87 glioblastoma cells.

    PubMed

    Haris, Khalilah; Ismail, Samhani; Idris, Zamzuri; Abdullah, Jafri Malin; Yusoff, Abdul Aziz Mohamed

    2014-01-01

    Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with 58.6 μg/ml for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment.

  15. Nanotechnology applications for glioblastoma.

    PubMed

    Nduom, Edjah K; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-07-01

    Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. Although conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds promise in the use of multifunctional nanoparticles for imaging and targeted therapy of glioblastoma. This article examines the current state of nanotechnology in the treatment of glioblastoma and directions of further study.

  16. Radiosensitizing Effects of Ectopic miR-101 on Non-Small-Cell Lung Cancer Cells Depend on the Endogenous miR-101 Level

    SciTech Connect

    Chen, Susie; Wang Hongyan; Ng, Wooi Loon; Curran, Walter J.; Wang Ya

    2011-12-01

    Purpose: Previously, we showed that ectopic miR-101 could sensitize human tumor cells to radiation by targeting ATM and DNA-PK catalytic subunit (DNA-PKcs) to inhibit DNA repair, as the endogenous miR-101 levels are low in tumors in general. However, the heterogeneity of human cancers may result in an exception. The purpose of this study was to test the hypothesis that a few tumor cell lines with a high level of endogenous miR-101 would prove less response to ectopic miR-101. Methods and Materials: Fourteeen non-small-cell lung cancer (NSCLC) cell lines and one immortalized non-malignant lung epithelial cell line (NL20) were used for comparing endogenous miR-101 levels by real-time reverse transcription-polymerase chain reaction. Based on the different miR-101 levels, four cell lines with different miR-101 levels were chosen for transfection with a green fluorescent protein-lentiviral plasmid encoding miR-101. The target protein levels were measured by using Western blotting. The radiosensitizing effects of ectopic miR-101 on these NSCLC cell lines were determined by a clonogenic assay and xenograft mouse model. Results: The endogenous miR-101 level was similar or lower in 13 NSCLC cell lines but was 11-fold higher in one cell line (H157) than in NL20 cells. Although ectopic miR-101 efficiently decreased the ATM and DNA-PKcs levels and increased the radiosensitization level in H1299, H1975, and A549 cells, it did not change the levels of the miR-101 targets or radiosensitivity in H157 cells. Similar results were observed in xenograft mice. Conclusions: A small number of NSCLC cell lines could have a high level of endogenous miR-101. The ectopic miR-101 was able to radiosensitize most NSCLC cells, except for the NSCLC cell lines that had a much higher endogenous miR-101 level. These results suggest that when we choose one miRNA as a therapeutic tool, the endogenous level of the miRNA in each tumor should be considered.

  17. Control of polyclonal immunoglobulin production from human lymphocytes by leukotrienes; leukotriene B4 induces an OKT8(+), radiosensitive suppressor cell from resting, human OKT8(-) T cells

    SciTech Connect

    Atluru, D.; Goodwin, J.S.

    1984-10-01

    We report that leukotriene B4 (LTB4), a 5-lipoxygenase metabolite of arachidonic acid, is a potent suppressor of polyclonal Ig production in pokeweed mitogen (PWM)-stimulated cultures of human peripheral blood lymphocytes, while LTC4 and LTD4 have little activity in this system. Preincubation of T cells with LTB4 in nanomolar to picomolar concentrations rendered these cells suppressive of Ig production in subsequent PWM-stimulated cultures of fresh, autologous B + T cells. This LTB4-induced suppressor cell was radiosensitive, and its generation could be blocked by cyclohexamide but not by mitomycin C. The LTB4-induced suppressor cell was OKT8(+), while the precursor for the cell could be OKT8(-). The incubation of OKT8(-) T cells with LTB4 for 18 h resulted in the appearance of the OKT8(+) on 10-20% of the cells, and this could be blocked by cyclohexamide but not by mitomycin C. Thus, LTB4 in very low concentrations induces a radiosensitive OKT8(+) suppressor cell from OKT8(-) cells. In this regard, LTB4 is three to six orders of magnitude more potent than any endogenous hormonal inducer of suppressor cells previously described. Glucocorticosteroids, which block suppressor cell induction in many systems, may act by inhibiting endogenous production of LTB4.

  18. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    PubMed

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are

  19. Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth

    PubMed Central

    Zhu, Yuan; Zhao, Kai; Prinz, Anja; Keyvani, Kathy; Lambertz, Nicole; Kreitschmann-Andermahr, Ilonka; Lei, Ting; Sure, Ulrich

    2016-01-01

    Background Neo-angiogenesis is a hallmark of glioblastoma (GBM) and is sustained by autocrine and paracrine interactions between neoplastic and nonneoplastic cells. Programmed cell death 10 (PDCD10) is ubiquitously expressed in nearly all tissues and plays crucial roles in regulating angiogenesis and apoptosis. We recently discovered the absence of PDCD10 expression in the tumor vessels of GBM patients. This raised the hypothesis that loss of endothelial PDCD10 affected GBM cell phenotyping and tumor progression. Methods Endothelial PDCD10 was silenced by siRNA and lentiviral shRNA. The tumor cell phenotype was studied in direct and indirect co-culture of endothelial cells (ECs) with U87 or LN229. Angiogenic protein array was performed in the media of PDCD10-silenced ECs. Tumor angiogenesis and tumor growth were investigated in a human GBM xenograft mouse model. Results Endothelial silence of PDCD10 significantly stimulated tumor cell proliferation, migration, adhesion, and invasion and inhibited apoptosis in co-cultures. Stable knockdown of endothelial PDCD10 increased microvessel density and the formation of a functional vascular network, leading to a 4-fold larger tumor mass in mice. Intriguingly, endothelial deletion of PDCD10 increased (≥2-fold) the release of 20 of 55 tested proangiogenic factors including VEGF, which in turn activated Erk1/2 and Akt in GBM cells. Conclusions For the first time, we provide evidence that loss of endothelial PDCD10 activates GBM cells and promotes tumor growth, most likely via a paracrine mechanism. PDCD10 shows a tumor-suppressor-like function in the cross talk between ECs and tumor cells and is potentially implicated in GBM progression. PMID:26254477

  20. Salinomycin potentiates the cytotoxic effects of TRAIL on glioblastoma cell lines.

    PubMed

    Calzolari, Alessia; Saulle, Ernestina; De Angelis, Maria Laura; Pasquini, Luca; Boe, Alessandra; Pelacchi, Federica; Ricci-Vitiani, Lucia; Baiocchi, Marta; Testa, Ugo

    2014-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to exhibit therapeutic activity in cancer. However, many tumors remain resistant to treatment with TRAIL. Therefore, small molecules that potentiate the cytotoxic effects of TRAIL could be used for combinatorial therapy. Here we found that the ionophore antibiotic salinomycin acts in synergism with TRAIL, enhancing TRAIL-induced apoptosis in glioma cells. Treatment with low doses of salinomycin in combination with TRAIL augmented the activation of caspase-3 and increased TRAIL-R2 cell surface expression. TRAIL-R2 upmodulation was required for mediating the stimulatory effect of salinomycin on TRAIL-mediated apoptosis, since it was abrogated by siRNA-mediated TRAIL-R2 knockdown. Salinomycin in synergism with TRAIL exerts a marked anti-tumor effect in nude mice xenografted with human glioblastoma cells. Our results suggest that the combination of TRAIL and salinomycin may be a useful tool to overcome TRAIL resistance in glioma cells and may represent a potential drug for treatment of these tumors. Importantly, salinomycin+TRAIL were able to induce cell death of well-defined glioblastoma stem-like lines.

  1. Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions

    PubMed Central

    Thuringer, Dominique; Boucher, Jonathan; Jego, Gaetan; Pernet, Nicolas; Cronier, Laurent; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-01-01

    Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types. PMID:27661112

  2. Salinomycin Potentiates the Cytotoxic Effects of TRAIL on Glioblastoma Cell Lines

    PubMed Central

    Calzolari, Alessia; Saulle, Ernestina; De Angelis, Maria Laura; Pasquini, Luca; Boe, Alessandra; Pelacchi, Federica; Ricci-Vitiani, Lucia; Baiocchi, Marta; Testa, Ugo

    2014-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to exhibit therapeutic activity in cancer. However, many tumors remain resistant to treatment with TRAIL. Therefore, small molecules that potentiate the cytotoxic effects of TRAIL could be used for combinatorial therapy. Here we found that the ionophore antibiotic salinomycin acts in synergism with TRAIL, enhancing TRAIL-induced apoptosis in glioma cells. Treatment with low doses of salinomycin in combination with TRAIL augmented the activation of caspase-3 and increased TRAIL-R2 cell surface expression. TRAIL-R2 upmodulation was required for mediating the stimulatory effect of salinomycin on TRAIL-mediated apoptosis, since it was abrogated by siRNA-mediated TRAIL-R2 knockdown. Salinomycin in synergism with TRAIL exerts a marked anti-tumor effect in nude mice xenografted with human glioblastoma cells. Our results suggest that the combination of TRAIL and salinomycin may be a useful tool to overcome TRAIL resistance in glioma cells and may represent a potential drug for treatment of these tumors. Importantly, salinomycin+TRAIL were able to induce cell death of well-defined glioblastoma stem-like lines. PMID:24740347

  3. Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions.

    PubMed

    Thuringer, Dominique; Boucher, Jonathan; Jego, Gaetan; Pernet, Nicolas; Cronier, Laurent; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-11-08

    Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types.

  4. Polyfunctional radiosensitizers: VI. Dexamethasone inhibits shoulder modification by uncharged nitroxyl biradicals in mammalian cells irradiated in vitro

    SciTech Connect

    Millar, B.C.; Jenkins, T.C.; Fielden, E.M.; Jinks, S.

    1983-10-01

    Overnight exposure of Chinese hamster cells (V.79-753B) in vitro to 1 ..mu..g/ml dexamethasone increases the radiation resistance of the cells by about 20% both in air and in hypoxia, while having no appreciable effect on the oxygen enhancement ratio (OER). This is accompanied by substantially higher levels of glutathione. When dexamethasone-treated hypoxic cells are irradiated in the presence of nitroxyl biradicals there is no effect on the slope ratio of the exponential portion of the survival curves. In the case of uncharged biradicals, Ro.03-6061 and RSU-4072, which have been shown to modify the shoulder region of the hypoxic cell survival curve, there is an increase in extrapolation number in dexamethasone-treated cells. When hypoxic cells are exposed to the charged biradical RSU-4073, which does not exhibit shoulder modification, there is no change in extrapolation number. Experiments to examine the effect of concentration of these compounds on radiosensitization show that lower concentrations of both RSU-4072 and RSU-4073 are required to mediate changes in the slope of the hypoxic cell survival curve than to mediate shoulder modification, in the case of RSU-4072. Quantitative ESR data comparing the uptake of RSU-4072 and RSU-4073 with the monoradical TMPN into cells suggest that the cell membrane may act as a barrier to the incorporation of biradicals, and that this is greater for charged than for uncharged compounds. Treatment of cells with dexamethasone does not affect the uptake of the compounds.

  5. Radiosensitization of Human Vascular Endothelial Cells Through Hsp90 Inhibition With 17-N-Allilamino-17-Demethoxygeldanamycin

    SciTech Connect

    Kabakov, Alexander E. Makarova, Yulia M.; Malyutina, Yana V.

    2008-07-01

    Purpose: In addition to invasive tumor cells, endothelial cells (ECs) of the tumor vasculature are an important target for anticancer radiotherapy. The purpose of the present work is to investigate how 17-N-allilamino-17-demethoxygeldanamycin (17AAG), known as an anticancer drug inhibiting heat shock protein 90 (Hsp90), modifies radiation responses of human vascular ECs. Methods and Materials: The ECs cultured from human umbilical veins were exposed to {gamma}-irradiation, whereas some EC samples were pretreated with growth factors and/or 17AAG. Postirradiation cell death/survival and morphogenesis were assessed by means of terminal deoxynucleotidyl transferase biotin-deoxyuridine triphosphate nick end labeling or annexin V staining and clonogenic and tube-formation assays. The 17AAG-affected expression and phosphorylation of radioresistance-related proteins were probed by means of immunoblotting. Dominant negative or constitutively activated Akt was transiently expressed in ECs to manipulate Akt activity. Results: It was found that nanomolar concentrations of 17AAG sensitize ECs to relatively low doses (2-6 Gy) of {gamma}-irradiation and abolish the radioprotective effects of vascular endothelial growth factor and basic fibroblast growth factor. The drug-induced radiosensitization of ECs seems to be caused by prevention of Hsp90-dependent phosphorylation (activation) of Akt that results in blocking the radioprotective phosphatidylinositol 3-kinase/Akt pathway. Conclusions: Clinically achievable concentrations of 17AAG can decrease the radioresistance intrinsic to vascular ECs and minimize the radioprotection conferred upon them by tumor-derived growth factors. These findings characterize 17AAG as a promising radiosensitizer for the tumor vasculature.

  6. miR-26b enhances radiosensitivity of hepatocellular carcinoma cells by targeting EphA2

    PubMed Central

    Jin, Qiao; Li, Xiang Jun; Cao, Pei Guo

    2016-01-01

    Objective(s): Although low-dose radiotherapy (RT) that involves low collateral damage is more suitable for hepatocellular carcinoma (HCC) than traditional high-dose RT, but to achieve satisfactory therapeutic effect with low-dose RT, it is necessary to sensitize HCC cells to irradiation. This study was aimed to determine whether radiosensitivity of HCC cells can be enhanced using miR-26b by targeting erythropoietin producing human hepatocelluar A2 (EphA2). Materials and Methods: The levels of miR-26b and EphA2 expression in multiple HCC cell lines were assessed by qPCR and western blotting, respectively, and compared with those in a hepatic cell line. HCC 97H cells were transfected with miR-26b mimics, EphA2-ShRNA or EphA2 over-expression vector before exposure to low-dose irradiation. Results: Different degrees of miR-26b down-regulation and EphA2 up-regulation were observed in all HCC cell lines, among which the HCC 97H cell line expressed the lowest level of miR-26b and highest level of EphA2. EphA2 was verified as the target of miR-26b by dual luciferase reporter assay. HCC 97H cells transfected with miR-26b mimics or EphA2-ShRNA reduced the expression of EphA2 protein, with significantly lower cell proliferation rate and cell invasion ability and higher apoptosis rate in response to low-dose irradiation than those in the non-transfected cells. These results were reversed after EphA2 was overexpressed by transfection with the EphA2 overexpression vector. Co-transfection with miR-26b mimics and EphA2 overexpression vector barely altered EphA2 expression level and cell response to low-dose irradiation. Conclusion: These data suggest that miR-26b enhances radiosensitivity of HCC 97H cells by targeting EphA2 protein. PMID:27746866

  7. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells.

    PubMed

    Ríos-Marco, Pablo; Martín-Fernández, Mario; Soria-Bretones, Isabel; Ríos, Antonio; Carrasco, María P; Marco, Carmen

    2013-08-01

    Glioblastoma is the most common malignant primary brain tumour in adults and one of the most lethal of all cancers. Growing evidence suggests that human tumours undergo abnormal lipid metabolism, characterised by an alteration in the mechanisms that regulate cholesterol homeostasis. We have investigated the effect that different antitumoural alkylphospholipids (APLs) exert upon cholesterol metabolism in the U-87 MG glioblastoma cell line. APLs altered cholesterol homeostasis by interfering with its transport from the plasma membrane to the endoplasmic reticulum (ER), thus hindering its esterification. At the same time they stimulated the synthesis of cholesterol from radiolabelled acetate and its internalisation from low-density lipoproteins (LDLs), inducing both 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and LDL receptor (LDLR) genes. Fluorescent microscopy revealed that these effects promoted the accumulation of intracellular cholesterol. Filipin staining demonstrated that this accumulation was not confined to the late endosome/lysosome (LE/LY) compartment since it did not colocalise with LAMP2 lysosomal marker. Furthermore, APLs inhibited cell growth, producing arrest at the G2/M phase. We also used transmission electron microscopy (TEM) to investigate ultrastructural alterations induced by APLs and found an abundant presence of autophagic vesicles and autolysosomes in treated cells, indicating the induction of autophagy. Thus our findings clearly demonstrate that antitumoural APLs interfere with the proliferation of the glioblastoma cell line via a complex mechanism involving cholesterol metabolism, cell-cycle arrest or autophagy. Knowledge of the interrelationship between these processes is fundamental to our understanding of tumoural response and may facilitate the development of novel therapeutics to improve treatment of glioblastoma and other types of cancer.

  8. Analysis of esophageal cancer cell lines exposed to X-ray based on radiosensitivity influence by tumor necrosis factor-α.

    PubMed

    Wang, Buhai; Ge, Yizhi; Gu, Xiang

    2016-10-06

    Assess the effects of tumor necrosis factor-α (TNF-α) in enhancing the radiosensitivity of esophageal cancer cell line in vitro. Three esophageal cancer cell line cells were exposed to X-ray with or without TNF-α treatment. MTT assay was used to evaluate the cell growth curve, and flow cytometry was performed to assess the cell apoptosis. The radiosensitizing effects of TNF-α were detected by cell colony formation assay. Western blotting was applied to observe the expression of NF-κB and caspase-3 protein in the exposed cells. Our results indicated that cellular inhibition rate increased over time, the strongest is combined group (P < 0.05). Western blotting showed that the decline expression of NF-κB protein was stated between only rhTNF-α and only X-ray radiation group and the maximum degree was manifested in combined group. Caspase-3 protein content expression just works opposite. Three kinds of cells in the NF-κB protein were similar without rhTNF-α. Then SEG1 NF-κB protein content was reduced more than other two kinds. We concluded that the cells treated with TNF-α showed significantly suppressed cell proliferation, increasing the cell apoptosis, and caspase-3 protein expression after X-ray exposure. TNF-α can enhance the radiosensitivity of esophageal cancer to enhancing the effect of the former.

  9. Stage-specific embryonic antigen: determining expression in canine glioblastoma, melanoma, and mammary cancer cells

    PubMed Central

    Ito, Daisuke

    2017-01-01

    The expression of stage-specific embryonic antigens (SSEAs) was determined in several types of canine cancer cells. Flow cytometry showed SSEA-1 expression in glioblastoma, melanoma, and mammary cancer cells, although none expressed SSEA-3 or SSEA-4. Expression of SSEA-1 was not detected in lymphoma, osteosarcoma, or hemangiosarcoma cell lines. Relatively stable SSEA-1 expression was observed between 24 and 72 h of culture. After 8 days in culture, sorted SSEA-1− and SSEA-1+ cells re-established SSEA-1 expression to levels comparable to those observed in unsorted cells. Our results document, for the first time, the expression of SSEA-1 in several canine cancer cell lines. PMID:27456773

  10. Giant cell glioblastoma in the cerebrum of a Pembroke Welsh corgi.

    PubMed

    Giri, D K; Aloisio, F; Alosio, F; Ajithdoss, D K; Ambrus, A; Lidbury, J A; Hein, H E; Porter, B F

    2011-05-01

    A 6-year-old, neutered female Pembroke Welsh corgi was presented with a 1-month history of ataxia and panting. The clinical signs progressed until the dog became anorexic, obtunded and exhibited circling to the left. At necropsy examination, a mass was detected in the left forebrain, impinging on the cribriform plate. Microscopically, the mass was composed of sheets of round to pleomorphic neoplastic cells with vacuolated cytoplasm. Nuclear atypia, anisocytosis and anisokaryosis were common. Numerous bizarre, multinucleated giant cells containing 60 or more nuclei and giant mononuclear cells were present. The matrix contained abundant reticulin. Immunohistochemistry revealed the neoplastic cells uniformly to express vimentin, and a small number of neoplastic cells expressed glial fibrillary acid protein. A diagnosis of giant cell glioblastoma was made. Although well recognized in man, this tumour has been documented rarely in the veterinary literature.

  11. MicroRNA-203 As a Stemness Inhibitor of Glioblastoma Stem Cells

    PubMed Central

    Deng, Yifan; Zhu, Gang; Luo, Honghai; Zhao, Shiguang

    2016-01-01

    Glioblastoma stem cells (GBM-SCs) are believed to be a subpopulation within all glioblastoma (GBM) cells that are in large part responsible for tumor growth and the high grade of therapeutic resistance that is so characteristic of GBM. MicroRNAs (miR) have been implicated in regulating the expression of oncogenes and tumor suppressor genes in cancer stem cells, including GBM-SCs, and they are a potential target for cancer therapy. In the current study, miR-203 expression was reduced in CD133+ GBM-SCs derived from six human GBM biopsies. MicroRNA-203 transfected GBM-SCs had reduced capacity for self-renewal in the cell sphere assay and increased expression of glial and neuronal differentiation markers. In addition, a reduced proliferation rate and an increased rate of apoptosis were observed. Therefore, miR-203 has the potential to reduce features of stemness, specifically in GBM-SCs, and is a logical target for GBM gene therapy. PMID:27484906

  12. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells.

    PubMed

    Malinovskaya, Julia; Melnikov, Pavel; Baklaushev, Vladimir; Gabashvili, Anna; Osipova, Nadezhda; Mantrov, Sergey; Ermolenko, Yulia; Maksimenko, Olga; Gorshkova, Marina; Balabanyan, Vadim; Kreuter, Jörg; Gelperina, Svetlana

    2017-03-27

    The paramount problem in the therapy of brain tumors is the inability of most drugs to cross the blood-brain barrier. PLGA nanoparticles overcoated with poloxamer 188 could overcome this problem and enabled a high anti-tumoral effect against the very aggressive intracranial 101.8 glioblastoma in rats that closely resembles human grade IV glioblastomas. The basis for the transport of these particles across the blood-brain barrier appears to be adsorption of blood apolipoproteins (ApoE or ApoA-I) on the nanoparticle surface caused by the poloxamer 188-coating, followed by receptor-mediated transcytosis of the nanoparticles. The objective of the present study is the elucidation of the mechanism by which the poloxamer 188-coated nanoparticles then enter the brain tumor cells. Their intracellular fate, therefore, was investigated using the U87 human glioma cell line. The main mechanism of the PLGA nanoparticle internalization by U87 cells was clathrin-mediated endocytosis. Within 1h free doxorubicin was released from late endosomes and could reach its target site, i.e. the DNA in the nuclei without degradation, whereas the PLGA nanoparticles, which were labeled with Cy5.5, still were observed in the endo-lysosomal compartment. These results demonstrate that the underlying mechanism of action in the brain cells is by diffusive doxorubicin release from the nanoparticles rather than by their intracellular degradation.

  13. MO-FG-BRA-02: Modulation of Clinical Orthovoltage X-Ray Spectrum Further Enhances Radiosensitization of Cancer Cells Targeted with Gold Nanoparticles

    SciTech Connect

    Wolfe, T; Reynoso, F; Cho, J; Quini, C; Cortez, M; Manohar, N; Krishnan, S; Cho, S

    2015-06-15

    Purpose: To assess the potential to amplify radiosensitization of cancer cells targeted with gold nanoparticles by augmenting selective spectral components of X-ray beam. Methods: Human prostate cancer cells were treated for 24h with gold nanorods conjugated to goserelin acetate or pegylated, systematically washed and irradiated with 250 kVp X-rays (25mA, 0.25mm Cu- filter, 8x8cm{sup 2} field size, 50cm SSD) with or without an additional 0.25 mm Erbium (Er) filter. As demonstrated in a companion Monte Carlo study, Er-filter acted as an external target to feed Erbium K-shell X-ray fluorescence photons (∼50 keV) into the 250 kVp beam. After irradiation, we performed measurements of clonogenic viability with doses between 0 -6Gy, irreparable DNA damage assay to measure double-strand breaks via γH2AX-foci staining, and production of stable reactive oxygen species (ROS). Results: The clonogenic assay for the group treated with conjugated nanoparticles showed radiosensitization enhancement factor (REF), calculated at the 10% survival fraction aisle, of (1.62±0.07) vs. (1.23±0.04) with/without the Er-filter in the 250 kVp beam, respectively. The group treated with pegylated nanoparticles, albeit retained in modest amounts within the cells, also showed statistically significant REF (1.13±0.09) when the Erbium filter was added to the beam. No significant radiosensitization was observed for other groups. Measurements of ROS levels showed increments of (1.9±0.2) vs. (1.4±0.1) for combined treatment with targeted nanoparticles and Er-filtered beam. γH2AX-foci showed 50% increase for the same treatment combination, confirming the enhanced radiosensitization in a consistent fashion. Conclusion: Our study demonstrates the feasibility of enhancing radiosensitization of cancer cells by combining actively targeted gold nanoparticles and modulating the X-ray spectrum in the desired energy range. The established technique will not only help develop strategies to maximize

  14. Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall

    PubMed Central

    2012-01-01

    Background The cancer stem cell (CSC) hypothesis posits that deregulated neural stem cells (NSCs) form the basis of brain tumors such as glioblastoma multiforme (GBM). GBM, however, usually forms in the cerebral white matter while normal NSCs reside in subventricular and hippocampal regions. We attempted to characterize CSCs from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Methods We described isolating CSCs from a GBM involving the lateral ventricles and characterized these cells with in vitro molecular biomarker profiling, cellular behavior, ex vivo and in vivo techniques. Results The patient’s MRI revealed a heterogeneous mass with associated edema, involving the left subventricular zone. Histological examination of the tumor established it as being a high-grade glial neoplasm, characterized by polygonal and fusiform cells with marked nuclear atypia, amphophilic cytoplasm, prominent nucleoli, frequent mitotic figures, irregular zones of necrosis and vascular hyperplasia. Recurrence of the tumor occurred shortly after the surgical resection. CD133-positive cells, isolated from the tumor, expressed stem cell markers including nestin, CD133, Ki67, Sox2, EFNB1, EFNB2, EFNB3, Cav-1, Musashi, Nucleostemin, Notch 2, Notch 4, and Pax6. Biomarkers expressed in differentiated cells included Cathepsin L, Cathepsin B, Mucin18, Mucin24, c-Myc, NSE, and TIMP1. Expression of unique cancer-related transcripts in these CD133-positive cells, such as caveolin-1 and −2, do not appear to have been previously reported in the literature. Ex vivo organotypic brain slice co-culture showed that the CD133+ cells behaved like tumor cells. The CD133-positive cells also induced tumor formation when they were stereotactically transplanted into the brains of the immune-deficient NOD/SCID mice. Conclusions This brain tumor involving the neurogenic lateral ventricular wall was comprised of tumor-forming, CD133-positive cancer stem cells, which are likely

  15. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    SciTech Connect

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  16. Radio-sensitization of human leukaemic MOLT-4 cells by DNA-dependent protein kinase inhibitor, NU7441.

    PubMed

    Tichy, Ales; Durisova, Kamila; Salovska, Barbora; Pejchal, Jaroslav; Zarybnicka, Lenka; Vavrova, Jirina; Dye, Natalie A; Sinkorova, Zuzana

    2014-03-01

    We studied the effect of pre-incubation with NU7441, a specific inhibitor of DNA-dependent protein kinase (DNA-PK), on molecular mechanisms triggered by ionizing radiation (IR). The experimental design involved four groups of human T-lymphocyte leukaemic MOLT-4 cells: control, NU7441-treated (1 μM), IR-treated (1 Gy), and combination of NU7441 and IR. We used flow cytometry for apoptosis assessment, Western blotting and ELISA for detection of proteins involved in DNA repair signalling and epifluorescence microscopy for detection of IR-induced phosphorylation of histone H2A.X. We did not observe any major changes in the amount of DNA-PK subunits Ku70/80 caused by the combination of NU7441 and radiation. Their combination led to an increased phosphorylation of H2A.X, a hallmark of DNA damage. However, it did not prevent up-regulation of neither p53 (and its phosphorylation at Ser 15 and 392) nor p21. We observed a decrease in the levels of anti-apoptotic Mcl-1, cdc25A phosphatase, cleavage of PARP and a significant increase in apoptosis in the group treated with combination. In conclusion, the combination of NU7441 with IR caused increased phosphorylation of H2A.X early after irradiation and subsequent induction of apoptosis. It was efficient in MOLT-4 cells in 10× lower concentration than the inhibitor NU7026. NU7441 proved as a potent radio-sensitizing agent, and it might provide a platform for development of new radio-sensitizers in radiotherapy.

  17. Type 1 collagen as a potential niche component for CD133-positive glioblastoma cells.

    PubMed

    Motegi, Hiroaki; Kamoshima, Yuuta; Terasaka, Shunsuke; Kobayashi, Hiroyuki; Houkin, Kiyohiro

    2014-08-01

    Cancer stem cells are thought to be closely related to tumor progression and recurrence, making them attractive therapeutic targets. Stem cells of various tissues exist within niches maintaining their stemness. Glioblastoma stem cells (GSCs) are located at tumor capillaries and the perivascular niche, which are considered to have an important role in maintaining GSCs. There were some extracellular matrices (ECM) on the perivascular connective tissue, including type 1 collagen. We here evaluated whether type 1 collagen has a potential niche for GSCs. Imunohistochemical staining of type 1 collagen and CD133, one of the GSCs markers, on glioblastoma (GBM) tissues showed CD133-positive cells were located in immediate proximity to type 1 collagen around tumor vessels. We cultured human GBM cell lines, U87MG and GBM cells obtained from fresh surgical tissues, T472 and T555, with serum-containing medium (SCM) or serum-free medium with some growth factors (SFM) and in non-coated (Non-coat) or type 1 collagen-coated plates (Col). The RNA expression levels of CD133 and Nestin as stem cell markers in each condition were examined. The Col condition not only with SFM but SCM made GBM cells more enhanced in RNA expression of CD133, compared to Non-coat/SCM. Semi-quantitative measurement of CD133-positive cells by immunocytochemistry showed a statistically significant increase of CD133-positive cells in Col/SFM. In addition, T472 cell line cultured in the Col/SFM had capabilities of sphere formation and tumorigenesis. Type 1 collagen was found in the perivascular area and showed a possibility to maintain GSCs. These findings suggest that type 1 collagen could be one important niche component for CD133-positive GSCs and maintain GSCs in adherent culture.

  18. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry.

    PubMed

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future.

  19. Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.

    PubMed

    Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J

    2015-04-01

    Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells.

  20. Induction of Nuclear Enlargement and Senescence by Sirtuin Inhibitors in Glioblastoma Cells.

    PubMed

    Yoon, Kyoung B; Park, Kyeong R; Kim, Soo Y; Han, Sun-Young

    2016-06-01

    Sirtuin family members with lysine deacetylase activity are known to play an important role in anti-aging and longevity. Cellular senescence is one of the hallmarks of aging, and downregulation of sirtuin is reported to induce premature senescence. In this study, we investigated the effects of small-molecule sirtuin inhibitors on cellular senescence. Various small molecules such as tenovin-1 and EX527 were employed for direct sirtuin activity inhibition. U251, SNB-75, and U87MG glioblastoma cells treated with sirtuin inhibitors exhibited phenotypes with nuclear enlargement. Furthermore, treatment of rat primary astrocytes with tenovin-1 also increased the size of the nucleus. The activity of senescence-associated β-galactosidase, a marker of cellular senescence, was induced by tenovin-1 and EX527 treatment in U87MG glioblastoma cells. Consistent with the senescent phenotype, treatment with tenovin-1 increased p53 expression in U87MG cells. This study demonstrated the senescence-inducing effect of sirtuin inhibitors, which are potentially useful tools for senescence research.

  1. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells

    PubMed Central

    Krusche, Benjamin; Ottone, Cristina; Clements, Melanie P; Johnstone, Ewan R; Goetsch, Katrin; Lieven, Huang; Mota, Silvia G; Singh, Poonam; Khadayate, Sanjay; Ashraf, Azhaar; Davies, Timothy; Pollard, Steven M; De Paola, Vincenzo; Roncaroli, Federico; Martinez-Torrecuadrada, Jorge; Bertone, Paul; Parrinello, Simona

    2016-01-01

    Glioblastomas (GBM) are aggressive and therapy-resistant brain tumours, which contain a subpopulation of tumour-propagating glioblastoma stem-like cells (GSC) thought to drive progression and recurrence. Diffuse invasion of the brain parenchyma, including along preexisting blood vessels, is a leading cause of therapeutic resistance, but the mechanisms remain unclear. Here, we show that ephrin-B2 mediates GSC perivascular invasion. Intravital imaging, coupled with mechanistic studies in murine GBM models and patient-derived GSC, revealed that endothelial ephrin-B2 compartmentalises non-tumourigenic cells. In contrast, upregulation of the same ephrin-B2 ligand in GSC enabled perivascular migration through homotypic forward signalling. Surprisingly, ephrin-B2 reverse signalling also promoted tumourigenesis cell-autonomously, by mediating anchorage-independent cytokinesis via RhoA. In human GSC-derived orthotopic xenografts, EFNB2 knock-down blocked tumour initiation and treatment of established tumours with ephrin-B2-blocking antibodies suppressed progression. Thus, our results indicate that targeting ephrin-B2 may be an effective strategy for the simultaneous inhibition of invasion and proliferation in GBM. DOI: http://dx.doi.org/10.7554/eLife.14845.001 PMID:27350048

  2. Karenitecin (bnp1350) and flavopridol as radiosensitizers in malignant glioma

    PubMed Central

    Rajesh, Deepika; Robins, H. Ian; Howard, Steven P.

    2016-01-01

    The poor prognosis of malignant glioma patients highlights the need to develop low toxicity, tumor specific agents with the ability to synergize with proven efficacious treatment modalities, e.g., ionizing irradiation. This paper investigates the potential of BNP1350 (karenitecin), a topoisomerase I-targeting anticancer agent, and flavopridol a cyclin-dependent kinase inhibitor as radiosensitizers at clinically relevant doses in glioblastoma cell lines. A clonogenic survival and apoptosis assays were performed to test the effect of karenitecin (0.1 nM to 10 nM), flavopridol, (50 nM to 500 nM), radiation (1 Gy to 5.5 Gy) and a combination of radiation and karenitecin or radiation and flavopridol on the glioma cell lines T986 and M059K. Cells were stained for cyclins B and D using antibodies followed by flow cytometry. Propidium Iodide staining was used to reveal the various phases of the cell cycle; cyclin staining in the G0/G1 and G2/M phase of the cell cycle was estimated as the Mean Fluorescence Intensity (MFI) after subtracting the MFI recorded by the isotype controls. Results demonstrated that in irradiated cells, pretreatment with karenitecin induced apoptosis, a transient arrest in the G2/M phase of the cell cycle and increased the expression of cyclin B1. Flavopridol treatment also induced apoptosis and a transient block in the G2/M phase of the cell cycle. The combined effects of karenitecin and flavopridol displayed synergistic effects. The unique radiosensitizing activity of orally administrable karenitecin and flavopridol is consistent with continued investigation of these compounds preclinically, as well as in the clinical setting. PMID:28111642

  3. Rad51C deficiency destabilizes XRCC3, impairs recombination and radiosensitizes S/G2-phase cells

    SciTech Connect

    Lio, Yi-Ching; Schild, David; Brenneman, Mark A.; Redpath, J. Leslie; Chen, David J.

    2004-05-01

    The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, XRCC3) are expressed in mitotically growing cells, and are thought to play mediating roles in homologous recombination, though their precise functions remain unclear. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA cross-linking agent mitomycin C, and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G{sub 2}/M phases of the cell cycle but not in G{sub 1} phase. Together, these results provide direct cellular evidence for the importance of human Rad51C in homologous recombinational repair.

  4. Isolation of cancer stem cells from three human glioblastoma cell lines: characterization of two selected clones.

    PubMed

    Iacopino, Fortunata; Angelucci, Cristiana; Piacentini, Roberto; Biamonte, Filippo; Mangiola, Annunziato; Maira, Giulio; Grassi, Claudio; Sica, Gigliola

    2014-01-01

    Cancer stem cells (CSC) were isolated via a non-adherent neurosphere assay from three glioma cell lines: LI, U87, and U373. Using a clonal assay, two clones (D2 and F11) were selected from spheres derived from LI cells and were characterized for the: expression of stem cell markers (CD133, Nestin, Musashi-1 and Sox2); proliferation; differentiation capability (determined by the expression of GalC, βIII-Tubulin and GFAP); Ca(2+) signaling and tumorigenicity in nude mice. Both D2 and F11 clones expressed higher levels of all stem cell markers with respect to the parental cell line. Clones grew more slowly than LI cells with a two-fold increase in duplication time. Markers of differentiation (βIII-Tubulin and GFAP) were expressed at high levels in both LI cells and in neurospheres. The expression of Nestin, Sox2, and βIII-Tubulin was down-regulated in D2 and F11 when cultured in serum-containing medium, whereas Musashi-1 was increased. In this condition, duplication time of D2 and F11 increased without reaching that of LI cells. D2, F11 and parental cells did not express voltage-dependent Ca(2+)-channels but they exhibited increased intracellular Ca(2+) levels in response to ATP. These Ca(2+) signals were larger in LI cells and in spheres cultured in serum-containing medium, while they were smaller in serum-free medium. The ATP treatment did not affect cell proliferation. Both D2 and F11 induced the appearance of tumors when ortotopically injected in athymic nude mice at a density 50-fold lower than that of LI cells. All these data indicate that both clones have characteristics of CSC and share the same stemness properties. The findings regarding the expression of differentiation markers and Ca(2+)-channels show that both clones are unable to reach the terminal differentiation. Both D2 and F11 might represent a good model to improve the knowledge on CSC in glioblastoma and to identify new therapeutic approaches.

  5. Cordyceps militaris and mycelial fermentation induced apoptosis and autophagy of human glioblastoma cells

    PubMed Central

    Yang, C-H; Kao, Y-H; Huang, K-S; Wang, C-Y; Lin, L-W

    2012-01-01

    This study is the first report that investigated the apoptosis-inducing effects of Cordyceps militaris (CM) and its mycelial fermentation in human glioblastoma cells. Both fractions arrested the GBM8401 cells in the G0/G1 phase, whereas the U-87MG cells were arrested at the G2/M transitional stage. Western blot data suggested that upregulation of p53 and p21 might be involved in the disruption of cell cycle progression. Induction of chromosomal condensation and the appearance of a sub-G1 hypodipoid population further supported the proapoptogenicity, possibly through the activation of caspase-3 and caspase-8, and the downregulation of antiapoptotic Bcl-2 and the upregulation of proapoptotic Bax protein expression. Downregulation of mammalian target of rapamycin and upregulation of Atg5 and LC3 II levels in GBM8401 cells implicated the involvement of autophagy. The signaling profiles with mycelial fermentation treatment indicated that mycelial fermentation triggered rapid phosphorylation of Akt, p38 MAPK, and JNK, but suppressed constitutively high levels of ERK1/2 in GBM8401 cells. Mycelial fermentation treatment only significantly increased p38 MAPK phosphorylation, but decreased constitutively high levels of Akt, ERK1/2, and JNK phosphorylation in U-87MG cells. Pretreatment with PI3K inhibitor wortmannin and MEK1 inhibitor PD98059 prevented the mycelial fermentation-induced cytotoxicity in GBM8401 and U-87MG cells, suggesting the involvement of PI3K/Akt and MEK1 pathways in mycelial fermentation-driven glioblastoma cell apoptosis and autophagy. PMID:23190603

  6. Modeling the Treatment of Glioblastoma Multiforme and Cancer Stem Cells with Ordinary Differential Equations

    PubMed Central

    Abernathy, Kristen; Burke, Jeremy

    2016-01-01

    Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels. PMID:27022405

  7. [Investigation of detoxification polymorphisms genes, methylenetetrahydrofolate-reductase (MTHFR) and P53 in the radiosensitive human cells].

    PubMed

    Shagirova, Zh M; Ushenkova, L N; Mikhaĭlov, V F; Kurbatova, L A; Kuz'mina, N S; Semiachkina, A N; Vasil'eva, I M; Mazurik, V K; Zasukhina, G D

    2010-01-01

    The genes of detoxication, MTHFR and p53 were studied in Down' and Ehlers-Danlos syndrome cells. The frequency GSTM1(0/0) genotype in Down syndrome patients was in 1.5 times higher than in control cells (p < 0.069). Opposite the frequency GSTM1(0/0) genotype in Ehlers-Danlos syndrome was 23.3% 2 times lower than in control cells (p < 0.034). This indication was in 2 times lower in women cells than in men cells and in 3 times lower than in control cells (p < 0.026). The mutations of p53 gene (7th exon) were detected in 4 from 11 Down patients (36.7%; in 2 cases af women and men), in Ehlers-Danlos patients--in 5 cases and only in men (29.4% among all the observed patients). The observations 24 healthy donors weren't revealed any mutations (p < 0.013-0.001). The hypothesis about the connection between gene polymorphisms which take a part in genome stability and radiosensitivity in Down and Ehlers-Danlos patients was developed.

  8. Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance

    PubMed Central

    Fidoamore, Alessia; Cristiano, Loredana; Antonosante, Andrea; d'Angelo, Michele; Di Giacomo, Erica; Astarita, Carlo; Giordano, Antonio; Ippoliti, Rodolfo; Benedetti, Elisabetta; Cimini, Annamaria

    2016-01-01

    Among all solid tumors, the high-grade glioma appears to be the most vascularized one. In fact, “microvascular hyperplasia” is a hallmark of GBM. An altered vascular network determines irregular blood flow, so that tumor cells spread rapidly beyond the diffusion distance of oxygen in the tissue, with the consequent formation of hypoxic or anoxic areas, where the bulk of glioblastoma stem cells (GSCs) reside. The response to this event is the induction of angiogenesis, a process mediated by hypoxia inducible factors. However, this new capillary network is not efficient in maintaining a proper oxygen supply to the tumor mass, thereby causing an oxygen gradient within the neoplastic zone. This microenvironment helps GSCs to remain in a “quiescent” state preserving their potential to proliferate and differentiate, thus protecting them by the effects of chemo- and radiotherapy. Recent evidences suggest that responses of glioblastoma to standard therapies are determined by the microenvironment of the niche, where the GSCs reside, allowing a variety of mechanisms that contribute to the chemo- and radioresistance, by preserving GSCs. It is, therefore, crucial to investigate the components/factors of the niche in order to formulate new adjuvant therapies rendering more efficiently the gold standard therapies for this neoplasm. PMID:26880981

  9. Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2-NOTCH1 Signaling Axis

    PubMed Central

    Zheng, Xiangrong; Pang, Bo; Gu, Guangyan; Gao, Taihong; Zhang, Rui; Pang, Qi; Liu, Qian

    2017-01-01

    Glioblastoma stem-like cells (GSCs) play essential roles in glioma growth, radio- and chemo-resistance, and recurrence. Elimination of GSCs has therefore become a key strategy and challenge in glioblastoma therapy. Here, we show that melatonin, an indolamine derived from I-tryptophan, significantly inhibited viability and self-renewal ability of GSCs accompanied by a decrease of stem cell markers. We have identified EZH2-NOTCH1 signaling as the key signal pathway that regulated the effects of melatonin in the GSCs. Instead of transcriptionally silencing gene expression by generating a methylated epigenetic mark at histone 3 at lysine 27 (H3K27), EZH2 regulates NOTCH1 expression by directly binding to the NOTCH1 promoter. Moreover, correlation between the expressions of EZH2 and NOTCH intracellular domain 1 (NICD1) was observed in the clinical tumor samples, evidently supporting the existence of EZH2-NOTCH1 interaction in the gliomas and GSCs. Collectively, we demonstrated that melatonin, a potential tumor inhibitor, performs its function partly by suppressing GSC properties through EZH2-NOTCH1 signaling axis. PMID:28255276

  10. m(6)A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells.

    PubMed

    Cui, Qi; Shi, Hailing; Ye, Peng; Li, Li; Qu, Qiuhao; Sun, Guoqiang; Sun, Guihua; Lu, Zhike; Huang, Yue; Yang, Cai-Guang; Riggs, Arthur D; He, Chuan; Shi, Yanhong

    2017-03-14

    RNA modifications play critical roles in important biological processes. However, the functions of N(6)-methyladenosine (m(6)A) mRNA modification in cancer biology and cancer stem cells remain largely unknown. Here, we show that m(6)A mRNA modification is critical for glioblastoma stem cell (GSC) self-renewal and tumorigenesis. Knockdown of METTL3 or METTL14, key components of the RNA methyltransferase complex, dramatically promotes human GSC growth, self-renewal, and tumorigenesis. In contrast, overexpression of METTL3 or inhibition of the RNA demethylase FTO suppresses GSC growth and self-renewal. Moreover, inhibition of FTO suppresses tumor progression and prolongs lifespan of GSC-grafted mice substantially. m(6)A sequencing reveals that knockdown of METTL3 or METTL14 induced changes in mRNA m(6)A enrichment and altered mRNA expression of genes (e.g., ADAM19) with critical biological functions in GSCs. In summary, this study identifies the m(6)A mRNA methylation machinery as promising therapeutic targets for glioblastoma.

  11. Chromosomes, cancer and radiosensitivity

    SciTech Connect

    Samouhos, E.

    1983-08-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available.

  12. On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines. Implications for chemotactic monocyte recruitment.

    PubMed

    Eibinger, Gerald; Fauler, Günter; Bernhart, Eva; Frank, Sasa; Hammer, Astrid; Wintersperger, Andrea; Eder, Hans; Heinemann, Akos; Mischel, Paul S; Malle, Ernst; Sattler, Wolfgang

    2013-07-15

    Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor and is invariably fatal to affected patients. Oxysterols belong to a class of bioactive lipids that are implicated in neurological disease and are associated with various types of cancer. Here, we investigated expression and transcriptional regulation of cholesterol 25-hydroxylase (CH25H) in human U87MG and GM133 glioblastoma cell lines. We demonstrate that in both cell lines transcription and translation of CH25H are increased in response to TNFα and IL1β. In parallel, both cell lines upregulate 25-hydroxycholesterol (25-OHC) synthesis and secretion to levels comparable to bone marrow-derived mouse macrophages under inflammatory conditions. To determine whether 25-OHC acts as chemoattractant for tumor-associated macrophages, the human THP-1 monoblastic leukemia cell line was treated with varying amounts of the oxysterol. Experiments revealed that 25-OHC and lipid extracts isolated from GM133-conditioned medium (containing 7-fold higher 25-OHC concentrations than U87MG medium) induce chemotactic migration of THP-1 cells. Of note, 25-OHC also induced the migration of primary human peripheral blood monocytes. In response to exogenously added 25-OHC, THP-1 cells reorganized intermediate filament-associated vimentin to more cortical and polarized structures. Chemotactic migration of monocytes in response to 25-OHC was pertussis toxin-sensitive, indicating the involvement of G protein-coupled receptors. Using RNA interference we demonstrated that G protein-coupled receptor 183 (EBI2) contributes to 25-OHC-mediated chemotactic migration of THP-1 cells. These in vitro data indicate that GBM-derived and secreted 25-OHC may be involved in the recruitment of immune-competent cells to a tumor via EBI2.

  13. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    PubMed

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo.

  14. Propolis changes the anticancer activity of temozolomide in U87MG human glioblastoma cell line

    PubMed Central

    2013-01-01

    Background Propolis is a honey bee product which contains many active compounds, such as CAPE or chrysin, and has many beneficial activities. Recently, its anti-tumor properties have been discussed. We have tested whether the ethanolic extract of propolis (EEP) interferes with temozolomide (TMZ) to inhibit U87MG cell line growth. Methods The U87MG glioblastoma cell line was exposed to TMZ (10-100 μM), EEP (10-100 μg/ml) or a mixture of TMZ and EEP during 24, 48 or 72 hours. The cell division was examined by the H3-thymidine incorporation, while the western blot method was used for detection of p65 subunit of NF-κB and ELISA test to measure the concentration of its p50 subunit in the nucleus. Results We have found that both, TMZ and EEP administrated alone, had a dose- and time-dependent inhibitory effect on the U87MG cell line growth, which was manifested by gradual reduction of cell viability and alterations in proliferation rate. The anti-tumor effect of TMZ (20 μM) was enhanced by EEP, which was especially well observed after a short time of exposition, where simultaneous usage of TMZ and EEP resulted in a higher degree of growth inhibition than each biological factor used separately. In addition, cells treated with TMZ presented no changes in NF-κB activity in prolonged time of treatment and EEP only slightly reduced the nuclear translocation of this transcription factor. In turn, the combined incubation with TMZ and EEP led to an approximately double reduction of NF-κB nuclear localization. Conclusions We conclude that EEP presents cytotoxic properties and may cooperate with TMZ synergistically enhancing its growth inhibiting activity against glioblastoma U87MG cell line. This phenomenon may be at least partially mediated by a reduced activity of NF-κB. PMID:23445763

  15. Stopping cancer in its tracks: using small molecular inhibitors to target glioblastoma migrating cells.

    PubMed

    Mattox, Austin K; Li, Jing; Adamson, David C

    2012-12-01

    Glioblastoma multiforme (GBM) represents one of the most common aggressive types of primary brain tumors. Despite advances in surgical resection, novel neuroimaging procedures, and the most recent adjuvant radiotherapy and chemotherapy, the median survival after diagnosis is about 12-14 months. Targeting migrating GBM cells is a key research strategy in the fight against this devastating cancer. Though the vast majority of the primary tumor focus can be surgically resected, these migrating cells are responsible for its universal recurrence. Numerous strategies and technologies are being explored to target migrating glioma cells, with small molecular inhibitors as one of the most commonly studied. Small molecule inhibitors, such as protein kinase inhibitors, phosphorylation site inhibitors, protease inhibitors, and antisense oligonucleotides show promise in slowing the progression of this disease. A better understanding of these small molecule inhibitors and how they target various extra- and intracellular signaling pathways may eventually lead to a cure for GBM.

  16. Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy.

    PubMed

    Lamb, Rebecca; Fiorillo, Marco; Chadwick, Amy; Ozsvari, Bela; Reeves, Kimberly J; Smith, Duncan L; Clarke, Robert B; Howell, Sacha J; Cappello, Anna Rita; Martinez-Outschoorn, Ubaldo E; Peiris-Pagès, Maria; Sotgia, Federica; Lisanti, Michael P

    2015-06-10

    DNA-PK is an enzyme that is required for proper DNA-repair and is thought to confer radio-resistance in cancer cells. As a consequence, it is a high-profile validated target for new pharmaceutical development. However, no FDA-approved DNA-PK inhibitors have emerged, despite many years of drug discovery and lead optimization. This is largely because existing DNA-PK inhibitors suffer from poor pharmacokinetics. They are not well absorbed and/or are unstable, with a short plasma half-life. Here, we identified the first FDA-approved DNA-PK inhibitor by "chemical proteomics". In an effort to understand how doxycycline targets cancer stem-like cells (CSCs), we serendipitously discovered that doxycycline reduces DNA-PK protein expression by nearly 15-fold (> 90%). In accordance with these observations, we show that doxycycline functionally radio-sensitizes breast CSCs, by up to 4.5-fold. Moreover, we demonstrate that DNA-PK is highly over-expressed in both MCF7- and T47D-derived mammospheres. Interestingly, genetic or pharmacological inhibition of DNA-PK in MCF7 cells is sufficient to functionally block mammosphere formation. Thus, it appears that active DNA-repair is required for the clonal expansion of CSCs. Mechanistically, doxycycline treatment dramatically reduced the oxidative mitochondrial capacity and the glycolytic activity of cancer cells, consistent with previous studies linking DNA-PK expression to the proper maintenance of mitochondrial DNA integrity and copy number. Using a luciferase-based assay, we observed that doxycycline treatment quantitatively reduces the anti-oxidant response (NRF1/2) and effectively blocks signaling along multiple independent pathways normally associated with stem cells, including STAT1/3, Sonic Hedgehog (Shh), Notch, WNT and TGF-beta signaling. In conclusion, we propose that the efficacy of doxycycline as a DNA-PK inhibitor should be tested in Phase-II clinical trials, in combination with radio-therapy. Doxycycline has excellent

  17. Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy

    PubMed Central

    Lamb, Rebecca; Fiorillo, Marco; Chadwick, Amy; Ozsvari, Bela; Reeves, Kimberly J.; Smith, Duncan L.; Clarke, Robert B.; Howell, Sacha J.; Cappello, Anna Rita; Martinez-Outschoorn, Ubaldo E.; Peiris-Pagès, Maria; Sotgia, Federica; Lisanti, Michael P.

    2015-01-01

    DNA-PK is an enzyme that is required for proper DNA-repair and is thought to confer radio-resistance in cancer cells. As a consequence, it is a high-profile validated target for new pharmaceutical development. However, no FDA-approved DNA-PK inhibitors have emerged, despite many years of drug discovery and lead optimization. This is largely because existing DNA-PK inhibitors suffer from poor pharmacokinetics. They are not well absorbed and/or are unstable, with a short plasma half-life. Here, we identified the first FDA-approved DNA-PK inhibitor by “chemical proteomics”. In an effort to understand how doxycycline targets cancer stem-like cells (CSCs), we serendipitously discovered that doxycycline reduces DNA-PK protein expression by nearly 15-fold (> 90%). In accordance with these observations, we show that doxycycline functionally radio-sensitizes breast CSCs, by up to 4.5-fold. Moreover, we demonstrate that DNA-PK is highly over-expressed in both MCF7- and T47D-derived mammospheres. Interestingly, genetic or pharmacological inhibition of DNA-PK in MCF7 cells is sufficient to functionally block mammosphere formation. Thus, it appears that active DNA-repair is required for the clonal expansion of CSCs. Mechanistically, doxycycline treatment dramatically reduced the oxidative mitochondrial capacity and the glycolytic activity of cancer cells, consistent with previous studies linking DNA-PK expression to the proper maintenance of mitochondrial DNA integrity and copy number. Using a luciferase-based assay, we observed that doxycycline treatment quantitatively reduces the anti-oxidant response (NRF1/2) and effectively blocks signaling along multiple independent pathways normally associated with stem cells, including STAT1/3, Sonic Hedgehog (Shh), Notch, WNT and TGF-beta signaling. In conclusion, we propose that the efficacy of doxycycline as a DNA-PK inhibitor should be tested in Phase-II clinical trials, in combination with radio-therapy. Doxycycline has

  18. Extracellular Matrix Properties Regulate the Migratory Response of Glioblastoma Stem Cells in Three-Dimensional Culture

    PubMed Central

    Herrera-Perez, Marisol; Voytik-Harbin, Sherry L.

    2015-01-01

    Diffuse infiltration across brain tissue is a hallmark of glioblastoma and the main cause of unsuccessful total resection that leads to tumor reappearance. A subpopulation termed glioblastoma stem cells (GSCs) has been directly related to aggressive invasion; nonetheless, their migratory characteristics and regulation by the microenvironment are still unknown. In this study, we developed a composite matrix of hyaluronan (HA) structurally supported by a collagen-oligomer fibril network to simulate the brain tumor extracellular matrix (ECM) composition. Matrigel-coated microfibers were embedded within the matrix to create a tunable dual niche microenvironment that resembles the vascular network of the brain. This model was compared with the most commonly used in vitro three-dimensional (3D) culture formats, Matrigel and collagen type-I monomer matrices, to study how the mechanical and compositional properties of the ECM alter the migration characteristics of GSC neurospheres. The migration mode, distance, velocity, and morphology of the GSCs were monitored over a 72-h period. The cells altered their migration mode depending on the matrix composition, showing migration by expansive growth in Matrigel matrices, multicellular extension along rigid interfaces (as Matrigel glass and coated microfibers), and mesenchymal single-cell migration in collagen matrices. Velocity and distance of migration within each composition varied according to matrix mechanical properties. In the dual niche system, the presence of HA reduced velocity and number of migratory cells; however, cells that came in contact with the pseudovessels exhibited collective migration by an extensive strand and reached higher velocities than cells migrating individually across the 3D matrix. Our results show that GSCs adopt varied migration mechanisms to invade multiple ECM microenvironments, and the migration characteristics exhibited are highly influenced by the matrix physical properties. Moreover, GSC

  19. Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro.

    PubMed

    Birnbaum, Tobias; Hildebrandt, Jenna; Nuebling, Georg; Sostak, Petra; Straube, Andreas

    2011-10-01

    Tumor angiogenesis is of central importance in the malignancy of glioblastoma multiforme (GBM). As previously shown, human mesenchymal stem cells (hMSC) migrate towards GBM and are incorporated into tumor microvessels. However, phenotype and function of recruited hMSC remain unclear. We evaluated the differentiation and angiogenic potential of hMSC after stimulation with glioblastoma-conditioned medium in vitro. Immunostaining with endothelial, smooth muscle cell and pericyte markers was used to analyze hMSC differentiation in different concentrations of tumor-conditioned medium (CM), and the angiogenic potential was evaluated by matrigel-based tube-formation assay (TFA). Immunofluorescence staining revealed that tumor-conditioned hMSC (CM-hMSC) expressed CD 151, VE-cadherin, desmin, α-smooth muscle actin, nestin, and nerval/glial antigen 2 (NG2) in a CM concentration-dependent manner, whereas no expression of von-Willebrand factor (vWF) and smooth myosin could be detected. These findings are indicative of GBM-dependent differentiation of hMSC into pericyte-like cells, rather than endothelial or smooth muscle cells. Furthermore, TFA of hMSC and CM-hMSC revealed CM-dependent formation of capillary-like networks, which differed substantially from those formed by human endothelial cells (HUVEC), also implying pericyte-like tube formation. These results are indicative of GBM-derived differentiation of hMSC into pericyte-like mural cells, which might contribute to the neovascularization and stabilization of tumor vessels.

  20. Reciprocal regulation of the cholinic phenotype and epithelial-mesenchymal transition in glioblastoma cells

    PubMed Central

    Koch, Katharina; Hartmann, Rudolf; Schröter, Friederike; Suwala, Abigail Kora; Maciaczyk, Donata; Krüger, Andrea Caroline; Willbold, Dieter; Kahlert, Ulf Dietrich; Maciaczyk, Jaroslaw

    2016-01-01

    Glioblastoma (GBM) is the most malignant brain tumor with very limited therapeutic options. Standard multimodal treatments, including surgical resection and combined radio-chemotherapy do not target the most aggressive subtype of glioma cells, brain tumor stem cells (BTSCs). BTSCs are thought to be responsible for tumor initiation, progression, and relapse. Furthermore, they have been associated with the expression of mesenchymal features as a result of epithelial-mesenchymal transition (EMT) thereby inducing tumor dissemination and chemo resistance. Using high resolution proton nuclear magnetic resonance spectroscopy (1H NMR) on GBM cell cultures we provide evidence that the expression of well-known EMT activators of the ZEB, TWIST and SNAI families and EMT target genes N-cadherin and VIMENTIN is associated with aberrant choline metabolism. The cholinic phenotype is characterized by high intracellular levels of phosphocholine and total choline derivatives and was associated with malignancy in various cancers. Both genetic and pharmacological inhibition of the cardinal choline metabolism regulator choline kinase alpha (CHKα) significantly reduces the cell viability, invasiveness, clonogenicity, and expression of EMT associated genes in GBM cells. Moreover, in some cell lines synergetic cytotoxic effects were observed when combining the standard of care chemotherapeutic temozolomide with the CHKα inhibitor V-11-0711. Taken together, specific inhibition of the enzymatic activity of CHKα is a powerful strategy to suppress EMT which opens the possibility to target chemo-resistant BTSCs through impairing their mesenchymal transdifferentiation. Moreover, the newly identified EMT-oncometabolic network may be helpful to monitor the invasive properties of glioblastomas and the success of anti-EMT therapy. PMID:27705917

  1. Novel PI3K and mTOR Inhibitor NVP-BEZ235 Radiosensitizes Breast Cancer Cell Lines under Normoxic and Hypoxic Conditions

    PubMed Central

    Kuger, Sebastian; Cörek, Emre; Polat, Bülent; Kämmerer, Ulrike; Flentje, Michael; Djuzenova, Cholpon S.

    2014-01-01

    In the present study, we assessed, if the novel dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor NVP-BEZ235 radiosensitizes triple negative (TN) MDA-MB-231 and estrogen receptor (ER) positive MCF-7 cells to ionizing radiation under various oxygen conditions, simulating different microenvironments as occurring in the majority of breast cancers (BCs). Irradiation (IR) of BC cells cultivated in hypoxic conditions revealed increased radioresistance compared to normoxic controls. Treatment with NVP-BEZ235 completely circumvented this hypoxia-induced effects and radiosensitized normoxic, reoxygenated, and hypoxic cells to similar extents. Furthermore, NVP-BEZ235 treatment suppressed HIF-1α expression and PI3K/mTOR signaling, induced autophagy, and caused protracted DNA damage repair in both cell lines in all tested oxygen conditions. Moreover, after incubation with NVP-BEZ235, MCF-7 cells revealed depletion of phospho-AKT and considerable signs of apoptosis, which were significantly enhanced by radiation. Our findings clearly demonstrate that NVP-BEZ235 has a clinical relevant potential as a radiosensitizer in BC treatment. PMID:24678241

  2. Alterations in cellular metabolome after pharmacological inhibition of Notch in glioblastoma cells.

    PubMed

    Kahlert, Ulf D; Cheng, Menglin; Koch, Katharina; Marchionni, Luigi; Fan, Xing; Raabe, Eric H; Maciaczyk, Jarek; Glunde, Kristine; Eberhart, Charles G

    2016-03-01

    Notch signaling can promote tumorigenesis in the nervous system and plays important roles in stem-like cancer cells. However, little is known about how Notch inhibition might alter tumor metabolism, particularly in lesions arising in the brain. The gamma-secretase inhibitor MRK003 was used to treat glioblastoma neurospheres, and they were subdivided into sensitive and insensitive groups in terms of canonical Notch target response. Global metabolomes were then examined using proton magnetic resonance spectroscopy, and changes in intracellular concentration of various metabolites identified which correlate with Notch inhibition. Reductions in glutamate were verified by oxidation-based colorimetric assays. Interestingly, the alkylating chemotherapeutic agent temozolomide, the mTOR-inhibitor MLN0128, and the WNT inhibitor LGK974 did not reduce glutamate levels, suggesting that changes to this metabolite might reflect specific downstream effects of Notch blockade in gliomas rather than general sequelae of tumor growth inhibition. Global and targeted expression analyses revealed that multiple genes important in glutamate homeostasis, including glutaminase, are dysregulated after Notch inhibition. Treatment with an allosteric inhibitor of glutaminase, compound 968, could slow glioblastoma growth, and Notch inhibition may act at least in part by regulating glutaminase and glutamate.

  3. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    NASA Astrophysics Data System (ADS)

    Yasui, Linda; Gladden, Samantha; Andorf, Christine; Kroc, Thomas

    2011-06-01

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy γ rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy γ rays or 2 Gy fast neutrons. Very few γ irradiated cells had features of necrosis (U87 or U251 cell samples processed for TEM 1 day after 10 Gy γ irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to γ irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.

  4. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    SciTech Connect

    Yasui, Linda; Gladden, Samantha; Andorf, Christine; Kroc, Thomas

    2011-06-01

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy {gamma} rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy {gamma} rays or 2 Gy fast neutrons. Very few {gamma} irra