Science.gov

Sample records for radiosensitizes glioblastoma cells

  1. Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization.

    PubMed

    Rath, Barbara H; Wahba, Amy; Camphausen, Kevin; Tofilon, Philip J

    2015-11-01

    Toward developing a model system for investigating the role of the microenvironment in the radioresistance of glioblastoma (GBM), human glioblastoma stem-like cells (GSCs) were grown in coculture with human astrocytes. Using a trans-well assay, survival analyses showed that astrocytes significantly decreased the radiosensitivity of GSCs compared to standard culture conditions. In addition, when irradiated in coculture, the initial level of radiation-induced γH2AX foci in GSCs was reduced and foci dispersal was enhanced suggesting that the presence of astrocytes influenced the induction and repair of DNA double-strand breaks. These data indicate that astrocytes can decrease the radiosensitivity of GSCs in vitro via a paracrine-based mechanism and further support a role for the microenvironment as a determinant of GBM radioresponse. Chemokine profiling of coculture media identified a number of bioactive molecules not present under standard culture conditions. The gene expression profiles of GSCs grown in coculture were significantly different as compared to GSCs grown alone. These analyses were consistent with an astrocyte-mediated modification in GSC phenotype and, moreover, suggested a number of potential targets for GSC radiosensitization that were unique to coculture conditions. Along these lines, STAT3 was activated in GSCs grown with astrocytes; the JAK/STAT3 inhibitor WP1066 enhanced the radiosensitivity of GSCs under coculture conditions and when grown as orthotopic xenografts. Further, this coculture system may also provide an approach for identifying additional targets for GBM radiosensitization.

  2. Cytosine Deaminase/5-Fluorocytosine Exposure Induces Bystander and Radiosensitization Effects in Hypoxic Glioblastoma Cells in vitro

    SciTech Connect

    Chen, Jennifer K.; Hu, Lily J.; Wang Dongfang; Lamborn, Kathleen R.; Deen, Dennis F. . E-mail: dennisdeen@juno.com

    2007-04-01

    Purpose: Treatment of glioblastoma (GBM) is limited by therapeutic ratio; therefore, successful therapy must be specifically cytotoxic to cancer cells. Hypoxic cells are ubiquitous in GBM, and resistant to radiation and chemotherapy, and, thus, are logical targets for gene therapy. In this study, we investigated whether cytosine deaminase (CD)/5-fluorocytosine (5-FC) enzyme/prodrug treatment induced a bystander effect (BE) and/or radiosensitization in hypoxic GBM cells. Methods and Materials: We stably transfected cells with a gene construct consisting of the SV40 minimal promoter, nine copies of a hypoxia-responsive element, and the yeast CD gene. During hypoxia, a hypoxia-responsive element regulates expression of the CD gene and facilitates the conversion of 5-FC to 5-fluorouracil, a highly toxic antimetabolite. We used colony-forming efficiency (CFE) and immunofluorescence assays to assess for BE in co-cultures of CD-expressing clone cells and parent, pNeo- or green fluorescent protein-stably transfected GBM cells. We also investigated the radiosensitivity of CD clone cells treated with 5-FC under hypoxic conditions, and we used flow cytometry to investigate treatment-induced cell cycle changes. Results: Both a large BE and radiosensitization occurred in GBM cells under hypoxic conditions. The magnitude of the BE depended on the number of transfected cells producing CD, the functionality of the CD, the administered concentration of 5-FC, and the sensitivity of cell type to 5-fluorouracil. Conclusion: Hypoxia-inducible CD/5-FC therapy in combination with radiation therapy shows both a pronounced BE and a radiosensitizing effect under hypoxic conditions.

  3. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    SciTech Connect

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-11-15

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated {gamma}-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of {gamma}-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 {mu}mol/L (AMC-3046), 3 {mu}mol/L (VU-109), and 2.5 {mu}mol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to {gamma}-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gen000.

  4. Proton and photon beams interaction with radiosensitizing agents in human glioblastoma cells

    NASA Astrophysics Data System (ADS)

    Lafiandra, M.

    2016-03-01

    In oncological field, chemoradiotherapy treatments that combine radiations to radiosensitizing chemical agents are spreading out. The aim of this kind of treatment is to obtain a better tumor local control and at the same time to reduce the distant failure. The combination of radiation with microtubule-stabilizing agents is very promising in cancer therapy. In the present study, the combination of clinical proton beams and the microtubule-stabilizing agent Epothilone B has been investigated in human glioblastoma cells cultured in vitro. Photon beams have been used for comparison. Cell survival has been evaluated by colony forming assay and the interaction mechanism between radiation and Epothilone B has been investigated: survival curves relative to the combined treatment (protons or photons with Epothilone B) showed a linear trend, different from the linear quadratic behavior found with radiation alone. The analysis performed showed a synergism in the radiation-drug interaction. Thus, Epothilone B in conjunction with radiation acts as a radiosensitizer. Finally proton Relative Biological Effectiveness has been determined and results are reported in this paper.

  5. Deubiquitylating enzyme USP9x regulates radiosensitivity in glioblastoma cells by Mcl-1-dependent and -independent mechanisms

    PubMed Central

    Wolfsperger, F; Hogh-Binder, S A; Schittenhelm, J; Psaras, T; Ritter, V; Bornes, L; Huber, S M; Jendrossek, V; Rudner, J

    2016-01-01

    Glioblastoma is a very aggressive form of brain tumor with limited therapeutic options. Usually, glioblastoma is treated with ionizing radiation (IR) and chemotherapy after surgical removal. However, radiotherapy is frequently unsuccessful, among others owing to resistance mechanisms the tumor cells have developed. Antiapoptotic B-cell leukemia (Bcl)-2 family members can contribute to radioresistance by interfering with apoptosis induction in response to IR. Bcl-2 and the closely related Bcl-xL and Mcl-1 are often overexpressed in glioblastoma cells. In contrast to Bcl-2 and Bcl-xL, Mcl-1 is a short-lived protein whose stability is closely regulated by ubiquitylation-dependent proteasomal degradation. Although ubiquitin ligases facilitate degradation, the deubiquitylating enzyme ubiquitin-specific protease 9x (USP9x) interferes with degradation by removing polyubiquitin chains from Mcl-1, thereby stabilizing this protein. Thus, an inability to downregulate Mcl-1 by enhanced USP9x activity might contribute to radioresistance. Here we analyzed the impact of USP9x on Mcl-1 levels and radiosensitivity in glioblastoma cells. Correlating Mcl-1 and USP9x expressions were significantly higher in human glioblastoma than in astrocytoma. Downregulation of Mcl-1 correlated with apoptosis induction in established glioblastoma cell lines. Although Mcl-1 knockdown by siRNA increased apoptosis induction after irradiation in all glioblastoma cell lines, USP9x knockdown significantly improved radiation-induced apoptosis in one of four cell lines and slightly increased apoptosis in another cell line. In the latter two cell lines, USP9x knockdown also increased radiation-induced clonogenic death. The massive downregulation of Mcl-1 and apoptosis induction in A172 cells transfected with USP9x siRNA shows that the deubiquitinase regulates cell survival by regulating Mcl-1 levels. In contrast, USP9x regulated radiosensitivity in Ln229 cells without affecting Mcl-1 levels. We conclude

  6. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound

    PubMed Central

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-01-01

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications. PMID:26542881

  7. MiR-26a enhances the radiosensitivity of glioblastoma multiforme cells through targeting of ataxia–telangiectasia mutated

    SciTech Connect

    Guo, Pin; Lan, Jin; Ge, Jianwei; Nie, Quanmin; Guo, Liemei; Qiu, Yongming; Mao, Qing

    2014-01-15

    Glioblastoma multiforme (GBM) is notoriously resistant to radiation, and consequently, new radiosensitizers are urgently needed. MicroRNAs are a class of endogenous gene modulators with emerging roles in DNA repair. We found that overexpression of miR-26a can enhance radiosensitivity and reduce the DNA repair ability of U87 cells. However, knockdown miR-26a in U87 cells could act the converse manner. Mechanistically, this effect is mediated by direct targeting of miR-26a to the 3′UTR of ATM, which leads to reduced ATM levels and consequent inhibition of the homologous recombination repair pathway. These results suggest that miR-26a may act as a new radiosensitizer of GBM. - Highlights: ●miR-26a directly target ATM in GBM cells. ●miR-26a enhances the radiosensitivity of GBM cells. ●miR-26a could reduce the DNA repair capacity of GBM cells.

  8. Modulation of Sonic hedgehog signaling and WW domain containing oxidoreductase WOX1 expression enhances radiosensitivity of human glioblastoma cells

    PubMed Central

    Chiang, Ming-Fu; Chen, Hsin-Hong; Chi, Chih-Wen; Sze, Chun-I; Hsu, Ming-Ling; Shieh, Hui-Ru; Lin, Chin-Ping; Tsai, Jo-Ting

    2015-01-01

    WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further

  9. Modulation of Sonic hedgehog signaling and WW domain containing oxidoreductase WOX1 expression enhances radiosensitivity of human glioblastoma cells.

    PubMed

    Chiang, Ming-Fu; Chen, Hsin-Hong; Chi, Chih-Wen; Sze, Chun-I; Hsu, Ming-Ling; Shieh, Hui-Ru; Lin, Chin-Ping; Tsai, Jo-Ting; Chen, Yu-Jen

    2015-03-01

    WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further

  10. Radiosensitization of Glioblastoma Cell Lines by the Dual PI3K and mTOR Inhibitor NVP-BEZ235 Depends on Drug-Irradiation Schedule12

    PubMed Central

    Kuger, Sebastian; Graus, Dorothea; Brendtke, Rico; Günther, Nadine; Katzer, Astrid; Lutyj, Paul; Polat, Bülent; Chatterjee, Manik; Sukhorukov, Vladimir L; Flentje, Michael; Djuzenova, Cholpon S

    2013-01-01

    Previous studies have shown that the dual phosphatidylinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) inhibitor NVP-BEZ235 radiosensitizes tumor cells if added shortly before ionizing radiation (IR) and kept in culture medium thereafter. The present study explores the impact of inhibitor and IR schedule on the radiosensitizing ability of NVP-BEZ235 in four human glioblastoma cell lines. Two different drug-IR treatment schedules were compared. In schedule I, cells were treated with NVP-BEZ235 for 24 hours before IR and the drug was removed before IR. In schedule II, the cells were exposed to NVP-BEZ235 1 hour before, during, and up to 48 hours after IR. The cellular response was analyzed by colony counts, expression of marker proteins of the PI3K/AKT/mTOR pathway, cell cycle, and DNA damage. We found that under schedule I, NVP-BEZ235 did not radiosensitize cells, which were mostly arrested in G1 phase during IR exposure. In addition, the drug-pretreated and irradiated cells exhibited less DNA damage but increased expressions of phospho-AKT and phospho-mTOR, compared to controls. In contrast, NVP-BEZ235 strongly enhanced the radiosensitivity of cells treated according to schedule II. Possible reasons of radiosensitization by NVP-BEZ235 under schedule II might be the protracted DNA repair, prolonged G2/M arrest, and, to some extent, apoptosis. In addition, the PI3K pathway was downregulated by the NVP-BEZ235 at the time of irradiation under schedule II, as contrasted with its activation in schedule I. We found that, depending on the drug-IR schedule, the NVP-BEZ235 can act either as a strong radiosensitizer or as a cytostatic agent in glioblastoma cells. PMID:23544169

  11. The G-quadruplex-stabilising agent RHPS4 induces telomeric dysfunction and enhances radiosensitivity in glioblastoma cells.

    PubMed

    Berardinelli, F; Siteni, S; Tanzarella, C; Stevens, M F; Sgura, A; Antoccia, A

    2015-01-01

    G-quadruplex (G4) interacting agents are a class of ligands that can bind to and stabilise secondary structures located in genomic G-rich regions such as telomeres. Stabilisation of G4 leads to telomere architecture disruption with a consequent detrimental effect on cell proliferation, which makes these agents good candidates for chemotherapeutic purposes. RHPS4 is one of the most effective and well-studied G4 ligands with a very high specificity for telomeric G4. In this work, we tested the in vitro efficacy of RHPS4 in astrocytoma cell lines, and we evaluated whether RHPS4 can act as a radiosensitising agent by destabilising telomeres. In the first part of the study, the response to RHPS4 was investigated in four human astrocytoma cell lines (U251MG, U87MG, T67 and T70) and in two normal primary fibroblast strains (AG01522 and MRC5). Cell growth reduction, histone H2AX phosphorylation and telomere-induced dysfunctional foci (TIF) formation were markedly higher in astrocytoma cells than in normal fibroblasts, despite the absence of telomere shortening. In the second part of the study, the combined effect of submicromolar concentrations of RHPS4 and X-rays was assessed in the U251MG glioblastoma radioresistant cell line. Long-term growth curves, cell cycle analysis and cell survival experiments, clearly showed the synergistic effect of the combined treatment. Interestingly the effect was greater in cells bearing a higher number of dysfunctional telomeres. DNA double-strand breaks rejoining after irradiation revealed delayed repair kinetics in cells pre-treated with the drug and a synergistic increase in chromosome-type exchanges and telomeric fusions. These findings provide the first evidence that exposure to RHPS4 radiosensitizes astrocytoma cells, suggesting the potential for future therapeutic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Radiosensitization of glioblastoma cells using a histone deacetylase inhibitor (SAHA) comparing carbon ions with X-rays.

    PubMed

    Barazzuol, Lara; Jeynes, J Charles G; Merchant, Michael J; Wéra, Anne-Catherine; Barry, Miriam A; Kirkby, Karen J; Suzuki, Masao

    2015-01-01

    Prognosis for patients with glioblastoma (GBM) remains poor, and new treatments are needed. Here we used a combination of two novel treatment modalities: Carbon ions and a histone deacetylase inhibitor (HDACi). We compared these to conventional X-rays, measuring the increased effectiveness of carbon ions as well as radiosensitization using HDACi. Suberoylanilide hydroxamic acid (SAHA) was used at a non-toxic concentration of 0.5 μM in combination with 85 keV μm(-1) carbon ions, and 250 kVp X-rays for comparison. Effects were assayed using clonogenic survival, γH2AX foci repair kinetics and measuring chromatin decondensation. Dose toxicity curves showed that human GBM LN18 cells were more sensitive to SAHA compared to U251 cells at higher doses, but there was little effect at low doses. When combined with radiation, clonogenic assays showed that the Sensitizer Enhancement Ratio with carbon ions at 50% survival (SER(50)) was about 1.2 and 1.5 for LN18 and U251, respectively, but was similar for X-rays at about 1.3. The repair half-life of γH2AX foci was slower for cells treated with SAHA and was most noticeable in U251 cells treated with carbon ions where after 24 h, more than double the number of foci remained in comparison to the untreated cells. Hoechst fluorescent dye incorporation into the nucleus showed significant chromatin decondensation and density homogenization with SAHA treatment for both cell lines. Our results suggest a vital role of histone deacetylases (HDAC) in the modulation of DNA damage response and support the use of SAHA for the treatment of GBM through the combination with heavy ion therapy.

  13. Sustained radiosensitization of hypoxic glioma cells after oxygen pretreatment in an animal model of glioblastoma and in vitro models of tumor hypoxia.

    PubMed

    Clarke, Ryon H; Moosa, Shayan; Anzivino, Matthew; Wang, Yi; Floyd, Desiree Hunt; Purow, Benjamin W; Lee, Kevin S

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation

  14. The radiosensitivity index predicts for overall survival in glioblastoma

    PubMed Central

    Ahmed, Kamran A.; Chinnaiyan, Prakash; Fulp, William J.; Eschrich, Steven; Torres-Roca, Javier F.; Caudell, Jimmy J.

    2015-01-01

    We have previously developed a multigene expression model of tumor radiosensitivity (RSI) with clinical validation in multiple cohorts and disease sites. We hypothesized RSI would identify glioblastoma patients who would respond to radiation and predict treatment outcomes. Clinical and array based gene expression (Affymetrix HT Human Genome U133 Array Plate Set) level 2 data was downloaded from the cancer genome atlas (TCGA). A total of 270 patients were identified for the analysis: 214 who underwent radiotherapy and temozolomide and 56 who did not undergo radiotherapy. Median follow-up for the entire cohort was 9.1 months (range: 0.04–92.2 months). Patients who did not receive radiotherapy were more likely to be older (p < 0.001) and of poorer performance status (p < 0.001). On multivariate analysis, RSI is an independent predictor of OS (HR = 1.64, 95% CI 1.08–2.5; p = 0.02). Furthermore, on subset analysis, radiosensitive patients had significantly improved OS in the patients with high MGMT expression (unmethylated MGMT), 1 year OS 84.1% vs. 53.7% (p = 0.005). This observation held on MVA (HR = 1.94, 95% CI 1.19–3.31; p = 0.008), suggesting that RT has a larger therapeutic impact in these patients. In conclusion, RSI predicts for OS in glioblastoma. These data further confirm the value of RSI as a disease-site independent biomarker. PMID:26451615

  15. The radiosensitivity index predicts for overall survival in glioblastoma.

    PubMed

    Ahmed, Kamran A; Chinnaiyan, Prakash; Fulp, William J; Eschrich, Steven; Torres-Roca, Javier F; Caudell, Jimmy J

    2015-10-27

    We have previously developed a multigene expression model of tumor radiosensitivity (RSI) with clinical validation in multiple cohorts and disease sites. We hypothesized RSI would identify glioblastoma patients who would respond to radiation and predict treatment outcomes. Clinical and array based gene expression (Affymetrix HT Human Genome U133 Array Plate Set) level 2 data was downloaded from the cancer genome atlas (TCGA). A total of 270 patients were identified for the analysis: 214 who underwent radiotherapy and temozolomide and 56 who did not undergo radiotherapy. Median follow-up for the entire cohort was 9.1 months (range: 0.04-92.2 months). Patients who did not receive radiotherapy were more likely to be older (p < 0.001) and of poorer performance status (p < 0.001). On multivariate analysis, RSI is an independent predictor of OS (HR = 1.64, 95% CI 1.08-2.5; p = 0.02). Furthermore, on subset analysis, radiosensitive patients had significantly improved OS in the patients with high MGMT expression (unmethylated MGMT), 1 year OS 84.1% vs. 53.7% (p = 0.005). This observation held on MVA (HR = 1.94, 95% CI 1.19-3.31; p = 0.008), suggesting that RT has a larger therapeutic impact in these patients. In conclusion, RSI predicts for OS in glioblastoma. These data further confirm the value of RSI as a disease-site independent biomarker.

  16. STAT3 Serine 727 Phosphorylation: A Relevant Target to Radiosensitize Human Glioblastoma.

    PubMed

    Ouédraogo, Zangbéwendé Guy; Müller-Barthélémy, Mélanie; Kemeny, Jean-Louis; Dedieu, Véronique; Biau, Julian; Khalil, Toufic; Raoelfils, Lala Ines; Granzotto, Adeline; Pereira, Bruno; Beaudoin, Claude; Guissou, Innocent Pierre; Berger, Marc; Morel, Laurent; Chautard, Emmanuel; Verrelle, Pierre

    2016-01-01

    Radiotherapy is an essential component of glioma standard treatment. Glioblastomas (GBM), however, display an important radioresistance leading to tumor recurrence. To improve patient prognosis, there is a need to radiosensitize GBM cells and to circumvent the mechanisms of resistance caused by interactions between tumor cells and their microenvironment. STAT3 has been identified as a therapeutic target in glioma because of its involvement in mechanisms sustaining tumor escape to both standard treatment and immune control. Here, we studied the role of STAT3 activation on tyrosine 705 (Y705) and serine 727 (S727) in glioma radioresistance. This study explored STAT3 phosphorylation on Y705 (pSTAT3-Y705) and S727 (pSTAT3-S727) in glioma cell lines and in clinical samples. Radiosensitizing effect of STAT3 activation down-modulation by Gö6976 was explored. In a panel of 15 human glioma cell lines, we found that the level of pSTAT3-S727 was correlated to intrinsic radioresistance. Moreover, treating GBM cells with Gö6976 resulted in a highly significant radiosensitization associated to a concomitant pSTAT3-S727 down-modulation only in GBM cell lines that exhibited no or weak pSTAT3-Y705. We report the constitutive activation of STAT3-S727 in all GBM clinical samples. Targeting pSTAT3-S727 mainly in pSTAT3-Y705-negative GBM could be a relevant approach to improve radiation therapy. © 2015 International Society of Neuropathology.

  17. Glyoxylic compounds as radiosensitizers of hypoxic cells

    SciTech Connect

    Cornago, M.P.; Lopez Zumel, M.C.; Alvarez, M.V.; Izquierdo, M.C. )

    1990-06-01

    The radiosensitizing effect of five glyoxal derivatives on the survival of TC-SV40 cells has been measured, under aerobic and hypoxic conditions. A toxicity study was previously performed in order to use nontoxic concentrations. The OER for the TC-SV40 cells was 2.74. None of the glyoxylic compounds showed radiosensitizing activity under aerobic conditions while in hypoxia their radiosensitizing factors decreased in the order phenylglyoxylic acid (1.68 at 8 x 10(-3) mole dm-3) greater than phenylglyoxal (1.55 at 5 x 10(-6) mole dm-3) greater than 2-2' furil (1.48 at 5 x 10(-5) mole dm-3) greater than glyoxylic acid (1.39 at 1 x 10(-3) mole dm-3) greater than glyoxal (1.30 at 5 x 10(-5) mole dm-3). The dose-modifying factors were also determined at two equimolar concentrations 5 x 10(-5) and 5 x 10(-6) mole dm-3. A concentration effect was noticed for all the compounds although their relative radiosensitizing activity kept, independently of the concentration, the same order noted above. Glyoxals with aromatic or heterocyclic rings exert a greater radiosensitization than the others. The acidic compounds have less radiosensitizing activity than their aldehydic counterparts. Interaction of these glyoxals with NPSH cellular groups was tested and the low degree of inhibition shows that this mechanism would contribute very little, if any, to the radiosensitization effect.

  18. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    SciTech Connect

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua Liu, Fenju

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  19. 5-Iodo-2-Pyrimidinone-2'-Deoxyribose-Mediated Cytotoxicity and Radiosensitization in U87 Human Glioblastoma Xenografts

    SciTech Connect

    Kinsella, Timothy J. Kinsella, Michael T.; Seo, Yuji; Berk, Gregory

    2007-11-15

    Purpose: 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is a novel orally administered (p.o.) prodrug of 5-iododeoxyuridine. Because p.o. IPdR is being considered for clinical testing as a radiosensitizer in patients with high-grade gliomas, we performed this in vivo study of IPdR-mediated cytotoxicity and radiosensitization in a human glioblastoma xenograft model, U87. Methods and Materials: Groups of 8 or 9 athymic male nude mice (6-8 weeks old) were implanted with s.c. U87 xenograft tumors (4 x 10{sup 6} cells) and then randomized to 10 treatment groups receiving increasing doses of p.o. IPdR (0, 100, 250, 500, and 1000 mg/kg/d) administered once daily (q.d.) x 14 days with or without radiotherapy (RT) (0 or 2 Gy/d x 4 days) on days 11-14 of IPdR treatment. Systemic toxicity was determined by body weight measurements during and after IPdR treatment. Tumor response was assessed by changes in tumor volumes. Results: IPdR alone at doses of {>=}500 mg/kg/d resulted in moderate inhibition of tumor growth. The combination of IPdR plus RT resulted in a significant IPdR dose-dependent tumor growth delay, with the maximum radiosensitization using {>=}500 mg/kg/d. IPdR doses of 500 and 1000 mg/kg/d resulted in transient 5-15% body weight loss during treatment. Conclusions: In U87 human glioblastoma s.c. xenografts, p.o. IPdR given q.d. x 14 days and RT given 2 Gy/d x 4 days (days 11-14 of IPdR treatment) results in a significant tumor growth delay in an IPdR dose-dependent pattern. The use of p.o. IPdR plus RT holds promise for Phase I/II testing in patients with high-grade gliomas.

  20. PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance.

    PubMed

    Quan, Jun-Jie; Song, Jin-Ning; Qu, Jian-Qiang

    2015-11-01

    Poly(ADP-ribose) polymerase 3 (PARP3), a critical player in cellular response to DNA double-strand breaks (DSBs), plays an essential role in the maintenance of genome integrity. However, the role of PARP3 in tumorigenesis especially in glioblastoma remains largely unknown. In the present study, we found that the mRNA and protein levels of PARP3 were upregulated in primary glioblastoma tissues. Knockdown of PARP3 expression by lentivirus-based shRNA decreased cell glioblastoma proliferation and inhibited tumor growth in vivo by using a xenograft mouse model. Furthermore, we found that silencing the expression of PARP3 resulted in a synergistic radiosensitizing effect when combined with radiotherapy in glioblastoma cell lines. At the molecular level, we found that PARP3 interacted with FoxM1 to enhance its transcriptional activity and conferred glioblastoma cell radioresistance. Thus, our data suggest that PARP3 could be a therapeutic target to overcome radioresistance in glioblastoma.

  1. Pediatric and adult glioblastoma radiosensitization induced by PI3K/mTOR inhibition causes early metabolic alterations detected by nuclear magnetic resonance spectroscopy.

    PubMed

    Agliano, Alice; Balarajah, Geetha; Ciobota, Daniela M; Sidhu, Jasmin; Clarke, Paul A; Jones, Chris; Workman, Paul; Leach, Martin O; Al-Saffar, Nada M S

    2017-07-18

    Poor outcome for patients with glioblastomas is often associated with radioresistance. PI3K/mTOR pathway deregulation has been correlated with radioresistance; therefore, PI3K/mTOR inhibition could render tumors radiosensitive. In this study, we show that NVP-BEZ235, a dual PI3K/mTOR inhibitor, potentiates the effects of irradiation in both adult and pediatric glioblastoma cell lines, resulting in early metabolic changes detected by nuclear magnetic resonance (NMR) spectroscopy. NVP-BEZ235 radiosensitises cells to X ray exposure, inducing cell death through the inhibition of CDC25A and the activation of p21cip1(CDKN1A). Lactate and phosphocholine levels, increased with radiation, are decreased after NVP-BEZ235 and combination treatment, suggesting that inhibiting the PI3K/mTOR pathway reverses radiation induced metabolic changes. Importantly, NVP-BEZ235 potentiates the effects of irradiation in a xenograft model of adult glioblastoma, where we observed a decrease in lactate and phosphocholine levels after seven days of combination treatment. Although tumor size was not affected due to the short length of the treatment, a significant increase in CASP3 mRNA was observed in the combination group. Taken together, our data suggest that NMR metabolites could be used as biomarkers to detect an early response to combination therapy with PI3K/mTOR inhibitors and radiotherapy in adult and pediatric glioblastoma patients.

  2. Pediatric and adult glioblastoma radiosensitization induced by PI3K/mTOR inhibition causes early metabolic alterations detected by nuclear magnetic resonance spectroscopy

    PubMed Central

    Agliano, Alice; Balarajah, Geetha; Ciobota, Daniela M.; Sidhu, Jasmin; Clarke, Paul A.; Jones, Chris; Workman, Paul; Leach, Martin O.; Al-Saffar, Nada M.S.

    2017-01-01

    Poor outcome for patients with glioblastomas is often associated with radioresistance. PI3K/mTOR pathway deregulation has been correlated with radioresistance; therefore, PI3K/mTOR inhibition could render tumors radiosensitive. In this study, we show that NVP-BEZ235, a dual PI3K/mTOR inhibitor, potentiates the effects of irradiation in both adult and pediatric glioblastoma cell lines, resulting in early metabolic changes detected by nuclear magnetic resonance (NMR) spectroscopy. NVP-BEZ235 radiosensitises cells to X ray exposure, inducing cell death through the inhibition of CDC25A and the activation of p21cip1(CDKN1A). Lactate and phosphocholine levels, increased with radiation, are decreased after NVP-BEZ235 and combination treatment, suggesting that inhibiting the PI3K/mTOR pathway reverses radiation induced metabolic changes. Importantly, NVP-BEZ235 potentiates the effects of irradiation in a xenograft model of adult glioblastoma, where we observed a decrease in lactate and phosphocholine levels after seven days of combination treatment. Although tumor size was not affected due to the short length of the treatment, a significant increase in CASP3 mRNA was observed in the combination group. Taken together, our data suggest that NMR metabolites could be used as biomarkers to detect an early response to combination therapy with PI3K/mTOR inhibitors and radiotherapy in adult and pediatric glioblastoma patients. PMID:28624789

  3. Differential radiosensitivity among B cell subpopulations

    SciTech Connect

    Riggs, J.E.; Lussier, A.M.; Lee, S.K.; Appel, M.C.; Woodland, R.T.

    1988-09-15

    We have previously shown that low doses of ionizing radiation selectively impair a functionally defined B cell subpopulation. Normal mice, after exposure to 200 rad of ionizing radiation, have normal or near normal splenic plaque-forming cell responses to thymus-independent type 1 Ag, but reduced responses to thymus-independent type 2 Ag. Here, we confirm and extend the original findings by using hapten-specific serum RIA to demonstrate this differential radiosensitivity is systemic. We also examined splenocytes stained with a panel of lymphocyte surface Ag by FACS analysis to determine if these functional changes are accompanied by a physical alteration of the B cell pool of irradiated mice. Single-parameter FACS analyses demonstrate a diminution in both B cell number and the heterogeneity of membrane Ag expression within the surviving B cell pool after irradiation. In contrast, T cells are relatively radioresistant as the relative percentage of T cells in the irradiated splenocyte pool increases, whereas the heterogeneity of membrane Ag expression remains constant. Multiparameter FACS analyses indicate that B cells with the sIgM much greater than sIgD phenotype are more radiosensitive than B cells of the sIgM much less than sIgD phenotype. In addition, immunohistochemical analysis of splenic sections stained with anti-IgM or anti-IgD reveal the enhanced radiosensitivity of marginal zone B cells.

  4. Neural Stem Cells and Glioblastoma

    PubMed Central

    Rispoli, Rossella; Conti, Carlo; Celli, Paolo; Caroli, Emanuela; Carletti, Sandro

    2014-01-01

    Summary Glioblastoma multiforme represents one of the most common brain cancers with a rather heterogeneous cellular composition, as indicated by the term “multiforme". Recent reports have described the isolation and identification of cancer neural stem cells from human adult glioblastoma multiforme, which possess the capacity to establish, sustain, and expand these tumours, even under the challenging settings posed by serial transplantation experiments. Our study focused on the distribution of neural cancer stem cells inside the tumour. The study is divided into three phases: removal of tumoral specimens in different areas of the tumour (centre, periphery, marginal zone) in an operative room equipped with a 1.5 T scanner; isolation and characterization of neural cancer stem cells from human adult glioblastoma multiforme; identification of neural cancer stem cell distribution inside the tumour. PMID:24750704

  5. Differential radiosensitivity among B cell subpopulations

    SciTech Connect

    Riggs, J.E.

    1988-01-01

    The selective radiosensitivity of sIgM >> sIgD marginal zone B cells is associated with the selective loss of B cell function. The simultaneous restoration of impaired function and recovery of these cells with time supports this premise. B cell recovery, delayed one week after irradiation, is in progress at two weeks, and virtually complete by three weeks. XID mice reveal similar recovery kinetics although there are fewer recovering cells and these bear reduced levels of Ia. This observation represents additional evidence that xid B cells are distinct from those of normal mice. The simultaneous loss, and concurrent recovery, of sIgM >> sIgD B cells and TI-2 responsiveness in irradiated mice suggests the existence of a unique B cell subpopulation possessing both phenotypes. Additional support for this hypothesis is provided by demonstrating that splenocytes, depleted of IgD{sup +} cells adoptively reconstitute this response in XID mice. The peritoneal B cell pool, which, compared to the spleen, consist of increased numbers of sIgM >> sIgD B cells, is shown to be a source of radiosensitive B cells that are TI-2 responsive. These observations represent additional evidence for an association between sIgM >> sIgD B cells and TI-2 responsiveness.

  6. Radiosensitivity of cultured insect cells: II. Diptera

    SciTech Connect

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five dipteran cell lines representing three mosquito genera and one fruit fly genus were examined. These lines are: (1) ATC-10, Aedes aegypti; (2) RU-TAE-14, Toxorhynchites amboinensis; (3) RU-ASE-2A, Anopheles stephensi; (4) WR69-DM-1, Drosophila melanogaster; and (5) WR69-DM-2, Drosophila melanogaster. Population doubling times for these lines range from approximately 16 to 48 hr. Diploid chromosome numbers are six for the mosquito cells and eight for the fruit fly cells D/sub 0/ values are 5.1 and 6.5 Gy for the Drosophila cell lines and 3.6, 6.2, and 10.2 Gy for the mosquito cell lines. The results of this study demonstrate that dipteran insect cells are a few times more resistant to radiation than mammalian cells, but not nearly as radioresistant as lepidopteran cells.

  7. Replication-Dependent Radiosensitization of Human Glioma Cells by Inhibition of Poly(ADP-Ribose) Polymerase: Mechanisms and Therapeutic Potential

    SciTech Connect

    Dungey, Fiona A.; Loeser, Dana A.; Chalmers, Anthony J.

    2008-11-15

    Purpose: Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. Methods and Materials: Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence of this effect and its therapeutic potential. Results: KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in {gamma}H2AX and Rad51 foci. Conclusion: The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.

  8. The dominant negative mutant Artemis enhances tumor cell radiosensitivity.

    PubMed

    Liu, Hai; Sun, XiaoNan; Zhang, Shuo; Ge, WeiTing; Zhu, YongLiang; Zhang, JiaWei; Zheng, Shu

    2011-10-01

    Tumor radioresistance often leads to treatment failure during radiotherapy. New strategies like developing radiosensitizer are clinically important. Intervention with DNA double-strand break repair is an effective way to modulate tumor cell radiosensitivity. This study focused on the mutant Artemis fragment-enhanced radiosensitivity of human cervical cancer cells. We constructed two pEGFP-C1-based eukaryotic expression vectors encoding full-length and the mutant Artemis fragment (D37N-413aa), respectively. HeLa cells were stably transfected with these plasmids or vector. Cell survival was measured by the clonogenic assay. The γH2AX foci assay was used to monitor DNA repair after irradiation. Co-immunoprecipitation and Western blot analysis were performed to study protein interaction and phosphorylation of Artemis. Expression of the mutant Artemis fragment (D37N-413aa) delayed DNA DSB rejoining after irradiation, thereby enhanced radiosensitivity of HeLa cell. Further experiments indicate that this mutant Artemis fragment bind to DNA-PKcs and ATM, inhibited phosphorylation of endogenous Artemis, the key molecule for DNA repair and cell radiosensitivity. The dominant negative mutant Artemis fragment (D37N-413aa) enhanced tumor cell radiosensitivity through blocking activity of endogenous Artemis and DNA repair. It is the first time to modulate tumor cell radiosensitivity via targeting Artemis. This novel mechanism of radiosensitivity strongly suggests the potential role of Artemis in cancer therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Distribution and radiosensitizing effect of cholesterol-coupled Dbait molecule in rat model of glioblastoma.

    PubMed

    Coquery, Nicolas; Pannetier, Nicolas; Farion, Régine; Herbette, Aurélie; Azurmendi, Leire; Clarencon, Didier; Bauge, Stéphane; Josserand, Véronique; Rome, Claire; Coll, Jean-Luc; Sun, Jian-Sheng; Barbier, Emmanuel L; Dutreix, Marie; Remy, Chantal C

    2012-01-01

    Glioma is the most aggressive tumor of the brain and the most efficient treatments are based on radiotherapy. However, tumors are often resistant to radiotherapy due to an enhanced DNA repair activity. Short and stabilized DNA molecules (Dbait) have recently been proposed as an efficient strategy to inhibit DNA repair in tumor. The distribution of three formulations of Dbait, (i) Dbait alone, (ii) Dbait associated with polyethylenimine, and (iii) Dbait linked with cholesterol (coDbait), was evaluated one day after intratumoral delivery in an RG2 rat glioma model. Dbait molecule distribution was assessed in the whole organ with 2D-FRI and in brain sections. CoDbait was chosen for further studies given its good retention in the brain, cellular localization, and efficacy in inducing the activation of DNA repair effectors. The radiosensitizing effect of coDbait was studied in four groups of rats bearing RG2-glioma: no treatment, radiotherapy only, coDbait alone, and CoDbait with radiotherapy. Treatment started 7 days after tumor inoculation and consisted of two series of treatment in two weeks: coDbait injection followed by a selective 6-Gy irradiation of the head. We evaluated the radiosensitizing effect using animal survival, tumor volume, cell proliferation, and vasculature characteristics with multiparametric MRI. CoDbait with radiotherapy improved the survival of rats bearing RG2-glioma by reducing tumor growth and cell proliferation without altering tumor vasculature. coDbait is therefore a promising molecular therapy to sensitize glioma to radiotherapy.

  10. Evaluation of nitrobenzimidazoles as hypoxic cell radiosensitizers

    SciTech Connect

    Wright, J.; Frank, L.R.; Bush, D.; Harrison, G.H.

    1983-07-01

    Radiobiological and pharmacokinetic assays were performed to determine the potential of 2-nitrobenzimidazole (NBI) as a hypoxic cell radiosensitizing agent. As judged by comparing survival curve slopes of Serratia marcescens irradiated under aerated and hypoxic conditions, the NBI enhancement ratio (ER) at 2 mM concentration was 2.4 +/- 0.2, compared with an oxygen enhancement ratio of 3.3 +/- 0.3. 2,5-Dinitrobenzimidazole (DNBI) was investigated in vitro; its ER was 3.0 +/- 0.3 at 4 mM concentration. Very poor tissue penetration of DNBI precluded further testing in vivo. Acute toxic signs appeared in C3H/HeJ mice following ip injection of NBI at 100 mg/kg. These would be partly attributable to the stress caused by the high pH of the injection vehicle. The LD50 was estimated to be 125-150 mg/kg. Mammary adenocarcinoma tumors grown in the flanks of these mice exhibited maximum NBI levels at 5 min postinjection (ip). Peak tumor radiosensitization occurred in the interval between 5 and 10 min postinjection. The ER for tumor regrowth delay was 2.1 +/- 0.3 following 50 mg/kg injected into mice 5 min before irradiation. Functional evaluation up to 40 days after treatment revealed no evidence of neurological deficit.

  11. Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones.

    PubMed

    Séhédic, Delphine; Cikankowitz, Annabelle; Hindré, François; Davodeau, François; Garcion, Emmanuel

    2015-04-01

    Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.

  12. New role of osteopontin in DNA repair and impact on human glioblastoma radiosensitivity

    PubMed Central

    Henry, Aurélie; Nokin, Marie-Julie; Leroi, Natacha; Lallemand, François; Lambert, Jérémy; Goffart, Nicolas; Roncarati, Patrick; Bianchi, Elettra; Peixoto, Paul; Blomme, Arnaud; Turtoi, Andrei; Peulen, Olivier; Habraken, Yvette; Scholtes, Félix; Martinive, Philippe; Delvenne, Philippe; Rogister, Bernard; Castronovo, Vincent; Bellahcène, Akeila

    2016-01-01

    Glioblastoma (GBM) represents the most aggressive and common solid human brain tumor. We have recently demonstrated the importance of osteopontin (OPN) in the acquisition/maintenance of stemness characters and tumorigenicity of glioma initiating cells. Consultation of publicly available TCGA database indicated that high OPN expression correlated with poor survival in GBM patients. In this study, we explored the role of OPN in GBM radioresistance using an OPN-depletion strategy in U87-MG, U87-MG vIII and U251-MG human GBM cell lines. Clonogenic experiments showed that OPN-depleted GBM cells were sensitized to irradiation. In comet assays, these cells displayed higher amounts of unrepaired DNA fragments post-irradiation when compared to control. We next evaluated the phosphorylation of key markers of DNA double-strand break repair pathway. Activating phosphorylation of H2AX, ATM and 53BP1 was significantly decreased in OPN-deficient cells. The addition of recombinant OPN prior to irradiation rescued phospho-H2AX foci formation thus establishing a new link between DNA repair and OPN expression in GBM cells. Finally, OPN knockdown improved mice survival and induced a significant reduction of heterotopic human GBM xenograft when combined with radiotherapy. This study reveals a new function of OPN in DNA damage repair process post-irradiation thus further confirming its major role in GBM aggressive disease. PMID:27563812

  13. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    SciTech Connect

    Lopez, Carlos A. Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-09-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G{sub 1} arrest, increase in sub-G{sub 1} fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios ({+-} SE) of 1.5 ({+-} 0.2) and 1.3 ({+-} 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53.

  14. Cancer stem cells in glioblastoma

    PubMed Central

    Lathia, Justin D.; Mack, Stephen C.; Mulkearns-Hubert, Erin E.; Valentim, Claudia L.L.; Rich, Jeremy N.

    2015-01-01

    Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial. PMID:26109046

  15. Genetic Alterations in Gliosarcoma and Giant Cell Glioblastoma.

    PubMed

    Oh, Ji Eun; Ohta, Takashi; Nonoguchi, Naosuke; Satomi, Kaishi; Capper, David; Pierscianek, Daniela; Sure, Ulrich; Vital, Anne; Paulus, Werner; Mittelbronn, Michel; Antonelli, Manila; Kleihues, Paul; Giangaspero, Felice; Ohgaki, Hiroko

    2016-07-01

    The majority of glioblastomas develop rapidly with a short clinical history (primary glioblastoma IDH wild-type), whereas secondary glioblastomas progress from diffuse astrocytoma or anaplastic astrocytoma. IDH mutations are the genetic hallmark of secondary glioblastomas. Gliosarcomas and giant cell glioblastomas are rare histological glioblastoma variants, which usually develop rapidly. We determined the genetic patterns of 36 gliosarcomas and 19 giant cell glioblastomas. IDH1 and IDH2 mutations were absent in all 36 gliosarcomas and in 18 of 19 giant cell glioblastomas analyzed, indicating that they are histological variants of primary glioblastoma. Furthermore, LOH 10q (88%) and TERT promoter mutations (83%) were frequent in gliosarcomas. Copy number profiling using the 450k methylome array in 5 gliosarcomas revealed CDKN2A homozygous deletion (3 cases), trisomy chromosome 7 (2 cases), and monosomy chromosome 10 (2 cases). Giant cell glioblastomas had LOH 10q in 50% and LOH 19q in 42% of cases. ATRX loss was detected immunohistochemically in 19% of giant cell glioblastomas, but absent in 17 gliosarcomas. These and previous results suggest that gliosarcomas are a variant of, and genetically similar to, primary glioblastomas, except for a lack of EGFR amplification, while giant cell glioblastoma occupies a hybrid position between primary and secondary glioblastomas. © 2015 International Society of Neuropathology.

  16. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    SciTech Connect

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun; Juhn, Kyoung-Mi; Woo, Seon Rang; Kim, Hee-Young; Han, Young-Hoon; Hwang, Sang-Gu; Hong, Sung-Hee; Kang, Chang-Mo; Yoo, Young-Do; Park, Won-Bong; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2010-11-12

    Research highlights: {yields} In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. {yields} The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. {yields} The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. {yields} P53 status is not associated with the occurrence of unsensitized clone. {yields} Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC{sup -/-} cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC{sup -/-} clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.

  17. The potential origin of glioblastoma initiating cells

    PubMed Central

    Chesler, David A.; Berger, Mitchell S.; Quinones-Hinojosa, Alfredo

    2013-01-01

    Despite intensive clinical and laboratory research and effort, Glioblastoma remains the most common and invariably lethal primary cancer of the central nervous system. The identification of stem cell and lineage-restricted progenitor cell populations within the adult human brain in conjunction with the discovery of stem-like cells derived from gliomas which are themselves tumorigenic and have been shown to have properties of self-renewal and multipotency, has led to the hypothesis that this population of cells may represent glioma initiating cells. Extensive research characterizing the anatomic distribution and phenotype of neural stem cells in the adult brain, and the genetic underpinnings needed for malignant transformation may ultimately lead to the identification of the cellular origin for glioblastoma. Defining the cellular origin of this lethal disease may ultimately provide new therapeutic targets and modalities finally altering an otherwise bleak outcome for patients with glioblastoma. PMID:22202053

  18. Inhibiting DNA-PKCS radiosensitizes human osteosarcoma cells.

    PubMed

    Mamo, Tewodros; Mladek, Ann C; Shogren, Kris L; Gustafson, Carl; Gupta, Shiv K; Riester, Scott M; Maran, Avudaiappan; Galindo, Mario; van Wijnen, Andre J; Sarkaria, Jann N; Yaszemski, Michael J

    2017-04-29

    Osteosarcoma survival rate has not improved over the past three decades, and the debilitating side effects of the surgical treatment suggest the need for alternative local control approaches. Radiotherapy is largely ineffective in osteosarcoma, indicating a potential role for radiosensitizers. Blocking DNA repair, particularly by inhibiting the catalytic subunit of DNA-dependent protein kinase (DNA-PKCS), is an attractive option for the radiosensitization of osteosarcoma. In this study, the expression of DNA-PKCS in osteosarcoma tissue specimens and cell lines was examined. Moreover, the small molecule DNA-PKCS inhibitor, KU60648, was investigated as a radiosensitizing strategy for osteosarcoma cells in vitro. DNA-PKCS was consistently expressed in the osteosarcoma tissue specimens and cell lines studied. Additionally, KU60648 effectively sensitized two of those osteosarcoma cell lines (143B cells by 1.5-fold and U2OS cells by 2.5-fold). KU60648 co-treatment also altered cell cycle distribution and enhanced DNA damage. Cell accumulation at the G2/M transition point increased by 55% and 45%, while the percentage of cells with >20 γH2AX foci were enhanced by 59% and 107% for 143B and U2OS cells, respectively. These results indicate that the DNA-PKCS inhibitor, KU60648, is a promising radiosensitizing agent for osteosarcoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Histone Deacetylation Critically Determines T-cell Subset Radiosensitivity1

    PubMed Central

    Pugh, Jason L.; Sukhina, Alona S.; Seed, Thomas M.; Manley, Nancy R.; Sempowski, Gregory A.; van den Brink, Marcel R.M.; Smithey, Megan J.; Nikolich-Zugich, Janko

    2014-01-01

    Lymphocytes are sensitive to ionizing radiation and naïve lymphocytes are more radiosensitive than their memory counterparts. Less is known about radiosensitivity of memory cell subsets. We examined the radiosensitivity of naïve (TN), effector memory (TEM), and central memory (TCM) T cell subsets in C57BL/6 mice, and found TEM to be more resistant to radiation-induced apoptosis than either TN or TCM. Surprisingly, we found no correlation between the extent of radiation-induced apoptosis in T cell subsets and : (i) levels of pro- and anti-apoptotic Bcl-2 family members; or (ii) the H2-AX content and maximal γH2-AX fold change. Rather, TEM cell survival correlated with higher levels of immediate γH2-AX marking, immediate break binding and genome-wide open chromatin structure. T cells were able to mark DNA damage seemingly instantly (30 s), even if kept on ice. Relaxing chromatin with the histone deacetylase inhibitor valproic acid following radiation or etoposide treatment, improved the survival of TCM and TN cells up to levels seen in the resistant TEM cells, but did not improve survival from caspase-mediated apoptosis. We conclude that an open genome-wide chromatin state is the key determinant of efficient immediate repair of DNA damage in T cells, explaining the observed T cell subset radiosensitivity differences. PMID:24990082

  20. Cellular and molecular portrait of eleven human glioblastoma cell lines under photon and carbon ion irradiation.

    PubMed

    Ferrandon, S; Magné, N; Battiston-Montagne, P; Hau-Desbat, N-H; Diaz, O; Beuve, M; Constanzo, J; Chargari, C; Poncet, D; Chautard, E; Ardail, D; Alphonse, G; Rodriguez-Lafrasse, C

    2015-04-28

    This study aimed to examine the cellular and molecular long-term responses of glioblastomas to radiotherapy and hadrontherapy in order to better understand the biological effects of carbon beams in cancer treatment. Eleven human glioblastoma cell lines, displaying gradual radiosensitivity, were irradiated with photons or carbon ions. Independently of p53 or O(6)-methylguanine-DNA methyltransferase(1) status, all cell lines responded to irradiation by a G2/M phase arrest followed by the appearance of mitotic catastrophe, which was concluded by a ceramide-dependent-apoptotic cell death. Statistical analysis demonstrated that: (i) the SF2(2) and the D10(3) values for photon are correlated with that obtained in response to carbon ions; (ii) regardless of the p53, MGMT status, and radiosensitivity, the release of ceramide is associated with the induction of late apoptosis; and (iii) the appearance of polyploid cells after photon irradiation could predict the Relative Biological Efficiency(4) to carbon ions. This large collection of data should increase our knowledge in glioblastoma radiobiology in order to better understand, and to later individualize, appropriate radiotherapy treatment for patients who are good candidates.

  1. Coordination of glioblastoma cell motility by PKCι

    PubMed Central

    2010-01-01

    Background Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. Results Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. Conclusions PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required for the transition of

  2. Investigation of Radiosensitivity Gene Signatures in Cancer Cell Lines

    PubMed Central

    Hall, John S.; Iype, Rohan; Senra, Joana; Taylor, Janet; Armenoult, Lucile; Oguejiofor, Kenneth; Li, Yaoyong; Stratford, Ian; Stern, Peter L.; O’Connor, Mark J.; Miller, Crispin J.; West, Catharine M. L.

    2014-01-01

    Intrinsic radiosensitivity is an important factor underlying radiotherapy response, but there is no method for its routine assessment in human tumours. Gene signatures are currently being derived and some were previously generated by expression profiling the NCI-60 cell line panel. It was hypothesised that focusing on more homogeneous tumour types would be a better approach. Two cell line cohorts were used derived from cervix [n = 16] and head and neck [n = 11] cancers. Radiosensitivity was measured as surviving fraction following irradiation with 2 Gy (SF2) by clonogenic assay. Differential gene expression between radiosensitive and radioresistant cell lines (SF2 median) was investigated using Affymetrix GeneChip Exon 1.0ST (cervix) or U133A Plus2 (head and neck) arrays. There were differences within cell line cohorts relating to tissue of origin reflected by expression of the stratified epithelial marker p63. Of 138 genes identified as being associated with SF2, only 2 (1.4%) were congruent between the cervix and head and neck carcinoma cell lines (MGST1 and TFPI), and these did not partition the published NCI-60 cell lines based on SF2. There was variable success in applying three published radiosensitivity signatures to our cohorts. One gene signature, originally trained on the NCI-60 cell lines, did partially separate sensitive and resistant cell lines in all three cell line datasets. The findings do not confirm our hypothesis but suggest that a common transcriptional signature can reflect the radiosensitivity of tumours of heterogeneous origins. PMID:24466029

  3. Nicotinamide metabolism regulates glioblastoma stem cell maintenance

    PubMed Central

    Jung, Jinkyu; Kim, Leo J.Y.; Wang, Xiuxing; Wu, Qiulian; Sanvoranart, Tanwarat; Hubert, Christopher G.; Prager, Briana C.; Wallace, Lisa C.; Jin, Xun; Mack, Stephen C.; Rich, Jeremy N.

    2017-01-01

    Metabolic dysregulation promotes cancer growth through not only energy production, but also epigenetic reprogramming. Here, we report that a critical node in methyl donor metabolism, nicotinamide N-methyltransferase (NNMT), ranked among the most consistently overexpressed metabolism genes in glioblastoma relative to normal brain. NNMT was preferentially expressed by mesenchymal glioblastoma stem cells (GSCs). NNMT depletes S-adenosyl methionine (SAM), a methyl donor generated from methionine. GSCs contained lower levels of methionine, SAM, and nicotinamide, but they contained higher levels of oxidized nicotinamide adenine dinucleotide (NAD+) than differentiated tumor cells. In concordance with the poor prognosis associated with DNA hypomethylation in glioblastoma, depletion of methionine, a key upstream methyl group donor, shifted tumors toward a mesenchymal phenotype and accelerated tumor growth. Targeting NNMT expression reduced cellular proliferation, self-renewal, and in vivo tumor growth of mesenchymal GSCs. Supporting a mechanistic link between NNMT and DNA methylation, targeting NNMT reduced methyl donor availability, methionine levels, and unmethylated cytosine, with increased levels of DNA methyltransferases, DNMT1 and DNMT3A. Supporting the clinical significance of these findings, NNMT portended poor prognosis for glioblastoma patients. Collectively, our findings support NNMT as a GSC-specific therapeutic target in glioblastoma by disrupting oncogenic DNA hypomethylation. PMID:28515364

  4. Targeting DNA repair and the cell cycle in glioblastoma.

    PubMed

    Alexander, Brian M; Pinnell, Nancy; Wen, Patrick Y; D'Andrea, Alan

    2012-05-01

    Glioblastoma is a disease with poor outcomes despite standard therapy. Specific targeting of the DNA damage response is a strategy that is becoming increasingly employed in oncology and has intriguing potential for improving outcomes in glioblastoma. DNA damage targeting has implications for improving current therapy as well as the potential to leverage inherent differences in glioblastoma cells to widen the therapeutic window.

  5. Radiosensitization of EMT6 cells by four platinum complexes

    SciTech Connect

    Teicher, B.A.; Rockwell, S.; Lee, J.B.

    1985-05-01

    The compounds described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 ..mu..M and 400 ..mu..M trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 ..mu..M and 1.8 at 400 ..mu..M. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 ..mu..M Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 ..mu..M and 400 ..mu..M Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 ..mu..M PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands.

  6. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells

    PubMed Central

    Podergajs, Neža; Motaln, Helena; Rajčević, Uroš; Verbovšek, Urška; Koršič, Marjan; Obad, Nina; Espedal, Heidi; Vittori, Miloš; Herold-Mende, Christel; Miletic, Hrvoje; Bjerkvig, Rolf; Turnšek, Tamara Lah

    2016-01-01

    The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene. CD9 encodes the transmembrane protein tetraspanin which is involved in tumor cell invasion, apoptosis and resistance to chemotherapy. Using the public REMBRANDT database for brain tumors, we confirmed the prognostic value of CD9, whereby a more than two fold up-regulation correlates with shorter patient survival. We validated CD9 gene and protein expression showing selective up-regulation in glioblastoma stem cells isolated from primary biopsies and in primary organotypic glioblastoma spheroids as well as in U87-MG and U373 glioblastoma cell lines. In contrast, no or low CD9 gene expression was observed in normal human astrocytes, normal brain tissue and neural stem cells. CD9 silencing in three CD133+ glioblastoma cell lines (NCH644, NCH421k and NCH660h) led to decreased cell proliferation, survival, invasion, and self-renewal ability, and altered expression of the stem-cell markers CD133, nestin and SOX2. Moreover, CD9-silenced glioblastoma stem cells showed altered activation patterns of the Akt, MapK and Stat3 signaling transducers. Orthotopic xenotransplantation of CD9-silenced glioblastoma stem cells into nude rats promoted prolonged survival. Therefore, CD9 should be further evaluated as a target for glioblastoma treatment. PMID:26573230

  7. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells.

    PubMed

    Podergajs, Neža; Motaln, Helena; Rajčević, Uroš; Verbovšek, Urška; Koršič, Marjan; Obad, Nina; Espedal, Heidi; Vittori, Miloš; Herold-Mende, Christel; Miletic, Hrvoje; Bjerkvig, Rolf; Turnšek, Tamara Lah

    2016-01-05

    The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene. CD9 encodes the transmembrane protein tetraspanin which is involved in tumor cell invasion, apoptosis and resistance to chemotherapy. Using the public REMBRANDT database for brain tumors, we confirmed the prognostic value of CD9, whereby a more than two fold up-regulation correlates with shorter patient survival. We validated CD9 gene and protein expression showing selective up-regulation in glioblastoma stem cells isolated from primary biopsies and in primary organotypic glioblastoma spheroids as well as in U87-MG and U373 glioblastoma cell lines. In contrast, no or low CD9 gene expression was observed in normal human astrocytes, normal brain tissue and neural stem cells. CD9 silencing in three CD133+ glioblastoma cell lines (NCH644, NCH421k and NCH660h) led to decreased cell proliferation, survival, invasion, and self-renewal ability, and altered expression of the stem-cell markers CD133, nestin and SOX2. Moreover, CD9-silenced glioblastoma stem cells showed altered activation patterns of the Akt, MapK and Stat3 signaling transducers. Orthotopic xenotransplantation of CD9-silenced glioblastoma stem cells into nude rats promoted prolonged survival. Therefore, CD9 should be further evaluated as a target for glioblastoma treatment.

  8. Radiosensitization of non-small cell lung cancer by kaempferol.

    PubMed

    Kuo, Wei-Ting; Tsai, Yuan-Chung; Wu, His-Chin; Ho, Yung-Jen; Chen, Yueh-Sheng; Yao, Chen-Han; Yao, Chun-Hsu

    2015-11-01

    The aim of the present study was to determine whether kaempferol has a radiosensitization potential for lung cancer in vitro and in vivo. The in vitro radio-sensitization activity of kaempferol was elucidated in A-549 lung cancer cells by using an MTT (3-(4 5-dimethylthiazol-2-yl)-25-diphenyl-tetrazolium bromide) assay, cell cycle analysis and clonogenic assay. The in vivo activity was evaluated in the BALB/c nude mouse xenograft model of A-549 cells by hematoxylin and eosin staining and immunohistochemistry, and the tumor volume was recorded. Protein levels of the apoptotic pathway were detected by western blot analysis. Treatment with kaempferol inhibited the growth of A-549 cells through activation of apoptotic pathway. However, the same doses did not affect HFL1 normal lung cell growth. Kaempferol induced G2/M cell cycle arrest and the enhancement of radiation-induced death and clonogenic survival inhibition. The in vivo data showed that kaempferol increased tumor cell apoptosis and killing of radiation. In conclusion, the findings demonstrated that kaempferol increased tumor cell killing by radiation in vitro and in vivo through inhibition of the AKT/PI3K and ERK pathways and activation of the mitochondria apoptosis pathway. The results of the present study provided solid evidence that kaempferol is a safe and potential radiosensitizer.

  9. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status.

    PubMed

    Li, W; Guo, F; Wang, P; Hong, S; Zhang, C

    2014-01-01

    Glioblastoma is highly resistant to radiation therapy. The underlying molecular mechanism is not completely understood. The DNA damage response (DDR) pathway plays a crucial role in radioresistance of glioablastoma cells. Growing evidence has demonstrated that radiation induces alterations in microRNA (miR) profiles. However, how radiation induces specific miRs and how they might regulate the DDR remain elusive. In our study, we found that radiation induced c-jun transcription of miR-221 and miR-222. miR-221 and miR- 222 modulated DNA-PKcs expression to affect DNA damage repair by activating Akt independent of PTEN status. Knocking down of miR-221/222 significantly increased radiosensitivity of glioblastoma cells. Inhibition of Akt by RNAi or LY294002 treatment may overcome miR-221/222 induced radioresistance. Notably, combined anti-miR-221/222 and radiotherapy has remarkably inhibited tumor growth compared with anti-miR-221/222 or radiotherapy alone in a subcutaneous mouse model. Our results suggest that radio-induced c-jun promotes transcription of miR-221/222, which mediates DNA damage repair of glioblastoma cells independent of PTEN. These data indicate for the first time that miR-221/222 play an important role in mediating radio-induced DNA damage repair and that miR-221/222 could serve as potential therapeutic targets for increasing radiosensitivity of glioblastoma cells.

  10. Radiosensitization effect of zidovudine on human malignant glioma cells

    SciTech Connect

    Zhou Fuxiang; Liao Zhengkai; Dai Jing; Xiong Jie; Xie CongHua; Luo Zhiguo; Liu Shiquan; Zhou Yunfeng . E-mail: yfzhouwhu@163.com

    2007-03-09

    Telomeres are shortened with each cell division and play an important role in maintaining chromosomal integrity and function. Telomerase, responsible for telomere synthesis, is activated in 90% of human tumor cells but seldom in normal somatic cells. Zidovudine (AZT) is a reverse transcriptase inhibitor. In this study, we have investigated the effects of {gamma}-radiation in combination with AZT on telomerase activity (TA), telomere length, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and the changes in radiosensitivity of human malignant glioma cell line U251. The results showed that the TA was suppressed by AZT but enhanced by irradiation, resulting in a deceleration of restored rate of shortened telomere, decreased repair rate of DNA strand breaks, and increased radiosensitivity of U251 cells. Our results suggested that telomerase activity and telomere length may serve as markers for estimating the efficacy of cancer radiotherapy and reverse transcriptase inhibitors, such as AZT, may be used clinically as a new radiosensitizer in cancer radiotherapy.

  11. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme

    PubMed Central

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM’s cancer biology. PMID:27148537

  12. Integrin alpha 6 regulates glioblastoma stem cells

    PubMed Central

    Lathia, Justin D.; Gallagher, Joseph; Heddleston, John M.; Wang, Jialiang; Eyler, Christine E.; MacSwords, Jennifer; Wu, Qiulian; Vasanji, Amit; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.

    2010-01-01

    Summary Cancer stem cells (CSCs) are a subpopulation of tumor cells suggested to be critical for tumor maintenance, metastasis, and therapeutic resistance. Prospective identification and targeting of CSCs are therefore priorities for the development of novel therapeutic paradigms. While CSC enrichment has been achieved with cell surface proteins including CD133 (Prominin-1), the roles of current CSC markers in tumor maintenance remain unclear. We examined the glioblastoma stem cell (GSC) perivascular microenvironment in patient specimens to identify enrichment markers with a functional significance and identified integrin α6 as a candidate. Integrin α6 is co-expressed with conventional GSC markers and enriches for GSCs. Targeting integrin α6 in GSCs inhibits self-renewal, proliferation, and tumor formation capacity. Our results provide evidence that GSCs express high levels of integrin α6, which can not only serve as an enrichment marker but also as a promising anti-glioblastoma therapy. PMID:20452317

  13. FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells

    PubMed Central

    Maachani, Uday B.; Shankavaram, Uma; Kramp, Tamalee; Tofilon, Philip J.; Camphausen, Kevin; Tandle, Anita T.

    2016-01-01

    Glioblastoma multiforme (GBM) continues to be the most frequently diagnosed and lethal primary brain tumor. Adjuvant chemo-radiotherapy remains the standard of care following surgical resection. In this study, using reverse phase protein arrays (RPPAs), we assessed the biological effects of radiation on signaling pathways to identify potential radiosensitizing molecular targets. We identified subsets of proteins with clearly concordant/discordant behavior between irradiated and non-irradiated GBM cells in vitro and in vivo. Moreover, we observed high expression of Forkhead box protein M1 (FOXM1) in irradiated GBM cells both in vitro and in vivo. Recent evidence of FOXM1 as a master regulator of metastasis and its important role in maintaining neural, progenitor, and GBM stem cells, intrigued us to validate it as a radiosensitizing target. Here we show that FOXM1 inhibition radiosensitizes GBM cells by abrogating genes associated with cell cycle progression and DNA repair, suggesting its role in cellular response to radiation. Further, we demonstrate that radiation induced stimulation of FOXM1 expression is dependent on STAT3 activation. Co-immunoprecipitation and co-localization assays revealed physical interaction of FOXM1 with phosphorylated STAT3 under radiation treatment. In conclusion, we hypothesize that FOXM1 regulates radioresistance via STAT3 in GBM cells. We also, show GBM patients with high FOXM1 expression have poor prognosis. Collectively our observations might open novel opportunities for targeting FOXM1 for effective GBM therapy. PMID:27764801

  14. Genetically Modified T Cells to Target Glioblastoma

    PubMed Central

    Krebs, Simone; Rodríguez-Cruz, Tania G.; DeRenzo, Christopher; Gottschalk, Stephen

    2013-01-01

    Despite advances in surgical procedures, radiation, and chemotherapy the outcome for patients with glioblastoma (GBM) remains poor. While GBM cells express antigens that are potentially recognized by T cells, GBMs prevent the induction of GBM-specific immune responses by creating an immunosuppressive microenvironment. The advent of gene transfer has allowed the rapid generation of antigen-specific T cells as well as T cells with enhanced effector function. Here we review recent advances in the field of cell therapy with genetically modified T cells and how these advances might improve outcomes for patients with GBM in the future. PMID:24427741

  15. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  16. PCDH10 is required for the tumorigenicity of glioblastoma cells

    SciTech Connect

    Echizen, Kanae; Nakada, Mitsutoshi; Hayashi, Tomoatsu; Sabit, Hemragul; Furuta, Takuya; Nakai, Miyuki; Koyama-Nasu, Ryo; Nishimura, Yukiko; Taniue, Kenzui; Morishita, Yasuyuki; Hirano, Shinji; Terai, Kenta; Todo, Tomoki; Ino, Yasushi; Mukasa, Akitake; Takayanagi, Shunsaku; Ohtani, Ryohei; Saito, Nobuhito; Akiyama, Tetsu

    2014-01-31

    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma.

  17. Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells

    PubMed Central

    Li, Hui-Fang; Kim, Jung-Sik; Waldman, Todd

    2009-01-01

    Background Ionizing radiation (IR) therapy is a primary treatment for glioblastoma multiforme (GBM), a common and devastating brain tumor in humans. IR has been shown to induce PI3K-Akt activation in many cell types, and activation of the PI3K-Akt signaling pathway has been correlated with radioresistance. Methods Initially, the effects of IR on Akt activation were assessed in multiple human GBM cell lines. Next, to evaluate a potential causative role of IR-induced Akt activation on radiosensitivity, Akt activation was inhibited during IR with several complementary genetic and pharmacological approaches, and radiosensitivity measured using clonogenic survival assays. Results Three of the eight cell lines tested demonstrated IR-induced Akt activation. Further studies revealed that IR-induced Akt activation was dependent upon the presence of a serum factor, and could be inhibited by the EGFR inhibitor AG1478. Inhibition of PI3K activation with LY294002, or with inducible wild-type PTEN, inhibition of EGFR, as well as direct inhibition of Akt with two Akt inhibitors during irradiation increased the radiosensitivity of U87MG cells. Conclusion These results suggest that Akt may be a central player in a feedback loop whereby activation of Akt induced by IR increases radioresistance of GBM cells. Targeting the Akt signaling pathway may have important therapeutic implications when used in combination with IR in the treatment of a subset of brain tumor patients. PMID:19828040

  18. SU11657 Enhances Radiosensitivity of Human Meningioma Cells

    SciTech Connect

    Milker-Zabel, Stefanie Bois, Angelika Zabel-du; Ranai, Gholamreza; Trinh, Thuy; Unterberg, Andreas; Debus, Juergen; Lipson, Kenneth E.; Abdollahi, Amir; Huber, Peter E.

    2008-03-15

    Purpose: To analyze the effect of the multireceptor tyrosine kinase inhibitor SU11657 (primarily vascular endothelial growth factor, platelet-derived growth factor) in combination with irradiation in freshly isolated primary human meningioma cells. Methods and Materials: Tumor specimens were obtained from meningioma patients undergoing surgery at the Department of Neurosurgery, University of Heidelberg, Germany. For the present study only cells up to passage 6 were used. Benign and atypical meningioma cells and human umbilical vein endothelial cells (HUVEC) were treated with SU11657 alone and in combination with 6-MV photons (0-10 Gy). Clonogenic survival and cell proliferation were determined alone and in coculture assays to determine direct and paracrine effects. Results: Radiation and SU11657 alone reduced cell proliferation in atypical and benign meningioma cells as well as in HUVEC in a dose-dependent manner. SU11657 alone also reduced clonogenic survival of benign and atypical meningioma cells. SU11657 increased radiosensitivity of human meningioma cells in clonogenic survival and cell number/proliferation assays. The anticlonogenic and antiproliferative effects alone and the radiosensitization effects of SU11657 were more pronounced in atypical meningioma cells compared with benign meningioma cells. Conclusion: Small-molecule tyrosine kinase inhibitors like SU11657 are capable of amplifying the growth inhibitory effects of irradiation in meningioma cells. These data provide a rationale for further clinical evaluation of this combination concept, especially in atypical and malignant meningioma patients.

  19. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants

    NASA Technical Reports Server (NTRS)

    Asaad, N. A.; Zeng, Z. C.; Guan, J.; Thacker, J.; Iliakis, G.

    2000-01-01

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  20. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants

    NASA Technical Reports Server (NTRS)

    Asaad, N. A.; Zeng, Z. C.; Guan, J.; Thacker, J.; Iliakis, G.

    2000-01-01

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  1. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants.

    PubMed

    Asaad, N A; Zeng, Z C; Guan, J; Thacker, J; Iliakis, G

    2000-11-23

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  2. Radiosensitivity of Cancer Initiating Cells and Normal Stem Cells

    PubMed Central

    Woodward, Wendy Ann; Bristow, Robert Glen

    2009-01-01

    Mounting evidence suggests that parallels between normal stem cell biology and cancer biology may provide new targets for cancer therapy. Prospective identification and isolation of cancer initiating cells from solid tumors has promoted the descriptive and functional identification of these cells allowing for characterization of their response to contemporary cancer therapies including chemotherapy and radiation. In clinical radiation therapy, the failure to clinically eradicate all tumor cells (e.g. a lack of response, partial response or non-permanent complete response by imaging) is considered a treatment failure. As such, biologists have explored the characteristics of the small population of clonogenic cancer cells that can survive and are capable of re-populating the tumor after sub-curative therapy. Herein, we discuss the convergence of these clonogenic studies with contemporary radiosensitivity studies that employ cell surface markers to identify cancer initiating cells. Implications for and uncertainties regarding incorporation of these concepts into the practice of modern radiation oncology are discussed. PMID:19249646

  3. Sorafenib inhibits cell growth but fails to enhance radio- and chemosensitivity of glioblastoma cell lines

    PubMed Central

    Riedel, Matthias; Struve, Nina; Müller-Goebel, Justus; Köcher, Sabrina; Petersen, Cordula; Dikomey, Ekkehard; Rothkamm, Kai; Kriegs, Malte

    2016-01-01

    Background Glioblastomas (GBM) are the most common malignant type of primary brain tumor. GBM are intensively treated with surgery and combined radiochemotherapy using X-irradiation and temozolomide (TMZ) but they are still associated with an extremely poor prognosis, urging for the development of new treatment strategies. To improve the outcome of GBM patients, the small molecule multi-kinase inhibitor sorafenib has moved into focus of recent research. Sorafenib has already been shown to enhance the radio- and radiochemosensitivity of other tumor entities. Whether sorafenib is also able to sensitize GBM cells to radio- and chemotherapy is still an unsolved question which we have addressed in this study. Methods The effect of sorafenib on signaling, proliferation, radiosensitivity, chemosensitivity and radiochemosensitivity was analyzed in six glioblastoma cell lines using Western blot, proliferation- and colony formation assays. Results In half of the cell lines sorafenib clearly inhibited MAPK signaling. We also observed a strong blockage of proliferation, which was, however, not associated with MAPK pathway inhibition. Sorafenib had only minor effects on cell survival when administered alone. Most importantly, sorafenib treatment failed to enhance GBM cell killing by irradiation, TMZ or combined treatment, and instead rather caused resistance in some cell lines. Conclusion Our data suggest that sorafenib treatment may not improve the efficacy of radiochemotherapy in GBM. PMID:27542273

  4. HMGCR positively regulated the growth and migration of glioblastoma cells.

    PubMed

    Qiu, Zhihua; Yuan, Wen; Chen, Tao; Zhou, Chenzhi; Liu, Chao; Huang, Yongkai; Han, Deqing; Huang, Qinghui

    2016-01-15

    The metabolic program of cancer cells is significant different from the normal cells, which makes it possible to develop novel strategies targeting cancer cells. Mevalonate pathway and its rate-limiting enzyme HMG-CoA reductase (HMGCR) have shown important roles in the progression of several cancer types. However, their roles in glioblastoma cells remain unknown. In this study, up-regulation of HMGCR in the clinical glioblastoma samples was observed. Forced expression of HMGCR promoted the growth and migration of U251 and U373 cells, while knocking down the expression of HMGCR inhibited the growth, migration and metastasis of glioblastoma cells. Molecular mechanism studies revealed that HMGCR positively regulated the expression of TAZ, an important mediator of Hippo pathway, and the downstream target gene connective tissue growth factor (CTGF), suggesting HMGCR might activate Hippo pathway in glioblastoma cells. Taken together, our study demonstrated the oncogenic roles of HMGCR in glioblastoma cells and HMGCR might be a promising therapeutic target.

  5. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update

    PubMed Central

    Sultana, Misbah; Qazi, Aamer; Qazi, Mahmood Husain; Parveen, Gulshan; Waquar, Sulayman; Ashraf, Abdul Basit; Rasool, Mahmood

    2016-01-01

    Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds. PMID:26998418

  6. Carbon ion beam is more effective to induce cell death in sphere-type A172 human glioblastoma cells compared with X-rays.

    PubMed

    Takahashi, Momoko; Hirakawa, Hirokazu; Yajima, Hirohiko; Izumi-Nakajima, Nakako; Okayasu, Ryuichi; Fujimori, Akira

    2014-12-01

    To obtain human glioblastoma cells A172 expressing stem cell-related protein and comparison of radiosensitivity in these cells with X-rays and carbon beam. Human monolayer-type A172 glioblastoma cells were maintained in normal medium with 10% bovine serum. In order to obtain sphere-type A172 cells the medium was replaced with serum-free medium supplemented with growth factors. Both types of A172 cells were irradiated with either X-rays or carbon ion beams and their radiosensitivity was evaluated. Serum-free medium induced expression of stem cell-related proteins in A172 cells along with the neurosphere-like appearance. These sphere-type cells were found resistant to both X-rays and carbon ion beams. Phosphorylation of histone H2A family member X persisted for a longer period in the cells exposed to carbon ion beams than in those exposed to X-rays and it disappeared quicker in the sphere type than in the monolayer type. Relative radioresistance of the sphere type cells was smaller for carbon ion beams than for X-rays. We demonstrated that glioblastoma A172 cells with induced stem cell-related proteins turned resistant to irradiation. Accelerated heavy ion particles may have advantage over X-rays in overcoming the tumor resistance due to cell stemness.

  7. Glioblastoma

    MedlinePlus

    ... most common form of glioblastoma; it is very aggressive. Secondary: These tumors have a longer, somewhat slower growth history, but still are very aggressive. They may begin as lower-grade tumors which ...

  8. Glioblastoma.

    PubMed

    Wirsching, Hans-Georg; Galanis, Evanthia; Weller, Michael

    2016-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults. Defining histopathologic features are necrosis and endothelial proliferation, resulting in the assignment of grade IV, the highest grade in the World Health Organization (WHO) classification of brain tumors. The classic clinical term "secondary glioblastoma" refers to a minority of glioblastomas that evolve from previously diagnosed WHO grade II or grade III gliomas. Specific point mutations of the genes encoding isocitrate dehydrogenase (IDH) 1 or 2 appear to define molecularly these tumors that are associated with younger age and more favorable outcome; the vast majority of glioblastomas are IDH wild-type. Typical molecular changes in glioblastoma include mutations in genes regulating receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma protein (RB) signaling. Standard treatment of glioblastoma includes surgery, radiotherapy, and alkylating chemotherapy. Promoter methylation of the gene encoding the DNA repair protein, O(6)-methylguanyl DNA methyltransferase (MGMT), predicts benefit from alkylating chemotherapy with temozolomide and guides choice of first-line treatment in elderly patients. Current developments focus on targeting the molecular characteristics that drive the malignant phenotype, including altered signal transduction and angiogenesis, and more recently, various approaches of immunotherapy.

  9. Zika virus has oncolytic activity against glioblastoma stem cells.

    PubMed

    Zhu, Zhe; Gorman, Matthew J; McKenzie, Lisa D; Chai, Jiani N; Hubert, Christopher G; Prager, Briana C; Fernandez, Estefania; Richner, Justin M; Zhang, Rong; Shan, Chao; Tycksen, Eric; Wang, Xiuxing; Shi, Pei-Yong; Diamond, Michael S; Rich, Jeremy N; Chheda, Milan G

    2017-10-02

    Glioblastoma is a highly lethal brain cancer that frequently recurs in proximity to the original resection cavity. We explored the use of oncolytic virus therapy against glioblastoma with Zika virus (ZIKV), a flavivirus that induces cell death and differentiation of neural precursor cells in the developing fetus. ZIKV preferentially infected and killed glioblastoma stem cells (GSCs) relative to differentiated tumor progeny or normal neuronal cells. The effects against GSCs were not a general property of neurotropic flaviviruses, as West Nile virus indiscriminately killed both tumor and normal neural cells. ZIKV potently depleted patient-derived GSCs grown in culture and in organoids. Moreover, mice with glioblastoma survived substantially longer and at greater rates when the tumor was inoculated with a mouse-adapted strain of ZIKV. Our results suggest that ZIKV is an oncolytic virus that can preferentially target GSCs; thus, genetically modified strains that further optimize safety could have therapeutic efficacy for adult glioblastoma patients. © 2017 Zhu et al.

  10. Direct effect of bevacizumab on glioblastoma cell lines in vitro.

    PubMed

    Simon, Thomas; Coquerel, Bérénice; Petit, Alexandre; Kassim, Yusra; Demange, Elise; Le Cerf, Didier; Perrot, Valérie; Vannier, Jean-Pierre

    2014-12-01

    Bevacizumab is a humanized monoclonal antibody directed against the pro-angiogenic factor vascular and endothelial growth factor-A (VEGF-A) used in the treatment of glioblastomas. Although most patients respond initially to this treatment, studies have shown that glioblastomas eventually recur. Several non-mutually exclusive theories based on the anti-angiogenic effect of bevacizumab have been proposed to explain these mechanisms of resistance. In this report, we studied whether bevacizumab can act directly on malignant glioblastoma cells. We observe changes in the expression profiles of components of the VEGF/VEGF-R pathway and in the response to a VEGF-A stimulus following bevacizumab treatment. In addition, we show that bevacizumab itself acts on glioblastoma cells by activating the Akt and Erks survival signaling pathways. Bevacizumab also enhances proliferation and invasiveness of glioblastoma cells in hyaluronic acid hydrogel. We propose that the paradoxical effect of bevacizumab on glioblastoma cells could be due to changes in the VEGF-A-dependent autocrine loop as well as in the intracellular survival pathways, leading to the enhancement of tumor aggressiveness. Investigation of how bevacizumab interacts with glioblastoma cells and the resulting downstream signaling pathways will help targeting populations of resistant glioblastoma cells.

  11. Radiosensitization of Prostate Cells by Prenyltransferase Inhibitors

    DTIC Science & Technology

    2001-04-01

    response. 16th CERRO meeting of the European Society for Therapeutic Radiology and Oncology. , Les Menuires, France. March 5, 2001 Farnesyltransferases...and Samid, D. Increased useful adjuvants for radiotherapy. radioresistance of Ebras-transformed human osteosarcoma cells and its modulation by thus...Radiation Research Society 1997-present Associate Member European Society for Therapeutic Radiology and Oncology 1998-present Member American Association

  12. Glioblastoma Circulating Cells: Reality, Trap or Illusion?

    PubMed Central

    Lombard, A.; Goffart, N.; Rogister, B.

    2015-01-01

    Metastases are the hallmark of cancer. This event is in direct relationship with the ability of cancer cells to leave the tumor mass and travel long distances within the bloodstream and/or lymphatic vessels. Glioblastoma multiforme (GBM), the most frequent primary brain neoplasm, is mainly characterized by a dismal prognosis. The usual fatal issue for GBM patients is a consequence of local recurrence that is observed most of the time without any distant metastases. However, it has recently been documented that GBM cells could be isolated from the bloodstream in several studies. This observation raises the question of the possible involvement of glioblastoma-circulating cells in GBM deadly recurrence by a “homing metastasis” process. Therefore, we think it is important to review the already known molecular mechanisms underlying circulating tumor cells (CTC) specific properties, emphasizing their epithelial to mesenchymal transition (EMT) abilities and their possible involvement in tumor initiation. The idea is here to review these mechanisms and speculate on how relevant they could be applied in the forthcoming battles against GBM. PMID:26078762

  13. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    PubMed Central

    Ma, Debin; Jia, Hui; Qin, Mengmeng; Dai, Wenjie; Wang, Tao; Liang, Erguang; Dong, Guofu; Wang, Zuojun; Zhang, Zhiyuan; Feng, Fan

    2015-01-01

    MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR) on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy. PMID:26389880

  14. Advances in radiation biology: Radiosensitization in DNA and living cells

    NASA Astrophysics Data System (ADS)

    Lacombe, S.; Sech, C. Le

    2009-06-01

    One fundamental goal of radiation biology is the evolution of concepts and methods for the elaboration of new approaches and protocols for the treatment of cancers. In this context, the use of fast ions as ionizing particles offers the advantage of optimizing cell killing inside the tumor whilst preserving the surrounding healthy tissues. One extremely promising strategy investigated recently is the addition of radiosensitizers in the targeted tissue. The optimization of radiotherapy with fast ions implies a multidisciplinary approach to ionizing radiation effects on complex living systems, ranging from studies on single molecules to investigations of entire organisms. In this article we review recent studies on ion induced damages in simple and complex biological systems, from DNA to living cells. The specific aspect of radiosensitization induced by metallic atoms is described. As a fundamental result, the addition of sensitizing compounds with ion irradiation may improve therapeutic index in cancer therapy. In conclusion, new perspectives are proposed based on the experience and contribution of different communities including Surface Sciences, to improve the development of radiation biology.

  15. Radiosensitization by Inhibiting STAT1 in Renal Cell Carcinoma

    SciTech Connect

    Hui Zhouguang; Tretiakova, Maria; Zhang Zhongfa; Li Yan; Wang Xiaozhen; Zhu, Julie Xiaohong; Gao Yuanhong; Mai Weiyuan; Furge, Kyle; Qian Chaonan; Amato, Robert; Butler, E. Brian

    2009-01-01

    Purpose: Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. Methods and Materials: The expressions of STAT1 and STAT3 in 164 human clear cell RCC samples, 47 papillary RCC samples, and 15 normal kidney tissue samples were examined by microarray expression profiling and immunohistochemistry. Western blotting was performed to evaluate the total and phosphorylated STAT1 expression in CRL-1932 (786-O) (human clear cell RCC), SKRC-39 (human papillary RCC), CCL-116 (human fibroblast), and CRL-1441 (G-401) (human Wilms tumor). STAT1 was reduced or inhibited by fludarabine and siRNA, respectively, and the effects on radiation-induced cell death were investigated using clonogenic assays. Results: STAT1 expression, but not STAT3 expression, was significantly greater in human RCC samples (p = 1.5 x 10{sup -8} for clear cell; and p = 3.6 x 10{sup -4} for papillary). Similarly, the expression of STAT1 was relatively greater in the two RCC cell lines. STAT1 expression was reduced by both fludarabine and siRNA, significantly increasing the radiosensitivity in both RCC cell lines. Conclusion: This is the first study reporting the overexpression of STAT1 in human clear cell and papillary RCC tissues. Radiosensitization in RCC cell lines was observed by a reduction or inhibition of STAT1 signaling, using fludarabine or siRNA. Our data suggest that STAT1 may play a key role in RCC radioresistance and manipulation of this pathway may enhance the efficacy of radiotherapy.

  16. Moesin Expression Is Associated with Glioblastoma Cell Proliferation and Invasion.

    PubMed

    Wang, Qing; Lu, Xiaojie; Zhao, Shidi; Pang, Mingzhi; Wu, Xuechao; Wu, Heng; Hoffman, Robert M; Yang, Zhijian; Zhang, Yan

    2017-05-01

    To investigate the effect of moesin expression on cell proliferaton and invasion of human glioblastoma cell lines in vitro. Glioblastoma LN229 and U87 cells were transfected with the H4645-plenti-EGFP-moesin expression vector for moesin up-regulation. Moesin and β-catenin expression levels in the transfected cells were analyzed by real-time polymerase chain reaction (PCR) and Western blotting. Cell proliferation was measured using the CCK8 assay. Cell invasion and migration ability were assessed using a transwell cell invasion and wound-healing assay. Moesin mRNA and protein expression were significantly increased in the two transfected LN229-H4645 and U87-H4645 cell lines. β-catenin expression was increased by moesin up-regulation in the transfected LN229-H4645 and U87-H4645 cell lines. The CCK-8 assay revealed that up-regulating moesin results in a significant increase in glioblastoma cell proliferation. Glioblastoma cell invasion and migration were increased by moesin up-regulation. Up-regulation of moesin expression in glioblastoma cells correlated with increases in cell proliferation, invasion and migration, suggesting moesin's role in glioblastoma progression. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Porphyrins as radiosensitizers in 60Co-irradiated E. ascites tumor cells: possibility to combine with PDT

    NASA Astrophysics Data System (ADS)

    Luksiene, Zivile; Juodka, B.

    1993-06-01

    Efficiency of Ehrlich ascites cells radiosensitization by porphyrins is a function of irradiation dose. The maximal radiosensitization was reached at the dose--2Gy. Moreover, efficiency of cell radiosensitization depends on extracellular porphyrins concentration Hematoporphyrin (HP) and hemaporphyrin dimethylether (HPde) have different radiosensitizing effect on cells. One of the reasons of such phenomenon may be the different degree of hydrofobicity of those porphyrins. The studies of intracellular porphyrins concentration show that they differ in the case of HP and HPde in the same order as cell radiosensitization efficiencies.

  18. Resveratrol sensitizes glioblastoma-initiating cells to temozolomide by inducing cell apoptosis and promoting differentiation.

    PubMed

    Li, Hao; Liu, Yaodong; Jiao, Yumin; Guo, Anchen; Xu, Xiaoxue; Qu, Xianjun; Wang, Shuo; Zhao, Jizong; Li, Ye; Cao, Yong

    2016-01-01

    Glioblastoma-initiating cells play crucial roles in the origin, growth, and recurrence of glioblastoma multiforme. The elimination of glioblastoma-initiating cells is believed to be a key strategy for achieving long-term survival of glioblastoma patients due to the highly resistant property of glioblastoma-initiating cells to temozolomide. Resveratrol, a naturally occurring polyphenol, has been widely studied as a promising candidate for cancer prevention and treatment. Whether resveratrol could enhance the sensitivity of glioblastoma-initiating cells to temozolomide therapy has not yet been reported. Here, using patient-derived glioblastoma-initiating cell lines, we found that resveratrol sensitized glioblastoma-initiating cells to temozolomide both in vitro and in vivo. Furthermore, we showed that resveratrol enhanced glioblastoma-initiating cells to temozolomide-induced apoptosis through DNA double-stranded breaks/pATM/pATR/p53 pathway activation, and promoted glioblastoma-initiating cell differentiation involving p-STAT3 inactivation. Our results propose that temozolomide and resveratrol combination strategy may be effective in the management of glioblastoma patients, particularly for those patients who have been present with a high abundance of glioblastoma-initiating cells in their tumors and show slight responsiveness to temozolomide.

  19. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  20. Radiosensitization by porphyrins in 60Co-irradiated cells of different natures

    NASA Astrophysics Data System (ADS)

    Luksiene, Zivile; Atkocius, Vydmantas

    1994-03-01

    Efficiency of cell radiosensitization by porphyrins is a function of the irradiation dose, the nature of the cell and physico-chemical properties of the sensitizer. The maximal radio- sensitization for E. ascites tumor cells was reached at 2 Gy, for Saccharomyces cerevisiae- 25Gy. The radiosensitization by different porphyrins in E.ascites tumor cells increases their cytotoxicity by a factor of 3, in Saccharomyces cerevisae --inhibition of growth 0.5 - 2.5 time.

  1. Radiosensitizing effect of 5-aminolevulinic acid-induced protoporphyrin IX in glioma cells in vitro.

    PubMed

    Yamamoto, Junkoh; Ogura, Shun-Ichiro; Tanaka, Tohru; Kitagawa, Takehiro; Nakano, Yoshiteru; Saito, Takeshi; Takahashi, Mayu; Akiba, Daisuke; Nishizawa, Shigeru

    2012-06-01

    5-Aminolevulinic acid (ALA) is a prodrug used in photodynamic therapy and fluorescence-guided resection of malignant gliomas due to its high cellular uptake in tumours. Porphyrin compounds act not only as photosensitizers but also as radiosensitizers. In the present study, the possible use of 5-ALA as a radiosensitizer for malignant gliomas was examined in vitro. Rat glioma cell lines (9L, C6) were pre-treated with 5-ALA and exposed to ionizing irradiation. The radiosensitizing effect of 5-ALA was evaluated by colony-forming assay. Intracellular reactive oxygen species (ROS) produced by 5-ALA and irradiation were evaluated by confocal laser scanning microscopy. Pre-treatment with 5-ALA enhanced the radiosensitivity of 9L cells to single-dose ionizing irradiation compared with controls (D0 value, 4.35 ± 0.20 and 4.84 ± 0.23 Gy, respectively, P ≤ 0.05). Exposure to multi-dose ionizing irradiation revealed high radiosensitivity in both 9L and C6 cells pre-treated with 5-ALA compared to controls. Production of intracellular ROS increased in 9L cells pre-treated with 5-ALA after ionizing irradiation compared to control cells. Thus, 5-ALA functions as a specific radiosensitizer for malignant gliomas. Intracellular 5-ALA-induced PpIX plays an important role in the production of ROS and the radiosensitizing effect under ionizing irradiation conditions.

  2. Dual PI3K- and mTOR-inhibitor PI-103 can either enhance or reduce the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in tumor cells: The role of drug-irradiation schedule

    PubMed Central

    Djuzenova, Cholpon S.; Fiedler, Vanessa; Katzer, Astrid; Michel, Konstanze; Deckert, Stefanie; Zimmermann, Heiko; Sukhorukov, Vladimir L.; Flentje, Michael

    2016-01-01

    Inhibition of Hsp90 can increase the radiosensitivity of tumor cells. However, inhibition of Hsp90 alone induces the anti-apoptotic Hsp70 and thereby decreases radiosensitivity. Therefore, preventing Hsp70 induction can be a promising strategy for radiosensitization. PI-103, an inhibitor of PI3K and mTOR, has previously been shown to suppress the up-regulation of Hsp70. Here, we explore the impact of combining PI-103 with the Hsp90 inhibitor NVP-AUY922 in irradiated glioblastoma and colon carcinoma cells. We analyzed the cellular response to drug-irradiation treatments by colony-forming assay, expression of several marker proteins, cell cycle progression and induction/repair of DNA damage. Although PI-103, given 24 h prior to irradiation, slightly suppressed the NVP-AUY922-mediated up-regulation of Hsp70, it did not cause radiosensitization and even diminished the radiosensitizing effect of NVP-AUY922. This result can be explained by the activation of PI3K and ERK pathways along with G1-arrest at the time of irradiation. In sharp contrast, PI-103 not only exerted a radiosensitizing effect but also strongly enhanced the radiosensitization by NVP-AUY922 when both inhibitors were added 3 h before irradiation and kept in culture for 24 h. Possible reasons for the observed radiosensitization under this drug-irradiation schedule may be a down-regulation of PI3K and ERK pathways during or directly after irradiation, increased residual DNA damage and strong G2/M arrest 24 h thereafter. We conclude that duration of drug treatment before irradiation plays a key role in the concomitant targeting of PI3K/mTOR and Hsp90 in tumor cells. PMID:27224913

  3. Dual PI3K- and mTOR-inhibitor PI-103 can either enhance or reduce the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in tumor cells: The role of drug-irradiation schedule.

    PubMed

    Djuzenova, Cholpon S; Fiedler, Vanessa; Katzer, Astrid; Michel, Konstanze; Deckert, Stefanie; Zimmermann, Heiko; Sukhorukov, Vladimir L; Flentje, Michael

    2016-06-21

    Inhibition of Hsp90 can increase the radiosensitivity of tumor cells. However, inhibition of Hsp90 alone induces the anti-apoptotic Hsp70 and thereby decreases radiosensitivity. Therefore, preventing Hsp70 induction can be a promising strategy for radiosensitization. PI-103, an inhibitor of PI3K and mTOR, has previously been shown to suppress the up-regulation of Hsp70. Here, we explore the impact of combining PI-103 with the Hsp90 inhibitor NVP-AUY922 in irradiated glioblastoma and colon carcinoma cells. We analyzed the cellular response to drug-irradiation treatments by colony-forming assay, expression of several marker proteins, cell cycle progression and induction/repair of DNA damage. Although PI-103, given 24 h prior to irradiation, slightly suppressed the NVP-AUY922-mediated up-regulation of Hsp70, it did not cause radiosensitization and even diminished the radiosensitizing effect of NVP-AUY922. This result can be explained by the activation of PI3K and ERK pathways along with G1-arrest at the time of irradiation. In sharp contrast, PI-103 not only exerted a radiosensitizing effect but also strongly enhanced the radiosensitization by NVP-AUY922 when both inhibitors were added 3 h before irradiation and kept in culture for 24 h. Possible reasons for the observed radiosensitization under this drug-irradiation schedule may be a down-regulation of PI3K and ERK pathways during or directly after irradiation, increased residual DNA damage and strong G2/M arrest 24 h thereafter. We conclude that duration of drug treatment before irradiation plays a key role in the concomitant targeting of PI3K/mTOR and Hsp90 in tumor cells.

  4. Glutathione depletion, radiosensitization, and misonidazole potentiation in hypoxic Chinese hamster ovary cells by buthionine sulfoximine

    SciTech Connect

    Clark, E.P.; Epp, E.R.; Biaglow, J.E.; Morse-Gaudio, M.; Zachgo, E.

    1984-05-01

    Buthionine sulfoximine (BSO) inhibits the synthesis of glutathione (GSH), the major nonprotein sulfhydryl (NPSH) present in most mammalian cells. BSO exposures used in these experiments were not cytotoxic with the one exception that 2.0 mM BSO/24 hr reduced cell viability to approx.50%. However, alterations in either the cell doubling time(s) or the cell age density distribution(s) were not observed with the BSO exposures used to determine its radiosensitizing effect. BSO significantly radiosensitized hypoxic, but not aerobic, CHO cells when the GSH and NPSH concentrations were reduced to <10 and 20% of control, respectively, and maximum radiosensitivity was even achieved with ..mu..M concentrations of BSO. Furthermore, BSO exposure also enhanced the radiosensitizing effect of various concentrations of misonidazole on hypoxic CHO cells.

  5. TGF-B3 Dependent Modification of Radiosensitivity in Reporter Cells Exposed to Serum From Whole-Body Low Dose-Rate Irradiated Mice

    PubMed Central

    Altaner, Čestmír; Altanerova, Veronica; Ebbesen, Peter

    2015-01-01

    Prior findings in vitro of a TGF-β3 dependent mechanism induced by low dose-rate irradiation and resulting in increased radioresistance and removal of low dose hyper-radiosensitivity (HRS) was tested in an in vivo model. DBA/2 mice were given whole-body irradiation for 1 h at low dose-rates (LDR) of 0.3 or 0.03 Gy/h. Serum was harvested and added to RPMI (4% mouse serum and 6% bovine serum).This medium was transferred to reporter cells (T-47D breast cancer cells or T98G glioblastoma cells). The response to subsequent challenge irradiation of the reporter cells was measured by the colony assay. While serum from unirradiated control mice had no effect on the radiosensitivity in the reporter cells, serum from mice given 0.3 Gy/h or 0.03 Gy/h for 1 h removed HRS and also increased survival in response to doses up to 5 Gy. The effect lasted for at least 15 months after irradiation. TGF-β3 neutralizer added to the medium containing mouse serum inhibited the effect. Serum from mice given irradiation of 0.3 Gy/h for 1 h and subsequently treated with iNOS inhibitor 1400W did not affect radiosensitivity in reporter cells; neither did serum from the unirradiated progeny of mice given 1h LDR whole-body irradiation. PMID:26673923

  6. TGF-B3 Dependent Modification of Radiosensitivity in Reporter Cells Exposed to Serum From Whole-Body Low Dose-Rate Irradiated Mice.

    PubMed

    Edin, Nina Jeppesen; Altaner, Čestmír; Altanerova, Veronica; Ebbesen, Peter

    2015-01-01

    Prior findings in vitro of a TGF-β3 dependent mechanism induced by low dose-rate irradiation and resulting in increased radioresistance and removal of low dose hyper-radiosensitivity (HRS) was tested in an in vivo model. DBA/2 mice were given whole-body irradiation for 1 h at low dose-rates (LDR) of 0.3 or 0.03 Gy/h. Serum was harvested and added to RPMI (4% mouse serum and 6% bovine serum).This medium was transferred to reporter cells (T-47D breast cancer cells or T98G glioblastoma cells). The response to subsequent challenge irradiation of the reporter cells was measured by the colony assay. While serum from unirradiated control mice had no effect on the radiosensitivity in the reporter cells, serum from mice given 0.3 Gy/h or 0.03 Gy/h for 1 h removed HRS and also increased survival in response to doses up to 5 Gy. The effect lasted for at least 15 months after irradiation. TGF-β3 neutralizer added to the medium containing mouse serum inhibited the effect. Serum from mice given irradiation of 0.3 Gy/h for 1 h and subsequently treated with iNOS inhibitor 1400W did not affect radiosensitivity in reporter cells; neither did serum from the unirradiated progeny of mice given 1h LDR whole-body irradiation.

  7. Cancer stem cell contribution to glioblastoma invasiveness

    PubMed Central

    2013-01-01

    Glioblastoma (GBM) is the most aggressive and lethal brain tumor in adults. Its invasive nature currently represents the most challenging hurdle to surgical resection. The mechanism adopted by GBM cells to carry out their invasive strategy is an intricate program that recalls what takes place in embryonic cells during development and in carcinoma cells during metastasis formation, the so-called epithelial-to-mesenchymal transition. GBM cells undergo a series of molecular and conformational changes shifting the tumor toward mesenchymal traits, including extracellular matrix remodeling, cytoskeletal re-patterning, and stem-like trait acquisition. A deeper understanding of the mechanisms driving the whole infiltrative process represents the first step toward successful treatment of this pathology. Here, we review recent findings demonstrating the invasive nature of GBM cancer stem cells, together with novel candidate molecules associated with both cancer stem cell biology and GBM invasion, like doublecortin and microRNAs. These findings may affect the design of effective therapies currently not considered for GBM invasive progression. PMID:23510696

  8. Gefitinib radiosensitizes non-small cell lung cancer cells through inhibition of ataxia telangiectasia mutated

    PubMed Central

    2010-01-01

    Purpose Inhibitors of epidermal growth factor receptor (EGFR) have shown dramatic results in a subset of patients with non-small cell lung cancer (NSCLC), and have also been shown to enhance the effect of ionizing radiation (IR). We investigated how gefitinib, an orally given EGFR inhibitor for NSCLC patients, can radiosensitize NSCLC cells. Experimental Design and Results In clonogenic survival assays performed in three NSCLC cell lines, gefitinib radiosensitized NCI-H460 and VMRC-LCD but not A549 cells. Gefitinib pretreatment induced multinucleated cells after IR exposure in NCI-H460 and VMRC-LCD, but not in A549 cells. Gefitinib also inhibited activation of ataxia telangiectasia mutated (ATM) after IR-exposure in NCI-H460 and VMRC-LCD, but not in A549 cells. An ATM specific inhibitor increased IR-induced multinucleated cells in both NCI-H460 and A549 cells. Gefitinib pretreatment inhibited the gradual decrease of γH2AX foci relative to time after IR exposure in NCI-H460 but not in A549 cells. Suppression of COX-2 in A549 cells induced multinucleated cells and caused radiosensitization after gefitinib+IR treatment. In contrast, COX-2 overexpression in NCI-H460 cells attenuated the induction of multinucleation and radiosensitization after the same treatment. Conclusions Our results suggest that gefitinib radiosensitizes NSCLC cells by inhibiting ATM activity and therefore inducing mitotic cell death, and that COX-2 overexpression in NSCLC cells inhibits this action of gefitinib. PMID:20731837

  9. Valproic acid promotes radiosensitization in meningioma stem-like cells.

    PubMed

    Chiou, Hsin-Ying Clair; Lai, Wen-Kuo; Huang, Li-Chun; Huang, Shih-Ming; Chueh, Sheau-Huei; Ma, Hsin-I; Hueng, Dueng-Yuan

    2015-04-30

    Although meningioma stem-like cells have been isolated and characterized, their therapeutic targeting remains a challenge. Meningioma sphere cells (MgSCs) with cancer stem cells properties show chemo- and radioresistance in comparison with meningioma adherent cells (MgACs). We tested the effect of valproic acid (VPA), a commonly used anti-epileptic drug, which passes the blood brain barrier, on cultured MgSCs. VPA reduced the viability of MgSCs and MgACs. In MgSCs, treatment with VPA increased radio-sensitivity, expression of p-cdc2, p-H2AX and cleaved caspase-3 and PARP. Anchorage-independent growth (AIG) was reduced by VPA. AIG was further reduced by combined treatment with irradiation. Expression of a stem cell marker, Oct4, was reduced by VPA. Oct4 was further decreased by combined treatment with irradiation. These results suggest that VPA may be a potential treatment for meningioma through targeting meningioma stem-like cells.

  10. Berberine Radiosensitizes Human Esophageal Cancer Cells by Downregulating Homologous Recombination Repair Protein RAD51

    PubMed Central

    Liu, Zhaojian; Wang, Yu; Zhao, Minnan; Hao, Chunyan; Feng, Shuai; Guo, Haiyang; Xu, Bing; Yang, Qifeng; Gong, Yaoqin; Shao, Changshun

    2011-01-01

    Background Esophageal squamous cell carcinomas (ESCC) have poor prognosis. While combined modality of chemotherapy and radiotherapy increases survival, most patients die within five years. Development of agents that confer cancer cell-specific chemo- and radiosensitivity may improve the therapy of ESCC. We here reported the discovery of berberine as a potent radiosensitizing agent on ESCC cells. Principal Findings Berberine at low concentrations (<15 µM) substantially radiosensitized ESCC cells. X-ray induced DNA double-strand breaks (DSBs) persist longer in ESCC cells pretreated with berberine. Berberine pretreatment led to a significant downregulation of RAD51, a key player in homologous recombination repair, in ESCC cells, but not in non-malignant human cells. Downregulation of RAD51 by RNA interference similarly radiosensitized the cancer cells, and, conversely, introduction of exogenous RAD51 was able to significantly counteract the radiosensitizing effect of berberine, thus establishing RAD51 as a key determinant in radiation sensitivity. We also observed that RAD51 was commonly overexpressed in human ESCC tissues, suggesting that it is necessary to downregulate RAD51 to achieve high radio- or chemotherapeutic efficacy of ESCC in clinic, because overexpression of RAD51 is known to confer radio- and chemoresistance. Conclusions/Significance Berberine can effectively downregulate RAD51 in conferring radiosensitivity on esophageal cancer cells. Its clinical application as an adjuvant in chemotherapy and radiotherapy of esophageal cancers should be explored. PMID:21858113

  11. NETRIN-4 protects glioblastoma cells FROM temozolomide induced senescence.

    PubMed

    Li, Li; Hu, Yizhou; Ylivinkka, Irene; Li, Huini; Chen, Ping; Keski-Oja, Jorma; Hyytiäinen, Marko

    2013-01-01

    Glioblastoma multiforme is the most common primary tumor of the central nervous system. The drug temozolomide (TMZ) prolongs lifespan in many glioblastoma patients. The sensitivity of glioblastoma cells to TMZ is interfered by many factors, such as the expression of O-6-methylguanine-DNA methyltransferase (MGMT) and activation of AKT signaling. We have recently identified the interaction between netrin-4 (NTN4) and integrin beta-4 (ITGB4), which promotes glioblastoma cell proliferation via activating AKT-mTOR signaling pathway. In the current work we have explored the effect of NTN4/ITGB4 interaction on TMZ induced glioblastoma cell senescence. We report here that the suppression of either ITGB4 or NTN4 in glioblastoma cell lines significantly enhances cellular senescence. The sensitivity of GBM cells to TMZ was primarily determined by the expression of MGMT. To omit the effect of MGMT, we concentrated on the cell lines devoid of expression of MGMT. NTN4 partially inhibited TMZ induced cell senescence and rescued AKT from dephosphorylation in U251MG cells, a cell line bearing decent levels of ITGB4. However, addition of exogenous NTN4 displayed no significant effect on TMZ induced senescence rescue or AKT activation in U87MG cells, which expressed ITGB4 at low levels. Furthermore, overexpression of ITGB4 combined with exogenous NTN4 significantly attenuated U87MG cell senescence induced by TMZ. These data suggest that NTN4 protects glioblastoma cells from TMZ induced senescence, probably via rescuing TMZ triggered ITGB4 dependent AKT dephosphorylation. This suggests that interfering the interaction between NTN4 and ITGB4 or concomitant use of the inhibitors of the AKT pathway may improve the therapeutic efficiency of TMZ.

  12. Ionizing Radiation in Glioblastoma Initiating Cells

    PubMed Central

    Rivera, Maricruz; Sukhdeo, Kumar; Yu, Jennifer

    2013-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a median survival of 12–15 months with treatment consisting of surgical resection followed by ionizing radiation (IR) and chemotherapy. Even aggressive treatment is often palliative due to near universal recurrence. Therapeutic resistance has been linked to a subpopulation of GBM cells with stem cell-like properties termed GBM initiating cells (GICs). Recent efforts have focused on elucidating resistance mechanisms activated in GICs in response to IR. Among these, GICs preferentially activate the DNA damage response (DDR) to result in a faster rate of double-strand break (DSB) repair induced by IR as compared to the bulk tumor cells. IR also activates NOTCH and the hepatic growth factor (HGF) receptor, c-MET, signaling cascades that play critical roles in promoting proliferation, invasion, and resistance to apoptosis. These pathways are preferentially activated in GICs and represent targets for pharmacologic intervention. While IR provides the benefit of improved survival, it paradoxically promotes selection of more malignant cellular phenotypes of GBM. As reviewed here, finding effective combinations of radiation and molecular inhibitors to target GICs and non-GICs is essential for the development of more effective therapies. PMID:23579692

  13. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells.

    PubMed

    Klein, Stefanie; Dell'Arciprete, Maria L; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Gonzalez, Mónica C; Kryschi, Carola

    2013-05-03

    The applicability of ultrasmall uncapped and aminosilanized oxidized silicon nanoparticles (SiNPs and NH2-SiNPs) as radiosensitizer was studied by internalizing these nanoparticles into human breast cancer (MCF-7) and mouse fibroblast cells (3T3) that were exposed to X-rays at a single dose of 3 Gy. While SiNPs did not increase the production of reactive oxygen species (ROS) in X-ray treated cells, the NH2-SiNPs significantly enhanced the ROS formation. This is due to the amino functionality as providing positive surface charges in aqueous environment. The NH2-SiNPs were observed to penetrate into the mitochondrial membrane, wherein these nanoparticles provoked oxidative stress. The NH2-SiNPs induced mitochondrial ROS production was confirmed by the determination of an increased malondialdehyde level as representing a gauge for the extent of membrane lipid peroxidation. X-ray exposure of NH2-SiNPs incubated MCF-7 and 3T3 cells increased the ROS concentration for 180%, and 120%, respectively. Complementary cytotoxicity studies demonstrate that these silicon nanoparticles are more cytotoxic for MCF-7 than for 3T3 cells.

  14. Inhibiting CD146 by its Monoclonal Antibody AA98 Improves Radiosensitivity of Cervical Cancer Cells

    PubMed Central

    Cheng, Huawen

    2016-01-01

    Background Cervical cancer is one of the major causes of cancer death of females worldwide. Radiotherapy is considered effective for cervical cancer treatment, but the low radiosensitivity found in some cases severely affects therapeutic outcomes. This study aimed to reveal the role of CD146, an important adhesion molecule facilitating tumor angiogenesis, in regulating radiosensitivity of cervical cancer cells. Material/Methods CD146 protein expression was compared in normal cells, cervical cancer cells with lower radiosensitivity, and cervical cancer cells with higher sensitivity from cervical squamous cell carcinoma patients. Anti-CD146 monoclonal antibody AA98 was used to inhibit CD146 in human cervical cancer SiHa cells with relatively low radiosensitivity, and then the cell survival and apoptosis changes after radiation were detected by colony formation assay and flow cytometry. Results CD146 protein was significantly up-regulated in cervical cancer cells (P<0.001), especially in cancer cells with lower radiosensitivity. The SiHa cells treated with AA98 showed more obvious inhibition in cell survival (P<0.05) and promotion in cell apoptosis (P<0.01) after radiation, compared to the untreated cells. More dramatic changes in apoptotic factors Caspase 3 and Bcl-XL were also detected in AA98-treated cells. Conclusions These results indicate that inhibiting CD146 improves the effect of radiation in suppressing SiHa cells. This study shows the potential of CD146 as a target for increasing radiosensitivity of cervical cancer cells, which might allow improvement in treatment outcome in cervical cancer. Further studies are necessary for understanding the detailed mechanism of CD146 in regulating radiosensitivity. PMID:27647179

  15. ALG2 regulates glioblastoma cell proliferation, migration and tumorigenicity.

    PubMed

    Zhang, Dunke; Wang, Feng; Pang, Yi; Zhao, Erhu; Zhu, Sunqin; Chen, Fei; Cui, Hongjuan

    2017-04-29

    Apoptosis-linked gene-2 (ALG-2), also known as programmed cell death 6 (PDCD6), has recently been reported to be aberrantly expressed in various tumors and required for tumor cell viability. The aim of the present study was to investigate whether ALG-2 plays a crucial role in tumor cell proliferation, migration and tumorigenicity. In this study, we examined the expression of PDCD6 in glioblastoma cell lines and found that ALG-2 was generally expressed in glioblastoma cell lines. We also performed an analysis of an online database and found that high expression of ALG-2 was associated with poor prognosis (p = 0.039). We found that over-expression of ALG2 in glioblastoma could inhibit cell proliferation and, conversely, that down-regulation of ALG2 could promote cell proliferation. Further studies showed that over-expression of ALG2 inhibited the migration of tumor cells, whereas down-regulation of ALG2 promoted tumor cell migration. Finally, in vitro and in vivo studies showed that over-expression of ALG2 inhibited the tumorigenic ability of tumor cells, while down-regulation of ALG2 promoted tumor cell tumorigenic ability. In conclusion, ALG2 has a tumor suppressive role in glioblastoma and might be a potential target for the treatment of glioblastoma. Copyright © 2017. Published by Elsevier Inc.

  16. Differentiation and radiosensitivity of hemopoietic stem cells of mice during hypokinesia

    NASA Technical Reports Server (NTRS)

    Shvets, V. N.

    1980-01-01

    The potential for differentiation and radiosensitivity of the stem hemopoietic cells (KOE) under conditions of initial and later hypokinesia is examined. It is established that in the initial period of hypokinesia (3 days) when a stress reaction prevails, changes occur in the erythroid differentiation and radiosensitivity of KOE. This effect is associated with redistribution of T-lymphocytes that increase in number in the bone marrow of mice during hypokinesia. At later periods of hypokinesia (30 days) when changes in the organism are related to hypokinesia proper, differentiation and radiosensitivity of KOE were normalized.

  17. Enhanced radiosensitization of p53 mutant cells by oleamide

    SciTech Connect

    Lee, Yoon-Jin; Chung, Da Yeon; Lee, Su-Jae; Ja Jhon, Gil; Lee, Yun-Sil . E-mail: yslee@kcch.re.kr

    2006-04-01

    Purpose: Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. Methods and Materials: NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Results: Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Conclusions: Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.

  18. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  19. Targeting Aggressive Cancer Stem Cells in Glioblastoma

    PubMed Central

    Seymour, Tracy; Nowak, Anna; Kakulas, Foteini

    2015-01-01

    Glioblastoma (GBM) is the most common and fatal type of primary brain tumor. Gliosarcoma (GSM) is a rarer and more aggressive variant of GBM that has recently been considered a potentially different disease. Current clinical treatment for both GBM and GSM includes maximal surgical resection followed by post-operative radiotherapy and concomitant and adjuvant chemotherapy. Despite recent advances in treating other solid tumors, treatment for GBM and GSM still remains palliative, with a very poor prognosis and a median survival rate of 12–15 months. Treatment failure is a result of a number of causes, including resistance to radiotherapy and chemotherapy. Recent research has applied the cancer stem cells theory of carcinogenesis to these tumors, suggesting the existence of a small subpopulation of glioma stem-like cells (GSCs) within these tumors. GSCs are thought to contribute to tumor progression, treatment resistance, and tumor recapitulation post-treatment and have become the focus of novel therapy strategies. Their isolation and investigation suggest that GSCs share critical signaling pathways with normal embryonic and somatic stem cells, but with distinct alterations. Research must focus on identifying these variations as they may present novel therapeutic targets. Targeting pluripotency transcription factors, SOX2, OCT4, and Nanog homeobox, demonstrates promising therapeutic potential that if applied in isolation or together with current treatments may improve overall survival, reduce tumor relapse, and achieve a cure for these patients. PMID:26258069

  20. Radiosensitivity of testicular cells in the fetal mouse

    SciTech Connect

    Vergouwen, R.P.F.A.; Roepers-Gajadien, H.L.; Rooij, D.G. de; Huiskamp, R.; Bas, R.J.; Davids, J.A.G.

    1995-01-01

    The effects of prenatal X irradiation on postnatal development of the CBA/P mouse testis was studied. At days 14, 15 and 18 post coitus pregnant female mice were exposed to single doses of X rays ranging from 0.25-1.5 Gy. Higher doses resulted in extensive loss of fetal mice. In the male offspring, at days 3 and 31 post partum, the numbers of gonocytes, type A spermatogonia and Sertoli cells per testis were determined using the disector method. Furthermore, after irradiation at day 15 post coitus, the numbers of Leydig cells, mesenchymal cells, macrophages, myoid cells, lymphatic endothelial cells, endothelial cells and perivascular cells per testis were also determined at days 3 and 31 post partum. At day 3 post partum, the number of germ cells was decreased after irradiation at days 14 and 15 post coitus. A D{sub o} value of 0.7 Gy was determined for the radiosensitivity of the gonocytes at day 14 post coitus. A D{sub o} value of 0.8 Gy was determined for the gonocytes at day 15 post coitus which, however, seems to be less accurate. No accurate D{sub o} value could be determined for the gonocytes at day 18 post coitus. At day 31 post partum, the repopulation of the seminiferous epithelium as well as testis weights and tubular diameters were more affected by irradiation with increasing age of the mice at the time of irradiation. The percentage of tubular cross sections showing spermatids decreased with increasing dose after irradiation at days 15 and 18 post coitus, but not after irradiation at day 14 post coitus. Furthermore, in tubular cross sections showing spermatids, exposure of testes to 1.25 and 1.5 Gy at day 18 post coitus resulted in significantly lower numbers of spermatids per cross section when compared to those testes exposed to the same doses at day 15 post coitus. 30 refs., 7 figs., 1 tab.

  1. Molecular genetic analysis of giant cell glioblastomas.

    PubMed Central

    Meyer-Puttlitz, B.; Hayashi, Y.; Waha, A.; Rollbrocker, B.; Boström, J.; Wiestler, O. D.; Louis, D. N.; Reifenberger, G.; von Deimling, A.

    1997-01-01

    Glioblastomas (GBMs) are a heterogeneous group of tumors. Recently, distinct molecular genetic alterations have been linked to subgroups of patients with GBM. Giant cell (gc)GBMs are a rare variant of GBM characterized by a marked preponderance of multinucleated giant cells. Several reports have associated this entity with a more favorable prognosis than the majority of GBMs. To evaluate whether gcGBM may also represent a genetically defined subgroup of GBM, we analyzed a series of 19 gcGBMs for mutations in the TP53 gene for amplification of the EGFR and CDK4 genes and for homozygous deletions in the CDKN2A (p16/MTS1) gene. Seventeen of nineteen gcGBMs carried TP53 mutations whereas EGFR and CDK4 gene amplification was seen in only one tumor each and homozygous deletion of CDKN2A was not observed at all. The strikingly high incidence of TP53 mutations and the relative absence of other genetic alterations groups gcGBM together with a previously recognized molecular genetic variant of GBM (type 1 GBM). It is tempting to speculate that the better prognosis of gcGBM patients may result from the low incidence of EGFR amplification and CDKN2A deletion, changes known for their growth-promoting potential. Images Figure 1 PMID:9284834

  2. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  3. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  4. Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition.

    PubMed

    Toulany, Mahmoud; Mihatsch, Julia; Holler, Marina; Chaachouay, Hassan; Rodemann, H Peter

    2014-05-01

    Cisplatin activates ataxia-telangiectasia-mutated (ATM), a protein with roles in DNA repair, cell cycle progression and autophagy. We investigated the radiosensitizing effect of cisplatin with respect to its effect on ATM pathway activation. Non-small cell lung cancer cells (NSCLC) cell lines (A549, H460) and human fibroblast (ATM-deficient AT5, ATM-proficient 1BR3) cells were used. The effects of cisplatin combined with irradiation on ATM pathway activity, clonogenicity, DNA double-strand break (DNA-DSB) repair and cell cycle progression were analyzed with Western blotting, colony formation and γ-H2AX foci assays as well as FACS analysis, respectively. Cisplatin radiosensitized H460 cells, but not A549 cells. Radiosensitization of H460 cells was not due to impaired DNA-DSB repair, increased apoptosis or cell cycle dysregulation. The lack of radiosensitization demonstrated for A549 cells was associated with cisplatin-mediated stimulation of ATM (S1981) and AMPKα (T172) phosphorylation and autophagy. However, in both cell lines inhibition of ATM and autophagy by KU-55933 and chloroquine diphosphate (CQ) respectively resulted in a significant radiosensitization. Combined treatment with the AMPK inhibitor compound-C led to radiosensitization of A549 but not of H460 cells. As compared to the treatment with KU-55933 alone, radiosensitivity of A549 cells was markedly stimulated by the combination of KU-55933 and cisplatin. However, the combination of CQ and cisplatin did not modulate the pattern of radiation sensitivity of A549 or H460 cells. In accordance with the results that cisplatin via stimulation of ATM activity can abrogate its radiosensitizing effect, ATM deficient cells were significantly sensitized to ionizing radiation by cisplatin. The results obtained indicate that ATM targeting can potentiate cisplatin-induced radiosensitization. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Auranofin radiosensitizes tumor cells through targeting thioredoxin reductase and resulting overproduction of reactive oxygen species.

    PubMed

    Wang, Hui; Bouzakoura, Soumaya; de Mey, Sven; Jiang, Heng; Law, Kalun; Dufait, Inès; Corbet, Cyril; Verovski, Valeri; Gevaert, Thierry; Feron, Olivier; Van den Berge, Dirk; Storme, Guy; De Ridder, Mark

    2017-05-30

    Auranofin (AF) is an anti-arthritic drug considered for combined chemotherapy due to its ability to impair the redox homeostasis in tumor cells. In this study, we asked whether AF may in addition radiosensitize tumor cells by targeting thioredoxin reductase (TrxR), a critical enzyme in the antioxidant defense system operating through the reductive protein thioredoxin. Our principal findings in murine 4T1 and EMT6 tumor cells are that AF at 3-10 μM is a potent radiosensitizer in vitro, and that at least two mechanisms are involved in TrxR-mediated radiosensitization. The first one is linked to an oxidative stress, as scavenging of reactive oxygen species (ROS) by N-acetyl cysteine counteracted radiosensitization. We also observed a decrease in mitochondrial oxygen consumption with spared oxygen acting as a radiosensitizer under hypoxic conditions. Overall, radiosensitization was accompanied by ROS overproduction, mitochondrial dysfunction, DNA damage and apoptosis, a common mechanism underlying both cytotoxic and antitumor effects of AF. In tumor-bearing mice, a simultaneous disruption of the thioredoxin and glutathione systems by the combination of AF and buthionine sulfoximine was shown to significantly improve tumor radioresponse. In conclusion, our findings illuminate TrxR in cancer cells as an exploitable radiobiological target and warrant further validation of AF in combination with radiotherapy.

  6. Auranofin radiosensitizes tumor cells through targeting thioredoxin reductase and resulting overproduction of reactive oxygen species

    PubMed Central

    Wang, Hui; Bouzakoura, Soumaya; de Mey, Sven; Jiang, Heng; Law, Kalun; Dufait, Inès; Corbet, Cyril; Verovski, Valeri; Gevaert, Thierry; Feron, Olivier; Van den Berge, Dirk; Storme, Guy; De Ridder, Mark

    2017-01-01

    Auranofin (AF) is an anti-arthritic drug considered for combined chemotherapy due to its ability to impair the redox homeostasis in tumor cells. In this study, we asked whether AF may in addition radiosensitize tumor cells by targeting thioredoxin reductase (TrxR), a critical enzyme in the antioxidant defense system operating through the reductive protein thioredoxin. Our principal findings in murine 4T1 and EMT6 tumor cells are that AF at 3–10 μM is a potent radiosensitizer in vitro, and that at least two mechanisms are involved in TrxR-mediated radiosensitization. The first one is linked to an oxidative stress, as scavenging of reactive oxygen species (ROS) by N-acetyl cysteine counteracted radiosensitization. We also observed a decrease in mitochondrial oxygen consumption with spared oxygen acting as a radiosensitizer under hypoxic conditions. Overall, radiosensitization was accompanied by ROS overproduction, mitochondrial dysfunction, DNA damage and apoptosis, a common mechanism underlying both cytotoxic and antitumor effects of AF. In tumor-bearing mice, a simultaneous disruption of the thioredoxin and glutathione systems by the combination of AF and buthionine sulfoximine was shown to significantly improve tumor radioresponse. In conclusion, our findings illuminate TrxR in cancer cells as an exploitable radiobiological target and warrant further validation of AF in combination with radiotherapy. PMID:28415723

  7. Competitive but Not Allosteric mTOR Kinase Inhibition Enhances Tumor Cell Radiosensitivity1

    PubMed Central

    Hayman, Thomas J; Kramp, Tamalee; Kahn, Jenna; Jamal, Muhammad; Camphausen, Kevin; Tofilon, Philip J

    2013-01-01

    The mechanistic target of rapamycin (mTOR) is a critical kinase in the regulation of gene translation and has been suggested as a potential target for radiosensitization. The goal of this study was to compare the radiosensitizing activities of the allosteric mTOR inhibitor rapamycin with that of the competitive mTOR inhibitor PP242. On the basis of immunoblot analyses, whereas rapamycin only partially inhibited mTOR complex 1 (mTORC1) activity and had no effect on mTOR complex 2 (mTORC2), PP242 inhibited the activity of both mTOR-containing complexes. Irradiation alone had no effect on mTORC1 or mTORC2 activity. Clonogenic survival was used to define the effects of the mTOR inhibitors on in vitro radiosensitivity. In the two tumor cell lines evaluated, PP242 treatment 1 hour before irradiation increased radiosensitivity, whereas rapamycin had no effect. Addition of PP242 after irradiation also enhanced the radiosensitivity of both tumor lines. To investigate the mechanism of radiosensitization, the induction and repair of DNA double-strand breaks were evaluated according γH2AX foci. PP242 exposure did not influence the initial level of γH2AX foci after irradiation but did significantly delay the dispersal of radiation-induced γH2AX foci. In contrast to the tumor cell lines, the radiosensitivity of a normal human fibroblast cell line was not influenced by PP242. Finally, PP242 administration to mice bearing U251 xenografts enhanced radiation-induced tumor growth delay. These results indicate that in a preclinical tumor model PP242 enhances tumor cell radiosensitivity both in vitro and in vivo and suggest that this effect involves an inhibition of DNA repair. PMID:23730416

  8. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    PubMed Central

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  9. Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis.

    PubMed

    Ulus-Senguloglu, G; Arlett, C F; Plowman, P N; Parnell, J; Patel, N; Bourton, E C; Parris, C N

    2012-10-23

    The objective of this study was to determine the molecular mechanisms responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. γ-H2AX foci assays were used to determine the efficiency of DNA double-strand break (DSB) repair in cells. Quantitative PCR (Q-PCR) established the expression levels of key DNA DSB repair genes. Imaging flow cytometry using annexin V-FITC was used to compare artemis expression and apoptosis in cells. Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the γ-H2AX foci assay. The Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene, which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Overexpression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. We conclude that elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity.

  10. Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis

    PubMed Central

    Ulus-Senguloglu, G; Arlett, C F; Plowman, P N; Parnell, J; Patel, N; Bourton, E C; Parris, C N

    2012-01-01

    Background: The objective of this study was to determine the molecular mechanisms responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Methods: Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. γ-H2AX foci assays were used to determine the efficiency of DNA double-strand break (DSB) repair in cells. Quantitative PCR (Q-PCR) established the expression levels of key DNA DSB repair genes. Imaging flow cytometry using annexin V-FITC was used to compare artemis expression and apoptosis in cells. Results: Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the γ-H2AX foci assay. The Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene, which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Overexpression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. Conclusion: We conclude that elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity. PMID:23093295

  11. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells.

    PubMed

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G; Li, Xiaoyan; Moran, Meena S

    2013-02-08

    The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F+RT). This study was conducted to assess the effects of fulvestrant alone vs. F+RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F+RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F+RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F+RT was 0.885±0.013 vs. 0.622±0.029 @2 Gy, 0.599±0.045 vs. 0.475±0.054 @4 Gy, and 0.472±0.021 vs. 0.380±0.018 @6 Gy RT (p=0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F+RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p<0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F+RT compared with irradiation alone. F+RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F+RT increases breast cancer cell radiosensitivity compared with radiation alone. These findings have salient implications for designing clinical trials using fulvestrant and radiation therapy.

  12. Differential radiosensitivity in cultured B-16 melanoma cells following interrupted melanogenesis induced by glucosamine

    SciTech Connect

    Mileo, A.M.; Mattei, E.; Fanuele, M.; Delpino, A.; Ferrini, U. )

    1989-05-01

    The relationship between cell pigmentation and radiosensitivity was investigated in a cell model in which melanogenesis was suppressed by a glycosylation inhibitor. It was found that X-irradiation of melanotic B-16 melanoma cells and their amelanotic counterparts, obtained by glucosamine treatment, showed an inverse correlation between radiosensitivity and melanin contents. Since melanogenesis interruption by glucosamine does not affect the DNA repair capacity of nonpigmented cells, it is likely that intracellular melanins play a role in the relative resistance of pigmented cells to X-irradiation.

  13. Radiosensitization Effect of STI-571 on Pancreatic Cancer Cells In Vitro

    SciTech Connect

    Chung, Hye Won; Wen, Jing; Lim, Jong-Baeck; Bang, Seung Min; Park, Seung Woo; Song, Si Young

    2009-11-01

    Purpose: To examine STI-571-induced radiosensitivity in human pancreatic cancer cells in vitro. Methods and Materials: Three human pancreatic cancer cell lines (Bxpc-3, Capan-1, and MiaPaCa-2) exhibiting different expression levels of c-Kit and platelet-derived growth factor receptor beta (PDGFRbeta) and showing different K-ras mutation types were used. For evaluation of the antitumor activity of STI-571 in combination with radiation, clonogenic survival assays, Western blot analysis, and the annexin V/propidium iodide assay with microscopic evaluation by 4',6-diamidino-2-phenylindole were conducted. Results: Dramatic phosphorylated (p)-c-Kit and p-PDGFRbeta attenuation, a modest dose- and time-dependent growth inhibition, and significant radiosensitization were observed after STI-571 treatment in view of apoptosis, although the levels of growth inhibition and increased radiosensitization were different according to cell lines. The grades of radiosensitivity corresponded to the attenuation levels of p-c-Kit and p-PDGFRbeta by STI-571, particularly to those of p-c-Kit, and the radiosensitivity was partially affected by K-ras mutation in pancreatic cancer cells. Among downstream pathways associated with c-Kit or PDGFRbeta, p-PLCgamma was more closely related to radiosensitivity compared with p-Akt1 or p-extracellular signal-regulated kinase 1. Conclusion: STI-571 enhances radiation response in pancreatic cancer cells. This effect is affected by the attenuation levels of p-c-Kit or p-PDGFRbeta, and K-ras mutation status. Among them, p-c-Kit plays more important roles in the radiosensitivity in pancreatic cancer compared with p-PDGFRbeta or K-ras mutation status.

  14. Nimotuzumab promotes radiosensitivity of EGFR-overexpression esophageal squamous cell carcinoma cells by upregulating IGFBP-3

    PubMed Central

    2012-01-01

    Background Epidermal growth factor receptor (EGFR) is suggested to predict the radiosensitivity and/or prognosis of human esophageal squamous cell carcinoma (ESCC). The objective of this study was to investigate the efficacy of Nimotuzumab (an anti-EGFR monoclonal antibody) on ESCC radiotherapy (RT) and underlying mechanisms. Methods Nimotuzumab was administrated to 2 ESCC cell lines KYSE30 and TE-1 treated with RT. Cell growth, colony formation and apoptosis were used to measure anti-proliferation effects. The method of RNA interference was used to investigate the role of insulin-like growth factor binding protein-3 (IGFBP-3) in ESCC cells radiosensitivity treated with Nimotuzumab. In vivo effect of Nimotuzumab on ESCC radiotherapy was done using a mouse xenograft model. Results Nimotuzumab enhanced radiation response of KYSE30 cells (with high EGFR expression) in vitro, as evidenced by increased radiation-inhibited cell growth and colony formation and radiation-mediated apoptosis. Mechanism study revealed that Nimotuzumab inhibited phosphorylated EGFR (p-EGFR) induced by EGF in KYSE30 cells. In addition, knockdown of IGFBP-3 by short hairpin RNA significantly reduced KYSE30 cells radiosensitivity (P<0.05), and even after the administration of Nimotuzumab, the RT response of IGFBP-3 silenced KYSE30 cells was not enhanced (P>0.05). In KYSE30 cell xenografts, Nimotuzumab combined with radiation led to significant tumor growth delay, compared with that of radiation alone (P=0.029), and also with IGFBP-3 up-regulation in tumor tissue. Conclusions Nimotuzumab could enhance the RT effect of ESCC cells with a functional active EGFR pathway. In particular, the increased ESCC radiosensitivity by Nimotuzumab might be dependent on the up-regulation of IGFBP-3 through EGFR-dependent pathway. PMID:23232108

  15. Nimotuzumab promotes radiosensitivity of EGFR-overexpression esophageal squamous cell carcinoma cells by upregulating IGFBP-3.

    PubMed

    Zhao, Lei; He, Li-Ru; Xi, Mian; Cai, Mu-Yan; Shen, Jing-Xian; Li, Qiao-Qiao; Liao, Yi-Ji; Qian, Dong; Feng, Zi-Zhen; Zeng, Yi-Xin; Xie, Dan; Liu, Meng-Zhong

    2012-12-11

    Epidermal growth factor receptor (EGFR) is suggested to predict the radiosensitivity and/or prognosis of human esophageal squamous cell carcinoma (ESCC). The objective of this study was to investigate the efficacy of Nimotuzumab (an anti-EGFR monoclonal antibody) on ESCC radiotherapy (RT) and underlying mechanisms. Nimotuzumab was administrated to 2 ESCC cell lines KYSE30 and TE-1 treated with RT. Cell growth, colony formation and apoptosis were used to measure anti-proliferation effects. The method of RNA interference was used to investigate the role of insulin-like growth factor binding protein-3 (IGFBP-3) in ESCC cells radiosensitivity treated with Nimotuzumab. In vivo effect of Nimotuzumab on ESCC radiotherapy was done using a mouse xenograft model. Nimotuzumab enhanced radiation response of KYSE30 cells (with high EGFR expression) in vitro, as evidenced by increased radiation-inhibited cell growth and colony formation and radiation-mediated apoptosis. Mechanism study revealed that Nimotuzumab inhibited phosphorylated EGFR (p-EGFR) induced by EGF in KYSE30 cells. In addition, knockdown of IGFBP-3 by short hairpin RNA significantly reduced KYSE30 cells radiosensitivity (P<0.05), and even after the administration of Nimotuzumab, the RT response of IGFBP-3 silenced KYSE30 cells was not enhanced (P>0.05). In KYSE30 cell xenografts, Nimotuzumab combined with radiation led to significant tumor growth delay, compared with that of radiation alone (P=0.029), and also with IGFBP-3 up-regulation in tumor tissue. Nimotuzumab could enhance the RT effect of ESCC cells with a functional active EGFR pathway. In particular, the increased ESCC radiosensitivity by Nimotuzumab might be dependent on the up-regulation of IGFBP-3 through EGFR-dependent pathway.

  16. MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells

    PubMed Central

    Bridges, Kathleen A.; Chen, Xingxing; Liu, Huifeng; Rock, Crosby; Buchholz, Thomas A.; Shumway, Stuart D.; Skinner, Heath D.; Meyn, Raymond E.

    2016-01-01

    Radiotherapy is commonly used to treat a variety of solid tumors but improvements in the therapeutic ratio are sorely needed. The aim of this study was to assess the Chk1 kinase inhibitor, MK-8776, for its ability to radiosensitize human tumor cells. Cells derived from NSCLC and HNSCC cancers were tested for radiosensitization by MK-8776. The ability of MK-8776 to abrogate the radiation-induced G2 block was determined using flow cytometry. Effects on repair of radiation-induced DNA double strand breaks (DSBs) were determined on the basis of rad51, γ-H2AX and 53BP1 foci. Clonogenic survival analyses indicated that MK-8776 radiosensitized p53-defective tumor cells but not lines with wild-type p53. Abrogation of the G2 block was evident in both p53-defective cells and p53 wild-type lines indicating no correlation with radiosensitization. However, only p53-defective cells entered mitosis harboring unrepaired DSBs. MK-8776 appeared to inhibit repair of radiation-induced DSBs at early times after irradiation. A comparison of MK-8776 to the wee1 inhibitor, MK-1775, suggested both similarities and differences in their activities. In conclusion, MK-8776 radiosensitizes tumor cells by mechanisms that include abrogation of the G2 block and inhibition of DSB repair. Our findings support the clinical evaluation of MK-8776 in combination with radiation. PMID:27690219

  17. The Dynamics of Interactions Among Immune and Glioblastoma Cells.

    PubMed

    Eder, Katalin; Kalman, Bernadette

    2015-12-01

    Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies.

  18. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    SciTech Connect

    Hirai, Takahisa; Saito, Soichiro; Fujimori, Hiroaki; Matsushita, Keiichiro; Nishio, Teiji; Okayasu, Ryuichi; Masutani, Mitsuko

    2016-09-09

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.

  19. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells.

    PubMed

    Ramanauskiene, Kristina; Raudonis, Raimondas; Majiene, Daiva

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80-130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM-200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies.

  20. Pharmacological effects of asiatic acid in glioblastoma cells under hypoxia.

    PubMed

    Thakor, Flourina Kumar; Wan, Ka-Wai; Welsby, Philip John; Welsby, Gail

    2017-02-15

    Glioblastoma multiforme is the most common and malignant primary brain tumor in adults. Despite current treatment options including surgery followed by radiation and chemotherapy with temozolomide and cisplatin, the median survival rate remains low (<16 months). Combined with increasing drug resistance and the inability of some compounds to cross the blood-brain barrier, novel compounds are being sought for the treatment of this disease. Here, we aimed to examine the pharmacological effect of Asiatic acid (AA) in glioblastoma under hypoxia. To investigate the effects of AA on cell viability, proliferation, apoptosis, and wound healing, SVG p12 fetal glia and U87-MG grade IV glioblastoma cells were cultured under normoxic (21% O2) and hypoxic (1% O2) conditions. In normoxia, AA reduced cell viability in U87-MG cells in a time and concentration-dependent manner. A significant decrease in viability, compared to cisplatin, was observed following 2 h of AA treatment with no significant changes in cell proliferation or cell cycle progression observed. Under hypoxia, a significantly greater number of cells underwent apoptosis in comparison to cisplatin. While cisplatin showed a reduction in wound healing in normoxia, a significantly greater reduction was observed following AA treatment. An overall reduction in wound healing was observed under hypoxia. The results of this study show that AA has cytotoxic effects on glioma cell lines and has the potential to become an alternative treatment for glioblastoma.

  1. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    PubMed Central

    Ramanauskiene, Kristina; Raudonis, Raimondas

    2016-01-01

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies. PMID:27688825

  2. Radiosensitization of Human Colorectal Cancer Cells by MLN4924: An Inhibitor of NEDD8-Activating Enzyme.

    PubMed

    Wan, Juefeng; Zhu, Ji; Li, Guichao; Zhang, Zhen

    2016-08-01

    Colorectal cancer is the third most frequently diagnosed cancer and the combination of radiation with capecitabine has been shown to achieve only 15% to 25% of pathologic complete response. This study aimed to investigate the effect of MLN4924, a potent small molecule inhibitor of SKP1-Cullin-F-box proteins E3 ubiquitin ligases, as a novel radiosensitizing agent in colorectal cancer cells. Indeed, we found that MLN4924 effectively sensitized colorectal cancer cells to radiation with a sensitivity-enhancement ratio of 1.61 for HT-29 cells and 1.35 for HCT-116 cells. Mechanistically, MLN4924 significantly enhanced radiation-induced G2/M arrest, apoptosis, and DNA damage response through accumulation of p27. Knockdown of p27 via small interfering RNA partially inhibited MLN4924-induced radiosensitization, indicating a causal role played by p27. Our study suggested that MLN4924 could be further developed as a novel radiosensitizing agent against colorectal cancer.

  3. Radiosensitizing effect of the histone acetyltransferase inhibitor anacardic acid on various mammalian cell lines

    PubMed Central

    CATE, ROSEMARIE TEN; KRAWCZYK, PRZEMEK; STAP, JAN; ATEN, JACOB A.; FRANKEN, NICOLAAS A.P.

    2010-01-01

    Agents that enhance the effectiveness of ionizing radiation have been investigated over many decades. A relatively new group of potential radiosensitizers consists of agents that inhibit histone acetyltransferases (HATs). This study evaluated the radiosensitizing properties of the HAT inhibitor anacardic acid (AA), used at a low-toxic concentration of 100 μM in V79, SW1573 and U2OS cells. Radiation survival curves were analyzed according to the linear quadratic model. Significant radiosensitization by AA was only obtained in U2OS cells. AA significantly increased the value of the linear parameter α, but not of the quadratic parameter β, indicating fixation of potentially lethal damage and an intact repair function of sublethal damage. The increase of the α value was also observed in SW1573 cells, but was not accompanied by a significant radiosensitization. A likely explanation for the enhancement of the α value may be an increase in the amount of lethal lesions due to the compacted chromatin structure. Despite the conflicting results of the radiosensitizing effect of AA in the three cell lines tested, the ability of AA to increase the α value suggests potential advantages for clinical application. PMID:22966377

  4. Mesenchymal stem cells differentially affect the invasion of distinct glioblastoma cell lines

    PubMed Central

    Breznik, Barbara; Motaln, Helena; Vittori, Miloš; Rotter, Ana; Turnšek, Tamara Lah

    2017-01-01

    Glioblastoma multiforme are an aggressive form of brain tumors that are characterized by distinct invasion of single glioblastoma cells, which infiltrate the brain parenchyma. This appears to be stimulated by the communication between cancer and stromal cells. Mesenchymal stem cells (MSCs) are part of the glioblastoma microenvironment, and their ‘cross-talk’ with glioblastoma cells is still poorly understood. Here, we examined the effects of bone marrow-derived MSCs on two different established glioblastoma cell lines U87 and U373. We focused on mutual effects of direct MSC/glioblastoma contact on cellular invasion in three-dimensional invasion assays in vitro and in a zebrafish embryo model in vivo. This is the first demonstration of glioblastoma cell-type-specific responses to MSCs in direct glioblastoma co-cultures, where MSCs inhibited the invasion of U87 cells and enhanced the invasion of U373. Inversely, direct cross-talk between MSCs and both of glioblastoma cell lines enhanced MSC motility. MSC-enhanced invasion of U373 cells was assisted by overexpression of proteases cathepsin B, calpain1, uPA/uPAR, MMP-2, -9 and -14, and increased activities of some of these proteases, as determined by the effects of their selective inhibitors on invasion. In contrast, these proteases had no effect on U87 cell invasion under MSC co-culturing. Finally, we identified differentially expressed genes, in U87 and U373 cells that could explain different response of these cell lines to MSCs. In conclusion, we demonstrated that MSC/glioblastoma cross-talk is different in the two glioblastoma cell phenotypes, which contributes to tumor heterogeneity. PMID:28424417

  5. Salinomycin encapsulated nanoparticles as a targeting vehicle for glioblastoma cells.

    PubMed

    Tığlı Aydın, R Seda; Kaynak, Gökçe; Gümüşderelioğlu, Menemşe

    2016-02-01

    Salinomycin has been introduced as a novel alternative to traditional anti-cancer drugs. The aim of this study was to test a strategy designed to deliver salinomycin to glioblastoma cells in vitro. Salinomycin-encapsulated polysorbate 80-coated poly(lactic-co-glycolic acid) nanoparticles (P80-SAL-PLGA) were prepared and characterized with respect to particle size, morphology, thermal properties, drug encapsulation efficiency and controlled salinomycin-release behaviour. The in vitro cellular uptake of P80-SAL-PLGA (5 and 10 µM) or uncoated nanoparticles was assessed in T98G human glioblastoma cells, and the cell viability was investigated with respect to anti-growth activities. SAL, which was successfully transported to T98G glioblastoma cells via P80 coated nanoparticles (∼14% within 60 min), greatly decreased (p < 0.01) the cellular viability of T98G cells. Substantial morphological changes were observed in the T98G cells with damaged actin cytoskeleton. Thus, P80-SAL-PLGA nanoparticles induced cell death, suggesting a potential therapeutic role for this salinomycin delivery system in the treatment of human glioblastoma.

  6. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses

    PubMed Central

    Stevenson, Katrina; Gilmour, Lesley; Hamilton, Graham; Chalmers, Anthony J

    2017-01-01

    Abstract Background. Glioblastoma (GBM) is the most common primary brain tumor, with dismal prognosis. The failure of drug–radiation combinations with promising preclinical data to translate into effective clinical treatments may relate to the use of simplified 2-dimensional in vitro GBM cultures. Methods. We developed a customized 3D GBM culture system based on a polystyrene scaffold (Alvetex) that recapitulates key histological features of GBM and compared it with conventional 2D cultures with respect to their response to radiation and to molecular targeted agents for which clinical data are available. Results. In 3 patient-derived GBM lines, no difference in radiation sensitivity was observed between 2D and 3D cultures, as measured by clonogenic survival. Three different molecular targeted agents, for which robust clinical data are available were evaluated in 2D and 3D conditions: (i) temozolomide, which improves overall survival and is standard of care for GBM, exhibited statistically significant effects on clonogenic survival in both patient-derived cell lines when evaluated in the 3D model compared with only one cell line in 2D cells; (ii) bevacizumab, which has been shown to increase progression-free survival when added to standard chemoradiation in phase III clinical trials, exhibited marked radiosensitizing activity in our 3D model but had no effect on 2D cells; and (iii) erlotinib, which had no efficacy in clinical trials, displayed no activity in our 3D GBM model, but radiosensitized 2D cells. Conclusions. Our 3D model reliably predicted clinical efficacy, strongly supporting its clinical relevance and potential value in preclinical evaluation of drug–radiation combinations for GBM. PMID:27576873

  7. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses.

    PubMed

    Gomez-Roman, Natividad; Stevenson, Katrina; Gilmour, Lesley; Hamilton, Graham; Chalmers, Anthony J

    2017-02-01

    Glioblastoma (GBM) is the most common primary brain tumor, with dismal prognosis. The failure of drug-radiation combinations with promising preclinical data to translate into effective clinical treatments may relate to the use of simplified 2-dimensional in vitro GBM cultures. We developed a customized 3D GBM culture system based on a polystyrene scaffold (Alvetex) that recapitulates key histological features of GBM and compared it with conventional 2D cultures with respect to their response to radiation and to molecular targeted agents for which clinical data are available. In 3 patient-derived GBM lines, no difference in radiation sensitivity was observed between 2D and 3D cultures, as measured by clonogenic survival. Three different molecular targeted agents, for which robust clinical data are available were evaluated in 2D and 3D conditions: (i) temozolomide, which improves overall survival and is standard of care for GBM, exhibited statistically significant effects on clonogenic survival in both patient-derived cell lines when evaluated in the 3D model compared with only one cell line in 2D cells; (ii) bevacizumab, which has been shown to increase progression-free survival when added to standard chemoradiation in phase III clinical trials, exhibited marked radiosensitizing activity in our 3D model but had no effect on 2D cells; and (iii) erlotinib, which had no efficacy in clinical trials, displayed no activity in our 3D GBM model, but radiosensitized 2D cells. Our 3D model reliably predicted clinical efficacy, strongly supporting its clinical relevance and potential value in preclinical evaluation of drug-radiation combinations for GBM.

  8. [Modification of the radiosensitivity of cultured "Vero" cells by cumene hydroperoxide].

    PubMed

    Drancourt, N; Waultier, S; Paulin, R; Feugeas, C

    1993-12-01

    Cumene-hydroperoxide is a radical reaction promoter. Vero cells monolayers treated with this compound were irradiated with gamma-rays and their radiosensitization was compared with that of irradiated, non-treated control cells. Cumene-hydroperoxide treated cells showed a paradoxal radioresistance. We propose a possible buffer-like effect of cumene-hydroperoxide to explain these results.

  9. In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines.

    PubMed

    Zhang, Mei; Rose, Barbara; Lee, C Soon; Hong, Angela M

    2015-01-01

    The incidence of oropharyngeal squamous cell carcinoma (OSCC) is increasing due to the rising prevalence of human papillomavirus (HPV) positive OSCC. HPV positive OSCC is associated with better outcomes than HPV negative OSCC. Our aim was to explore the possibility that this favorable prognosis is due to the enhanced radiosensitivity of HPV positive OSCC. HPV positive OSCC cell lines were generated from the primary OSCCs of 2 patients, and corresponding HPV positive cell lines generated from nodal metastases following xenografting in nude mice. Monolayer and 3 dimensional (3D) culture techniques were used to compare the radiosensitivity of HPV positive lines with that of 2 HPV negative OSCC lines. Clonogenic and protein assays were used to measure survival post radiation. Radiation induced cell cycle changes were studied using flow cytometry. In both monolayer and 3D culture, HPV positive cells exhibited a heterogeneous appearance whereas HPV negative cells tended to be homogeneous. After irradiation, HPV positive cells had a lower survival in clonogenic assays and lower total protein levels in 3D cultures than HPV negative cells. Irradiated HPV positive cells showed a high proportion of cells in G1/S phase, increased apoptosis, an increased proliferation rate, and an inability to form 3D tumor clumps. In conclusion, HPV positive OSCC cells are more radiosensitive than HPV negative OSCC cells in vitro, supporting a more radiosensitive nature of HPV positive OSCC.

  10. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    SciTech Connect

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F1-+/+ mice after various doses of irradiation and injected into the skin of the congenic W/Wv mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bgJ/bgJ. Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the back of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosensitive than those localized in the skin. D0 value was about 100 rad for the former and about 800 rad for the latter.

  11. Radiosensitizing Effects of Temozolomide Observed in vivo only in a Subset of O6-Methylguanine-DNA Methyltransferase Methylated Glioblastoma Multiforme Xenografts

    SciTech Connect

    Carlson, Brett L.; Grogan, Patrick T.; Mladek, Ann C.; Schroeder, Mark A.; Kitange, Gaspar J.; Decker, Paul A.; Giannini, Caterina; Wu Wenting; Ballman, Karla A.; James, C. David; Sarkaria, Jann N.

    2009-09-01

    Purpose: Concurrent temozolomide (TMZ) and radiation therapy (RT) followed by adjuvant TMZ is standard treatment for patients with glioblastoma multiforme (GBM), although the relative contribution of concurrent versus adjuvant TMZ is unknown. In this study, the efficacy of TMZ/RT was tested with a panel of 20 primary GBM xenografts. Methods and Materials: Mice with intracranial xenografts were treated with TMZ, RT, TMZ/RT, or placebo. Survival ratio for a given treatment/line was defined as the ratio of median survival for treatment vs. placebo. Results: The median survival ratio was significantly higher for O6-methylguanine-DNA methyltransferase (MGMT) methylated tumors versus unmethylated tumors following treatment with TMZ (median survival ratio, 3.6 vs. 1.5, respectively; p = 0.008) or TMZ/RT (5.7 vs. 2.3, respectively; p = 0.001) but not RT alone (1.7 vs. 1.6; p = 0.47). In an analysis of variance, MGMT methylation status and p53 mutation status were significantly associated with treatment response. When we analyzed the additional survival benefit conferred specifically by combined therapy, only a subset (5 of 11) of MGMT methylated tumors derived substantial additional benefit from combined therapy, while none of the MGMT unmethylated tumors did. Consistent with a true radiosensitizing effect of TMZ, sequential treatment in which RT (week 1) was followed by TMZ (week 2) proved significantly less effective than TMZ followed by RT or concurrent TMZ/RT (survival ratios of 4.0, 9.6 and 12.9, respectively; p < 0.0001). Conclusions: Concurrent treatment with TMZ and RT provides significant survival benefit only in a subset of MGMT methylated tumors and provides superior antitumor activity relative to sequential administration of RT and TMZ.

  12. Enhancement of radiosensitivity of melanoma cells by pegylated gold nanoparticles under irradiation of megavoltage electrons.

    PubMed

    Mousavi, Mehdi; Nedaei, Hassan Ali; Khoei, Samideh; Eynali, Samira; Khoshgard, Karim; Robatjazi, Mostafa; Iraji Rad, Rasoul

    2017-02-01

    Gold nanoparticles (GNP) have significant potential as radiosensitizer agents due to their distinctive properties. Several studies have shown that the surface modification of nanoparticles with methyl polyethylene glycol (mPEG) can increase their biocompatibility. However, the present study investigated the radiosensitization effects of mPEG-coated GNP (mPEG-GNP) in B16F10 murine melanoma cells under irradiation of 6 MeV Electron beam. The synthesized GNP were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy, and zeta potential. Enhancement of radiosensitization was evaluated by the clonogenic assay at different radiation doses of megavoltage electron beams. It was observed that mPEG-GNP with a hydrodynamic size of approximately 50 nm are almost spherical and cellular uptake occurred at all concentrations. Both proliferation efficiency and survival fraction decreased with increasing mPEG-GNP concentration. Furthermore, significant GNP sensitization occurred with a maximum dose enhancement factor of 1.22 at a concentration of 30 μM. Pegylated-GNP are taken up by B16F10 cancer cells and cause radiosensitization in the presence of 6 MeV electrons. The radiosensitization effects of GNP may probably be due to biological processes. Therefore, the underlying biological mechanisms beyond the physical dose enhancement need to be further clarified.

  13. Macrophages enhance the radiosensitizing activity of lipid A: A novel role for immune cells in tumor cell radioresponse

    SciTech Connect

    Ridder, Mark de . E-mail: Mark.De.Ridder@vub.ac.be; Verovski, Valeri N.; Darville, Martine I.; Berge, Dirk L. van den; Monsaert, Christinne; Eizirik, Decio L.; Storme, Guy A.

    2004-10-01

    Purpose: This study examines whether activated macrophages may radiosensitize tumor cells through the release of proinflammatory mediators. Methods and materials: RAW 264.7 macrophages were activated by lipid A, and the conditioned medium (CM) was analyzed for the secretion of cytokines and the production of nitric oxide (NO) through inducible nitric oxide synthase (iNOS). EMT-6 tumor cells were exposed to CM and analyzed for hypoxic cell radiosensitivity. The role of nuclear factor (NF)-{kappa}B in the transcriptional activation of iNOS was examined by luciferase reporter gene assay. Results: Clinical immunomodulator lipid A, at a plasma-relevant concentration of 3 {mu}g/mL, stimulated RAW 264.7 macrophages to release NO, tumor necrosis factor (TNF)-{alpha}, and other cytokines. This in turn activated iNOS-mediated NO production in EMT-6 tumor cells and drastically enhanced their radiosensitivity. Radiosensitization was abrogated by the iNOS inhibitor aminoguanidine but not by a neutralizing anti-TNF-{alpha} antibody. The mechanism of iNOS induction was linked to NF-{kappa}B but not to JAK/STAT signaling. Interferon-{gamma} further increased the NO production by macrophages to a level that caused radiosensitization of EMT-6 cells through the bystanding effect of diffused NO. Conclusions: We demonstrate for the first time that activated macrophages may radiosensitize tumor cells through the induction of NO synthesis, which occurs in both tumor and immune cells.

  14. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells.

    PubMed

    Jiang, Xiaochun; Yan, Yukui; Hu, Minghua; Chen, Xiande; Wang, Yaxian; Dai, Yi; Wu, Degang; Wang, Yongsheng; Zhuang, Zhixiang; Xia, Hongping

    2016-01-01

    OBJECT Increased levels of H19 long noncoding RNA (lncRNA) have been observed in many cancers, suggesting that overexpression of H19 may be important in the development of carcinogenesis. However, the role of H19 in human glioblastoma is still unclear. The object of this study was to examine the level of H19 in glioblastoma samples and investigate the role of H19 in glioblastoma carcinogenesis. METHODS Glioblastoma and nontumor brain tissue specimens were obtained from tissue obtained during tumor resection in 30 patients with glioblastoma. The level of H19 lncRNA was detected by real-time quantitative reverse transcription polymerase chain reaction. The role of H19 in invasion, angiogenesis, and stemness of glioblastoma cells was then investigated using commercially produced cell lines (U87 and U373). The effects of H19 overexpression on glioblastoma cell invasion and angiogenesis were detected by in vitro Matrigel invasion and endothelial tube formation assay. The effects of H19 on glioblastoma cell stemness and tumorigenicity were investigated by neurosphere formation and an in vivo murine xenograft model. RESULTS The authors found that H19 is significantly overexpressed in glioblastoma tissues, and the level of expression was associated with patient survival. In the subsequent investigations, the authors found that overexpression of H19 promotes glioblastoma cell invasion and angiogenesis in vitro. Interestingly, H19 was also significantly overexpressed in CD133(+) glioblastoma cells, and overexpression of H19 was associated with increased neurosphere formation of glioblastoma cells. Finally, stable overexpression of H19 was associated with increased tumor growth in the murine xenograft model. CONCLUSIONS The results of this study suggest that increased expression of H19 lncRNA promotes invasion, angiogenesis, stemness, and tumorigenicity of glioblastoma cells. Taken together, these findings indicate that H19 plays an important role in tumorigenicity and

  15. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    SciTech Connect

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-08-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of {gamma}-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G{sub 2}/M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  16. Downregulation of a novel human gene, ROGDI, increases radiosensitivity in cervical cancer cells

    PubMed Central

    Chen, Yi-Fan; Cho, Jonathan J.; Huang, Tsai-Hua; Tseng, Chao-Neng; Huang, Eng-Yen; Cho, Chung-Lung

    2016-01-01

    ABSTRACT ROGDI is a protein that contains a leucine zipper domain and may be involved in cell proliferation. In addition, ROGDI is associated with genome stability by regulating the activity of a DNA damage marker, γ-H2AX. The role of ROGDI in tumor radiosensitization has not been investigated. Previous studies have indicated that radiosensitivity is associated with DNA repair and the cell cycle. In general, the G2/M DNA damage checkpoint is more sensitive to radiation, whereas the G1/S phase transition is more resistant to radiation. Inhibition of cyclin-dependent kinases (CDKs) can lead to a halt of cell cycle progression and a stay at different phases or checkpoints. Our data show that the downregulation of ROGDI led to a decreased expression of CDK 1, 2, cyclin A, B and resulted in a G2/M phase transition block. In addition, the downregulation of ROGDI increased cell accumulation at the G2 phase as detected using flow cytometry and decreased cell survival as revealed by clonogenic assay in HeLa and C33A cells following irradiation. These findings suggest that the downregulation of ROGDI can mediate radiosensitivity by blocking cells at G2/M, the most radiosensitive phase of the cell cycle, as well as exerting deleterious effects in the form of DNA damage, as shown by increased γ-H2AX activation. PMID:27636029

  17. Downregulation of a novel human gene, ROGDI, increases radiosensitivity in cervical cancer cells.

    PubMed

    Chen, Yi-Fan; Cho, Jonathan J; Huang, Tsai-Hua; Tseng, Chao-Neng; Huang, Eng-Yen; Cho, Chung-Lung

    2016-08-12

    ROGDI is a protein that contains a leucine zipper domain and may be involved in cell proliferation. In addition, ROGDI is associated with genome stability by regulating the activity of a DNA damage marker, γ-H2AX. The role of ROGDI in tumor radiosensitization has not been investigated. Previous studies have indicated that radiosensitivity is associated with DNA repair and the cell cycle. In general, the G2/M DNA damage checkpoint is more sensitive to radiation, whereas the G1/S phase transition is more resistant to radiation. Inhibition of cyclin-dependent kinases (CDKs) can lead to a halt of cell cycle progression and a stay at different phases or checkpoints. Our data show that the downregulation of ROGDI led to a decreased expression of CDK 1, 2, cyclin A, B and resulted in a G2/M phase transition block. In addition, the downregulation of ROGDI increased cell accumulation at the G2 phase as detected using flow cytometry and decreased cell survival as revealed by clonogenic assay in HeLa and C33A cells following irradiation. These findings suggest that the downregulation of ROGDI can mediate radiosensitivity by blocking cells at G2/M, the most radiosensitive phase of the cell cycle, as well as exerting deleterious effects in the form of DNA damage, as shown by increased γ-H2AX activation.

  18. Radiosensitisation by pharmacological ascorbate in glioblastoma multiforme cells, human glial cells, and HUVECs depends on their antioxidant and DNA repair capabilities and is not cancer specific.

    PubMed

    Castro, M Leticia; McConnell, Melanie J; Herst, Patries M

    2014-09-01

    We previously showed that 5 mM ascorbate radiosensitized early passage radioresistant glioblastoma multiforme (GBM) cells derived from one patient tumor. Here we investigate the sensitivity of a panel of cell lines to 5 mM ascorbate and 6 Gy ionizing radiation, made up of three primary human GBM cells, three GBM cell lines, a human glial cell line, and primary human vascular endothelial cells. The response of different cells lines to ascorbate and/or radiation was determined by measuring viability, colony-forming ability, generation and repair of double-stranded DNA breaks (DSBs), cell cycle progression, antioxidant capacity and generation of reactive oxygen species. Individually, radiation and ascorbate both decreased viability and clonogenicity by inducing DNA damage, but had differential effects on cell cycle progression. Radiation led to G2/M arrest in most cells whereas ascorbate caused accumulation in S phase, which was moderately associated with poor DSB repair. While high dose ascorbate radiosensitized all cell lines in clonogenic assays, the sensitivity to radiation, high dose ascorbate, and combined treatment varied between cell lines. Normal glial cells were similar to GBM cells with respect to free radical scavenging potential and effect of treatment on DNA damage and repair, viability, and clonogenicity. Both GBM cells and normal cells coped equally poorly with oxidative stress caused by radiation and/or high dose ascorbate, dependent primarily on their antioxidant and DSB repair capacity.

  19. Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration and invasion and induced apoptosis in glioblastoma SNB19 cells and glioblastoma stem cells.

    PubMed

    Chakrabarti, Mrinmay; Ray, Swapan K

    2015-12-10

    Glioblastoma is the most lethal brain tumor. Failure of conventional chemotherapies prompted the search for natural compounds for treatment of glioblastoma. Plant-derived flavonoids could be alternative medicine for inhibiting not only glioblastoma cells but also glioblastoma stem cells (GSC). Two plant-derived flavonoids are luteolin (LUT) and silibinin (SIL). We investigated anti-tumor mechanisms of LUT and SIL in different human glioblastoma cells and GSC and found significant synergistic inhibition of human glioblastoma LN18 and SNB19 cells and GSC following treatment with combination of 20µM LUT and 50µM SIL. Combination of 20µM LUT and 50µM SIL was more effective than a conventional chemotherapeutic agent (BCNU or TMZ). We continued our studies with SNB19 cells and GSC and found dramatic inhibition of cell migration from spheroids and also cell invasion through matrigel following treatment with combination of LUT and SIL. This combination was highly effective to block angiogenesis and survival pathways leading to induction of apoptosis. Inhibition of PKCα, XIAP, and iNOS ultimately caused induction of extrinsic and intrinsic pathways of apoptosis. Collectively, synergistic efficacy of LUT and SIL could be a promising therapy to inhibit cell migration and invasion and induce apoptosis in different glioblastoma cells including GSC.

  20. Honokiol radiosensitizes colorectal cancer cells: enhanced activity in cells with mismatch repair defects

    PubMed Central

    He, Zhiyun; Subramaniam, Dharmalingam; Ramalingam, Satish; Dhar, Animesh; Postier, Russell G.; Umar, Shahid; Zhang, Youcheng

    2011-01-01

    DNA mismatch repair is required for correcting any mismatches that are created during replication and recombination, and a defective mismatch repair system contributes to DNA damage-induced growth arrest. The colorectal cancer cell line HCT116 is known to have a mutation in the hMLH1 mismatch repair gene resulting in microsatellite instability and defective mismatch repair. Honokiol is a biphenolic compound that has been used in traditional Chinese medicine for treating various ailments including cancer. This study was designed to test the hypothesis that honokiol enhances the radiosensitivity of cancer cells with mismatch repair defect (HCT116) compared with those that are mismatch repair proficient (HCT116-CH3). We first determined that the combination of honokiol and γ-irradiation treatment resulted in dose-dependent inhibition of proliferation and colony formation in both cell lines. However, the effects were more pronounced in HCT116 cells. Similarly, the combination induced higher levels of apoptosis (caspase 3 activation, Bax to Bcl2 ratio) in the HCT116 cells compared with HCT116-CH3 cells. Cell cycle analyses revealed higher levels of dead cells in HCT116 cells. The combination treatment reduced expression of cyclin A1 and D1 and increased phosphorylated p53 in both cell lines, although there were significantly lower amounts of phosphorylated p53 in the HCT116-CH3 cells, suggesting that high levels of hMLH1 reduce radiosensitivity. These data demonstrate that honokiol is highly effective in radiosensitizing colorectal cancer cells, especially those with a mismatch repair defect. PMID:21836060

  1. Honokiol radiosensitizes colorectal cancer cells: enhanced activity in cells with mismatch repair defects.

    PubMed

    He, Zhiyun; Subramaniam, Dharmalingam; Ramalingam, Satish; Dhar, Animesh; Postier, Russell G; Umar, Shahid; Zhang, Youcheng; Anant, Shrikant

    2011-11-01

    DNA mismatch repair is required for correcting any mismatches that are created during replication and recombination, and a defective mismatch repair system contributes to DNA damage-induced growth arrest. The colorectal cancer cell line HCT116 is known to have a mutation in the hMLH1 mismatch repair gene resulting in microsatellite instability and defective mismatch repair. Honokiol is a biphenolic compound that has been used in traditional Chinese medicine for treating various ailments including cancer. This study was designed to test the hypothesis that honokiol enhances the radiosensitivity of cancer cells with mismatch repair defect (HCT116) compared with those that are mismatch repair proficient (HCT116-CH3). We first determined that the combination of honokiol and γ-irradiation treatment resulted in dose-dependent inhibition of proliferation and colony formation in both cell lines. However, the effects were more pronounced in HCT116 cells. Similarly, the combination induced higher levels of apoptosis (caspase 3 activation, Bax to Bcl2 ratio) in the HCT116 cells compared with HCT116-CH3 cells. Cell cycle analyses revealed higher levels of dead cells in HCT116 cells. The combination treatment reduced expression of cyclin A1 and D1 and increased phosphorylated p53 in both cell lines, although there were significantly lower amounts of phosphorylated p53 in the HCT116-CH3 cells, suggesting that high levels of hMLH1 reduce radiosensitivity. These data demonstrate that honokiol is highly effective in radiosensitizing colorectal cancer cells, especially those with a mismatch repair defect.

  2. Overview of Radiosensitivity of Human Tumor Cells to Low-Dose-Rate Irradiation

    SciTech Connect

    Williams, Jerry R. Zhang Yonggang; Zhou Haoming; Gridley, Daila S.; Koch, Cameron J.; Slater, James M.; Little, John B.

    2008-11-01

    Purpose: We compared clonogenic survival in 27 human tumor cell lines that vary in genotype after low-dose-rate (LDR) or high-dose rate (HDR) irradiation. We measured susceptibility to LDR-induced redistribution in the cell cycle in eight of these cell lines. Methods and Materials: We measured clonogenic survival after up to 96 hours of LDR (0.25 Gy/h) irradiation. We compared these with clonogenic survival after HDR irradiation (50 Gy/h). Using flow cytometry, we measured LDR-induced redistribution as a function of time during LDR irradiation in eight of these cell lines. Results: Coefficients that describe clonogenic survival after both LDR and HDR irradiation segregate into four radiosensitivity groups that associate with cell genotype: mutant (mut)ATM, wild-type TP53, mutTP53, and an unidentified gene in radioresistant glioma cells. The LDR and HDR radiosensitivity correlates at lower doses ({approx}2 Gy HDR, {approx}6 Gy LDR), but not at higher doses (HDR > 4 Gy; LDR > 6 Gy). The rate of LDR-induced loss of clonogenic survival changes at approximately 24 hours; wild-type TP53 cells become more resistant and mutTP53 cells become more sensitive. Redistribution induced by LDR irradiation also changes at approximately 24 hours. Conclusions: Radiosensitivity of human tumor cells to both LDR and HDR irradiation is genotype dependent. Analysis of coefficients that describe cellular radiosensitivity segregates 27 cell lines into four statistically distinct groups, each associating with specific genotypes. Changes in cellular radiosensitivity and redistribution in the cell cycle are strongly time dependent. Our data establish a genotype-dependent time-dependent model that predicts clonogenic survival, explains the inverse dose-rate effect, and suggests possible clinical applications.

  3. Numb/Notch signaling pathway modulation enhances human pancreatic cancer cell radiosensitivity.

    PubMed

    Bi, Yi-Liang; Min, Min; Shen, Wei; Liu, Yan

    2016-11-01

    The present study aims to evaluate whether repression of the Numb/Notch signaling pathway affects the radiosensitivity of human pancreatic cancer cell lines. Different doses of X-rays (0, 2, 3, 4, and 5 Gy) were applied to the PANC-1, SW1990, and MIA PaCa-2 human pancreatic cancer cell lines, and the Numb/Notch pathway inhibitor DAPT was added at different doses (0, 1, 3, and 5 μmol/l). MTT assay, colony formation assay, flow cytometry, scratch assay, and Transwell experiments were performed, and qRT-PCR and Western blot were conducted for the detection of Numb expression. Tumorigenicity assay in nude mice was carried out to verify the influence of blocker of the Numb/Notch signaling pathway on the radiosensitivity of xenograft tumors. The MTT assay, colony formation assay and flow cytometry experiments revealed that proliferation decreased as radiation dose increased. The viability of PANC-1 cells at 5 Gy, SW 1990 cells at 4 Gy and 5 Gy, and MIA PaCa-2 cells at 2-5 Gy was significantly lower than that of non-irradiated cells (all P < 0.05). The migration and invasion assays indicated that the PANC-1 cell line was least radiosensitive, while the MIA PaCa-2 cell line was the most radiosensitive. Numb expression significantly increased with increasing radiation dose, whereas the expression of Hes1, Notch1, and Hes5 significantly decreased compared to non-irradiated cells (P < 0.05). Compared to untreated control cells, DAPT dose dependently increased Numb expression and inhibited Notch1, Hes1, and Hes5 expressions at 2 Gy (P < 0.05). Subcutaneous tumorigenicity assay in nude mice demonstrated that DAPT increased the radiosensitivity of PANC-1, SW 1990, and MIA PaCa-2 cells. These findings suggest that Numb/Notch signaling in pancreatic cancer cells is associated with X-ray radiation and that inhibition of the Numb/Notch signaling pathway can enhance radiosensitivity, suggesting that inhibition of the Numb/Notch signaling pathway may serve as a potential

  4. Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells

    SciTech Connect

    Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.; Wilson, George D.; Marples, Brian

    2010-03-01

    Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity was assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing gammaH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2mug/mL], Trinovin [10mug/mL], and Prostate Rx [50 mug/mL]). However, both Trinovin (10mug/mL) and Prostate Rx (6mug/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.

  5. Cell cycle-dependent radiosensitivity in two-cell mouse embryos in culture

    SciTech Connect

    Domon, M.

    1980-02-01

    The radiosensitivity in embryo systems varies depending on factors such as genetic background, oxygen environment, developmental stage, and age of the embryo in cell cycle. This paper is concerned with the involvement of cell cycle age in radiosensitivity of two-cell mouse embryos. Thus the doses needed for 50% killing of blastocyst formation in vitro (LD/sub 50/) of X rays for the two-cell mouse embryos in culture were measured during their cell cycle. The cell cycle in the two-cell embryos was quite peculiar; the cell cycle time of 18 h was divided into a long DNA post synthesis phase (G/sub 2/) plus mitosis (M) of 14 h and a short DNA synthesis phase (S) of 4 h. Results indicate that the LD/sub 50/ varies roughly from 100 to 600 rad within the cell cycle. Thus a major factor in determining the sensitivity to ionizing radiation of two-cell mouse embryos in vitro and perhaps in vivo is their position in the cell division cycle at the time of irradiation.

  6. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    SciTech Connect

    Oike, Takahiro; Ogiwara, Hideaki; Torikai, Kohta; Nakano, Takashi; Yokota, Jun; Kohno, Takashi

    2012-11-01

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated {beta}-galactosidase (SA-{beta}-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that

  7. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    PubMed

    Dolman, M Emmy M; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N; Molenaar, Jan J

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  8. Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines

    PubMed Central

    2014-01-01

    Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Despite a multimodal therapy consisting of resection followed by fractionated radiotherapy (RT) combined with the chemotherapeutic agent (CT) temozolomide (TMZ), its recurrence is almost inevitable. Since the immune system is capable of eliminating small tumor masses, a therapy should also aim to stimulate anti-tumor immune responses by induction of immunogenic cell death forms. The histone deacetylase inhibitor valproic acid (VPA) might foster this. Methods Reflecting therapy standards, we applied in our in vitro model fractionated RT with a single dose of 2Gy and clinically relevant concentrations of CT. Not only the impact of RT and/or CT with TMZ and/or VPA on the clonogenic potential and cell cycle of the glioblastoma cell lines T98G, U251MG, and U87MG was analyzed, but also the resulting cell death forms and release of danger signals such as heat-shock protein70 (Hsp70) and high-mobility group protein B1 (HMGB1). Results The clonogenic assays revealed that T98G and U251MG, having mutated tumor suppressor protein p53, are more resistant to RT and CT than U87MG with wild type (WT) p53. In all glioblastoma cells lines, fractionated RT induced a G2 cell cycle arrest, but only in the case of U87MG, TMZ and/or VPA alone resulted in this cell cycle block. Further, fractionated RT significantly increased the number of apoptotic and necrotic tumor cells in all three cell lines. However, only in U87MG, the treatment with TMZ and/or VPA alone, or in combination with fractionated RT, induced significantly more cell death compared to untreated or irradiated controls. While necrotic glioblastoma cells were present after VPA, TMZ especially led to significantly increased amounts of U87MG cells in the radiosensitive G2 cell cycle phase. While CT did not impact on the release of Hsp70, fractionated RT resulted in significantly increased extracellular concentrations of Hsp70 in p53

  9. Synergistic Effect of Immunoliposomal Gemcitabine and Bevacizumab in Glioblastoma Stem Cell-Targeted Therapy.

    PubMed

    Shin, Dae Hwan; Lee, Sang-Jin; Kim, Jung Seok; Ryu, Jae-Ha; Kim, Jin-Seok

    2015-11-01

    Glioblastoma stem cells have been shown to confer chemoresistance and radioresistance, leading to angiogenesis and the recurrence of tumors in glioblastoma multiforme. Combination therapy targeting glioblastoma stem cells and anti-angiogenesis has been a focus of treatment strategies because of the enhanced efficacy achieved by dual inhibition of tumor proliferation and nutrient delivery. In this study, glioblastoma stem cells and glioblastoma stem cell-induced angiogenesis in glioblastoma multiforme were challenged by combined treatment with anti-CD133 monoclonal antibody conjugated liposomes encapsulating gemcitabine and bevacizumab. Both liposomal encapsulation and conjugation of an anti-CD133 antibody significantly enhanced the cytotoxicity of gemcitabine toward glioblastoma stem cells in vitro. Moreover, combined treatment with this gemcitabine formulation and bevacizumab significantly inhibited tube formation, migration, and proliferation of endothelial cells in vitro. The antitumor efficacy of immunoliposomal gemcitabine and bevacizumab combination therapy in a xenograft model was significantly greater than that of monotherapy, presumably reflecting the enhanced effects on glioblastoma stem cells themselves and glioblastoma stem cell-induced angiogenesis caused by synergistic interactions between the two drugs. Moreover, combination therapy prolonged the mean survival time of xenografted mice. Taken altogether, our results suggest that combined therapy with immunoliposomal gemcitabine and bevacizumab shows promise for the treatment of glioblastoma multiforme.

  10. Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources

    DTIC Science & Technology

    2013-10-01

    AD_________________ Award Number: W81XWH-11-1-0756 TITLE: Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources PRINCIPAL...TITLE AND SUBTITLE Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11...TERMS Glioblastoma multiforme , glioma stem cell, brain tumor-initiating cell, pediatric brain tumor, RNAi, functional genetics 16. SECURITY

  11. Prediction of radiosensitivity in human bladder cell lines using nuclear chromatin phenotype.

    PubMed

    Rajab, Nor F; McKenna, Declan J; Diamond, Jim; Williamson, Kate; Hamilton, Peter W; McKelvey-Martin, Valerie J

    2006-10-01

    Nuclear texture analysis measures phenotypic changes in chromatin distribution within a cell nucleus, while the alkaline Comet assay is a sensitive method for measuring the extent of DNA breakage in individual cells. The authors aim to use both methods to provide information about the sensitivity of cells to ionizing radiation. The alkaline Comet assay was performed on six human bladder carcinoma cell lines and one human urothelial cell line exposed to gamma-radiation doses from 0 to 10 Gy. Nuclear chromatin texture analysis of 40 features was then performed in the same cell lines exposed to 0, 2, and 6 Gy to explore if nuclear phenotype was related to radiation sensitivity. Comet assay results demonstrated that the cell lines exhibited different levels of radiosensitivity and could be divided into a radiosensitive and a radioresistant group at >6 Gy. Using stepwise discriminant analysis, a subset of important nuclear texture features that best discriminated between sensitive and resistant cell lines were identified A classification function, defined using these features, correctly classified 81.75% of all cells into their radiosensitive or radioresistant groups based on their pretreatment chromatin phenotype. Posttreatment chromatin changes also varied between cell lines, with sensitive cell lines showing a relaxed chromatin conformation following radiation, whereas resistant cell lines exhibited chromatin condensation. The authors conclude that the alkaline Comet assay and nuclear texture methodologies may prove to be valuable aids in predicting the response of tumor cells to radiotherapy.

  12. Slug inhibition increases radiosensitivity of oral squamous cell carcinoma cells by upregulating PUMA.

    PubMed

    Jiang, Fangfang; Zhou, Lijie; Wei, Changbo; Zhao, Wei; Yu, Dongsheng

    2016-08-01

    As a new strategy, radio-gene therapy was widely used for the treatment of cancer patients in recent few years. Slug was involved in the radioresistance of various cancers and has been found to have an anti-apoptotic effect. This study aims to investigate whether the modulation of Slug expression by siRNA affects oral squamous cell carcinoma sensitivity to X-ray irradiation through upregulating PUMA. Two oral squamous cell carcinoma cell lines (HSC3 and HSC6) were transfected with small interfering RNA (siRNA) targeting Slug and subjected to radiotherapy in vitro. After transfection with Slug siRNA, both HSC3 and HSC6 cells showed relatively lower expression of Slug and higher expression of PUMA. The Slug siRNA transfected cells showed decreased survival and proliferation rates, an increased apoptosis rate and enhanced radiosensitivity to X-ray irradiation. Our results revealed that Slug siRNA transfection in combination with radiation increased the expression of PUMA, which contributed to radiosensitivity of oral squamous cell carcinoma cells. Thus, controlling the expression of Slug might contribute to enhance sensitivity of HSC3 and HSC6 cells toward X-ray irradiation in vitro by upregulating PUMA.

  13. Metformin treatment reduces temozolomide resistance of glioblastoma cells

    PubMed Central

    Lu, Guangrong; Xue, Haipeng; Kim, Dong H.

    2016-01-01

    It has been reported that metformin acts synergistically with temozolomide (TMZ) to inhibit proliferation of glioma cells including glioblastoma multiforme (GBM). However, the molecular mechanism underlying how metformin exerts its anti-cancer effects remains elusive. We used a combined experimental and bioinformatics approach to identify genes and complex regulatory/signal transduction networks that are involved in restoring TMZ sensitivity of GBM cells after metformin treatment. First, we established TMZ resistant GBM cell lines and found that the resistant cells regained TMZ sensitivity after metformin treatment. We further identified that metformin down-regulates SOX2 expression in TMZ-resistant glioma cells, reduces neurosphere formation capacity of glioblastoma cells, and inhibits GBM xenograft growth in vivo. Finally, the global gene expression profiling data reveals that multiple pathways are involved in metformin treatment related gene expression changes, including fatty acid metabolism and RNA binding and splicing pathways. Our work provided insight of the mechanisms on potential synergistic effects of TMZ and metformin in the treatment of glioblastoma, which will in turn yield potentially translational value for clinical applications. PMID:27791206

  14. Blockage of Autophagy in C6 Glioma Cells Enhanced Radiosensitivity Possibly by Attenuating DNA-PK-Dependent DSB Due to Limited Ku Nuclear Translocation and DNA Binding.

    PubMed

    Liu, C; He, W; Jin, M; Li, H; Xu, H; Liu, H; Yang, K; Zhang, T; Wu, G; Ren, J

    2015-01-01

    Glioblastoma multiforme (GBM) is the most lethal brain tumor and notorious for its resistance to ionizing radiation (IR). Recent evidence suggests that one possible mechanism that enables resistance to IR and protects cells against therapeutic stress is cellular autophagy. The molecular basis for this pro-survival function, however, remains elusive. Herein, we report a molecular mechanism by which IR-induced autophagy accelerates the repair of DNA double-strand breaks (DSB). We demonstrate that IR induces the accumulation of autophagosomes, which is accompanied by elevated expression of autophagyrelated genes beclin-1, atg5, atg7, and atg12. Beclin-1 knockdown impaired the induction of IR-mediated autophagy and significantly sensitized glioma cells to radiation therapy in vitro and in vivo. Furthermore, our data is the first to demonstrate that the radiosensitizing effect of beclin-1 knockdown may result from the disruption of nuclear translocation and DNA binding activity of Ku proteins and consequent attenuation of DSB repair. Our findings help advance our understanding of the molecular mechanisms underlying IR-induced autophagy and provide a promising adjunctive therapeutic strategy for the radiosensitization of malignant glioma.

  15. [Radiosensitization effect of black garlic extract on lung cancer cell line Lewis cells].

    PubMed

    Yang, Gui-qing; Wang, Dong; Wang, Yi-shan; Wang, Yuan-yuan; Yang, Ke

    2013-08-01

    To explore the radiosensitization effect of black garlic extract (BGE) on lung cancer cell line Lewis cells. The inhibition rate of lung cancer cells after BGE action was detected by MTT. Effect of BGE combined radiotherapy on the colony formation rate was observed by cloning formation assay. Changes of the cell morphology were observed by Hoechst staining. Changes of the cell cycle were detected by flow cytometry. Real time PCR was used to detect mRNA expressions of bcl-2 and bax. BGE could have significant inhibitory action on the growth of lung cancer Lewis cells. The combination of BGE and radiotherapy (by 60Co gamma) significantly induced Lewis cells' apoptosis in G2/M stage, obviously decreased the expression of bcl-2, and up-regulated the expression of bax. BGE could sensitize the lung cancer Lewis cells to ionizing irradiation. This effect might be probably caused by changing the cell cycles and affecting expressions of bax and bcl-2.

  16. Opposing roles of glutaminase isoforms in determining glioblastoma cell phenotype.

    PubMed

    Szeliga, Monika; Albrecht, Jan

    2015-09-01

    Glutamine (Gln) and glutamate (Glu) play pivotal roles in the malignant phenotype of brain tumors via multiple mechanisms. Glutaminase (GA, EC 3.5.1.2) metabolizes Gln to Glu and ammonia. Human GA isoforms are encoded by two genes: GLS gene codes for kidney-type isoforms, KGA and GAC, whereas GLS2 codes for liver-type isoforms, GAB and LGA. The expression pattern of both genes in different neoplastic cell lines and tissues implicated that the kidney-type isoforms are associated with cell proliferation, while the liver-type isoforms dominate in, and contribute to the phenotype of quiescent cells. GLS gene has been demonstrated to be regulated by oncogene c-Myc, whereas GLS2 gene was identified as a target gene of p53 tumor suppressor. In glioblastomas (GBM, WHO grade IV), the most aggressive brain tumors, high levels of GLS and only traces or lack of GLS2 transcripts were found. Ectopic overexpression of GLS2 in human glioblastoma T98G cells decreased their proliferation and migration and sensitized them to the alkylating agents often used in the chemotherapy of gliomas. GLS silencing reduced proliferation of glioblastoma T98G cells and strengthen the antiproliferative effect evoked by previous GLS2 overexpression.

  17. Fenofibrate Induces Ketone Body Production in Melanoma and Glioblastoma Cells

    PubMed Central

    Grabacka, Maja M.; Wilk, Anna; Antonczyk, Anna; Banks, Paula; Walczyk-Tytko, Emilia; Dean, Matthew; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2016-01-01

    Ketone bodies [beta-hydroxybutyrate (bHB) and acetoacetate] are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly, its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa) agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of non-transformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and downregulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic) therapeutic approaches against glioblastoma. PMID:26869992

  18. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments

    SciTech Connect

    Jorritsma, J.B.; Burgman, P.; Kampinga, H.H.; Konings, A.W.

    1986-03-01

    Possible relations between hyperthermic inactivation of alpha and beta DNA polymerase activity and hyperthermic cell killing or hyperthermic radiosensitization were investigated. Ehrlich Ascites Tumor (EAT) cells and HeLa S3 cells were treated with fractionated doses of hyperthermia. The heating schedules were chosen such that the initial heat treatment resulted in either thermotolerance or thermosensitization (step-down heating) for the second heat treatment. The results show that for DNA polymerase activity and heat radiosensitization (cell survival) no thermotolerance or thermosensitization is observed. Thus hyperthermic cell killing and DNA polymerase activity are not correlated. The correlation of hyperthermic radiosensitization and DNA polymerase activity was substantially less than observed in previous experiments with normotolerant and thermotolerant HeLa S3 cells. We conclude that alpha and beta DNA polymerase inactivation is not always the critical cellular process responsible for hyperthermic cell killing or hyperthermic radiosensitization. Other possible cellular systems that might determine these processes are discussed.

  19. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    SciTech Connect

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D/sub 0/ values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F/sub 1/+/+ mice after various doses of irradiation and injected into the skin of the congenic W/W/sup v/ mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bg/sup J//bg/sup J/, Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the backs of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosenitive than those localized in the skin. D/sup 0/ value was about 100 rad for the former and about 800 rad for the latter.

  20. Bacillus calmette-guerin cell wall cytoskeleton enhances colon cancer radiosensitivity through autophagy.

    PubMed

    Yuk, Jae-Min; Shin, Dong-Min; Song, Kyoung-Sub; Lim, Kyu; Kim, Ki-Hye; Lee, Sang-Hee; Kim, Jin-Man; Lee, Ji-Sook; Paik, Tae-Hyun; Kim, Jun-Sang; Jo, Eun-Kyeong

    2010-01-01

    The cell wall skeleton of Mycobacterium bovis Bacillus Calmette-Guerin (BCG/CWS) is an effective antitumor immunotherapy agent. Here, we demonstrate that BCG/CWS has a radiosensitizing effect on colon cancer cells through the induction of autophagic cell death. Exposure of HCT116 colon cancer cells to BCG/CWS before ionizing radiation (IR) resulted in increased cell death in a caspase-independent manner. Treatment with BCG/CWS plus IR resulted in the induction of autophagy in colon cancer cells. Either the autophagy inhibitor 3-methyladenine or knockdown of beclin 1 or Atg7 significantly reduced tumor cell death induced by BCG/CWS plus IR, whereas the caspase inhibitor z-VAD-fmk failed to do so. BCG/CWS plus IR-mediated autophagy and cell death was mediated predominantly by the generation of reactive oxygen species (ROS). The c-Jun NH(2)-terminal kinase pathway functioned upstream of ROS generation in the induction of autophagy and cell death in HCT116 cells after co-treatment with BCG/CWS and IR. Furthermore, toll-like receptor (TLR) 2, and in part, TLR4, were responsible for BCG/CWS-induced radiosensitization. In vivo studies revealed that BCG/CWS-mediated radiosensitization of HCT116 xenograft growth is accompanied predominantly by autophagy. Our data suggest that BCG/CWS in combination with IR is a promising therapeutic strategy for enhancing radiation therapy in colon cancer cells through the induction of autophagy.

  1. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    PubMed

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  2. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    PubMed Central

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the

  3. Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor.

    PubMed

    Wei, Dongping; Li, Hua; Yu, Jie; Sebolt, Jonathan T; Zhao, Lili; Lawrence, Theodore S; Smith, Peter G; Morgan, Meredith A; Sun, Yi

    2012-01-01

    Radiotherapy is used in locally advanced pancreatic cancers in which it can improve survival in combination with gemcitabine. However, prognosis is still poor in this setting in which more effective therapies remain needed. MLN4924 is an investigational small molecule currently in phase I clinical trials. MLN4924 inhibits NAE (NEDD8 Activating Enzyme), a pivotal regulator of the E3 ubiquitin ligase SCF (SKP1, Cullins, and F-box protein), that has been implicated recently in DNA damage and repair. In this study, we provide evidence that MLN4924 can be used as an effective radiosensitizer in pancreatic cancer. Specifically, MLN4924 (20-100 nmol/L) effectively inhibited cullin neddylation and sensitized pancreatic cancer cells to ionizing radiation in vitro with a sensitivity enhancement ratio of approximately 1.5. Mechanistically, MLN4924 treatment stimulated an accumulation of several SCF substrates, including CDT1, WEE1, and NOXA, in parallel with an enhancement of radiation-induced DNA damage, aneuploidy, G(2)/M phase cell-cycle arrest, and apoptosis. RNAi-mediated knockdown of CDT1 and WEE1 partially abrogated MLN4924-induced aneuploidy, G(2)/M arrest, and radiosensitization, indicating a causal effect. Furthermore, MLN4924 was an effective radiosensitizer in a mouse xenograft model of human pancreatic cancer. Our findings offer proof-of-concept for use of MLN4924 as a novel class of radiosensitizer for the treatment of pancreatic cancer.

  4. HLF/miR-132/TTK axis regulates cell proliferation, metastasis and radiosensitivity of glioma cells.

    PubMed

    Chen, Shu; Wang, Yang; Ni, Chunxia; Meng, Ge; Sheng, Xiaofang

    2016-10-01

    Glioma is a malignant cancer with high mortality. A key prognostic factor of glioma is radiosensitivity. It has also been known that microRNAs (miR) significantly contribute to the development of glioma. miR-132 has been previously reported to inhibit tumor growth in some cancers, but not well studied in glioma. It is necessary to understand the association between miR-132 and glioma, including miR-132 expression in glioma, effects of miR-132 on cancer metastasis and radiosensitivity, and the involved molecular mechanism. We first explored the expression levels of miR-132 in human normal and glioma tissues, then correlated the expression levels with different stages of glioma. Utilizing human glioma U87 cells, lentiviral transduction technique, luciferase reporter assay, wound healing assay, transwell invasion assay and clonogenic assay, we investigated the effects of hepatic leukemia factor (HLF), miR-132 and TTK protein kinase (TTK) on cancer cell viability, proliferation, migration, invasion and radiosensitivity. The expression of miR-132 was low in human glioma tissues, and the downregulated expression was associated with advanced glioma grades. HLF directly bound to the BS1 site of miR-132 promoter to enhance the expression of miR-132. HLF-mediated miR-132 was able to directly target and inhibit a downstream factor TTK, which had an oncogenic role. Overexpression of TTK could reverse the inhibitory effects of either miR-132 or HLF on cancer cell proliferation, metastasis and radioresistance. TTK acts as an oncogene in glioma. HLF-mediated miR-132 directly suppresses TTK expression, thus exerting inhibitory effects on cancer cell proliferation, metastasis and radioresistance.

  5. HAP1 gene expression is associated with radiosensitivity in breast cancer cells

    SciTech Connect

    Wu, Jing; Zhang, Jun-ying; Yin, Li; Wu, Jian-zhong; Guo, Wen-jie; Wu, Jian-feng; Chen, Meng; Xia, You-you; Tang, Jin-hai; Ma, Yong-chao; He, Xia

    2015-01-02

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosis were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity.

  6. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells

    SciTech Connect

    Chiu, Shu-Jun; Hsaio, Ching-Hui; Tseng, Ho-Hsing; Su, Yu-Han; Shih, Wen-Ling; Lee, Jeng-Woei; Chuah, Jennifer Qiu-Yu

    2010-04-09

    Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors {gamma} used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116 cells, and prolonged radiation-induced G{sub 2}/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.

  7. Characteristics and regulation of proline transport in cultured glioblastoma cells.

    PubMed Central

    Zafra, F; Aragón, C; Giménez, C

    1994-01-01

    L-Proline transport in C6 glioblastoma cells takes place mainly via a saturable Na(+)-dependent mechanism. The uptake process can be discriminated into two components, system A and system ASC. A minor proportion of L-proline transport is carried out by the ASC system, which appears to be constitutively expressed by the cell, but most is by system A which shows adaptive responses to amino acid deprivation and sensitivity to N-methyl-alpha-aminoisobutyric acid. The transport system is inhibited by proline derivatives, such as methyl and benzyl esters, and also hydroxyproline, and is stereospecific. Incubation of glioblastoma cells with phorbol 12-myristate 13-acetate led to concentration- and time-dependent decreases in L-proline transport. This effect could be mimicked by exogenous phospholipase C. Proline transport is significantly stimulated in the presence of Ca(2+)-mobilization agents and strongly inhibited in the absence of Ca2+. The present data suggest a complex regulation of L-proline transport by different kinases in glioblastoma cells. PMID:7945191

  8. Residual tumor cells are unique cellular targets in glioblastoma.

    PubMed

    Glas, Martin; Rath, Barbara H; Simon, Matthias; Reinartz, Roman; Schramme, Anja; Trageser, Daniel; Eisenreich, Ramona; Leinhaas, Anke; Keller, Mihaela; Schildhaus, Hans-Ulrich; Garbe, Stephan; Steinfarz, Barbara; Pietsch, Torsten; Steindler, Dennis A; Schramm, Johannes; Herrlinger, Ulrich; Brüstle, Oliver; Scheffler, Björn

    2010-08-01

    Residual tumor cells remain beyond the margins of every glioblastoma (GBM) resection. Their resistance to postsurgical therapy is considered a major driving force of mortality, but their biology remains largely uncharacterized. In this study, residual tumor cells were derived via experimental biopsy of the resection margin after standard neurosurgery for direct comparison with samples from the routinely resected tumor tissue. In vitro analysis of proliferation, invasion, stem cell qualities, GBM-typical antigens, genotypes, and in vitro drug and irradiation challenge studies revealed these cells as unique entities. Our findings suggest a need for characterization of residual tumor cells to optimize diagnosis and treatment of GBM.

  9. Small-molecule XIAP inhibitors enhance gamma-irradiation-induced apoptosis in glioblastoma.

    PubMed

    Vellanki, Sri Hari Krishna; Grabrucker, Andreas; Liebau, Stefan; Proepper, Christian; Eramo, Adriana; Braun, Veit; Boeckers, Tobias; Debatin, Klaus-Michael; Fulda, Simone

    2009-08-01

    Because evasion of apoptosis can cause radioresistance of glioblastoma, there is a need to design rational strategies that counter apoptosis resistance. In the present study, we investigated the potential of targeting the antiapoptotic protein XIAP for the radiosensitization of glioblastoma. Here, we report that small-molecule XIAP inhibitors significantly enhance gamma-irradiation-induced loss of viability and apoptosis and cooperate with gamma-irradiation to suppress clonogenic survival of glioblastoma cells. Analysis of molecular mechanisms reveals that XIAP inhibitors act in concert with gamma-irradiation to cause mitochondrial outer membrane permeabilization, caspase activation, and caspase-dependent apoptosis. Importantly, XIAP inhibitors also sensitize primary cultured glioblastoma cells derived from surgical specimens as well as glioblastoma-initiating stemlike cancer stem cells for gamma-irradiation. In contrast, they do not increase the toxicity of gamma-irradiation on some nonmalignant cells of the central nervous system, including rat neurons or glial cells, pointing to some tumor selectivity. In conclusion, by demonstrating for the first time that small-molecule XIAP inhibitors increase the radiosensitivity of glioblastoma cells while sparing normal cells of the central nervous system, our findings build the rationale for further (pre)clinical development of XIAP inhibitors in combination with gamma-irradiation in glioblastoma.

  10. Cell-based therapy using miR-302-367 expressing cells represses glioblastoma growth.

    PubMed

    Fareh, Mohamed; Almairac, Fabien; Turchi, Laurent; Burel-Vandenbos, Fanny; Paquis, Philippe; Fontaine, Denys; Lacas-Gervais, Sandra; Junier, Marie-Pierre; Chneiweiss, Hervé; Virolle, Thierry

    2017-03-30

    Glioblastomas are incurable primary brain tumors that affect patients of all ages. The aggressiveness of this cancer has been attributed in part to the persistence of treatment-resistant glioblastoma stem-like cells. We have previously discovered the tumor-suppressor properties of the microRNA cluster miR-302-367, representing a potential treatment for glioblastoma. Here, we attempted to develop a cell-based therapy by taking advantage of the capability of glioma cells to secrete exosomes that enclose small RNA molecules. We engineered primary glioma cells to stably express the miR-302-367. Remarkably, these cells altered, in a paracrine-dependent manner, the expression of stemness markers, the proliferation and the tumorigenicity of neighboring glioblastoma cells. Further characterization of the secretome derived from miR-302-367 expressing cells showed that a large amount of miR-302-367 was enclosed in exosomes, which were internalized by the neighboring glioblastoma cells. This miR-302-367 cell-to-cell transfer resulted in the inhibition of its targets such as CXCR4/SDF1, SHH, cyclin D, cyclin A and E2F1. Orthotopic xenograft of miR-302-367-expressing cells together with glioblastoma stem-like cells efficiently altered the tumor development in mice brain.

  11. JNK contributes to temozolomide resistance of stem-like glioblastoma cells via regulation of MGMT expression.

    PubMed

    Okada, Masashi; Sato, Atsushi; Shibuya, Keita; Watanabe, Eriko; Seino, Shizuka; Suzuki, Shuhei; Seino, Manabu; Narita, Yoshitaka; Shibui, Soichiro; Kayama, Takamasa; Kitanaka, Chifumi

    2014-02-01

    While elimination of the cancer stem cell population is increasingly recognized as a key to successful treatment of cancer, the high resistance of cancer stem cells to conventional chemoradiotherapy remains a therapeutic challenge. O6-methylguanine DNA methyltransferase (MGMT), which is frequently expressed in cancer stem cells of glioblastoma, has been implicated in their resistance to temozolomide, the first-line chemotherapeutic agent against newly diagnosed glioblastoma. However, much remains unknown about the molecular regulation that underlies MGMT expression and temozolomide resistance of glioblastoma cancer stem cells. Here, we identified JNK as a novel player in the control of MGMT expression and temozolomide resistance of glioblastoma cancer stem cells. We showed that inhibition of JNK, either pharmacologically or by RNA interference, in stem-like glioblastoma cells derived directly from glioblastoma tissues reduces their MGMT expression and temozolomide resistance. Importantly, sensitization of stem-like glioblastoma cells to temozolomide by JNK inhibition was dependent on MGMT expression, implying that JNK controls temozolomide resistance of stem-like glioblastoma cells through MGMT expression. Our findings suggest that concurrent use of JNK inhibitors with temozolomide may be a rational therapeutic approach to effectively target the cancer stem cell population in the treatment of glioblastoma.

  12. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines.

    PubMed

    Chen, Xuan; Wang, Cong; Guan, Shanghui; Liu, Yuan; Han, Lihui; Cheng, Yufeng

    2016-07-01

    Telomerase is a type of reverse transcriptase that is overexpressed in almost all human tumor cells, but not in normal tissues, which provides an opportunity for radiosensitization targeting telomerase. Zidovudine, abacavir and lamivudine are reverse transcriptase inhibitors that have been applied in clinical practice for several years. We sought to explore the radiosensitization effect of these three drugs on human esophageal cancer cell lines. Eca109 and Eca9706 cells were treated with zidovudine, abacavir and lamivudine for 48 h before irradiation was administered. Samples were collected 1 h after irradiation. Clonal efficiency assay was used to evaluate the effect of the combination of these drugs with radiation doses of 2, 4, 6 and 8 Gy. DNA damage was measured by comet assay. Telomerase activity (TA) and relative telomere length (TL) were detected and evaluated by real-time PCR. Apoptosis rates were assessed by flow cytometric analysis. The results showed that all the drugs tested sensitized the esophageal squamous cell carcinoma (ESCC) cell lines to radiation through an increase in radiation-induced DNA damage and cell apoptosis, deregulation of TA and decreasing the shortened TL caused by radiation. Each of the drugs investigated (zidovudine, abacavir and lamivudine) could be used for sensitizing human esophageal cancer cell lines to radiation. Consequently, the present study supports the potential of these three drugs as therapeutic agents for the radiosensitization of esophageal squamous cell cancer.

  13. Enhancement of radiosensitivity in human esophageal carcinoma cells by fenofibrate and its potential mechanism.

    PubMed

    Li, Xiao-Qing; Zhou, Jun-Dong; Zou, Shi-Tao; Yu, Jian; Meng, Xin-Jun; Wu, Jin-Chang

    2015-01-01

    Fenofibrate is a specific agonist of PPARα, and is characterized by relatively low systemic toxicity. Recent studies have revealed that fenofibrate suppresses the growth of several cancer lines in vitro, but the exact relation between fenofibrate and irradiation has not been explored. The purpose of this study was to investigate the radiosensitivity enhancement effects of fenofibrate combined with radiation on the human esophageal carcinoma cell lines Eca-109 and TE1, and the potential mechanism underlying these effects. The Eca-109 and TE1 cell lines were tested by the CCK-8 assay for cell proliferation. The multitarget click model was used to delineate the survival curve and radiosensitivity was determined after cells were treated with fenofibrate and/or x-ray radiation. Flow cytometry was used to examine the effect of fenofibrate and radiation on the cell cycle. The expression of vascular endothelial growth factor (VEGF) protein was detected by Western blot analysis. When given alone, fenofibrate had a time- and concentration-dependent cytotoxic effect on cells. The dose-enhancement ratio for combined fenofibrate and radiation increased markedly compared with fenofibrate alone. Further, the ratio of cells in the G2/M phase after fenofibrate and radiation was higher than that after fenofibrate or irradiation alone. The expression of VEGF protein was suppressed after treatment with fenofibrate alone or fenofibrate plus radiation. Fenofibrate can enhance the radiosensitivity of human esophageal carcinoma cells by increasing G2/M phase arrest. Modulation of VEGF expression could contribute in vivo to a favorable interaction.

  14. Sulfasalazine intensifies temozolomide cytotoxicity in human glioblastoma cells.

    PubMed

    Ignarro, Raffaela Silvestre; Facchini, Gustavo; Vieira, André Schwambach; De Melo, Daniela Rodrigues; Lopes-Cendes, Iscia; Castilho, Roger Frigério; Rogerio, Fabio

    2016-07-01

    Temozolomide (TMZ) is an alkylating agent used to treat glioblastoma. This tumor type synthesizes the antioxidant glutathione through system X c (-) , which is inhibited by sulfasalazine (SAS). We exposed A172 and T98G human glioblastoma cells to a presumably clinically relevant concentration of TMZ (25 µM) and/or 0.5 mM SAS for 1, 3, or 5 days and assessed cell viability. For both cell lines, TMZ alone did not alter viability at any time point, while the coadministration of TMZ and SAS significantly reduced cell viability after 5 days. The drug combination exerted a synergistic effect on A172 cells after 3 and 5 days. Therefore, this particular lineage was subjected to complementary analyses on the genetic (transcriptome) and functional (glutathione and proliferating cell nuclear antigen (PCNA) protein) levels. Cellular pathways containing differentially expressed genes related to the cell cycle were modified by TMZ alone. On the other hand, SAS regulated pathways associated with glutathione metabolism and synthesis, irrespective of TMZ. Moreover, SAS, but not TMZ, depleted the total glutathione level. Compared with the vehicle-treated cells, the level of PCNA protein was lower in cells treated with TMZ alone or in combination with SAS. In conclusion, our data showed that the association of TMZ and SAS is cytotoxic to T98G and A172 cells, thus providing useful insights for improving TMZ clinical efficacy through testing this novel drug combination. Moreover, the present study not only reports original information on differential gene expression in glioblastoma cells exposed to TMZ and/or SAS but also describes an antiproliferative effect of TMZ, which has not yet been observed in A172 cells.

  15. MicroRNA-190b confers radio-sensitivity through negative regulation of Bcl-2 in gastric cancer cells.

    PubMed

    Wang, Changzheng; Qiao, Chuanhu

    2017-04-01

    To determine the role of miR-190b in radio-sensitivity of gastric cancer (GC). In radio-resistant GC cells, down-regulation of miR-190b and up-regulation of Bcl-2 were observed. The protein expression of Bcl-2 was negatively regulated by miR-190b. Overexpression of miR-190b significantly decreased cell viability and enhanced radio-sensitivity of GC cells. Of note, these effects of miR-190b on GC cells radio-sensitivity were abolished by Bcl-2. miR-190b confers radio-sensitivity of GC cells, possibly via negative regulation of Bcl-2.

  16. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays

    NASA Astrophysics Data System (ADS)

    Xie, W. Z.; Friedland, W.; Li, W. B.; Li, C. Y.; Oeh, U.; Qiu, R.; Li, J. L.; Hoeschen, C.

    2015-08-01

    Abundant studies have focused on the radiosensitization effect of gold nanoparticles (GNPs) in the cellular environment with x-ray irradiation. To better understand the physical foundation and to initially study the molecular radiosensitization effect within the nucleus, a simple cell model with detailed DNA structure in the central nucleus was set up and complemented with different distributions of single and multiple GNPs in this work. With the biophysical Monte Carlo simulation code PARTRAC, the radiosensitization effects on both physical quantities and primary biological responses (DNA strand breaks) were simulated. The ratios of results under situations with GNPs compared to those without GNPs were defined as the enhancement factors (EFs). The simulation results show that the presence of GNP can cause a notable enhancement effect on the energy deposition within a few micrometers from the border of GNP. The greatest upshot appears around the border and is mostly dominated by Auger electrons. The enhancement effect on the DNA strand breakage becomes smaller because of the DNA distribution inside the nucleus, and the corresponding EFs are between 1 and 1.5. In the present simulation, multiple GNPs on the nucleus surface, the 60 kVp x-ray spectrum and the diameter of 100 nm are relatively more effective conditions for both physical and biological radiosensitization effects. These results preliminarily indicate that GNP can be a good radiosensitizer in x-ray radiotherapy. Nevertheless, further biological responses (repair process, cell survival, etc) need to be studied to give more accurate evaluation and practical proposal on GNP’s application in clinical treatment.

  17. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays.

    PubMed

    Xie, W Z; Friedland, W; Li, W B; Li, C Y; Oeh, U; Qiu, R; Li, J L; Hoeschen, C

    2015-08-21

    Abundant studies have focused on the radiosensitization effect of gold nanoparticles (GNPs) in the cellular environment with x-ray irradiation. To better understand the physical foundation and to initially study the molecular radiosensitization effect within the nucleus, a simple cell model with detailed DNA structure in the central nucleus was set up and complemented with different distributions of single and multiple GNPs in this work. With the biophysical Monte Carlo simulation code PARTRAC, the radiosensitization effects on both physical quantities and primary biological responses (DNA strand breaks) were simulated. The ratios of results under situations with GNPs compared to those without GNPs were defined as the enhancement factors (EFs). The simulation results show that the presence of GNP can cause a notable enhancement effect on the energy deposition within a few micrometers from the border of GNP. The greatest upshot appears around the border and is mostly dominated by Auger electrons. The enhancement effect on the DNA strand breakage becomes smaller because of the DNA distribution inside the nucleus, and the corresponding EFs are between 1 and 1.5. In the present simulation, multiple GNPs on the nucleus surface, the 60 kVp x-ray spectrum and the diameter of 100 nm are relatively more effective conditions for both physical and biological radiosensitization effects. These results preliminarily indicate that GNP can be a good radiosensitizer in x-ray radiotherapy. Nevertheless, further biological responses (repair process, cell survival, etc) need to be studied to give more accurate evaluation and practical proposal on GNP's application in clinical treatment.

  18. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy.

    PubMed

    Lan, Xiaoyang; Jörg, David J; Cavalli, Florence M G; Richards, Laura M; Nguyen, Long V; Vanner, Robert J; Guilhamon, Paul; Lee, Lilian; Kushida, Michelle M; Pellacani, Davide; Park, Nicole I; Coutinho, Fiona J; Whetstone, Heather; Selvadurai, Hayden J; Che, Clare; Luu, Betty; Carles, Annaick; Moksa, Michelle; Rastegar, Naghmeh; Head, Renee; Dolma, Sonam; Prinos, Panagiotis; Cusimano, Michael D; Das, Sunit; Bernstein, Mark; Arrowsmith, Cheryl H; Mungall, Andrew J; Moore, Richard A; Ma, Yussanne; Gallo, Marco; Lupien, Mathieu; Pugh, Trevor J; Taylor, Michael D; Hirst, Martin; Eaves, Connie J; Simons, Benjamin D; Dirks, Peter B

    2017-09-14

    Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.

  19. Cell-Specific Radiosensitization by Gold Nanoparticles at Megavoltage Radiation Energies

    SciTech Connect

    Jain, Suneil; Coulter, Jonathan A.; Hounsell, Alan R.; Butterworth, Karl T.; McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Dickson, Glenn R.; Prise, Kevin M.; Currell, Fred J.; O'Sullivan, Joe M.; Hirst, David G.

    2011-02-01

    Purpose: Gold nanoparticles (GNPs) have been shown to cause sensitization with kilovoltage (kV) radiation. Differences in the absorption coefficient between gold and soft tissue, as a function of photon energy, predict that maximum enhancement should occur in the kilovoltage (kV) range, with almost no enhancement at megavoltage (MV) energies. Recent studies have shown that GNPs are not biologically inert, causing oxidative stress and even cell death, suggesting a possible biological mechanism for sensitization. The purpose of this study was to assess GNP radiosensitization at clinically relevant MV X-ray energies. Methods and Materials: Cellular uptake, intracellular localization, and cytotoxicity of GNPs were assessed in normal L132, prostate cancer DU145, and breast cancer MDA-MB-231 cells. Radiosensitization was measured by clonogenic survival at kV and MV photon energies and MV electron energies. Intracellular DNA double-strand break (DSB) induction and DNA repair were determined and GNP chemosensitization was assessed using the radiomimetic agent bleomycin. Results: GNP uptake occurred in all cell lines and was greatest in MDA-MB-231 cells with nanoparticles accumulating in cytoplasmic lysosomes. In MDA-MB-231 cells, radiation sensitizer enhancement ratios (SERs) of 1.41, 1.29, and 1.16 were achieved using 160 kVp, 6 MV, and 15 MV X-ray energies, respectively. No significant effect was observed in L132 or DU145 cells at kV or MV energies (SER 0.97-1.08). GNP exposure did not increase radiation-induced DSB formation or inhibit DNA repair; however, GNP chemosensitization was observed in MDA-MB-231 cells treated with bleomycin (SER 1.38). Conclusions: We have demonstrated radiosensitization in MDA-MB-231 cells at MV X-ray energies. The sensitization was cell-specific with comparable effects at kV and MV energies, no increase in DSB formation, and GNP chemopotentiation with bleomycin, suggesting a possible biological mechanism of radiosensitization.

  20. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon; Kim, In-Ah

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression and radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.

  1. Targeted inhibition of mammalian target of rapamycin (mTOR) enhances radiosensitivity in pancreatic carcinoma cells

    PubMed Central

    Dai, Zhi-Jun; Gao, Jie; Kang, Hua-Feng; Ma, Yu-Guang; Ma, Xiao-Bin; Lu, Wang-Feng; Lin, Shuai; Ma, Hong-Bing; Wang, Xi-Jing; Wu, Wen-Ying

    2013-01-01

    The mammalian target of rapamycin (mTOR) is a protein kinase that regulates protein translation, cell growth, and apoptosis. Rapamycin (RPM), a specific inhibitor of mTOR, exhibits potent and broad in vitro and in vivo antitumor activity against leukemia, breast cancer, and melanoma. Recent studies showing that RPM sensitizes cancers to chemotherapy and radiation therapy have attracted considerable attention. This study aimed to examine the radiosensitizing effect of RPM in vitro, as well as its mechanism of action. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and colony formation assay showed that 10 nmol/L to 15 nmol/L of RPM had a radiosensitizing effects on pancreatic carcinoma cells in vitro. Furthermore, a low dose of RPM induced autophagy and reduced the number of S-phase cells. When radiation treatment was combined with RPM, the PC-2 cell cycle arrested in the G2/M phase of the cell cycle. Complementary DNA (cDNA) microarray and reverse transcription polymerase chain reaction (RT-PCR) revealed that the expression of DDB1, RAD51, and XRCC5 were downregulated, whereas the expression of PCNA and ABCC4 were upregulated in PC-2 cells. The results demonstrated that RPM effectively enhanced the radiosensitivity of pancreatic carcinoma cells. PMID:23662044

  2. Histone deacetylase enzyme silencing using shRNAs enhances radiosensitivity of SW579 thyroid cancer cells

    PubMed Central

    Wang, Ye; Jin, Tao; Dai, Xueming; Yan, Dongwang; Peng, Zhihai

    2016-01-01

    The aim of the present study was to screen the enzymes that are associated with the radiosensitivity of SW579 thyroid cancer cells, and investigate whether radiation, combined with specific RNA interference on the screened enzymes, enhances radiosensitivity of SW579 thyroid cancer cells. Quantitative polymerase chain reaction (qPCR) was used to analyze epigenetic enzyme expression changes before and after radiotherapy, and four enzymes, histone deacetylase 1 (HDAC1), HDAC2, HDAC4 and HDAC6 were screened. Western blot analysis was performed to analyze the change in HDAC1, HDAC2, HDAC4 and HDAC6 protein expression following radiotherapy. Short hairpin RNA (ShRNA)-HDAC1, shRNA-HDAC2, shRNA-HDAC4 and shRNA-HDAC6 plasmids were constructed and SW579 cells were transfected with corresponding shRNA-HDACs. Reverse transcription-qPCR was used to detect whether downregulation of HDAC mRNAs had been effective. In addition, shRNA and shRNA negative control (NC) pools were established and transfected into the SW579 cells. The samples were divided into four groups; control, trichostatin A, shRNA pool and shRNA NC pool, to analyze the effective enhancement of specific shRNA on radiosensitivity in thyroid cancer cells. The morphological changes were observed in the SW579 cells, and the number of tumor cells decreased markedly in the shRNA pool group compared with that of the other three groups. Therefore, it was concluded that HDACs present a potential target for increasing the sensitivity of thyroid cancer cells to radiotherapy, and shRNA-HDAC interference combined with radiotherapy promotes the radiosensitivity of tumors. PMID:27600599

  3. Deregulation of a STAT3-IL8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness

    PubMed Central

    de la Iglesia, Núria; Konopka, Genevieve; Lim, Kah Leong; Nutt, Catherine L.; Bromberg, Jacqueline F.; Frank, David A.; Mischel, Paul S.; Louis, David N.; Bonni, Azad

    2009-01-01

    Inactivation of the tumor suppressor PTEN is recognized as a major event in the pathogenesis of the brain tumor glioblastoma. However, the mechanisms by which PTEN loss specifically impacts the malignant behavior of glioblastoma cells including their proliferation and propensity for invasiveness remain poorly understood. Genetic studies suggest that the transcription factor STAT3 harbors a PTEN-regulated tumor suppressive function in mouse astrocytes. Here, we report that STAT3 plays a critical tumor suppressive role in PTEN-deficient human glioblastoma cells. Endogenous STAT3 signaling is specifically inhibited in PTEN-deficient glioblastoma cells. Strikingly, reactivation of STAT3 in PTEN-deficient glioblastoma cells inhibits their proliferation, invasiveness, and ability to spread on myelin. We also identify the chemokine IL8 as a novel target gene of STAT3 in human glioblastoma cells. Activated STAT3 occupies the endogenous IL8 promoter and directly represses IL8 transcription. Consistent with these results, IL8 is upregulated in PTEN-deficient human glioblastoma tumors. Importantly, IL8 repression mediates STAT3-inhibition of glioblastoma cell proliferation, invasiveness, and spreading on myelin. Collectively, our findings uncover a novel link between STAT3 and IL8 whose deregulation plays a key role in the malignant behavior of PTEN-deficient glioblastoma cells. These studies suggest that STAT3 activation or IL8 inhibition may have potential in patient-tailored treatment of PTEN-deficient brain tumors. PMID:18524891

  4. Gold nanoparticles in combination with megavoltage radiation energy increased radiosensitization and apoptosis in colon cancer HT-29 cells.

    PubMed

    Saberi, Alihossein; Shahbazi-Gahrouei, Daryoush; Abbasian, Mahdi; Fesharaki, Mehrafarin; Baharlouei, Azam; Arab-Bafrani, Zahra

    2017-03-01

    Gold nanoparticles (GNP) act as a radiosensitizer in radiation therapy. However, recent studies have shown contradictory evidence in terms of radiosensitization in the presence of GNP combined with X-ray megavoltage energy (MV) on different cell types. In this study, the effect of GNP on radiosensitization enhancement of HT-29 human colorectal cancer cells at MV X-ray energy was evaluated. The cytotoxicity and radiosensitization of GNP were evaluated in HT-29 human colorectal cancer cells by MTS-assay and multiple MTS-assay, respectively. Cellular uptake was assayed using graphite furnace atomic absorption spectrometry (GFAAS). Apoptosis and cell cycle progression were determined by an Annexin V-FITC/propidium iodide (PI) kit and PI/RNase solution with flow cytometry, respectively. Results showed that the cell viability of the HT-29 cells was not influenced by exposure to different concentrations of GNP (10-100 μM). GNP alone did not affect the cell cycle progression and apoptosis. In contrast, GNP, in combination with radiation (9 MV), induced more apoptosis. The interaction of GNP with MV energy resulted in a significant radiosensitization enhancement compared with irradiation alone. It was concluded that GNP may work as bio-inert material on HT-29 cancer cells and their enhancement of radiosensitization may be due to increase in the absorbed irradiation dose.

  5. Effects of stratospheric radiations on human glioblastoma cells.

    PubMed

    Cerù, Maria Paola; Amicarelli, Fernanda; Cristiano, Loredana; Colafarina, Sabrina; Aimola, Pierpaolo; Falone, Stefano; Cinque, Benedetta; Ursini, Ornella; Moscardelli, Roberto; Ragni, Pietro

    2005-01-01

    The aim of this work was to evaluate the effect of stratospheric radiations on neural tumour cells. ADF human glioblastoma cells were hosted on a stratospheric balloon within the 2002 biological experiment campaign of the Italian Space Agency. The flight at an average height of 37 km lasted about 24 hrs. Cell morphology, number and viability, cell cycle and apoptosis, some antioxidant enzymes and proteins involved in cell cycle regulation, DNA repair and gene expression were studied. Stratospheric radiations caused a significant decrease in cell number, as well as a block of proliferation, but not apoptosis or necrosis. Radiations also induced activation and induction of some antioxidant enzymes, increase in DNA repair-related proteins (p53 and Proliferating Cell Nuclear Antigen) and variations of the transcription factors Peroxisome Proliferator-Activated Receptors. Morphologically, test cells exhibited more electron dense cytoplasm and less condensed chromatin than controls and modification of their surfaces. Our results indicate that glioblastoma cells, exposed to continuous stratospheric radiations for 24 hrs, show activation of cell cycle check point, decrease of cell number, variations of Peroxisome Proliferator-Activated Receptors and increase of Reactive Oxygen Species-scavenging enzymes.

  6. Radiosensitization of Oropharyngeal Squamous Cell Carcinoma Cells by Human Papillomavirus 16 Oncoprotein E6*I

    SciTech Connect

    Pang, Ervinna; Delic, Naomi C.; Hong, Angela; Zhang Mei; Rose, Barbara R.; Lyons, J. Guy

    2011-03-01

    Purpose: Patients with oropharyngeal squamous cell carcinoma (OSCC) whose disease is associated with high-risk human papillomavirus (HPV) infection have a significantly better outcome than those with HPV-negative disease, but the reasons for the better outcome are not known. We postulated that they might relate to an ability of HPV proteins to confer a better response to radiotherapy, a commonly used treatment for OSCC. Methods and Materials: We stably expressed the specific splicing-derived isoforms, E6*I and E6*II, or the entire E6 open reading frame (E6total), which gives rise to both full length and E6*I isoforms, in OSCC cell lines. Radiation resistance was measured in clonogenicity assays, p53 activity was measured using transfected reporter genes, and flow cytometry was used to analyze cell cycle and apoptosis. Results: E6*I and E6total sensitized the OSCC cells to irradiation, E6*I giving the greatest degree of radiosensitization (approximately eightfold lower surviving cell fraction at 10 Gy), whereas E6*II had no effect. In contrast to radiosensitivity, E6*I was a weaker inhibitor than E6total of tumor suppressor p53 transactivator activity in the same cells. Flow cytometric analyses showed that irradiated E6*I expressing cells had a much higher G2M:G1 ratio than control cells, indicating that, after G2, cells were diverted from the cell cycle to programmed cell death. Conclusion: This study supports a role for E6*I in the enhanced responsiveness of HPV-positive oropharyngeal carcinomas to p53-independent radiation-induced death.

  7. The Effect of Metformin and GANT61 Combinations on the Radiosensitivity of Prostate Cancer Cells.

    PubMed

    Gonnissen, Annelies; Isebaert, Sofie; McKee, Chad M; Muschel, Ruth J; Haustermans, Karin

    2017-02-13

    The anti-diabetes drug metformin has been shown to have anti-neoplastic effects in several tumor models through its effects on energy metabolism and protein synthesis. Recent studies show that metformin also targets Hedgehog (Hh) signaling, a developmental pathway re-activated in several tumor types, including prostate cancer (PCa). Furthermore, we and others have shown that Hh signaling is an important target for radiosensitization. Here, we evaluated the combination of metformin and the Hh inhibitor GANT61 (GLI-ANTagonist 61) with or without ionizing radiation in three PCa cell lines (PC3, DU145, 22Rv1). The effect on proliferation, radiosensitivity, apoptosis, cell cycle distribution, reactive oxygen species production, DNA repair, gene and protein expression was investigated. Furthermore, this treatment combination was also assessed in vivo. Metformin was shown to interact with Hh signaling by inhibiting the effector protein glioma-associated oncogene homolog 1 (GLI1) in PCa cells both in vitro and in vivo. The combination of metformin and GANT61 significantly inhibited PCa cell growth in vitro and enhanced the radiation response of 22Rv1 cells compared to either single agent. Nevertheless, neither the growth inhibitory effect nor the radiosensitization effect of the combination treatment observed in vitro was seen in vivo. Although the interaction between metformin and Hh signaling seems to be promising from a therapeutic point of view in vitro, more research is needed when implementing this combination strategy in vivo.

  8. The Effect of Metformin and GANT61 Combinations on the Radiosensitivity of Prostate Cancer Cells

    PubMed Central

    Gonnissen, Annelies; Isebaert, Sofie; McKee, Chad M.; Muschel, Ruth J.; Haustermans, Karin

    2017-01-01

    The anti-diabetes drug metformin has been shown to have anti-neoplastic effects in several tumor models through its effects on energy metabolism and protein synthesis. Recent studies show that metformin also targets Hedgehog (Hh) signaling, a developmental pathway re-activated in several tumor types, including prostate cancer (PCa). Furthermore, we and others have shown that Hh signaling is an important target for radiosensitization. Here, we evaluated the combination of metformin and the Hh inhibitor GANT61 (GLI-ANTagonist 61) with or without ionizing radiation in three PCa cell lines (PC3, DU145, 22Rv1). The effect on proliferation, radiosensitivity, apoptosis, cell cycle distribution, reactive oxygen species production, DNA repair, gene and protein expression was investigated. Furthermore, this treatment combination was also assessed in vivo. Metformin was shown to interact with Hh signaling by inhibiting the effector protein glioma-associated oncogene homolog 1 (GLI1) in PCa cells both in vitro and in vivo. The combination of metformin and GANT61 significantly inhibited PCa cell growth in vitro and enhanced the radiation response of 22Rv1 cells compared to either single agent. Nevertheless, neither the growth inhibitory effect nor the radiosensitization effect of the combination treatment observed in vitro was seen in vivo. Although the interaction between metformin and Hh signaling seems to be promising from a therapeutic point of view in vitro, more research is needed when implementing this combination strategy in vivo. PMID:28208838

  9. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    SciTech Connect

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  10. Radiosensitizing effects of the prenyltransferase inhibitor AZD3409 against RAS mutated cell lines.

    PubMed

    Cengel, Keith A; Deutsch, Eric; Stephens, Trevor C; Voong, K Ranh; Kao, Gary D; Bernhard, Eric J

    2006-09-01

    Mutations at the H-, N- and K-ras loci are among the most frequent genetic alterations in human cancers. In this study, we have investigated the effect of AZD3409, a novel, peptidomimetic prenyltransferase inhibitor (PTI), on the radiosensitivity of cells with mutated ras alleles. AZD3409, developed by AstraZeneca, inhibits both farnesyl- and geranylgeranyl transferase in cell free systems. AZD3409 inhibits the growth of a variety of human cancer cell lines, including cells that express mutant alleles of either K- or H- ras and was well tolerated when administered orally to healthy volunteers in a phase I clinical trial. We have previously shown that PTI can radiosensitize human and rodent cancer cell lines that express activated RAS. Here we assessed the ability of AZD3409 to radiosensitize human cancer cell lines in vivo and in vitro and the activation state of RAS proteins in treated cells. Once daily oral administration of AZD3409 to nude mice bearing PSN-1 and MiaPaCa-2 human pancreatic cancer xenografts expressing mutant K-ras was well tolerated and resulted in a supra-additive reduction in clonogenic cell survival after irradiation. Similarly, AZD3409 reduced clonogenic survival in cells that express either mutant K- or H- ras in vitro. We next examined the effect of AZD3409 on the processing and activation of K- and H-RAS. AZD3409-mediated radiosensitization, both in vivo and in vitro, correlates with a decrease in H-RAS processing without detectable effect on K-RAS processing. RAS activation assays show that the decreased H-RAS processing is accompanied by decreased H-RAS activation in cell lines with mutations in either K- or H-ras. However, no decrease in K-RAS activation was detected. Thus, radiosensitization of human cancer cells that express mutated K-RAS occurred under conditions where AZD3409 inihibits the activation of farneyslated H-RAS, but did not inhibit K-RAS activation.

  11. The radiosensitizing and toxic effects of RSU-1069 on hypoxic cells in a murine tumor.

    PubMed

    Chaplin, D J; Durand, R E; Stratford, I J; Jenkins, T C

    1986-07-01

    RSU-1069 is one of a group of compounds of particular interest in radiobiology, since it combines the nitroimidazole ring with a side chain bearing a monofunctional alkylating agent. This compound has been shown to be a potent radiosensitizer both in vitro and in vivo. Furthermore, it has recently been shown to be an effective hypoxic cell cytotoxin in vitro. Our studies have been carried out using the SCCVII squamous carcinoma implanted subcutaneously in C3H mice, using a technique we recently developed which facilitates isolation of tumor cell subpopulations from known locations relative to the tumor blood supply. The response of the separated tumor subpopulations was assessed using a soft agar clonogenic assay. For radiosensitization studies, RSU-1069 was administered i.p. at 0.5 mumol/g 20 min before irradiation and the tumors excised 20 min after irradiation. For toxicity studies, tumors were excised 16-18 hr after RSU-1069 administration. The results obtained to date clearly demonstrate that RSU-1069 is an efficient hypoxic cell radiosensitizer and cytotoxin in this murine tumor and has little effect on well perfused (i.e., oxic) cells.

  12. Radiosensitization by the investigational NEDD8-activating enzyme inhibitor MLN4924 (pevonedistat) in hormone-resistant prostate cancer cells.

    PubMed

    Wang, Xiaofang; Zhang, Wenjuan; Yan, Zi; Liang, Yupei; Li, Lihui; Yu, Xiaoli; Feng, Yan; Fu, Shen; Zhang, Yanmei; Zhao, Hu; Yu, Jinha; Jeong, Lak Shin; Guo, Xiaomao; Jia, Lijun

    2016-06-21

    Salvage radiotherapy (SRT) is the first-line treatment for prostate cancer patients with biochemical recurrence following radical prostatectomy, and new specific radiosensitizers are in urgent need to enhance SRT effect. MLN4924 (also known as Pevonedistat), a specific inhibitor of NEDD8-activating enzyme, has recently entered phase I/II clinical trials in several malignancies. By inhibiting cullin neddylation, MLN4924 inactivates Cullin-RING ligases (CRL), which have been validated as an attractive radiosensitizing target. In our study, we demonstrate that MLN4924 can be used as a potent radiosensitizer in hormone-resistant prostate cancer cells. We found that MLN4924 inhibited cullin neddylation and sensitized prostate cancer cells to irradiation (IR). Mechanistically, MLN4924 enhanced IR-induced G2 cell-cycle arrest, by inducing accumulation of WEE1/p21/p27, three well-known CRL substrates. Importantly, siRNA knockdown of WEE1/p21/p27 partially abrogated MLN4924-induced G2 cell-cycle arrest, indicating a causal role of WEE1/p21/p27 in MLN4924-induced radiosensitization. Further mechanistic studies revealed that induction of DNA damage and apoptosis also contributed to MLN4924 radiosensitization in hormone-resistant prostate cancer cells. Our findings lay the foundation for future application of MLN4924 as a potential radiosensitizer in hormone refractory prostate cancer (HRPC).

  13. The Hsp70 inhibiting peptide aptamer A17 potentiates radiosensitization of tumor cells by Hsp90 inhibition.

    PubMed

    Schilling, Daniela; Garrido, Carmen; Combs, Stephanie E; Multhoff, Gabriele

    2017-04-01

    The inhibition of heat shock protein 90 (Hsp90) is a promising strategy to increase the radiosensitivity of tumor cells. However, Hsp90 inhibition induces the expression of Hsp70 which is a prominent cytoprotective protein. Therefore, dual targeting of Hsp70 and Hsp90 might be beneficial to increase the radiosensitivity of tumor cells. Hsp70 inhibiting peptide aptamers have been shown to increase the sensitivity of tumor cells to apoptosis induced by different anticancer drugs. Herein, we studied the radiosensitizing activity of the Hsp70 inhibiting peptide aptamer A17 in combination with the Hsp90 inhibitor NVP-AUY922. Whereas A17 significantly increased apoptosis induction by NVP-AUY922 it did not significantly affect the radiosensitivity of human lung and breast cancer cells. However, Hsp70 inhibition by the aptamer A17 potentiated the radiosensitizing effects of the Hsp90 inhibitor NVP-AUY922. Mechanistically we speculate that an increased number of DNA double strand breaks and an enhanced G2/M arrest might be responsible for the increased radiosensitization in A17 expressing tumor cells. Therefore, the simultaneous inhibition of Hsp90 and Hsp70 combined with radiotherapy might provide a promising anti-cancer strategy.

  14. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    SciTech Connect

    Tian, Junqiang; Doi, Hiroshi; Saar, Matthias; Santos, Jennifer; Li, Xuejun; Peehl, Donna M.; Knox, Susan J.

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.

  15. Characterization of glioma stem-like cells from human glioblastomas

    PubMed Central

    YAMAMURO, SHUN; OKAMOTO, YUTAKA; SANO, EMIKO; OCHIAI, YUSHI; OGINO, AKIYOSHI; OHTA, TAKASHI; HARA, HIROYUKI; UEDA, TAKUYA; NAKAYAMA, TOMOHIRO; YOSHINO, ATSUO; KATAYAMA, YOICHI

    2015-01-01

    Glioma stem-like cells (GSCs) could have potential for tumorigenesis, treatment resistance, and tumor recurrence (GSC hypothesis). However, the mechanisms underlying such potential has remained elusive and few ultrastructural features of the cells have been reported in detail. We therefore undertook observations of the antigenic characteristics and ultrastructural features of GSCs isolated from human glioblastomas. Tumor spheres formed by variable numbers of cells, exhibiting a variable appearance in both their size and shape, were frequently seen in GSCs expressing the stem cell surface markers CD133 and CD15. Increased cell nucleus atypia, mitochondria, rough endoplasmic reticulum, coated vesicles, and microvilli, were noted in the GSCs. Furthermore, cells at division phases and different phases of the apoptotic process were occasionally observed. These findings could imply that GSCs have certain relations with human neural stem cells (NSCs) but are primitively different from undifferentiated NSCs. The data may provide support for the GSC hypothesis, and also facilitate the establishment of future glioblastoma treatments targeting GSCs. PMID:25955568

  16. The Cytoskeletal Adapter Protein Spinophilin Regulates Invadopodia Dynamics and Tumor Cell Invasion in Glioblastoma.

    PubMed

    Cheerathodi, Mujeeburahiman; Avci, Naze G; Guerrero, Paola A; Tang, Leung K; Popp, Julia; Morales, John E; Chen, Zhihua; Carnero, Amancio; Lang, Frederick F; Ballif, Bryan A; Rivera, Gonzalo M; McCarty, Joseph H

    2016-12-01

    Glioblastoma is a primary brain cancer that is resistant to all treatment modalities. This resistance is due, in large part, to invasive cancer cells that disperse from the main tumor site, escape surgical resection, and contribute to recurrent secondary lesions. The adhesion and signaling mechanisms that drive glioblastoma cell invasion remain enigmatic, and as a result there are no effective anti-invasive clinical therapies. Here we have characterized a novel adhesion and signaling pathway comprised of the integrin αvβ8 and its intracellular binding partner, Spinophilin (Spn), which regulates glioblastoma cell invasion in the brain microenvironment. We show for the first time that Spn binds directly to the cytoplasmic domain of β8 integrin in glioblastoma cells. Genetically targeting Spn leads to enhanced invasive cell growth in preclinical models of glioblastoma. Spn regulates glioblastoma cell invasion by modulating the formation and dissolution of invadopodia. Spn-regulated invadopodia dynamics are dependent, in part, on proper spatiotemporal activation of the Rac1 GTPase. Glioblastoma cells that lack Spn showed diminished Rac1 activities, increased numbers of invadopodia, and enhanced extracellular matrix degradation. Collectively, these data identify Spn as a critical adhesion and signaling protein that is essential for modulating glioblastoma cell invasion in the brain microenvironment.

  17. HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma.

    PubMed

    Wang, Zhihao; Hu, Pengchao; Tang, Fang; Lian, Haiwei; Chen, Xiong; Zhang, Yingying; He, Xiaohua; Liu, Wanhong; Xie, Conghua

    2016-08-28

    Histone deacetylases are considered to be among the most promising targets in drug development for cancer therapy. Histone deacetylase 6 (HDAC6) is a unique cytoplasmic enzyme that regulates many biological processes involved in tumorigenesis through its deacetylase and ubiquitin-binding activities. Here, we report that HDAC6 is overexpressed in glioblastoma tissues and cell lines. Overexpression of HDAC6 promotes the proliferation and spheroid formation of glioblastoma cells. HDAC6 overexpression confers resistance to temozolomide (TMZ) mediated cell proliferation inhibition and apoptosis induction. Conversely, knockdown of HDAC6 inhibits cell proliferation, impairs spheroid formation and sensitizes glioblastoma cells to TMZ. The inhibition of HDAC6 deacetylase activity by selective inhibitors inhibits the proliferation of glioblastoma cells and induces apoptosis. HDAC6 selective inhibitors can sensitize glioblastoma cells to TMZ. Moreover, we showed that HDAC6 mediated EGFR stabilization might partly account for its oncogenic role in glioblastoma. TMZ resistant glioblastoma cells showed higher expression of HDAC6 and more activation of EGFR. HDAC6 inhibitors decrease EGFR protein levels and impair the activation of the EGFR pathway. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of glioblastoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. DIETARY ISOTHIOCYANATE IBERIN INHIBITS GROWTH AND INDUCES APOPTOSIS IN HUMAN GLIOBLASTOMA CELLS

    USDA-ARS?s Scientific Manuscript database

    In this study, we evaluated the antiproliferative and proapoptotic effects of the isothiocyanate iberin, a bioactive agent in Brassicaceae species, in human glioblastoma cells. The human glioblastoma cell cultures were treated with different concentrations of iberin and tested for growth inhibition...

  19. Robust Cell Segmentation for Histological Images of Glioblastoma

    PubMed Central

    Kong, Jun; Zhang, Pengyue; Liang, Yanhui; Teodoro, George; Brat, Daniel J.; Wang, Fusheng

    2016-01-01

    Glioblastoma (GBM) is a malignant brain tumor with uniformly dismal prognosis. Quantitative analysis of GBM cells is an important avenue to extract latent histologic disease signatures to correlate with molecular underpinnings and clinical outcomes. As a prerequisite, a robust and accurate cell segmentation is required. In this paper, we present an automated cell segmentation method that can satisfactorily address segmentation of overlapped cells commonly seen in GBM histology specimens. This method first detects cells with seed connectivity, distance constraints, image edge map, and a shape-based voting image. Initialized by identified seeds, cell boundaries are deformed with an improved variational level set method that can handle clumped cells. We test our method on 40 histological images of GBM with human annotations. The validation results suggest that our cell segmentation method is promising and represents an advance in quantitative cancer research.

  20. Genetic and functional diversity of propagating cells in glioblastoma.

    PubMed

    Piccirillo, Sara G M; Colman, Sue; Potter, Nicola E; van Delft, Frederik W; Lillis, Suzanne; Carnicer, Maria-Jose; Kearney, Lyndal; Watts, Colin; Greaves, Mel

    2015-01-13

    Glioblastoma (GBM) is a lethal malignancy whose clinical intransigence has been linked to extensive intraclonal genetic and phenotypic diversity and the common emergence of therapeutic resistance. This interpretation embodies the implicit assumption that cancer stem cells or tumor-propagating cells are themselves genetically and functionally diverse. To test this, we screened primary GBM tumors by SNP array to identify copy number alterations (a minimum of three) that could be visualized in single cells by multicolor fluorescence in situ hybridization. Interrogation of neurosphere-derived cells (from four patients) and cells derived from secondary transplants of these same cells in NOD-SCID mice allowed us to infer the clonal and phylogenetic architectures. Whole-exome sequencing and single-cell genetic analysis in one case revealed a more complex clonal structure. This proof-of-principle experiment revealed that subclones in each GBM had variable regenerative or stem cell activity, and highlighted genetic alterations associated with more competitive propagating activity in vivo.

  1. Radiosensitivity of human cell lines to small doses. Are there some clinical implications?

    SciTech Connect

    Malaise, E.P.; Joiner, M.C.; Lambin, P.

    1994-04-01

    The concept of intrinsic radiosensitivity is now strongly associated with the linear-quadratic (LQ) model which is currently the best and the most reliable method to fit the first three decades of a survival curve for both human fibroblast and human tumor cell lines. This approach has led to the major conclusions that it is the initial part, and not the distal part, of the survival curve which truly characterizes intrinsic cellular radiosensitivity and there is a correlation between the parameters describing mainly the initial part of the survival curve ({alpha}, SF{sub 2} {bar D}) and the clinical radioresponsiveness. More accurate analysis with flow cytometry or a dynamic microscopic image processing scanner (DMIPS) has allowed further study of the survival curve which has shown two sorts of substructure. On one hand, the overall survival curve of exponentially growing cells is described by two or more sets of {alpha}, {beta} parameters (heterogeneity in radiosensitivity due to the cell cycle). On the other hand, hypersensitivity at very low doses (<0.5 Gy) followed by an increase of the radioresistance of the whole population at higher doses has also been observed. This phenomenon is not described by the conventional LQ model and has been interpreted as an induced radioresistance which seems to be negatively correlated with intrinsic radiosensitivity. In clinical radiotherapy, there are two sorts of response of normal tissues: (1) the early and late damage and (2) the carcinogenesis. Concerning the first point, the clinically detectable radiation damage appears at doses usually around 20 Gy (in 2-Gy fractions) with the exception of the hemopoietic and the lymphatic tissues. Therefore, the small doses delivered at the edges or in the penumbrae of treatment fields in routine radiotherapy cannot create detectable damage, despite a potentially much higher effect per unit dose, because the total doses are still very small. 17 refs.

  2. Salinomycin radiosensitizes human nasopharyngeal carcinoma cell line CNE-2 to radiation.

    PubMed

    Zhang, Yongqin; Zuo, Yun; Guan, Zhifeng; Lu, Weidong; Xu, Zheng; Zhang, Hao; Yang, Yan; Yang, Meilin; Zhu, Hongcheng; Chen, Xiaochen

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is primarily treated by chemoradiation. However, how to promote radiation sensitivity in NPC remains a challenge. Salinomycin is potentially useful for the treatment of cancer. This study aimed to explore the radiosensitivity of salinomycin on human nasopharyngeal carcinoma cell line CNE-2. CNE-2 were treated with salinomycin or irradiation, alone or in combination. The cytotoxicity effects of salinomycin were measured using CCK-8 assay. Clonogenic survival assay was used to evaluate the effects of salinomycin on the radiosensitivity of CNE-2. The changes of cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of Caspase3/Bax/Bal-2 was detected by Western blotting. DNA damage was detected via γ-H2AX foci counting. The results showed that salinomycin induced apoptosis and G2/M arrest, increased Bax and cleaved Caspase3, decreased Bcl-2 expression, and increased the formation of γ-H2AX nuclear foci. These data suggest that salinomycin may be a radiosensitizer for NPC radiotherapy.

  3. BET bromodomain proteins are required for glioblastoma cell proliferation

    PubMed Central

    Pastori, Chiara; Daniel, Mark; Penas, Clara; Volmar, Claude-Henry; Johnstone, Andrea L; Brothers, Shaun P; Graham, Regina M; Allen, Bryce; Sarkaria, Jann N; Komotar, Ricardo J; Wahlestedt, Claes; Ayad, Nagi G

    2014-01-01

    Epigenetic proteins have recently emerged as novel anticancer targets. Among these, bromodomain and extra terminal domain (BET) proteins recognize lysine-acetylated histones, thereby regulating gene expression. Newly described small molecules that inhibit BET proteins BRD2, BRD3, and BRD4 reduce proliferation of NUT (nuclear protein in testis)-midline carcinoma, multiple myeloma, and leukemia cells in vitro and in vivo. These findings prompted us to determine whether BET proteins may be therapeutic targets in the most common primary adult brain tumor, glioblastoma (GBM). We performed NanoString analysis of GBM tumor samples and controls to identify novel therapeutic targets. Several cell proliferation assays of GBM cell lines and stem cells were used to analyze the efficacy of the drug I-BET151 relative to temozolomide (TMZ) or cell cycle inhibitors. Lastly, we performed xenograft experiments to determine the efficacy of I-BET151 in vivo. We demonstrate that BRD2 and BRD4 RNA are significantly overexpressed in GBM, suggesting that BET protein inhibition may be an effective means of reducing GBM cell proliferation. Disruption of BRD4 expression in glioblastoma cells reduced cell cycle progression. Similarly, treatment with the BET protein inhibitor I-BET151 reduced GBM cell proliferation in vitro and in vivo. I-BET151 treatment enriched cells at the G1/S cell cycle transition. Importantly, I-BET151 is as potent at inhibiting GBM cell proliferation as TMZ, the current chemotherapy treatment administered to GBM patients. Since I-BET151 inhibits GBM cell proliferation by arresting cell cycle progression, we propose that BET protein inhibition may be a viable therapeutic option for GBM patients suffering from TMZ resistant tumors. PMID:24496381

  4. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase

    SciTech Connect

    Jayakumar, Sundarraj; Patwardhan, R.S.; Pal, Debojyoti; Sharma, Deepak; Sandur, Santosh K.

    2016-09-09

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratio and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. - Highlights: • DIMC enhances radiosensitivity of cancer cells by inducing cell death. • DIMC with radiation disrupted the cellular redox and targeted cancer stem cells. • DNA repair is hampered when cells are treated with DIMC. • DIMC inhibited thioredoxin reductase in cancer cells.

  5. Stem Cell Niches in Glioblastoma: A Neuropathological View

    PubMed Central

    Schiffer, Davide; Denysenko, Tetyana; Melcarne, Antonio

    2014-01-01

    Glioblastoma (GBM) stem cells (GSCs), responsible for tumor growth, recurrence, and resistance to therapies, are considered the real therapeutic target, if they had no molecular mechanisms of resistance, in comparison with the mass of more differentiated cells which are insensitive to therapies just because of being differentiated and nonproliferating. GSCs occur in tumor niches where both stemness status and angiogenesis are conditioned by the microenvironment. In both perivascular and perinecrotic niches, hypoxia plays a fundamental role. Fifteen glioblastomas have been studied by immunohistochemistry and immunofluorescence for stemness and differentiation antigens. It has been found that circumscribed necroses develop inside hyperproliferating areas that are characterized by high expression of stemness antigens. Necrosis developed inside them because of the imbalance between the proliferation of tumor cells and endothelial cells; it reduces the number of GSCs to a thin ring around the former hyperproliferating area. The perinecrotic GSCs are nothing else that the survivors remnants of those populating hyperproliferating areas. In the tumor, GSCs coincide with malignant areas so that the need to detect where they are located is not so urgent. PMID:24834433

  6. Association between SET expression and glioblastoma cell apoptosis and proliferation.

    PubMed

    He, Kunyan; Shi, Lihong; Jiang, Tingting; Li, Qiang; Chen, Yao; Meng, Chuan

    2016-10-01

    Glioblastoma multiforme (GBM) was one of the first cancer types systematically studied at a genomic and transcriptomic level due to its high incidence and aggressivity; however, the detailed mechanism remains unclear, even though it is known that numerous cytokines are involved in the occurrence and development of GBM. The present study aimed to determine whether the SET gene has a role in human glioblastoma carcinogenesis. A total of 32 samples, including 18 cases of glioma, 2 cases of meningioma and 12 normal brain tissue samples, were detected using the streptavidin-peroxidase method through immunohistochemistry. To reduce SET gene expression in U251 and U87MG cell lines, the RNA interference technique was used and transfection with small interfering (si)RNA of the SET gene was performed. Cell apoptosis was detected by flow cytometry, cell migration was examined by Transwell migration assay and cell proliferation was determined by Cell Counting Kit-8. SET, Bcl-2, Bax and caspase-3 mRNA and protein expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Positive protein expression of SET was observed in the cell nucleus, with the expression level of SET significantly higher in glioma tissues compared with normal brain tissue (P=0.001). Elevated expression of SET was significantly associated with gender (P=0.002), tumors classified as World Health Organization grade II (P=0.031), III (P=0.003) or IV (P=0.001), and moderately (P=0.031) or poorly differentiated (P=0.001) tumors. Compared with the negative and non-treatment (blank) control cells, SET gene expression was significantly inhibited (P=0.006 and P<0.001), cell apoptosis was significantly increased (P=0.001 and P<0.001), cell proliferation was significantly inhibited (P=0.002 and P=0.015), and cell migration was significantly decreased (P=0.001 and P=0.001) in siRNA-transfected U87MG(-SET) and U251(-SET) cells, respectively. In

  7. Rapid fluorescence-based assay for radiosensitivity and chemosensitivity testing in mammalian cells in vitro

    SciTech Connect

    Begg, A.C.; Mooren, E.

    1989-02-01

    An efficient and rapid cytotoxicity assay has been developed, particularly for radiobiological studies, utilizing 96-well microtiter plates. Several days after treatment, cell numbers per well were measured by fluorescent intensity using an automatic reader after staining with the DNA specific dye Hoechst 33258. For radiobiological applications, a microtiter plate irradiation box was designed and built which allowed a variable number of wells (minimum 4, maximum 16) to be irradiated at one time. In this manner, complete dose-response curves could be obtained from one plate. The assay depends on the growth of surviving and untreated cells, and by appropriate choice of conditions (cell numbers plated, time of assay), cell survival curves for this quick fluorescence assay were in reasonable agreement with those from a clonogenic assay for cisplatin and X-ray-induced cell killing. The assay can span 1.5-2 decades of cell survival and is suitable for any cell line which grows as a monolayer. Radiobiological applications were tested using agents or conditions which modified radiation damage. Firstly, sublethal damage repair could be demonstrated in RIF1 mouse tumor cells by comparing the survival curve for a single X-ray dose with that for two fractions separated by 4 h. Secondly, incorporation of 5-iodo-2'-deoxyuridine into cellular DNA was shown to radiosensitize Chinese Hamster cells, with similar enhancement ratios obtained from the fluorescence and clonogenic assays. Thirdly, radiosensitization by cisplatin and radioprotection by cysteamine could be readily measured using the quick fluorescence assay. The ability to have multiple dose groups per plate makes it an efficient assay for both radiosensitivity and chemosensitivity testing.

  8. Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1

    PubMed Central

    YANG, LIANG; LIU, REN; MA, HONG-BIN; YING, MING-ZHEN; WANG, YA-JIE

    2015-01-01

    The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 (GSTP1) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G2/M phase arrest in the GSTP1-expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1-expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G2/M phase arrest. PMID:26622693

  9. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells

    PubMed Central

    Klumpp, Lukas; Haehl, Erik; Schilbach, Karin; Lukowski, Robert; Kühnle, Matthias; Bernhardt, Günther; Buschauer, Armin; Zips, Daniel; Ruth, Peter; Huber, Stephan M.

    2016-01-01

    Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy. PMID:26893360

  10. Inhibition of HAS2 induction enhances the radiosensitivity of cancer cells via persistent DNA damage

    SciTech Connect

    Shen, Yan Nan; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Kim, Su-Hyeon; Hwang, Sang-Gu; Park, Sang Jun; Kim, Chun-Ho; Lee, Kee-Ho

    2014-01-17

    Highlights: •HAS2 may be a promising target for the radiosensitization of human cancer. •HAS2 is elevated (up to ∼10-fold) in irradiated radioresistant and -sensitive cancer cells. •HAS2 knockdown sensitizes cancer cells to radiation. •HAS2 knockdown potentiates irradiation-induced DNA damage and apoptotic death. •Thus, the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. -- Abstract: Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells.

  11. Calpain 2 Is Required for the Invasion of Glioblastoma Cells in the Zebrafish Brain Microenvironment

    PubMed Central

    Lal, Sangeet; La Du, Jane; Tanguay, Robert L.; Greenwood, Jeffrey A.

    2012-01-01

    Glioblastoma is an aggressive primary brain tumor with a 5-year survival rate of less than 5%. The ability of glioblastoma cells to invade surrounding brain tissue presents the primary challenge for the success of focal therapeutic approaches. We previously reported that the calcium-activated protease calpain 2 is critical for glioblastoma cell invasion in vitro. Here, we show that expression of calpain 2 is required for the dispersal of glioblastoma cells in a living brain microenvironment. Knockdown of calpain 2 resulted in a 2.9-fold decrease in the invasion of human glioblastoma cells in zebrafish brain. Control cells diffusely migrated up to 450 μm from the site of injection, whereas knockdown cells remained confined in clusters. The invasion study was repeated in organotypic mouse brain tissues, and calpain 2 knockdown cells demonstrated a 2.3-fold lower area of dispersal compared with control cells. In zebrafish brain, glioblastoma cells appeared to migrate in part along the blood vessels of the host. Furthermore, angiogenesis was detected in 27% of zebrafish injected with control cells, whereas only 12.5% of fish receiving knockdown cells showed the formation of new vessels, suggesting a role for calpain 2 in tumor cell angiogenesis. Consistent with the progression of glioblastoma in humans, transplanted tumor cells were not observed to metastasize outside the brain of zebrafish. This study demonstrates that calpain 2 expression is required for the dispersal of glioblastoma cells within the dynamic microenvironment of the brain, identifying zebrafish as a valuable orthotopic system for studying glioblastoma cell invasion. PMID:22183788

  12. [The radiosensitization of nimotuzumab on CAL-27 cells after (125)I seeds irradiation].

    PubMed

    Wang, Xing; Gu, Jian-Min; Meng, Jian; Shao, Cui-Ling

    2016-08-01

    To observe the inhibitory effect of nimotuzumab combined with low-dose continuous irradiation using (125)I seeds on CAL-27 cells originating from human tongue squamous carcinoma, and explore the radiosensitization of nimotuzumab on human tongue squamous carcinoma CAL-27 irradiated with (125)I seeds. The exponential-phase CAL-27 cells were randomly divided into 4 groups: control group, (125)I seeds irradiation group, nimotuzumab group, nimotuzumab plus (125)I seeds irradiation group. CCK-8 assay was used to detect the inhibitory effect of (125)I seeds irradiation on CAL-27 cancer cells, and flow cytometry assays were performed to calculate the apoptosis rate of cells and cell cycle from each group. The morphology of cells was compared using Hoechst 33258 staining. The data were analyzed with SPSS17.0 software package. (125)I seeds inhibited the growth of CAL-27 cells in time-dose dependent manner. The apoptosis rate of cells irradiated by nimotuzumab combined with (125)I seeds irradiation was higher than that treated with nimotuzumab and (125)I seeds irradiation respectively, and nimotuzumab followed by radiation had a lower S phase cells(P<0.05). Nimotuzumab combined with (125)I seeds irradiation killed CAL-27 cells by inducing apoptosis. Nimotuzumab and low-dose γ ray emitted from 125I seeds can significantly enhance the radiosensitivity of CAL-27.

  13. Coroglaucigenin enhances the radiosensitivity of human lung cancer cells through Nrf2/ROS pathway.

    PubMed

    Sun, Meng; Pan, Dong; Chen, Yaxiong; Li, Ya; Gao, Kun; Hu, Burong

    2017-05-16

    Seven cardenolides isolated from the ethanol extract of the stems of Calotropis gigantea were evaluated in vitro against human cancer cells and the structure-activity relationships were discussed. The results demonstrated that a compound, named CGN (coroglaucigenin), had better anti-proliferative activity with the IC50 value less than 6 μM among these compounds. Further, we found that CGN displayed much lower cytotoxicity to normal lung epithelial cells (BEAS-2B) than cancer cells (A549). Especially, our results demonstrated that treatment with CGN (1 μM) combined with X-ray irradiation induced higher radiosensitivity in human lung cancer cells (A549, NCI-H460, NCI-H446) but not in BEAS-2B. The expression levels of nuclear transcription factor Nrf2 and Nrf2-driven antioxidant molecule NQO-1 reduced in A549 cells after combined treatment compared to the radiation only. However, CGN had no toxicity and the levels of antioxidant molecules expression were higher in BEAS-2B cells when given the similar treatment as A549 cells. These results suggest that CGN is a very promising potential sensitizer for cancer radiotherapy, which not only inhibits the proliferation of cancer cells but also enhances the radiosensitivity of cancer cells through suppressing the expression of antioxidant molecules while there is no influence for normal cells.

  14. Effect of Corilagin on the Proliferation and NF-κB in U251 Glioblastoma Cells and U251 Glioblastoma Stem-Like Cells

    PubMed Central

    Yang, Wen-Tao; Li, Gen-Hua; Li, Zheng-You; Feng, Song; Liu, Xue-Qin; Han, Guang-Kui; Zhang, Hao; Qin, Xian-Yun; Zhang, Ran; Nie, Quan-Min; Jin, Feng

    2016-01-01

    Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P < 0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P < 0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P < 0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P < 0.05). Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell

  15. Wnt5a Drives an Invasive Phenotype in Human Glioblastoma Stem-like Cells.

    PubMed

    Binda, Elena; Visioli, Alberto; Giani, Fabrizio; Trivieri, Nadia; Palumbo, Orazio; Restelli, Silvia; Dezi, Fabio; Mazza, Tommaso; Fusilli, Caterina; Legnani, Federico; Carella, Massimo; Di Meco, Francesco; Duggal, Rohit; Vescovi, Angelo L

    2017-02-15

    Brain invasion by glioblastoma determines prognosis, recurrence, and lethality in patients, but no master factor coordinating the invasive properties of glioblastoma has been identified. Here we report evidence favoring such a role for the noncanonical WNT family member Wnt5a. We found the most invasive gliomas to be characterized by Wnt5a overexpression, which correlated with poor prognosis and also discriminated infiltrating mesenchymal glioblastoma from poorly motile proneural and classical glioblastoma. Indeed, Wnt5a overexpression associated with tumor-promoting stem-like characteristics (TPC) in defining the character of highly infiltrating mesenchymal glioblastoma cells (Wnt5a(High)). Inhibiting Wnt5a in mesenchymal glioblastoma TPC suppressed their infiltrating capability. Conversely, enforcing high levels of Wnt5a activated an infiltrative, mesenchymal-like program in classical glioblastoma TPC and Wnt5a(Low) mesenchymal TPC. In intracranial mouse xenograft models of glioblastoma, inhibiting Wnt5a activity blocked brain invasion and increased host survival. Overall, our results highlight Wnt5a as a master regulator of brain invasion, specifically TPC, and they provide a therapeutic rationale to target it in patients with glioblastoma. Cancer Res; 77(4); 996-1007. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Oncogenic effects of miR-10b in glioblastoma stem cells

    PubMed Central

    Guessous, Fadila; Alvarado-Velez, Melissa; Marcinkiewicz, Lukasz; Zhang, Ying; Kim, Jungeun; Heister, Simon; Kefas, Benjamin; Godlewski, Jakub; Schiff, David; Purow, Benjamin

    2013-01-01

    MicroRNAs and cancer stem cells have emerged as critical players in glioblastoma, one of the deadliest human cancers. In this study, we investigated the expression and function of microRNA-10b in glioblastoma cells and stem cells. An analysis of The Cancer Genome Atlas data revealed a correlation between high miR-10b levels and poor prognosis in glioblastoma patients. We measured the levels of miR-10b and found that it is upregulated in human glioblastoma tissues, glioblastoma cell and stem cell lines as compared to normal human tissues or astrocytes. Inhibition of miR-10b with a specific antagomir inhibited the proliferation of glioblastoma established and stem cell lines. Inhibition of miR-10b strongly reduced cell invasion and migration in glioblastoma cell and stem cell lines while overexpression of miR-10b induced cell migration and invasion. We also investigated several predicted targets of miR-10b but could not verify any of them experimentally. Additionally, miR-10b inhibition significantly decreased the in vivo growth of stem cell-derived orthotopic GBM xenografts. Altogether, our findings confirm the oncogenic effects of miR-10b in GBM cells and show for the first time a role of this microRNA in GBM stem cells. Targeting miR-10b might therefore inhibit glioblastoma stem cells, which are thought to be at the origin of glioblastoma and to contribute its recurrence and resistance to therapy. PMID:23307328

  17. Radiosensitivity of human natural killer cells: Binding and cytotoxic activities of natural killer cell subsets

    SciTech Connect

    Rana, R.; Vitale, M.; Mazzotti, G.; Manzoli, L.; Papa, S. )

    1990-10-01

    The sensitivity of human natural killer (NK) cell activities (both binding and killing) after exposure of peripheral blood mononuclear cells to different doses of gamma radiation was studied. A panel of monoclonal antibodies was used to identify the NK and T-lymphocyte subsets and to evaluate their radiosensitivity. Peripheral blood mononuclear cells were irradiated with low (2-6 Gy) and high (10-30 Gy) doses and NK cell binding and cytotoxic activity against K562 target cells were studied after 3 h and 48 h in culture. The primary damage to NK cell activity was identified at the postbinding level and affected mainly the lytic machinery. After 48 h culture postirradiation, an overall depression of cytotoxic activity was observed, but ionizing radiation produced either a selection of the more cytotoxic NK cell subsets, which therefore might be considered more resistant to radiation damage than the less cytotoxic NK cells, or a long-term stimulation of cytotoxic activity in surviving cells.

  18. Celecoxib enhances the radiosensitivity of HCT116 cells in a COX-2 independent manner by up-regulating BCCIP

    PubMed Central

    Xu, Xiao-Ting; Hu, Wen-Tao; Zhou, Ju-Ying; Tu, Yu

    2017-01-01

    It has been reported that celecoxib, a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug (NSAID), regulates the radiosensitivity of several cancer cells. BCCIP (BRCA2 and CDKN1A interacting protein) plays a critical role in maintaining the critical functions of p53 in tumor suppression and response to therapy. However, whether the effect of celecoxib on the radiosensitivity of colorectal cancer (CRC) cells is dependent on BCCIP is largely unclear. In this study, we found that celecoxib enhanced the radiosensitivity of HeLa (a human cervical carcinoma cell line), A549 (a human lung carcinoma cell line), and HCT116 cells (a human CRC cells line). Among these cells, COX-2 expression was undetected in HCT116 cells. Treatment with celecoxib significantly increased BCCIP expression in COX-2 negative HCT116 cells. Knockdown of BCCIP obviously abrogated the enhanced radiosensitivity of HCT116 cells induced by celecoxib. A combination of celecoxib and irradiation treatment induced much more γ-H2AX foci formation, higher levels of radiation injury-related proteins phosphorylation, G2/M arrest, apoptosis, and p53 and p21 expression, and lower levels of Cyclin B1 in HCT116 cells than those in cells treated with irradiation alone. However, these changes were undetected in BCCIP-silenced HCT116 cells. Therefore, these data suggest that BCCIP gene may be a radiosensitivity-related gene in CRC. Celecoxib affects the functions of p53 and inhibits the recovery from the irradiation-induced injury by up-regulating the expression of BCCIP, and subsequently regulates the expressions of genes such as p21 and Cyclin B1 to enhance the radiosensitivity of HCT116 cells in a COX-2 independent manner. PMID:28386336

  19. Radiosensitizing effect of PSMC5, a 19S proteasome ATPase, in H460 lung cancer cells

    SciTech Connect

    Yim, Ji-Hye; Yun, Hong Shik; Lee, Su-Jae; Baek, Jeong-Hwa; Lee, Chang-Woo; Song, Ji-Young; Um, Hong-Duck; Park, Jong Kuk; Kim, Jae-Sung; Park, In-Chul; Hwang, Sang-Gu

    2016-01-01

    The function of PSMC5 (proteasome 26S subunit, ATPase 5) in tumors, particularly with respect to cancer radioresistance, is not known. Here, we identified PSMC5 as a novel radiosensitivity biomarker, demonstrating that radiosensitive H460 cells were converted to a radioresistance phenotype by PSMC5 depletion. Exposure of H460 cells to radiation induced a marked accumulation of cell death-promoting reactive oxygen species, but this effect was blocked in radiation-treated H460 PSMC5-knockdown cells through downregulation of the p53-p21 pathway. Interestingly, PSMC5 depletion in H460 cells enhanced both AKT activation and MDM2 transcription, thereby promoting the degradation of p53 and p21 proteins. Furthermore, specific inhibition of AKT with triciribine or knockdown of MDM2 with small interfering RNA largely restored p21 expression in PSMC5-knockdown H460 cells. Our data suggest that PSMC5 facilitates the damaging effects of radiation in radiation-responsive H460 cancer cells and therefore may serve as a prognostic indicator for radiotherapy and molecular targeted therapy in lung cancer patients. - Highlights: • PSMC5 is a radiation-sensitive biomarker in H460 cells. • PSMC5 depletion inhibits radiation-induced apoptosis in H460 cells. • PSMC5 knockdown blocks ROS generation through inhibition of the p53-p21 pathway. • PSMC5 knockdown enhances p21 degradation via AKT-dependent MDM2 stabilization.

  20. Glioblastoma microvesicles promote endothelial cell proliferation through Akt/beta-catenin pathway.

    PubMed

    Liu, Shihai; Sun, Junfeng; Lan, Qing

    2014-01-01

    Glioblastoma tumor cells release microvesicles, which contain mRNA, miRNA and angiogenic proteins. These tumor-derived microvesicles transfer genetic information and proteins to normal cells. Previous reports demonstrated that the increased microvesicles in cerebrospinal fluid (CSF) of patients with glioblastoma up-regulate procoagulant activity. The concentration of microvesicles was closely related to thromboembolism incidence and clinical therapeutic effects of glioblastoma patients. However, it is still not clear how CSF microvesicles and what factors affect glioblastoma development. In this study, we collected the plasma and CSF from glioblastoma patients and healthy volunteers. Microvesicles acquired from serum or CSF were added to cultured endothelial cells. And the effects of these microvesicles on endothelial cells were examined. Our results showed that microvesicles from CSF of patients, but not from circulating blood, promoted endothelial cells migration and proliferation in vitro. In addition, the degree of endothelial cell proliferation triggered by microvesicles from CSF was reduced when treated with siRNA targeting Akt/beta-catenin, suggesting that the Akt/beta-catenin pathway is involved in the microvesicle-initiated endothelial cell proliferation. In conclusion, glioblastoma mainly affects microvesicles within CSF without showing significant impact on microvesicles in circulating blood. Microvesicles from the CSF of glioblastoma patients may initiate endothelial cell growth and thus promote cell invasion. This effect may be directly exerted by activated Akt/beta-catenin pathway.

  1. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line.

    PubMed

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-06-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in "DNA damage response", "direct p53 effectors" and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols.

  2. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line

    PubMed Central

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-01-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in “DNA damage response”, “direct p53 effectors” and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols. PMID:27245205

  3. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    SciTech Connect

    Oka, Naoki; Soeda, Akio . E-mail: ccd29400@nyc.odn.ne.jp; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-08-31

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche.

  4. CELL-SPECIFIC RADIOSENSITIZATION BY GOLD NANOPARTICLES AT MEGAVOLTAGE RADIATION ENERGIES

    PubMed Central

    Jain, Suneil; Coulter, Jonathan A.; Hounsell, Alan R.; Butterworth, Karl T.; McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Dickson, Glenn R.; Prise, Kevin M.; Currell, Fred J.; O'Sullivan, Joe M.; Hirst, David G.

    2010-01-01

    Purpose Gold nanoparticles (GNPs) have been shown to cause sensitization with kilovoltage (kV) radiation. Differences in the absorption coefficient between gold and soft tissue, as a function of photon energy, predict that maximum enhancement should occur in the kilovoltage (kV) range, with almost no enhancement at megavoltage (MV) energies. Recent studies have shown that GNPs are not biologically inert, causing oxidative stress and even cell death, suggesting a possible biological mechanism for sensitization. The purpose of this study was to assess GNP radiosensitization at clinically relevant MV X-ray energies. Methods and Materials Cellular uptake, intracellular localization, and cytotoxicity of GNPs were assessed in normal L132, prostate cancer DU145, and breast cancer MDA-MB-231 cells. Radiosensitization was measured by clonogenic survival at kV and MV photon energies and MVelectron energies. Intracellular DNA double-strand break (DSB) induction and DNA repair were determined and GNP chemosensitization was assessed using the radiomimetic agent bleomycin. Results GNP uptake occurred in all cell lines and was greatest in MDA-MB-231 cells with nanoparticles accumulating in cytoplasmic lysosomes. In MDA-MB-231 cells, radiation sensitizer enhancement ratios (SERs) of 1.41, 1.29, and 1.16 were achieved using 160 kVp, 6 MV, and 15 MV X-ray energies, respectively. No significant effect was observed in L132 or DU145 cells at kV or MV energies (SER 0.97-1.08). GNP exposure did not increase radiation-induced DSB formation or inhibit DNA repair; however, GNP chemosensitization was observed in MDA-MB-231 cells treated with bleomycin (SER 1.38). Conclusions We have demonstrated radiosensitization in MDA-MB-231 cells at MV X-ray energies. The sensitization was cell-specific with comparable effects at kV and MV energies, no increase in DSB formation, and GNP chemopotentiation with bleomycin, suggesting a possible biological mechanism of radiosensitization. PMID:21095075

  5. Fenofibrate enhances radiosensitivity of esophageal squamous cell carcinoma by suppressing hypoxia-inducible factor-1α expression.

    PubMed

    Ge, Yangyang; Liu, Jia; Yang, Xi; Zhu, Hongcheng; Yang, Baixia; Zhao, Kuiling; Wu, Zhijun; Cheng, Guojian; Wang, Feng; Ni, Feng; Ge, Qin; Yang, Yanguang; Tai, Guomei; Sun, Xinchen; Cai, Jing

    2014-11-01

    Radiation therapy is widely used in esophageal squamous cell carcinoma (ESCC). Promoting radiation sensitivity is important. Recent studies have shown that fenofibrate can inhibit the growth of several cancer lines and hypoxia-inducible factor-1α (HIF-1α) expression in MCF-7 cells. However, few studies on the radiosensitive effect of fenofibrate on ESCCs under hypoxic condition have been conducted. In this study, we assessed the radiosensitive effects of fenofibrate on human ESCC cells. In vitro experiments showed the inhibition of cytotoxic effects after ionizing irradiation. We measured cell viability and clonogenic survival rate. Flow cytometry showed that fenofibrate pretreatment promoted apoptosis. The in vivo data also suggest that fenofibrate had radiosensitizing effects in ECA-109 cells xenografted into nude mice. Western blot and immunohistochemical analyses revealed that the HIF-1α and vascular endothelial growth factor (VEGF) protein content decreased by fenofibrate. Thus, the inhibition of HIF-1α and VEGF expression in ESCC cells contributed to the radiosensitive effect. These data suggest that fenofibrate may be a potential radiosensitive drug.

  6. Pharmacology of novel small-molecule tubulin inhibitors in glioblastoma cells with enhanced EGFR signalling.

    PubMed

    Phoa, Athena F; Browne, Stephen; Gurgis, Fadi M S; Åkerfeldt, Mia C; Döbber, Alexander; Renn, Christian; Peifer, Christian; Stringer, Brett W; Day, Bryan W; Wong, Chin; Chircop, Megan; Johns, Terrance G; Kassiou, Michael; Munoz, Lenka

    2015-12-15

    We recently reported that CMPD1, originally developed as an inhibitor of MK2 activation, primarily inhibits tubulin polymerisation and induces apoptosis in glioblastoma cells. In the present study we provide detailed pharmacological investigation of CMPD1 analogues with improved molecular properties. We determined their anti-cancer efficacy in glioblastoma cells with enhanced EGFR signalling, as deregulated EGFR often leads to chemoresistance. Eight analogues of CMPD1 with varying lipophilicity and basicity were synthesised and tested for efficacy in the cell viability assay using established glioblastoma cell lines and patient-derived primary glioblastoma cells. The mechanism of action for the most potent analogue 15 was determined using MK2 activation and tubulin polymerisation assays, together with the immunofluorescence analysis of the mitotic spindle formation. Apoptosis was analysed by Annexin V staining, immunoblotting analysis of bcl-2 proteins and PARP cleavage. The apoptotic activity of CMPD1 and analogue 15 was comparable across glioblastoma cell lines regardless of the EGFR status. Primary glioblastoma cells of the classical subtype that are characterized by enhanced EGFR activity were most sensitive to the treatment with CMPD1 and 15. In summary, we present mechanism of action for a novel small molecule tubulin inhibitor, compound 15 that inhibits tubulin polymerisation and mitotic spindle formation, induces degradation of anti-apoptotic bcl-2 proteins and leads to apoptosis of glioblastoma cells. We also demonstrate that the enhanced EGFR activity does not decrease the efficacy of tubulin inhibitors developed in this study.

  7. Glioblastoma Stem-Like Cells: Characteristics, Microenvironment, and Therapy

    PubMed Central

    Yi, Yang; Hsieh, I-Yun; Huang, Xiaojia; Li, Jie; Zhao, Wei

    2016-01-01

    Glioblastoma multiforme (GBM), grade IV astrocytoma, is the most fatal malignant primary brain tumor. GBM contains functional subsets of cells called glioblastoma stem-like cells (GSCs), which are radioresistant and chemoresistant and eventually lead to tumor recurrence. Recent studies showed that GSCs reside in particular tumor niches that are necessary to support their behavior. To successfully eradicate GBM growth and recurrence, new strategies selectively targeting GSCs and/or their microenvironmental niche should be designed. In this regard, here we focus on elucidating the molecular mechanisms that govern these GSC properties and on understanding the mechanism of the microenvironmental signals within the tumor mass. Moreover, to overcome the blood–brain barrier, which represents a critical limitation of GBM treatments, a new drug delivery system should be developed. Nanoparticles can be easily modified by different methods to facilitate delivery efficiency of chemotherapeutics, to enhance the accumulation within the tumors, and to promote the capacity for targeting the GSCs. Therefore, nanotechnology has become the most promising approach to GSC-targeting therapy. Additionally, we discussed the future of nanotechnology-based targeted therapy and point out the disadvantages that should be overcome. PMID:28003805

  8. Radiosensitizing effect of PSMC5, a 19S proteasome ATPase, in H460 lung cancer cells.

    PubMed

    Yim, Ji-Hye; Yun, Hong Shik; Lee, Su-Jae; Baek, Jeong-Hwa; Lee, Chang-Woo; Song, Ji-Young; Um, Hong-Duck; Park, Jong Kuk; Kim, Jae-Sung; Park, In-Chul; Hwang, Sang-Gu

    2016-01-01

    The function of PSMC5 (proteasome 26S subunit, ATPase 5) in tumors, particularly with respect to cancer radioresistance, is not known. Here, we identified PSMC5 as a novel radiosensitivity biomarker, demonstrating that radiosensitive H460 cells were converted to a radioresistance phenotype by PSMC5 depletion. Exposure of H460 cells to radiation induced a marked accumulation of cell death-promoting reactive oxygen species, but this effect was blocked in radiation-treated H460 PSMC5-knockdown cells through downregulation of the p53-p21 pathway. Interestingly, PSMC5 depletion in H460 cells enhanced both AKT activation and MDM2 transcription, thereby promoting the degradation of p53 and p21 proteins. Furthermore, specific inhibition of AKT with triciribine or knockdown of MDM2 with small interfering RNA largely restored p21 expression in PSMC5-knockdown H460 cells. Our data suggest that PSMC5 facilitates the damaging effects of radiation in radiation-responsive H460 cancer cells and therefore may serve as a prognostic indicator for radiotherapy and molecular targeted therapy in lung cancer patients.

  9. Prospective Identification of Glioblastoma Cells Generating Dormant Tumors

    PubMed Central

    Segal, Ehud; Ma, Lili; Dixit, Niharika; Ijaz, Ambreen; Hlatky, Lynn; Abdollahi, Amir; Almog, Nava

    2012-01-01

    Although dormant tumors are highly prevalent within the human population, the underlying mechanisms are still mostly unknown. We have previously identified the consensus gene expression pattern of dormant tumors. Here, we show that this gene expression signature could be used for the isolation and identification of clones which generate dormant tumors. We established single cell-derived clones from the aggressive tumor-generating U-87 MG human glioblastoma cell line. Based only on the expression pattern of genes which were previously shown to be associated with tumor dormancy, we identified clones which generate dormant tumors. We show that very high expression levels of thrombospondin and high expression levels of angiomotin and insulin-like growth factor binding protein 5 (IGFBP5), together with low levels of endothelial specific marker (ESM) 1 and epithelial growth factor receptor (EGFR) characterize the clone which generates dormant U-87 MG derived glioblastomas. These tumors remained indolent both in subcutaneous and orthotopic intracranial sites, in spite of a high prevalence of proliferating cells. We further show that tumor cells which form U-87 MG derived dormant tumors have an impaired angiogenesis potential both in vitro and in vivo and have a slower invasion capacity. This work demonstrates that fast-growing tumors contain tumor cells that when isolated will form dormant tumors and serves as a proof-of-concept for the use of transcriptome profiles in the identification of such cells. Isolating the tumor cells that form dormant tumors will facilitate understanding of the underlying mechanisms of dormant micro-metastases, late recurrence, and changes in rate of tumor progression. PMID:22970208

  10. Sialidase NEU4 is involved in glioblastoma stem cell survival

    PubMed Central

    Silvestri, I; Testa, F; Zappasodi, R; Cairo, C W; Zhang, Y; Lupo, B; Galli, R; Di Nicola, M; Venerando, B; Tringali, C

    2014-01-01

    The human sialidase, NEU4, has emerged as a possible regulator of neuronal differentiation and its overexpression has been demonstrated to promote the acquisition of a stem cell-like phenotype in neuroblastoma cells. In this paper, we demonstrated that glioblastoma stem cells (GSCs) isolated from glioblastoma multiforme (GBM) cell lines and patients' specimens as neurospheres are specifically marked by the upregulation of NEU4; in contrast, the expression of NEU4 is very low in non-neurosphere-differentiated GBM cells. We showed that NEU4 silencing by miRNA or a chemical inhibitor of its catalytic activity triggered key events in GSCs, including (a) the activation of the glycogen synthase kinase 3β, with the consequent inhibition of Sonic Hedgehog and Wnt/β-catenin signalling pathways; (b) the decrease of the stem cell-like gene expression and marker signatures, evidenced by the reduction of NANOG, OCT-4, SOX-2, CD133 expression, ganglioside GD3 synthesis, and an altered protein glycosylation profile; and (c) a significant decrease in GSCs survival. Consistent with this finding, increased NEU4 activity and expression induced in the more differentiated GBM cells by the NEU4 agonist thymoquinone increased the expression of OCT-4 and GLI-1. Thus, NEU4 expression and activity appeared to help to determine the molecular signature of GSCs and to be closely connected with their survival properties. Given the pivotal role played by GSCs in GBM lethality, our results strongly suggest that NEU4 inhibition could significantly improve current therapies against this tumour. PMID:25144716

  11. Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles.

    PubMed

    Rima, Wael; Sancey, Lucie; Aloy, Marie-Thérèse; Armandy, Emma; Alcantara, Gustavo B; Epicier, Thierry; Malchère, Annie; Joly-Pottuz, Lucile; Mowat, Pierre; Lux, François; Tillement, Olivier; Burdin, Béatrice; Rivoire, Annie; Boulé, Christelle; Anselme-Bertrand, Isabelle; Pourchez, Jérémie; Cottier, Michèle; Roux, Stéphane; Rodriguez-Lafrasse, Claire; Perriat, Pascal

    2013-01-01

    Over the last few decades, nanoparticles have been studied in theranostic field with the objective of exhibiting a long circulation time through the body coupled to major accumulation in tumor tissues, rapid elimination, therapeutic potential and contrast properties. In this context, we developed sub-5 nm gadolinium-based nanoparticles that possess in vitro efficient radiosensitizing effects at moderate concentration when incubated with head and neck squamous cell carcinoma cells (SQ20B). Two main cellular internalization mechanisms were evidenced and quantified: passive diffusion and macropinocytosis. Whereas the amount of particles internalized by passive diffusion is not sufficient to induce in vitro a significant radiosensitizing effect, the cellular uptake by macropinocytosis leads to a successful radiotherapy in a limited range of particles incubation concentration. Macropinocytosis processes in two steps: formation of agglomerates at vicinity of the cell followed by their collect via the lamellipodia (i.e. the "arms") of the cell. The first step is strongly dependent on the physicochemical characteristics of the particles, especially their zeta potential that determines the size of the agglomerates and their distance from the cell. These results should permit to control the quantity of particles internalized in the cell cytoplasm, promising ambitious opportunities towards a particle-assisted radiotherapy using lower radiation doses.

  12. Cell survival curve for primary hepatic carcinoma cells and relationship between SF2 of hepatic carcinoma cells and radiosensitivity

    PubMed Central

    Liu, Zhi-Zhong; Huang, Wen-Ying; Lin, Ju-Sheng; Li, Xiao-Sheng; Lan, Xiao; Cai, Xiao-Kun; Liang, Kuo-Huan; Zhou, Hai-Jun

    2005-01-01

    AIM: To establish the cell survival curve for primary hepatic carcinoma cells and to study the relationship between SF2 of primary hepatic carcinoma cells and radiosensitivity. METHODS: Hepatic carcinoma cells were cultured in vitro using 39 samples of hepatic carcinoma at stages II-IV. Twenty-nine samples were cultured successfully in the fifth generation cells. After these cells were radiated with different dosages, the cell survival ratio and SF2 were calculated by clonogenic assay and SF2 model respectively. The relationship between SF2 and the clinical pathological feature was analyzed. RESULTS: Twenty-nine of thirty-nine samples were successfully cultured. After X-ray radiation of the fifth generation cells with 0, 2, 4, 6, 8 Gy, the cell survival rate was 41%, 36.5%, 31.0%, 26.8%, and 19%, respectively. There was a negative correlation between cell survival and irradiation dosage (r = -0.973, P<0.05). SF2 ranged 0.28-0.78 and correlated with the clinical stage and pathological grade of hepatic carcinoma (P<0.05). There was a positive correlation between SF2 and D0.5 (r = 0.773, P<0.05). CONCLUSION: SF2 correlates with the clinical stage and pathological grade of hepatic carcinoma and is a marker for predicting the radiosensitivity of hepatic carcinomas. PMID:16437614

  13. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    PubMed

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  14. Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation

    PubMed Central

    Xu, Wen-Hong; Han, Min; Dong, Qi; Fu, Zhi-Xuan; Diao, Yuan-Yuan; Liu, Hai; Xu, Jing; Jiang, Hong-Liang; Zhang, Su-Zhan; Zheng, Shu; Gao, Jian-Qing; Wei, Qi-Chun

    2012-01-01

    Background The purpose of this study is to evaluate the efficacy of composite doxorubicinloaded micelles for enhancing doxorubicin radiosensitivity in multicellular spheroids from a non-small cell lung cancer cell line. Methods A novel composite doxorubicin-loaded micelle consisting of polyethylene glycolpolycaprolactone/Pluronic P105 was developed, and carrier-mediated doxorubicin accumulation and release from multicellular spheroids was evaluated. We used confocal laser scanning microscopy and flow cytometry to study the accumulation and efflux of doxorubicin from A549 multicellular spheroids. Doxorubicin radiosensitization and the combined effects of irradiation and doxorubicin on cell migration and proliferation were compared for the different doxorubicin delivery systems. Results Confocal laser scanning microscopy and quantitative flow cytometry studies both verified that, for equivalent doxorubicin concentrations, composite doxorubicin-loaded micelles significantly enhanced cellular doxorubicin accumulation and inhibited doxorubicin release. Colony-forming assays demonstrated that composite doxorubicin-loaded micelles are radiosensitive, as shown by significantly reduced survival of cells treated by radiation + composite micelles compared with those treated with radiation + free doxorubicin or radiation alone. The multicellular spheroid migration area and growth ability verified higher radiosensitivity for the composite micelles loaded with doxorubicin than for free doxorubicin. Conclusion Our composite doxorubicin-loaded micelle was demonstrated to have radiosensitization. Doxorubicin loading in the composite micelles significantly increased its cellular uptake, improved drug retention, and enhanced its antitumor effect relative to free doxorubicin, thereby providing a novel approach for treatment of cancer. PMID:22679376

  15. Design of antiangiogenic hypoxic cell radiosensitizers: 2-nitroimidazoles containing a 2-aminomethylene-4-cyclopentene-1,3-dione moiety.

    PubMed

    Uto, Yoshihiro; Nagasawa, Hideko; Jin, Cheng-Zhe; Nakayama, Shinichi; Tanaka, Ayako; Kiyoi, Saori; Nakashima, Hitomi; Shimamura, Mariko; Inayama, Seiichi; Fujiwara, Tomoya; Takeuchi, Yoshio; Uehara, Yoshimasa; Kirk, Kenneth L; Nakata, Eiji; Hori, Hitoshi

    2008-06-01

    We designed chiral 2-nitroimidazole derivatives containing a 2-aminomethylene-4-cyclopentene-1,3-dione moiety as antiangiogenic hypoxic cell radiosensitizers. Based on results of molecular orbital calculations, the 2-aminomethylene-4-cyclopentene-1,3-dione moiety is expected to show high electrophilicity comparable to that of the 2-methylene-4-cyclopentene-1,3-dione moiety included in TX-1123 and tyrphostin AG17. We evaluated the antiangiogenic and radiosensitizing effects of the new compounds, along with other biological properties including their activities as hypoxic cytotoxicities and protein tyrosine kinase (PTK) inhibitory activities. Among the compounds tested, 5 (TX-2036) proved to be the strongest antiangiogenic hypoxic cell radiosensitizer. All the other chiral 2-nitroimidazole derivatives having 2-aminomethylene-4-cyclopentene-1,3-dione moiety tested were also antiangiogenic hypoxic cell radiosensitizers. The PTK inhibitory activity of 5 (TX-2036) showed this to be a promising and potent EGFR kinase inhibitor, having an IC(50) value of lower than 2microM. This compound also was an Flt-1 kinase inhibitor having an IC(50) value of lower than 20microM. Our results show that these chiral 2-nitroimidazole derivatives that contain the 2-aminomethylene-4-cyclopentene-1,3-dione moiety as a potent antiangiogenic pharmacophoric descriptor are promising lead candidates for the development of antiangiogenic hypoxic cell radiosensitizers.

  16. REST regulates oncogenic properties of glioblastoma stem cells

    PubMed Central

    Kamal, Mohamed M.; Sathyan, Pratheesh; Singh, Sanjay K.; Zinn, Pascal O.; Marisetty, Anantha L.; Liang, Shoudan; Gumin, Joy; El-Mesallamy, Hala Osman; Suki, Dima; Colman, Howard; Fuller, Gregory N.; Lang, Frederick F.; Majumder, Sadhan

    2013-01-01

    Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor REST, suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM. PMID:22228704

  17. Effect of restoration of retinoblastoma gene function on the radiosensitivity of cells of human tumor cell lines

    SciTech Connect

    Tsang, N.M.; Little, J.B.

    1994-11-01

    To assess the role of expression of the retinoblastoma (RB) gene on the sensitivity of cells to the cytotoxic effects of ionizing radiation, we transfected a normal RB gene into cells of RB{sup +} and RB{sup {minus}} osteosarcoma cell lines and an RB{sup {minus}} prostate carcinoma line and studied the radiosensitivity of the cells before and after transfection. Four transfected clones were isolated from the two RB{sup {minus}} tumor cell lines that expressed the product of the transfected normal RB gene and contained no mutations in the pocket and C-terminal regions by sequencing. A small increase in radiosensitivity was observed in cell lines transfected with the pDOL plasmid vector alone, containing the neo gene and a long terminal repeat (LTR) promoter. However, no significant change in radiosensitivity occurred in transfected cells expressing the normal RB gene compared to controls transfected with an RB{sup {minus}} plasmid. Based on this and other information, we conclude that RB gene function is not involved in the response of these human tumor cells to the cytotoxic effects of radiation. 38 refs., 5 figs., 4 tabs.

  18. [Radiation-induces increased tumor cell aggressiveness of tumors of the glioblastomas?].

    PubMed

    Falk, Alexander T; Moncharmont, Coralie; Guilbert, Matthieu; Guy, Jean-Baptiste; Alphonse, Gersende; Trone, Jane-Chloé; Rivoirard, Romain; Gilormini, Marion; Toillon, Robert-Alain; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2014-09-01

    Glioblastoma multiform is the most common and aggressive brain tumor with a worse prognostic. Ionizing radiation is a cornerstone in the treatment of glioblastome with chemo-radiation association being the actual standard. As a paradoxal effect, it has been suggested that radiotherapy could have a deleterious effect on local recurrence of cancer. In vivo studies have studied the effect of radiotherapy on biological modification and pathogenous effect of cancer cells. It seems that ionizing radiations with photon could activate oncogenic pathways in glioblastoma cell lines. We realized a review of the literature of photon-enhanced effect on invasion and migration of glioblastoma cells by radiotherapy.

  19. Four cardiac hormones eliminate 4-fold more human glioblastoma cells than the green mamba snake peptide.

    PubMed

    Vesely, Brian A; Eichelbaum, Ehrentraud J; Alli, Abdel A; Sun, Ying; Gower, William R; Vesely, David L

    2007-08-28

    Within 24h four cardiac hormones, i.e., vessel dilator, kaliuretic peptide, atrial natriuretic peptide, and long acting natriuretic peptide decrease the number of human glioblastoma cells 75%, 68%, 67%, and 65% while Dendroaspis (green mamba) peptide caused a 17% decrease when each were utilized at 100 microM. The four cardiac hormones decreased DNA synthesis 65-87% and increased cyclic GMP 1.3- to 3.8-fold in the glioblastoma cells. Natriuretic peptide receptors (NPR)-A and -C were present. four cardiac hormones eliminate up to 75% of glioblastoma cells via cyclic GMP-mediated up to 87% decrease in DNA synthesis.

  20. The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells.

    PubMed

    Koyama-Nasu, R; Haruta, R; Nasu-Nishimura, Y; Taniue, K; Katou, Y; Shirahige, K; Todo, T; Ino, Y; Mukasa, A; Saito, N; Matsui, M; Takahashi, R; Hoshino-Okubo, A; Sugano, H; Manabe, E; Funato, K; Akiyama, T

    2014-04-24

    Increasing evidence suggests that brain tumors arise from the transformation of neural stem/precursor/progenitor cells. Much current research on human brain tumors is focused on the stem-like properties of glioblastoma. Here we show that anaplastic lymphoma kinase (ALK) and its ligand pleiotrophin are required for the self-renewal and tumorigenicity of glioblastoma stem cells (GSCs). Furthermore, we demonstrate that pleiotrophin is transactivated directly by SOX2, a transcription factor essential for the maintenance of both neural stem cells and GSCs. We speculate that the pleiotrophin-ALK axis may be a promising target for the therapy of glioblastoma.

  1. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer.

    PubMed

    Sears, Catherine R; Cooney, Sean A; Chin-Sinex, Helen; Mendonca, Marc S; Turchi, John J

    2016-04-01

    Non-small cell lung cancers (NSCLC) are commonly treated with a platinum-based chemotherapy such as cisplatin (CDDP) in combination with ionizing radiation (IR). Although clinical trials have demonstrated that the combination of CDDP and IR appear to be synergistic in terms of therapeutic efficacy, the mechanism of synergism remains largely uncharacterized. We investigated the role of the DNA damage response (DDR) in CDDP radiosensitization using two NSCLC cell lines. Using clonogenic survival assays, we determined that the cooperative cytotoxicity of CDDP and IR treatment is sequence dependent, requiring administration of CDDP prior to IR (CDDP-IR). We identified and interrogated the unique time and agent-dependent activation of the DDR in NSCLC cells treated with cisplatin-IR combination therapy. Compared to treatment with CDDP or IR alone, CDDP-IR combination treatment led to persistence of γH2Ax foci, a marker of DNA double-strand breaks (DSB), for up to 24h after treatment. Interestingly, pharmacologic inhibition of DDR sensor kinases revealed the persistence of γ-H2Ax foci in CDDP-IR treated cells is independent of kinase activation. Taken together, our data suggest that delayed repair of DSBs in NSCLC cells treated with CDDP-IR contributes to CDDP radiosensitization and that alterations of the DDR pathways by inhibition of specific DDR kinases can augment CDDP-IR cytotoxicity by a complementary mechanism.

  2. Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells.

    PubMed

    Babar, Imran A; Czochor, Jennifer; Steinmetz, Allison; Weidhaas, Joanne B; Glazer, Peter M; Slack, Frank J

    2011-11-15

    miR-155 is a prominent microRNA (miRNA) that regulates genes involved in immunity and cancer-related pathways. miR-155 is overexpressed in lung cancer, which correlates with poor patient prognosis. It is unclear how miR-155 becomes increased in lung cancers and how this increase contributes to reduced patient survival. Here, we show that hypoxic conditions induce miR-155 expression in lung cancer cells and trigger a corresponding decrease in a validated target, FOXO3A. Furthermore, we find that increased levels of miR-155 radioprotects lung cancer cells, while inhibition of miR-155 radiosensitizes these cells. Moreover, we reveal a therapeutically important link between miR-155 expression, hypoxia, and irradiation by demonstrating that anti-miR-155 molecules also sensitize hypoxic lung cancer cells to irradiation. Our study helps explain how miR-155 becomes elevated in lung cancers, which contain extensive hypoxic microenvironments, and demonstrates that inhibition of miR-155 may have important therapeutic potential as a means to radiosensitize hypoxic lung cancer cells.

  3. Enhancing radiosensitization in EphB4 receptor-expressing Head and Neck Squamous Cell Carcinomas

    PubMed Central

    Bhatia, Shilpa; Hirsch, Kellen; Sharma, Jaspreet; Oweida, Ayman; Griego, Anastacia; Keysar, Stephen; Jimeno, Antonio; Raben, David; Krasnoperov, Valery; Gill, Parkash S.; Pasquale, Elena B.; Wang, Xiao-Jing; Karam, Sana D.

    2016-01-01

    Members of the Eph family of receptor tyrosine kinases have been implicated in a wide array of human cancers. The EphB4 receptor is ubiquitously expressed in head and neck squamous cell carcinoma (HNSCC) and has been shown to impart tumorigenic and invasive characteristics to these cancers. In this study, we investigated whether EphB4 receptor targeting can enhance the radiosensitization of HNSCC. Our data show that EphB4 is expressed at high to moderate levels in HNSCC cell lines and patient-derived xenograft (PDX) tumors. We observed decreased survival fractions in HNSCC cells following EphB4 knockdown in clonogenic assays. An enhanced G2 cell cycle arrest with activation of DNA damage response pathway and increased apoptosis was evident in HNSCC cells following combined EphB4 downregulation and radiation compared to EphB4 knockdown and radiation alone. Data using HNSCC PDX models showed significant reduction in tumor volume and enhanced delay in tumor regrowth following sEphB4-HSA administration with radiation compared to single agent treatment. sEphB4-HSA is a protein known to block the interaction between the EphB4 receptor and its ephrin-B2 ligand. Overall, our findings emphasize the therapeutic relevance of EphB4 targeting as a radiosensitizer that can be exploited for the treatment of human head and neck carcinomas. PMID:27941840

  4. Relating Intercellular Variability in Nanoparticle Uptake with Biological Consequence: A Quantitative X-ray Fluorescence Study for Radiosensitization of Cells.

    PubMed

    Turnbull, Tyron; Douglass, Michael; Paterson, David; Bezak, Eva; Thierry, Benjamin; Kempson, Ivan

    2015-11-03

    Internalized gold nanoparticles were quantified in large numbers of individual prostate cancer cells using large area synchrotron X-ray fluorescence microscopy. Cells were also irradiated with a 6 MV linear accelerator to assess the biological consequence of radiosensitization with gold nanoparticles. A large degree of heterogeneity in nanoparticle uptake between cells resulted in influenced biological effect.

  5. Porfimer-sodium (Photofrin-II) in combination with ionizing radiation inhibits tumor-initiating cell proliferation and improves glioblastoma treatment efficacy

    PubMed Central

    Benayoun, Liat; Schaffer, Moshe; Bril, Rotem; Gingis-Velitski, Svetlana; Segal, Ehud; Nevelsky, Alexsander; Satchi-Fainaro, Ronit; Shaked, Yuval

    2013-01-01

    Tumor relapse and tumor cell repopulation has been explained partially by the drug-free break period between successive conventional treatments. Strategies to overcome tumor relapse have been proposed, such as the use of chemotherapeutic drugs or radiation in small, frequent fractionated doses without an extended break period between treatment intervals. Yet, tumors usually acquire resistance and eventually escape the therapy. Several mechanisms have been proposed to explain the resistance of tumors to therapy, one of which involves the cancer stem cell or tumor-initiating cell (TIC) concept. TICs are believed to resist many conventional therapies, in part due to their slow proliferation and self-renewal capacities. Therefore, emerging efforts to eradicate TICs are being undertaken. Here we show that treatment with Photofrin II, among the most frequently used photosensitizers, sensitized a TIC-enriched U-87MG human glioblastoma cell to radiation, and improve treatment outcome when used in combination with radiotherapy. A U-87MG tumor cell population enriched with radiation-resistant TICs becomes radio-sensitive, and an inhibition of cell proliferation and an increase in apoptosis are found in the presence of Photofrin II. Furthermore, U-87MG tumors implanted in mice treated with Photofrin II and radiation exhibit a significant reduction in angiogenesis and vasculogenesis, and an increased percentage of apoptotic TICs when compared with tumors grown in mice treated with radiation alone. Collectively, our results offer a new possible explanation for the therapeutic effects of radiosensitizing agents, and suggest that combinatorial treatment modalities can effectively prolong treatment outcome of glioblastoma tumors by inhibiting tumor growth mediated by TICs. PMID:23114641

  6. Growth factors from tumor microenvironment possibly promote the proliferation of glioblastoma-derived stem-like cells in vitro.

    PubMed

    Guo, JingJing; Niu, Rui; Huang, Wenhui; Zhou, Mengliang; Shi, Jixing; Zhang, Luyong; Liao, Hong

    2012-10-01

    Glioblastoma multiform is a lethal brain glial tumor characterized by low survival and high recurrence, partially attributed to the glioblastoma stem cells according to recent researches. Microenvironment or niche in tumor tissue is believed to provide essential support for the aberrant growth of tumor stem cells. In order to explore the effect of growth factors in tumor microenvironment on glioblastoma stem cells behavior, glioblastoma-derived stem-like cells (GDSCs) were isolated from adult human glioblastoma specimen with antibody against surface marker CD133 and were co-cultured with various tumor cells including U87MG cells, unsorted glioblastoma tumor cells, CD133(-) cells and normal rat primary astrocytes. Results suggested that tumor cells could promote GDSCs proliferation while non-tumor cells could not, and several growth factors were exclusively detected in the co-culture system with tumor cells. It was concluded that growth factors derived from tumor microenvironment possibly contributed to the uncontrolled proliferation of GDSCs.

  7. Inhibition of glioblastoma cell proliferation, migration and invasion by the proteasome antagonist carfilzomib.

    PubMed

    Areeb, Zammam; Stylli, Stanley S; Ware, Thomas M B; Harris, Nicole C; Shukla, Lipi; Shayan, Ramin; Paradiso, Lucia; Li, Bo; Morokoff, Andrew P; Kaye, Andrew H; Luwor, Rodney B

    2016-05-01

    Glioblastoma multiforme is the most aggressive and lethal tumor of the central nervous system with limited treatment strategies on offer, and as such the identification of effective novel therapeutic agents is paramount. To examine the efficacy of proteasome inhibitors, we tested bortezomib, carfilzomib, nafamostat mesylate, gabexate mesylate and acetylsalicylic acid on glioblastoma cell viability, migration and invasion. Both bortezomib and carfilzomib produced significant reduction of cell viability, while nafamostat mesylate, gabexate mesylate and acetylsalicylic acid did not. Subsequent testing showed that carfilzomib significantly reduced cell viability at nM concentrations. Carfilzomib also reduced cell migration, secretion and activation of MMP2 and also cell invasion of all four glioblastoma cells tested. In summary, carfilzomib represents a novel, yet FDA-approved agent for the treatment of glioblastoma multiforme.

  8. Chromosomal radiosensitivity during the G2 cell-cycle period of skin fibroblasts from individuals with familial cancer

    SciTech Connect

    Parshad, R.; Sanford, K.K.; Jones, G.M.

    1985-08-01

    The authors reported previously that human cells after neoplastic transformation in culture had acquired an increased susceptibility to chromatid damage induced by x-irradiation during the G2 phase of the cell cycle. Evidence suggested that this results from deficient DNA repair during G2 phase. Cells derived from human tumors also showed enhanced G2-phase chromosomal radiosensitivity. Furthermore, skin fibroblasts from individuals with genetic diseases predisposing to a high risk of cancer, including ataxia-telangiectasia, Bloom syndrome, Fanconi anemia, and xeroderma pigmentosum exhibited enhanced G2-phase chromosomal radiosensitivity. The present study shows that apparently normal skin fibroblasts from individuals with familial cancer--i.e., from families with a history of neoplastic disease--also exhibit enhanced G2-phase chromosomal radiosensitivity. This radiosensitivity appears, therefore, to be associated with both a genetic predisposition to cancer and a malignant neoplastic state. Furthermore, enhanced G2-phase chromosomal radiosensitivity may provide the basis for an assay to detect genetic susceptibility to cancer.

  9. Inhibition of PARP1-dependent end-joining contributes to Olaparib-mediated radiosensitization in tumor cells.

    PubMed

    Kötter, Annika; Cornils, Kerstin; Borgmann, Kerstin; Dahm-Daphi, Jochen; Petersen, Cordula; Dikomey, Ekkehard; Mansour, Wael Y

    2014-12-01

    Poly-ADP-ribose-polymerase inhibitors (PARPi) are considered to be optimal tools for specifically enhancing radiosensitivity. This effect has been shown to be replication-dependent and more profound in HR-deficient tumors. Here, we present a new mode of PARPi-mediated radiosensitization which was observed in four out of six HR-proficient tumor cell lines (responders) investigated, but not in normal cells. This effect is replication-independent, as the radiosensitization remained unaffected following the inhibition of replication using aphidicolin. We showed that responders are radiosensitized by Olaparib because their DSB-repair is switched to PARP1-dependent end-joining (PARP1-EJ), as evident by (i) the significant increase in the number of residual γH2AX foci following irradiation with 3Gy and treatment with Olaparib, (ii) the enhanced enrichment of PARP1 at the chromatin after 3Gy and (iii) the inhibition of end-joining activity measured by a specific reporter substrate upon Olaparib treatment. This is the first study which directly demonstrates the switch to PARP1-EJ in tumor cells and its contribution to the response to Olaparib as a radiosensitizer, findings which could widen the scope of application of PARPi in tumor therapy. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Immunosuppression by hypoxic cell radiosensitizers: a phenomenon of potential clinical importance

    SciTech Connect

    Rockwell, S.; Kapp, D.S.

    1982-06-01

    The nitroimidazoles metronidazole, misonidazol, and desmethyl misonidazole are currently undergoing clinical trials as possible adjuncts to radiotherapy. Ongoing clinical trials are evaluating the effectiveness of these agents and also documenting the pharmacokinetics and toxicities of radiosensitizing doses of these drugs in man. A variety of toxic effects have been noted in man, including anorexia, nausea and vomiting, peripheral neuropathy, central nervous system symptoms, ototoxicity, allergy, and fear. Laboratory studies have also suggested that these agents have potential to be mutagenic, carcinogenic, and teratogenic. In the editorial presented, the author attempts to draw attention to an additional toxic effect of nitroimidazoles - the inhibition of cell-mediated immune responses. (JMT)

  11. Identification of Novel Radiosensitizers in a High-Throughput, Cell-Based Screen for DSB Repair Inhibitors

    PubMed Central

    Goglia, Alexander G.; Delsite, Robert; Luz, Antonio N.; Shahbazian, David; Salem, Ahmed F.; Sundaram, Ranjini K.; Chiaravalli, Jeanne; Hendrikx, Petrus J.; Wilshire, Jennifer A.; Jasin, Maria; Kluger, Harriet; Glickman, J. Fraser; Powell, Simon N.; Bindra, Ranjit S.

    2014-01-01

    Most cancer therapies involve a component of treatment which inflicts DNA damage in tumor cells, such as double-strand breaks (DSBs), which are considered the most serious threat to genomic integrity. Complex systems have evolved to repair these lesions, and successful DSB repair is essential for tumor cell survival after exposure to ionizing radiation (IR) and other DNA damaging agents. As such, inhibition of DNA repair is a potentially efficacious strategy for chemo- and radio-sensitization. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) represent the two major pathways by DSBs are repaired in mammalian cells. Here, we report the design and execution of a high-throughput, cell-based small molecule screen for novel DSB repair inhibitors. We miniaturized our recently developed dual NHEJ and HR reporter system into a 384-well plate-based format and interrogated a diverse library of 20,000 compounds for molecules which selectively modulate NHEJ and HR repair in tumor cells. We identified a collection of novel hits which potently inhibit DSB repair, and we have validated their functional activity in comprehensive panel of orthogonal secondary assays. A selection of these inhibitors were found to radiosensitize cancer cell lines in vitro, which suggests they may be useful as novel chemo- and radio-sensitizers. Surprisingly, we identified several FDA-approved drugs, including the calcium channel blocker, mibefradil dihydrochloride, which demonstrated activity as DSB repair inhibitors and radiosensitizers. These findings suggest the possibility for repurposing them as tumor cell radiosensitizers in the future. Accordingly, we recently initiated a Phase I clinical trial testing mibefradil as glioma radiosensitizer. PMID:25512618

  12. Radiosensitization of Prostate Tumor Cells by Prenyltransferase Inhibitors

    DTIC Science & Technology

    1999-10-01

    and predicts a positive effect on the response to radiotherapy. Reportable Outcomes: 1. Development of new cell lines derived from immortalized human ...548-552. 14 Employment 1993 - 1996 Biologist, Laboratory of Mammalian Genes and Development , National Institute of Child Health and Human ...the use of prenyltransferase inhibitors. We have examined both rodent and human prostate tumor cell lines in vitro and determined that radiation

  13. Radiosensitization by inhibition of IkappaB-alpha phosphorylation in human glioma cells.

    PubMed

    Ding, Gui-Rong; Honda, Naoko; Nakahara, Takehisa; Tian, Furong; Yoshida, Masami; Hirose, Hideki; Miyakoshi, Junji

    2003-08-01

    To assess the role of nuclear factor kappaB (NFKB) in cellular radiosensitivity, three different IkappaB-alpha (also known as NFKBIA) expression plasmids, i.e., S-IkappaB (mutations at (32, 36)Ser), Y-IkappaB (a mutation at (42)Tyr), and SY-IkappaB, were constructed and introduced into human brain tumor M054 cells. The clones were named as M054-S8, M054-Y2 and M054-SY4, respectively. Compared to the parental cell line, M054-S8 and M054-Y2 cells were more sensitive to X rays while M054-SY4 cells exhibited the greatest sensitivity. After treatment with N-acetyl-Leu-Leu-norleucinal, a proteasome inhibitor, the X-ray sensitivity of M054-S8 and M054-SY4 cells did not change, while that of M054-Y2 cells and the parental cells was enhanced. An increase in X-ray sensitivity accompanied by a decrease in translocation of NFKB to the nucleus in parental cells was observed after treatment with pervanadate, an inhibitor of tyrosine phosphatase, as well as in M054-S8 and M054-SY4 cells. Repair of potentially lethal damage (PLD) was observed in the parental cells but not in the clones. Four hours after irradiation (8 Gy), the expression of TP53 and phospho-p53 ((15)Ser) was induced in the parental cells but not in M054-S8, M054-Y2 or M054-SY4 cells. Our data suggest that inhibition of IkappaB-alpha phosphorylation at serine or tyrosine acts independently in sensitizing cells to X rays. NFKB may play a role in determining radiosensitivity and PLD repair in malignant glioma cells; TP53 may also be involved.

  14. Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates

    SciTech Connect

    Michaels, H.B.; Ling, C.C.; Epp, E.R.; Peterson, E.C.

    1981-03-01

    When CHO cells, equilibrated with 0.44% oxygen, are irradiated with single 3-nsec pulses of electrons from a 600-kV-field emission source, a breaking survival curve is observed. The breaking behavior, believed to be the result of radiolytic oxygen depletion, can be prevented by the presence of a relatively low concentration of the hypoxic cell sensitizer misonidazole; similar results are obtained with metronidazole and Ro-05-9963. The resulting survival curves exhibit a sensitized response similar to that obtained with conventional dose rate radiation for CHO cells under this oxygen concentration. This degree of sensitization is greater than that observed for CHO cells irradiated at ultrahigh dose rates under the same concentration of sensitizer in nitrogen. The data suggest that the nitroimidazole compounds interfere with the radiation chemical oxygen depletion process and that the radiosensitization observed in the nonbreaking survival curve is the consequence of sensitization by both the nitroimidazole and, primarily, the oxygen rather than a direct subsitution for oxygen by the sensitizer. This conclusion is also supported by data obtained in double-pulse experiments. The results are discussed with regard to the mechanisms of the oxygen depletion process and radiosensitization.

  15. Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review).

    PubMed

    Baek, Sung-Jae; Ishii, Hideshi; Tamari, Keisuke; Hayashi, Kazuhiko; Nishida, Naohiro; Konno, Masamitsu; Kawamoto, Koichi; Koseki, Jun; Fukusumi, Takahito; Hasegawa, Shinichiro; Ogawa, Hisataka; Hamabe, Atsushi; Miyo, Masaaki; Noguchi, Kozo; Seo, Yuji; Doki, Yuichiro; Mori, Masaki; Ogawa, Kazuhiko

    2015-11-01

    Cancer stem cells (CSCs) are a small population of cells in cancer with stem-like properties such as cell proliferation, multiple differentiation and tumor initiation capacities. CSCs are therapy-resistant and cause cancer metastasis and recurrence. One key issue in cancer therapy is how to target and eliminate CSCs, in order to cure cancer completely without relapse and metastasis. To target CSCs, many cell surface markers, DNAs and microRNAs are considered as CSC markers. To date, the majority of the reported markers are not very specific to CSCs and are also present in non-CSCs. However, the combination of several markers is quite valuable for identifying and targeting CSCs, although more specific identification methods are needed. While CSCs are considered as critical therapeutic targets, useful treatment methods remain to be established. Epigenetic gene regulators, microRNAs, are associated with tumor initiation and progression. MicroRNAs have been recently considered as promising therapeutic targets, which can alter the therapeutic resistance of CSCs through epigenetic modification. Moreover, carbon ion beam radiotherapy is a promising treatment for CSCs. Evidence indicates that the carbon ion beam is more effective against CSCs than the conventional X-ray beam. Combination therapies of radiosensitizing microRNAs and carbon ion beam radiotherapy may be a promising cancer strategy. This review focuses on the identification and treatment resistance of CSCs and the potential of microRNAs as new radiosensitizers and carbon ion beam radiotherapy as a promising therapeutic strategy against CSCs.

  16. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo.

    PubMed

    Karpel-Massler, Georg; Banu, Matei A; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N; Canoll, Peter; Siegelin, Markus D

    2016-03-15

    It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective.

  17. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo

    PubMed Central

    Karpel-Massler, Georg; Banu, Matei A.; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N.; Canoll, Peter; Siegelin, Markus D.

    2016-01-01

    It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective. PMID:26872380

  18. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells

    PubMed Central

    Huayin, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-01-01

    Background The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. Material/Methods A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. Results Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. Conclusions KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms. PMID:28002389

  19. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells.

    PubMed

    Huaying, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-12-21

    BACKGROUND The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. MATERIAL AND METHODS A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. RESULTS Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. CONCLUSIONS KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms.

  20. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: an in vitro study

    PubMed Central

    Rezaee, Zohre; Yadollahpour, Ali; Bayati, Vahid; Negad Dehbashi, Fereshteh

    2017-01-01

    Background and objective Radiation therapy (RT) is the gold standard treatment for more than half of known tumors. Despite recent improvements in RT efficiency, the side effects of ionizing radiation (IR) in normal tissues are a dose-limiting factor that restricts higher doses in tumor treatment. One approach to enhance the efficiency of RT is the application of radiosensitizers to selectively increase the dose at the tumor site. Gold nanoparticles (GNPs) and electroporation (EP) have shown good potential as radiosensitizers for RT. This study aims to investigate the sensitizing effects of EP, GNPs, and combined GNPs-EP on the dose enhancement factor (DEF) for 6 MV photon energy. Methods Radiosensitizing effects of EP, GNPs, and combinations of GNPs-EP were comparatively investigated in vitro for intestinal colon cancer (HT-29) and Chinese hamster ovary (CHO) cell lines by MTT assay and colony formation assay at 6 MV photon energy in six groups: IR (control group), GNPs+IR, GNPs (24 h)+IR, EP+IR, GNPs+EP+IR, and GNPs (24 h)+EP+IR. Results Treatment of both cell lines with EP, GNPs, and combined GNPs-EP significantly enhanced the response of cells to irradiation. However, the HT-29 showed higher DEF values for all groups. In addition, the DEF value for HT-29 cells for GNPs+IR, GNPs (24 h)+IR, EP+IR, GNPs+EP+IR, and GNPs (24 h)+EP+IR was, respectively, 1.17, 1.47, 1.36, 2.61, and 2.89, indicating synergistic radiosensitizing effect for the GNPs (24 h)+EP+IR group. Furthermore, the synergistic effect was observed just for HT-29 tumor cell lines. Conclusion Combined GNPs-EP protocols induced synergistic radiosensitizing effect in HT-29 cells, and the effect is also tumor specific. This combined therapy can be beneficially used for the treatment of intrinsically less radiosensitive tumors. PMID:28260889

  1. A tumorigenic MLL-homeobox network in human glioblastoma stem cells.

    PubMed

    Gallo, Marco; Ho, Jenny; Coutinho, Fiona J; Vanner, Robert; Lee, Lilian; Head, Renee; Ling, Erick K M; Clarke, Ian D; Dirks, Peter B

    2013-01-01

    Glioblastoma growth is driven by cancer cells that have stem cell properties, but molecular determinants of their tumorigenic behavior are poorly defined. In cancer, altered activity of the epigenetic modifiers Polycomb and Trithorax complexes may contribute to the neoplastic phenotype. Here, we provide the first mechanistic insights into the role of the Trithorax protein mixed lineage leukemia (MLL) in maintaining cancer stem cell characteristics in human glioblastoma. We found that MLL directly activates the Homeobox gene HOXA10. In turn, HOXA10 activates a downstream Homeobox network and other genes previously characterized for their role in tumorigenesis. The MLL-Homeobox axis we identified significantly contributes to the tumorigenic potential of glioblastoma stem cells. Our studies suggest a role for MLL in contributing to the epigenetic heterogeneity between tumor-initiating and non-tumor-initiating cells in glioblastoma.

  2. MGMT hypermethylation and MDR system in glioblastoma cancer stem cells.

    PubMed

    Caldera, Valentina; Mellai, Marta; Annovazzi, Laura; Monzeglio, Oriana; Piazzi, Angela; Schiffer, Davide

    2012-01-01

    Cancer stem cells (CSCs) in gliomas are associated with resistance to radio- and chemotherapy, based on O(6)-methylguanine-DNA methyltransferase (MGMT) hypermethylation and the Multidrug resistance (MDR) system activation. Samples from 21 glioblastomas (GBMs) were put in culture with growth factors or serum in order to obtain neurospheres or adherent cells. Both were genetically and immunohistochemically characterized for ATP-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1), ATP-binding cassette, sub-family C (CFTR/MRP), member 1 (ABCC1) and MGMT expression together with primary tumors. ABCB1 expression was positive in endothelial cells of primary tumors. ABCC1 expression was variably positive in tumor cells and positive in neurospheres, and less expressed in adherent cells. MGMT was methylated and unmethylated in primary tumors and in neurospheres, respectively, and unmethylated in adherent cells. Methylation is an epigenetic event affecting progenitors before the separation of the two glia lineages and maximally the future initiating cells. ABCB1 expression is limited to endothelial cells, whereas ABCC1 expression could mark a minority of tumor cells approaching a stem-like status.

  3. Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy

    PubMed Central

    Biasoli, D; Sobrinho, M F; da Fonseca, A C C; de Matos, D G; Romão, L; de Moraes Maciel, R; Rehen, S K; Moura-Neto, V; Borges, H L; Lima, F R S

    2014-01-01

    The tumor microenvironment has a dynamic and usually cancer-promoting function during all tumorigenic steps. Glioblastoma (GBM) is a fatal tumor of the central nervous system, in which a substantial number of non-tumoral infiltrated cells can be found. Astrocytes neighboring these tumor cells have a particular reactive phenotype and can enhance GBM malignancy by inducing aberrant cell proliferation and invasion. The tumor suppressor p53 has a potential non-cell autonomous function by modulating the expression of secreted proteins that influence neighbor cells. In this work, we investigated the role of p53 on the crosstalk between GBM cells and astrocytes. We show that extracellular matrix (ECM) from p53+/− astrocytes is richer in laminin and fibronectin, compared with ECM from p53+/+ astrocytes. In addition, ECM from p53+/− astrocytes increases the survival and the expression of mesenchymal markers in GBM cells, which suggests haploinsufficient phenotype of the p53+/– microenvironment. Importantly, conditioned medium from GBM cells blocks the expression of p53 in p53+/+ astrocytes, even when DNA was damaged. These results suggest that GBM cells create a dysfunctional microenvironment based on the impairment of p53 expression that in turns exacerbates tumor endurance. PMID:25329722

  4. Honokiol-induced apoptosis and autophagy in glioblastoma multiforme cells.

    PubMed

    Chang, Ken-Hu; Yan, Ming-DE; Yao, Chih-Jung; Lin, Pei-Chun; Lai, Gi-Ming

    2013-11-01

    Honokiol, a hydroxylated biphenyl compound isolated from the Chinese herb Magnolia officinalis, has been reported to have anticancer activities in a variety of cancer cell lines. The present study aimed to evaluate the anticancer effect and possible molecular mechanisms of honokiol in a glioblastoma multiforme (GBM) cell line. The anticancer activities of honokiol were investigated in the DBTRG-05MG GBM cell line. The effect of honokiol on cell growth was determined using a sulforhodamine B assay. Flow cytometry and immunoblotting were used to measure honokiol-induced apoptosis (programmed cell death type I) and autophagy (programmed cell death type II). Honokiol was observed to reduce DBTRG-05MG cell viability in a dose-dependent manner. At a dose of 50 μM, honokiol markedly decreased the expression of Rb protein and led to the cleavage of poly(ADP-ribose) polymerase and Bcl-xL to promote apoptosis in the cancer cells. In addition, markers of autophagy, including Beclin-1 and LC3-II, were also significantly increased. In addition to apoptosis, honokiol was also able to induce autophagy in the DBTRG-05MG cells. The mechanisms that are responsible for the correlation between honokiol-induced apoptosis and autophagy require further investigation. Such efforts may provide a potential strategy for improving the clinical outcome of GBM treatment.

  5. Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone.

    PubMed

    Piccirillo, Sara G M; Spiteri, Inmaculada; Sottoriva, Andrea; Touloumis, Anestis; Ber, Suzan; Price, Stephen J; Heywood, Richard; Francis, Nicola-Jane; Howarth, Karen D; Collins, Vincent P; Venkitaraman, Ashok R; Curtis, Christina; Marioni, John C; Tavaré, Simon; Watts, Colin

    2015-01-01

    Glioblastoma, the most common and aggressive adult brain tumor, is characterized by extreme phenotypic diversity and treatment failure. Through fluorescence-guided resection, we identified fluorescent tissue in the sub-ependymal zone (SEZ) of patients with glioblastoma. Histologic analysis and genomic characterization revealed that the SEZ harbors malignant cells with tumor-initiating capacity, analogous to cells isolated from the fluorescent tumor mass (T). We observed resistance to supramaximal chemotherapy doses along with differential patterns of drug response between T and SEZ in the same tumor. Our results reveal novel insights into glioblastoma growth dynamics, with implications for understanding and limiting treatment resistance.

  6. Innovative fluorescent magnetic albumin microbead-assisted cell labeling and intracellular imaging of glioblastoma cells.

    PubMed

    Wang, Xueqin; Wei, Fang; Yan, Shuang; Zhang, Huiru; Tan, Xiaorong; Zhang, Lu; Zhou, Guangzhou; Cui, Liuqing; Li, Cuixiang; Wang, Liang; Li, Yatao

    2014-04-15

    Superparamagnetic nanoparticle-based polymer microbeads utilized as carriers are attractive materials widely applied in the biomedical field. However, the deficiency of toxicity, biocompatibility, and biodegradability for polymer materials often limits the application of these microbeads. In the present study, magnetic albumin microbeads (MAMbs), i.e., human serum albumin-coated γ-Fe2O3 nanoparticles, are synthesized to label human U251 glioblastoma multiforme cells. The effects of MAMbs on the biological behavior of U251 glioblastoma cells, including their proliferation, cell viability, cytoskeletal structure, cell cycle, and apoptosis rate, are investigated. Moreover, fluorescein isothiocyanate (FITC)-MAMbs are fabricated by reaction with fluorescent dye FITC used for intracellular imaging of U251 glioblastoma cells. MAMbs possess undetectable cytotoxicity and excellent biocompatibility with U251 glioblastoma cells, as demonstrated by the biological behavior and morphology of U251 cells exposed to MAMbs. Furthermore, the constructed fluorescent MAMbs allow effective intracellular imaging, as illustrated by fluorescence microscopic analysis. The fabricated fluorescent MAMbs have promising perspectives in biomedical research, especially in cell-targeted labeling and intracellular fluorescence magnetic dual-mode imaging in cancer-targeted diagnosis and therapy. © 2013 Published by Elsevier B.V.

  7. Featured article: autophagic activation with nimotuzumab enhanced chemosensitivity and radiosensitivity of esophageal squamous cell carcinoma.

    PubMed

    Song, Haizhu; Pan, Banzhou; Yi, Jun; Chen, Longbang

    2014-05-01

    Chemotherapy and radiotherapy are two indispensible methods for esophageal squamous cell carcinoma (ESCC), especially for those recurring and metastatic ones, but therapeutic toxicity remains a major problem to overcome. In the present study, the potential therapeutic value of nimotuzumab (an antiepidermal growth factor receptor [EGFR] monoclonal antibody) in combination with chemotherapy and radiotherapy was evaluated on Eca109 and TE-1 ESCC cells, with high and low expression of EGFR, respectively. It was shown that nimotuzumab enhanced the sensitivity of Eca109 cells to other cytotoxic agents (paclitaxel and cis-platinum) and X-ray radiation, and the cytotoxicity was associated with increased autophagy. Conversely, the chemo- and radio-sensitivity of TE-1 cells showed no improvement with addition of nimotuzumab, but could be increased by combining with rapamycin, an autophagy inducer. Therefore, it was concluded that autophagic activation mediated by nimotuzumab could promote autophagic cell death and produce additive antitumor effects.

  8. Boswellic acid activity against glioblastoma stem-like cells

    PubMed Central

    SCHNEIDER, HANNAH; WELLER, MICHAEL

    2016-01-01

    Boswellic acids (BAs) have long been considered as useful adjunct pharmacological agents for the treatment of patients with malignant brain tumors, notably glioblastoma. Two principal modes of action associated with BAs have been postulated: i) Anti-inflammatory properties, which are useful for containing edema formation, and ii) intrinsic antitumor cell properties, with a hitherto ill-defined mode of action. The present study assessed the effects of various BA derivatives on the viability and clonogenicity of a panel of nine long-term glioma cell lines and five glioma-initiating cell lines, studied cell cycle progression and the mode of cell death induction, and explored potential synergy with temozolomide (TMZ) or irradiation. BA induced the concentration-dependent loss of viability and clonogenicity that was independent of tumor protein 53 status and O6-methylguanine DNA methyltransferase expression. The treatment of glioma cells with BA resulted in cell death induction, prior to or upon S phase entry, and exhibited features of apoptotic cell death. Synergy with irradiation or TMZ was detected at certain concentrations; however, the inhibitory effects were mostly additive, and never antagonistic. While the intrinsic cytotoxic properties of BA at low micromolecular concentrations were confirmed and the potential synergy with irradiation and TMZ was identified, the proximate pharmacodynamic target of BA remains to be identified. PMID:27313764

  9. Exosome Proteome of U-87MG Glioblastoma Cells

    PubMed Central

    Chun, Sohyun; Ahn, Seunghyun; Yeom, Chang-Hwan; Park, Seyeon

    2016-01-01

    Exosomes are small membrane vesicles between 30 and 100 nm in diameter secreted by many cell types, and are associated with a wide range of physiological and/or pathological processes. Exosomes containing proteins, lipids, mRNA, and microRNA contribute to cell-to-cell communication and cell-to-environment regulation, however, their biological functions are not yet fully understood. In this report, exosomes in the glioblastoma cell line, U-87MG, were isolated and the proteome was investigated. In addition, exosome proteome changes in U-87MG cells exposed to a low temperature were investigated to elucidate whether the exosome proteome could respond to an external stimulus. Cell culture medium was collected, and exosomes were isolated by continuous centrifugation eliminating cell debris, nucleic acids, and other particles. The morphology of exosomes was observed by cryo-tunneling electron microscopy. According to 2-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, certain proteins including collagen type VI alpha 1, putative RNA-binding protein 15B chain A, substrate induced remodeling of the active site regulates HTRA1, coatomer protein complex-subunit beta 2, myosin-heavy chain 1, and keratin-type I cytoskeletal 9 showed differences between the control proteome and the low temperature-exposed proteome. PMID:27929413

  10. Stereotactic Ablative Radiotherapy Should Be Combined With a Hypoxic Cell Radiosensitizer

    SciTech Connect

    Brown, J. Martin; Diehn, Maximilian; Loo, Billy W.

    2010-10-01

    Purpose: To evaluate the effect of tumor hypoxia on the expected level of cell killing by regimens of stereotactic ablative radiotherapy (SABR) and to determine the extent to which the negative effect of hypoxia could be prevented using a clinically available hypoxic cell radiosensitizer. Results and Discussion: We have calculated the expected level of tumor cell killing from regimens of SABR, both with and without the assumption that 20% of the tumor cells are hypoxic, using the standard linear quadratic model and the universal survival curve modification. We compare the results obtained with our own clinical data for lung tumors of different sizes and with published data from other studies. We also have calculated the expected effect on cell survival of adding the hypoxic cell sensitizer etanidazole at clinically achievable drug concentrations. Modeling tumor cell killing with any of the currently used regimens of SABR produces results that are inconsistent with the majority of clinical findings if tumor hypoxia is not considered. However, with the assumption of tumor hypoxia, the expected level of cell killing is consistent with clinical data. For only some of the smallest tumors are the clinical data consistent with no tumor hypoxia, but there could be other reasons for the sensitivity of these tumors. The addition of etanidazole at clinically achievable tumor concentrations produces a large increase in the expected level of tumor cell killing from the large radiation doses used in SABR. Conclusions: The presence of tumor hypoxia is a major negative factor in limiting the curability of tumors by SABR at radiation doses that are tolerable to surrounding normal tissues. However, this negative effect of hypoxia could be overcome by the addition of clinically tolerable doses of the hypoxic cell radiosensitizer etanidazole.

  11. EGFR Amplification and Glioblastoma Stem-Like Cells

    PubMed Central

    Liffers, Katrin; Lamszus, Katrin

    2015-01-01

    Glioblastoma (GBM), the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like phenotype (GS-cells). GS-cells can be maintained in vitro using serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth Factor Receptor (EGFR) gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retained EGFR amplification could overcome the limitations of current in vitro model systems and contribute significantly to preclinical research on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with different EGFR status in order to maintain EGFR-dependent intratumoral heterogeneity in vitro. Further, it will summarize the current knowledge about the impact of EGFR amplification and overexpression on the stem-like phenotype of GBM-derived GS-cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM. PMID:26136784

  12. miR-195 enhances the radiosensitivity of colorectal cancer cells by suppressing CARM1

    PubMed Central

    Zheng, Li; Chen, Jiangtao; Zhou, Zhongyong; He, Zhikuan

    2017-01-01

    Background microRNAs (miRNAs) can regulate the sensitivity of cancer cells to chemotherapy and radiotherapy. Aberrant expression of miR-195 has been found to be involved in colorectal cancer (CRC); however, its function and underlying mechanism in the radioresistance of CRC remains unclear. Methods The levels of miR-195 and CARM1 were detected by quantitative reverse transcription-polymerase chain reaction and Western blot analysis in HCT-116 and HT-29 cells, respectively. Colony survival and apoptosis were determined by clonogenic assay and flow cytometry analysis, respectively. The apoptosis-related proteins Bax, Bcl-2, and γ-H2AX were detected using Western blot. The targets of miR-195 were identified by bioinformatic prediction and luciferase reporter assays. CRC cells in vitro and in vivo were exposed to different doses of X-ray radiations. Results miR-195 was downregulated, and CARM1 was upregulated in HCT-116 and HT-29 cells. miR-195 overexpression or CARM1 knockdown suppressed colony survival, induced apoptosis, promoted expression of Bax and γ-H2AX, and inhibited Bcl-2 expression in CRC cells. CARM1 was identified and validated to be a functional target of miR-195. Moreover, restored expression of CARM1 reversed the enhanced radiosensitivity of CRC cells induced by miR-195. Furthermore, miR-195 increased the sensitivity of CRC cells to radiation in vivo. Conclusion miR-195 enhances radiosensitivity of CRC cells through suppressing CARM1. Therefore, miR-195 acts as a potential regulator of radioresistance for CRC cells and as a promising therapeutic target for CRC patients. PMID:28255246

  13. PPARα Antagonist AA452 Triggers Metabolic Reprogramming and Increases Sensitivity to Radiation Therapy in Human Glioblastoma Primary Cells.

    PubMed

    Benedetti, Elisabetta; d'Angelo, Michele; Ammazzalorso, Alessandra; Gravina, Giovanni Luca; Laezza, Chiara; Antonosante, Andrea; Panella, Gloria; Cinque, Benedetta; Cristiano, Loredana; Dhez, Anne Chloè; Astarita, Carlo; Galzio, Renato; Cifone, Maria Grazia; Ippoliti, Rodolfo; Amoroso, Rosa; Di Cesare, Ernesto; Giordano, Antonio; Cimini, Annamaria

    2017-06-01

    Glioblastoma (GB) is the most common cancer in the brain and with an increasing incidence. Despite major advances in the field, there is no curative therapy for GB to date. Many solid tumors, including GB, experienced metabolic reprogramming in order to sustain uncontrolled proliferation, hypoxic conditions, and angiogenesis. PPARs, member of the steroid hormone receptor superfamily, are particularly involved in the control of energetic metabolism, particularly lipid metabolism, which has been reported deregulated in gliomas. PPARα was previously indicated by us as a potential therapeutic target for this neoplasm, due to the malignancy grade dependency of its expression, being particularly abundant in GB. In this work, we used a new PPARα antagonist on patient-derived GB primary cells, with particular focus on the effects on lipid metabolism and response to radiotherapy. The results obtained demonstrated that blocking PPARα results in cell death induction, increase of radiosensitivity, and decrease of migration. Therefore, AA452 is proposed as a new adjuvant for the gold standard therapies for GB, opening the possibility for preclinical and clinical trials for this class of compounds. J. Cell. Physiol. 232: 1458-1466, 2017. © 2016 Wiley Periodicals, Inc.

  14. Prediction of cellular radiosensitivity from DNA damage induced by gamma-rays and carbon ion irradiation in canine tumor cells.

    PubMed

    Wada, Seiichi; Van Khoa, Tran; Kobayashi, Yasuhiko; Funayama, Tomoo; Ogihara, Kikumi; Ueno, Shunji; Ito, Nobuhiko

    2005-11-01

    Diseases of companion animals are shifting from infectious diseases to neoplasms (cancer), and since radiation therapy is one of the effective choices available for cancer treatment, the application of radiotherapy in veterinary medicine is likely to increase. However tumor tissues have different radiosensitivities, and therefore it is important to determine the intrinsic radiosensitivity of tumors in individual patients in advance of radiotherapy. We have studied the relationship between the surviving cell fraction measured by a clonogenic assay and DNA double strand breaks detected by a comet assay under neutral conditions in three canine tumor cell lines, after gamma-ray and carbon ion irradiation. In all the cell lines, cell death assessed by the clonogenic assay was much higher following irradiation with carbon ions than with gamma-rays. The initial and residual (4 hr) DNA damage due to gamma-ray and carbon ion irradiation were higher in a radiosensitive cell line than in a radioresistant cell line. The surviving cell fraction at 2 Gy (SF2) showed a tendency for correlation with both the initial and residual DNA damage. In particular, the residual damage per Gy was significantly correlated with SF2, regardless of the type of radiation. This indicates that cellular radiosensitivity can be predicted by detection of radiation-induced residual DNA damage.

  15. Selection of DNA Aptamers against Glioblastoma Cells with High Affinity and Specificity

    PubMed Central

    Kang, Dezhi; Wang, Jiangjie; Zhang, Weiyun; Song, Yanling; Li, Xilan; Zou, Yuan; Zhu, Mingtao; Zhu, Zhi; Chen, Fuyong; Yang, Chaoyong James

    2012-01-01

    Background Glioblastoma is the most common and most lethal form of brain tumor in human. Unfortunately, there is still no effective therapy to this fatal disease and the median survival is generally less than one year from the time of diagnosis. Discovery of ligands that can bind specifically to this type of tumor cells will be of great significance to develop early molecular imaging, targeted delivery and guided surgery methods to battle this type of brain tumor. Methodology/Principal Findings We discovered two target-specific aptamers named GBM128 and GBM131 against cultured human glioblastoma cell line U118-MG after 30 rounds selection by a method called cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX). These two aptamers have high affinity and specificity against target glioblastoma cells. They neither recognize normal astraglial cells, nor do they recognize other normal and cancer cell lines tested. Clinical tissues were also tested and the results showed that these two aptamers can bind to different clinical glioma tissues but not normal brain tissues. More importantly, binding affinity and selectivity of these two aptamers were retained in complicated biological environment. Conclusion/Significance The selected aptamers could be used to identify specific glioblastoma biomarkers. Methods of molecular imaging, targeted drug delivery, ligand guided surgery can be further developed based on these ligands for early detection, targeted therapy, and guided surgery of glioblastoma leading to effective treatment of glioblastoma. PMID:23056171

  16. Relationship between genetic polymorphisms of DNA ligase 1 and non-small cell lung cancer susceptibility and radiosensitivity.

    PubMed

    Tian, H; He, X; Yin, L; Guo, W J; Xia, Y Y; Jiang, Z X

    2015-06-26

    The aim of this study was to examine the relationship between genetic polymorphisms in DNA ligase 1 (LIG1) and non-small cell lung cancer (NSCLC) susceptibility and radiosensitivity in a Chinese population. This was a case-control study that included 352 NSCLC patients and 448 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism analysis was conducted to detect HaeIII polymorphisms in exon 6 of the LIG1 gene in this popula-tion. This information was used to observe the effects of radiation in pa-tients with different genotypes in order to determine the genotypes as-sociated with radiosensitivity. The CC genotype and C allele frequency were significantly higher in the NSCLC group than in the control group (P = 0.012 and P = 0.023, respectively). The relative risk of experienc-ing NSCLC was 2.55 [95% confidence interval (CI), 1.12-3.98] for CC homozygous patients and 0.87 (95%CI, 0.46-1.88) for AA homozygous patients. Analysis of LIG1 genetic polymorphisms and radiosensitiv-ity of NSCLC patients showed that AA homozygous patients were sig-nificantly more radiosensitive than the control group (AA vs AC, P = 0.014; AA vs CC, P < 0.001; AC vs CC, P = 0.023). Therefore, the LIG1 CC genotype was associated with susceptibility to NSCLC, and the AA genotype demonstrated increased radiosensitivity compared to the AC and CC genotypes.

  17. N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial-mesenchymal transition.

    PubMed

    Huang, Chunyue; Huang, Miaojuan; Chen, Wenxia; Zhu, Weiliang; Meng, Hui; Guo, Linlang; Wei, Ting; Zhang, Jian

    2015-11-01

    N-acetylglucosaminyltransferase V (Gnt-V) has been linked to the migration of various human cancers. Recently we have found that inhibition of Gnt-V increases the radiosensitivity of cancer cells. However, the mechanisms by which Gnt-V mediates radiosensitivity and migration, especially in small cell lung cancer (SCLC) remain unknown. In our study, two SCLC cell lines (H1688 and H146) were used to investigate whether Gnt-V modulated the radiosensitivity and migration of SCLC cells through the epithelial-mesenchymal transition (EMT). The results showed that the expression of Gnt-V correlated with the N stage in patients with SCLC. Overexpression of Gnt-V led to a further increase in the relative viable cell number and survival fraction with a decrease in apoptosis rate and Bax/Bcl-2 ratio, when the cells were treated with irradiation. By contrast, knockdown of Gnt-V with irradiation resulted in a further decrease in the relative viable cell number and survival fraction but an increase in apoptosis rate and Bax/Bcl-2 ratio. Cells expressing high levels of Gnt-V increased migration whereas low levels of Gnt-V suppressed cell migration. Besides, the transient knockdown of ZEB2 led to an increase in radiosensitivity and an inhibition in the migration of SCLC cells. Furthermore, Gnt-V was negatively correlated with E-cadherin expression but positively correlated with N-cadherin, vimentin and ZEB2 expression. Finally, an in vivo study revealed that upregulation of Gnt-V caused tumour growth more quickly, as well as the expression of EMT-related markers (N-cadherin, vimentin and ZEB2). Taken together, the study suggested that an elevation of Gnt-V could lead to the radiosensitivity and migration of SCLC cells by inducing EMT, thereby highlighting Gnt-V as a potential therapeutic target for the prevention of EMT-associated tumour radioresistance and migration.

  18. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    SciTech Connect

    Aloy, Marie-Therese Hadchity, Elie; Bionda, Clara; Diaz-Latoud, Chantal; Claude, Line; Rousson, Robert; Arrigo, Andre-Patrick; Rodriguez-Lafrasse, Claire

    2008-02-01

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively or in response to {gamma}-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors.

  19. Glioblastoma: A Pathogenic Crosstalk between Tumor Cells and Pericytes

    PubMed Central

    Redondo-Garcia, Carolina; Martinez, Salvador

    2014-01-01

    Cancers likely originate in progenitor zones containing stem cells and perivascular stromal cells. Much evidence suggests stromal cells play a central role in tumor initiation and progression. Brain perivascular cells (pericytes) are contractile and function normally to regulate vessel tone and morphology, have stem cell properties, are interconvertible with macrophages and are involved in new vessel formation during angiogenesis. Nevertheless, how pericytes contribute to brain tumor infiltration is not known. In this study we have investigated the underlying mechanism by which the most lethal brain cancer, Glioblastoma Multiforme (GBM) interacts with pre-existing blood vessels (co-option) to promote tumor initiation and progression. Here, using mouse xenografts and laminin-coated silicone substrates, we show that GBM malignancy proceeds via specific and previously unknown interactions of tumor cells with brain pericytes. Two-photon and confocal live imaging revealed that GBM cells employ novel, Cdc42-dependent and actin-based cytoplasmic extensions, that we call flectopodia, to modify the normal contractile activity of pericytes. This results in the co-option of modified pre-existing blood vessels that support the expansion of the tumor margin. Furthermore, our data provide evidence for GBM cell/pericyte fusion-hybrids, some of which are located on abnormally constricted vessels ahead of the tumor and linked to tumor-promoting hypoxia. Remarkably, inhibiting Cdc42 function impairs vessel co-option and converts pericytes to a phagocytic/macrophage-like phenotype, thus favoring an innate immune response against the tumor. Our work, therefore, identifies for the first time a key GBM contact-dependent interaction that switches pericyte function from tumor-suppressor to tumor-promoter, indicating that GBM may harbor the seeds of its own destruction. These data support the development of therapeutic strategies directed against co-option (preventing incorporation and

  20. Enhancement of radiosensitivity by roscovitine pretreatment in human non-small cell lung cancer A549 cells.

    PubMed

    Zhang, Feng; Zhang, Tao; Gu, Zhong-Ping; Zhou, Yong-An; Han, Yong; Li, Xiao-Fei; Wang, Xiao-Ping; Cheng, Qing-Shu; Mei, Qi-Bing

    2008-09-01

    Roscovitine has been reported to have anti-proliferative properties and is in process of undergoing clinical trials. In addition to its intrinsic anticancer properties, it has recently been suggested that roscovitine may also enhance the activity of traditional chemo- and radio- therapies in certain cancer cell lines. The purpose of this study was to define the activity of roscovitine in increasing radiosensitivity of human non-small cell lung cancer (NSCLC) cell line A549 cells in vitro. A549 cells were exposed to ionizing radiation (IR) of gamma-ray with or without roscovitine pretreatment. Clonogenic assay was performed and cell cycle and apoptosis were analyzed by flow cytometry. Expression of PARP, Ku70 and Ku80 proteins was detected by Western blot. The active form of caspase-3 positive cells were measured by flow cytometry. Our results showed that roscovitine caused dose-dependent apoptosis in A549 cells. Pretreatment with minimally toxic concentration of roscovitine significantly radiosensitized A549 cells by inhibiting colony formation. We then examined potential mechanisms that may contribute to the enhanced radiation response induced by roscovitine. Our results showed that the combination treatment significantly induced apoptosis in A549 cells compared to roscovitine or IR treatment alone. Meanwhile, in the co-treatment group, the percentage of cells with the active form of caspase-3 was markedly increased, while roscovitine or IR alone had little effect. Roscovitine decreased S phase cells when used alone or in sequential combination with IR. Furthermore, this combination treatment blocked DNA repair process after IR, indicated by down regulation of Ku70 and Ku80 proteins, while the singly used treatment did not. Taken together, these results suggest that roscovitine has the potential to act as a radio-sensitizer in A549 cells by promoting caspase-3 activity and increasing apoptosis, affecting cell cycle distribution and impairing DNA repair process.

  1. ABC transporters as differentiation markers in glioblastoma cells.

    PubMed

    Rama, Ana R; Alvarez, Pablo J; Madeddu, Roberto; Aranega, Antonia

    2014-08-01

    Glioblastoma multiforme (GBM) is the most common primary malignant brain tumour, characterized by a high aggressivity, a huge heterogeneity attending a hierarchical model and resistance to therapy. Drug resistance has been correlated with the presence of the ABC efflux transporters which are able to exclude drugs for the cellular cytoplasm. In the nucleus of the GBM, initiating cells (ICs) can self-renew and give rise to cancer stem cells, which differ to the side population cells and the different cellular subtypes that form the mass around them. The ICs do not express or express ATP binding cassette (ABC) at very low levels, but this expression may increase with the differentiation process. We suggest that the differentiation process may be responsible of chemoresistance of the GBM cells. We compared three ABC transporters expression: ABCA1, MRP4 and MRP5, in the ICs obtained from 9 patients with GBM and their respective differentiated GBM cells. We show an overexpression of the three ABC transporters in the differentiated GBM cells in comparison to ICs. The blockade of these ABC transporters could help to improve the drug effectivity and thus reduce the tumour growth and prevent the tumour recurrence.

  2. Annexin 2A sustains glioblastoma cell dissemination and proliferation

    PubMed Central

    Maule, Francesca; Bresolin, Silvia; Rampazzo, Elena; Boso, Daniele; Puppa, Alessandro Della; Esposito, Giovanni; Porcù, Elena; Mitola, Stefania; Lombardi, Giuseppe; Accordi, Benedetta; Tumino, Manuela; Basso, Giuseppe; Persano, Luca

    2016-01-01

    Glioblastoma (GBM) is the most devastating tumor of the brain, characterized by an almost inevitable tendency to recur after intensive treatments and a fatal prognosis. Indeed, despite recent technical improvements in GBM surgery, the complete eradication of cancer cell disseminated outside the tumor mass still remains a crucial issue for glioma patients management. In this context, Annexin 2A (ANXA2) is a phospholipid-binding protein expressed in a variety of cell types, whose expression has been recently associated with cell dissemination and metastasis in many cancer types, thus making ANXA2 an attractive putative regulator of cell invasion also in GBM. Here we show that ANXA2 is over-expressed in GBM and positively correlates with tumor aggressiveness and patient survival. In particular, we associate the expression of ANXA2 to a mesenchymal and metastatic phenotype of GBM tumors. Moreover, we functionally characterized the effects exerted by ANXA2 inhibition in primary GBM cultures, demonstrating its ability to sustain cell migration, matrix invasion, cytoskeletal remodeling and proliferation. Finally, we were able to generate an ANXA2-dependent gene signature with a significant prognostic potential in different cohorts of solid tumor patients, including GBM. In conclusion, we demonstrate that ANXA2 acts at multiple levels in determining the disseminating and aggressive behaviour of GBM cells, thus proving its potential as a possible target and strong prognostic factor in the future management of GBM patients. PMID:27429043

  3. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis

    PubMed Central

    Kim, Eun Ho; Song, Hyo Sook; Yoo, Seung Hoon; Yoon, Myonggeun

    2016-01-01

    Treatment with alternating electric fields at an intermediate frequency (100–300 kHz), referred to as tumor treating fields (TTF) therapy, inhibits cancer cell proliferation. In the present study, we demonstrated that TTF application suppressed the metastatic potential of U87 and U373 glioblastoma cell lines via the NF-kB, MAPK and PI3K/AKT signaling pathways. Wound-healing and transwell assays showed that TTF suppressed cell migration and invasion compared with controls. Soft agar and three-dimensional culture assays showed that TTF inhibited both anchorage-dependent (cell proliferation) and anchorage-independent (colony formation) GBM cell growth. TTF dysregulated epithelial-to-mesenchymal transition-related genes, such as vimentin and E-cadherin, which partially accounted for TTF inhibition of cell migration and invasion. We further demonstrated that TTF application suppressed angiogenesis by downregulating VEGF, HIF1α and matrix metalloproteinases 2 and 9. TTF also inhibited NF-kB transcriptional activity. Collectively, our findings show that TTF represents a promising novel anti-invasion and anti-angiogenesis therapeutic strategy for use in GBM patients. PMID:27556184

  4. Radiosensitization of Human Leukemic HL-60 Cells by ATR Kinase Inhibitor (VE-821): Phosphoproteomic Analysis

    PubMed Central

    Šalovská, Barbora; Fabrik, Ivo; Ďurišová, Kamila; Link, Marek; Vávrová, Jiřina; Řezáčová, Martina; Tichý, Aleš

    2014-01-01

    DNA damaging agents such as ionizing radiation or chemotherapy are frequently used in oncology. DNA damage response (DDR)—triggered by radiation-induced double strand breaks—is orchestrated mainly by three Phosphatidylinositol 3-kinase-related kinases (PIKKs): Ataxia teleangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK) and ATM and Rad3-related kinase (ATR). Their activation promotes cell-cycle arrest and facilitates DNA damage repair, resulting in radioresistance. Recently developed specific ATR inhibitor, VE-821 (3-amino-6-(4-(methylsulfonyl)phenyl)-N-phenylpyrazine-2-carboxamide), has been reported to have a significant radio- and chemo-sensitizing effect delimited to cancer cells (largely p53-deficient) without affecting normal cells. In this study, we employed SILAC-based quantitative phosphoproteomics to describe the mechanism of the radiosensitizing effect of VE-821 in human promyelocytic leukemic cells HL-60 (p53-negative). Hydrophilic interaction liquid chromatography (HILIC)-prefractionation with TiO2-enrichment and nano-liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis revealed 9834 phosphorylation sites. Proteins with differentially up-/down-regulated phosphorylation were mostly localized in the nucleus and were involved in cellular processes such as DDR, all phases of the cell cycle, and cell division. Moreover, sequence motif analysis revealed significant changes in the activities of kinases involved in these processes. Taken together, our data indicates that ATR kinase has multiple roles in response to DNA damage throughout the cell cycle and that its inhibitor VE-821 is a potent radiosensitizing agent for p53-negative HL-60 cells. PMID:25003641

  5. ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells.

    PubMed

    Meidanchi, Alireza; Akhavan, Omid; Khoei, Samideh; Shokri, Ali A; Hajikarimi, Zahra; Khansari, Nakisa

    2015-01-01

    Nanoparticles of high-Z elements exhibit stronger photoelectric effects than soft tissues under gamma irradiation. Hence, they can be used as effective radiosensitizers for increasing the efficiency of current radiotherapy. In this work, superparamagnetic zinc ferrite spinel (ZnFe2O4) nanoparticles were synthesized by a hydrothermal reaction method and used as radiosensitizers in cancer therapy. The magnetic nanoparticles showed fast separation from solutions (e.g., ~1 min for 2 mg mL(-1) of the nanoparticles in ethanol) by applying an external magnetic field (~1T). The ZnFe2O4 nanoparticles were applied in an in vitro radiotherapy of lymph node carcinoma of prostate cells (as high radioresistant cells) under gamma irradiation of (60)Co source. The nanoparticles exhibited no significant effects on the cancer cells up to the high concentration of 100 μg mL(-1), in the absence of gamma irradiation. The gamma irradiation alone (2Gy dose) also showed no significant effects on the cells. However, gamma irradiation in the presence of 100 μg mL(-1) ZnFe2O4 nanoparticles resulted in ~53% inactivation of the cells (~17 times higher than the inactivation that occurred under gamma irradiation alone) after 24h. The higher cell inactivation was assigned to interaction of gamma radiation with nanoparticles (photoelectric effect), resulting in a high level electron release in the media of the radioresistant cells. Our results indicated that ZnFe2O4 nanoparticles not only can be applied in increasing the efficiency of radiotherapy, but also can be easily separated from the cell environment by using an external magnetic field after the radiotherapy.

  6. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels

    PubMed Central

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P.; Reynolds, Brent A.; Lei, Yuguo

    2016-01-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery. PMID:27549983

  7. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P.; Reynolds, Brent A.; Lei, Yuguo

    2016-08-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery.

  8. Niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells

    PubMed Central

    Bridges, Kathleen A.; Toniatti, Carlo; Buser, Carolyn A.; Liu, Huifeng; Buchholz, Thomas A.; Meyn, Raymond E.

    2014-01-01

    The aim of this study was to assess niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase (PARP) inhibitor, for its ability to radiosensitize human tumor cells. Human tumor cells derived from lung, breast and prostate cancers were tested for radiosensitization by niraparib using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of niraparib to alter the repair of radiation-induced DNA double strand breaks (DSBs) was determined using detection of γ-H2AX foci and RAD51 foci. Clonogenic survival analyses indicated that micromolar concentrations of niraparib radiosensitized tumor cell lines derived from lung, breast, and prostate cancers independently of their p53 status but not cell lines derived from normal tissues. Niraparib also sensitized tumor cells to H2O2 and converted H2O2-induced single strand breaks (SSBs) into DSBs during DNA replication. These results indicate that human tumor cells are significantly radiosensitized by the potent and selective PARP-1 inhibitor, niraparib, in the in vitro setting. The mechanism of this effect appears to involve a conversion of sublethal SSBs into lethal DSBs during DNA replication due to the inhibition of base excision repair by the drug. Taken together, our findings strongly support the clinical evaluation of niraparib in combination with radiation. PMID:24970803

  9. Antitumor effects and radiosensitization of cytosine deaminase and thymidine kinase fusion suicide gene on colorectal carcinoma cells

    PubMed Central

    Wu, De-Hua; Liu, Li; Chen, Long-Hua

    2005-01-01

    AIM: To investigate the killing effect and radiosensitization of double suicide gene mediated by adenovirus on colorectal carcinoma cells. METHODS: Colorectal carcinoma cell line SW480 was transfected with adenovirus expression vector containing cytosine deaminase (CD) and thymidine kinase (TK) fusion gene. The expression of CD-TK fusion gene was detected by reverse transcriptase-polymerase chain reaction. The toxic effect of ganciclovir (GCV) and 5-fluorocytosine (5-FC) on infected cells was determined by MTT assay. The radiosensitization of double suicide gene was evaluated by clonogenic assay. RESULTS: After prodrugs were used, the survival rate of colorectal carcinoma cells was markedly decreased. When GCV and 5-FC were used in combination, the cytotoxicity and bystander effect were markedly superior to a single prodrug (χ2 = 30.371, P<0.01). Both GCV and 5-FC could sensitize colorectal carcinoma cells to the toxic effect of radiation, and greater radiosensitization was achieved when both prodrug were used in combination. CONCLUSION: CD-TK double suicide gene can kill and radiosensitize colorectal carcinoma cells. PMID:15918188

  10. A Zebrafish Live Imaging Model Reveals Differential Responses of Microglia Toward Glioblastoma Cells In Vivo

    PubMed Central

    Hamilton, Lloyd; Astell, Katy R.; Velikova, Gergana

    2016-01-01

    Abstract Glioblastoma multiforme is the most common and deadliest form of brain cancer. Glioblastomas are infiltrated by a high number of microglia, which promote tumor growth and surrounding tissue invasion. However, it is unclear how microglia and glioma cells physically interact and if there are differences, depending on glioma cell type. Hence, we have developed a novel live imaging assay to study microglia–glioma interactions in vivo in the zebrafish brain. We transplanted well-established human glioblastoma cell lines, U87 and U251, into transgenic zebrafish lines with labelled macrophages/microglia. Our confocal live imaging results show distinct interactions between microglia and U87, as well as U251 glioblastoma cells that differ in number and nature. Importantly these interactions do not appear to be antitumoral as zebrafish microglia do not engulf and phagocytose the human glioblastoma cells. Finally, xenotransplants into the irf8−/− zebrafish mutant that lacks microglia, as well as pharmacological inhibition of the CSF-1 receptor (CSF-1R) on microglia, confirm a prominent role for zebrafish microglia in promoting human glioblastoma cell growth. This new model will be an important tool for drug screening and the development of future immunotherapeutics targeting microglia within glioma. PMID:27779463

  11. Targeting JNK for therapeutic depletion of stem-like glioblastoma cells

    PubMed Central

    Matsuda, Ken-ichiro; Sato, Atsushi; Okada, Masashi; Shibuya, Keita; Seino, Shizuka; Suzuki, Kaori; Watanabe, Eriko; Narita, Yoshitaka; Shibui, Soichiro; Kayama, Takamasa; Kitanaka, Chifumi

    2012-01-01

    Control of the stem-like tumour cell population is considered key to realizing the long-term survival of patients with glioblastoma, one of the most devastating human malignancies. To date, possible therapeutic targets and targeting methods have been described, but none has yet proven to target stem-like glioblastoma cells in the brain to the extent necessary to provide a survival benefit. Here we show that targeting JNK in vivo, the activity of which is required for the maintenance of stem-like glioblastoma cells, via transient, systemic administration of a small-molecule JNK inhibitor depletes the self-renewing and tumour-initiating populations within established tumours, inhibits tumour formation by stem-like glioblastoma cells in the brain, and provide substantial survival benefit without evidence of adverse events. Our findings not only implicate JNK in the maintenance of stem-like glioblastoma cells but also demonstrate that JNK is a viable, clinically relevant therapeutic target in the control of stem-like glioblastoma cells. PMID:22816039

  12. Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose, the radiation dose and the integrity of the homologous recombination pathway of tumor cells.

    PubMed

    Verhagen, Caroline V M; de Haan, Rosemarie; Hageman, Floor; Oostendorp, Tim P D; Carli, Annalisa L E; O'Connor, Mark J; Jonkers, Jos; Verheij, Marcel; van den Brekel, Michiel W; Vens, Conchita

    2015-09-01

    The PARP inhibitor olaparib is currently tested in clinical phase 1 trials to define safe dose levels in combination with RT. However, certain clinically relevant insights are still lacking. Here we test, while comparing to single agent activity, the olaparib dose and genetic background dependence of olaparib-mediated radiosensitization. Long-term growth inhibition and clonogenic assays were used to assess radiosensitization in BRCA2-deficient and BRCA2-complemented cells and in a panel of human head and neck squamous cell carcinoma cell lines. The extent of radiosensitization greatly depended on the olaparib dose, the radiation dose and the homologous recombination status of cells. Olaparib concentrations that resulted in radiosensitization prevented PAR induction by irradiation. Seven hours olaparib exposures were sufficient for radiosensitization. Importantly, the radiosensitizing effects can be observed at much lower olaparib doses than the single agent effects. Extrapolation of these data to the clinic suggests that low olaparib doses are sufficient to cause radiosensitization, underlining the potential of the treatment. Here we show that drug doses achieving radiosensitization can greatly differ from those achieving single agent activities, an important consideration when developing combined radiotherapy strategies with novel targeted agents. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide

    PubMed Central

    Murphy, Susan F; Varghese, Robin T; Lamouille, Samy; Guo, Sujuan; Pridham, Kevin J; Kanabur, Pratik; Osimani, Alyssa M; Sharma, Shaan; Jourdan, Jane; Rodgers, Cara M; Simonds, Gary R; Gourdie, Robert G; Sheng, Zhi

    2015-01-01

    Resistance of glioblastoma (GBM) to the front-line chemotherapeutic agent temozolomide (TMZ) continues to challenge GBM treatment efforts. The repair of TMZ-induced DNA damage by O-6-methylguanine-DNA methyltransferase (MGMT) confers one mechanism of TMZ resistance. Paradoxically, MGMT-deficient GBM patients survive longer despite still developing resistance to TMZ. Recent studies indicate that the gap junction protein connexin 43 (Cx43) renders GBM cells resistant to TMZ through its carboxyl terminus (CT). In this study, we report insights into how Cx43 promotes TMZ resistance. Cx43 levels were inversely correlated with TMZ sensitivity of GBM cells, including GBM stem cells. Moreover, Cx43 levels inversely correlated with patient survival, including as observed in MGMT-deficient GBM patients. Addition of the C-terminal peptide mimetic αCT1, a selective inhibitor of Cx43 channels, sensitized human MGMT-deficient and TMZ-resistant GBM cells to TMZ treatment. Moreover, combining αCT1 with TMZ blocked AKT/mTOR signaling, induced autophagy and apoptosis in TMZ-resistant GBM cells. Our findings suggest that Cx43 may offer a biomarker to predict the survival of patients with MGMT-independent TMZ resistance, and that combining a Cx43 inhibitor with TMZ could enhance therapeutic responses in GBM and perhaps other TMZ-resistant cancers. PMID:26542214

  14. Laminin alpha 2 enables glioblastoma stem cell growth

    PubMed Central

    Lathia, Justin D.; Li, Meizhang; Hall, Peter E.; Gallagher, Joseph; Hale, James S.; Wu, Qiulian; Venere, Monica; Levy, Emily; Rani, MR Sandhya; Huang, Ping; Bae, Eunnyung; Selfridge, Julia; Cheng, Lin; Guvenc, Hacer; McLendon, Roger E.; Nakano, Ichiro; Sloan, Andrew E.; Phillips, Heidi S.; Lai, Albert; Gladson, Candece; Bredel, Markus; Bao, Shideng; Hjelmeland, Anita B.; Rich, Jeremy N.

    2013-01-01

    Objective Glioblastomas (GBMs) are lethal cancers that display cellular hierarchies parallel to normal brain. At the apex are GBM stem cells (GSCs), which are relatively resistant to conventional therapy. An important driver of malignancy and self-renewal in GSCs are interactions with the adjacent perivascular niche. Extracellular matrix (ECM) cues instruct neural stem/progenitor cell-niche interactions and the objective of our study was to elucidate its composition and contribution to GSC maintenance in the perivascular niche. Methods We interrogated human tumor tissue for immunofluorescence analysis and derived GSC from tumor tissues for functional studies. Bioinformatics analyses were conducted by mining publicly available databases. Results We find that laminin ECM proteins are localized to the perivascular GBM niche and inform negative patient prognosis. To identify the source of laminins, we characterized cellular elements within the niche and found that laminin α chains were expressed by non-stem tumor cells and tumor associated endothelial cells (ECs). RNA interference targeting laminin α2 inhibited GSC growth and self-renewal. In co-culture studies of GSCs and ECs, laminin α2 knockdown in ECs resulted in decreased tumor growth. Interpretation Our studies highlight the contribution of non-stem tumor cell-derived laminin juxtracrine signaling. As laminin α2 has recently been identified as a molecular marker of aggressive ependymoma, we propose that the brain vascular ECM promotes tumor malignancy through maintenance of the GSC compartment providing not only a molecular fingerprint but also a possible therapeutic target. PMID:23280793

  15. Connexin 43 Inhibition Sensitizes Chemoresistant Glioblastoma Cells to Temozolomide.

    PubMed

    Murphy, Susan F; Varghese, Robin T; Lamouille, Samy; Guo, Sujuan; Pridham, Kevin J; Kanabur, Pratik; Osimani, Alyssa M; Sharma, Shaan; Jourdan, Jane; Rodgers, Cara M; Simonds, Gary R; Gourdie, Robert G; Sheng, Zhi

    2016-01-01

    Resistance of glioblastoma (GBM) to the front-line chemotherapeutic agent temozolomide (TMZ) continues to challenge GBM treatment efforts. The repair of TMZ-induced DNA damage by O-6-methylguanine-DNA methyltransferase (MGMT) confers one mechanism of TMZ resistance. Paradoxically, MGMT-deficient GBM patients survive longer despite still developing resistance to TMZ. Recent studies indicate that the gap junction protein connexin 43 (Cx43) renders GBM cells resistant to TMZ through its carboxyl terminus (CT). In this study, we report insights into how Cx43 promotes TMZ resistance. Cx43 levels were inversely correlated with TMZ sensitivity of GBM cells, including GBM stem cells. Moreover, Cx43 levels inversely correlated with patient survival, including as observed in MGMT-deficient GBM patients. Addition of the C-terminal peptide mimetic αCT1, a selective inhibitor of Cx43 channels, sensitized human MGMT-deficient and TMZ-resistant GBM cells to TMZ treatment. Moreover, combining αCT1 with TMZ-blocked AKT/mTOR signaling, induced autophagy and apoptosis in TMZ-resistant GBM cells. Our findings suggest that Cx43 may offer a biomarker to predict the survival of patients with MGMT-independent TMZ resistance and that combining a Cx43 inhibitor with TMZ could enhance therapeutic responses in GBM, and perhaps other TMZ-resistant cancers. ©2015 American Association for Cancer Research.

  16. Inhibition on Numb/Notch signal pathway enhances radiosensitivity of lung cancer cell line H358.

    PubMed

    Song, Shi-Gang; Yu, Hong-Yang; Ma, Yan-Wei; Zhang, Feng; Xu, Xiang-Ying

    2016-10-01

    The objective of the study is to investigate the effects of the Numb/Notch signal pathway on the radiosensitivity of lung cancer cell line H358. MTT assay and colony forming assay were used to detect the effects of different doses of X-rays and MW167 on the in vitro proliferation of the lung cancer cell line H358. Flow cytometry was applied to evaluate the effects of X rays on the apoptosis of H358. Scratch assay and Transwell invasion assay were used to examine the effects of X-rays on the migration and invasion abilities of H358. The mRNA and protein expressions in the signal pathway were detected by real-time PCR and western blot. Assays in vitro confirmed the effects of the Numb/Notch pathway inhibitor on the radiosensitivity to lung cancer. MW167 enhanced the inhibiting effects of X-ray on the proliferation of H358 cell line. After the addition of MW167, the apoptosis rates significantly increased, but the invasion and migration abilities decreased significantly. Meanwhile, MW167 could dose-dependently promote the increase of expression of Numb, which is the upstream gene of the Numb/Notch signaling pathway, but inhibit the expression of and HES1. In vivo experiments revealed that cell proliferation was suppressed in the radiation, pathway inhibitor, and pathway inhibitor + radiation groups, and the pathway inhibitor + radiation group exhibited more active anti-tumor ability when compared with the blank group (all P < 0.05); Numb expression was up-regulated, but Notch1 and HES1 expressions were down-regulated in those three groups, and also, the pathway inhibitor + radiation group exhibited more significant alternation when compared with the blank group (all P < 0.05); cell apoptosis was promoted in those three groups, and the pathway inhibitor + radiation group showed more active apoptosis when compared with the blank group (all P < 0.05). Repression of the Numb/Notch pathway enhances the effects of radiotherapy on the radiosensitivity of the lung

  17. Radiosensitizing effect of lapatinib in human epidermal growth factor receptor 2-positive breast cancer cells

    PubMed Central

    Park, Ji Min; Kim, Dan Hyo; Kim, In Ah

    2016-01-01

    Trastuzumab has been widely used for the treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer, however, it cannot easily cross the blood-brain barrier (BBB) and is known to increase the incidence of brain metastases. In contrast, lapatinib has a low molecular weight and can cross the BBB and it could be useful to treat brain metastases in patients with HER2-positive breast cancer. To explore the impact of lapatinib on radiation response, we conducted an in vitro experiment using SKBR3 and BT474 breast carcinoma cells exhibiting HER2/neu amplification. Lapatinib down-regulated phosphorylated (p)-HER2, p-epidermal growth factor receptor, p-AKT, and p-extracellular signal-regulated kinase. Pretreatment of lapatinib increased the radiosensitivity of SKBR3 (sensitizer enhancement ratio [SER]: 1.21 at a surviving fraction of 0.5) and BT474 (SER: 1.26 at a surviving fraction of 0.5) cells and hindered the repair of DNA damage, as suggested by the prolongation of radiation-induced γH2AX foci and the down-regulation of phosphorylated DNA-dependent protein kinase, catalytic subunit (p-DNAPKcs). Increases in radiation-induced apoptosis and senescence were suggested to be the major modes of cell death induced by the combination of lapatinib and radiation. Furthermore, lapatinib did not radiosensitize a HER2- negative breast cancer cell line or normal human astrocytes. These findings suggest that lapatinib can potentiate radiation-induced cell death in HER2-overexpressing breast cancer cells and may increase the efficacy of radiotherapy. A phase II clinical trial using lapatinib concurrently with whole-brain radiation therapy (WBRT) is currently being conducted. PMID:27738326

  18. Knockdown a water channel protein, aquaporin-4, induced glioblastoma cell apoptosis.

    PubMed

    Ding, Ting; Zhou, Ying; Sun, Kai; Jiang, Weizhong; Li, Wenliang; Liu, Xiaoli; Tian, Chunying; Li, Zhihui; Ying, Guoguang; Fu, Li; Gu, Feng; Li, Weidong; Ma, Yongjie

    2013-01-01

    Glioblastomas are the most aggressive forms of primary brain tumors due to their tendency to invade surrounding healthy brain tissues, rendering them largely incurable. The water channel protein, Aquaporin-4 (AQP4) is a key molecule for maintaining water and ion homeostasis in the central nervous system and has recently been reported with cell survival except for its well-known function in brain edema. An increased AQP4 expression has been demonstrated in glioblastoma multiforme (GBM), suggesting it is also involved in malignant brain tumors. In this study, we show that siRNA-mediated down regulation of AQP4 induced glioblastoma cell apoptosis in vitro and in vivo. We further show that several apoptotic key proteins, Cytochrome C, Bcl-2 and Bad are involved in AQP4 signaling pathways. Our results indicate that AQP4 may serve as an anti-apoptosis target for therapy of glioblastoma.

  19. Tumor-initiating cell frequency is relevant for glioblastoma aggressiveness

    PubMed Central

    Richichi, Cristina; Osti, Daniela; Del Bene, Massimiliano; Fornasari, Lorenzo; Patanè, Monica; Pollo, Bianca; DiMeco, Francesco; Pelicci, Giuliana

    2016-01-01

    Glioblastoma (GBM) is maintained by a small subpopulation of tumor-initiating cells (TICs). The arduous assessment of TIC frequencies challenges the prognostic role of TICs in predicting the clinical outcome in GBM patients. We estimated the TIC frequency in human GBM injecting intracerebrally in mice dissociated cells without any passage in culture. All GBMs contained rare TICsand were tumorigenic in vivo but only 54% of them grew in vitro as neurospheres. We demonstrated that neurosphere formation in vitro did not foretell tumorigenic ability in vivo and frequencies calculated in vitro overestimated the TIC content. Our findings assert the pathological significance of GBM TICs. TIC number correlated positively with tumor incidence and inversely with survival of tumor-bearing mice. Stratification of GBM patients according to TIC content revealed that patients with low TIC frequency experienced a trend towards a longer progression free survival. The expression of either putative stem-cell markers or markers associated with different GBM molecular subtypes did not associate with either TIC content or neurosphere formation underlying the limitations of TIC identification based on the expression of some putative stem cell-markers. PMID:27582543

  20. Tumor-initiating cell frequency is relevant for glioblastoma aggressiveness.

    PubMed

    Richichi, Cristina; Osti, Daniela; Del Bene, Massimiliano; Fornasari, Lorenzo; Patanè, Monica; Pollo, Bianca; DiMeco, Francesco; Pelicci, Giuliana

    2016-11-01

    Glioblastoma (GBM) is maintained by a small subpopulation of tumor-initiating cells (TICs). The arduous assessment of TIC frequencies challenges the prognostic role of TICs in predicting the clinical outcome in GBM patients. We estimated the TIC frequency in human GBM injecting intracerebrally in mice dissociated cells without any passage in culture.All GBMs contained rare TICsand were tumorigenic in vivo but only 54% of them grew in vitro as neurospheres. We demonstrated that neurosphere formation in vitro did not foretell tumorigenic ability in vivo and frequencies calculated in vitro overestimated the TIC content.Our findings assert the pathological significance of GBM TICs. TIC number correlated positively with tumor incidence and inversely with survival of tumor-bearing mice. Stratification of GBM patients according to TIC content revealed that patients with low TIC frequency experienced a trend towards a longer progression free survival. The expression of either putative stem-cell markers or markers associated with different GBM molecular subtypes did not associate with either TIC content or neurosphere formation underlying the limitations of TIC identification based on the expression of some putative stem cell-markers.

  1. Identification of novel radiosensitizers in a high-throughput, cell-based screen for DSB repair inhibitors.

    PubMed

    Goglia, Alexander G; Delsite, Robert; Luz, Antonio N; Shahbazian, David; Salem, Ahmed F; Sundaram, Ranjini K; Chiaravalli, Jeanne; Hendrikx, Petrus J; Wilshire, Jennifer A; Jasin, Maria; Kluger, Harriet M; Glickman, J Fraser; Powell, Simon N; Bindra, Ranjit S

    2015-02-01

    Most cancer therapies involve a component of treatment that inflicts DNA damage in tumor cells, such as double-strand breaks (DSBs), which are considered the most serious threat to genomic integrity. Complex systems have evolved to repair these lesions, and successful DSB repair is essential for tumor cell survival after exposure to ionizing radiation (IR) and other DNA-damaging agents. As such, inhibition of DNA repair is a potentially efficacious strategy for chemo- and radiosensitization. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) represent the two major pathways by which DSBs are repaired in mammalian cells. Here, we report the design and execution of a high-throughput, cell-based small molecule screen for novel DSB repair inhibitors. We miniaturized our recently developed dual NHEJ and HR reporter system into a 384-well plate-based format and interrogated a diverse library of 20,000 compounds for molecules that selectively modulate NHEJ and HR repair in tumor cells. We identified a collection of novel hits that potently inhibit DSB repair, and we have validated their functional activity in a comprehensive panel of orthogonal secondary assays. A selection of these inhibitors was found to radiosensitize cancer cell lines in vitro, which suggests that they may be useful as novel chemo- and radio sensitizers. Surprisingly, we identified several FDA-approved drugs, including the calcium channel blocker mibefradil dihydrochloride, that demonstrated activity as DSB repair inhibitors and radiosensitizers. These findings suggest the possibility for repurposing them as tumor cell radiosensitizers in the future. Accordingly, we recently initiated a phase I clinical trial testing mibefradil as a glioma radiosensitizer.

  2. Enhancement of radiosensitivity by CpG-oligodeoxyribonucleotide-7909 in human non-small cell lung cancer A549 cells.

    PubMed

    Zha, Lin; Qiao, Tiankui; Yuan, Sujuan; Lei, Linjie

    2010-04-01

    CpG-oligodeoxyribonucleotides (CpG-ODNs), which induce signaling through the toll-like receptor 9, are currently under investigation as immunity stimulators against cancer. It has recently been suggested that CpG-ODNs may also enhance sensitivity to traditional therapies including chemotherapy in certain cancer-cell lines. The purpose of this study was to define the activity of CpG-ODN7909 in increasing radiosensitivity of the human non-small cell lung cancer cell line A549 in vitro. First, a dose- and time-dependent inhibitory effect on cell viability was observed after A549 cells were treated with different concentrations of CpG-ODN7909 (5, 10, 30, and 60 microg/mL). Second, decreased cell clonogenic survival, enhanced cell apoptotic index, accumulated percentage of cells in the G2/M phase, and increased tumor necrosis factor (TNF)-alpha secretion were found after combined treatments with 10 microg/mL of CpG-ODN7909 and radiation compared to either treatment alone (p < 0.05). Furthermore, the toll-like receptor 9 mRNA was found to express in A549. The results suggest that CpG-ODN7909 can increase the radiosensitivity of human non-small cell lung cancer A549 cells, which may be associated with reduced cell clonogenic survival, enhanced apoptosis, prolonged cell-cycle arrest in G2/M, and stimulation of TNF-alpha secretion.

  3. The effects of antiepileptic drugs on the growth of glioblastoma cell lines.

    PubMed

    Lee, Ching-Yi; Lai, Hung-Yi; Chiu, Angela; Chan, She-Hung; Hsiao, Ling-Ping; Lee, Shih-Tseng

    2016-05-01

    To determine the effects of antiepileptic drug compounds on glioblastoma cellular growth, we exposed glioblastoma cell lines to select antiepileptic drugs. The effects of selected antiepileptic drugs on glioblastoma cells were measured by MTT assay. For compounds showing significant inhibition, cell cycle analysis was performed. Statistical analysis was performed using SPSS. The antiepileptic compounds selected for screening included carbamazepine, ethosuximide, gabapentin, lamotrigine, levetiracetam, magnesium sulfate, oxcarbazepine, phenytoin, primidone, tiagabine, topiramate, valproic acid, and vigabatrin. Dexamethasone and temozolomide were used as a negative and positive control respectively. Our results showed temozolomide and oxcarbazepine significantly inhibited glioblastoma cell growth and reached IC50 at therapeutic concentrations. The other antiepileptic drugs screened were unable to reach IC50 at therapeutic concentrations. The metabolites of oxcarbazepine were also unable to reach IC50. Dexamethasone, ethosuximide, levetiracetam, and vigabatrin showed some growth enhancement though they did not reach statistical significance. The growth enhancement effects of ethosuximide, levetiracetam, and vigabatrin found in the study may indicate that these compounds should not be used for prophylaxis or short term treatment of epilepsy in glioblastoma. While valproic acid and oxcarbazepine were effective, the required dose of valproic acid was far above that used for the treatment of epilepsy and the metabolites of oxcarbazepine failed to reach significant growth inhibition ruling out the use of oral oxcarbazepine or valproic acid as monotherapy in glioblastoma. The possibility of using these compounds as local treatment is a future area of study.

  4. Small G protein Rac GTPases regulate the maintenance of glioblastoma stem-like cells in vitro and in vivo.

    PubMed

    Lai, Yun-Ju; Tsai, Jui-Cheng; Tseng, Ying-Ting; Wu, Meng-Shih; Liu, Wen-Shan; Lam, Hoi-Ian; Yu, Jei-Hwa; Nozell, Susan E; Benveniste, Etty N

    2017-03-14

    Glioblastoma is the most common and aggressive malignant brain tumor in adults. The existence of glioblastoma stem cells (GSCs) or stem-like cells (stemloids) may account for its invasiveness and high recurrence. Rac proteins belong to the Rho small GTPase subfamily which regulates cell movement, proliferation, and survival. To investigate whether Rac proteins can serve as therapeutic targets for glioblastoma, especially for GSCs or stemloids, we examined the potential roles of Rac1, Rac2 and Rac3 on the properties of tumorspheres derived from glioblastoma cell lines. Tumorspheres are thought to be glioblastoma stem-like cells. We showed that Rac proteins promote the STAT3 and ERK activation and enhance cell proliferation and colony formation of glioblastoma stem-like cells. Knockdown of Rac proteins reduces the expression of GSC markers, such as CD133 and Sox2. The in vivo effects of Rac proteins in glioblastoma were further studied in zebrafish and in the mouse xenotransplantation model. Knocking-down Rac proteins abolished the angiogenesis effect induced by the injected tumorspheres in zebrafish model. In the CD133+-U373-tumorsphere xenotransplanted mouse model, suppression of Rac proteins decreased the incidence of tumor formation and inhibited the tumor growth. Moreover, knockdown of Rac proteins reduced the sphere forming efficiency of cells derived from these tumors. In conclusion, not only Rac1 but also Rac2 and 3 are important for glioblastoma tumorigenesis and can serve as the potential therapeutic targets against glioblastoma and its stem-like cells.

  5. CCRK depletion inhibits glioblastoma cell proliferation in a cilium-dependent manner

    PubMed Central

    Yang, Ying; Roine, Niina; Mäkelä, Tomi P

    2013-01-01

    Loss of primary cilia is frequently observed in tumour cells, including glioblastoma cells, and proposed to benefit tumour growth, but a causal link has not been established. Here, we show that CCRK (cell cycle-related kinase) and its substrate ICK (intestinal cell kinase) inhibit ciliogenesis. Depletion of CCRK leads to accumulation of ICK at ciliary tips, altered ciliary transport and inhibition of cell cycle re-entry in NIH3T3 fibroblasts. In glioblastoma cells with deregulated high levels of CCRK, its depletion restores cilia through ICK and an ICK-related kinase MAK, thereby inhibiting glioblastoma cell proliferation. These results indicate that inhibition of ciliogenesis might be a mechanism used by cancer cells to provide a growth advantage. PMID:23743448

  6. Radiosensitization of hypoxic bacterial cells by nitroimidazoles of low lipophilicity: steady-state and rapid-mix studies

    SciTech Connect

    Anderson, R.F.; Patel, K.B.; Sehmi, D.S.

    1981-03-01

    Radiosensitization of hypoxic bacterial cells by five 2-nitroimidazoles, with similar reduction potentials to misonidazole but having lower lipophilicites, has been measured in Escherichia coli AB 1157 and Streptococcus lactis 712. Sensitization efficiency progressively decreased with decreasing lepophilicity in E. coli but not in S. lactis. This difference is discussed in terms of the differing membrane properties of the two bacteria; E. coli resembled a multicompartment model, as would also be expected with mammalian cells. Rapid-mix experiments are described which show that the radiosensitization observed after experiments are described which show that the radiosensitization observed after preirradiation contact times between ca. 3 and 30 msec is dependent on the lipophilicity of the sensitizer, higher lipophilicity resulting in a lower contact time being required for radiosensitization. This result and the observation that a highly lipophilic compound affects only half the full oxygen enhancement level after short contact times suggest that part of the sensitization process occurs in a lipophilic compartment of the cell.

  7. MNK Inhibition Disrupts Mesenchymal Glioma Stem Cells and Prolongs Survival in a Mouse Model of Glioblastoma.

    PubMed

    Bell, Jonathan B; Eckerdt, Frank D; Alley, Kristen; Magnusson, Lisa P; Hussain, Hridi; Bi, Yingtao; Arslan, Ahmet Dirim; Clymer, Jessica; Alvarez, Angel A; Goldman, Stewart; Cheng, Shi-Yuan; Nakano, Ichiro; Horbinski, Craig; Davuluri, Ramana V; James, C David; Platanias, Leonidas C

    2016-10-01

    Glioblastoma multiforme remains the deadliest malignant brain tumor, with glioma stem cells (GSC) contributing to treatment resistance and tumor recurrence. We have identified MAPK-interacting kinases (MNK) as potential targets for the GSC population in glioblastoma multiforme. Isoform-level subtyping using The Cancer Genome Atlas revealed that both MNK genes (MKNK1 and MKNK2) are upregulated in mesenchymal glioblastoma multiforme as compared with other subtypes. Expression of MKNK1 is associated with increased glioma grade and correlated with the mesenchymal GSC marker, CD44, and coexpression of MKNK1 and CD44 predicts poor survival in glioblastoma multiforme. In established and patient-derived cell lines, pharmacologic MNK inhibition using LY2801653 (merestinib) inhibited phosphorylation of the eukaryotic translation initiation factor 4E, a crucial effector for MNK-induced mRNA translation in cancer cells and a marker of transformation. Importantly, merestinib inhibited growth of GSCs grown as neurospheres as determined by extreme limiting dilution analysis. When the effects of merestinib were assessed in vivo using an intracranial xenograft mouse model, improved overall survival was observed in merestinib-treated mice. Taken together, these data provide strong preclinical evidence that pharmacologic MNK inhibition targets mesenchymal glioblastoma multiforme and its GSC population. These findings raise the possibility of MNK inhibition as a viable therapeutic approach to target the mesenchymal subtype of glioblastoma multiforme. Mol Cancer Res; 14(10); 984-93. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Kynurenine signaling increases DNA polymerase kappa expression and promotes genomic instability in glioblastoma cells

    PubMed Central

    Bostian, April C.L.; Maddukuri, Leena; Reed, Megan R.; Savenka, Tatsiana; Hartman, Jessica H.; Davis, Lauren; Pouncey, Dakota L.; Miller, Grover P.; Eoff, Robert L.

    2015-01-01

    Over-expression of the translesion synthesis polymerase (TLS pol) hpol κ in glioblastomas has been linked to a poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by the AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating the AhR in glioblastomas, led to a decrease in the endogenous AhR agonist kynurenine (Kyn) and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling and the resulting over-expression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that up-regulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors. PMID:26651356

  9. BI-03GLIOBLASTOMA-SPECIFIC AND GLIOBLASTOMA STEM CELL SUBTYPE-SPECIFIC SIGNATURES OF LONG, NON-CODING RNAs

    PubMed Central

    Bronisz, Agnieszka; Mineo, Marco; Ansari, Khairul; Rooj, Arun; Nakano, Ichiro; Antonio Chiocca, E.; Godlewski, Jakub

    2014-01-01

    Long-non coding RNAs (lncRNAs) are large and heterogeneous group of non-protein coding RNAs larger than 200nt. They regulate the expression of their target genes by multiple mechanisms including regulation of transcription, splicing, translation and epigenetic regulation. There is growing evidence of important role of lncRNAs in carcinogenesis, including glioblastoma multiforme (GBM). To profile lncRNAs in GBM patient samples and cells, we designed a platform using NanoString system to detect 73 lncRNAs that has been implicated in cancer pathophysiology. We used our collection of matched samples (i.e. from the same patient) of GBM tumors and adjacent brain tissue. We showed that 27-lncRNA signature (10 GBM-low and 17 GBM-high) clustered these samples. Glioblastoma stem cells (GSCs) are highly tumorigenic and therapy-resistant sub-population of glioblastoma. We characterized our large collection of patient-derived GSCs maintained in serum-free culture. Based on 10-gene signature we ascribed them to either proneural (PN), mesenchymal (MES) subtype. We demonstrated that 28-lncRNA signature (7 PN-low and 21 PN-high) clustered PN and MES GSCs. Testing the functionality of lncRNAs, we showed that PN-MES subtype switch achieved by de-regulation of important regulator of GSC self-renewal - miR-128, was concurrent with the shift in lncRNA signature. Finally, based on 29-lncRNA signature, we were able to establish that, irradiated PN GSCs acquired more mesenchymal characteristics. Our results thus suggest broad involvement of lncRNAs in the regulation of pathophysiological processes in GBM/GSC cells.

  10. Radiation-induced DNA damage and repair in cells of a radiosensitive human malignant glioma cell line

    SciTech Connect

    Allalunis-Turner, M.J.; Zia, P.K.Y.; Barron, G.M.

    1995-12-01

    The induction and repair of DNA double-strand breaks were studied in cells of two isogenic human malignant glioma cell lines which vary in their SF2 values by a factor of {approximately}30.M059J cells are radiosensitive (SF2 = 0.02) and lack the p350 component of DNA-dependent protein kinase (DNA-PK); M059K cells are radioresistant (SF2 = 0.64) and express normal levels of DNA-PK. Zero integrated field gel electrophoresis and alkaline sucrose gradient experiments indicated that equivalent numbers of DNA lesions were produced by ionizing radiation in M059J and M059K cells. To compare the capacity of both lines to repair sublethal damage, the split-dose recovery experiment after exposure to equitoxic doses of radiation was carried out. Significant sublethal damage repair was shown for M059K cells, with a 5.8-fold increase in relative survival peaking at 4 h, whereas M059J cells showed little repair activity. Electrophoresis studies indicated that more double-strand breaks were repaired by 30 min in M059K cells than in M059J cells. These results suggest that deficient DNA repair processes may be a major determinant of radiosensitivity in M059J cells. 24 refs., 5 figs., 2 tabs.

  11. Ultrastructural evidence for differentiation in a human glioblastoma cell line treated with inhibitors of eicosanoid metabolism

    SciTech Connect

    Wilson, D.E.; Anderson, K.M. ); Seed, T.M. )

    1990-01-01

    Human glioblastoma cells incubated in the presence of inhibitors of eicosanoid biosynthesis show decreased cellular proliferation without cytotoxicity. The authors studied the ultrastructural morphology of a human glioblastoma cell line cultured with nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, or 5,8,11,14-eicosatetraynoic acid, a cyclooxygenase and lipoxygenase inhibitor. When glioblastoma cells were treated for 3 days with antiproliferative concentrations of either agent, they shared many morphological characteristics, including evidence for increased astrocytic differentiation with only limited signs of toxicity. The inhibited glioma cells demonstrated an increase in the number and length of astrocytic processes containing greater numbers of glial filaments, and the NDGA-treated cells also demonstrated extensive lateral pseudopod formation along the processes. The glioblastoma cell shape also become more elongated, losing the usual nuclear lobularity and nuclear inclusions, especially in NDGA-treated cells. Many cytoplasmic organelles packed the cytosol of the inhibited glioma cells, including prominent Golgi apparatus, dilated smooth endoplasmic reticulum evolving into dilated vesicles, cytoplasmic vacuoles, and numerous concentric laminations. There was limited evidence for toxicity, however, as the mitochondria were more pleomorphic with some mitochondrial distension and disruption of the cristae along with an increase in cytoplasmic vacuolization. The authors conclude that the inhibitors of eicosanoid biosynthesis. NDGA and 5,8,11,14-eicosatetraynoic acid, not only suppress glioblastoma cell proliferation, but also include increased astrocytic differentiation.

  12. Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario.

    PubMed

    Altaner, Cestmir; Altanerova, Veronika; Cihova, Marina; Ondicova, Katarina; Rychly, Boris; Baciak, Ladislav; Mravec, Boris

    2014-03-15

    Suicide gene therapy mediated by mesenchymal stem cells with their ability to engraft into tumors makes these therapeutic stem cells an attractive tool to activate prodrugs directly within the tumor mass. In this study, we evaluated the therapeutic efficacy of human mesenchymal stem cells derived from bone marrow and from adipose tissue, engineered to express the suicide gene cytosine deaminase::uracil phosphoribosyltransferase to treat intracerebral rat C6 glioblastoma in a simulated clinical therapeutic scenario. Intracerebrally grown glioblastoma was treated by resection and subsequently with single or repeated intracerebral inoculations of therapeutic stem cells followed by a continuous intracerebroventricular delivery of 5-fluorocytosine using an osmotic pump. Kaplan-Meier survival curves revealed that surgical resection of the tumor increased the survival time of the resected animals depending on the extent of surgical intervention. However, direct injections of therapeutic stem cells into the brain tissue surrounding the postoperative resection cavity led to a curative outcome in a significant number of treated animals. Moreover, the continuous supply of therapeutic stem cells into the brain with growing glioblastoma by osmotic pumps together with continuous prodrug delivery also proved to be therapeutically efficient. We assume that observed curative therapy of glioblastoma by stem cell-mediated prodrug gene therapy might be caused by the destruction of both tumor cells and the niche where glioblastoma initiating cells reside. © 2013 UICC.

  13. Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC).

    PubMed

    Ivanov, Vladimir N; Hei, Tom K

    2014-12-01

    Ionizing radiation alone or in combination with chemotherapy is the main treatment modality for brain tumors including glioblastoma. Adult neurons and astrocytes demonstrate substantial radioresistance; in contrast, human neural stem cells (NSC) are highly sensitive to radiation via induction of apoptosis. Irradiation of tumor cells has the potential risk of affecting the viability and function of NSC. In this study, we have evaluated the effects of irradiated glioblastoma cells on viability, proliferation and differentiation potential of non-irradiated (bystander) NSC through radiation-induced signaling cascades. Using media transfer experiments, we demonstrated significant effects of the U87MG glioblastoma secretome after gamma-irradiation on apoptosis in non-irradiated NSC. Addition of anti-TRAIL antibody to the transferred media partially suppressed apoptosis in NSC. Furthermore, we observed a dramatic increase in the production and secretion of IL8, TGFβ1 and IL6 by irradiated glioblastoma cells, which could promote glioblastoma cell survival and modify the effects of death factors in bystander NSC. While differentiation of NSC into neurons and astrocytes occurred efficiently with the corresponding differentiation media, pretreatment of NSC for 8 h with medium from irradiated glioblastoma cells selectively suppressed the differentiation of NSC into neurons, but not into astrocytes. Exogenous IL8 and TGFβ1 increased NSC/NPC survival, but also suppressed neuronal differentiation. On the other hand, IL6 was known to positively affect survival and differentiation of astrocyte progenitors. We established a U87MG neurosphere culture that was substantially enriched by SOX2(+) and CD133(+) glioma stem-like cells (GSC). Gamma-irradiation up-regulated apoptotic death in GSC via the FasL/Fas pathway. Media transfer experiments from irradiated GSC to non-targeted NSC again demonstrated induction of apoptosis and suppression of neuronal differentiation of NSC. In

  14. Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC)

    PubMed Central

    Ivanov, Vladimir N.; Hei, Tom K.

    2015-01-01

    Ionizing radiation alone or in combination with chemotherapy is the main treatment modality for brain tumors including glioblastoma. Adult neurons and astrocytes demonstrate substantial radioresistance; in contrast, human neural stem cells (NSC) are highly sensitive to radiation via induction of apoptosis. Irradiation of tumor cells has the potential risk of affecting the viability and function of NSC. In this study, we have evaluated the effects of irradiated glioblastoma cells on viability, proliferation and differentiation potential of non-irradiated (bystander) NSC through radiation-induced signaling cascades. Using media transfer experiments, we demonstrated significant effects of the U87MG glioblastoma secretome after gamma-irradiation on apoptosis in non-irradiated NSC. Addition of anti-TRAIL antibody to the transferred media partially suppressed apoptosis in NSC. Furthermore, we observed a dramatic increase in the production and secretion of IL8, TGFβ1 and IL6 by irradiated glioblastoma cells, which could promote glioblastoma cell survival and modify the effects of death factors in bystander NSC. While differentiation of NSC into neurons and astrocytes occurred efficiently with the corresponding differentiation media, pretreatment of NSC for 8 h with medium from irradiated glioblastoma cells selectively suppressed the differentiation of NSC into neurons, but not into astrocytes. Exogenous IL8 and TGFβ1 increased NSC/NPC survival, but also suppressed neuronal differentiation. On the other hand, IL6 was known to positively affect survival and differentiation of astrocyte progenitors. We established a U87MG neurosphere culture that was substantially enriched by SOX2+ and CD133+ glioma stem-like cells (GSC). Gamma-irradiation up-regulated apoptotic death in GSC via the FasL/Fas pathway. Media transfer experiments from irradiated GSC to non-targeted NSC again demonstrated induction of apoptosis and suppression of neuronal differentiation of NSC. In summary

  15. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    SciTech Connect

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke

    2015-03-15

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  16. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    SciTech Connect

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  17. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  18. [Down-regulation of miR-21 expression enhances the radiosensitivity of TE-1 cells in vitro].

    PubMed

    Li, Xiaoqing; Chen, Xin; Huang, Shan; Che, Shaomin; Zhang, Xiaozhi

    2012-11-01

    To study the effect of miR-21 down-regulation on the radiosensitivity of TE-1 cells in vitro. TE-1 cells were transfected via lentivirus with a vector containing the antisense oligonucleotides of miR21, and the subclones with stable down-regulation of miR21 expression were selected with puromycin and designated as TE-1-miR21(-), whose expression level of miR21 was determined using real-time quantitative PCR. The radiosensitivity of TE-1 and TE-1-miR21(-) cells were evaluated with colony formation assay, and the expressions of β-catenin was determined using Western blotting and RT-PCR. Flow cytometry was used to analyze the proportion of p75NTR(+) cells in TE-1 and TE-1-miR21(-) cells. A cell subclone stably expressing a low level of miR21 was obtained and verified by real-time quantitative PCR. Colony formation assay showed an enhanced the radiosensitivity of TE-1-miR21(-) cells compared to parental TE-1 cells. RT-PCR revealed no significant changes in β-catenin mRNA expression in TE-1-miR21(-) cells, whereas its β-catenin protein expression was markedly suppressed by high-dose (8 and 10 Gy) irradiation. Flow cytometry assay showed a decreased proportion of p75NTR(+) cells in TE-1-miR21(-) cells compared to that in TE-1 cells. Down-regulation of miR21 can enhance the radiosensitivity of TE-1 cells, which might result from the inactivation of wnt/β-catenin signal pathway and a decreased p75NTR(+) cell proportion.

  19. Intrinsic radiosensitivity and chromosome aberration analysis using fluorescence in situ hybridization in cells of two human tumor cell lines

    SciTech Connect

    Lambin, P. ||; Coco-Martin, J.; Begg, A.C.; Legal, J.D.; Parmentier, C.; Malaise, E.P.; Joiner, M.C.

    1994-04-01

    The survival curves for cells of two human tumor cell lines, HT29 and MeWo, have been defined using a Dynamic Microscopic Imaging Processing Scanner (DMIPS). There are two major differences between these two cell lines: (a) HT29 is more radioresistant than MeWo (surviving fraction at 2 Gy of 74 and 27%, respectively) and (b) HT29 presented a marked multiphasic survival curve with hypersensitivity at low doses (<0.5 Gy) followed by an increase in radioresistance at higher doses which we have interpreted as {open_quotes}induced radioresistance{close_quotes}; this phenomenon is much less pronounced for the more radiosensitive cell line MeWo. We have now measured in these two cell lines the stable chromosomal aberrations and fragments, with the method of fluorescence in situ hybridization (FISH). We have analyzed chromosome 4, which does not have spontaneous translocations in either of these two cell lines. A dose-effect relationship was studied for radiation doses up to 5 Gy. At all doses, both translocations and breaks are more frequent in the radiosensitive cell line MeWo compared to the radioresistant cell line HT29. The correlation between survival and translocations is different for HT29 and MeWo, thus indicating that another factor(s) may be involved in cell killing in these lines. 18 refs., 3 figs.

  20. Malignant behaviorial characteristics of CD133(+/-) glioblastoma cells from a Northern Chinese population.

    PubMed

    Liu, Xiaozhi; Chen, Lei; Jiang, Zhongmin; Wang, Junfei; Su, Zhiguo; Li, Gang; Yu, Shizhu; Liu, Zhenlin

    2013-01-01

    Following emergence of the tumor stem cell theory, the increasing number of related studies demonstrates the theory's growing importance in cancer research and its potential for clinical applications. Few studies have addressed the in vitro or in vivo properties of glioma stem cells from a Han Chinese population. In the present study, surgically obtained glioblastoma tissue was classified into two subtypes, CD133(+) and CD133(-). The hierarchy, invasiveness, growth tolerance under low nutrient conditions and colony forming abilities of the tissue samples were analyzed. Additionally, the characteristics of tumor cells transplanted subcutaneously or re-transplanted into nude mice were observed. The results demonstrated that CD133(+) glioblastoma cells derived from Han Chinese glioma specimens were more prone to primitive cell differentiation and more invasive than CD133(-) glioblastoma cells, leading to increased tumor malignancy compared with CD133(-) cells. The tumor formation rates of CD133(+) and CD133(-) cells in mice were 26/30 and 2/30, respectively. A comparison of tumor subtypes demonstrated that CD133(+) glioblastoma cells had a lower incidence of cell apoptosis in the tumor tissue and higher protein expression levels of Oct4, Sox2, PCNA, EGFR, Ang2, MMP2 and MMP9 compared with CD133(-) cells. Flow cytometry revealed that in the CD133(+) and CD133(-) glioblastoma cell-induced tumors, the percentage of CD133(+) cells was 2.47±0.67 and 0.44±0.14%, respectively. The tumor formation rates following the re-transplantation of CD133(+) or CD133(-) tumors into nude mice were 10/10 and 4/10, respectively. These findings suggest that the CD133(+) glioblastoma cell subpopulation has a stronger malignant cell phenotype than the CD133(-) subpopulation and that its recurrence rate is increased compared with the primitive tumorigenic rate following in vivo transplantation.

  1. Immunobiological Characterization of Cancer Stem Cells Isolated from Glioblastoma Patients

    PubMed Central

    Di Tomaso, Tiziano; Mazzoleni, Stefania; Wang, Ena; Sovena, Gloria; Clavenna, Daniela; Franzin, Alberto; Mortini, Pietro; Ferrone, Soldano; Doglioni, Claudio; Marincola, Francesco M.; Galli, Rossella; Parmiani, Giorgio; Maccalli, Cristina

    2010-01-01

    Purpose Cancer stem cells (CSC) have been isolated from human tumors, including glioblastoma multiforme (GBM). The aims of this study were the immunobiological characterization of GBM CSCs and the assessment of whether these cells represent suitable targets for immunotherapy. Experimental Design GBM CSC lines and their fetal bovine serum (FBS)–cultured non-CSC pair lines were generated and examined by flow cytometry for expression of known tumor antigens, MHC-I and MHC-II molecules, antigen-processing machinery components, and NKG2D ligands. In addition, immunogenicity and immunosuppression of such cell lines for autologous or allogeneic T lymphocytes were tested by cytokine secretion (ELISPOT) or proliferation (carboxyfluorescein diacetate succinimidyl ester) assays, respectively. Results Both GBM CSC and FBS lines were weakly positive and negative for MHC-I, MHC-II, and NKG2D ligand molecules, respectively. Antigen-processing machinery molecules were also defective in both cell types. Upregulation of most molecules was induced by IFNs or 5-Aza deoxycytidine, although more efficiently in FBS than in CSCs. Patient T-cell responses, mediated by both TH1 and the TH2 subsets, against autologous CSC could be induced in vitro. In addition, CSC but not their paired FBS tumor lines inhibited T-cell proliferation of healthy donors. Notably, a differential gene signature that was confirmed at the protein levels for some immunologic-related molecules was also found between CSC and FBS lines. Conclusions These results indicate lower immunogenicity and higher suppressive activity of GBM CSC compared with FBS lines. The immunogenicity, however, could be rescued by immune modulation leading to anti-GBM T cell–mediated immune response. PMID:20103663

  2. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma.

    PubMed

    Liu, Peidang; Jin, Haizhen; Guo, Zhirui; Ma, Jun; Zhao, Jing; Li, Dongdong; Wu, Hao; Gu, Ning

    Radiotherapy performs an important function in the treatment of cancer, but resistance of tumor cells to radiation still remains a serious concern. More research on more effective radiosensitizers is urgently needed to overcome such resistance and thereby improve the treatment outcome. The goal of this study was to evaluate and compare the radiosensitizing efficacies of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) on glioma at clinically relevant megavoltage energies. Both AuNPs and AgNPs potentiated the in vitro and in vivo antiglioma effects of radiation. AgNPs showed more powerful radiosensitizing ability than AuNPs at the same mass and molar concentrations, leading to a higher rate of apoptotic cell death. Furthermore, the combination of AgNPs with radiation significantly increased the levels of autophagy as compared with AuNPs plus radiation. These findings suggest the potential application of AgNPs as a highly effective nano-radiosensitizer for the treatment of glioma.

  3. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma

    PubMed Central

    Liu, Peidang; Jin, Haizhen; Guo, Zhirui; Ma, Jun; Zhao, Jing; Li, Dongdong; Wu, Hao; Gu, Ning

    2016-01-01

    Radiotherapy performs an important function in the treatment of cancer, but resistance of tumor cells to radiation still remains a serious concern. More research on more effective radiosensitizers is urgently needed to overcome such resistance and thereby improve the treatment outcome. The goal of this study was to evaluate and compare the radiosensitizing efficacies of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) on glioma at clinically relevant megavoltage energies. Both AuNPs and AgNPs potentiated the in vitro and in vivo antiglioma effects of radiation. AgNPs showed more powerful radiosensitizing ability than AuNPs at the same mass and molar concentrations, leading to a higher rate of apoptotic cell death. Furthermore, the combination of AgNPs with radiation significantly increased the levels of autophagy as compared with AuNPs plus radiation. These findings suggest the potential application of AgNPs as a highly effective nano-radiosensitizer for the treatment of glioma. PMID:27757033

  4. Differential Radiosensitivity of Uveal Melanoma Cell Lines After X-rays or Carbon Ions Radiation.

    PubMed

    Calipel, Armelle; Lux, Anne-Laure; Guérin, Sylvain; Lefaix, Jean-Louis; Laurent, Carine; Bernaudin, Myriam; Mouriaux, Frédéric

    2015-05-01

    We compared the radiosensitivity of uveal melanoma (UM) cell lines after x-ray or carbon-ions radiation (C-ions). We characterized the radiosensitivity toward x-rays and C-ions of UM cell lines: 92.1, MEL270, SP6.5, MKT-BR, μ2, and TP17. Normal choroidal melanocytes and the retinal pigment epithelial cell line ARPE19 were used as controls for normal cells. X-rays were delivered with an energy of 6 MV at a dose rate of 2 Gy/min. X-rays served as a reference for Relative Biological Effectiveness (RBE) evaluation. Radiation with C-ions was delivered at 75 MeV/u (34 keV/μm) at a dose rate of 2 Gy/min. After single-doses (0-8 Gy) of medical x-rays (6 MV) or C-ions (33 keV/μm), cells sensitivity was measured using standard colony formation assay, and cell growth was examined by counting the cell colonies. The effect of x-rays or C-ions on the expression and activation of ERK1/2 was evaluated by Western Blot. C-ions presented with regard to the x-rays a RBE of 1.9 to 2.5 at 10% of UM cells survival. The x-ray sensitivity of UM cells was neither influenced by the synchronization of cells in phase G0/G1 of the cell cycle nor by the level of oxygenation. X-ray and C-ions radiation had the same effects on cell cycle leading to a mitotic catastrophe that appeared earlier after C-ions than x-ray treatment. However, C-ions radiation induced a sustained inhibition of ERK1/2 activation compared to the transitory induction of that signalization pathway after x-ray radiation. This in vitro study shows that C-ions had a better biological effectiveness than x-rays leading to a sustained inhibition of the ERK1/2 pathway.

  5. Radiosensitization of human breast cancer cells to ultraviolet light by 5-fluorouracil

    PubMed Central

    SASAKI, KAZUHITO; TSUNO, NELSON H.; SUNAMI, EIJI; KAWAI, KAZUSHIGE; SHUNO, YASUTAKA; HONGO, KUMIKO; HIYOSHI, MASAYA; KANEKO, MANABU; MURONO, KOJI; TADA, NORIKO; NIREI, TAKAKO; KITAYAMA, JOJI; TAKAHASHI, KOKI; NAGAWA, HIROKAZU

    2011-01-01

    Ultraviolet light B (UVB) phototherapy is widely used to treat dermatological diseases and therefore may be a potential optional strategy in the treatment of a skin lesion infiltrated by a malignant tumor. Currently, little is known regarding the effect of UVB phototherapy on human breast cancer cells. The present study aimed to investigate the effect of UVB phototherapy, as well as the potential effect of 5-fluorouracil (5-FU), the first-line anticancer drug for breast cancer, on radiosensitizing MCF-7 human breast cancer cells, in an attempt to develop new therapeutic strategies for the treatment of locoregional recurrence of breast cancer. MCF-7 cells were incubated in the presence of 5-FU for 48 h, and UVB irradiation at 750 mJ/cm2 was administered in the midterm of 5-FU treatment. The viability of MCF-7 cells was analyzed by the trypan blue staining method. Apoptosis was quantified by flow cytometry and Hoechst 33258 staining. The cell cycle was evaluated by flow cytometry after the staining of cells with propidium iodide. The combination treatment of 5-FU and UVB resulted in a strong potentiation of the inhibitory effect of MCF-7 cell growth, dependent on the intra-S phase cell cycle arrest and induction of apoptosis, when compared to treatment with 5-FU or UVB alone. In conclusion, 5-FU sensitized human breast cancer cells to UVB phototherapy, and this combination therapy is an effective and promising strategy for the treatment of breast cancer, particularly for locoregional recurrence. PMID:22866105

  6. Radiosensitivity of hepatoma cell lines and human normal liver cell lines exposed to 12C6+ ions

    NASA Astrophysics Data System (ADS)

    Jing, X.; Yang, J.; Li, W.; Guo, C.; Dang, B.; Wang, J.; Zhou, L.; Wei, W.; Gao, Q.

    AIM To investigate the radiosensitivity of hepatoma cell lines and human normal liver cell lines METHODS Accelerated carbon ions by heavy ion research facility in Lanzhou HIRFL have high LET We employed it to study the radiosensitivity of hepatoma cell lines SMMC-7721 and human normal liver cell lines L02 using premature chromosome condensation technique PCC Cell survive was documented by a colony assay Chromatid breaks were measured by counting the number of chromatid breaks and isochromatid breaks immediately after prematurely chromosome condensed by Calyculin-A RESULTS The survival curve of the two cell lines presented a good linear relationship and the survival fraction of L02 is higher than that of SMMC-7721 Additionally the two types of G 2 phase chromosome breaks chromatid breaks and isochromatid breaks of L02 are lower than that of SMMC-7721 CONCLUSION Human normal liver cell line have high radioresistance than that of hepatoma cell line It imply that it is less damage to normal organs when radiotherapy to hepatoma

  7. Cell progression and radiosensitivity of T1-prospermatogonia in Wistar rats.

    PubMed

    Hilscher, W M; Trott, K R; Hilscher, W

    1982-05-01

    T1-prospermatogonia pass through a quiescent stage which lasts from before birth until day 4 after birth (p.n.). They progress into DNA synthesis and mitosis in two synchronous waves which are separated by 24 hours in the evenings of day 4 and 5. The first wave contains about 25 per cent of the total population, the second 75 per cent. The mean duration of S-phase is 10 hours, the mean duration of G2-phase is 4 hours. After irradiation, the capacity of T1-prospermatogonia to produce the normal number of proliferating and differentiating cells in the testes is reduced. During maturation, between day 21 post-conception (p.c.) and day 5 p.n. the radiosensitivity of T1-prospermatogonia decreases by a factor of over 5.

  8. Ethynyldeoxyuridine (EdU) suppresses in vitro population expansion and in vivo tumor progression of human glioblastoma cells.

    PubMed

    Ross, Heather H; Rahman, Maryam; Levkoff, Lindsay H; Millette, Sebastien; Martin-Carreras, Teresa; Dunbar, Erin M; Reynolds, Brent A; Laywell, Eric D

    2011-12-01

    Thymidine analogs (TAs) are synthetic nucleosides that incorporate into newly synthesized DNA. Halogenated pyrimidines (HPs), such as bromodeoxyuridine (BrdU), are a class of TAs that can be detected with antibodies and are commonly used for birthdating individual cells and for assessing the proliferative index of cell populations. It is well established that HPs can act as radiosensitizers when incorporated into DNA chains, but they are generally believed not to impair normal cell function in the absence of secondary stressors. However, we and others have shown that HP incorporation leads to a sustained suppression of cell cycle progression in mammalian cells, resulting in cellular senescence in somatic cells. In addition, we have shown that HP incorporation results in delayed tumor progression in a syngeneic rat model of glioma. Here we examine ethynyldeoxyuridine (EdU), a newly developed and alkylated TA, for its anti-cancer activity, both in vitro and in vivo. We show that EdU, like HPs, leads to a severe reduction in the proliferation rate of normal and transformed cells in vitro. Unlike HPs, however, EdU incorporation also causes DNA damage resulting in the death of a substantial subset of treated cells. When administered over an extended time as a monotherapy to mice bearing subcutaneous xenografts of human glioblastoma multiforme tumors, EdU significantly reduces tumor volume and increases survival without apparent significant toxicity. These results, combined with the fact that EdU readily crosses the blood-brain barrier, support the continued investigation of EdU as a potential therapy for malignant brain tumors.

  9. Effect of epithermal neutrons on viability of glioblastoma tumor cells in vitro.

    PubMed

    Mostovich, L A; Gubanova, N V; Kutsenko, O S; Aleinik, V I; Kuznetsov, A S; Makarov, A N; Sorokin, I N; Taskaev, S Yu; Nepomnyashchikh, G I; Grigor'eva, E V

    2011-06-01

    We studied in vitro effect of epithermal neutrons in various doses on viability of glioblastoma U87 tumor cells. Increasing the dose from 1.9 to 4.1 Sv promoted cell death. Cytofluorimetric analysis revealed no activation of apoptosis in the irradiated cells, which attested to necrotic death of the tumor cells exposed to epithermal neutron radiation.

  10. Enhancement of radiosensitivity in H1299 cancer cells by actin-associated protein cofilin

    SciTech Connect

    Lee, Y.-J. . E-mail: lee_yi_jang@hotmail.com; Sheu, T.-J.; Keng, Peter C.

    2005-09-23

    Cofilin is an actin-associated protein that belongs to the actin depolymerization factor/cofilin family and is important for regulation of actin dynamics. Cofilin can import actin monomers into the nucleus under certain stress conditions, however the biological effects of nuclear transport are unclear. In this study, we found that over-expression of cofilin led to increased radiation sensitivity in human non-small lung cancer H1299 cells. Cell survival as determined by colony forming assay showed that cells over-expressing cofilin were more sensitive to ionizing radiation (IR) than normal cells. To determine whether the DNA repair capacity was altered in cofilin over-expressing cells, comet assays were performed on irradiated cells. Repair of DNA damage caused by ionizing radiation was detected in cofilin over-expressing cells after 24 h of recovery. Consistent with this observation, the key components for repair of DNA double-strand breaks, including Rad51, Rad52, and Ku70/Ku80, were down-regulated in cofilin over-expressing cells after IR exposure. These findings suggest that cofilin can influence radiosensitivity by altering DNA repair capacity.

  11. The temporal organization of processes of cell reproduction and its connection with rhythms of radiosensitivity of the body

    NASA Technical Reports Server (NTRS)

    Druzhinin, Y. P.; Romanov, Y. A.; Vatsek, A.

    1974-01-01

    Radiosensitivity of individual phases of the mitotic cycle was studied in synchronous cell cultures and in several biological objects. It was found that radiosensitivity changed essentially according to phases of the mitotic cycle, depending on the kind of cells, evaluation criteria and the radiation dosage. Tests on partially synchronized HeLa cell populations, according to the criterion of survival, showed them most sensitive during mitosis, as well as in later G sub 1- or early DNA-synthesizing stages. With radiation in doses of 300 rad, the proportion of surviving cells showed a sensitivity directly before DNA synthesis of approximately 4 times higher than the later S-phase and during the major portion of G sub 1- and G sub 2-periods. Sensitivity of cells in mitosis was approximately 3 times higher than in late G sub 1- and early S-phases.

  12. The temporal organization of processes of cell reproduction and its connection with rhythms of radiosensitivity of the body

    NASA Technical Reports Server (NTRS)

    Druzhinin, Y. P.; Romanov, Y. A.; Vatsek, A.

    1974-01-01

    Radiosensitivity of individual phases of the mitotic cycle was studied in synchronous cell cultures and in several biological objects. It was found that radiosensitivity changed essentially according to phases of the mitotic cycle, depending on the kind of cells, evaluation criteria and the radiation dosage. Tests on partially synchronized HeLa cell populations, according to the criterion of survival, showed them most sensitive during mitosis, as well as in later G sub 1- or early DNA-synthesizing stages. With radiation in doses of 300 rad, the proportion of surviving cells showed a sensitivity directly before DNA synthesis of approximately 4 times higher than the later S-phase and during the major portion of G sub 1- and G sub 2-periods. Sensitivity of cells in mitosis was approximately 3 times higher than in late G sub 1- and early S-phases.

  13. Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis.

    PubMed

    Opel, Daniela; Westhoff, Mike-Andrew; Bender, Ariane; Braun, Veit; Debatin, Klaus-Michael; Fulda, Simone

    2008-08-01

    The aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway has been reported to correlate with adverse clinical outcome in human glioblastoma in vivo. However, the question of how this survival network can be successfully targeted to restore the sensitivity of glioblastoma to apoptosis induction has not yet been answered. Here, we report that inhibition of PI3K by LY294002 broadly sensitizes wild-type and mutant PTEN glioblastoma cells to both death receptor- and chemotherapy-induced apoptosis, whereas mammalian target of rapamycin (mTOR) inhibition is not sufficient to restore apoptosis sensitivity. LY294002 significantly enhances apoptosis triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), agonistic anti-CD95 antibodies, or several anticancer drugs (i.e., doxorubicin, etoposide, and vincristine) in a highly synergistic manner. In addition, LY294002 cooperates with TRAIL or doxorubicin to suppress colony formation, thus also showing a strong effect on long-term survival. Similarly, genetic knockdown of PI3K subunits p110alpha and/or p110beta by RNA interference (RNAi) primes glioblastoma cells for TRAIL- or doxorubicin-mediated apoptosis. In contrast to PI3K inhibition, pharmacologic or genetic blockade of mTOR by RAD001 (everolimus), rapamycin, or RNAi fails to enhance TRAIL- or doxorubicin-induced apoptosis. Analysis of apoptosis pathways reveals that PI3K inhibition acts in concert with TRAIL or doxorubicin to trigger mitochondrial membrane permeabilization, caspase activation, and caspase-dependent apoptosis, which are abolished by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Most importantly, PI3K inhibition by LY294002 sensitizes primary cultured glioblastoma cells obtained from surgical specimens to TRAIL- or chemotherapy-induced cell death. By showing that PI3K inhibition broadly primes glioblastoma cells for apoptosis, our findings provide the rationale for using PI3K inhibitors in

  14. Radiation-induced mitotic cell death and glioblastoma radioresistance: a new regulating pathway controlled by integrin-linked kinase, hypoxia-inducible factor 1 alpha and survivin in U87 cells.

    PubMed

    Lanvin, Olivia; Monferran, Sylvie; Delmas, Caroline; Couderc, Bettina; Toulas, Christine; Cohen-Jonathan-Moyal, Elizabeth

    2013-09-01

    We have previously shown that integrin-linked kinase (ILK) regulates U87 glioblastoma cell radioresistance by modulating the main radiation-induced cell death mechanism in solid tumours, the mitotic cell death. To decipher the biological pathways involved in these mechanisms, we constructed a U87 glioblastoma cell model expressing an inducible shRNA directed against ILK (U87shILK). We then demonstrated that silencing ILK enhanced radiation-induced centrosome overduplication, leading to radiation-induced mitotic cell death. In this model, ionising radiations induce hypoxia-inducible factor 1 alpha (HIF-1α) stabilisation which is inhibited by silencing ILK. Moreover, silencing HIF-1α in U87 cells reduced the surviving fraction after 2 Gy irradiation by increasing cell sensitivity to radiation-induced mitotic cell death and centrosome amplification. Because it is known that HIF-1α controls survivin expression, we then looked at the ILK silencing effect on survivin expression. We show that survivin expression is decreased in U87shILK cells. Furthermore, treating U87 cells with the specific survivin suppressor YM155 significantly increased the percentage of giant multinucleated cells, centrosomal overduplication and thus U87 cell radiosensitivity. In consequence, we decipher here a new pathway of glioma radioresistance via the regulation of radiation-induced centrosome duplication and therefore mitotic cell death by ILK, HIF-1α and survivin. This work identifies new targets in glioblastoma with the intention of radiosensitising these highly radioresistant tumours. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. ApoE enhances nanodisk-mediated curcumin delivery to glioblastoma multiforme cells

    PubMed Central

    Ghosh, Mistuni; Ryan, Robert O

    2013-01-01

    Aim To evaluate the effect of incorporating the polyphenol, curcumin, into nanodisk (ND) particles on its biological activity. Materials & methods Curcumin-NDs formulated with different scaffold proteins were incubated with cultured glioblastoma multiforme cells. Results When ApoE was employed as the ND scaffold protein, enhanced curcumin uptake was observed. Furthermore, ApoE curcumin-NDs induced greater cell death than either free curcumin or ApoAI curcumin-NDs. A total of 1 h after exposure of glioblastoma multiforme cells to ApoE curcumin-NDs, significant curcumin uptake was detected while ApoE was localized at the cell surface. After 2 h, a portion of the curcumin had migrated to the nucleus, giving rise to enhanced fluorescence intensity in discrete intranuclear sites. Conclusion ApoE-mediated interaction of curcumin-NDs with glioblastoma multiforme cells leads to enhanced curcumin uptake and increased biological activity. PMID:23879635

  16. Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis.

    PubMed

    Sanvoranart, Tanwarat; Supokawej, Aungkura; Kheolamai, Pakpoom; U-Pratya, Yaowalak; Poungvarin, Niphon; Sathornsumetee, Sith; Issaragrisil, Surapol

    2016-11-01

    Glioblastoma (GBM) is an aggressive malignant brain tumor that still lacks effective therapy. Glioblastoma stem cells (GBM-SCs) were identified to contribute to aggressive phenotypes and poor clinical outcomes for GBM. Netrin-1, an axon guidance molecule, has been found in several tumors in adults. However, the role of Netrin-1 in GBM-SCs remains largely unknown. In this study, CD133-positive U251 GBM cells were used as a putative GBM-SC population to identify the functions of Netrin-1. Using lentiviral transduction, Netrin-1 miR RNAi vectors were transduced into CD133-positive U251 cells. We demonstrated that cell proliferation and survival were decreased following targeted deletion of Netrin-1. Cell invasion was dramatically diminished in Netrin-1 knockdown GBM-SCs. Moreover, Netrin-1 knockdown GBM-SCs exhibited less proangiogenic activity. In conclusion, Netrin-1 may represent a therapeutic target in glioblastoma.

  17. Cytogenetic characterization of low-dose hyper-radiosensitivity in Cobalt-60 irradiated human lymphoblastoid cells.

    PubMed

    Joshi, Gnanada S; Joiner, Michael C; Tucker, James D

    2014-12-01

    The dose-effect relationships of cells exposed to ionizing radiation are frequently described by linear quadratic (LQ) models over an extended dose range. However, many mammalian cell lines, when acutely irradiated in G2 at doses ≤0.3Gy, show hyper-radiosensitivity (HRS) as measured by reduced clonogenic cell survival, thereby indicating greater cell lethality than is predicted by extrapolation from high-dose responses. We therefore hypothesized that the cytogenetic response in G2 cells to low doses would also be steeper than predicted by LQ extrapolation from high doses. We tested our hypothesis by exposing four normal human lymphoblastoid cell lines to 0-400cGy of Cobalt-60 gamma radiation. The cytokinesis block micronucleus assay was used to determine the frequencies of micronuclei and nucleoplasmic bridges. To characterize the dependence of the cytogenetic damage on dose, univariate and multivariate regression analyses were used to compare the responses in the low- (HRS) and high-dose response regions. Our data indicate that the slope of the response for all four cell lines at ≤20cGy during G2 is greater than predicted by an LQ extrapolation from the high-dose responses for both micronuclei and bridges. These results suggest that the biological consequences of low-dose exposures could be underestimated and may not provide accurate risk assessments following such exposures.

  18. Down-regulation of survivin expression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity

    PubMed Central

    Guan, Hai-Tao; Xue, Xing-Huan; Dai, Zhi-Jun; Wang, Xi-Jing; Li, Ang; Qin, Zhao-Yin

    2006-01-01

    AIM: To investigate the inhibitory effect of small interfering RNA (siRNA) on the expression of survivin in pancreatic cancer cell line PC-2 and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity. METHODS: A siRNA plasmid expression vector against survivin was constructed and transfected into PC-2 cells with LipofectamineTM 2000. The down regulation of survivin expression was detected by semi-quantitive RT-PCR and immunohistochemical SP method and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity was detected by flow cytometry. RESULTS: The sequence-specific siRNA efficiently and specifically down-regulated the expression of survivin at both mRNA and protein levels. The expression inhibition ratio was 81.25% at mRNA level detected by semi-quantitive RT-PCR and 74.24% at protein level detected by immunohistochemical method. Forty-eight hours after transfection,apoptosis was induced in 7.03% cells by siRNA and in 14.58% cells by siRNA combined with radiation. CONCLUSION: The siRNA plasmid expression vector against survivin can inhibit the expression of survivin in PC-2 cells efficiently and specifically. Inhibiting the expression of survivin can induce apoptosis of PC-2 cells and enhance its radiosensitivity significantly. RNAi against survivin is of potential value in gene therapy of pancreatic cancer. PMID:16718816

  19. RNA interference-mediated gene silencing of cyclophilin A enhances the radiosensitivity of PAa human lung adenocarcinoma cells in vitro.

    PubMed

    Jiang, Xin; Zhang, Qiao-Li; Tian, Ye-Hong; Huang, Jin-Chang; Ma, Guo-Lin

    2017-03-01

    Radiotherapy is currently the major therapeutic strategy for patients with lung cancer. However, radioresistance and various side effects continue to present challenging issues for this form of treatment. A recent study demonstrated that cyclophilin A (CyPA) was overexpressed in non-small cell lung cancer and, therefore, presents a novel potential therapeutic target. In addition, gene-radiotherapy is a novel method for cancer treatment. Therefore, the objective of the present study was to investigate the potential effect of CyPA silencing on radiosensitivity in human lung adenocarcinoma in vitro. The stable CyPA-silencing lung adenocarcinoma (PAa) cell line was generated using lentivirus-mediated small hairpin RNAs. The knockdown of CyPA was determined using fluorescent microscopy and western blot analysis. Cells were irradiated using various doses of cobalt-60 (0, 2, 4, 6 and 8 Gy). The radiosensitizing effects were determined by a clonogenic survival assay. Apoptosis and cell cycle distribution were evaluated using flow cytometry. Silencing of CyPA significantly increased the apoptosis of PAa cells. In addition, the radiosensitivity of cells was markedly enhanced following CyPA silencing. Furthermore, silencing of CyPA, in combination with irradiation, induced G2/M phase cell cycle arrest. Taken together, the data suggest that the silencing of CyPA, combined with radiation therapy, may increase the therapeutic efficacy of lung cancer treatment through regulation of the cell cycle and apoptosis-associated signaling pathways.

  20. Blocking LDHA glycolytic pathway sensitizes glioblastoma cells to radiation and temozolomide.

    PubMed

    Koukourakis, Michael; Tsolou, Avgi; Pouliliou, Stamatia; Lamprou, Ioannis; Papadopoulou, Maria; Ilemosoglou, Maria; Kostoglou, Georgia; Ananiadou, Dimitra; Sivridis, Efthimios; Giatromanolaki, Alexandra

    2017-09-30

    Up-regulation of lactate dehydrogenase LDHA, is a frequent event in human malignancies and relate to poor postoperative outcome. In the current study we examined the hypothesis that LDHA and anaerobic glycolysis, may contribute to the resistance of glioblastoma to radiotherapy and to temozolomide. The expression of LDH5 isoenzyme (fully encoded by the LDHA gene) was assessed in human glioblastoma tissues. Experimental in vitro studies involved the T98 and U87 glioblastoma cell lines. Their sensitivity to radiotherapy and to temozolomide, following silencing of LDHA gene or following exposure to the LDHA chemical inhibitor 'oxamate' and to the glycolysis inhibitor '2-deoxy-d-glucose' (2DG), was studied. Glioblastoma tissues showed strong cytoplasmic and nuclear LDH5 expression in 0-90% (median 20%) of the neoplastic cells. T98 and U87 cell lines showed that blocking glycolysis, either with LDHA gene silencing or exposure to oxamate (30 mM) and blockage of glycolysis with 2DG (500 μM), results in enhanced radiation sensitivity, an effect that was more robust in the T98 radioresistant cell line. Furthermore, all three glycolysis targeting methods, significantly sensitized both cell lines to Temozolomide. The current study provides evidence that a large subgroup of human glioblastomas are highly glycolytic, and that inhibitors of glycolysis, like LDHA targeting agents, may prove of therapeutic importance by enhancing the efficacy of radiotherapy and temozolomide against this lethal disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Molecular mechanisms of fenofibrate-induced metabolic catastrophe and glioblastoma cell death.

    PubMed

    Wilk, Anna; Wyczechowska, Dorota; Zapata, Adriana; Dean, Matthew; Mullinax, Jennifer; Marrero, Luis; Parsons, Christopher; Peruzzi, Francesca; Culicchia, Frank; Ochoa, Augusto; Grabacka, Maja; Reiss, Krzysztof

    2015-01-01

    Fenofibrate (FF) is a common lipid-lowering drug and a potent agonist of the peroxisome proliferator-activated receptor alpha (PPARα). FF and several other agonists of PPARα have interesting anticancer properties, and our recent studies demonstrate that FF is very effective against tumor cells of neuroectodermal origin. In spite of these promising anticancer effects, the molecular mechanism(s) of FF-induced tumor cell toxicity remains to be elucidated. Here we report a novel PPARα-independent mechanism explaining FF's cytotoxicity in vitro and in an intracranial mouse model of glioblastoma. The mechanism involves accumulation of FF in the mitochondrial fraction, followed by immediate impairment of mitochondrial respiration at the level of complex I of the electron transport chain. This mitochondrial action sensitizes tested glioblastoma cells to the PPARα-dependent metabolic switch from glycolysis to fatty acid β-oxidation. As a consequence, prolonged exposure to FF depletes intracellular ATP, activates the AMP-activated protein kinase-mammalian target of rapamycin-autophagy pathway, and results in extensive tumor cell death. Interestingly, autophagy activators attenuate and autophagy inhibitors enhance FF-induced glioblastoma cytotoxicity. Our results explain the molecular basis of FF-induced glioblastoma cytotoxicity and reveal a new supplemental therapeutic approach in which intracranial infusion of FF could selectively trigger metabolic catastrophe in glioblastoma cells.

  2. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo

    PubMed Central

    Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-01-01

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na+/K+ ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers. PMID:25400117

  3. Growth inhibitory in vitro effects of glycyrrhizic acid in U251 glioblastoma cell line.

    PubMed

    Li, Song; Zhu, Jian-Hong; Cao, Li-Ping; Sun, Qing; Liu, Huan-Dong; Li, Wei-De; Li, Jin-Song; Hang, Chun-Hua

    2014-07-01

    Despite dramatic advances in cancer therapy, the overall prognosis of glioblastoma (GBM) remains dismal. Nuclear factor kappa-B (NF-κB) has been previously demonstrated to be constitutively activated in glioblastoma, and it was suggested as a potential therapeutic target. Glycyrrhizic acid (GA) has been proved to have cytotoxic effects in many cancer cell lines. However, its role in glioblastoma has not yet been addressed. Therefore, this study aimed to investigate the effects of GA on human glioblastoma U251 cell line. The effects of GA on proliferation of U251 cells were measured by CCK-8 assay and plate colony-forming test. Cellular apoptosis was detected by Hoechst 33258 fluorescent staining and flow cytometry with annexin V-FITC/PI dual staining. The expression of nuclear p65 protein, the active subunit of NF-κB, was determined by Western blot and immunofluorescence. Our results demonstrated that the survival rate and colony formation of U251 cells significantly decreased in a time- and dose-dependent manner after GA addition, and the apoptotic ratio of GA-treated groups was significantly higher than that of control groups. Furthermore, the expression of NF-κB-p65 in the nucleus was remarkably reduced after GA treatment. In conclusion, our findings suggest that GA treatment can confer inhibitory effects on human glioblastoma U251 cell line including inhibiting proliferation and inducing apoptosis, which is possibly related to the NF-κB mediated pathway.

  4. Molecular Mechanisms of Fenofibrate-Induced Metabolic Catastrophe and Glioblastoma Cell Death

    PubMed Central

    Wilk, Anna; Wyczechowska, Dorota; Zapata, Adriana; Dean, Matthew; Mullinax, Jennifer; Marrero, Luis; Parsons, Christopher; Peruzzi, Francesca; Culicchia, Frank; Ochoa, Augusto; Grabacka, Maja

    2014-01-01

    Fenofibrate (FF) is a common lipid-lowering drug and a potent agonist of the peroxisome proliferator-activated receptor alpha (PPARα). FF and several other agonists of PPARα have interesting anticancer properties, and our recent studies demonstrate that FF is very effective against tumor cells of neuroectodermal origin. In spite of these promising anticancer effects, the molecular mechanism(s) of FF-induced tumor cell toxicity remains to be elucidated. Here we report a novel PPARα-independent mechanism explaining FF's cytotoxicity in vitro and in an intracranial mouse model of glioblastoma. The mechanism involves accumulation of FF in the mitochondrial fraction, followed by immediate impairment of mitochondrial respiration at the level of complex I of the electron transport chain. This mitochondrial action sensitizes tested glioblastoma cells to the PPARα-dependent metabolic switch from glycolysis to fatty acid β-oxidation. As a consequence, prolonged exposure to FF depletes intracellular ATP, activates the AMP-activated protein kinase–mammalian target of rapamycin–autophagy pathway, and results in extensive tumor cell death. Interestingly, autophagy activators attenuate and autophagy inhibitors enhance FF-induced glioblastoma cytotoxicity. Our results explain the molecular basis of FF-induced glioblastoma cytotoxicity and reveal a new supplemental therapeutic approach in which intracranial infusion of FF could selectively trigger metabolic catastrophe in glioblastoma cells. PMID:25332241

  5. Targeting ROR1 inhibits the self-renewal and invasive ability of glioblastoma stem cells.

    PubMed

    Jung, Eun-Hwa; Lee, Han-Na; Han, Gi-Yeon; Kim, Min-Jung; Kim, Chan-Wha

    2016-04-01

    Glioblastoma is the most malignant of brain tumours and is difficult to cure because of interruption of drug delivery by the blood-brain barrier system, its high metastatic capacity and the existence of cancer stem cells (CSCs). Although CSCs are present as a small population in malignant tumours, CSCs have been studied as they are responsible for causing recurrence, metastasis and resistance to chemotherapy and radiotherapy for cancer. CSCs have self-renewal characteristics like normal stem cells. The aim of this study was to investigate whether receptor tyrosine kinase-like orphan receptor 1 (ROR1) is involved in stem cell maintenance and malignant properties in human glioblastoma. Knockdown of ROR1 caused reduction of stemness and sphere formation capacity. Moreover, down-regulation of ROR1 suppressed the expression of epithelial-mesenchymal transition-related genes and the tumour migratory and invasive abilities. The results of this study indicate that targeting ROR1 can induce differentiation of CSCs and inhibit metastasis in glioblastoma. In addition, ROR1 may be used as a potential marker for glioblastoma stem cells as well as a potential target for glioblastoma stem cell therapy.

  6. Angiogenic Gene Signature Derived from Subtype Specific Cell Models Segregate Proneural and Mesenchymal Glioblastoma

    PubMed Central

    Sharma, Aman; Bendre, Ajinkya; Mondal, Abir; Muzumdar, Dattatraya; Goel, Naina; Shiras, Anjali

    2017-01-01

    Intertumoral molecular heterogeneity in glioblastoma identifies four major subtypes based on expression of molecular markers. Among them, the two clinically interrelated subtypes, proneural and mesenchymal, are the most aggressive with proneural liable for conversion to mesenchymal upon therapy. Using two patient-derived novel primary cell culture models (MTA10 and KW10), we developed a minimal but unique four-gene signature comprising genes vascular endothelial growth factor A (VEGF-A), vascular endothelial growth factor B (VEGF-B) and angiopoietin 1 (ANG1), angiopoietin 2 (ANG2) that effectively segregated the proneural (MTA10) and mesenchymal (KW10) glioblastoma subtypes. The cell culture preclassified as mesenchymal showed elevated expression of genes VEGF-A, VEGF-B and ANG1, ANG2 as compared to the other cell culture model that mimicked the proneural subtype. The differentially expressed genes in these two cell culture models were confirmed by us using TCGA and Verhaak databases and we refer to it as a minimal multigene signature (MMS). We validated this MMS on human glioblastoma tissue sections with the use of immunohistochemistry on preclassified (YKL-40 high or mesenchymal glioblastoma and OLIG2 high or proneural glioblastoma) tumor samples (n = 30). MMS segregated mesenchymal and proneural subtypes with 83% efficiency using a simple histopathology scoring approach (p = 0.008 for ANG2 and p = 0.01 for ANG1). Furthermore, MMS expression negatively correlated with patient survival. Importantly, MMS staining demonstrated spatiotemporal heterogeneity within each subclass, adding further complexity to subtype identification in glioblastoma. In conclusion, we report a novel and simple sequencing-independent histopathology-based biomarker signature comprising genes VEGF-A, VEGF-B and ANG1, ANG2 for subtyping of proneural and mesenchymal glioblastoma. PMID:28744448

  7. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme

    PubMed Central

    Bryukhovetskiy, Igor S.; Dyuizen, Inessa V.; Shevchenko, Valeriy E.; Bryukhovetskiy, Andrey S.; Mischenko, Polina V.; Milkina, Elena V.; Khotimchenko, Yuri S.

    2016-01-01

    Glioblastoma multiforme is an aggressive malignant brain tumor with terminal consequences. A primary reason for its resistance to treatment is associated with cancer stem cells (CSCs), of which there are currently no effective ways to destroy. It remains unclear what cancer cells become a target of stem cell migration, what the role of this process is in oncogenesis and what stem cell lines should be used in developing antitumor technologies. Using modern post-genome technologies, the present study investigated the migration of human stem cells to cancer cells in vitro, the comparative study of cell proteomes of certain stem cells (including CSCs) was conducted and stem cell migration in vivo was examined. Of all glioblastoma cells, CSCs have the stability to attract normal stem cells. Critical differences in cell proteomes allow the consideration of hematopoietic stem cells (HSCs) as an instrument for interaction with glioblastoma CSCs. Following injection into the bloodstream of animals with glioblastoma, the majority of HSCs migrated to the tumor-containing brain hemisphere and penetrated the tumor tissue. HSCs therefore are of potential use in the development of methods to target CSCs. PMID:27748891

  8. Mitochondria-Targeted Analogues of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells.

    PubMed

    Cheng, Gang; Zielonka, Jacek; Ouari, Olivier; Lopez, Marcos; McAllister, Donna; Boyle, Kathleen; Barrios, Christy S; Weber, James J; Johnson, Bryon D; Hardy, Micael; Dwinell, Michael B; Kalyanaraman, Balaraman

    2016-07-01

    Metformin (Met) is an approved antidiabetic drug currently being explored for repurposing in cancer treatment based on recent evidence of its apparent chemopreventive properties. Met is weakly cationic and targets the mitochondria to induce cytotoxic effects in tumor cells, albeit not very effectively. We hypothesized that increasing its mitochondria-targeting potential by attaching a positively charged lipophilic substituent would enhance the antitumor activity of Met. In pursuit of this question, we synthesized a set of mitochondria-targeted Met analogues (Mito-Mets) with varying alkyl chain lengths containing a triphenylphosphonium cation (TPP(+)). In particular, the analogue Mito-Met10, synthesized by attaching TPP(+) to Met via a 10-carbon aliphatic side chain, was nearly 1,000 times more efficacious than Met at inhibiting cell proliferation in pancreatic ductal adenocarcinoma (PDAC). Notably, in PDAC cells, Mito-Met10 potently inhibited mitochondrial complex I, stimulating superoxide and AMPK activation, but had no effect in nontransformed control cells. Moreover, Mito-Met10 potently triggered G1 cell-cycle phase arrest in PDAC cells, enhanced their radiosensitivity, and more potently abrogated PDAC growth in preclinical mouse models, compared with Met. Collectively, our findings show how improving the mitochondrial targeting of Met enhances its anticancer activities, including aggressive cancers like PDAC in great need of more effective therapeutic options. Cancer Res; 76(13); 3904-15. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Inhibition of Anaphase-Promoting Complex by Silence APC/C(Cdh1) to Enhance Radiosensitivity of Nasopharyngeal Carcinoma Cells.

    PubMed

    Wang, Chunmiao; Su, Zhengying; Hou, Huaxin; Li, Danrong; Pan, Zhiyu; Tian, Wei; Mo, Chunyan

    2017-10-01

    The aim of this study was to investigate the possibility of APC/C(Cdh1) as a potential therapeutic target in the radiosensitivity of nasopharyngeal carcinoma (NPC) cell CNE-1, and explain the role of APC subunits after silence of Cdh1 combined with radiotherapy. Transfection with Cdh1 shRNA significantly increased the radiosensitivity of CNE-1 cells and the radiation enhancement ratio (RER) of sh-Cdh1 cells was 1.76. Knockdown of Cdh1 in CNE-1 cells increased irradiation induced apoptosis and G2/M phase cell cycle arrest. The levels of CDC20 and CylinB1 increased and the levels of Ku70 and APC3 decreased after irradiation. APC/C(Cdh1) is involved in regulation of radiosensitivity in human NPC CNE-1 cells. Our study may provide a promising therapeutic strategy for NPC by targeting Cdh1. J. Cell. Biochem. 118: 3150-3157, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Neuronatin in a Subset of Glioblastoma Multiforme Tumor Progenitor Cells Is Associated with Increased Cell Proliferation and Shorter Patient Survival

    PubMed Central

    Bründl, Elisabeth; Brawanski, Alexander; Fang, Xueping; Lee, Cheng S.; Weil, Robert J.; Zhuang, Zhengping; Lonser, Russell R.

    2012-01-01

    Glioblastoma multiforme is the most common and malignant primary brain tumor. Recent evidence indicates that a subset of glioblastoma tumor cells have a stem cell like phenotype that underlies chemotherapy resistance and tumor recurrence. We utilized a new “multidimensional” capillary isoelectric focusing nano-reversed-phase liquid chromatography platform with tandem mass spectrometry to compare the proteomes of isolated glioblastoma tumor stem cell and differentiated tumor cell populations. This proteomic analysis yielded new candidate proteins that were differentially expressed. Specifically, two isoforms of the membrane proteolipid neuronatin (NNAT) were expressed exclusively within the tumor stem cells. We surveyed the expression of NNAT across 10 WHO grade II and III gliomas and 23 glioblastoma (grade IV) human tumor samples and found NNAT was expressed in a subset of primary glioblastoma tumors. Through additional in vitro studies utilizing the U87 glioma cell line, we found that expression of NNAT is associated with significant increases in cellular proliferation. Paralleling the in vitro results, when NNAT levels were evaluated in tumor specimens from a consecutive cohort of 59 glioblastoma patients, the presence of increased levels of NNAT were found to be a an independent risk factor (P = 0.006) for decreased patient survival through Kaplan-Meier and multivariate analysis. These findings indicate that NNAT may have utility as a prognostic biomarker, as well as a cell-surface target for chemotherapeutic agents. PMID:22624064

  11. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells.

    PubMed

    Bai, Yun; Lathia, Justin D; Zhang, Peisu; Flavahan, William; Rich, Jeremy N; Mattson, Mark P

    2014-10-01

    Glioblastoma is the most prevalent primary brain tumor and is essentially universally fatal within 2 years of diagnosis. Glioblastomas contain cellular hierarchies with self-renewing glioblastoma stem cells (GSCs) that are often resistant to chemotherapy and radiation therapy. GSCs express high amounts of repressor element 1 silencing transcription factor (REST), which may contribute to their resistance to standard therapies. Telomere repeat-binding factor 2 (TRF2) stablizes telomeres and REST to maintain self-renewal of neural stem cells and tumor cells. Here we show viral vector-mediated delivery of shRNAs targeting TRF2 mRNA depletes TRF2 and REST from GSCs isolated from patient specimens. As a result, GSC proliferation is reduced and the level of proteins normally expressed by postmitotic neurons (L1CAM and β3-tubulin) is increased, suggesting that loss of TRF2 engages a cell differentiation program in the GSCs. Depletion of TRF2 also sensitizes GSCs to temozolomide, a DNA-alkylating agent currently used to treat glioblastoma. Targeting TRF2 significantly increased the survival of mice bearing GSC xenografts. These findings reveal a role for TRF2 in the maintenance of REST-associated proliferation and chemotherapy resistance of GSCs, suggesting that TRF2 is a potential therapeutic target for glioblastoma.

  12. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy

    PubMed Central

    Pollak, Julia; Rai, Karan G.; Funk, Cory C.; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D.; Paddison, Patrick J.; Ramirez, Jan-Marino; Rostomily, Robert C.

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. PMID:28264064

  13. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    PubMed

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  14. MicroRNAs in Cancer: Glioblastoma and Glioblastoma Cancer Stem Cells

    PubMed Central

    Brower, Jeffrey; Clark, Paul A.; Lyon, Will

    2015-01-01

    MicroRNAs represent an abundant class of endogenously expressed 18–25 nucleotide non-coding RNA molecules that function to silence gene expression through a process of post-transcriptional modification. They exhibit varied and widespread functions during normal development and tissue homeostasis, and accordingly their dysregulation plays major roles in many cancer types. Gliomas are cancers arising from the central nervous system. The most malignant and common glioma is glioblastoma multiforme (GBM), and even with aggressive treatment (surgical resection, chemotherapy, and radiation), average patient survival remains less than two years. In this review we will summarize the current findings regarding microRNAs in GBM and the biological and clinical implications of this data. PMID:24937770

  15. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway.

    PubMed

    Peng, Honghai; Du, Bin; Jiang, Huili; Gao, Jun

    2016-01-22

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  16. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    SciTech Connect

    Peng, Honghai; Du, Bin; Jiang, Huili; Gao, Jun

    2016-01-22

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  17. Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy.

    PubMed

    Lin, Hwai-Jeng; Liu, Hsin-Ho; Lin, Chia-Der; Kao, Min-Chuan; Chen, Yu-An; Chiang-Ni, Chuan; Jiang, Zhi-Pei; Huang, Mei-Zi; Lin, Chun-Jung; Lo, U-Ging; Lin, Li-Chiung; Lai, Cheng-Kuo; Lin, Ho; Hsieh, Jer-Tsong; Chiu, Cheng-Hsun; Lai, Chih-Ho

    2017-01-01

    Cytolethal distending toxin (CDT) produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Among these three toxin subunits, CdtB is the toxic moiety of CDT with DNase I activity, resulting in DNA double-strand breaks (DSB) and, consequently, cell cycle arrest at the G2/M stage and apoptosis. Radiation therapy is an effective modality for the treatment of localized prostate cancer (PCa). However, patients often develop radioresistance. Owing to its particular biochemical properties, we previously employed CdtB as a therapeutic agent for sensitizing radioresistant PCa cells to ionizing radiation (IR). In this study, we further demonstrated that CDT suppresses the IR-induced autophagy pathway in PCa cells by attenuating c-Myc expression and therefore sensitizes PCa cells to radiation. We further showed that CDT prevents the formation of autophagosomes via decreased high-mobility group box 1 (HMGB1) expression and the inhibition of acidic vesicular organelle (AVO) formation, which are associated with enhanced radiosensitivity in PCa cells. The results of this study reveal the detailed mechanism of CDT for the treatment of radioresistant PCa.

  18. Effects of BSO and DEM on thiol-level and radiosensitivity in HeLa cells

    SciTech Connect

    Vos, O.; Van Der Schans, G.P.; Roos-Verhey, W.S.D.

    1984-08-01

    Reduction of the intracellular GSH and NPSH levels in HeLa cells by BSO and DEM treatments was determined. As parameters for radiation damage, single and double strand DNA breaks (ssb and dsb) and cell killing were used. Furthermore, repair of ssb and dsb were followed in the first 30 and 120 min after radiation, respectively. BSO and DEM treatment gave a small sensitization for the 3 types of radiation damage (ssb, dsb and cell killing) in aerobic condition. In hypoxic condition the sensitizing effect of both compounds on dsb was larger than the effect on ssb. Pretreatment with BSO and DEM had no influence on repair of ssb and dsb when cells were irradiated in air, but when cells were irradiated in hypoxia, repair was somewhat inhibited after pretreatment with DEM. It can be postulated that a reduction of the intracellular GSH level by BSO and DEM treatment affects cellular radiosensitivity both by a competitive mechanism between GSH and O/sub 2/ and by inhibition of enzymatic repair of DNA breaks, the latter only in the case of DEM treatment.

  19. Misregulation of DNA damage repair pathways in HPV-positive head and neck squamous cell carcinoma contributes to cellular radiosensitivity

    PubMed Central

    Nickson, Catherine M.; Moori, Parisa; Carter, Rachel J.; Rubbi, Carlos P.; Parsons, Jason L.

    2017-01-01

    Patients with human papillomavirus type 16 (HPV)-associated oropharyngeal squamous cell carcinomas (OPSCC) display increased sensitivity to radiotherapy and improved survival rates in comparison to HPV-negative forms of the disease. However the cellular mechanisms responsible for this characteristic difference are unclear. Here, we have investigated the contribution of DNA damage repair pathways to the in vitro radiosensitivity of OPSCC cell lines. We demonstrate that two HPV-positive OPSCC cells are indeed more radiosensitive than two HPV-negative OPSCC cells, which correlates with reduced efficiency for the repair of ionising radiation (IR)-induced DNA double strand breaks (DSB). Interestingly, we show that HPV-positive OPSCC cells consequently have upregulated levels of the proteins XRCC1, DNA polymerase β, PNKP and PARP-1 which are involved in base excision repair (BER) and single strand break (SSB) repair. This translates to an increased capacity and efficiency for the repair of DNA base damage and SSBs in these cells. In addition, we demonstrate that HPV-positive but interestingly more so HPV-negative OPSCC display increased radiosensitivity in combination with the PARP inhibitor olaparib. This suggests that PARP inhibition in combination with radiotherapy may be an effective treatment for both forms of OPSCC, particularly for HPV-negative OPSCC which is relatively radioresistant. PMID:28415784

  20. Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide

    PubMed Central

    Sales, Thais Torquato; Resende, Fernando Francisco Borges; Chaves, Natália Lemos; Titze-De-Almeida, Simoneide Souza; Báo, Sônia Nair; Brettas, Marcella Lemos; Titze-De-Almeida, Ricardo

    2016-01-01

    Glioblastoma multiforme (GBM) is the most aggressive type of human primary brain tumor. The standard treatment protocol includes radiotherapy in combination with temozolomide (TMZ). Despite advances in GBM treatment, the survival time of patients diagnosed with glioma is 14.5 months. Regarding tumor biology, various types of cancer cell overexpress the ether à go-go 1 (Eag1) potassium channel. Therefore, the present study examined the role of Eag1 in the cell damage caused by TMZ on the U87MG glioblastoma cell line. Eag1 was inhibited using a channel blocker (astemizole) or silenced by a short-hairpin RNA expression vector (pKv10.1-3). pKv10.1-3 (0.2 µg) improved the Eag1 silencing caused by 250 µM TMZ, as determined by reverse transcription-quantitative polymerase chain reaction and immunocytochemistry. Additionally, inhibiting Eag1 with the vector or astemizole (5 µM) reduced glioblastoma cell viability and sensitized cells to TMZ. Cell viability decreased by 63% for pKv10.1-3 + TMZ compared with 34% for TMZ alone, and by 77% for astemizole + TMZ compared with 46% for TMZ alone, as determined by MTT assay. In addition, both the vector and astemizole increased the apoptosis rate of glioblastoma cells triggered by TMZ, as determined by an Annexin V apoptosis assay. Collectively, the current data reveal that Eag1 has a role in the damage caused to glioblastoma by TMZ. Furthermore, suppression of this channel can improve the action of TMZ on U87MG glioblastoma cells. Thus, silencing Eag1 is a promising strategy to improve GBM treatment and merits additional studies in animal models of glioma. PMID:27698831

  1. Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide.

    PubMed

    Sales, Thais Torquato; Resende, Fernando Francisco Borges; Chaves, Natália Lemos; Titze-De-Almeida, Simoneide Souza; Báo, Sônia Nair; Brettas, Marcella Lemos; Titze-De-Almeida, Ricardo

    2016-10-01

    Glioblastoma multiforme (GBM) is the most aggressive type of human primary brain tumor. The standard treatment protocol includes radiotherapy in combination with temozolomide (TMZ). Despite advances in GBM treatment, the survival time of patients diagnosed with glioma is 14.5 months. Regarding tumor biology, various types of cancer cell overexpress the ether à go-go 1 (Eag1) potassium channel. Therefore, the present study examined the role of Eag1 in the cell damage caused by TMZ on the U87MG glioblastoma cell line. Eag1 was inhibited using a channel blocker (astemizole) or silenced by a short-hairpin RNA expression vector (pKv10.1-3). pKv10.1-3 (0.2 µg) improved the Eag1 silencing caused by 250 µM TMZ, as determined by reverse transcription-quantitative polymerase chain reaction and immunocytochemistry. Additionally, inhibiting Eag1 with the vector or astemizole (5 µM) reduced glioblastoma cell viability and sensitized cells to TMZ. Cell viability decreased by 63% for pKv10.1-3 + TMZ compared with 34% for TMZ alone, and by 77% for astemizole + TMZ compared with 46% for TMZ alone, as determined by MTT assay. In addition, both the vector and astemizole increased the apoptosis rate of glioblastoma cells triggered by TMZ, as determined by an Annexin V apoptosis assay. Collectively, the current data reveal that Eag1 has a role in the damage caused to glioblastoma by TMZ. Furthermore, suppression of this channel can improve the action of TMZ on U87MG glioblastoma cells. Thus, silencing Eag1 is a promising strategy to improve GBM treatment and merits additional studies in animal models of glioma.

  2. Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells

    PubMed Central

    Golebiewska, Anna; Bougnaud, Sébastien; Stieber, Daniel; Brons, Nicolaas H. C.; Vallar, Laurent; Hertel, Frank; Klink, Barbara; Schröck, Evelin; Bjerkvig, Rolf

    2013-01-01

    The identification and significance of cancer stem-like cells in malignant gliomas remains controversial. It has been proposed that cancer stem-like cells display increased drug resistance, through the expression of ATP-binding cassette transporters that detoxify cells by effluxing exogenous compounds. Here, we investigated the ‘side population’ phenotype based on efflux properties of ATP-binding cassette transporters in freshly isolated human glioblastoma samples and intracranial xenografts derived thereof. Using fluorescence in situ hybridization analysis on sorted cells obtained from glioblastoma biopsies, as well as human tumour xenografts developed in immunodeficient enhanced green fluorescence protein-expressing mice that allow an unequivocal tumour-stroma discrimination, we show that side population cells in human glioblastoma are non-neoplastic and exclusively stroma-derived. Tumour cells were consistently devoid of efflux properties regardless of their genetic background, tumour ploidy or stem cell associated marker expression. Using multi-parameter flow cytometry we identified the stromal side population in human glioblastoma to be brain-derived endothelial cells with a minor contribution of astrocytes. In contrast with their foetal counterpart, neural stem/progenitor cells in the adult brain did not display the side population phenotype. Of note, we show that CD133-positive cells often associated with cancer stem-like cells in glioblastoma biopsies, do not represent a homogenous cell population and include CD31-positive endothelial cells. Interestingly, treatment of brain tumours with the anti-angiogenic agent bevacizumab reduced total vessel density, but did not affect the efflux properties of endothelial cells. In conclusion our findings contribute to an unbiased identification of cancer stem-like cells and stromal cells in brain neoplasms, and provide novel insight into the complex issue of drug delivery to the brain. Since efflux properties of

  3. Galectin-8 promotes migration and proliferation and prevents apoptosis in U87 glioblastoma cells.

    PubMed

    Metz, Claudia; Döger, Remziye; Riquelme, Elizabeth; Cortés, Priscilla; Holmes, Christopher; Shaughnessy, Ronan; Oyanadel, Claudia; Grabowski, Catalina; González, Alfonso; Soza, Andrea

    2016-07-27

    Glioblastoma is one of the most aggressive cancers of the brain. Malignant traits of glioblastoma cells include elevated migration, proliferation and survival capabilities. Galectins are unconventionally secreted glycan-binding proteins that modulate processes of cell adhesion, migration, proliferation and apoptosis by interacting with beta-galactosides of cell surface glycoproteins and the extracellular matrix. Galectin-8 is one of the galectins highly expressed in glioblastoma cells. It has a unique selectivity for terminally sialylated glycans recently found enhanced in these highly malignant cells. A previous study in glioblastoma cell lines reported that Gal-8 coating a plastic surface stimulates two-dimensional motility. Because in other cells Gal-8 arrests proliferation and induces apoptosis, here we extend its study by analyzing all of these processes in a U87 glioblastoma cell model. We used immunoblot and RT-PCR for Gal-8 expression analysis, recombinant Gal-8 produced in a bacteria system for Gal-8 treatment of the cells, and shRNA in lentivirus transduction for Gal-8 silencing. Cell migration as assessed in transwell filters. Cell proliferation, cell cycle and apoptosis were analyzed by FACS. Gal-8 as a soluble stimulus triggered chemotactic migration of U87 cells across the polycarbonate filter of transwell chambers, almost as intensively as fetal bovine serum. Unexpectedly, Gal-8 also enhanced U87 cell growth. Co-incubation of Gal-8 with lactose, which blocks galectin-glycan interactions, abrogated both effects. Immunoblot showed Gal-8 in conditioned media reflecting its secretion. U87 cells transduced with silencing shRNA in a lentiviral vector expressed and secreted 30-40 % of their normal Gal-8 levels. These cells maintained their migratory capabilities, but decreased their proliferation rate and underwent higher levels of apoptosis, as revealed by flow cytometry analysis of cell cycle, CFSE and activated caspase-3 staining. Proliferation seemed

  4. Radiosensitivity of human ovarian carcinoma and melanoma cells to γ-rays and protons.

    PubMed

    Keta, Otilija; Todorović, Danijela; Popović, Nataša; Korićanac, Lela; Cuttone, Giacomo; Petrović, Ivan; Ristić-Fira, Aleksandra

    2014-06-29

    Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to γ-rays and protons. Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88 ±2.15 MeV, corresponding to the linear energy transfer of 4.7 ±0.2 keV/µm. Irradiations with γ-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results showed that γ-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91 ±0.01 for γ-rays and 0.81 ±0.01 for protons, while those for HTB140 cells were 0.93 ±0.01 for γ-rays and 0.86 ±0.01 for protons. Relative biological effectiveness of protons, being 2.47 ±0.22 for 59M and 2.08 ±0.36 for HTB140, indicated that protons provoked better cell elimination than γ-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to γ-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than γ-rays. The dissimilar response of these cells to radiation is related to their different features.

  5. MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme.

    PubMed

    Li, Wen-Bo; Ma, Min-Wang; Dong, Li-Jie; Wang, Fei; Chen, Lu-Xia; Li, Xiao-Rong

    2011-09-15

    Aberrant expression of microRNAs (miRNAs) has been implicated in cancer initiation and progression. In this study, we found that microRNA-34a (miR-34a) is significantly downregulated in glioblastoma multiforme (GBM) specimens compared with normal brain tissues. Growth curve and colony formation assays revealed that miR-34a suppresses proliferation of U373MG and SHG44 glioblastoma cells. Overexpression of miR-34a could induce apoptosis of glioblastoma cells. Also, we identified notch1 as a direct target gene of miR-34a. Knockdown of notch1 showed similar cellular functions as overexpression of miR-34a both in vitro and in vivo. Collectively, our findings show that miR-34a is downregulated in GBM cells and inhibits GBM growth by targeting notch1.

  6. Real-time visualization of nanoparticles interacting with glioblastoma stem cells.

    PubMed

    Pohlmann, Elliot S; Patel, Kaya; Guo, Sujuan; Dukes, Madeline J; Sheng, Zhi; Kelly, Deborah F

    2015-04-08

    Nanoparticle-based therapy represents a novel and promising approach to treat glioblastoma, the most common and lethal malignant brain cancer. Although similar therapies have achieved significant cytotoxicity in cultured glioblastoma or glioblastoma stem cells (GSCs), the lack of an appropriate approach to monitor interactions between cells and nanoparticle-based therapies impedes their further clinical application in human patients. To address this critical issue, we first obtained NOTCH1 positive GSCs from patient-derived primary cultures. We then developed a new imaging approach to directly observe the dynamic nature of nanoparticles at the molecular level using in situ transmission electron microscopy (TEM). Utilizing these tools we were able to visualize real-time movements of nanoparticles interacting with GSCs for the first time. Overall, we show strong proof-of-concept results that real-time visualization of nanoparticles in single cells can be achieved at the nanoscale using TEM, thereby providing a powerful platform for the development of nanotherapeutics.

  7. miR-25 modulates NSCLC cell radio-sensitivity through directly inhibiting BTG2 expression

    SciTech Connect

    He, Zhiwei Liu, Yi Xiao, Bing Qian, Xiaosen

    2015-02-13

    A large proportion of the NSCLC patients were insensitive to radiotherapy, but the exact mechanism is still unclear. This study explored the role of miR-25 in regulating sensitivity of NSCLC cells to ionizing radiation (IR) and its downstream targets. Based on measurement in tumor samples from NSCLC patients, this study found that miR-25 expression is upregulated in both NSCLC and radio-resistant NSCLC patients compared the healthy and radio-sensitive controls. In addition, BTG expression was found negatively correlated with miR-25a expression in the both tissues and cells. By applying luciferase reporter assay, we verified two putative binding sites between miR-25 and BTG2. Therefore, BTG2 is a directly target of miR-25 in NSCLC cancer. By applying loss-and-gain function analysis in NSCLC cell lines, we demonstrated that miR-25-BTG2 axis could directly regulated BTG2 expression and affect radiotherapy sensitivity of NSCLC cells. - Highlights: • miR-25 is upregulated, while BTG2 is downregulated in radioresistant NSCLC patients. • miR-25 modulates sensitivity to radiation induced apoptosis. • miR-25 directly targets BTG2 and suppresses its expression. • miR-25 modulates sensitivity to radiotherapy through inhibiting BTG2 expression.

  8. RK-33 Radiosensitizes Prostate Cancer Cells by Blocking the RNA Helicase DDX3

    PubMed Central

    Xie, Min; Vesuna, Farhad; Tantravedi, Saritha; Bol, Guus M.; Heerma van Voss, Marise R.; Nugent, Katriana; Malek, Reem; Gabrielson, Kathleen; van Diest, Paul J.; Tran, Phuoc T.; Raman, Venu

    2017-01-01

    Despite advances in diagnosis and treatment, prostate cancer is the most prevalent cancer in males and the second highest cause of cancer-related mortality. We identified an RNA helicase gene, DDX3 (DDX3X), which is overexpressed in prostate cancers, and whose expression is directly correlated with high Gleason scores. Knockdown of DDX3 in the aggressive prostate cancer cell lines DU145 and 22Rv1 resulted in significantly reduced clonogenicity. To target DDX3, we rationally designed a small molecule, RK-33, which docks into the ATP-binding domain of DDX3. Functional studies indicated that RK-33 preferentially bound to DDX3 and perturbed its activity. RK-33 treatment of prostate cancer cell lines DU145, 22Rv1, and LNCaP (which have high DDX3 levels) decreased proliferation and induced a G1 phase cell-cycle arrest. Conversely, the low DDX3–expressing cell line, PC3, exhibited few changes following RK-33 treatment. Importantly, combination studies using RK-33 and radiation exhibited synergistic effects both in vitro and in a xenograft model of prostate cancer demonstrating the role of RK-33 as a radiosensitizer. Taken together, these results indicate that blocking DDX3 by RK-33 in combination with radiation treatment is a viable option for treating locally advanced prostate cancer. PMID:27634756

  9. Betulinyl Sulfamates as Anticancer Agents and Radiosensitizers in Human Breast Cancer Cells

    PubMed Central

    Bache, Matthias; Münch, Christin; Güttler, Antje; Wichmann, Henri; Theuerkorn, Katharina; Emmerich, Daniel; Paschke, Reinhard; Vordermark, Dirk

    2015-01-01

    Betulinic acid (BA), a natural compound of birch bark, is cytotoxic for many tumors. Recently, a betulinyl sulfamate was described that inhibits carbonic anhydrases (CA), such as CAIX, an attractive target for tumor-selective therapy strategies in hypoxic cancer cells. Data on combined CAIX inhibition with radiotherapy are rare. In the human breast cancer cell lines MDA-MB231 and MCF7, the effects of BA and betulinyl sulfamates on cellular and radiobiological behavior under normoxia and hypoxia were evaluated. The two most effective betulinyl sulfamates CAI 1 and CAI 3 demonstrated a 1.8–2.8-fold higher cytotoxicity than BA under normoxia in breast cancer cells, with IC50 values between 11.1 and 18.1 µM. BA exhibits its strongest cytotoxicity with IC50 values of 8.2 and 16.4 µM under hypoxia. All three substances show a dose-dependent increase in apoptosis, inhibition of migration, and inhibition of hypoxia-induced gene expression. In combination with irradiation, betulinyl sulfamates act as radiosensitizers, with DMF10 values of 1.47 (CAI 1) and 1.75 (CAI 3) under hypoxia in MDA-MB231 cells. BA showed additive effects in combination with irradiation. Taken together; our results suggest that BA and betulinyl sulfamates seem to be attractive substances to combine with radiotherapy; particularly for hypoxic breast cancer. PMID:26540049

  10. The radiosensitizing effect of immunoadjuvant OM-174 requires cooperation between immune and tumor cells through interferon-gamma and inducible nitric oxide synthase

    SciTech Connect

    Ridder, Mark de . E-mail: Mark.De.Ridder@vub.ac.be; Verovski, Valeri N.; Chiavaroli, Carlo; Berge, Dirk L. van den; Monsaert, Christinne; Law, Kalun; Storme, Guy A.

    2006-12-01

    Purpose: To explore whether antitumor immunoadjuvant OM-174 can stimulate immune cells to produce interferon-{gamma} (IFN-{gamma}) and thereby radiosensitize tumor cells. Methods and Materials: Splenocytes from BALB/c mice were stimulated by OM-174 at plasma-achievable concentrations (0.03-3 {mu}g/mL), and afterward analyzed for the expression and secretion of IFN-{gamma} by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Stimulated splenocytes were used as a source of IFN-{gamma} to radiosensitize hypoxic EMT-6 tumor cells through the cytokine-inducible isoform of nitric oxide synthase (iNOS). Results: OM-174 activated the production of IFN-{gamma} at high levels that reached 70 ng/mL in normoxia (21% oxygen) and 27 ng/mL in tumor-relevant hypoxia (1% oxygen). This caused up to 2.1-fold radiosensitization of EMT-6 tumor cells, which was associated with the iNOS-mediated production of the radiosensitizing molecule nitric oxide, as confirmed by accumulation of its oxidative metabolite nitrite, Western blot analysis, and reverse transcriptase-polymerase chain reaction. Both iNOS activation and radiosensitization were counteracted by neutralizing antibodies against IFN-{gamma}. The same mechanism of radiosensitization through the IFN-{gamma} secretion pathway was identified for IL-12 + IL-18, which are known to mediate IFN-{gamma} responses. Hypoxia displayed a dual effect on the immune-tumor cell interaction, by downregulating the expression of the IFN-{gamma} gene while upregulating iNOS at transcriptional level. Conclusion: Immunoadjuvant OM-174 is an efficient radiosensitizer of tumor cells through activation of the IFN-{gamma} secretion pathway in immune cells. This finding indicates a rationale for combining immunostimulatory and radiosensitizing strategies and extends the potential therapeutic applications of OM-174.

  11. Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells.

    PubMed Central

    Gladson, C L; Cheresh, D A

    1991-01-01

    Glioblastoma multiforme, the most malignant astroglial-derived tumor, grows as an adherent mass and locally invades normal brain. An examination of adult cerebral glioblastoma biopsy material for the expression of adhesive proteins that might potentiate adhesion and invasion demonstrated tumor cell-associated vitronectin (5/5). In contrast, vitronectin was not detected associated with glial cells in low grade astroglial tumors (0/4), reactive astrogliosis (0/4), or in normal adult cortex and cerebral white matter (0/5). Also, a wide variety of other adhesive ligands were absent from the glioblastoma tumor parenchyma. The alpha v beta 3 integrin was the only vitronectin receptor identified in glioblastoma tumors in situ, and was also not expressed on low grade astroglial-derived tumors, reactive astrogliosis, or on glia or neurons in normal adult cortex and cerebral white matter. In a cell attachment assay, cultured glioblastoma cells attached to the parenchyma of glioblastoma tumor cryostat sections at the sites of vitronectin expression, but failed to attach to normal brain. This adhesion was inhibited by antibodies directed against vitronectin, the alpha v beta 3 integrin, and with an Arg-Gly-Asp-containing peptide. These data provide evidence for a cell adhesion mechanism in glioblastoma tumors that might potentiate glioblastoma cell invasion of normal brain. Images PMID:1721625

  12. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype

    PubMed Central

    Duan, Shunlei; Yuan, Guohong; Liu, Xiaomeng; Ren, Ruotong; Li, Jingyi; Zhang, Weizhou; Wu, Jun; Xu, Xiuling; Fu, Lina; Li, Ying; Yang, Jiping; Zhang, Weiqi; Bai, Ruijun; Yi, Fei; Suzuki, Keiichiro; Gao, Hua; Esteban, Concepcion Rodriguez; Zhang, Chuanbao; Belmonte, Juan Carlos Izpisua; Chen, Zhiguo; Wang, Xiaomin; Jiang, Tao; Qu, Jing; Tang, Fuchou; Liu, Guang-Hui

    2015-01-01

    PTEN is a tumour suppressor frequently mutated in many types of cancers. Here we show that targeted disruption of PTEN leads to neoplastic transformation of human neural stem cells (NSCs), but not mesenchymal stem cells. PTEN-deficient NSCs display neoplasm-associated metabolic and gene expression profiles and generate intracranial tumours in immunodeficient mice. PTEN is localized to the nucleus in NSCs, binds to the PAX7 promoter through association with cAMP responsive element binding protein 1 (CREB)/CREB binding protein (CBP) and inhibits PAX7 transcription. PTEN deficiency leads to the upregulation of PAX7, which in turn promotes oncogenic transformation of NSCs and instates ‘aggressiveness' in human glioblastoma stem cells. In a large clinical database, we find increased PAX7 levels in PTEN-deficient glioblastoma. Furthermore, we identify that mitomycin C selectively triggers apoptosis in NSCs with PTEN deficiency. Together, we uncover a potential mechanism of how PTEN safeguards NSCs, and establish a cellular platform to identify factors involved in NSC transformation, potentially permitting personalized treatment of glioblastoma. PMID:26632666

  13. Bevacizumab radiosensitizes non-small cell lung cancer xenografts by inhibiting DNA double-strand break repair in endothelial cells.

    PubMed

    Gao, Hui; Xue, Jianxin; Zhou, Lin; Lan, Jie; He, Jiazhuo; Na, Feifei; Yang, Lifei; Deng, Lei; Lu, You

    2015-08-28

    The aims of this study were to evaluate the effects of biweekly bevacizumab administration on a tumor microenvironment and to investigate the mechanisms of radiosensitization that were induced by it. Briefly, bevacizumab was administered intravenously to Balb/c nude mice bearing non-small cell lung cancer (NSCLC) H1975 xenografts; in addition, bevacizumab was added to NSCLC or endothelial cells (ECs) in vitro, followed by irradiation (IR). The anti-tumor efficacy, anti-angiogenic efficacy and repair of DNA double-strand breaks (DSBs) were evaluated. The activation of signaling pathways was determined using immunoprecipitation (IP) and WB analyses. Finally, biweekly bevacizumab administration inhibited the growth of H1975 xenografts and induced vascular normalization periodically. Bevacizumab more significantly increased cellular DSB and EC apoptosis when administered 1 h prior to 12 Gy/1f IR than when administered 5 days prior to IR, thereby inhibiting tumor angiogenesis and growth. In vitro, bevacizumab more effectively increased DSBs and apoptosis prior to IR and inhibited the clonogenic survival of ECs but not NSCLC cells. Using IP and WB analyses, we confirmed that bevacizumab can directly inhibit the phosphorylation of components of the VEGR2/PI3K/Akt/DNA-PKcs signaling pathway that are induced by IR in ECs. In conclusion, bevacizumab radiosensitizes NSCLC xenografts mainly by inhibiting DSB repair in ECs rather than by inducing vascular normalization.

  14. Low concentration of quercetin antagonizes the invasion and angiogenesis of human glioblastoma U251 cells.

    PubMed

    Liu, Yue; Tang, Zhen-Gang; Yang, Jian-Quan; Zhou, Yi; Meng, Ling-Hu; Wang, Heng; Li, Cai-Li

    2017-01-01

    Glioblastoma is the most aggressive type of brain tumor with a very poor prognosis. Therefore, it is always of great importance to explore and develop new potential treatment for glioblastoma. Quercetin, a flavonoid present in a variety of human foods, has been shown to inhibit various tumor cell proliferation. In this study, we found that treating human glioblastoma U251 cells with 10 μg/mL quercetin for 24 hours, a concentration that was far below the IC50 (113.65 μg/mL) and at which quercetin failed to inhibit cell proliferation, inhibited cell migration (30%) and cell invasion as examined by wound scratch assay and transwell assay, respectively. We further showed that 10 μg/mL quercetin inhibited cell migration and tube formation of human umbilical vein endothelial cells induced by the conditioned medium derived from U251 cell culture. The inhibitory effect of quercetin on migration and angiogenesis is possibly mediated through the downregulation of protein levels of VEGFA, MMP9, and MMP2 as detected by Western blot. Our findings demonstrated that low concentration of quercetin antagonized glioblastoma cell invasion and angiogenesis in vitro.

  15. c-MYC is a radiosensitive locus in human breast cells

    PubMed Central

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-01-01

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  16. c-MYC is a radiosensitive locus in human breast cells.

    PubMed

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-09-17

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer.

  17. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma.

    PubMed

    Kessler, Tobias; Sahm, Felix; Blaes, Jonas; Osswald, Matthias; Rübmann, Petra; Milford, David; Urban, Severino; Jestaedt, Leonie; Heiland, Sabine; Bendszus, Martin; Hertenstein, Anne; Pfenning, Philipp-Niclas; Ruiz de Almodóvar, Carmen; Wick, Antje; Winkler, Frank; von Deimling, Andreas; Platten, Michael; Wick, Wolfgang; Weiler, Markus

    2015-10-13

    Loss of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a prerequisite for tumor cell-specific expression of vascular endothelial growth factor receptor (VEGFR)-2 in glioblastoma defining a subgroup prone to develop evasive resistance towards antiangiogenic treatments. Immunohistochemical analysis of human tumor tissues showed VEGFR-2 expression in glioma cells in 19% of specimens examined, mainly in the infiltration zone. Glioma cell VEGFR-2 positivity was restricted to PTEN-deficient tumor specimens. PTEN overexpression reduced VEGFR-2 expression in vitro, as well as knock-down of raptor or rictor. Genetic interference with VEGFR-2 revealed proproliferative, antiinvasive and chemoprotective functions for VEGFR-2 in glioma cells. VEGFR-2-dependent cellular effects were concomitant with activation of 'kappa-light-chain-enhancer' of activated B-cells, protein kinase B, and N-myc downstream regulated gene 1. Two-photon in vivo microscopy revealed that expression of VEGFR-2 in glioma cells hampers antiangiogenesis. Bevacizumab induces a proinvasive response in VEGFR-2-positive glioma cells. Patients with PTEN-negative glioblastomas had a shorter survival after initiation of bevacizumab therapy compared with PTEN-positive glioblastomas. Conclusively, expression of VEGFR-2 in glioma cells indicates an aggressive glioblastoma subgroup developing early resistance to temozolomide or bevacizumab. Loss of PTEN may serve as a biomarker identifying those tumors upfront by routine neuropathological methods.

  18. Genome-wide analysis of OCT4 binding sites in glioblastoma cancer cells.

    PubMed

    Fang, Xue-feng; Zhang, Wei-yi; Zhao, Na; Yu, Wei; Ding, Dong; Hong, Xu; Li, Li-sha; Zhang, Hua-rong; Zheng, Shu; Lin, Biao-yang

    2011-10-01

    OCT4, a member of the POU family of gene products, is an octamer motif-binding transcription factor. As it is known to play a crucial role in cancer processes including proliferation, invasion, and chemoradioresistance, it is important to identify the direct targets of OCT4 in living cancer cells. Here, chromatin immunoprecipitation-sequencing (ChIP-seq) was used to identify OCT4 binding sites in glioblastoma cancer cells. The results showed that 5438 OCT4 binding sites were localized in the glioblastoma cancer genome and that these sites contained a consensus sequence TTTkswTw (k=T or G, s=C or G, w=A or T), which occurred 3931 times in 2312 OCT4 binding regions. Furthermore, binding motifs of some other transcription factors were identified in OCT4 binding regions. Our results provide a valuable dataset for understanding gene regulation mechanisms underlying the function of OCT4 in glioblastoma cancer.

  19. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    SciTech Connect

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results: IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.

  20. Radiosensitizers, radioprotectors, and radiation mitigators.

    PubMed

    Raviraj, Jayam; Bokkasam, Vijay Kumar; Kumar, Venkata Suneel; Reddy, Uday Shankar; Suman, Venkata

    2014-01-01

    Radiotherapy is regarded as one of the most important therapeutic modality for the treatment of malignant lesions. This field is undergoing rapid advancements in the recent times. With the use of radiosensitizers and radioprotective agents, the course of radiotherapy has improved the sensitization of tumor cells and protection of normal cells, respectively. The aim of this paper was to critically review and analyze the available compounds used as radiosensitizers, radioprotectors, and radiation mitigators. For reviewing, the author used the electronic search for the keywords 'Radiosensitizers', 'Radioprotectors', 'Radiation mitigators' on PubMed for inclusion of previously published articles and further search of reference papers on individual radiosensitizing and radioprotecting agents was done. Radiosensitizers are agents that sensitize the tumor cells to radiation. These compounds apparently promote fixation of the free radicals produced by radiation damage at the molecular level. The mechanism of action is similar to the oxygen effect, in which biochemical reactions in the damaged molecules prevent repair of the cellular radiation damage. Free radicals such as OH + are captured by the electron affinity of the radiosensitizers, rendering the molecules incapable of repair. Radioprotectors are compounds that are designed to reduce the damage in normal tissues caused by radiation. These compounds are often antioxidants and must be present before or at the time of radiation for effectiveness. Other agents, termed mitigators, may be used to minimize toxicity even after radiation has been delivered. This article tries to discuss the various aspects of radiosensitizers, radioprotectors, and radiation mitigators including the newer agents.

  1. Coibamide A Induces mTOR-Independent Autophagy and Cell Death in Human Glioblastoma Cells

    PubMed Central

    Hau, Andrew M.; Greenwood, Jeffrey A.; Löhr, Christiane V.; Serrill, Jeffrey D.; Proteau, Philip J.; Ganley, Ian G.; McPhail, Kerry L.; Ishmael, Jane E.

    2013-01-01

    Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and “COMPARE-negative” profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50<100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs). This activity was lost upon linearization of the molecule, highlighting the importance of the cyclized structure for both anti-proliferative and cytotoxic responses. We show that coibamide A induces autophagosome accumulation in human glioblastoma cell types and MEFs via an mTOR-independent mechanism; no change was observed in the phosphorylation state of ULK1 (Ser-757), p70 S6K1 (Thr-389), S6 ribosomal protein (Ser-235/236) and 4EBP-1 (Thr-37/46). Coibamide A also induces morphologically and biochemically distinct forms of cell death according to cell type. SF-295 glioblastoma cells showed caspase-3 activation and evidence of apoptotic cell death in a pattern that was also seen in wild-type and autophagy-deficient (ATG5-null) MEFs. In contrast, cell death in U87-MG glioblastoma cells was characterized by extensive cytoplasmic vacuolization and lacked clear apoptotic features. Cell death was attenuated, but still triggered, in Apaf-1-null MEFs lacking a functional mitochondria-mediated apoptotic pathway. From the study of ATG5-null MEFs we conclude that a conventional autophagy response is not required for coibamide A-induced cell death, but likely occurs in dying cells in response to treatment. Coibamide A represents a natural product scaffold with potential for the study of mTOR-independent signaling and cell death

  2. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    SciTech Connect

    Dittmann, Klaus H. Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.

  3. [2,4-(13)C]β-hydroxybutyrate metabolism in astrocytes and C6 glioblastoma cells.

    PubMed

    Eloqayli, Haytham; Melø, Torun M; Haukvik, Anne; Sonnewald, Ursula

    2011-08-01

    This study was undertaken to determine if the ketogenic diet could be useful for glioblastoma patients. The hypothesis tested was whether glioblastoma cells can metabolize ketone bodies. Cerebellar astrocytes and C6 glioblastoma cells were incubated in glutamine and serum free medium containing [2,4-(13)C]β-hydroxybutyrate (BHB) with and without glucose. Furthermore, C6 cells were incubated with [1-(13)C]glucose in the presence and absence of BHB. Cell extracts were analyzed by mass spectrometry and media by (1)H magnetic resonance spectroscopy and HPLC. Using [2,4-(13)C]BHB and [1-(13)C]glucose it could be shown that C6 cells, in analogy to astrocytes, had efficient mitochondrial activity, evidenced by (13)C labeling of glutamate, glutamine and aspartate. However, in the presence of glucose, astrocytes were able to produce and release glutamine, whereas this was not accomplished by the C6 cells, suggesting lack of anaplerosis in the latter. We hypothesize that glioblastoma cells kill neurons by not supplying the necessary glutamine, and by releasing glutamate.

  4. Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells

    PubMed Central

    Gandhi, Nishant; Wild, Aaron T.; Chettiar, Sivarajan T.; Aziz, Khaled; Kato, Yoshinori; Gajula, Rajendra P.; Williams, Russell D.; Cades, Jessica A.; Annadanam, Anvesh; Song, Danny; Zhang, Yonggang; Hales, Russell K.; Herman, Joseph M.; Armour, Elwood; DeWeese, Theodore L.; Schaeffer, Edward M.; Tran, Phuoc T.

    2013-01-01

    Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the “non-oncogene” addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of this machinery, is a molecular chaperone required for energy-driven stabilization and selective degradation of misfolded “client” proteins, that is commonly overexpressed in tumor cells. Hsp90 client proteins include critical components of pathways implicated in prostate cancer cell survival and radioresistance, such as androgen receptor signaling and the PI3K-Akt-mTOR pathway. We examined the effects of a novel non-geldanamycin Hsp90 inhibitor, AUY922, combined with radiation (RT) on two prostate cancer cell lines, Myc-CaP and PC3, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γ-H2AX foci kinetics and client protein expression in pathways important for prostate cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined treatment (RT-AUY922) on the PI3K-Akt-mTOR and AR pathways in a hind-flank tumor graft model. We observed that AUY922 caused supra-additive radiosensitization in both cell lines at low nanomolar doses with enhancement ratios between 1.4–1.7 (p < 0.01). RT-AUY922 increased apoptotic cell death compared with either therapy alone, induced G2-M arrest and produced marked changes in client protein expression. These results were confirmed in vivo, where RT-AUY922 combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in Myc-CaP and PC3 tumor grafts (both p < 0.0001). Our data suggest that combined RT-AUY922 therapy exhibits promising activity against prostate cancer cells, which should be investigated in clinical studies. PMID:23358469

  5. Oxygen-dependent regulation of NDRG1 in human glioblastoma cells in vitro and in vivo.

    PubMed

    Said, Harun M; Stein, Susanne; Hagemann, Carsten; Polat, Buelent; Staab, Adrian; Anacker, Jelena; Schoemig, Beate; Theobald, Matthias; Flentje, Michael; Vordermark, Dirk

    2009-01-01

    NDRG1 is a member of the N-myc downregulated gene (NDRG) family. Its induction occurs via diverse physiological and pathological conditions (hypoxia, cellular differentiation, heavy metal, N-myc, neoplasia) which modulate NDRG1 transcription, mRNA stability and translation. Hypoxia, among other factors, induces NDRG1 expression and plays an important role in its regulation of expression. To date, the complete detailed function of this protein in humans remains unknown. Hypoxia represents a common feature of solid tumors. In our study, differences in NDRG1 expression between different WHO grades of astrocytic tumors were comparatively examined in vivo in human low-grade astrocytoma (WHO grade 2) and glioblastoma (WHO grade 4) at both the protein and mRNA level by Western blot analysis and semi-quantitative RT-PCR, respectively. Furthermore, the same proteins were determined in vitro in U373, U251 and GaMG human glioblastoma cells using the same methods. HIF-1alpha protein and mRNA regulation under hypoxia was also determined in vitro in U251, U373 and GaMG cells. This regulation was shown at the same levels in vivo in human low-grade astrocytoma (WHO grade 2) and glioblastoma which showed a higher NDRG1 overexpression level in glioblastoma than in low-grade astrocytoma. siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements (HREs) bound by nuclear HIF-1alpha in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. Due to its clear regulatory behavior under hypoxic condition in human tumor cells, NDRG1 represents an additional

  6. Evaluation of The Combined Effects of Hyperthermia, Cobalt-60 Gamma Rays and IUdR on Cultured Glioblastoma Spheroid Cells and Dosimetry Using TLD-100.

    PubMed

    Neshasteh-Riz, Ali; Rahdani, Rozhin; Mostaar, Ahmad

    2014-01-01

    In radiation treatment, the irradiation which is effective enough to control the tumors far exceeds normal-tissues tolerance. Thus to avoid such unfavourable outcomes, some methods sensitizing the tumor cells to radiation are used. Iododeoxyuridine (IUdR) is a halogenated thymidine analogue that known to be effective as a radiosensitizer in human cancer therapy. Improving the potential efficacy of radiation therapy after combining to hyperthermia depends on the magnitude of the differential sensitization of the hyperthermic effects or on the differential cytotoxicity of the radiation effects on the tumor cells. In this study, we evaluated the combined effects of IUdR, hyperthermia and gamma rays of (60)Co on human glioblastoma spheroids culture. In this experimental study,the cultured spheroids with 100µm diameter were treated by 1 µM IUdR, 43°C hyperthermia for an hour and 2 Gy gamma rays, respectively. The DNA damages induced in cells were compared using alkaline comet assay method, and dosimetry was then performed by TLD-100. Comet scores were calculated as mean ± standard error of mean (SEM) using one-way ANOVA. Comparison of DNA damages induced by IUdR and hyperthermia + gamma treatment showed 2.67- and 1.92-fold enhancement, respectively, as compared to the damages induced by radiation alone or radiation combined IUdR. Dosimetry results showed the accurate dose delivered to cells. Analysis of the comet tail moments of spheroids showed that the radiation treatments combined with hyperthermia and IUdR caused significant radiosensitization when compared to related results of irradiation alone or of irradiation with IUdR. These results suggest a potential clinical advantage of combining radiation with hyperthermia and indicate effectiveness of hyperthermia treatment in inducing cytotoxicity of tumor cells.

  7. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype.

    PubMed

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M; Maiti, Sourindra N; Thomas, Ginu; Zhou, Shouhao; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D; Yaghi, Nasser K; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S; Prabhu, Sujit S; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A; Bruner, Janet M; Fuller, Gregory N; Bar-Or, Amit; Li, Wei; Colen, Rivka R; Curran, Michael A; Bhat, Krishna P; Antel, Jack P; Cooper, Laurence J; Sulman, Erik P; Heimberger, Amy B

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b(+) cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages.

  8. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

    PubMed Central

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M.; Maiti, Sourindra N.; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D.; Yaghi, Nasser K.; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S.; Prabhu, Sujit S.; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A.; Bruner, Janet M.; Fuller, Gregory N.; Bar-Or, Amit; Li, Wei; Colen, Rivka R.; Curran, Michael A.; Bhat, Krishna P.; Antel, Jack P.; Cooper, Laurence J.; Sulman, Erik P.; Heimberger, Amy B.

    2016-01-01

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages. PMID:26973881

  9. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    NASA Astrophysics Data System (ADS)

    Basanta, David; Scott, Jacob G.; Rockne, Russ; Swanson, Kristin R.; Anderson, Alexander R. A.

    2011-02-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints.

  10. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    PubMed Central

    Basanta, David; Scott, Jacob G.; Rockne, Russ; Swanson, Kristin R.; Anderson, Alexander R. A.

    2011-01-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature, however, IDH-1 mutation may be used as a surrogate marker to distinguish primary between secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints. PMID:21301070

  11. Tumor-targeted Chlorotoxin-coupled Nanoparticles for Nucleic Acid Delivery to Glioblastoma Cells: A Promising System for Glioblastoma Treatment

    PubMed Central

    Costa, Pedro M; Cardoso, Ana L; Mendonça, Liliana S; Serani, Angelo; Custódia, Carlos; Conceição, Mariana; Simões, Sérgio; Moreira, João N; Pereira de Almeida, Luís; Pedroso de Lima, Maria C

    2013-01-01

    The present work aimed at the development and application of a lipid-based nanocarrier for targeted delivery of nucleic acids to glioblastoma (GBM). For this purpose, chlorotoxin (CTX), a peptide reported to bind selectively to glioma cells while showing no affinity for non-neoplastic cells, was covalently coupled to liposomes encapsulating antisense oligonucleotides (asOs) or small interfering RNAs (siRNAs). The resulting targeted nanoparticles, designated CTX-coupled stable nucleic acid lipid particles (SNALPs), exhibited excellent features for in vivo application, namely small size (<180 nm) and neutral surface charge. Cellular association and internalization studies revealed that attachment of CTX onto the liposomal surface enhanced particle internalization into glioma cells, whereas no significant internalization was observed in noncancer cells. Moreover, nanoparticle-mediated miR-21 silencing in U87 human GBM and GL261 mouse glioma cells resulted in increased levels of the tumor suppressors PTEN and PDCD4, caspase 3/7 activation and decreased tumor cell proliferation. Preliminary in vivo studies revealed that CTX enhances particle internalization into established intracranial tumors. Overall, our results indicate that the developed targeted nanoparticles represent a valuable tool for targeted nucleic acid delivery to cancer cells. Combined with a drug-based therapy, nanoparticle-mediated miR-21 silencing constitutes a promising multimodal therapeutic approach towards GBM. PMID:23778499

  12. Phloretin induces cell cycle arrest and apoptosis of human glioblastoma cells through the generation of reactive oxygen species.

    PubMed

    Liu, Yuanyuan; Fan, Chenghe; Pu, Lv; Wei, Cui; Jin, Haiqiang; Teng, Yuming; Zhao, Mingming; Yu, Albert Cheung Hoi; Jiang, Feng; Shu, Junlong; Li, Fan; Peng, Qing; Kong, Jian; Pan, Bing; Zheng, Lemin; Huang, Yining

    2016-06-01

    Phloretin, a flavonoid present in various plants, has been reported to exert anticarcinogenic effects. However, the mechanism of its chemo-preventive effect on human glioblastoma cells is not fully understood. This study aimed to investigate the molecular mechanism of phloretin and its associated chemo-preventive effect in human glioblastoma cells. The results indicate that phloretin inhibited cell proliferation by inducing cell cycle arrest at the G0-G1 phase and induced apoptosis of human glioblastoma cells. Phloretin-induced cell cycle arrest was associated with increased expression of p27 and decreased expression of cdk2, cdk4, cdk6, cyclinD and cyclinE. Moreover, the PI3K/AKT/mTOR signaling cascades were suppressed by phloretin in a dose-dependent manner. In addition, phloretin triggered the mitochondrial apoptosis pathway and generated reactive oxygen species (ROS). This was accompanied by the up-regulation of Bax, Bak and c-PARP and the down-regulation of Bcl-2. The antioxidant agents N-acetyl-L-cysteine and glutathione weakened the effect of phloretin on glioblastoma cells. In conclusion, these results demonstrate that phloretin exerts potent chemo-preventive activity in human glioblastoma cells through the generation of ROS.

  13. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab

    PubMed Central

    2014-01-01

    Background Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. Methods miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. Results In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the β-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. Conclusions miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy. PMID:24650032

  14. Expression and stability of c-sis mRNA in human glioblastoma cells

    SciTech Connect

    Press, R.D.; Samols, D.; Goldthwait, D.A.

    1988-07-26

    The production of platelet-derived growth factor like (PDGF-like) material by glioblastomas may be involved in the conversion of normal cells to tumor cells. In an investigation of this problem, the authors have examined some of the properties of the platelet-derived growth factor B-chain mRNA (c-sis mRNA) by a sensitive and quantitative RNA-RNA solution hybridization method. In 5 out of 8 human glioblastoma cell lines, c-sis mRNA was present, and in the line with the highest level, there were approximately 4-10 molecules per cell. The half-lives of the c-sis mRNA in two glioblastoma cell lines were 2.6 and 3.4 h, while in human umbilical vein endothelial (HUVE) and bladder carcinoma (T24) cells they were 1.6 and 2.5 h, respectively. Inhibiting protein synthesis produced no significant alteration of the c-sis mRNA half-lives in the glioblastoma or HUVE cells. The A-U-rich sequence at the 3' end of the c-sis mRNA therefore does not appear to affect the mRNA stability in the presence of cycloheximide as it does in other transcripts. The similarity of the c-sis mRNA half-lives in normal and tumor cells suggests that regulation of stability of c-sis mRNA is not a major factor in tumorigenesis in the glioblastoma cell lines examined.

  15. Roles of zinc-fingers and homeoboxes 1 during the proliferation, migration, and invasion of glioblastoma cells.

    PubMed

    Kwon, Ryuk-Jun; Han, Myoung-Eun; Kim, Youn-Jae; Kim, Yun Hak; Kim, Ji-Young; Liu, Liangwen; Heo, Woong; Oh, Sae-Ock

    2017-03-01

    Zinc-fingers and homeoboxes 1 (ZHX1) is a nuclear transcription repressor and known to be involved in cell differentiation and tumorigenesis. However, the pathophysiological roles of ZHX1 have not been characterized in glioblastoma. We examined ZHX1 expression in glioblastoma patients' tissues and analyzed overall survival of the patients based on expression level of ZHX1. We also examined the effects of ZHX1 on proliferation and motility of glioblastoma cells. In silico analysis and immunohistochemical studies showed that the messenger RNA and protein expressions of ZHX1 were higher in the tissues of glioblastoma patients than in normal brain tissues, and that its overexpression was associated with reduced survival. In vitro, the downregulation of ZHX1 decreased the proliferation, migration, and invasion of glioblastoma cells, whereas its upregulation had the opposite effects. In addition, we showed ZHX1 could contribute to glioblastoma progression via the regulations of TWIST1 and SNAI2. Taken together, this study demonstrates that ZHX1 plays crucial roles in the progression of glioblastoma, and its findings suggest that ZHX1 be viewed as a potential prognostic maker and therapeutic target of glioblastoma.

  16. Radiosensitivity increases with differentiation status of murine hemopoietic progenitor cells selected using enriched marrow subpopulations and recombinant growth factors

    SciTech Connect

    Baird, M.C.; Hendry, J.H.; Testa, N.G. )

    1990-09-01

    The radiosensitivity of populations of colony-forming cells (CFC) in murine bone marrow was investigated using different recombinant colony-stimulating factors (CSFs; murine IL-3 and granulocyte-macrophage CSF and human granulocyte CSF), or purified murine macrophage CSF. With unfractionated normal bone marrow the CFC increased in radiosensitivity as they progressed through the granulocyte lineage. The D0 values ranged from 129 +/- 12 cGy for CFC stimulated with GM-CSF down to 42 +/- 2 cGy after stimulation with G-CSF. IL-3 stimulated a CFC population which gave the only survival curve with a shoulder (n = 1.9 +/- 0.3). With semipurified populations of primitive or bipotential CFC, D0 values were generally lower with respect to the equivalent values for unpurified bone marrow (range 62 +/- 7 cGy to 135 +/- 7 cGy). Changes in cluster/colony ratio and colony morphology together possibly with products of accessory cells influence the interpretation of the radiosensitivity parameters.

  17. The potential value of the neutral comet assay and the expression of genes associated with DNA damage in assessing the radiosensitivity of tumor cells.

    PubMed

    Jayakumar, Sundarraj; Bhilwade, Hari N; Pandey, Badri N; Sandur, Santosh K; Chaubey, Ramesh C

    2012-10-09

    The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; P<0.05; 6Gy) than evaluated by alkaline comet assay (r=-0.73; P<0.05; 6Gy). Further, a significant correlation between the clonogenic survival and DNA damage was observed in cells exposed to fractionated doses of radiation. Of 15 genes investigated in the gene expression study, HSP70, KU80 and RAD51 all showed significant positive correlations (r=0.9; P<0.05) with tumor radiosensitivity. Our study clearly demonstrated that the neutral comet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation.

  18. Radiosensitization of TPGS-emulsified docetaxel-loaded poly(lactic-co-glycolic acid) nanoparticles in CNE-1 and A549 cells.

    PubMed

    Shi, Wei; Yuan, Yin; Chu, Min; Zhao, Shuang; Song, Qingle; Mu, Xiaoqian; Xu, Shuangbing; Zhang, Zhiping; Yang, Kunyu

    2016-03-01

    Docetaxel is among the most effective radiosensitizers. It is widely used as radiosensitizer in many tumors, including head and neck carcinoma. Nevertheless, poor solubility and severe hypersensitivity limit its clinical use and its therapeutic effect remains to be improved. In this study, docetaxel-loaded polymeric nanoparticles were prepared by nanoprecipitation method to be new radiosensitizer with lower side effects and higher efficacy. The physiochemical characteristics of the nanoparticles were studied. Two human tumor cell lines which are resistant to radiotherapy were used in this research. We have compared the radioenhancement efficacy of docetaxel-loaded nanoparticles with docetaxel in A549 and CNE-1 cells. Compared with docetaxel, radiosensitization of docetaxel-loaded nanoparticles was improved significantly (sensitization enhancement ratio in A549 increased 1.24-fold to 1.68-fold when the radiation was applied 2 h after the drug, p < 0.01, sensitization enhancement ratio in CNE-1 increased 1.32-fold to 1.61-fold, p < 0.05). We explored the mechanisms for the radiosensitization efficiency and the difference between docetaxel and docetaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The improved radiosensitization efficacy was associated with enhanced G2/M arrest, promoted apoptosis and the role of D-alpha-tocopheryl polyethylene glycol 1000 succinate which will enhance the cell uptake and inhibit the multiple drug resistance. Moreover, the radiosensitization efficacy of docetaxel-loaded nanoparticles was more prominent than docetaxel. In conclusion, tocopheryl polyethylene glycol 1000 succinate-emulsified docetaxel-loaded PLGA nanoparticles were more efficacious and fewer adverse effects were observed than with the commercial docetaxel formulation. Thus, PLGA nanoparticles hold promise as a radiosensitizing agent.

  19. CREB Regulates AChE-R-Induced Proliferation of Human Glioblastoma Cells1

    PubMed Central

    Perry, Chava; Sklan, Ella H; Soreq, Hermona

    2004-01-01

    Abstract The cyclic adenosine monophosphate (AMP) response element-binding protein, CREB, often modulates stress responses. Here, we report that CREB suppresses the glioblastoma proliferative effect of the stress-induced acetylcholinesterase variant, AChE-R. In human U87MG glioblastoma cells, AChE-R formed a triple complex with protein kinase C (PKC) ε and the scaffold protein RACK1, enhanced PKCε phosphorylation, and facilitated BrdU incorporation. Either overexpressed CREB, or antisense destruction of AChE-R mRNA, PKC, or protein kinase A (PKA) inhibitors—but not CREB combined with PKC inhibition suppressed—this proliferation, suggesting that CREB's repression of this process involves a PKC-mediated pathway, whereas impaired CREB regulation allows AChE-R-induced, PKA-mediated proliferation of glioblastoma tumors. PMID:15153340

  20. CREB regulates AChE-R-induced proliferation of human glioblastoma cells.

    PubMed

    Perry, Chava; Sklan, Ella H; Soreq, Hermona

    2004-01-01

    The cyclic adenosine monophosphate (AMP) response element-binding protein, CREB, often modulates stress responses. Here, we report that CREB suppresses the glioblastoma proliferative effect of the stress-induced acetylcholinesterase variant, AChE-R. In human U87MG glioblastoma cells, AChE-R formed a triple complex with protein kinase C (PKC) epsilon and the scaffold protein RACK1, enhanced PKCepsilon phosphorylation, and facilitated BrdU incorporation. Either overexpressed CREB, or antisense destruction of AChE-R mRNA, PKC, or protein kinase A (PKA) inhibitors-but not CREB combined with PKC inhibition suppressed-this proliferation, suggesting that CREB's repression of this process involves a PKC-mediated pathway, whereas impaired CREB regulation allows AChE-R-induced, PKA-mediated proliferation of glioblastoma tumors.

  1. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    SciTech Connect

    Eke, Iris; Storch, Katja; Kaestner, Ina; Vehlow, Anne; Faethe, Christina; Mueller-Klieser, Wolfgang; Taucher-Scholz, Gisela; Temme, Achim; Schackert, Gabriele

    2012-11-15

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.

  2. Three-dimensional invasion of human glioblastoma cells remains unchanged by X-ray and carbon ion irradiation in vitro.

    PubMed

    Eke, Iris; Storch, Katja; Kästner, Ina; Vehlow, Anne; Faethe, Christina; Mueller-Klieser, Wolfgang; Taucher-Scholz, Gisela; Temme, Achim; Schackert, Gabriele; Cordes, Nils

    2012-11-15

    Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks (γH2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, β1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the β1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Chromatin remodeling modulates radiosensitivity of the daughter cells derived from cell population exposed to low- and high-LET irradiation

    PubMed Central

    Chen, Xiaoyan; Zhu, Lin; Zhang, Hang; Wang, Chen; Shao, Chunlin

    2017-01-01

    Radiation effects are dependent of linear energy transfer (LET), but it is still obscure whether the daughter cells (DCs) derived from irradiated population are radioresistance and much less the underlying mechanism. With the measurements of survival, proliferation and γH2AX foci, this study shows that the DCs from γ-ray irradiated cells (DCs-γ) became more radioresistant than its parent control without irradiation, but the radiosensitivity of DCs from α-particle irradiated cells (DCs-α) was not altered. After irradiation with equivalent doses of γ-rays and α-particles, the foci number of histone H3 lysine 9 dimethylation (H3K9me3) and the activity of histone deacetylase (HDAC) in DCs-γ was extensively higher than these in DCs-α and its parent control, indicating that a higher level of heterochromatin was formed in DCs-γ but not in DCs-α. Treatment of cells with SAHA (an inhibitor of HDAC) decreased the level of heterochromatin domains by inhibiting the expressions of H3K9m3 and HP-1a proteins and triggering the expression of acetylated core histone H3 (Ac-H3). When cells were treated with SAHA, the radioresistance phenotype of DCs-γ was eliminated so that the radiosensitivities of DCs-γ, DCs-α and their parent cells approached to same levels. Our current results reveal that γ-rays but not α-particles could induce chromatin remodeling and heterochromatinization which results in the occurrence of radioresistance of DCs, indicating that the combination treatment of irradiation and HDAC inhibitor could serve as a potential cancer therapy strategy, especially for the fraction radiotherapy of low-LET irradiation. PMID:28881774

  4. Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells.

    PubMed

    Isokpehi, Raphael D; Wollenberg Valero, Katharina C; Graham, Barbara E; Pacurari, Maricica; Sims, Jennifer N; Udensi, Udensi K; Ndebele, Kenneth

    2015-01-01

    Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0-AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phenotypic features and expression levels revealed that inverse expression levels of AQP1 and AQP4 correlate with distinct phenotypes in a set of cell lines grouped into full and restricted stem-like phenotypes. Discriminant function analysis further revealed that AQP1 and AQP4 expression are better predictors for tumor formation and growth types in glioblastoma stem-like cells than are CXCR4 and PROM1. Future investigations are needed to characterize the molecular mechanisms for inverse expression levels of AQP1 and AQP4 in the glioblastoma stem-like neurospheres.

  5. Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy.

    PubMed

    Tamura, Kaoru; Aoyagi, Masaru; Ando, Noboru; Ogishima, Takahiro; Wakimoto, Hiroaki; Yamamoto, Masaaki; Ohno, Kikuo

    2013-11-01

    Recent evidence suggests that a glioma stem cell subpopulation may determine the biological behavior of tumors, including resistance to therapy. To investigate this hypothesis, the authors examined varying grades of gliomas for stem cell marker expressions and histopathological changes between primary and recurrent tumors. Tumor samples were collected during surgery from 70 patients with varying grades of gliomas (Grade II in 12 patients, Grade III in 16, and Grade IV in 42) prior to any adjuvant treatment. The samples were subjected to immunohistochemistry for MIB-1, factor VIII, GFAP, and stem cell markers (CD133 and nestin). Histopathological changes were compared between primary and recurrent tumors in 31 patients after radiation treatment and chemotherapy, including high-dose irradiation with additional stereotactic radiosurgery. CD133 expression on glioma cells was confined to de novo glioblastomas but was not observed in lower-grade gliomas. In de novo glioblastomas, the mean percentage of CD133-positive glioma cells in sections obtained at recurrence was 12.2% ± 10.3%, which was significantly higher than that obtained at the primary surgery (1.08% ± 1.78%). CD133 and Ki 67 dual-positive glioma cells were significantly increased in recurrent de novo glioblastomas as compared with those in primary tumors (14.5% ± 6.67% vs 2.16% ± 2.60%, respectively). In contrast, secondary glioblastomas rarely expressed CD133 antigen even after malignant progression following radiotherapy and chemotherapy. The authors' results indicate that CD133-positive glioma stem cells could survive, change to a proliferative cancer stem cell phenotype, and cause recurrence in cases with de novo glioblastomas after radiotherapy and chemotherapy.

  6. Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells

    PubMed Central

    Isokpehi, Raphael D; Wollenberg Valero, Katharina C; Graham, Barbara E; Pacurari, Maricica; Sims, Jennifer N; Udensi, Udensi K; Ndebele, Kenneth

    2015-01-01

    Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0–AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phe