Science.gov

Sample records for radiotherapy system efarad

  1. Development of targeted radiotherapy systems

    NASA Astrophysics Data System (ADS)

    Ferro, Guillermina; Murphy, Consuelo A.; Villarreal, José E.; Pedraza, Martha; García, Laura; Tendilla, José I.; Paredes, Lydia

    2001-10-01

    Conventional or external beam radiotherapy, has been a viable alternative for cancer treatment. Although this technique is effective, its use is limited if the patient has multiple malignant lesions (metastases). An alternative approach is based on the design of radiopharmaceuticals that, to be administered in the patient, are directed specifically toward the target cell producing a selective radiation delivery. This treatment is known as targeted radiotherapy. We have summarized and discussed some results related to our investigations on the development of targeted radiotherapy systems, including aspects of internal dosimetry.

  2. Radiotherapy dosimetry using a commercial OSL system

    SciTech Connect

    Viamonte, A.; Rosa, L. A. R. da; Buckley, L. A.; Cherpak, A.; Cygler, J. E.

    2008-04-15

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al{sub 2}O{sub 3}:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for {sup 60}Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al{sub 2}O{sub 3}:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures.

  3. Radiotherapy dosimetry using a commercial OSL system.

    PubMed

    Viamonte, A; da Rosa, L A R; Buckley, L A; Cherpak, A; Cygler, J E

    2008-04-01

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al2O3:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for 60Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al2O3:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures. PMID:18491518

  4. Dosimetry audit of radiotherapy treatment planning systems.

    PubMed

    Bulski, Wojciech; Chełmiński, Krzysztof; Rostkowska, Joanna

    2015-07-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments.

  5. Radiotherapy systems using proton and carbon beams.

    PubMed

    Jongen, Y

    2008-01-01

    experience in carbon beam therapy comes from Japan, from the National Institute for Radiation Science (NIRS) in Chiba, where more than 4000 patients have been treated with carbon beams. In Europe, carbon beam therapy has been tested on a limited number of patients in GSI, a national laboratory for heavy ion research in Darmstadt. A clinical carbon therapy center has been developed by GSI and the prototype is located at the German National Cancer Research Center (DKFZ) in Heidelberg. This center (HICAT) is close to being completed, and should treat patients in 2009. Another national carbon therapy facility is under construction in Pavia (Italy), and is build by a group of Italian physics laboratories. Siemens has obtained the intellectual rights of the GSI design in Heidelberg, and has sold two other carbon therapy systems in Germany, one in Marburg and one in Kiel. All existing systems for carbon therapy use cyclotrons as accelerators. IBA has introduced the innovative concept of using a superconducting cyclotron for the acceleration of carbon ions for radiotherapy. The superconducting cyclotron technology should allow a reduction of the size and cost of carbon therapy facilities.

  6. Systemic Targeted Alpha Radiotherapy for Cancer

    PubMed Central

    Allen, BJ

    2013-01-01

    Background: The fundamental principles of internal targeted alpha therapy forcancer were established many decades ago.The high linear energy transfer (LET) ofalpha radiation to the targeted cancer cellscauses double strand breaks in DNA. Atthe same time, the short range radiation spares adjacent normal tissues. This targeted approach complements conventional external beam radiotherapy and chemotherapy. Such therapies fail on several fronts, such as lack of control of some primary cancers (e.g. glioblastoma multiforme) and to inhibit the development of lethal metastaticcancer after successful treatment of the primary cancer. Objective: This review charts the developing role of systemic high LET, internalradiation therapy. Method: Targeted alpha therapy is a rapidly advancing experimental therapy thatholds promise to deliver high cytotoxicity to targeted cancer cells. Initially thoughtto be indicated for leukemia and micrometastases, there is now evidence that solidtumors can also be regressed. Results: Alpha therapy may be molecular or physiological in its targeting. Alphaemitting radioisotopes such as Bi-212, Bi-213, At-211 and Ac-225 are used to labelmonoclonal antibodies or proteins that target specific cancer cells. Alternatively, Radium-233 is used for palliative therapy of breast and prostate cancers because of its bone seeking properties. Conclusion: Preclinical studies and clinical trials of alpha therapy are discussedfor leukemia, lymphoma, melanoma, glioblastoma multiforme, bone metastases, ovarian cancer, pancreatic cancer and other cancers. PMID:25505750

  7. [External contour acquisition system for radiotherapy: an original solution].

    PubMed

    Létourneau, D; Brochet, F; Bohémier, R; Gagnon, J

    2000-01-01

    A contour acquisition system has been designed in radiotherapy at the Sagamie Hospital complex (Chicoutimi, Québec) to measure the external contours of the patients who do not need a CT exam. This measuring system can produce transversal, sagittal or coronal patient contours in the treatment position. The absolute accuracy of the system is +/- 1 mm. The contours produced by this equipment can be transferred electronically or on paper to the planning system.

  8. [Innovation and the next generation radiotherapy system].

    PubMed

    Tanabe, Eiji

    2013-01-01

    Innovation is the key to future success for Japan that is slowly falling behind. Industries targeted by the "Abenomics" growth strategy include healthcare and medicine. Since cancer is the leading cause of death in Japan, the development of a system that can detect and treat early stage cancers will be very valuable for patient QOL and reducing health care costs. Although the effectiveness of radiation therapy for treating early stage cancer is widely recognized, there has been no system to treat small, moving tumors with sub millimeter accuracy. A project supported by NEDO develops a "Next-Generation Radiation Therapy System" that uses high energy, narrow X-rays beams that can be accurately pinpointed deep inside the body. Performance testing of a prototype system is currently underway at the National Center for Global Health and Medicine in Tokyo. PMID:24893448

  9. Systemic radiotherapy--the new frontier

    SciTech Connect

    Order, S.E. )

    1990-05-01

    The present day use of systemically administered isotopes and conjugated isotopic combinations are reviewed. Administration of 131Iodine in thyroid cancer led to a 97% local control and 50% complete remission of pulmonary metastases. Specificity directed isotopic therapy (metabolic, hormonal, and antibody) is discussed and includes factors such as tumor physiology and isotopic linkage. The clinical results and new knowledge being gained in Hodgkin's disease, non-Hodgkin's, colorectal, hepatoma, intrahepatic biliary and gliomatous cancers are reviewed. The dose response relationship to tumor remission is demonstrated in Hodgkin's treated with 131I antiferritin (40% partial remission) and more recently 90Yttrium antiferritin (50% complete response). Varied routes of administration, the problem of anti-antibody and bone marrow transplantation are discussed. Finally, the challenge to radiobiologists, physicists, chemists, immunologists, nuclear radiologists, and radiation oncologists is emphasized by definition of the new laboratory and clinical approaches being developed in systemic radiation therapy. 81 references.

  10. Biological optimization of heterogeneous dose distributions in systemic radiotherapy

    SciTech Connect

    Strigari, Lidia; D'Andrea, Marco; Maini, Carlo Ludovico; Sciuto, Rosa; Benassi, Marcello

    2006-06-15

    The standard computational method developed for internal radiation dosimetry is the MIRD (medical internal radiation dose) formalism, based on the assumption that tumor control is given by uniform dose and activity distributions. In modern systemic radiotherapy, however, the need for full 3D dose calculations that take into account the heterogeneous distribution of activity in the patient is now understood. When information on nonuniform distribution of activity becomes available from functional imaging, a more patient specific 3D dosimetry can be performed. Application of radiobiological models can be useful to correlate the calculated heterogeneous dose distributions to the current knowledge on tumor control probability of a homogeneous dose distribution. Our contribution to this field is the introduction of a parameter, the F factor, already used by our group in studying external beam radiotherapy treatments. This parameter allows one to write a simplified expression for tumor control probability (TCP) based on the standard linear quadratic (LQ) model and Poisson statistics. The LQ model was extended to include different treatment regimes involving source decay, incorporating the repair '{mu}' of sublethal radiation damage, the relative biological effectiveness and the effective 'waste' of dose delivered when repopulation occurs. The sensitivity of the F factor against radiobiological parameters ({alpha},{beta},{mu}) and the influence of the dose volume distribution was evaluated. Some test examples for {sup 131}I and {sup 90}Y labeled pharmaceuticals are described to further explain the properties of the F factor and its potential applications. To demonstrate dosimetric feasibility and advantages of the proposed F factor formalism in systemic radiotherapy, we have performed a retrospective planning study on selected patient case. F factor formalism helps to assess the total activity to be administered to the patient taking into account the heterogeneity in

  11. An image guided small animal stereotactic radiotherapy system.

    PubMed

    Sha, Hao; Udayakumar, Thirupandiyur S; Johnson, Perry B; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-04-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  12. An image guided small animal stereotactic radiotherapy system

    PubMed Central

    Sha, Hao; Udayakumar, Thirupandiyur S.; Johnson, Perry B.; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-01-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ∼0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  13. An image guided small animal stereotactic radiotherapy system.

    PubMed

    Sha, Hao; Udayakumar, Thirupandiyur S; Johnson, Perry B; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-04-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost.

  14. Human mesenchymal stem cells enhance the systemic effects of radiotherapy.

    PubMed

    de Araújo Farias, Virgínea; O'Valle, Francisco; Lerma, Borja Alonso; Ruiz de Almodóvar, Carmen; López-Peñalver, Jesús J; Nieto, Ana; Santos, Ana; Fernández, Beatriz Irene; Guerra-Librero, Ana; Ruiz-Ruiz, María Carmen; Guirado, Damián; Schmidt, Thomas; Oliver, Francisco Javier; Ruiz de Almodóvar, José Mariano

    2015-10-13

    The outcome of radiotherapy treatment might be further improved by a better understanding of individual variations in tumor radiosensitivity and normal tissue reactions, including the bystander effect. For many tumors, however, a definitive cure cannot be achieved, despite the availablity of more and more effective cancer treatments. Therefore, any improvement in the efficacy of radiotherapy will undoubtedly benefit a significant number of patients. Many experimental studies measure a bystander component of tumor cell death after radiotherapy, which highlights the importance of confirming these observations in a preclinical situation. Mesenchymal stem cells (MSCs) have been investigated for use in the treatment of cancers as they are able to both preferentially home onto tumors and become incorporated into their stroma. This process increases after radiation therapy. In our study we show that in vitro MSCs, when activated with a low dose of radiation, are a source of anti-tumor cytokines that decrease the proliferative activity of tumor cells, producing a potent cytotoxic synergistic effect on tumor cells. In vivo administration of unirradiated mesenchymal cells together with radiation leads to an increased efficacy of radiotherapy, thus leading to an enhancement of short and long range bystander effects on primary-irradiated tumors and distant-non-irradiated tumors. Our experiments indicate an increased cell loss rate and the decrease in the tumor cell proliferation activity as the major mechanisms underlying the delayed tumor growth and are a strong indicator of the synergistic effect between RT and MSC when they are applied together for tumor treatment in this model. PMID:26378036

  15. Human mesenchymal stem cells enhance the systemic effects of radiotherapy

    PubMed Central

    de Araújo Farias, Virgínea; O'Valle, Francisco; Lerma, Borja Alonso; Ruiz de Almodóvar, Carmen; López-Peñalver, Jesús J.; Nieto, Ana; Santos, Ana; Fernández, Beatriz Irene; Guerra-Librero, Ana; Ruiz-Ruiz, María Carmen; Guirado, Damián; Schmidt, Thomas; Oliver, Francisco Javier; Ruiz de Almodóvar, José Mariano

    2015-01-01

    The outcome of radiotherapy treatment might be further improved by a better understanding of individual variations in tumor radiosensitivity and normal tissue reactions, including the bystander effect. For many tumors, however, a definitive cure cannot be achieved, despite the availablity of more and more effective cancer treatments. Therefore, any improvement in the efficacy of radiotherapy will undoubtedly benefit a significant number of patients. Many experimental studies measure a bystander component of tumor cell death after radiotherapy, which highlights the importance of confirming these observations in a preclinical situation. Mesenchymal stem cells (MSCs) have been investigated for use in the treatment of cancers as they are able to both preferentially home onto tumors and become incorporated into their stroma. This process increases after radiation therapy. In our study we show that in vitro MSCs, when activated with a low dose of radiation, are a source of anti-tumor cytokines that decrease the proliferative activity of tumor cells, producing a potent cytotoxic synergistic effect on tumor cells. In vivo administration of unirradiated mesenchymal cells together with radiation leads to an increased efficacy of radiotherapy, thus leading to an enhancement of short and long range bystander effects on primary-irradiated tumors and distant-non-irradiated tumors. Our experiments indicate an increased cell loss rate and the decrease in the tumor cell proliferation activity as the major mechanisms underlying the delayed tumor growth and are a strong indicator of the synergistic effect between RT and MSC when they are applied together for tumor treatment in this model. PMID:26378036

  16. Stereotactic Radiotherapy of Central Nervous System and Head and Neck Lesions, Using a Conformal Intensity-Modulated Radiotherapy System (Peacock™ System)

    PubMed Central

    Ammirati, Mario; Bernardo, Antonio; Ramsinghani, Nilam; Yakoob, Richard; Al-Ghazi, Matthew; Kuo, Jeffrey; Ammirati, Giuseppe

    2001-01-01

    The objective of this article is to evaluate single-fraction or fractionated stereotactic radiotherapy of central nervous system (CNS) and head and neck lesions using intensity-modulated radiotherapy (IMRT) with a commercially available system (Peacock™, Nomos Corporation, Sewickley, PA). This system allows tomotherapeutic delivery of intensity-modulated radiation, that is, the slice-by-slice treatment of the volume of interest with an intensity-modulated beam, making the delivery of highly conformal radiation to the target possible in both single or multiple fractions mode. During an 18-month period, 43 (21 males and 22 females) patients were treated, using a removable cranial screw-fixation device. Ages ranged from 10 to 77 years (mean, 52.2; median, 53.5). Intra- and extra-axial lesions, including head and neck malignancies and spine metastases, were treated. Clinical target volume ranged from 0.77 to 195 cm3 (mean, 47.8; median, 29.90). The dose distribution was normalized to the maximum and was prescribed, in most cases, at the 80% or 90% isodose line (range, 65 to 96%; median, 85%; mean, 83.4%) and ranged from 14 to 80 Gy (mean, 48; median, 50). The number of fractions ranged from 1 to 40 (mean, 23; median, 25). In all but one patient, 90% of the prescription isodose line covered 100% of the clinical target volume. The heterogeneity index (the ratio between the maximum radiation dose and the prescribed dose) ranged between 1.0 and 1.50, whereas the conformity index (the ratio between the volume encompassed by the prescription isodose line and the clinical target volume) ranged between 1.0 and 4.5. There were no complications related to the radiation treatment. With a median follow-up of 6 months, more than 70% of our patients showed decreased lesion size. Stereotactic IMRT of CNS and head and neck lesions can be delivered safely and accurately. The Peacock system delivers stereotactic radiation in single or multiple fractions and has no volume limitations

  17. Quality management system in radiotherapy in the light of regulations applicable in Poland.

    PubMed

    Bogusz-Czerniewicz, Marta

    2012-01-01

    The need to establish conditions for safe irradiation was noted in Poland back in 1986 in the Atomic Law, but for over 16 years no regulations regarding this aspect were passed. The radiological incident in Bialystok (Poland) in 2001 undeniably accelerated the implementation of new legal regulations. Nevertheless, in the absence of national guidelines until 2002, most health care institutions resorted to the quality management system (QMS) model proposed by the ISO norm 9001:2000. Eventually, practice proved the theory and the aforementioned model was also implemented into Polish acts of law defining basic requirements for QMS in radiotherapy. The aim of this work is to review current national regulations regarding QMS in radiotherapy, in particular those referring to standard procedures, the establishment of a commission for procedures and performance of external and internal clinical audits in oncological radiotherapy, as well as to present the process of their implementation into the practice of health care institutions.

  18. Quality management system in radiotherapy in the light of regulations applicable in Poland

    PubMed Central

    2012-01-01

    The need to establish conditions for safe irradiation was noted in Poland back in 1986 in the Atomic Law, but for over 16 years no regulations regarding this aspect were passed. The radiological incident in Bialystok (Poland) in 2001 undeniably accelerated the implementation of new legal regulations. Nevertheless, in the absence of national guidelines until 2002, most health care institutions resorted to the quality management system (QMS) model proposed by the ISO norm 9001:2000. Eventually, practice proved the theory and the aforementioned model was also implemented into Polish acts of law defining basic requirements for QMS in radiotherapy. The aim of this work is to review current national regulations regarding QMS in radiotherapy, in particular those referring to standard procedures, the establishment of a commission for procedures and performance of external and internal clinical audits in oncological radiotherapy, as well as to present the process of their implementation into the practice of health care institutions. PMID:23788867

  19. Immune system-tumour efficiency ratio as a new oncological index for radiotherapy treatment optimization.

    PubMed

    Sotolongo-Grau, O; Rodríguez-Pérez, D; Santos-Miranda, J A; Sotolongo-Costa, O; Antoranz, J C

    2009-12-01

    A dynamical system model for tumour-immune system interaction together with a method to mimic radiation therapy are proposed. A large population of virtual patients is simulated following an ideal radiation treatment. A characteristic parameter, the immune system-tumor efficiency ratio (ISTER) is introduced. ISTER dependence of treatment success and other features are studied. Radiotherapy treatment dose optimization, following ALARA (As Low As Reasonably Achievable) criterion, as well as a patient classification are drawn from the statistics results. PMID:19584118

  20. Immune system-tumour efficiency ratio as a new oncological index for radiotherapy treatment optimization.

    PubMed

    Sotolongo-Grau, O; Rodríguez-Pérez, D; Santos-Miranda, J A; Sotolongo-Costa, O; Antoranz, J C

    2009-12-01

    A dynamical system model for tumour-immune system interaction together with a method to mimic radiation therapy are proposed. A large population of virtual patients is simulated following an ideal radiation treatment. A characteristic parameter, the immune system-tumor efficiency ratio (ISTER) is introduced. ISTER dependence of treatment success and other features are studied. Radiotherapy treatment dose optimization, following ALARA (As Low As Reasonably Achievable) criterion, as well as a patient classification are drawn from the statistics results.

  1. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    PubMed

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements.

  2. A noninvasive eye fixation monitoring system for CyberKnife radiotherapy of choroidal and orbital tumors

    SciTech Connect

    Daftari, I. K.; Petti, P. L.; Larson, D. A.; O'Brien, J. M.; Phillips, T. L.

    2009-03-15

    A new noninvasive monitoring system for fixing the eye has been developed to treat orbital and choroidal tumors with CyberKnife-based radiotherapy. This device monitors the eye during CT/MRI scanning and during treatment. The results of this study demonstrate the feasibility of the fixation light system for CyberKnife-based treatments of orbital and choroidal tumors and supports the idea that larger choroidal melanomas and choroidal metastases could be treated with CyberKnife without implanting fiducial markers.

  3. Radiotherapy Accidents

    NASA Astrophysics Data System (ADS)

    Mckenzie, Alan

    A major benefit of a Quality Assurance system in a radiotherapy centre is that it reduces the likelihood of an accident. For over 20 years I have been the interface in the UK between the Institute of Physics and Engineering in Medicine and the media — newspapers, radio and TV — and so I have learned about radiotherapy accidents from personal experience. In some cases, these accidents did not become public and so the hospital cannot be identified. Nevertheless, lessons are still being learned.

  4. Systemic Lupus Erythematosus, Radiotherapy, and the Risk of Acute and Chronic Toxicity: The Mayo Clinic Experience

    SciTech Connect

    Pinn, Melva E.; Gold, Douglas G. M.; Petersen, Ivy A.; Osborn, Thomas G.; Brown, Paul D.; Miller, Robert C.

    2008-06-01

    Purpose: To determine the acute and chronic toxic effects of radiotherapy in patients with systemic lupus erythematosus (SLE). Methods and Materials: Medical records of 21 consecutive patients with SLE, who had received 34 courses of external beam radiotherapy and one low-dose-rate prostate implant, were retrospectively reviewed. Patients with discoid lupus erythematosus were excluded. Results: Median survival was 2.3 years and median follow-up 5.6 years. Eight (42%) of 19 patients evaluable for acute toxicity during radiotherapy experienced acute toxicity of Grade 1 or greater, and 4 (21%) had acute toxicity of Grade 3 or greater. The 5- and 10-year incidence of chronic toxicity of Grade 1 or greater was 45% (95% confidence interval [CI], 22-72%) and 56% (95% CI, 28-81%), respectively. The 5- and 10-year incidence of chronic toxicity of Grade 3 or greater was 28% (95% CI, 18-60%) and 40% (95% CI, 16-72%), respectively. Univariate analysis showed that chronic toxicity of Grade 1 or greater correlated with SLE renal involvement (p < 0.006) and possibly with the presence of five or more American Rheumatism Association criteria (p < 0.053). Chronic toxicity of Grade 3 or greater correlated with an absence of photosensitivity (p < 0.02), absence of arthritis (p < 0.03), and presence of a malar rash (p < 0.04). Conclusions: The risk of acute and chronic toxicity in patients with SLE who received radiotherapy was moderate but was not prohibitive of the use of radiotherapy. Patients with more advanced SLE may be at increased risk for chronic toxicity.

  5. Analysis of precision in tumor tracking based on optical positioning system during radiotherapy.

    PubMed

    Zhou, Han; Shen, Junshu; Li, Bing; Chen, Junting; Zhu, Xixu; Ge, Yun; Wang, Yongjian

    2016-03-19

    Tumor tracking is performed during patient set-up and monitoring of respiratory motion in radiotherapy. In the clinical setting, there are several types of equipment for this set-up such as the Electronic Portal imaging Device (EPID) and Cone Beam CT (CBCT). Technically, an optical positioning system tracks the difference between the infra ball reflected from body and machine isocenter. Our objective is to compare the clinical positioning error of patient setup between Cone Beam CT (CBCT) with the Optical Positioning System (OPS), and to evaluate the traditional positioning systems and OPS based on our proposed approach of patient positioning. In our experiments, a phantom was used, and we measured its setup errors in three directions. Specifically, the deviations in the left-to-right (LR), anterior-to-posterior (AP) and inferior-to-superior (IS) directions were measured by vernier caliper on a graph paper using the Varian Linear accelerator. Then, we verified the accuracy of OPS based on this experimental study. In order to verify the accuracy of phantom experiment, 40 patients were selected in our radiotherapy experiment. To illustrate the precise of optical positioning system, we designed clinical trials using EPID. From our radiotherapy procedure, we can conclude that OPS has higher precise than conventional positioning methods, and is a comparatively fast and efficient positioning method with respect to the CBCT guidance system. PMID:27257880

  6. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy

    PubMed Central

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-01-01

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation. PMID:27089342

  7. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy.

    PubMed

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-01-01

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation. PMID:27089342

  8. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    SciTech Connect

    Holmes, Timothy W. Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-07-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management.

  9. A multi-radar wireless system for respiratory gating and accurate tumor tracking in lung cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Jiang, Steve B; Li, Changzhi

    2011-01-01

    Respiratory gating and tumor tracking are two promising motion-adaptive lung cancer treatments, minimizing incidence and severity of normal tissues and precisely delivering radiation dose to the tumor. Accurate respiration measurement is important in respiratory-gated radiotherapy. Conventional gating techniques are either invasive to the body or bring insufficient accuracy and discomfort to the patients. In this paper, we present an accurate noncontact means of measuring respiration for the use in gated lung cancer radiotherapy. We also present an accurate tumor tracking technique for dynamical beam tracking radiotherapy. Two 2.4 GHz miniature radars were used to monitor the chest wall and abdominal movements simultaneously to get high resolution and enhanced parameter identification. Ray tracing technique was used to investigate the impact of antenna size in clinical practice. It is shown that our multiple radar system can reliably measure respiration signals for respiratory gating and accurate tumor tracking in motion-adaptive lung cancer radiotherapy.

  10. SU-E-J-184: Stereo Time-Of-Flight System for Patient Positioning in Radiotherapy

    SciTech Connect

    Wentz, T; Gilles, M; Visvikis, D; Le Fur, E; Pradier, O

    2014-06-01

    Purpose: The objective of this work is to test the advantage of using the surface acquired by two stereo Time-of-Flight (ToF) cameras in comparison of the use of one camera only for patient positioning in radiotherapy. Methods: A first step consisted on validating the use of a stereo ToFcamera system for positioning management of a phantom mounted on a linear actuator producing very accurate and repeatable displacements. The displacements between two positions were computed from the surface point cloud acquired by either one or two cameras thanks to an iterative closest point algorithm. A second step consisted on determining the displacements on patient datasets, with two cameras fixed on the ceiling of the radiotherapy room. Measurements were done first on voluntary subject with fixed translations, then on patients during the normal clinical radiotherapy routine. Results: The phantom tests showed a major improvement in lateral and depth axis for motions above 10 mm when using the stereo-system instead of a unique camera (Fig1). Patient measurements validate these results with a mean real and measured displacement differences in the depth direction of 1.5 mm when using one camera and 0.9 mm when using two cameras (Fig2). In the lateral direction, a mean difference of 1 mm was obtained by the stereo-system instead of 3.2 mm. Along the longitudinal axis mean differences of 5.4 and 3.4 mm with one and two cameras respectively were noticed but these measurements were still inaccurate and globally underestimated in this direction as in the literature. Similar results were also found for patient subjects with a mean difference reduction of 35%, 7%, and 25% for the lateral, depth, and longitudinal displacement with the stereo-system. Conclusion: The addition of a second ToF-camera to determine patient displacement strongly improved patient repositioning results and therefore insures better radiation delivery.

  11. Retrieval with Clustering in a Case-Based Reasoning System for Radiotherapy Treatment Planning

    NASA Astrophysics Data System (ADS)

    Khussainova, Gulmira; Petrovic, Sanja; Jagannathan, Rupa

    2015-05-01

    Radiotherapy treatment planning aims to deliver a sufficient radiation dose to cancerous tumour cells while sparing healthy organs in the tumour surrounding area. This is a trial and error process highly dependent on the medical staff's experience and knowledge. Case-Based Reasoning (CBR) is an artificial intelligence tool that uses past experiences to solve new problems. A CBR system has been developed to facilitate radiotherapy treatment planning for brain cancer. Given a new patient case the existing CBR system retrieves a similar case from an archive of successfully treated patient cases with the suggested treatment plan. The next step requires adaptation of the retrieved treatment plan to meet the specific demands of the new case. The CBR system was tested by medical physicists for the new patient cases. It was discovered that some of the retrieved cases were not suitable and could not be adapted for the new cases. This motivated us to revise the retrieval mechanism of the existing CBR system by adding a clustering stage that clusters cases based on their tumour positions. A number of well-known clustering methods were investigated and employed in the retrieval mechanism. Results using real world brain cancer patient cases have shown that the success rate of the new CBR retrieval is higher than that of the original system.

  12. Stereotactic ablative radiotherapy and immunotherapy combinations: turning the future into systemic therapy?

    PubMed

    Walshaw, Richard C; Honeychurch, Jamie; Illidge, Tim M

    2016-10-01

    Radiotherapy (RT) is effective at cytoreducing tumours and until relatively recently the focus in radiobiology has been on the direct effects of RT on the tumour. Increasingly, however, the effect of RT on the tumour vasculature, tumour stroma and immune system are recognized as important to the overall outcome. RT is known to lead to the induction of immunogenic cell death (ICD), which can generate tumour-specific immunity. However, systemic immunity leading to "abscopal effects" resulting in tumour shrinkage outside of the RT treatment field is rare, which is thought to be caused by the immunosuppressive nature of the tumour microenvironment. Recent advances in understanding the nature of this immunosuppression and therapeutics targeting immune checkpoints such as programmed death 1 has led to durable clinical responses in a range of cancer types including malignant melanoma and non-small-cell lung cancer. The effects of RT dose and fraction on the generation of ICD and systemic immunity are largely unknown and are currently under investigation. Stereotactic ablative radiotherapy (SABR) provides an opportunity to deliver single or hypofractionated large doses of RT and potentially increase the amount of ICD and the generation of systemic immunity. Here, we review the interplay of RT and the tumour microenvironment and the rationale for combining SABR with immunomodulatory agents to generate systemic immunity and improve outcomes.

  13. An interactive treatment planning system for ophthalmic plaque radiotherapy

    SciTech Connect

    Astrahan, M.A.; Luxton, G.; Jozsef, G.; Kampp, T.D.; Liggett, P.E.; Sapozink, M.D.; Petrovich, Z. )

    1990-03-01

    Brachytherapy using removable episcleral plaques containing sealed radioisotope sources is being studied as an alternative to enucleation in the treatment of choroidal melanoma and other tumors of the eye. Encouraging early results have been reported, but late complications which lead to loss of vision continue to be a problem. A randomized national study, the Collaborative Ocular Melanoma Study (COMS) is currently in progress to evaluate the procedure. The COMS specified isotope is 125I. Precise dosimetric calculations near the plaque may correlate strongly with complications and could also be used to optimize isotope loading patterns in the plaques. A microcomputer based treatment planning system has been developed for ophthalmic plaque brachytherapy. The program incorporates an interactive, 3-dimensional, solid-surface, color-graphic interface. The program currently supports 125I and 192Ir seeds which are treated as anisotropic line sources. Collimation effects related to plaque structure are accounted for, permitting detailed study of shielding effectiveness near the lip of a plaque. A dose distribution matrix may be calculated in any subregion of a transverse, sagittal, or coronal planar cross section of the eye, in any plane transecting the plaque and crossing the eye diametrically, or on a spherical surface within or surrounding the eye. Spherical surfaces may be displayed as 3-dimensional perspective projections or as funduscopic diagrams. Isodose contours are interpolated from the dose matrix. A pointer is also available to explicitly calculate and display dose at any location on the dosimetry surface. An interactive editing capability allows new plaque designs to be rapidly added to the system.

  14. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system

    NASA Astrophysics Data System (ADS)

    Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E.; Wemple, Charles A.; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; DeNardo, Gerald

    2005-03-01

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4—2%, MCNP—10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of

  15. Monte Carlo Treatment Planning for Molecular Targeted Radiotherapy within the MINERVA System

    SciTech Connect

    Lehmann, J; Siantar, C H; Wessol, D E; Wemple, C A; Nigg, D; Cogliati, J; Daly, T; Descalle, M; Flickinger, T; Pletcher, D; DeNardo, G

    2004-09-22

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry, and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU), and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo-based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (Modality Inclusive Environment for Radiotherapeutic Variable Analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plug-in architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4 - 2%, MCNP - 10%)(Descalle et al. 2003). The code is currently being benchmarked against experimental data. The interpatient variability of the drug pharmacokinetics in MTR

  16. Technologies of image guidance and the development of advanced linear accelerator systems for radiotherapy.

    PubMed

    Wu, Vincent W C; Law, Maria Y Y; Star-Lack, Josh; Cheung, Fion W K; Ling, C Clifton

    2011-01-01

    As advanced radiotherapy approaches for targeting the tumor and sparing the normal tissues have been developed, the image guidance of therapy has become essential to directing and confirming treatment accuracy. To approach these goals, image guidance devices now include kV on-board imagers, kV/MV cone-beam CT systems, CT-on-rails, and mobile and in-room radiographic/fluoroscopic systems. Nonionizing sources, such as ultrasound and optical systems, and electromagnetic devices have been introduced to monitor or track the patient and/or tumor positions during treatment. In addition, devices have been designed specifically for monitoring and/or controlling respiratory motion. Optimally, image-guided radiation therapy systems should possess 3 essential elements: (1) 3D imaging of soft tissues and tumors, (2) efficient acquisition and comparison of the 3D images, and (3) an efficacious process for clinically meaningful intervention. Understanding and using these tools effectively is central to current radiotherapy practice. The implementation and integration of these devices continue to carry practical challenges, which emphasize the need for further development of the technologies and their clinical applications.

  17. Evaluation of performance of portable respiratory monitoring system based on micro-electro-mechanical-system for respiratory gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Sung, Jiwon; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2015-08-01

    In respiratory-gated radiotherapy of patients with lung or liver cancer, the patient's respiratory pattern and repeatability are important factors affecting therapy accuracy; it has been reported that these factors can be controlled if patients undergo respiration training. As such, this study evaluates the feasibility of micro-electro-mechanical-system (MEMS) in radiotherapy by investigating the effect of radiation on a miniature portable respiratory monitoring system based on the MEMS system, which is currently under development. Using a patient respiration simulation phantom, the time-acceleration graph measured by a normal sensor according to the phantom's respiratory movement before irradiation and the change in this graph with accumulated dose were compared using the baseline slope and the change in amplitude and period of the sine wave. The results showed that with a 400Gy accumulated dose in the sensor, a baseline shift occurred and both the amplitude and period changed. As a result, if the MEMS is applied in respiratory-gated radiotherapy, the sensor should be replaced after use with roughly 6-10 patients so as to ensure continued therapy accuracy, based on the characteristics of the sensor itself. In the future, a more diverse range of sensors should be similarly evaluated.

  18. Dosimetric advantages of O-ring design radiotherapy system for skull-base tumors.

    PubMed

    Ogura, Kengo; Mizowaki, Takashi; Ishida, Yuichi; Hiraoka, Masahiro

    2014-01-01

    The purpose of this study was to investigate whether a new O-ring design radiotherapy delivery system has advantages in radiotherapy planning for skull-base tumors. Twenty-five patients with skull-base tumors were included in this study. Two plans were made using conventional (Plan A) or new (Plan B) techniques. Plan A consisted of four dynamic conformal arcs (DCAs): two were horizontal, and the other two were from cranial directions. Plan B was created by converting horizontal arcs to those from caudal directions making use of the O-ring design radiotherapy system. The micromultileaf collimators were fitted to cover at least 99% of the planning target volume with prescribed doses, 90% of the dose at the isocenter. The two plans were compared in terms of target homogeneity, conformity, and irradiated volume of normal tissues, using a two-sided paired t-test. For evaluation regarding target coverage, the homogeneity indices defined by the International Commission on Radiation Units and Measurements 83 were 0.099 ± 0.010 (mean ± standard deviation) and 0.092 ± 0.010, the conformity indices defined by the Radiation Therapy Oncology Group were 1.720 ± 0.249 and 1.675 ± 0.239, and the Paddick's conformity indices were 0.585 ± 0.078 and 0.602 ± 0.080, in Plans A and B, respectively. For evaluation of irradiated normal tissue, the Paddick's gradient indices were 3.118 ± 0.283 and 2.938 ± 0.263 in Plans A and B, respectively. All of these differences were statistically significant (p-values < 0.05). The mean doses of optic nerves, eyes, brainstem, and hippocampi were also significantly lower in Plan B. The DCA technique from caudal directions using the new O-ring design radiotherapy system can improve target homogeneity and conformity compared with conventional DCA techniques, and can also decrease the volume of surrounding normal tissues that receives moderate doses. PMID:24710448

  19. Dosimetric advantages of O-ring design radiotherapy system for skull-base tumors.

    PubMed

    Ogura, Kengo; Mizowaki, Takashi; Ishida, Yuichi; Hiraoka, Masahiro

    2014-03-06

    The purpose of this study was to investigate whether a new O-ring design radiotherapy delivery system has advantages in radiotherapy planning for skull-base tumors. Twenty-five patients with skull-base tumors were included in this study. Two plans were made using conventional (Plan A) or new (Plan B) techniques. Plan A consisted of four dynamic conformal arcs (DCAs): two were horizontal, and the other two were from cranial directions. Plan B was created by converting horizontal arcs to those from caudal directions making use of the O-ring design radiotherapy system. The micromultileaf collimators were fitted to cover at least 99% of the planning target volume with prescribed doses, 90% of the dose at the isocenter. The two plans were compared in terms of target homogeneity, conformity, and irradiated volume of normal tissues, using a two-sided paired t-test. For evaluation regarding target coverage, the homogeneity indices defined by the International Commission on Radiation Units and Measurements 83 were 0.099 ± 0.010 (mean ± standard deviation) and 0.092 ± 0.010, the conformity indices defined by the Radiation Therapy Oncology Group were 1.720 ± 0.249 and 1.675 ± 0.239, and the Paddick's conformity indices were 0.585 ± 0.078 and 0.602 ± 0.080, in Plans A and B, respectively. For evaluation of irradiated normal tissue, the Paddick's gradient indices were 3.118 ± 0.283 and 2.938 ± 0.263 in Plans A and B, respectively. All of these differences were statistically significant (p-values < 0.05). The mean doses of optic nerves, eyes, brainstem, and hippocampi were also significantly lower in Plan B. The DCA technique from caudal directions using the new O-ring design radiotherapy system can improve target homogeneity and conformity compared with conventional DCA techniques, and can also decrease the volume of surrounding normal tissues that receives moderate doses.

  20. Radiotherapy of Cervical Cancer.

    PubMed

    Vordermark, Dirk

    2016-01-01

    Curative-intent radical radiotherapy of cervical cancer consists of external-beam radiotherapy, brachytherapy, and concomitant chemotherapy with cisplatin. For each element, new developments aim to improve tumor control rates or treatment tolerance. Intensity-modulated radiotherapy (IMRT) has been shown to reduce gastrointestinal toxicity and can be used to selectively increase the radiotherapy dose. Individualized, image-guided brachytherapy enables better adaptation of high-dose volumes to the tumor extension. Intensification of concomitant or sequential systemic therapy is under evaluation. PMID:27614991

  1. A prognostic scoring system for locoregional control in nasopharyngeal carcinoma following conformal radiotherapy

    SciTech Connect

    Cheng, S.H.; Tsai, S.Y.; Horng, C.-F.; Yen, K.L.; Jian, James J.; Chan, Kwan-Yee; Lin, C.-Y.; Terng, S.-D.; Tsou, M.-H.; Chu, N.-M.; Chen, H.-H.; Hsieh, C.-I.; Tan, T.-D.; Chen, P.-L.; Chung, Y.L.; Huang, Andrew T. |

    2006-11-15

    Purpose: This study established a prognostic scoring system for nasopharyngeal carcinoma (NPC), which estimates the probability of locoregional (LR) control following definitive conformal radiotherapy. Methods and Materials: Patients with nondisseminated NPC at initial presentation (n = 630) were enrolled in this study. All patients had magnetic resonance imaging of the head and neck and were treated with conformal radiotherapy. Among them, 93% had concurrent chemotherapy, and 76% had postradiation chemotherapy. The extent of the primary tumor, age at diagnosis, primary tumor size, tumor and nodal classification, histology, and serum lactate dehydrogenase (LDH) level before treatment were included in the analysis for building a prognostic scoring system. The end point for this study was LR control. Results: The prognostic score was defined as the number of adverse prognostic factors present at diagnosis. Four factors had similarly independent prognostic effects (hazard ratio, 2.0-2.6): age >40 years, histologic WHO type I-II, serum LDH level {>=}410 U/L, and involvement of two or more sites of the following anatomic structures, i.e., sphenoid floor, clivus marrow, clivus cortex, prevertebral muscles, and petrous bone. The score predicted the 5-year probability of LR control as follows: 0 (15% of the patients), 100%; 1 (42% of the patients), 93%; 2 (29% of the patients), 83%; 3 or higher (13% of the patients), 71%. Conclusion: This scoring system is useful in the decision-making for individual patients and the design of clinical trials to improve LR control for advanced-stage NPC.

  2. Multi-Kinect v2 Camera Based Monitoring System for Radiotherapy Patient Safety.

    PubMed

    Santhanam, Anand P; Min, Yugang; Kupelian, Patrick; Low, Daniel

    2016-01-01

    3D kinect camera systems are essential for real-time imaging of 3D treatment space that consists of both the patient anatomy as well as the treatment equipment setup. In this paper, we present the technical details of a 3D treatment room monitoring system that employs a scalable number of calibrated and coregistered Kinect v2 cameras. The monitoring system tracks radiation gantry and treatment couch positions, and tracks the patient and immobilization accessories. The number and positions of the cameras were selected to avoid line-of-sight issues and to adequately cover the treatment setup. The cameras were calibrated with a calibration error of 0.1 mm. Our tracking system evaluation show that both gantry and patient motion could be acquired at a rate of 30 frames per second. The transformations between the cameras yielded a 3D treatment space accuracy of < 2 mm error in a radiotherapy setup within 500mm around the isocenter. PMID:27046604

  3. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    PubMed Central

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-01-01

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects. PMID:25768061

  4. Design of, and some clinical experience with, a novel optical surface measurement system in radiotherapy

    NASA Astrophysics Data System (ADS)

    Price, G. J.; Marchant, T. E.; Parkhurst, J. M.; Sharrock, P. J.; Whitfield, G.; Moore, C. J.

    2010-04-01

    Optical imaging is becoming more prevalent in image guided radiotherapy as a complementary technology to traditional ionizing radiation based modalities. We present a novel structured light based device that can capture a patient's body surface topology with a large field of view and high spatial and temporal resolution. The system is composed of three cross-calibrated sensor heads that enable 'wrap around' imaging previously unavailable with similar line of sight optical techniques. The system has been installed in a treatment bunker at the Christie Hospital alongside an Elekta linear accelerator equipped with cone beam CT (CBCT) on-board imaging. In this paper we describe the system, focussing on the methodologies required to create a robust and practical device. We show examples of measurements made to ascertain its repeatability and accuracy, and present some initial experiences in using the device for pre-treatment patient set-up.

  5. A comprehensive radiotherapy planning system implemented in Fortran on a small interactive computer.

    PubMed

    Redpath, A T; Vickery, B L; Duncan, W

    1977-01-01

    A suite of Fortran programs for carrying out the various dose computational aspects of radiotherapy has been developed on an enhanced RAD8 computing system. The hardward configuration of the computer is described and the main features of the programs in the suite are discussed. The include: (a) beam data input systems for use with linear accelerators and cobalt units; (b) static and rotational teletherapy planning, with computer optimization in the static planning; (c) irregular field calculations with isodose visualization; (d) interstitial calculations including routines which will reconstruct a radium needle implant in three dimensions in addition to presenting the isodose distribution in any desired plane. The problems of implementing the programs on another computer system are discussed.

  6. An automatic dose verification system for adaptive radiotherapy for helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Mo, Xiaohu; Chen, Mingli; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel; Lu, Weiguo

    2014-03-01

    Purpose: During a typical 5-7 week treatment of external beam radiotherapy, there are potential differences between planned patient's anatomy and positioning, such as patient weight loss, or treatment setup. The discrepancies between planned and delivered doses resulting from these differences could be significant, especially in IMRT where dose distributions tightly conforms to target volumes while avoiding organs-at-risk. We developed an automatic system to monitor delivered dose using daily imaging. Methods: For each treatment, a merged image is generated by registering the daily pre-treatment setup image and planning CT using treatment position information extracted from the Tomotherapy archive. The treatment dose is then computed on this merged image using our in-house convolution-superposition based dose calculator implemented on GPU. The deformation field between merged and planning CT is computed using the Morphon algorithm. The planning structures and treatment doses are subsequently warped for analysis and dose accumulation. All results are saved in DICOM format with private tags and organized in a database. Due to the overwhelming amount of information generated, a customizable tolerance system is used to flag potential treatment errors or significant anatomical changes. A web-based system and a DICOM-RT viewer were developed for reporting and reviewing the results. Results: More than 30 patients were analysed retrospectively. Our in-house dose calculator passed 97% gamma test evaluated with 2% dose difference and 2mm distance-to-agreement compared with Tomotherapy calculated dose, which is considered sufficient for adaptive radiotherapy purposes. Evaluation of the deformable registration through visual inspection showed acceptable and consistent results, except for cases with large or unrealistic deformation. Our automatic flagging system was able to catch significant patient setup errors or anatomical changes. Conclusions: We developed an automatic dose

  7. A self-adaptive case-based reasoning system for dose planning in prostate cancer radiotherapy

    SciTech Connect

    Mishra, Nishikant; Petrovic, Sanja; Sundar, Santhanam

    2011-12-15

    Purpose: Prostate cancer is the most common cancer in the male population. Radiotherapy is often used in the treatment for prostate cancer. In radiotherapy treatment, the oncologist makes a trade-off between the risk and benefit of the radiation, i.e., the task is to deliver a high dose to the prostate cancer cells and minimize side effects of the treatment. The aim of our research is to develop a software system that will assist the oncologist in planning new treatments. Methods: A nonlinear case-based reasoning system is developed to capture the expertise and experience of oncologists in treating previous patients. Importance (weights) of different clinical parameters in the dose planning is determined by the oncologist based on their past experience, and is highly subjective. The weights are usually fixed in the system. In this research, the weights are updated automatically each time after generating a treatment plan for a new patient using a group based simulated annealing approach. Results: The developed approach is analyzed on the real data set collected from the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. Extensive experiments show that the dose plan suggested by the proposed method is coherent with the dose plan prescribed by an experienced oncologist or even better. Conclusions: The developed case-based reasoning system enables the use of knowledge and experience gained by the oncologist in treating new patients. This system may play a vital role to assist the oncologist in making a better decision in less computational time; it utilizes the success rate of the previously treated patients and it can also be used in teaching and training processes.

  8. Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies

    SciTech Connect

    Barani, Igor J.; Benedict, Stanley H.; Lin, Peck-Sun . E-mail: plin@vcu.edu

    2007-06-01

    Advances in basic neuroscience related to neural stem cells and their malignant counterparts are challenging traditional models of central nervous system tumorigenesis and intrinsic brain repair. Neurogenesis persists into adulthood predominantly in two neurogenic centers: subventricular zone and subgranular zone. Subventricular zone is situated adjacent to lateral ventricles and subgranular zone is confined to the dentate gyrus of the hippocampus. Neural stem cells not only self-renew and differentiate along multiple lineages in these regions, but also contribute to intrinsic brain plasticity and repair. Ionizing radiation can depopulate these exquisitely sensitive regions directly or impair in situ neurogenesis by indirect, dose-dependent and inflammation-mediated mechanisms, even at doses <2 Gy. This review discusses the fundamental neural stem cell concepts within the framework of cumulative clinical experience with the treatment of central nervous system malignancies using conventional radiotherapy.

  9. Design and dosimetric characteristics of a new endocavitary contact radiotherapy system using an electronic brachytherapy source

    SciTech Connect

    Richardson, Susan; Garcia-Ramirez, Jose; Lu Wei; Myerson, Robert J.; Parikh, Parag

    2012-11-15

    Purpose: To present design aspects and acceptance tests performed for clinical implementation of electronic brachytherapy treatment of early stage rectal adenocarcinoma. A dosimetric comparison is made between the historically used Philips RT-50 unit and the newly developed Axxent{sup Registered-Sign} Model S700 electronic brachytherapy source manufactured by Xoft (iCad, Inc.). Methods: Two proctoscope cones were manufactured by ElectroSurgical Instruments (ESI). Two custom surface applicators were manufactured by Xoft and were designed to fit and interlock with the proctoscope cones from ESI. Dose rates, half value layers (HVL), and percentage depth dose (PDD) measurements were made with the Xoft system and compared to historical RT-50 data. A description of the patient treatment approach and exposure rates during the procedure is also provided. Results: The electronic brachytherapy system has a lower surface dose rate than the RT-50. The dose rate to water on the surface from the Xoft system is approximately 2.1 Gy/min while the RT-50 is 10-12 Gy/min. However, treatment times with Xoft are still reasonable. The HVLs and PDDs between the two systems were comparable resulting in similar doses to the target and to regions beyond the target. The exposure rate levels around a patient treatment were acceptable. The standard uncertainty in the dose rate to water on the surface is approximately {+-}5.2%. Conclusions: The Philips RT-50 unit is an out-of-date radiotherapy machine that is no longer manufactured with limited replacement parts. The use of a custom-designed proctoscope and Xoft surface applicators allows delivery of a well-established treatment with the ease of a modern radiotherapy device. While the dose rate is lower with the use of Xoft, the treatment times are still reasonable. Additionally, personnel may stand farther away from the Xoft radiation source, thus potentially reducing radiation exposure to the operator and other personnel.

  10. AutoLock: a semiautomated system for radiotherapy treatment plan quality control.

    PubMed

    Dewhurst, Joseph M; Lowe, Matthew; Hardy, Mark J; Boylan, Christopher J; Whitehurst, Philip; Rowbottom, Carl G

    2015-01-01

    A semiautomated system for radiotherapy treatment plan quality control (QC), named AutoLock, is presented. AutoLock is designed to augment treatment plan QC by automatically checking aspects of treatment plans that are well suited to computational evaluation, whilst summarizing more subjective aspects in the form of a checklist. The treatment plan must pass all automated checks and all checklist items must be acknowledged by the planner as correct before the plan is finalized. Thus AutoLock uniquely integrates automated treatment plan QC, an electronic checklist, and plan finalization. In addition to reducing the potential for the propagation of errors, the integration of AutoLock into the plan finalization workflow has improved efficiency at our center. Detailed audit data are presented, demonstrating that the treatment plan QC rejection rate fell by around a third following the clinical introduction of AutoLock.

  11. Prevention of gross setup errors in radiotherapy with an efficient automatic patient safety system.

    PubMed

    Yan, Guanghua; Mittauer, Kathryn; Huang, Yin; Lu, Bo; Liu, Chihray; Li, Jonathan G

    2013-01-01

    Treatment of the wrong body part due to incorrect setup is among the leading types of errors in radiotherapy. The purpose of this paper is to report an efficient automatic patient safety system (PSS) to prevent gross setup errors. The system consists of a pair of charge-coupled device (CCD) cameras mounted in treatment room, a single infrared reflective marker (IRRM) affixed on patient or immobilization device, and a set of in-house developed software. Patients are CT scanned with a CT BB placed over their surface close to intended treatment site. Coordinates of the CT BB relative to treatment isocenter are used as reference for tracking. The CT BB is replaced with an IRRM before treatment starts. PSS evaluates setup accuracy by comparing real-time IRRM position with reference position. To automate system workflow, PSS synchronizes with the record-and-verify (R&V) system in real time and automatically loads in reference data for patient under treatment. Special IRRMs, which can permanently stick to patient face mask or body mold throughout the course of treatment, were designed to minimize therapist's workload. Accuracy of the system was examined on an anthropomorphic phantom with a designed end-to-end test. Its performance was also evaluated on head and neck as well as abdominalpelvic patients using cone-beam CT (CBCT) as standard. The PSS system achieved a seamless clinic workflow by synchronizing with the R&V system. By permanently mounting specially designed IRRMs on patient immobilization devices, therapist intervention is eliminated or minimized. Overall results showed that the PSS system has sufficient accuracy to catch gross setup errors greater than 1 cm in real time. An efficient automatic PSS with sufficient accuracy has been developed to prevent gross setup errors in radiotherapy. The system can be applied to all treatment sites for independent positioning verification. It can be an ideal complement to complex image-guidance systems due to its

  12. Quality Assurance and Commissioning of an Infrared Marker-Based Patient Positioning System for Frameless Extracranial Stereotactic Radiotherapy

    PubMed Central

    Gupta, Tejpal; Phurailatpam, Reena; Ajay, Mishra; Rajeshri, Pai; Pranshu, Mohindra; Supriya, Chopra

    2007-01-01

    Rapid advancements in imaging technology have led to remarkable improvements in identification and localization of tumors, ushering the era of high-precision techniques in contemporary radiotherapy practice. However, uncertainties in patient set-up and organ motion during a course of fractionated radiotherapy can compromise precision of radiation therapy. Excellent accuracy has been achieved with invasive and non-invasive fixation systems for stereotactic radiotherapy. This report describes the commissioning procedure and Quality Assurance studies done to evaluate the accuracy of isocenter localization by an infrared marker-based positioning system (ExacTrac). The ExacTrac has two infrared cameras that emit and detect infrared rays from reflective markers and construct three-dimensional coordinates of each marker. It detects the difference of the actual isocenter position from the planned isocenter coordinates in three translational (lateral, longitudinal, vertical, or x,y,z axes) and three rotational axes (six degree of freedom). This study performed on a flat and static phantom shows excellent accuracy achieved by the ExacTrac system. The positioning accuracy of ExacTrac (± 1 mm translational displacement and ± 1° rotational errors) can be a valuable tool in implementing frameless extracranial stereotactic radiotherapy. Nevertheless, it needs to be further evaluated on patients with inherent motion and greater positional uncertainty before being adopted in clinical practice. PMID:23675057

  13. The CNAO dose delivery system for modulated scanning ion beam radiotherapy

    SciTech Connect

    Giordanengo, S.; Marchetto, F.; Garella, M. A.; Donetti, M.; Bourhaleb, F.; Monaco, V.; Hosseini, M. A.; Peroni, C.; Sacchi, R.; Cirio, R.; Ciocca, M.; Mirandola, A.

    2015-01-15

    Purpose: This paper describes the system for the dose delivery currently used at the Centro Nazionale di Adroterapia Oncologica (CNAO) for ion beam modulated scanning radiotherapy. Methods: CNAO Foundation, Istituto Nazionale di Fisica Nucleare and University of Torino have designed, built, and commissioned a dose delivery system (DDS) to monitor and guide ion beams accelerated by a dedicated synchrotron and to distribute the dose with a full 3D scanning technique. Protons and carbon ions are provided for a wide range of energies in order to cover a sizable span of treatment depths. The target volume, segmented in several layers orthogonally to the beam direction, is irradiated by thousands of pencil beams which must be steered and held to the prescribed positions until the prescribed number of particles has been delivered. For the CNAO beam lines, these operations are performed by the DDS. The main components of this system are two independent beam monitoring detectors, called BOX1 and BOX2, interfaced with two control systems performing the tasks of real-time fast and slow control, and connected to the scanning magnets and the beam chopper. As a reaction to any condition leading to a potential hazard, a DDS interlock signal is sent to the patient interlock system which immediately stops the irradiation. The essential tasks and operations performed by the DDS are described following the data flow from the treatment planning system through the end of the treatment delivery. Results: The ability of the DDS to guarantee a safe and accurate treatment was validated during the commissioning phase by means of checks of the charge collection efficiency, gain uniformity of the chambers, and 2D dose distribution homogeneity and stability. A high level of reliability and robustness has been proven by three years of system activity needing rarely more than regular maintenance and working with 100% uptime. Four identical and independent DDS devices have been tested showing

  14. Delayed Effects of Whole Brain Radiotherapy in Germ Cell Tumor Patients With Central Nervous System Metastases

    SciTech Connect

    Doyle, Danielle M. Einhorn, Lawrence H.

    2008-04-01

    Purpose: Central nervous system (CNS) metastases are uncommon in patients with germ cell tumors, with an incidence of 2-3%. CNS metastases have been managed with whole brain radiotherapy (WBRT) and concomitant cisplatin-based combination chemotherapy. Our previous study did not observe serious CNS toxicity (Int J Radiat Oncol Biol Phys 1991;22:17-22). We now report on 5 patients who developed delayed significant CNS toxicity. Patients and Methods: We observed 5 patients with delayed CNS toxicity. The initial diagnosis was between 1981 and 2003. All patients had poor-risk disease according to the International Germ Cell Consensus Collaborative Group criteria. Of the 5 patients, 3 had CNS metastases at diagnosis and 2 developed relapses with CNS metastases. These 5 patients underwent WBRT to 4,000-5,000 cGy in 18-28 fractions concurrently with cisplatin-based chemotherapy. Results: All 5 patients developed delayed symptoms consistent with progressive multifocal leukoencephalopathy. The symptoms included seizures, hemiparesis, cranial neuropathy, headaches, blindness, dementia, and ataxia. The median time from WBRT to CNS symptoms was 72 months (range, 9-228). Head imaging revealed multiple abnormalities consistent with gliosis and diffuse cerebral atrophy. Of the 5 patients, 3 had progressive and 2 stable symptoms. Treatment with surgery and/or steroids had modest benefit. The progressive multifocal leukoencephalopathy resulted in significant debility in all 5 patients, resulting in death (3 patients), loss of work, steroid-induced morbidity, and recurrent hospitalizations. Conclusion: Whole brain radiotherapy is not innocuous in young patients with germ cell tumors and can cause late CNS toxicity.

  15. [Crossed audit of the quality management system: Optimization of professional practices in radiotherapy].

    PubMed

    Leroy, É; Ponsard, N

    2015-10-01

    A working group within the French association of radiotherapy quality managers (AFQSR) proposed to implement an inter-institution audit among radiotherapy quality managers to share best practices, experience, and to have an external measurement of the effectiveness of the quality control processes implemented. A checklist was devised based on the French nuclear safety authority guide N(o) 5 and a procedure was formalized. The audit focuses on the effectiveness of the quality management process in radiotherapy. This article details the rationale for the project and conduct of the audit.

  16. Incorporating system latency associated with real-time target tracking radiotherapy in the dose prediction step

    NASA Astrophysics Data System (ADS)

    Roland, Teboh; Mavroidis, Panayiotis; Shi, Chengyu; Papanikolaou, Nikos

    2010-05-01

    System latency introduces geometric errors in the course of real-time target tracking radiotherapy. This effect can be minimized, for example by the use of predictive filters, but cannot be completely avoided. In this work, we present a convolution technique that can incorporate the effect as part of the treatment planning process. The method can be applied independently or in conjunction with the predictive filters to compensate for residual latency effects. The implementation was performed on TrackBeam (Initia Ltd, Israel), a prototype real-time target tracking system assembled and evaluated at our Cancer Institute. For the experimental system settings examined, a Gaussian distribution attributable to the TrackBeam latency was derived with σ = 3.7 mm. The TrackBeam latency, expressed as an average response time, was deduced to be 172 ms. Phantom investigations were further performed to verify the convolution technique. In addition, patient studies involving 4DCT volumes of previously treated lung cancer patients were performed to incorporate the latency effect in the dose prediction step. This also enabled us to effectively quantify the dosimetric and radiobiological impact of the TrackBeam and other higher latency effects on the clinical outcome of a real-time target tracking delivery.

  17. Use of Monte Carlo computation in benchmarking radiotherapy treatment planning system algorithms

    NASA Astrophysics Data System (ADS)

    Lewis, R. D.; Ryde, S. J. S.; Seaby, A. W.; Hancock, D. A.; Evans, C. J.

    2000-07-01

    Radiotherapy treatments are becoming more complex, often requiring the dose to be calculated in three dimensions and sometimes involving the application of non-coplanar beams. The ability of treatment planning systems to accurately calculate dose under a range of these and other irradiation conditions requires evaluation. Practical assessment of such arrangements can be problematical, especially when a heterogeneous medium is used. This work describes the use of Monte Carlo computation as a benchmarking tool to assess the dose distribution of external photon beam plans obtained in a simple heterogeneous phantom by several commercially available 3D and 2D treatment planning system algorithms. For comparison, practical measurements were undertaken using film dosimetry. The dose distributions were calculated for a variety of irradiation conditions designed to show the effects of surface obliquity, inhomogeneities and missing tissue above tangential beams. The results show maximum dose differences of 47% between some planning algorithms and film at a point 1 mm below a tangentially irradiated surface. Overall, the dose distribution obtained from film was most faithfully reproduced by the Monte Carlo N-Particle results illustrating the potential of Monte Carlo computation in evaluating treatment planning system algorithms.

  18. Open-Source Medical Devices (OSMD) Design of a Small Animal Radiotherapy System

    NASA Astrophysics Data System (ADS)

    Prajapati, S.; Mackie, T. R.; Jeraj, R.

    2014-03-01

    Open-Source Medical Devices (OSMD) was initiated with the goal of facilitating medical research by developing medical technologies including both hardware and software on an open-source platform. Our first project was to develop an integrated imaging and radiotherapy device for small animals that includes computed tomography (CT), positron emission tomography (PET) and radiation therapy (RT) modalities for which technical specifications were defined in the first OSMD conference held in Madison, Wisconsin, USA in December 2011. This paper specifically focuses on the development of a small animal RT (micro-RT) system by designing a binary micro multileaf collimator (bmMLC) and a small animal treatment planning system (SATPS) to enable intensity modulated RT (IMRT). Both hardware and software projects are currently under development and their current progresses are described. After the development, both bmMLC and TPS will be validated and commissioned for a micro-RT system. Both hardware design and software development will be open-sourced after completion.

  19. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    SciTech Connect

    Via, Riccardo Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Ciocca, Mario; Riboldi, Marco; Baroni, Guido; Orecchia, Roberto

    2015-05-15

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring

  20. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery

    SciTech Connect

    Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre

    2010-12-15

    Purpose: The curative potential of external beam radiation therapy is critically dependent on having the ability to accurately aim radiation beams at intended targets while avoiding surrounding healthy tissues. However, existing technologies are incapable of real-time, volumetric, soft-tissue imaging during radiation beam delivery, when accurate target tracking is most critical. The authors address this challenge in the development and evaluation of a novel, minimally interfering, telerobotic ultrasound (U.S.) imaging system that can be integrated with existing medical linear accelerators (LINACs) for therapy guidance. Methods: A customized human-safe robotic manipulator was designed and built to control the pressure and pitch of an abdominal U.S. transducer while avoiding LINAC gantry collisions. A haptic device was integrated to remotely control the robotic manipulator motion and U.S. image acquisition outside the LINAC room. The ability of the system to continuously maintain high quality prostate images was evaluated in volunteers over extended time periods. Treatment feasibility was assessed by comparing a clinically deployed prostate treatment plan to an alternative plan in which beam directions were restricted to sectors that did not interfere with the transabdominal U.S. transducer. To demonstrate imaging capability concurrent with delivery, robot performance and U.S. target tracking in a phantom were tested with a 15 MV radiation beam active. Results: Remote image acquisition and maintenance of image quality with the haptic interface was successfully demonstrated over 10 min periods in representative treatment setups of volunteers. Furthermore, the robot's ability to maintain a constant probe force and desired pitch angle was unaffected by the LINAC beam. For a representative prostate patient, the dose-volume histogram (DVH) for a plan with restricted sectors remained virtually identical to the DVH of a clinically deployed plan. With reduced margins, as

  1. Characterization of a computed radiography system for external radiotherapy beam dosimetry

    NASA Astrophysics Data System (ADS)

    Aberle, Christoph; Kapsch, Ralf-Peter

    2016-06-01

    A commercial computed radiography (CR) system was studied as an option for quantitative dosimetry quality assurance of external radiotherapy beams. Following the examination of influencing quantities, practical measurement procedures are discussed. Corrections were derived for image fading, an observed long-term response drift and the image length scale, which was found to be off by up to 2-3%. It is known that energy dependence is important for CR measurements. Therefore, signal-to-dose calibration curves and the energy dependence of the response were studied extensively using multiple photon and electron beam qualities. Doses which yield the same signal vary by up to tens of percent for different beam qualities. Results on the directional response of the plates are presented. It was found that rotations of up to 30° to 40° relative to perpendicular irradiation yield no significant change in response. Finally, the homogeneity of the response over the measurement region was studied for electrons and photons and a correction method is described. In summary, relative dose measurements with uncertainties of a few percent are feasible in regions of constant beam energy.

  2. Systemic radiotherapy with monoclonal antibodies. An experimental study with human neuroblastoma xenografts in nude mice.

    PubMed

    Sautter-Bihl, M L; Matzku, S; Bihl, H

    1993-07-01

    In this experimental study, feasibility and efficiency of systemic radiotherapy with the I-131 labelled monoclonal antibody BW575/9 (radioimmunotherapy) are investigated using human SK-N-SH neuroblastoma transplanted into nude mice. Series of six nude mice were treated with intravenous application of 400 microCi (group 1), 700 microCi (group 2) of the I-131 labelled and of the unlabelled MAb (group 3). An untreated group (group 4) served as control. Tumors of group (3) and (4) showed an identical growth. In group (1), tumor growth was arrested for seven days. In group (2), the tumor showed complete regression after eight days which lasted for 55 days. Thereafter, the tumor started to regrow. This growth characteristics are correlated with the doses achieved in the tumor using a medical internal radiation dose (MIRD) formulation. The biodistribution data necessary for MIRD calculation were obtained by previously performed experiments with the I-125 labelled MAb. The doses assessed in the tumor turned out to be five to ten times greater than those in normal tissues (liver, bone, etc.) These results confirm feasibility, selectivity and efficiency of radioimmunotherapy in the above described model. Moreover, this in vivo model seems suitable for further investigations concerning fundamental issues of radioimmunotherapy.

  3. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes

    NASA Astrophysics Data System (ADS)

    Sánchez-Parcerisa, D.; Kondrla, M.; Shaindlin, A.; Carabe, A.

    2014-12-01

    FoCa is an in-house modular treatment planning system, developed entirely in MATLAB, which includes forward dose calculation of proton radiotherapy plans in both active and passive modalities as well as a generic optimization suite for inverse treatment planning. The software has a dual education and research purpose. From the educational point of view, it can be an invaluable teaching tool for educating medical physicists, showing the insights of a treatment planning system from a well-known and widely accessible software platform. From the research point of view, its current and potential uses range from the fast calculation of any physical, radiobiological or clinical quantity in a patient CT geometry, to the development of new treatment modalities not yet available in commercial treatment planning systems. The physical models in FoCa were compared with the commissioning data from our institution and show an excellent agreement in depth dose distributions and longitudinal and transversal fluence profiles for both passive scattering and active scanning modalities. 3D dose distributions in phantom and patient geometries were compared with a commercial treatment planning system, yielding a gamma-index pass rate of above 94% (using FoCa’s most accurate algorithm) for all cases considered. Finally, the inverse treatment planning suite was used to produce the first prototype of intensity-modulated, passive-scattered proton therapy, using 13 passive scattering proton fields and multi-leaf modulation to produce a concave dose distribution on a cylindrical solid water phantom without any field-specific compensator.

  4. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes.

    PubMed

    Sánchez-Parcerisa, D; Kondrla, M; Shaindlin, A; Carabe, A

    2014-12-01

    FoCa is an in-house modular treatment planning system, developed entirely in MATLAB, which includes forward dose calculation of proton radiotherapy plans in both active and passive modalities as well as a generic optimization suite for inverse treatment planning. The software has a dual education and research purpose. From the educational point of view, it can be an invaluable teaching tool for educating medical physicists, showing the insights of a treatment planning system from a well-known and widely accessible software platform. From the research point of view, its current and potential uses range from the fast calculation of any physical, radiobiological or clinical quantity in a patient CT geometry, to the development of new treatment modalities not yet available in commercial treatment planning systems. The physical models in FoCa were compared with the commissioning data from our institution and show an excellent agreement in depth dose distributions and longitudinal and transversal fluence profiles for both passive scattering and active scanning modalities. 3D dose distributions in phantom and patient geometries were compared with a commercial treatment planning system, yielding a gamma-index pass rate of above 94% (using FoCa's most accurate algorithm) for all cases considered. Finally, the inverse treatment planning suite was used to produce the first prototype of intensity-modulated, passive-scattered proton therapy, using 13 passive scattering proton fields and multi-leaf modulation to produce a concave dose distribution on a cylindrical solid water phantom without any field-specific compensator. PMID:25387249

  5. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes.

    PubMed

    Sánchez-Parcerisa, D; Kondrla, M; Shaindlin, A; Carabe, A

    2014-12-01

    FoCa is an in-house modular treatment planning system, developed entirely in MATLAB, which includes forward dose calculation of proton radiotherapy plans in both active and passive modalities as well as a generic optimization suite for inverse treatment planning. The software has a dual education and research purpose. From the educational point of view, it can be an invaluable teaching tool for educating medical physicists, showing the insights of a treatment planning system from a well-known and widely accessible software platform. From the research point of view, its current and potential uses range from the fast calculation of any physical, radiobiological or clinical quantity in a patient CT geometry, to the development of new treatment modalities not yet available in commercial treatment planning systems. The physical models in FoCa were compared with the commissioning data from our institution and show an excellent agreement in depth dose distributions and longitudinal and transversal fluence profiles for both passive scattering and active scanning modalities. 3D dose distributions in phantom and patient geometries were compared with a commercial treatment planning system, yielding a gamma-index pass rate of above 94% (using FoCa's most accurate algorithm) for all cases considered. Finally, the inverse treatment planning suite was used to produce the first prototype of intensity-modulated, passive-scattered proton therapy, using 13 passive scattering proton fields and multi-leaf modulation to produce a concave dose distribution on a cylindrical solid water phantom without any field-specific compensator.

  6. Phase I Trial Using Proteasome Inhibitor Bortezomib and Concurrent Temozolomide and Radiotherapy for Central Nervous System Malignancies

    SciTech Connect

    Kubicek, Gregory J.; Werner-Wasik, Maria; Machtay, Mitchell; Mallon, Gayle; Myers, Thomas; Ramirez, Michael; Andrews, David; Curran, Walter J.; Dicker, Adam P.

    2009-06-01

    Purpose: To evaluate the toxicity and response rate of bortezomib with concurrent radiotherapy and temozolomide in the treatment of patients with central nervous system malignancies. Patients and Methods: This open-label, dose-escalation, Phase I clinical study evaluated the safety of three dose levels of intravenously administered bortezomib (0.7, 1.0, and 1.3 mg/m{sup 2}/dose) on Days 1, 4, 8, and 11 of a 21-day cycle, in addition to concurrent radiotherapy and temozolomide at a daily dose of 75 mg/m{sup 2} starting on Day 1. The primary endpoint was dose-limiting toxicity, defined as any Grade 4-5 toxicity or Grade 3 toxicity directly attributable to protocol treatment, requiring hospitalization and/or radiotherapy interruption. The secondary endpoints included feasibility, non-dose-limiting toxicity, and treatment response. Results: A total of 27 patients were enrolled, 23 of whom had high-grade glioma (10 recurrent and 13 newly diagnosed). No dose-limiting toxicities were noted in any dose group, including the highest (1.3 mg/m{sup 2}/dose). The most frequent toxicities were Grade 1 and 2 stomatitis, erythema, and alopecia. All 27 patients were evaluable for response. At a median follow-up of 15.0 months, 9 patients were still alive, with a median survival of 17.4 months for all patients and 15.0 months for patients with high-grade glioma. Conclusion: Bortezomib administered at its typical 'systemic' dose (1.3 mg/m{sup 2}) is well tolerated and safe combined with temozolomide and radiotherapy when used in the treatment of central nervous system malignancies. A Phase II study to characterize efficacy is warranted.

  7. Clinical Evaluation of an Immbolization System for Stereotactic Body Radiotherapy Using Helical Tomotherapy

    SciTech Connect

    Gutierrez, Alonso N.; Stathakis, Sotirios; Crownover, Richard; Esquivel, Carlos; Shi Chengyu; Papanikolaou, Niko

    2011-07-01

    In this study, a clinical evaluation of the Body Pro-Lok{sup TM} System combined with the TomoTherapy megavoltage computed tomography (MVCT) was performed for lung and liver stereotactic body radiotherapy (SBRT) to reduce interfractional setup uncertainty. Twenty patients treated with 3-5 fractions of SBRT were analyzed retrospectively. The Body Pro-Lok{sup TM} system was used in both CT simulation and during patient treatment setup. Patients were immobilized with a vacuum cushion placed posteriorly over the thoracic region, an abdominal compression plate, and a knee and foot sponge. Pretreatment MVCT scans of the TomoTherapy HI-ART II unit were fused with the planning kVCT before delivery of each fraction to determine the interfractional setup error. A total of 84 shifts were analyzed to assess the interfractional setup accuracy. Results showed that the mean interfractional setup errors and standard deviations were -0.9 {+-} 3.1 mm, 1.2 {+-} 5.5 mm, and 6.5 {+-} 2.6 mm for lateral (IEC-X), longitudinal (IEC-Y), and vertical (IEC-Z) variations, respectively. The maximum motion was 17.1 mm in the longitudinal direction. When all 3 translational coordinates were analyzed, a mean composite displacement vector of 8.2 {+-} 2.0 mm (range 4.1-11.7 mm) was obtained for all patients. Based on the findings, image-guided SBRT using the Body Pro-Lok{sup TM} system in conjunction with the MVCT of TomoTherapy is capable of minimizing interfractional setup error and improving treatment accuracy.

  8. Development of a Micro-Computed Tomography-Based Image-Guided Conformal Radiotherapy System for Small Animals

    SciTech Connect

    Zhou Hu; Rodriguez, Manuel; Haak, Fred van den; Nelson, Geoffrey; Jogani, Rahil

    2010-09-01

    Purpose: To report on the physical aspects of a system in which radiotherapy functionality was added to a micro-computed tomography (microCT) scanner, to evaluate the accuracy of this instrument, and to and demonstrate the application of this technology for irradiating tumors growing within the lungs of mice. Methods and Materials: A GE eXplore RS120 microCT scanner was modified by the addition of a two-dimensional subject translation stage and a variable aperture collimator. Quality assurance protocols for these devices, including measurement of translation stage positioning accuracy, collimator aperture accuracy, and collimator alignment with the X-ray beam, were devised. Use of this system for image-guided radiotherapy was assessed by irradiation of a solid water phantom as well as of two mice bearing spontaneous MYC-induced lung tumors. Radiation damage was assessed ex vivo by immunohistochemical detection of {gamma}H2AX foci. Results: The positioning error of the translation stage was found to be <0.05 mm, whereas after alignment of the collimator with the X-ray axis through adjustment of its displacement and rotation, the collimator aperture error was <0.1 mm measured at isocenter. Computed tomography image-guided treatment of a solid water phantom demonstrated target localization accuracy to within 0.1 mm. Gamma-H2AX foci were detected within irradiated lung tumors in mice, with contralateral lung tissue displaying background staining. Conclusions: Addition of radiotherapy functionality to a microCT scanner is an effective means of introducing image-guided radiation treatments into the preclinical setting. This approach has been shown to facilitate small-animal conformal radiotherapy while leveraging existing technology.

  9. Multi-System Verification of Registrations for Image-Guided Radiotherapy in Clinical Trials

    SciTech Connect

    Cui Yunfeng; Galvin, James M.; Straube, William L.; Bosch, Walter R.; Purdy, James A.; Li, X. Allen; Xiao Ying

    2011-09-01

    Purpose: To provide quantitative information on the image registration differences from multiple systems for image-guided radiotherapy (IGRT) credentialing and margin reduction in clinical trials. Methods and Materials: Images and IGRT shift results from three different treatment systems (Tomotherapy Hi-Art, Elekta Synergy, Varian Trilogy) have been sent from various institutions to the Image-Guided Therapy QA Center (ITC) for evaluation for the Radiation Therapy Oncology Group (RTOG) trials. Nine patient datasets (five head-and-neck and four prostate) were included in the comparison, with each patient having 1-4 daily individual IGRT studies. In all cases, daily shifts were re-calculated by re-registration of the planning CT with the daily IGRT data using three independent software systems (MIMvista, FocalSim, VelocityAI). Automatic fusion was used in all calculations. The results were compared with those submitted from institutions. Similar regions of interest (ROIs) and same initial positions were used in registrations for inter-system comparison. Different slice spacings for CBCT sampling and different ROIs for registration were used in some cases to observe the variation of registration due to these factors. Results: For the 54 comparisons with head-and-neck datasets, the absolute values of differences of the registration results between different systems were 2.6 {+-} 2.1 mm (mean {+-} SD; range 0.1-8.6 mm, left-right [LR]), 1.7 {+-} 1.3 mm (0.0-4.9 mm, superior-inferior [SI]), and 1.8 {+-} 1.1 mm (0.1-4.0 mm, anterior-posterior [AP]). For the 66 comparisons in prostate cases, the differences were 1.1 {+-} 1.0 mm (0.0-4.6 mm, LR), 2.1 {+-} 1.7 mm (0.0-6.6 mm, SI), and 2.0 {+-} 1.8 mm (0.1-6.9 mm, AP). The differences caused by the slice spacing variation were relatively small, and the different ROI selections in FocalSim and MIMvista also had limited impact. Conclusion: The extent of differences was reported when different systems were used for image

  10. Breast dosimetry in transverse and longitudinal field MRI-Linac radiotherapy systems

    SciTech Connect

    Mahdavi, S. R.; Esmaeeli, A. D.; Pouladian, M.; Sardari, D.; Bagheri, S.; Monfared, A. S.

    2015-02-15

    Purpose: In the framework of developing the integration of a MRI-Linac system, configurations of MRI-Linac units were simulated in order to improve the dose distribution in tangential breast radiotherapy using transverse and longitudinal magnetic field geometries of Lorentz force for both medial and lateral tangential fields. Methods: In this work, the GEANT4 Monte Carlo (MC) code was utilized to compare dose distributions in breast radiotherapy for Linac-MR systems in the transverse and longitudinal geometries within humanoid phantoms across a range of magnetic field strengths of 0.5 and 1.5 T. The dose increment due to scattering from the coils was investigated for both geometries as well. Computed tomography images of two patients were used for MC simulations. One patient had intact breast while the other was mastectomized. In the simulations, planning and methods of chest wall irradiation were similar to the actual clinical planning. Results: In a longitudinal geometry, the magnetic field is shown to restrict the lateral spread of secondary electrons to the lung, heart, and contralateral organs, which reduced the mean dose of the ipsilateral lung and heart by means of 17.2% and 6% at 1.5 T, respectively. The transverse configuration exhibits a significant increase in tissue interface effects, which increased dose buildup in the entrance regions of the lateral and medial tangent beams to the planning target volume (PTV) and improved dose homogeneity within the PTV. The improved relative average homogeneity index for two patients to the PTV at magnetic field strength of 1.5 T with respect to no magnetic field case evaluated was 11.79% and 34.45% in the LRBP and TRBP geometries, respectively. In both geometries, the simulations show significant mean dose reductions in the contralateral breast and chest wall skin, respectively, by a mean of 16.6% and 24.9% at 0.5 T and 17.2% and 28.1% at 1.5 T in the transverse geometry, and 10.56% and 14.6% at 0.5 T and 11.3% and

  11. Proton Radiotherapy for Pediatric Central Nervous System Germ Cell Tumors: Early Clinical Outcomes

    SciTech Connect

    MacDonald, Shannon M.; Trofimov, Alexei; Safai, Sairos; Adams, Judith; Fullerton, Barbara; Ebb, David; Tarbell, Nancy J.; Yock, Torunn I.

    2011-01-01

    Purpose: To report early clinical outcomes for children with central nervous system (CNS) germ cell tumors treated with protons; to compare dose distributions for intensity-modulated photon radiotherapy (IMRT), three-dimensional conformal proton radiation (3D-CPT), and intensity-modulated proton therapy with pencil beam scanning (IMPT) for whole-ventricular irradiation with and without an involved-field boost. Methods and Materials: All children with CNS germinoma or nongerminomatous germ cell tumor who received treatment at the Massachusetts General Hospital between 1998 and 2007 were included in this study. The IMRT, 3D-CPT, and IMPT plans were generated and compared for a representative case. Results: Twenty-two patients were treated with 3D-CPT. At a median follow-up of 28 months, there were no CNS recurrences; 1 patient had a recurrence outside the CNS. Local control, progression-free survival, and overall survival rates were 100%, 95%, and 100%, respectively. Comparable tumor volume coverage was achieved with IMRT, 3D-CPT, and IMPT. Substantial normal tissue sparing was seen with any form of proton therapy as compared with IMRT. The use of IMPT may yield additional sparing of the brain and temporal lobes. Conclusions: Preliminary disease control with proton therapy compares favorably to the literature. Dosimetric comparisons demonstrate the advantage of proton radiation over IMRT for whole-ventricle radiation. Superior dose distributions were accomplished with fewer beam angles utilizing 3D-CPT and scanned protons. Intensity-modulated proton therapy with pencil beam scanning may improve dose distribution as compared with 3D-CPT for this treatment.

  12. Phase I Trial Using Patupilone (Epothilone B) and Concurrent Radiotherapy for Central Nervous System Malignancies

    SciTech Connect

    Fogh, Shannon; Machtay, Mitchell; Werner-Wasik, Maria; Curran, Walter J.; Bonanni, Roseann; Axelrod, Rita; Andrews, David; Dicker, Adam P.

    2010-07-15

    Purpose: Based on preclinical data indicating the radiosensitizing potential of epothilone B, the present study was designed to evaluate the toxicity and response rate of patupilone, an epothilone B, with concurrent radiotherapy (RT) for the treatment of central nervous system malignancies. Methods and Materials: The present Phase I study evaluated the toxicities associated with patupilone combined with RT to establish the maximal tolerated dose. Eligible patients had recurrent gliomas (n = 10) primary (n = 5) or metastatic (n = 17) brain tumors. Dose escalation occurred if no dose-limiting toxicities, defined as any Grade 4-5 toxicity or Grade 3 toxicity requiring hospitalization, occurred during treatment. Results: Of 14 patients, 5 were treated with weekly patupilone at 1.5 mg/m{sup 2}, 4 at 2.0 mg/m{sup 2}, 4 at 2.5 mg/m{sup 2}, and 1 at 4 mg/m{sup 2}. Of 18 patients, 7 were treated in the 6-mg/m{sup 2} group, 6 in the 8-mg/m{sup 2} group, and 5 in the 10-mg/m{sup 2} group. Primary central nervous system malignancies received RT to a median dose of 60 Gy. Central nervous system metastases received whole brain RT to a median dose of 37.4 Gy, and patients with recurrent gliomas underwent stereotactic RT to a median dose of 37.5 Gy. One dose-limiting toxicity (pneumonia) was observed in group receiving 8-mg/m{sup 2} every 3 weeks. At the subsequent dose level (10 mg/m{sup 2}), two Grade 4 dose-limiting toxicities occurred (renal failure and pulmonary hemorrhage); thus, 8 mg/m{sup 2} every 3 weeks was the maximal tolerated dose and the recommended Phase II dose. Conclusion: Combined with a variety of radiation doses and fractionation schedules, concurrent patupilone was well tolerated and safe, with a maximal tolerated dose of 8 mg/m{sup 2} every 3 weeks.

  13. Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems

    PubMed Central

    Mahmoudi, Reza; Jabbari, Nasrollah; aghdasi, Mehdi; Khalkhali, Hamid Reza

    2016-01-01

    Introduction For accurate dose calculations, it is necessary to provide a correct relationship between the CT numbers and electron density in radiotherapy treatment planning systems (TPSs). The purpose of this study was to investigate the energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy TPSs and the resulting errors in the treatment planning calculation doses. Materials and Methods In this study, we designed a cylindrical water phantom with different materials used as tissue equivalent materials for the simulation of tissues and obtaining the related CT numbers. For evaluating the effect of CT number variations of substituted materials due to energy changing of scanner (kVp) on the dose calculation of TPS, the slices of the scanned phantom at three kVp's were imported into the desired TPSs (MIRS and CorePLAN). Dose calculations were performed on two TPSs. Results The mean absolute percentage differences between the CT numbers of CT scanner and two treatment planning systems for all the samples were 3.22%±2.57% for CorePLAN and 2.88%±2.11% for MIRS. It was also found that the maximum absolute percentage difference between all of the calculated doses from each photon beam of linac (6 and 15 MV) at three kVp's was less than 1.2%. Discussion The present study revealed that, for the materials with effective low atomic number, the mean CT number increased with increasing energy, which was opposite for the materials with an effective high atomic number. We concluded that the tissue substitute materials had a different behavior in the energy ranges from 80 to 130 kVp. So, it is necessary to consider the energy dependence of the substitute materials used for the measurement or calibration of CT number for radiotherapy treatment planning systems. PMID:27391672

  14. Impact of intense systemic therapy and improved survival on the use of palliative radiotherapy in patients with bone metastases from prostate cancer

    PubMed Central

    Nieder, Carsten; Haukland, Ellinor; Mannsåker, Bård; Norum, Jan

    2016-01-01

    More effective drugs may reduce the requirement for palliative external beam radiotherapy for bony target volumes; however, living with metastases for prolonged periods of time may result in more frequent episodes of bone pain or serious skeletal-related events. The purpose of the present study was to evaluate how recent advances in systemic therapy impact radiotherapy utilization. A retrospective analysis of a comprehensive regional database was performed. All oncology care in this region was provided by only one center, assuring complete data. Patients that had succumbed between June 1, 2004 and June 1, 2015 were included. For all 236 patients, the median age at diagnosis of bone metastases was 75 years and median overall survival was 20 months. More intense systemic therapy was associated with a significantly longer survival time. Only 69 patients (29%) did not receive palliative radiotherapy for bony target volumes, whilst 1 course was given to 101 patients (43%), 2 courses to 34 patients (14%) and >2 courses to 32 patients (14%). Radiotherapy was used more frequently in younger patients, those with spinal cord compressions or pathological fractures, and those treated with intense and long-standing systemic therapy. Radiotherapy utilization increased with survival time. For 100 poor-prognosis patients that succumbed within 12 months, 57 courses of palliative radiotherapy were administered, whilst 100 patients that survived for 12–24 months were administered 114 courses (24–36 months, 148 courses). In conclusion, the use of palliative radiotherapy did not decrease when more effective systemic therapy was administered. However, provided that only 5% of patients received radionuclide treatment, additional studies in other populations are required. PMID:27698881

  15. Impact of intense systemic therapy and improved survival on the use of palliative radiotherapy in patients with bone metastases from prostate cancer

    PubMed Central

    Nieder, Carsten; Haukland, Ellinor; Mannsåker, Bård; Norum, Jan

    2016-01-01

    More effective drugs may reduce the requirement for palliative external beam radiotherapy for bony target volumes; however, living with metastases for prolonged periods of time may result in more frequent episodes of bone pain or serious skeletal-related events. The purpose of the present study was to evaluate how recent advances in systemic therapy impact radiotherapy utilization. A retrospective analysis of a comprehensive regional database was performed. All oncology care in this region was provided by only one center, assuring complete data. Patients that had succumbed between June 1, 2004 and June 1, 2015 were included. For all 236 patients, the median age at diagnosis of bone metastases was 75 years and median overall survival was 20 months. More intense systemic therapy was associated with a significantly longer survival time. Only 69 patients (29%) did not receive palliative radiotherapy for bony target volumes, whilst 1 course was given to 101 patients (43%), 2 courses to 34 patients (14%) and >2 courses to 32 patients (14%). Radiotherapy was used more frequently in younger patients, those with spinal cord compressions or pathological fractures, and those treated with intense and long-standing systemic therapy. Radiotherapy utilization increased with survival time. For 100 poor-prognosis patients that succumbed within 12 months, 57 courses of palliative radiotherapy were administered, whilst 100 patients that survived for 12–24 months were administered 114 courses (24–36 months, 148 courses). In conclusion, the use of palliative radiotherapy did not decrease when more effective systemic therapy was administered. However, provided that only 5% of patients received radionuclide treatment, additional studies in other populations are required.

  16. Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system.

    PubMed

    Tong, Xu; Chen, Xiaoming; Li, Jinsheng; Xu, Qianqian; Lin, Mu-Han; Chen, Lili; Price, Robert A; Ma, Chang-Ming

    2015-03-08

    This paper investigates the clinical significance of real-time monitoring of intrafractional prostate motion during external beam radiotherapy using a commercial 4D localization system. Intrafractional prostate motion was tracked during 8,660 treatment fractions for 236 patients. The following statistics were analyzed: 1) the percentage of fractions in which the prostate shifted 2-7 mm for a certain duration; 2) the proportion of the entire tracking time during which the prostate shifted 2-7mm; and 3) the proportion of each minute in which the shift exceeded 2-7 mm. The ten patients exhibiting maximum intrafractional-motion patterns were analyzed separately. Our results showed that the percentage of fractions in which the prostate shifted by > 2, 3, 5, and 7 mm off the baseline in any direction for > 30 s was 56.8%, 27.2%, 4.6%, and 0.7% for intact prostate and 68.7%, 35.6%, 10.1%, and 1.8% for postprostatectomy patients, respectively. For the ten patients, these percentages were 91.3%, 72.4%, 36.3%, and 6%, respectively. The percentage of tracking time during which the prostate shifted > 2, 3, 5, and 7 mm was 27.8%, 10.7%, 1.6%, and 0.3%, respectively, and it was 56.2%, 33.7%, 11.2%, and 2.1%, respectively, for the ten patients. The percentage of tracking time for a > 3 mm posterior motion was four to five times higher than that in other directions. For treatments completed in 5 min (VMAT) and 10 min (IMRT), the proportion for the prostate to shift by > 3mm was 4% and 12%, respectively. Although intrafractional prostate motion was generally small, caution should be taken for patients who exhibit frequent large intrafractional motion. For those patients, adjustment of patient positioning may be necessary or a larger treatment margin may be used. After the initial alignment, the likelihood of prostate motion increases with time. Therefore, it is favorable to use advanced techniques (e.g., VMAT) that require less delivery time in order to reduce the treatment

  17. Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems

    NASA Astrophysics Data System (ADS)

    Zanini, A.; Durisi, E.; Fasolo, F.; Ongaro, C.; Visca, L.; Nastasi, U.; Burn, K. W.; Scielzo, G.; Adler, J. O.; Annand, J. R. M.; Rosner, G.

    2004-02-01

    Bremsstrahlung photon beams produced by linac accelerators are currently the most commonly used method of radiotherapy for tumour treatments. When the photon energy exceeds 10 MeV the patient receives an undesired dose due to photoneutron production in the accelerator head. In the last few decades, new sophisticated techniques such as multileaf collimators have been used for a better definition of the target volume. In this case it is crucial to evaluate the photoneutron dose produced after giant dipole resonance (GDR) excitation of the high Z materials (mainly tungsten and lead) constituting the collimator leaves in view of the optimization of the radiotherapy treatment. A Monte Carlo approach has been used to calculate the photoneutron dose arising from the GDR reaction during radiotherapy with energetic photon beams. The simulation has been performed using the code MCNP4B-GN which is based on MCNP4B, but includes a new routine GAMMAN to model photoneutron production. Results for the facility at IRCC (Istituto per la Ricerca e la Cura del Cancro) Candiolo (Turin), which is based on 18 MV x-rays from a Varian Clinac 2300 C/D, are presented for a variety of different collimator configurations.

  18. The effect of tumor location and respiratory function on tumor movement estimated by real-time tracking radiotherapy (RTRT) system

    SciTech Connect

    Onimaru, Rikiya; Shirato, Hiroki . E-mail: hshirato@radi.med.hokudai.ac.jp; Fujino, Masaharu; Suzuki, Keishiro; Yamazaki, Kouichi; Nishimura, Masaharu; Dosaka-Akita, Hirotoshi; Miyasaka, Kazuo

    2005-09-01

    Purpose: The effects of tumor location and pulmonary function on the motion of fiducial markers near lung tumors were evaluated to deduce simple guidelines for determining the internal margin in radiotherapy without fiducial markers. Methods and Materials: Pooled data collected by a real-time tumor-tracking radiotherapy system on 42 markers in 39 patients were analyzed. The pulmonary functions of all patients were assessed before radiotherapy. Using chest X-ray film, the position of the marker was expressed relative to the geometry of the unilateral lung. Posterior location meant the area of the posterior half of the lung in a lateral chest X-ray film, and caudal location meant the caudal half of the chest X-ray film; these categories were determined by measuring the distance between the marker and anatomic landmarks, including the apex, costophrenic angle, midline of spinal canal, lateral, anterior, and posterior boundary of the lung. Results: Before the radiotherapy, 18 patients had obstructive respiratory dysfunction (ratio of forced expiratory volume in 1 s to forced vital capacity [FEV{sub 1.0}/FVC] <70), 5 patients had constrictive dysfunction (percent vital capacity [%VC] <80), and 3 had mixed dysfunction. Means of FEV{sub 1.0}/FVC and %VC were 97.0% and 66.5%, respectively. Median tumor movements in the x (left-right), y (anteroposterior), and z (craniocaudal) directions were 1.1 mm, 2.3 mm, and 5.4 mm, respectively. There was no significant correlation between respiratory function and magnitude of marker movement in any direction. Median marker movement in the z direction was 2.6 mm for the cranial location and 11.8 mm for the caudal location, respectively (p < 0.001). Median movement in the z direction was 11.8 mm for posterior location and 3.4 mm for anterior location, respectively (p < 0.01). Conclusions: Simple measurement of the relative location on plain chest X-ray film was related, but respiratory function test was not related, to the craniocaudal

  19. A simple DVH generation technique for various radiotherapy treatment planning systems for an independent information system

    NASA Astrophysics Data System (ADS)

    Min, Byung Jun; Nam, Heerim; Jeong, Il Sun; Lee, Hyebin

    2015-07-01

    In recent years, the use of a picture archiving and communication system (PACS) for radiation therapy has become the norm in hospital environments and has been suggested for collecting and managing data using Digital Imaging and Communication in Medicine (DICOM) objects from different treatment planning systems (TPSs). However, some TPSs do not provide the ability to export the dose-volume histogram (DVH) in text or other format. In addition, plan review systems for various TPSs often allow DVH recalculations with different algorithms. These algorithms result in inevitable discrepancies between the values obtained with the recalculation and those obtained with TPS itself. The purpose of this study was to develop a simple method for generating reproducible DVH values by using the TPSs. Treatment planning information, including structures and delivered dose, was exported in the DICOM format from the Eclipse v8.9 or the Pinnacle v9.6 planning systems. The supersampling and trilinear interpolation methods were employed to calculate the DVH data from 35 treatment plans. The discrepancies between the DVHs extracted from each TPS and those extracted by using the proposed calculation method were evaluated with respect to the supersampling ratio. The volume, minimum dose, maximum dose, and mean dose were compared. The variations in DVHs from multiple TPSs were compared by using the MIM software v6.1, which is a commercially available treatment planning comparison tool. The overall comparisons of the volume, minimum dose, maximum dose, and mean dose showed that the proposed method generated relatively smaller discrepancies compared with TPS than the MIM software did compare with the TPS. As the structure volume decreased, the overall percent difference increased. The largest difference was observed in small organs such as the eye ball, eye lens, and optic nerve which had volume below 10 cc. A simple and useful technique was developed to generate a DVH with an acceptable

  20. Role of Systemic Therapy in the Development of Lung Sequelae After Conformal Radiotherapy in Breast Cancer Patients

    SciTech Connect

    Varga, Zoltan; Cserhati, Adrienn; Kelemen, Gyoengyi; Boda, Krisztina; Thurzo, Laszlo; Kahan, Zsuzsanna

    2011-07-15

    Purpose: To analyze the risk of radiogenic lung damage in breast cancer patients after conformal radiotherapy and different forms of systemic treatment. Methods and Materials: In 328 patients receiving sequential taxane-based chemotherapy, concomitant hormone therapy (tamoxifen or aromatase inhibitors), or no adjuvant systemic therapy, symptomatic and asymptomatic lung sequelae were prospectively evaluated via the detection of visible CT abnormalities, 3 months or 1 year after the completion of the radiotherapy. Results: Significant positive associations were detected between the development of both pneumonitis and fibrosis of Grade 1 and patient age, ipsilateral mean lung dose, volume of the ipsilateral lung receiving 20 Gy, and irradiation of the regional lymph nodes. In multivariate analysis, age and mean lung dose proved to be independent predictors of early (odds ratio [OR] = 1.035, 95% confidence interval [CI] 1.011-1.061 and OR = 1.113, 95% CI 1.049-1.181, respectively) and late (OR = 1.074, 95% CI 1.042-1.107 and OR = 1.207, 95% CI 1.124-1.295, respectively) radiogenic lung damage, whereas the role of systemic therapy was significant in the development of Grade 1 lung fibrosis (p = 0.01). Among the various forms of systemic therapy, tamoxifen increased the risk of late lung sequelae (OR = 2.442, 95% CI 1.120-5.326, p = 0.025). No interaction was demonstrated between the administration of systemic therapy and the other above-mentioned parameters as regards the risk of radiogenic lung damage. Conclusions: Our analyses demonstrate the independent role of concomitant tamoxifen therapy in the development of radiogenic lung fibrosis but do not suggest such an effect for the other modes of systemic treatment.

  1. Favorable Outcomes of Pediatric Patients Treated With Radiotherapy to the Central Nervous System Who Develop Radiation-Induced Meningiomas

    SciTech Connect

    Galloway, Thomas J.; Indelicato, Daniel J.; Amdur, Robert J.; Swanson, Erika L.; Morris, Christopher G.; Marcus, Robert B.

    2011-01-01

    Purpose: To report the outcome of patients treated at the University of Florida who developed meningiomas after radiation to the central nervous system (CNS) for childhood cancer. Methods and Materials: We retrospectively identified 10 patients aged {<=}19 years who received radiotherapy to sites in the craniospinal axis and subsequently developed a meningioma. We report the histology of the radiation-induced meningioma, treatment received, and ultimate outcome among this cohort of patients. Results: Meningioma was diagnosed at a median of 23.5 years after completion of the primary radiation. Fifty percent of second meningiomas were World Health Organization Grade 2 (atypical) or higher. All cases were managed with a single modality: resection alone (n = 7), fractionated radiotherapy (n = 2), and stereotactic radiosurgery (n = 1). The actuarial event-free survival and overall survival rate at 5 years after treatment for a radiation-induced meningioma was 89%. Three patients who underwent resection for retreatment experienced a Grade 3 toxicity. Conclusions: Radiation-induced meningiomas after treatment of pediatric CNS tumors are effectively managed with single-modality therapy. Such late-effect data inform the overall therapeutic ratio and support the continued role of selective irradiation in managing pediatric CNS malignancies.

  2. Validation of in-house treatment planning system software for cobalt-60 teletherapy unit at two radiotherapy installations

    NASA Astrophysics Data System (ADS)

    Mu'minah, I. A. S.; Toresano, L. O. H. Z.; Wibowo, W. E.; Sugiyantari; Pawiro, S. A.

    2016-03-01

    DSSuperDose v.1.0 is an in-house treatment planning system (TPS) developed by Medical Physics and Biophysics Laboratory (LFMB) Universitas Indonesia as a treatment planning software for Cobalt-60 teletherapy unit. The main objective of this study was the validation of in-house TPS calculation as an essential part in quality assurance (QA) of radiotherapy. Validation of an in-house TPS was performed with two Cobalt-60 teletherapy units by comparison between in-house TPS and ISIS TPS and by measurements of absorbed dose. Mean dose deviations between in-house TPS and measurement were (1.97 ± 2.42)% for open field, (1.32 ± 1.30)% for tray field, and (2.91 ± 2.36)% for wedge field treatments. In-house TPS provide optimal planning for open and tray beam conditions with depth fewer than 10 cm (≤ 10 cm) and field sizes up to 20×20 cm2, while for wedge beam conditions with field sizes fewer than the physical size of the wedge. Comparison of in-house TPS and ISIS TPS demonstrated a good match of 96%. From the results, it is concluded that DSSuperDose v.1.0 is adequately accurate for treatment planning of radiotherapy.

  3. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    SciTech Connect

    Nazareth, D; Malhotra, H; French, S; Hoffmann, K; Merrow, C

    2014-06-01

    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the camera to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could possibly be

  4. Inhalation anesthesia in experimental radiotherapy: a reliable and time-saving system for multifractionation studies in a clinical department

    SciTech Connect

    Ang, K.K.; Van Der Kogel, A.J.; Van Der Schueren, E.

    1982-01-01

    An inhalation anesthesia system has been employed to overcome several of the limitations associated with the use of sodium pentobarbital and other i.p. administered anesthetics in experimental radiotherapy. The described method is reliable and time-saving. The depth and duration of anesthesia are easily controllable. Only 4 deaths have occurred with more than 6000 animal exposures. The use of polystyrene jigs is shown to provide adequate thermal isolation. Oxygen as a carrier of the anesthetic agent is expected to prevent a reduced tissue oxygenation and its radiobiological consequences. The whole system is constructed as a mobile unit in which up to 16 mice or rats can be anesthetized simultaneously and irradiated in a single field with clinical treatment equipment during short time intervals between patient irradiations. The described advantages of this method make it specially suited for experiments with protracted fractionation schedules.

  5. MO-G-BRE-01: A Real-Time Virtual Delivery System for Photon Radiotherapy Delivery Monitoring

    SciTech Connect

    Shi, F; Gu, X; Jiang, S; Jia, X; Graves, Y

    2014-06-15

    Purpose: Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC) method. Methods: The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM) is calculated. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an inhouse developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes overlaid on the CT image for treatment monitoring. This process continues to monitor the 3D dose distribution in real-time. Results: An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the two cases, respectively. The average time per MC calculation is 0.1sec with <2% relative uncertainty. The update frequency of ∼10Hz is considered as real time. Conclusion: By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.

  6. Optimization and quality assurance of an image-guided radiation therapy system for intensity-modulated radiation therapy radiotherapy

    SciTech Connect

    Tsai, Jen-San; Micaily, Bizhan; Miyamoto, Curtis

    2012-10-01

    To develop a quality assurance (QA) of XVI cone beam system (XVIcbs) for its optimal imaging-guided radiotherapy (IGRT) implementation, and to construe prostate tumor margin required for intensity-modulated radiation therapy (IMRT) if IGRT is unavailable. XVIcbs spatial accuracy was explored with a humanoid phantom; isodose conformity to lesion target with a rice phantom housing a soap as target; image resolution with a diagnostic phantom; and exposure validation with a Radcal ion chamber. To optimize XVIcbs, rotation flexmap on coincidency between gantry rotational axis and that of XVI cone beam scan was investigated. Theoretic correlation to image quality of XVIcbs rotational axis stability was elaborately studied. Comprehensive QA of IGRT using XVIcbs has initially been explored and then implemented on our general IMRT treatments, and on special IMRT radiotherapies such as head and neck (H and N), stereotactic radiation therapy (SRT), stereotactic radiosurgery (SRS), and stereotactic body radiotherapy (SBRT). Fifteen examples of prostate setup accounted for 350 IGRT cone beam system were analyzed. IGRT accuracy results were in agreement {+-} 1 mm. Flexmap 0.25 mm met the manufacturer's specification. Films confirmed isodose coincidence with target (soap) via XVIcbs, otherwise not. Superficial doses were measured from 7.2-2.5 cGy for anatomic diameters 15-33 cm, respectively. Image quality was susceptible to rotational stability or patient movement. IGRT using XVIcbs on general IMRT treatments such as prostate, SRT, SRS, and SBRT for setup accuracy were verified; and subsequently coordinate shifts corrections were recorded. The 350 prostate IGRT coordinate shifts modeled to Gaussian distributions show central peaks deviated off the isocenter by 0.6 {+-} 3.0 mm, 0.5 {+-} 4.5 mm in the X(RL)- and Z(SI)-coordinates, respectively; and 2.0 {+-} 3.0 mm in the Y(AP)-coordinate as a result of belly and bladder capacity variations. Sixty-eight percent of confidence was

  7. [Task sharing with radiotherapy technicians in image-guided radiotherapy].

    PubMed

    Diaz, O; Lorchel, F; Revault, C; Mornex, F

    2013-10-01

    The development of accelerators with on-board imaging systems now allows better target volumes reset at the time of irradiation (image-guided radiotherapy [IGRT]). However, these technological advances in the control of repositioning led to a multiplication of tasks for each actor in radiotherapy and increase the time available for the treatment, whether for radiotherapy technicians or radiation oncologists. As there is currently no explicit regulatory framework governing the use of IGRT, some institutional experiments show that a transfer is possible between radiation oncologists and radiotherapy technicians for on-line verification of image positioning. Initial training for every technical and drafting procedures within institutions will improve audit quality by reducing interindividual variability. PMID:24007955

  8. Use of Implanted Markers and Interportal Adjustment With Real-Time Tracking Radiotherapy System to Reduce Intrafraction Prostate Motion

    SciTech Connect

    Shimizu, Shinichi; Osaka, Yasuhiro; Shinohara, Nobuo; Sazawa, Ataru; Nishioka, Kentaro; Suzuki, Ryusuke; Onimaru, Rikiya; Shirato, Hiroki

    2011-11-15

    Purpose: Interportal adjustment was applied to patients with prostate cancer using three fiducial markers and two sets of fluoroscopy in a real-time tumor-tracking radiotherapy (RTRT) system. The incidence of table position adjustment required to keep intrafractional uncertainty within 2.0 mm was investigated in this study. Methods and Materials: The coordinates of the center of gravity of the three fiducial markers were measured at the start of every portal irradiation in intensity-modulated radiotherapy (IMRT) with seven ports. The table position was adjusted to the planned position if the discrepancy was larger than 2.0 mm in the anterior-posterior (AP), cranial-caudal (CC), or left-right (LR) directions. In total, we analyzed 4,541 observations in 20 patients who received 70 Gy in 30 fractions (7.6 times a day on average). Results: The incidence of table position adjustment at 10 minutes from the initial setup of each treatment was 14.2%, 12.3%, and 5.0% of the observations in the AP, CC, and LR directions, respectively. The accumulated incidence of the table position adjustment was significantly higher at 10 minutes than at 2 minutes for AP (p = 0.0033) and CC (p = 0.0110) but not LR (p = 0.4296). An adjustment greater than 5 mm was required at least once in the treatment period in 11 (55%) patients. Conclusions: Interportal adjustment of table position was required in more than 10% of portal irradiations during the 10-minute period after initial setup to maintain treatment accuracy within 2.0 mm.

  9. Analysis of Dose at the Site of Second Tumor Formation After Radiotherapy to the Central Nervous System

    SciTech Connect

    Galloway, Thomas J.; Indelicato, Daniel J.; Amdur, Robert J.; Morris, Christopher G.; Swanson, Erika L.; Marcus, Robert B.

    2012-01-01

    Purpose: Second tumors are an uncommon complication of multimodality treatment of childhood cancer. The present analysis attempted to correlate the dose received as a component of primary treatment and the site of the eventual development of a second tumor. Methods and Materials: We retrospectively identified 16 patients who had received radiotherapy to sites in the craniospinal axis and subsequently developed a second tumor. We compared the historical fields and port films of the primary treatment with the modern imaging of the second tumor locations. We classified the location of the second tumors as follows: in the boost field; marginal to the boost field, but in a whole-brain field; in a whole-brain field; marginal to the whole brain/primary treatment field; and distant to the field. We divided the dose received into 3 broad categories: high dose (>45 Gy), moderate dose (20-36 Gy), and low dose (<20 Gy). Results: The most common location of the second tumor was in the whole brain field (57%) and in the moderate-dose range (81%). Conclusions: Our data contradict previous publications that suggested that most second tumors develop in tissues that receive a low radiation dose. Almost all the second tumors in our series occurred in tissue within a target volume in the cranium that had received a moderate dose (20-36 Gy). These findings suggest that a major decrease in the brain volume that receives a moderate radiation dose is the only way to substantially decrease the second tumor rate after central nervous system radiotherapy.

  10. Positioning Accuracy in Stereotactic Radiotherapy Using a Mask System With Added Vacuum Mouth Piece and Stereoscopic X-Ray Positioning

    SciTech Connect

    Santvoort, Jan van Wiggenraad, Ruud; Bos, Petra

    2008-09-01

    Purpose: For cranial patients receiving stereotactic radiotherapy, we use the Exactrac stereoscopic X-ray system to optimize patient positioning. Patients are immobilized with the BrainLAB Mask System (BrainLAB, Feldkirchen, Germany). We have developed an adapter to this system that accommodates a vacuum mouth piece (VMP). Measurements with the Exactrac system have been performed to study the positioning accuracy after corrections with this system and to evaluate the accuracy of the VMP vs. the standard available upper jaw support (UJS). Methods and Materials: Positioning results were collected for 20 patients with the UJS and 20 patients with the VMP, before treatment (1,122 fractions) and after treatment (400 fractions). For all 6 degrees of freedom the average, the random error and systematic error were calculated. Results: The average vector length before and after correction with the Exactrac system was 2.1 {+-} 1.2 mm and 0.7 {+-} 0.6 mm respectively for UJS and 1.7 {+-} 0.7 mm and 0.4 {+-} 0.4 mm for VMP. Interfraction positioning for translations was greatly improved after correction with the Exactrac system (p < 0.0005) and is better with VMP than with UJS (p = 0.005). Outliers were greatly reduced. Interfraction rotations were significantly smaller for VMP. Intrafraction errors for vertical and longitudinal translations and for rotations were smaller for the VMP. Conclusions: Positioning correction using the Exactrac X-ray system greatly improves accuracy. Adding the VMP results in even better patient fixation and smaller rotations, making it a useful addition to the Mask System. Combined, this is a convenient and accurate alternative to invasive fixation methods.

  11. Reinforcing of QA/QC programs in radiotherapy departments in Croatia: Results of treatment planning system verification

    SciTech Connect

    Jurković, Slaven; Švabić, Manda; Diklić, Ana; Smilović Radojčić, Đeni; Dundara, Dea; Kasabašić, Mladen; Ivković, Ana; Faj, Dario

    2013-04-01

    Implementation of advanced techniques in clinical practice can greatly improve the outcome of radiation therapy, but it also makes the process much more complex with a lot of room for errors. An important part of the quality assurance program is verification of treatment planning system (TPS). Dosimetric verifications in anthropomorphic phantom were performed in 4 centers where new systems were installed. A total of 14 tests for 2 photon energies and multigrid superposition algorithms were conducted using the CMS XiO TPS. Evaluation criteria as specified in the International Atomic Energy Agency Technical Reports Series (IAEA TRS) 430 were employed. Results of measurements are grouped according to the placement of the measuring point and the beam energy. The majority of differences between calculated and measured doses in the water-equivalent part of the phantom were in tolerance. Significantly more out-of-tolerance values were observed in “nonwater-equivalent” parts of the phantom, especially for higher-energy photon beams. This survey was done as a part of continuous effort to build up awareness of quality assurance/quality control (QA/QC) importance in the Croatian radiotherapy community. Understanding the limitations of different parts of the various systems used in radiation therapy can systematically improve quality as well.

  12. A comparison of coordinate systems for use in determining a radiotherapy delineation margin for whole breast

    NASA Astrophysics Data System (ADS)

    Pogson, E. M.; Bell, L.; Batumalai, V.; Koh, E. S.; Delaney, G.; Metcalfe, P.; Holloway, L.

    2014-03-01

    Cartesian co-ordinates, traditionally used for radiotherapy margins, calculated at 6 points, may not adequately represent changes in inter-observer contour variation as necessary to define a delineation margin. As a first step, this study compared the standard deviation (SD) in contour delineation using Polar and Cartesian co-ordinates for whole breast. Whole breast Clinical Target Volumes (CTV) were delineated by eight observers for 9 patients. The SD of contour position was determined for Polar co-ordinates at 1° increments for 5 slices and averaged across all patients. The mean centre of mass (COM) was used as the origin for the right breast, for the left the COM was shifted 1cm superiorly to avoid clipping. The SD was determined for Cartesian co-ordinates for medial-lateral and anterior-posterior positions. At slice Z=0cm considering Polar co-ordinates, the SD peaked medially reaching 3.55cm at 15° for the right breast, and 1.44cm at 171° for the left. The SD of the remaining slices maintained a similar distribution, with variation in the peak occurring within 10° of the Z=0cm positions. By comparison, for Cartesian co-ordinates at slice Z=0cm, the largest SD in the medial-lateral and anterior-posterior directions was 0.54/0.57cm and 1.03/0.67cm respectively for right/left breasts. The SD for inter-observer variation for whole breast varies with anatomical position. The maximum SD determined with Polar co-ordinates was greater than with Cartesian coordinates. A delineation margin may thus need to vary with angle over the entire structure and Cartesian co-ordinates may not be the best approach for margin determination for whole breast.

  13. WE-G-BRD-03: Development of a Real-Time Optical Tracking Goggle System (OTGS) for Intracranial Stereotactic Radiotherapy

    SciTech Connect

    Mittauer, K; Yan, G; Lu, B; Barraclough, B; Li, J; Liu, C

    2014-06-15

    Purpose: Optical tracking systems (OTS) are an acceptable alternative to frame-based stereotactic radiotherapy (SRT). However, current surface-based OTS lack the ability to target exclusively rigid/bony anatomical features. We propose a novel marker-based optical tracking goggle system (OTGS) that provides real-time guidance based on the nose/facial bony anatomy. This ongoing study involves the development and characterization of the OTGS for clinical implementation in intracranial stereotactic radiotherapy. Methods: The OTGS consists of eye goggles, a custom thermoplastic nosepiece, and 6 infrared markers pre-attached to the goggles. A phantom and four healthy volunteers were used to evaluate the calibration/registration accuracy, intrafraction accuracy, interfraction reproducibility, and end-to-end accuracy of the OTGS. The performance of the OTGS was compared with that of the frameless SonArray system and cone-beam computed tomography (CBCT) for volunteer and phantom cases, respectively. The performance of the OTGS with commercial immobilization devices and under treatment conditions (i.e., couch rotation and translation range) was also evaluated. Results: The difference in the calibration/registration accuracy of 24 translations or rotation combinations between CBCT and in-house OTS software was within 0.5 mm/0.4°. The mean intrafraction and interfraction accuracy among the volunteers was 0.004+/−0.4mm with −0.09+/−0.5° (n=6,170) and −0.26+/−0.8mm with 0.15+/0.8° (n=11), respectively. The difference in end-to-end accuracy between the OTGS and CBCT was within 1.3 mm/1.1°. The predetermined marker pattern (1) minimized marker occlusions, (2) allowed for continuous tracking for couch angles +/− 90°, (3) and eliminated individual marker misplacement. The device was feasible with open and half masks for immobilization. Conclusion: Bony anatomical localization eliminated potential errors due to facial hair changes and/or soft tissue deformation. The

  14. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    PubMed

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  15. Post-upgrade testing on a radiotherapy oncology information system with an embedded record and verify system following the IAEA Human Health Report No. 7 recommendations.

    PubMed

    Nyathi, Thulani; Colyer, Christopher; Bhardwaj, Anup Kumar; Rijken, James; Morton, Jason

    2016-06-01

    Record and verify (R&V) systems have proven that their application in radiotherapy clinics leads to a significant reduction in mis-treatments of patients. The purpose of this technical note is to share our experience of acceptance testing, commissioning and setting up a quality assurance programme for the MOSAIQ® oncology information system and R&V system after upgrading from software version 2.41 to 2.6 in a multi-vendor, multi-site environment. Testing was guided primarily by the IAEA Human Report No. 7 recommendations, but complemented by other departmental workflow specific tests. To the best of our knowledge, this is the first time successful implementation of the IAEA Human Health Report Series No. 7 recommendations have been reported in the literature. PMID:27245299

  16. Development of real-time motion verification system using in-room optical images for respiratory-gated radiotherapy.

    PubMed

    Park, Yang-Kyun; Son, Tae-geun; Kim, Hwiyoung; Lee, Jaegi; Sung, Wonmo; Kim, Il Han; Lee, Kunwoo; Bang, Young-bong; Ye, Sung-Joon

    2013-09-06

    Phase-based respiratory-gated radiotherapy relies on the reproducibility of patient breathing during the treatment. To monitor the positional reproducibility of patient breathing against a 4D CT simulation, we developed a real-time motion verification system (RMVS) using an optical tracking technology. The system in the treatment room was integrated with a real-time position management system. To test the system, an anthropomorphic phantom that was mounted on a motion platform moved on a programmed breathing pattern and then underwent a 4D CT simulation with RPM. The phase-resolved anterior surface lines were extracted from the 4D CT data to constitute 4D reference lines. In the treatment room, three infrared reflective markers were attached on the superior, middle, and inferior parts of the phantom along with the body midline and then RMVS could track those markers using an optical camera system. The real-time phase information extracted from RPM was delivered to RMVS via in-house network software. Thus, the real-time anterior-posterior positions of the markers were simultaneously compared with the 4D reference lines. The technical feasibility of RMVS was evaluated by repeating the above procedure under several scenarios such as ideal case (with identical motion parameters between simulation and treatment), cycle change, baseline shift, displacement change, and breathing type changes (abdominal or chest breathing). The system capability for operating under irregular breathing was also investigated using real patient data. The evaluation results showed that RMVS has a competence to detect phase-matching errors between patient's motion during the treatment and 4D CT simulation. Thus, we concluded that RMVS could be used as an online quality assurance tool for phase-based gating treatments.

  17. Comparison of systemic radiotherapy with I-131-labeled monoclonal antibody BW575/9 to external beam radiotherapy in human neuroblastoma xenografts.

    PubMed

    Sautter-Bihl, M L; Wessely, R; Bihl, H

    1993-10-01

    The therapeutic effectiveness of external beam radiotherapy (XRT) and radioimmunotherapy (RIT) was investigated in a human neuroblastoma (SK-N-SH) xenotransplanted to nude mice. This tumor model seems especially suitable for comparison of the relative biological effectiveness of RIT vs. XRT, as--in contrast to most tumor models--it shows an unusually homogenous uptake of the labeled MAb, thus providing a homogenous intratumoral dose distribution. XRT was performed using single fractions of 800, 1600, 2000 and 2400 cGy and RIT was delivered by intravenous injection of 15, 19 and 26 MBq of the I-131-labeled monoclonal antibody (MAb) BW575/9. Therapeutic efficiency of the two radiation modalities was assessed in terms of tumor volume doubling time (VDT). Miniature thermoluminescent (mini-TLD) dosimetry and MIRD-based dose calculations were used to evaluate the absorbed doses delivered by RIT and to assess the degree of homogeneity of the dose distribution. RIT with 19 MBq of the I-131 BW575/9 delivered a tumor dose of 2820 cGy measured by TLD and resulted in a tumor VDT of 32 days (vs. one day in controls). An equivalent effect on VDT was achieved by a single fraction XRT of 1600 cGy. The relative efficiency of XRT compared with RIT (ratio of dose XRT/dose RIT required to give the same VDT) was 0.57. Application of 26 MBq of the MAb (= 3200 cGy) resulted in complete tumor regression after ten days as did XRT with 2400 cGy, corresponding to a relative efficiency of 0.75.

  18. [Needs and financing of radiotherapy in France and Europe].

    PubMed

    Defourny, N; Lievens, Y

    2016-10-01

    Access to high-quality and safe radiotherapy is a prerequisite to assure optimal oncology care in a multidisciplinary environment. In view of supporting long-term radiotherapy planning, actual and predicted radiotherapy needs should be put in context of the nowadays' available resources. The present article reviews the existing data on radiotherapy resources and needs, along with the prevailing reimbursement systems in the different European countries, with a specific emphasis on France. It describes potential incentives of different financing systems on clinical practice and highlights how knowledge of the cost of radiotherapy treatments, by indication and technique, is essential to support correct reimbursement, hence access to radiotherapy. It is expected that such data will help national professional and scientific radiotherapy societies across Europe in their negotiations with policy makers, with the ultimate aim to make radiotherapy accessible to all cancer patients who need it, now and in the decades to come.

  19. [Needs and financing of radiotherapy in France and Europe].

    PubMed

    Defourny, N; Lievens, Y

    2016-10-01

    Access to high-quality and safe radiotherapy is a prerequisite to assure optimal oncology care in a multidisciplinary environment. In view of supporting long-term radiotherapy planning, actual and predicted radiotherapy needs should be put in context of the nowadays' available resources. The present article reviews the existing data on radiotherapy resources and needs, along with the prevailing reimbursement systems in the different European countries, with a specific emphasis on France. It describes potential incentives of different financing systems on clinical practice and highlights how knowledge of the cost of radiotherapy treatments, by indication and technique, is essential to support correct reimbursement, hence access to radiotherapy. It is expected that such data will help national professional and scientific radiotherapy societies across Europe in their negotiations with policy makers, with the ultimate aim to make radiotherapy accessible to all cancer patients who need it, now and in the decades to come. PMID:27599682

  20. SU-E-T-608: Performance Comparison of Four Commercial Treatment Planning Systems Applied to Intensity-Modulated Radiotherapy

    SciTech Connect

    Cao, Y; Li, R; Chi, Z

    2014-06-01

    Purpose: To compare the performances of four commercial treatment planning systems (TPS) used for the intensity-modulated radiotherapy (IMRT). Methods: Ten patients of nasopharyngeal (4 cases), esophageal (3 cases) and cervical (3 cases) cancer were randomly selected from a 3-month IMRT plan pool at one radiotherapy center. For each patient, four IMRT plans were newly generated by using four commercial TPS (Corvus, Monaco, Pinnacle and Xio), and then verified with Matrixx (two-dimensional array/IBA Company) on Varian23EX accelerator. A pass rate (PR) calculated from the Gamma index by OminiPro IMRT 1.5 software was evaluated at four plan verification standards (1%/1mm, 2%/2mm, 3%/3mm, 4%/4mm and 5%/5mm) for each treatment plan. Overall and multiple pairwise comparisons of PRs were statistically conducted by analysis of covariance (ANOVA) F and LSD tests among four TPSs. Results: Overall significant (p>0.05) differences of PRs were found among four TPSs with F test values of 3.8 (p=0.02), 21.1(>0.01), 14.0 (>0.01), 8.3(>0.01) at standards of 1%/1mm to 4%/4mm respectively, except at 5%/5mm standard with 2.6 (p=0.06). All means (standard deviation) of PRs at 3%/3mm of 94.3 ± 3.3 (Corvus), 98.8 ± 0.8 (Monaco), 97.5± 1.7 (Pinnacle), 98.4 ± 1.0 (Xio) were above 90% and met clinical requirement. Multiple pairwise comparisons had not demonstrated a consistent low or high pattern on either TPS. Conclusion: Matrixx dose verification results show that the validation pass rates of Monaco and Xio plans are relatively higher than those of the other two; Pinnacle plan shows slight higher pass rate than Corvus plan; lowest pass rate was achieved by the Corvus plan among these four kinds of TPS.

  1. Investigation of the robustness of adaptive neuro-fuzzy inference system for tracking moving tumors in external radiotherapy.

    PubMed

    Torshabi, Ahmad Esmaili

    2014-12-01

    In external radiotherapy of dynamic targets such as lung and breast cancers, accurate correlation models are utilized to extract real time tumor position by means of external surrogates in correlation with the internal motion of tumors. In this study, a correlation method based on the neuro-fuzzy model is proposed to correlate the input external motion data with internal tumor motion estimation in real-time mode, due to its robustness in motion tracking. An initial test of the performance of this model was reported in our previous studies. In this work by implementing some modifications it is resulted that ANFIS is still robust to track tumor motion more reliably by reducing the motion estimation error remarkably. After configuring new version of our ANFIS model, its performance was retrospectively tested over ten patients treated with Synchrony Cyberknife system. In order to assess the performance of our model, the predicted tumor motion as model output was compared with respect to the state of the art model. Final analyzed results show that our adaptive neuro-fuzzy model can reduce tumor tracking errors more significantly, as compared with ground truth database and even tumor tracking methods presented in our previous works. PMID:25412886

  2. Development of a prototype of the tele-localisation system in radiotherapy using personal digital assistant via wireless communication.

    PubMed

    Wu, Vincent Wing-Cheung; Tang, Fuk-hay; Cheung, Wai-kwan; Chan, Kit-chi

    2013-02-01

    In localisation of radiotherapy treatment field, the oncologist is present at the simulator to approve treatment details produced by the therapist. Problems may arise if the oncologist is not available and the patient requires urgent treatment. The development of a tele-localisation system is a potential solution, where the oncologist uses a personal digital assistant (PDA) to localise the treatment field on the image sent from the simulator through wireless communication and returns the information to the therapist after his or her approval. Our team developed the first tele-localisation prototype, which consisted of a server workstation (simulator) for the administration of digital imaging and communication in medicine localisation images including viewing and communication with the PDA via a Wi-Fi network; a PDA (oncologist's site) installed with the custom-built programme that synchronises with the server workstation and performs treatment field editing. Trial tests on accuracy and speed of the prototype system were conducted on 30 subjects with the treatment regions covering the neck, skull, chest and pelvis. The average time required in performing the localisation using the PDA was less than 1.5 min, with the blocked field longer than the open field. The transmission speed of the four treatment regions was similar. The average physical distortion of the images was within 4.4% and the accuracy of field size indication was within 5.3%. Compared with the manual method, the tele-localisation system presented with an average deviation of 5.5%. The prototype system fulfilled the planned objectives of tele-localisation procedure with reasonable speed and accuracy.

  3. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems.

    PubMed

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm(-3) and 1.1 g cm(-3) occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  4. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems.

    PubMed

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm(-3) and 1.1 g cm(-3) occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems. PMID:27300449

  5. Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head

    SciTech Connect

    Kamino, Yuichiro . E-mail: daisaku_horiuchi@mhi.co.jp; Takayama, Kenji; Kokubo, Masaki; Narita, Yuichiro; Hirai, Etsuro; Kawawda, Noriyuki; Mizowaki, Takashi; Nagata, Yasushi; Nishidai, Takehiro; Hiraoka, Masahiro

    2006-09-01

    Purpose: To develop and evaluate a new four-dimensional image-guided radiotherapy system, which enables precise setup, real-time tumor tracking, and pursuit irradiation. Methods and Materials: The system has an innovative gimbaled X-ray head that enables small-angle ({+-}2.4{sup o}) rotations (pan and tilt) along the two orthogonal gimbals. This design provides for both accurate beam positioning at the isocenter by actively compensating for mechanical distortion and quick pursuit of the target. The X-ray head is composed of an ultralight C-band linear accelerator and a multileaf collimator. The gimbaled X-ray head is mounted on a rigid O-ring structure with an on-board imaging subsystem composed of two sets of kilovoltage X-ray tubes and flat panel detectors, which provides a pair of radiographs, cone beam computed tomography images useful for image guided setup, and real-time fluoroscopic monitoring for pursuit irradiation. Results: The root mean square accuracy of the static beam positioning was 0.1 mm for 360{sup o} of O-ring rotation. The dynamic beam response and positioning accuracy was {+-}0.6 mm for a 0.75 Hz, 40-mm stroke and {+-}0.4 mm for a 2.0 Hz, 8-mm stroke. The quality of the images was encouraging for using the tomography-based setup. Fluoroscopic images were sufficient for monitoring and tracking lung tumors. Conclusions: Key functions and capabilities of our new system are very promising for precise image-guided setup and for tracking and pursuit irradiation of a moving target.

  6. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    NASA Astrophysics Data System (ADS)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm‑3 and 1.1 g cm‑3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  7. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    NASA Astrophysics Data System (ADS)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm-3 and 1.1 g cm-3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  8. Developments in radiotherapy.

    PubMed

    Svensson, Hans; Möller, Torgil R

    2003-01-01

    A systematic assessment of radiotherapy for cancer was conducted by The Swedish Council on Technology Assessment in Health Care (SBU) in 2001. The assessment included a review of future developments in radiotherapy and an estimate of the potential benefits of improved radiotherapy in Sweden. The conclusions reached from this review can be summarized as: Successively better knowledge is available on dose-response relationships for tumours and normal tissues at different fractionation schedules and treated volumes. Optimization of dose levels and fractionation schedules should improve the treatment outcome. Improved treatment results may be expected with even more optimized fractionation schedules. The radiosensitivity of the tumour is dependent on the availability of free oxygen in the cells. The oxygen effect has been studied for a long time and new knowledge has emerged, but there is still no consensus on the best way to minimize its negative effect in the treatment of hypoxic tumours. Development in imaging techniques is rapid, improving accuracy in outlining targets and organs at risk. This is a prerequisite for advanced treatment planning. More accurate treatment can be obtained using all the computer techniques that are successively made available for calculating dose distributions, controlling the accelerator and multileaf collimator (MLC) and checking patient set-up. Optimized treatment plans can be achieved using inverse dose planning and intensity modulation radiation therapy (IMRT). Optimization algorithms based on biological data from clinical trials could be a part of future dose planning. New genetic markers might be developed that give a measure of the radiation responsiveness of tumours and normal tissue. This could lead to more individualized treatments. New types of radiation sources may be expected: protons, light ions, and improved beams (and compounds) for boron neutron capture therapy (BNCT). Proton accelerators with scanned-beam systems and

  9. Accuracy of an automatic patient-positioning system based on the correlation of two edge images in radiotherapy.

    PubMed

    Yoon, Myonggeun; Cheong, Minho; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong

    2011-04-01

    We have clinically evaluated the accuracy of an automatic patient-positioning system based on the image correlation of two edge images in radiotherapy. Ninety-six head & neck images from eight patients undergoing proton therapy were compared with a digitally reconstructed radiograph (DRR) of planning CT. Two edge images, a reference image and a test image, were extracted by applying a Canny edge detector algorithm to a DRR and a 2D X-ray image, respectively, of each patient before positioning. In a simulation using a humanoid phantom, performed to verify the effectiveness of the proposed method, no registration errors were observed for given ranges of rotation, pitch, and translation in the x, y, and z directions. For real patients, however, there were discrepancies between the automatic positioning method and manual positioning by physicians or technicians. Using edged head coronal- and sagittal-view images, the average differences in registration between these two methods for the x, y, and z directions were 0.11 cm, 0.09 cm and 0.11 cm, respectively, whereas the maximum discrepancies were 0.34 cm, 0.38 cm, and 0.50 cm, respectively. For rotation and pitch, the average registration errors were 0.95° and 1.00°, respectively, and the maximum errors were 3.6° and 2.3°, respectively. The proposed automatic patient-positioning system based on edge image comparison was relatively accurate for head and neck patients. However, image deformation during treatment may render the automatic method less accurate, since the test image many differ significantly from the reference image.

  10. A double-blind, crossover study of Biotène Oralbalance and BioXtra systems as salivary substitutes in patients with post-radiotherapy xerostomia.

    PubMed

    Shahdad, S A; Taylor, C; Barclay, S C; Steen, I N; Preshaw, P M

    2005-09-01

    This study assessed the efficacy of the Bioxtra (BX) and Biotène Oralbalance (OB) systems in the treatment of post-radiotherapy xerostomia. In a double-blind, crossover study, 20 patients with post-radiotherapy xerostomia were randomly allocated to receive either OB then BX, or vice versa, each product for 2 weeks, with a 1 week wash-out period in between. Subject-based dry mouth scores derived from 100-mm visual analogue scales were recorded at days 0 and 14 of each 2-week period, together with subjective perception of changes in dry mouth symptoms. Both treatments were effective, resulting in reduction of visual analogue scale scores from day 0-14. Between-groups comparisons identified that BX achieved significantly better improvements compared with OB for the perception of dry mouth and improvements in speech and was also rated as more pleasant to use than OB (P < 0.05). In conclusion, both treatments were effective in alleviating the symptoms of post-radiotherapy xerostomia, although BX achieved superiority in some of the outcomes assessed compared with OB.

  11. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System

    PubMed Central

    Oh, Se An; Yea, Ji Woon

    2016-01-01

    Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%–70%. The results showed that the optimal gating window in RGRT is 40% (30%–70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT. PMID:27228097

  12. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System.

    PubMed

    Oh, Se An; Yea, Ji Woon; Kim, Sung Kyu

    2016-01-01

    Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%-70%. The results showed that the optimal gating window in RGRT is 40% (30%-70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT.

  13. Construction of the radiation oncology teaching files system for charged particle radiotherapy.

    PubMed

    Masami, Mukai; Yutaka, Ando; Yasuo, Okuda; Naoto, Takahashi; Yoshihisa, Yoda; Hiroshi, Tsuji; Tadashi, Kamada

    2013-01-01

    Our hospital started the charged particle therapy since 1996. New institutions for charged particle therapy are planned in the world. Our hospital are accepting many visitors from those newly planned medical institutions and having many opportunities to provide with the training to them. Based upon our experiences, we have developed the radiation oncology teaching files system for charged particle therapy. We adopted the PowerPoint of Microsoft as a basic framework of our teaching files system. By using our export function of the viewer any physician can create teaching files easily and effectively. Now our teaching file system has 33 cases for clinical and physics contents. We expect that we can improve the safety and accuracy of charged particle therapy by using our teaching files system substantially.

  14. Performance of the NIRS fast scanning system for heavy-ion radiotherapy

    SciTech Connect

    Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Shirai, Toshiyuki; Takei, Yuka; Takeshita, Eri; Mizushima, Kota; Iwata, Yoshiyuki; Himukai, Takeshi; Mori, Shinichiro; Fukuda, Shigekazu; Minohara, Shinichi; Takada, Eiichi; Murakami, Takeshi; Noda, Koji

    2010-11-15

    Purpose: A project to construct a new treatment facility, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy at NIRS. This new treatment facility is equipped with a 3D irradiation system with pencil-beam scanning. The challenge of this project is to realize treatment of a moving target by scanning irradiation. To achieve fast rescanning within an acceptable irradiation time, the authors developed a fast scanning system. Methods: In order to verify the validity of the design and to demonstrate the performance of the fast scanning prior to use in the new treatment facility, a new scanning-irradiation system was developed and installed into the existing HIMAC physics-experiment course. The authors made strong efforts to develop (1) the fast scanning magnet and its power supply, (2) the high-speed control system, and (3) the beam monitoring. The performance of the system including 3D dose conformation was tested by using the carbon beam from the HIMAC accelerator. Results: The performance of the fast scanning system was verified by beam tests. Precision of the scanned beam position was less than {+-}0.5 mm. By cooperating with the planning software, the authors verified the homogeneity of the delivered field within {+-}3% for the 3D delivery. This system took only 20 s to deliver the physical dose of 1 Gy to a spherical target having a diameter of 60 mm with eight rescans. In this test, the average of the spot-staying time was considerably reduced to 154 {mu}s, while the minimum staying time was 30 {mu}s. Conclusions: As a result of this study, the authors verified that the new scanning delivery system can produce an accurate 3D dose distribution for the target volume in combination with the planning software.

  15. Safety and efficacy of the combination of T-DM1 with radiotherapy of the central nervous system in a patient with HER2-positive metastatic breast cancer: case study and review of the literature

    PubMed Central

    Borges, Giuliano Santos; Rovere, Rodrigo Kraft; Dias, Stéphanie Mereniuk Kappel; Chong, Fernando Henrique; Morais, Mayara dos Santos

    2015-01-01

    Approximately 35% of patients with confirmed HER2 breast cancer progress to metastases of the central nervous system (CNS). Total cerebral radiotherapy is considered as standard treatment for these cases; however, studies have shown that some chemotherapy drugs can be used during radiotherapy without significantly increasing its toxicity. In this article, we report the case of a patient with HER2-positive breast cancer who showed isolated progression of the illness in the CNS, which was observed during the treatment period using T-DM1 concomitantly with radiotherapy of the CNS without apparent toxicity of the combination and keeping the illness controlled. Through a review of the literature on the use of radiotherapy and chemotherapy with T-DM1 for the treatment of cerebral metastases in HER2-positive breast cancer, we describe the efficacy and tolerance of the concomitant application of these treatments. PMID:26557884

  16. [Head and neck adaptive radiotherapy].

    PubMed

    Graff, P; Huger, S; Kirby, N; Pouliot, J

    2013-10-01

    Onboard volumetric imaging systems can provide accurate data of the patient's anatomy during a course of head and neck radiotherapy making it possible to assess the actual delivered dose and to evaluate the dosimetric impact of complex daily positioning variations and gradual anatomic changes such as geometric variations of tumors and normal tissues or shrinkage of external contours. Adaptive radiotherapy is defined as the correction of a patient's treatment planning to adapt for individual variations observed during treatment. Strategies are developed to selectively identify patients that require replanning because of an intolerable dosimetric drift. Automated tools are designed to limit time consumption. Deformable image registration algorithms are the cornerstones of these strategies, but a better understanding of their limits of validity is required before adaptive radiotherapy can be safely introduced to daily practice. Moreover, strict evaluation of the clinical benefits is yet to be proven.

  17. Online planning and delivery technique for radiotherapy of spinal metastases using cone-beam CT: Image quality and system performance

    SciTech Connect

    Letourneau, Daniel . E-mail: daniel.letourneau@rmp.uhn.on.ca; Wong, Rebecca; Moseley, Douglas; Sharpe, Michael B.; Ansell, Stephen B.Sc.; Gospodarowicz, Mary; Jaffray, David A.

    2007-03-15

    Purpose: To assess the feasibility of an online strategy for palliative radiotherapy (RT) of spinal bone metastasis, which integrates imaging, planning, and treatment delivery in a single step at the treatment unit. The technical challenges of this approach include cone-beam CT (CBCT) image quality for target definition, online planning, and efficient process integration. Methods and Materials: An integrated imaging, planning, and delivery system was constructed and tested with phantoms. The magnitude of CBCT image artifacts following the use of an antiscatter grid and a nonlinear scatter correction was quantified using phantom data and images of patients receiving conventional palliative RT of the spine. The efficacy of online planning was then assessed using corrected CBCT images. Testing of the complete process was performed on phantoms with assessment of timing and dosimetric accuracy. Results: The use of image corrections reduced the cupping artifact from 30% to 4.5% on CBCT images of a body phantom and improved the accuracy of CBCT numbers (water: {+-} 20 Hounsfield unit [HU], and lung and bone: to within {+-} 130 HU). Bony anatomy was clearly visible and was deemed sufficient for target definition. The mean total time (n = 5) for application of the online approach was 23.1 min. Image-guided dose placement was assessed using radiochromic film measurements with good agreement (within 5% of dose difference and 2 mm of distance to agreement). Conclusions: The technical feasibility of CBCT-guided online planning and delivery for palliative single treatment has been demonstrated. The process was performed in one session equivalent to an initial treatment slot (<30 min) with dosimetric accuracy satisfying accepted RT standards.

  18. Clinical quality standards for radiotherapy

    PubMed Central

    2012-01-01

    Aim of the study The technological progress that is currently being witnessed in the areas of diagnostic imaging, treatment planning systems and therapeutic equipment has caused radiotherapy to become a high-tech and interdisciplinary domain involving staff of various backgrounds. This allows steady improvement in therapy results, but at the same time makes the diagnostic, imaging and therapeutic processes more complex and complicated, requiring every stage of those processes to be planned, organized, controlled and improved so as to assure high quality of services provided. The aim of this paper is to present clinical quality standards for radiotherapy as developed by the author. Material and methods In order to develop the quality standards, a comparative analysis was performed between European and Polish legal acts adopted in the period of 1980-2006 and the universal industrial ISO 9001:2008 standard, defining requirements for quality management systems, and relevant articles published in 1984-2009 were reviewed, including applicable guidelines and recommendations of American, international, European and Polish bodies, such as the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy & Oncology (ESTRO), the International Atomic Energy Agency (IAEA), and the Organisation of European Cancer Institutes (OECI) on quality assurance and management in radiotherapy. Results As a result, 352 quality standards for radiotherapy were developed and categorized into the following three groups: 1 – organizational standards; 2 – physico-technical standards and 3 – clinical standards. Conclusion Proposed clinical quality standards for radiotherapy can be used by any institution using ionizing radiation for medical purposes. However, standards are of value only if they are implemented, reviewed, audited and improved, and if there is a clear mechanism in place to monitor and address failure to meet agreed standards. PMID:23788854

  19. Automatic detection system for multiple region of interest registration to account for posture changes in head and neck radiotherapy

    NASA Astrophysics Data System (ADS)

    Mencarelli, A.; van Beek, S.; Zijp, L. J.; Rasch, C.; van Herk, M.; Sonke, J.-J.

    2014-04-01

    Despite immobilization of head and neck (H and N) cancer patients, considerable posture changes occur over the course of radiotherapy (RT). To account for the posture changes, we previously implemented a multiple regions of interest (mROIs) registration system tailored to the H and N region for image-guided RT correction strategies. This paper is focused on the automatic segmentation of the ROIs in the H and N region. We developed a fast and robust automatic detection system suitable for an online image-guided application and quantified its performance. The system was developed to segment nine high contrast structures from the planning CT including cervical vertebrae, mandible, hyoid, manubrium of sternum, larynx and occipital bone. It generates nine 3D rectangular-shaped ROIs and informs the user in case of ambiguities. Two observers evaluated the robustness of the segmentation on 188 H and N cancer patients. Bland-Altman analysis was applied to a sub-group of 50 patients to compare the registration results using only the automatically generated ROIs and those manually set by two independent experts. Finally the time performance and workload were evaluated. Automatic detection of individual anatomical ROIs had a success rate of 97%/53% with/without user notifications respectively. Following the notifications, for 38% of the patients one or more structures were manually adjusted. The processing time was on average 5 s. The limits of agreement between the local registrations of manually and automatically set ROIs was comprised between ±1.4 mm, except for the manubrium of sternum (-1.71 mm and 1.67 mm), and were similar to the limits agreement between the two experts. The workload to place the nine ROIs was reduced from 141 s (±20 s) by the manual procedure to 59 s (±17 s) using the automatic method. An efficient detection system to segment multiple ROIs was developed for Cone-Beam CT image-guided applications in the H and N region and is clinically implemented in

  20. A dual cone-beam CT system for image guided radiotherapy: Initial performance characterization

    SciTech Connect

    Li Hao; Bowsher, James; Yin Fangfang; Giles, William

    2013-02-15

    Purpose: The purpose of this study is to evaluate the performance of a recently developed benchtop dual cone-beam computed tomography (CBCT) system with two orthogonally placed tube/detector sets. Methods: The benchtop dual CBCT system consists of two orthogonally placed 40 Multiplication-Sign 30 cm flat-panel detectors and two conventional x-ray tubes with two individual high-voltage generators sharing the same rotational axis. The x-ray source to detector distance is 150 cm and x-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200 Degree-Sign of rotation. The dual CBCT system utilized 110 Degree-Sign of projection data from one detector and 90 Degree-Sign from the other while the two individual single CBCTs utilized 200 Degree-Sign data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum, and CT number linearity. The uniformities, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems. Results: Compared to single CBCT, the dual CBCT presented: (1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125, and 150 kVp); (2) comparable or slightly better contrast (0{approx}25 HU) for low-contrast objects and comparable contrast for high-contrast objects; (3) comparable spatial resolution; (4) comparable CT number linearity with R{sup 2}{>=} 0.99 for all four tested energies; (5) lower noise power spectrum in magnitude. Dual CBCT images of the skull phantom and the

  1. SU-E-J-29: Automatic Image Registration Performance of Three IGRT Systems for Prostate Radiotherapy

    SciTech Connect

    Barber, J; Sykes, J; Holloway, L; Thwaites, D

    2015-06-15

    Purpose: To compare the performance of an automatic image registration algorithm on image sets collected on three commercial image guidance systems, and explore its relationship with imaging parameters such as dose and sharpness. Methods: Images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on the CBCT systems of Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings; and MVCT on a Tomotherapy Hi-ART accelerator with a range of pitch. Using the 6D correlation ratio algorithm of XVI, each image was registered to a mask of the prostate volume with a 5 mm expansion. Registrations were repeated 100 times, with random initial offsets introduced to simulate daily matching. Residual registration errors were calculated by correcting for the initial phantom set-up error. Automatic registration was also repeated after reconstructing images with different sharpness filters. Results: All three systems showed good registration performance, with residual translations <0.5mm (1σ) for typical clinical dose and reconstruction settings. Residual rotational error had larger range, with 0.8°, 1.2° and 1.9° for 1σ in XVI, OBI and Tomotherapy respectively. The registration accuracy of XVI images showed a strong dependence on imaging dose, particularly below 4mGy. No evidence of reduced performance was observed at the lowest dose settings for OBI and Tomotherapy, but these were above 4mGy. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 10% of registrations. Changing the sharpness of image reconstruction had no significant effect on registration performance. Conclusions: Using the present automatic image registration algorithm, all IGRT systems tested provided satisfactory registrations for clinical use, within a normal range of acquisition settings.

  2. On-Board Imaging Validation of Optically Guided Stereotactic Radiosurgery Positioning System for Conventionally Fractionated Radiotherapy for Paranasal Sinus and Skull Base Cancer

    SciTech Connect

    Maxim, Peter G.; Loo, Billy W.; Murphy, James D.; Chu, Karen P.M.; Hsu, Annie; Le, Quynh-Thu

    2011-11-15

    Purpose: To evaluate the positioning accuracy of an optical positioning system for stereotactic radiosurgery in a pilot experience of optically guided, conventionally fractionated, radiotherapy for paranasal sinus and skull base tumors. Methods and Materials: Before each daily radiotherapy session, the positioning of 28 patients was set up using an optical positioning system. After this initial setup, the patients underwent standard on-board imaging that included daily orthogonal kilovoltage images and weekly cone beam computed tomography scans. Daily translational shifts were made after comparing the on-board images with the treatment planning computed tomography scans. These daily translational shifts represented the daily positional error in the optical tracking system and were recorded during the treatment course. For 13 patients treated with smaller fields, a three-degree of freedom (3DOF) head positioner was used for more accurate setup. Results: The mean positional error for the optically guided system in patients with and without the 3DOF head positioner was 1.4 {+-} 1.1 mm and 3.9 {+-} 1.6 mm, respectively (p <.0001). The mean positional error drifted 0.11 mm/wk upward during the treatment course for patients using the 3DOF head positioner (p = .057). No positional drift was observed in the patients without the 3DOF head positioner. Conclusion: Our initial clinical experience with optically guided head-and-neck fractionated radiotherapy was promising and demonstrated clinical feasibility. The optically guided setup was especially useful when used in conjunction with the 3DOF head positioner and when it was recalibrated to the shifts using the weekly portal images.

  3. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan.

    PubMed

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-21

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy(-1) and β = 0.0615 Gy(-2) as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  4. Evaluation of the Accuracy of a 3D Surface Imaging System for Patient Setup in Head and Neck Cancer Radiotherapy

    SciTech Connect

    Gopan, Olga; Wu Qiuwen

    2012-10-01

    Purpose: To evaluate the accuracy of three-dimensional (3D) surface imaging system (AlignRT) registration algorithms for head-and-neck cancer patient setup during radiotherapy. Methods and Materials: Eleven patients, each undergoing six repeated weekly helical computed tomography (CT) scans during treatment course (total 77 CTs including planning CT), were included in the study. Patient surface images used in AlignRT registration were not captured by the 3D cameras; instead, they were derived from skin contours from these CTs, thereby eliminating issues with immobilization masks. The results from surface registrations in AlignRT based on CT skin contours were compared to those based on bony anatomy registrations in Pinnacle{sup 3}, which was considered the gold standard. Both rigid and nonrigid types of setup errors were analyzed, and the effect of tumor shrinkage was investigated. Results: The maximum registration errors in AlignRT were 0.2 Degree-Sign for rotations and 0.7 mm for translations in all directions. The rigid alignment accuracy in the head region when applied to actual patient data was 1.1 Degree-Sign , 0.8 Degree-Sign , and 2.2 Degree-Sign in rotation and 4.5, 2.7, and 2.4 mm in translation along the vertical, longitudinal, and lateral axes at 90% confidence level. The accuracy was affected by the patient's weight loss during treatment course, which was patient specific. Selectively choosing surface regions improved registration accuracy. The discrepancy for nonrigid registration was much larger at 1.9 Degree-Sign , 2.4 Degree-Sign , and 4.5 Degree-Sign and 10.1, 11.9, and 6.9 mm at 90% confidence level. Conclusions: The 3D surface imaging system is capable of detecting rigid setup errors with good accuracy for head-and-neck cancer. Further investigations are needed to improve the accuracy in detecting nonrigid setup errors.

  5. [Epoetin alfa in radiotherapy].

    PubMed

    Trodella, L; Balducci, M; Gambacorta, M A; Mantini, G

    1998-01-01

    Sixty per cent of oncologic patients need radiation therapy for cure or palliation. In fact, in most neoplastic diseases, a better local control positively impacts on disease-free survival and overall survival. The efficacy of radiotherapy depends on several factors: while some are tumor-related, others are host-related. Radiobiological phenomena are also important: ionizing radiation is responsible for cell damage (double rupture of DNA chains), mostly an indirect mechanism with the formation of free radicals. Their toxic action is enhanced by the oxygen partial pressure at the cellular level. A number of studies have confirmed that good tissue oxygenation is a function of a high hemoglobin level in the peripheral blood (Hb > or = 13 g/dL). Unfortunately, these values are rarely present in oncologic patients due to the disease-related toxicosis as well as to the therapy induced hematologic toxicity. The treatment of anemia is free of risk for the recent developments in technology which with gene cloning and the technique of recombinant DNA has allowed the production of human recombinant erythropoietin. Erythropoietin is produced by the interstitial cells of renal tubules in response to hypoxia. It prevents apoptosis and promotes erythroid proliferation and differentiation with consequent reticulocyte release and hemoglobin synthesis. It is not completely understood whether the efficacy of radiotherapy depends on hemoglobin values present at the start of irradiation (often less than 12-13 g/dL) or on the higher ones observed during and at the end of radiotherapy. Therefore, preventive systemic erythropoietin therapy in non anemic patients in terms of costs/benefits is at present non sustainable. To the contrary, in patients undergoing radiotherapy to extended fields or aggressive multimodal treatments, for the higher risk of anemia, the early use of this treatment can be hypothesized in case of initial anemia to improve therapy compliance and prevent negative

  6. Long-Term Follow-Up of Dose-Adapted and Reduced-Field Radiotherapy With or Without Chemotherapy for Central Nervous System Germinoma

    SciTech Connect

    Jensen, Ashley W.; Issa Laack, Nadia N.; Buckner, Jan C.; Schomberg, Paula J.; Wetmore, Cynthia J.; Brown, Paul D.

    2010-08-01

    Purpose: To update our institutional experience with neoadjuvant chemotherapy and minimized radiotherapy vs. radiation monotherapy for intracranial germinoma. Methods and Materials: We retrospectively reviewed records of 59 patients with diagnosis of primary intracranial germinoma between 1977 and 2007. Treatment was irradiation alone or neoadjuvant platinum-based chemotherapy and local irradiation (initial tumor plus margin) for patients with localized complete response and reduced-dose craniospinal irradiation for others. Results: For the chemoradiotherapy group (n = 28), median follow-up was 7 years. No patient died. The freedom from progression (FFP) rate was 88% at 5 years and 80% at 10 years. In 4 patients, disease recurred 1.1 to 6.8 years after diagnosis. All were young male patients who received 30.6 Gy to local fields after complete response to chemotherapy. The FFP rate was 88% for local irradiation vs. 100% for more extensive fields (p = .06). For the radiotherapy-alone group (n = 31), median follow-up was 15 years. Overall and disease-free survival rates were 93% and 93% at 5 years and 90% and 87% at 15 years. In 5 patients, disease recurred 1.1 to 4.9 years after diagnosis. Most patients in this group were young men 18 to 23 years of age with suprasellar primary disease treated with about 50 Gy to local fields. The FFP rate was 44% for local irradiation vs. 100% for more extensive fields (p < .01). Conclusions: The addition of neoadjuvant chemotherapy to local-field radiotherapy reduced central nervous system cancer recurrence when high-risk patients were excluded by thorough pretreatment staging. There was trend toward improved central nervous system tumor control when larger fields (whole brain, whole ventricle, or craniospinal axis) were used.

  7. WE-F-16A-06: Using 3D Printers to Create Complex Phantoms for Dose Verification, Quality Assurance, and Treatment Planning System Commissioning in Radiotherapy

    SciTech Connect

    Kassaee, A; Ding, X; McDonough, J; Reiche, M; Witztum, A; Teo, B

    2014-06-15

    Purpose: To use 3D printers to design and construct complex geometrical phantoms for commissioning treatment planning systems, dose calculation algorithms, quality assurance (QA), dose delivery, and patient dose verifications. Methods: In radiotherapy, complex geometrical phantoms are often required for dose verification, dose delivery and calculation algorithm validation. Presently, fabrication of customized phantoms is limited due to time, expense and challenges in machining of complex shapes. In this work, we designed and utilized 3D printers to fabricate two phantoms for QA purposes. One phantom includes hills and valleys (HV) for verification of intensity modulated radiotherapy for photons, and protons (IMRT and IMPT). The other phantom includes cylindrical cavities (CC) of various sizes for dose verification of inhomogeneities. We evaluated the HV phantoms for an IMPT beam, and the CC phantom to study various inhomogeneity configurations using photon, electron, and proton beams. Gafcromic ™ films were used to quantify the dose distributions delivered to the phantoms. Results: The HV phantom has dimensions of 12 cm × 12 cm and consists of one row and one column of five peaks with heights ranging from 2 to 5 cm. The CC phantom has a size 10 cm × 14 cm and includes 6 cylindrical cavities with length of 7.2 cm and diameters ranging from 0.6 to 1.2 cm. The IMPT evaluation using the HV phantom shows good agreement as compared to the dose distribution calculated with treatment planning system. The CC phantom also shows reasonable agreements for using different algorithms for each beam modalities. Conclusion: 3D printers with submillimiter resolutions are capable of printing complex phantoms for dose verification and QA in radiotherapy. As printing costs decrease and the technology becomes widely available, phantom design and construction will be readily available to any clinic for testing geometries that were not previously feasible.

  8. SU-E-T-130: Dosimetric Evaluation of Tissue Equivalent Gel Dosimeter Using Saccharide in Radiotherapy System

    SciTech Connect

    Cho, Y; Lee, D; Jung, H; Ji, Y; Kim, K; Chang, U; Kwon, S

    2014-06-01

    Purpose: In this study, the dose responses of the MAGIC gel with various concentrations and type of saccharide are examined to clarify the roles of mono and disaccharide in the polymerization process. Then we focused on the tissue equivalence and dose sensitivity of MAGIC gel dosimeters. Methods: The gel is composed of HPLC, 8% gelatin, 2 × 10-3 M L-ascorbic acid, 1.8 × 10-2 M hydroquinone, 8 × 10-5 M copper(II)sulfate and 9% methacrylic acid, new polymer gels are synthesized by adding glucose(monosaccharide), sucrose(disaccharide) and urea in the concentration range of 5∼35%. For irradiation of the gel, cesium-137 gamma-ray irradiator was used, radiation dose was delivered from 5∼50 Gy. MRI images of the gel were acquired by using a 3.0 T MRI system. Results: When saccharide and urea were added, the O/C, O/N and C/N ratios agreed with those of soft tissue with 1.7%. The dose-response of glucose and sucrose gel have slope-to-intercept ratio of 0.044 and 0.283 respectively. The slope-to-ratio is one important determinant of gel sensitivity. R-square values of glucose and sucrose gel dosimeters were 0.984 and 0.994 respectively. Moreover when urea were added, the slope-to-intercept ratio is 0.044 and 0.073 respectively. R-square values of mono and disaccharide gel were 0.973 and 0.989 respectively. When a saccharide is added into the MAGIC gel dosimeter, dose sensitivity is increased. However when urea were added, dose sensitivity is slightly decreased. Conclusion: In this study, it was possible to obtain the following conclusions by looking at the dose response characteristics after adding mono-, di-saccharide and urea to a MAGIC gel dosimeter. Saccharide was a tendency of increasing dose sensitivity with disaccharide. Sa.ccharide is cost effective, safe, soft tissue equivalent, and can be used under various experimental conditions, making it a suitable dosimeter for some radiotherapy applications.

  9. [Radiotherapy for Thyroid Cancer].

    PubMed

    Jingu, Keiichi; Maruoka, Shin; Umezawa, Rei; Takahashi, Noriyoshi

    2015-06-01

    Radioactive 131I therapy for differentiated thyroid cancer has been used since the 1940s and is an established and effective treatment. In contrast, external beam radiotherapy (EBRT) was considered to be effective for achieving local control but not for prolonging survival. Although clinicians were hesitant to administer EBRT owing to the potential radiation-induced adverse effects of 2 dimensional (2D)-radiotherapy until 2000, it is expected that adverse effects will be reduced and treatment efficacy improved through the introduction of more advanced techniques for delivering radiation (eg, 3D-radiotherapy and intensity modulated radiotherapy [IMRT]). The prognosis of undifferentiated thyroid cancer is known to be extremely bad, although in very rare cases, multimodality therapy (total or subtotal resection, chemotherapy, and radiotherapy) has allowed long-term survival. Here, we report the preliminary results of using hypofractionated radiotherapy for undifferentiated thyroid cancer in our institution. PMID:26199238

  10. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system.

    PubMed

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth; Suzuki, Ryusuke; Matsuura, Taeko; Toramatsu, Chie; Takao, Seishin; Nihongi, Hideaki; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction. PMID:25129556

  11. Monitoring ABC-assisted deep inspiration breath hold for left-sided breast radiotherapy with an optical tracking system

    SciTech Connect

    Mittauer, Kathryn E.; Deraniyagala, Rohan; Li, Jonathan G.; Lu, Bo; Liu, Chihray; Samant, Sanjiv S.; Lightsey, Judith L.; Yan, Guanghua

    2015-01-15

    Purpose: Recent knowledge on the effects of cardiac toxicity warrants greater precision for left-sided breast radiotherapy. Different breath-hold (BH) maneuvers (abdominal vs thoracic breathing) can lead to chest wall positional variations, even though the patient’s tidal volume remains consistent. This study aims to investigate the feasibility of using optical tracking for real-time quality control of active breathing coordinator (ABC)-assisted deep inspiration BH (DIBH). Methods: An in-house optical tracking system (OTS) was used to monitor ABC-assisted DIBH. The stability and localization accuracy of the OTS were assessed with a ball-bearing phantom. Seven patients with left-sided breast cancer were included. A free-breathing (FB) computed tomography (CT) scan and an ABC-assisted BH CT scan were acquired for each patient. The OTS tracked an infrared (IR) marker affixed over the patient’s xiphoid process to measure the positional variation of each individual BH. Using the BH within which the CT scan was performed as the reference, the authors quantified intra- and interfraction BH variations for each patient. To estimate the dosimetric impact of BH variations, the authors studied the positional correlation between the marker and the left breast using the FB CT and BH CT scans. The positional variations of 860 BHs as measured by the OTS were retrospectively incorporated into the original treatment plans to evaluate their dosimetric impact on breast and cardiac organs [heart and left anterior descending (LAD) artery]. Results: The stability and localization accuracy of the OTS was within 0.2 mm along each direction. The mean intrafraction variation among treatment BHs was less than 2.8 mm in all directions. Up to 12.6 mm anteroposterior undershoot, where the patient’s chest wall displacement of a BH is less than that of a reference BH, was observed with averages of 4.4, 3.6, and 0.1 mm in the anteroposterior, craniocaudal, and mediolateral directions

  12. [Radiotherapy of skin cancers].

    PubMed

    Hennequin, C; Rio, E; Mahé, M-A

    2016-09-01

    The indications of radiotherapy for skin cancers are not clearly defined because of the lack of randomised trials or prospective studies. For basal cell carcinomas, radiotherapy frequently offers a good local control, but a randomized trial showed that surgery is more efficient and less toxic. Indications of radiotherapy are contra-indications of surgery for patients older than 60, non-sclerodermiform histology and occurring in non-sensitive areas. Adjuvant radiotherapy could be proposed to squamous cell carcinomas, in case of poor prognostic factors. Dose of 60 to 70Gy are usually required, and must be modulated to the size of the lesions. Adjuvant radiotherapy seems beneficial for desmoplastic melanomas but not for the other histological types. Prophylactic nodal irradiation (45 to 50Gy), for locally advanced tumours (massive nodal involvement), decreases the locoregional failure rate but do not increase survival. Adjuvant radiotherapy (50 to 56Gy) for Merckel cell carcinomas increases also the local control rate, as demonstrated by meta-analysis and a large epidemiological study. Nodal areas must be included, if there is no surgical exploration (sentinel lymph node dissection). Kaposi sarcomas are radiosensitive and could be treated with relatively low doses (24 to 30Gy). Also, cutaneous lymphomas are good indications for radiotherapy: B lymphomas are electively treated with limited fields. The role of total skin electron therapy for T-lymphomas is still discussed; but palliative radiotherapy is very efficient in case of cutaneous nodules. PMID:27522189

  13. Planning National Radiotherapy Services

    PubMed Central

    Rosenblatt, Eduardo

    2014-01-01

    Countries, states, and island nations often need forward planning of their radiotherapy services driven by different motives. Countries without radiotherapy services sponsor patients to receive radiotherapy abroad. They often engage professionals for a feasibility study in order to establish whether it would be more cost-beneficial to establish a radiotherapy facility. Countries where radiotherapy services have developed without any central planning, find themselves in situations where many of the available centers are private and thus inaccessible for a majority of patients with limited resources. Government may decide to plan ahead when a significant exodus of cancer patients travel to another country for treatment, thus exposing the failure of the country to provide this medical service for its citizens. In developed countries, the trigger has been the existence of highly visible waiting lists for radiotherapy revealing a shortage of radiotherapy equipment. This paper suggests that there should be a systematic and comprehensive process of long-term planning of radiotherapy services at the national level, taking into account the regulatory infrastructure for radiation protection, planning of centers, equipment, staff, education programs, quality assurance, and sustainability aspects. Realistic budgetary and cost considerations must also be part of the project proposal or business plan. PMID:25505730

  14. [Conformal radiotherapy for vertebral bone metastasis].

    PubMed

    Faivre, J C; Py, J F; Vogin, G; Martinage, G; Salleron, J; Royer, P; Grandgirard, N; Pasquier, D; Thureau, S

    2016-10-01

    Analgesic external beam radiation therapy is a standard of care for patients with uncomplicated painful bone metastases and/or prevention of bone complications. In case of fracture risk, radiation therapy is performed after surgery in a consolidation of an analgesic purpose and stabilizing osteosynthesis. Radiotherapy is mandatory after vertebroplasty or kyphoplasty. Spinal cord compression - the only emergency in radiation therapy - is indicated postoperatively either exclusively for non surgical indication. Analgesic re-irradiation is possible in the case of insufficient response or recurrent pain after radiotherapy. Metabolic radiation, bisphosphonates or denosumab do not dissuade external radiation therapy for pain relief. Systemic oncological treatments can be suspended with a period of wash out given the risk of radiosensitization or recall phenomenon. Better yet, the intensity modulated radiotherapy and stereotactic radiotherapy can be part of a curative strategy for oligometastatic patients and suggest new treatment prospects. PMID:27614498

  15. Inhalation anesthesia in experimental radiotherapy: a reliable and time-saving system for multifractionation studies in a clinical department. [Rats; Mice

    SciTech Connect

    Ang, K.K.; Van Der Kogel, A.J.; Van Der Schueren, E.

    1982-01-01

    An inhalation anesthesia system has been employed to overcome several of the limitations associated wih the use of sodium pentobarbital and other i.p. administered anesthetics in experimental radiotherapy. The described method is reliable and time-saving. The depth and duration of anesthesia are easily controllable. Only 4 deaths have occurred with more than 6000 animal exposures. The use of polystyrene jigs is shown to provide adequate thermal isolation. Oxygen as a carrier of the anesthetic agent is expected to prevent a reduced tissue oxygenation and its radiobiologial consequences. The whole system is constructed as a mobile unit in which up to 16 mice or rats can be anesthetized simultaneously and irradiated in a single field with clinical treatment equipment during short time intervals between patient irradiations. The described advantages of this method make it specially suited for experiments with protracted fractionation schedules.

  16. Systemic release of osteoprotegerin during oxaliplatin-containing induction chemotherapy and favorable systemic outcome of sequential radiotherapy in rectal cancer

    PubMed Central

    Meltzer, Sebastian; Kalanxhi, Erta; Hektoen, Helga Helseth; Dueland, Svein; Flatmark, Kjersti; Redalen, Kathrine Røe; Ree, Anne Hansen

    2016-01-01

    In colorectal cancer, immune effectors may be determinative for disease outcome. Following curatively intended combined-modality therapy in locally advanced rectal cancer metastatic disease still remains a dominant cause of failure. Here, we investigated whether circulating immune factors might correlate with outcome. An antibody array was applied to assay changes of approximately 500 proteins in serial serum samples collected from patients during oxaliplatin-containing induction chemotherapy and sequential chemoradiotherapy before final pelvic surgery. Array data was analyzed by the Significance Analysis of Microarrays software and indicated significant alterations in serum osteoprotegerin (TNFRSF11B) during the treatment course, which were confirmed by osteoprotegerin measures using a single-parameter immunoassay. Patients experiencing increase in circulating osteoprotegerin during the chemotherapy had significantly better 5-year progression-free survival than those without increase (78% versus 48%; P = 0.009 by log-rank test). Hence, systemic release of this soluble tumor necrosis factor decoy receptor following the induction phase of neoadjuvant therapy was associated with favorable long-term outcome in patients given curatively intended chemoradiotherapy and surgery but with metastatic disease as the main adverse event. This finding suggests that osteoprotegerin may mediate or reflect systemic anti-tumor immunity invoked by combined-modality therapy in locally advanced rectal cancer. PMID:27145458

  17. Investigations of different kilovoltage x-ray energy for three-dimensional converging stereotactic radiotherapy system: Monte Carlo simulations with CT data

    SciTech Connect

    Deloar, Hossain M.; Kunieda, Etsuo; Kawase, Takatsugu; Tsunoo, Takanori; Saitoh, Hidetoshi; Ozaki, Masahiro; Saito, Kimiaki; Takagi, Shunji; Sato, Osamu; Fujisaki, Tatsuya; Myojoyama, Atsushi; Sorell, Graham

    2006-12-15

    We are investigating three-dimensional converging stereotactic radiotherapy (3DCSRT) with suitable medium-energy x rays as treatment for small lung tumors with better dose homogeneity at the target. A computed tomography (CT) system dedicated for non-coplanar converging radiotherapy was simulated with BEAMnrc (EGS4) Monte-Carlo code for x-ray energy of 147.5, 200, 300, and 500 kilovoltage (kVp). The system was validated by comparing calculated and measured percentage of depth dose in a water phantom for the energy of 120 and 147.5 kVp. A thorax phantom and CT data from lung tumors (<20 cm{sup 3}) were used to compare dose homogeneities of kVp energies with MV energies of 4, 6, and 10 MV. Three non-coplanar arcs (0 deg. and {+-}25 deg. ) around the center of the target were employed. The Monte Carlo dose data format was converted to the XiO RTP format to compare dose homogeneity, differential, and integral dose volume histograms of kVp and MV energies. In terms of dose homogeneity and DVHs, dose distributions at the target of all kVp energies with the thorax phantom were better than MV energies, with mean dose absorption at the ribs (human data) of 100%, 85%, 50%, 30% for 147.5, 200, 300, and 500 kVp, respectively. Considering dose distributions and reduction of the enhanced dose absorption at the ribs, a minimum of 500 kVp is suitable for the lung kVp 3DCSRT system.

  18. Systemic chemotherapy with vincristine, cyclophosphamide, doxorubicin and prednisolone following radiotherapy for primary central nervous system lymphoma: a phase II study.

    PubMed

    Shibamoto, Y; Sasai, K; Oya, N; Hiraoka, M

    1999-04-01

    We treated 23 patients with primary central nervous system lymphoma with a protocol of conventional radiation up to 55 +/- 5 Gy followed by 4 to 6 cycles of intravenous doxorubicin (30 mg/m2), vincristine (1 mg/m2) and cyclophosphamide (350 mg/m2), and oral prednisolone (8-30 mg/m2) (VEPA chemotherapy) repeated at 2-week intervals. The median age of the 23 patients was 59 years, and the median World Health Organization performance status score was 2. Seventeen patients received 4 or more courses of the chemotherapy, but 6 received only 1 or 2 courses for various reasons. The median survival time for all 23 patients was 25.5 months and their 5-year survival rate was 23%. These values were 34 months and 32%, respectively, for the 17 patients who received 4-6 courses of chemotherapy. After treatment, decline in performance status unaccompanied with tumor recurrence was observed in 44% of the patients; the incidence was apparently higher in older than in younger patients. The survival results obtained with this combined radiochemotherapy regimen appear to be better than those reported in most previous studies of patients treated with radiation alone. Post-irradiation VEPA chemotherapy appears to be worthy of further evaluation.

  19. Comparison of Dosimetric Performance among Commercial Quality Assurance Systems for Verifying Pretreatment Plans of Stereotactic Body Radiotherapy Using Flattening-Filter-Free Beams

    PubMed Central

    2016-01-01

    The purpose of this study was to compare the performance of different commercial quality assurance (QA) systems for the pretreatment verification plan of stereotactic body radiotherapy (SBRT) with volumetric arc therapy (VMAT) technique using a flattening-filter-free beam. The verification for 20 pretreatment cancer patients (seven lung, six spine, and seven prostate cancers) were tested using three QA systems (EBT3 film, I’mRT MatriXX array, and MapCHECK). All the SBRT-VMAT plans were optimized in the Eclipse (version 11.0.34) treatment planning system (TPS) using the Acuros XB dose calculation algorithm and were delivered to the Varian TrueBeam® accelerator equipped with a high-definition multileaf collimator. Gamma agreement evaluation was analyzed with the criteria of 2% dose difference and 2 mm distance to agreement (2%/2 mm) or 3%/3 mm. The highest passing rate (99.1% for 3%/3 mm) was observed on the MapCHECK system while the lowest passing rate was obtained on the film. The pretreatment verification results depend on the QA systems, treatment sites, and delivery beam energies. However, the delivery QA results for all QA systems based on the TPS calculation showed a good agreement of more than 90% for both the criteria. It is concluded that the three 2D QA systems have sufficient potential for pretreatment verification of the SBRT-VMAT plan. PMID:27709851

  20. Accuracy and efficiency of an infrared based positioning and tracking system for patient set-up and monitoring in image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Jia, Jing; Xu, Gongming; Pei, Xi; Cao, Ruifen; Hu, Liqin; Wu, Yican

    2015-03-01

    An infrared based positioning and tracking (IPT) system was introduced and its accuracy and efficiency for patient setup and monitoring were tested for daily radiotherapy treatment. The IPT system consists of a pair of floor mounted infrared stereoscopic cameras, passive infrared markers and tools used for acquiring localization information as well as a custom controlled software which can perform the positioning and tracking functions. The evaluation of IPT system characteristics was conducted based on the AAPM 147 task report. Experiments on spatial drift and reproducibility as well as static and dynamic localization accuracy were carried out to test the efficiency of the IPT system. Measurements of known translational (up to 55.0 mm) set-up errors in three dimensions have been performed on a calibration phantom. The accuracy of positioning was evaluated on an anthropomorphic phantom with five markers attached to the surface; the precision of the tracking ability was investigated through a sinusoidal motion platform. For the monitoring of the respiration, three volunteers contributed to the breathing testing in real time. The spatial drift of the IPT system was 0.65 mm within 60 min to be stable. The reproducibility of position variations were between 0.01 and 0.04 mm. The standard deviation of static marker localization was 0.26 mm. The repositioning accuracy was 0.19 mm, 0.29 mm, and 0.53 mm in the left/right (L/R), superior/inferior (S/I) and anterior/posterior (A/P) directions, respectively. The measured dynamic accuracy was 0.57 mm and discrepancies measured for the respiratory motion tracking was better than 1 mm. The overall positioning accuracy of the IPT system was within 2 mm. In conclusion, the IPT system is an accurate and effective tool for assisting patient positioning in the treatment room. The characteristics of the IPT system can successfully meet the needs for real time external marker tracking and patient positioning as well as respiration

  1. Reductions in the variations of respiration signals for respiratory-gated radiotherapy when using the video-coaching respiration guiding system

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Jeong; Yea, Ji Woon; Oh, Se An

    2015-07-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT by using a video-coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by using a realtime position management (RPM) respiratory gating system (Varian, USA), and the patients were trained using the video-coaching respiration guiding system. The patients performed free breathing and guided breathing, and the respiratory cycles were acquired for ~5 min. Then, Microsoft Excel 2010 software was used to calculate the mean and the standard deviation for each phase. The standard deviation was computed in order to analyze the improvement in the respiratory regularity with respect to the period and the displacement. The standard deviation of the guided breathing decreased to 48.8% in the inhale peak and 24.2% in the exhale peak compared with the values for the free breathing of patient 6. The standard deviation of the respiratory cycle was found to be decreased when using the respiratory guiding system. The respiratory regularity was significantly improved when using the video-coaching respiration guiding system. Therefore, the system is useful for improving the accuracy and the efficiency of RGRT.

  2. Recruitment in Radiotherapy

    ERIC Educational Resources Information Center

    Deeley, T. J.; And Others

    1976-01-01

    The Faculty Board of Radiotherapy and Oncology of the Royal College of Radiobiologists surveyed the factors thought to influence recruitment into the specialty. Possible factors listed in replies of 36 questionnaires are offered. (LBH)

  3. Proton Radiotherapy for Liver Tumors: Dosimetric Advantages Over Photon Plans

    SciTech Connect

    Wang Xiaochun Krishnan, Sunil; Zhang Xiaodong; Dong Lei; Briere, Tina; Crane, Christopher H.; Martel, Mary; Gillin, Michael; Mohan, Radhe; Beddar, Sam

    2008-01-01

    The purpose of the study is to dosimetrically investigate the advantages of proton radiotherapy over photon radiotherapy for liver tumors. The proton plan and the photon plan were designed using commercial treatment planning systems. The treatment target dose conformity and heterogeneity and dose-volume analyses of normal structures were compared between proton and photon radiotherapy for 9 patients with liver tumors. Proton radiotherapy delivered a more conformal target dose with slightly less homogeneity when compared with photon radiotherapy. Protons significantly reduced the fractional volume of liver receiving dose greater or equal to 30 Gy (V{sub 30}) and the mean liver dose. The stomach and duodenal V{sub 45} were significantly lower with the use of proton radiotherapy. The V{sub 40} and V{sub 50} of the heart and the maximum spinal cord dose were also significantly lower with the use of proton radiotherapy. Protons were better able to spare one kidney completely and deliver less dose to one (generally the left) kidney than photons. The mean dose to the total body and most critical structures was significantly decreased using protons when compared to corresponding photon plans. In conclusion, our study suggests the dosimetric benefits of proton radiotherapy over photon radiotherapy. These dosimetric advantages of proton plans may permit further dose escalation with lower risk of complications.

  4. Evaluation of a combined respiratory-gating system comprising the TrueBeam linear accelerator and a new real-time tumor-tracking radiotherapy system: a preliminary study.

    PubMed

    Shiinoki, Takehiro; Kawamura, Shinji; Uehara, Takuya; Yuasa, Yuki; Fujimoto, Koya; Koike, Masahiro; Sera, Tatsuhiro; Emoto, Yuki; Hanazawa, Hideki; Shibuya, Keiko

    2016-07-08

    A combined system comprising the TrueBeam linear accelerator and a new real-time, tumor-tracking radiotherapy system, SyncTraX, was installed in our institution. The goals of this study were to assess the capability of SyncTraX in measuring the position of a fiducial marker using color fluoroscopic images, and to evaluate the dosimetric and geometric accuracy of respiratory-gated radiotherapy using this combined system for the simple geometry. For the fundamental evaluation of respiratory-gated radiotherapy using SyncTraX, the following were performed:1) determination of dosimetric and positional characteristics of sinusoidal patterns using a motor-driven base for several gating windows; 2) measurement of time delay using an oscilloscope; 3) positional verification of sinusoidal patterns and the pattern in the case of a lung cancer patient; 4) measurement of the half-value layer (HVL in mm AL), effective kVp, and air kerma, using a solid-state detector for each fluoroscopic condition, to determine the patient dose. The dose profile in a moving phantom with gated radiotherapy having a gating window ≤ 4 mm was in good agreement with that under static conditions for each photon beam. The total time delay between TrueBeam and SyncTraX was < 227 ms for each photon beam. The mean of the positional tracking error was < 0.4 mm for sinusoidal patterns and for the pattern in the case of a lung cancer patient. The air-kerma rates from one fluoroscopy direction were 1.93 ± 0.01, 2.86 ± 0.01, 3.92 ± 0.04, 5.28 ± 0.03, and 6.60 ± 0.05 mGy/min for 70, 80, 90, 100, and 110 kV X-ray beams at 80 mA, respectively. The combined system comprising TrueBeam and SyncTraX could track the motion of the fiducial marker and control radiation delivery with reasonable accuracy; therefore, this system provides significant dosimetric improvement. However, patient exposure dose from fluoroscopy was not clinically negligible.

  5. Evaluation of a combined respiratory-gating system comprising the TrueBeam linear accelerator and a new real-time tumor-tracking radiotherapy system: a preliminary study.

    PubMed

    Shiinoki, Takehiro; Kawamura, Shinji; Uehara, Takuya; Yuasa, Yuki; Fujimoto, Koya; Koike, Masahiro; Sera, Tatsuhiro; Emoto, Yuki; Hanazawa, Hideki; Shibuya, Keiko

    2016-01-01

    A combined system comprising the TrueBeam linear accelerator and a new real-time, tumor-tracking radiotherapy system, SyncTraX, was installed in our institution. The goals of this study were to assess the capability of SyncTraX in measuring the position of a fiducial marker using color fluoroscopic images, and to evaluate the dosimetric and geometric accuracy of respiratory-gated radiotherapy using this combined system for the simple geometry. For the fundamental evaluation of respiratory-gated radiotherapy using SyncTraX, the following were performed:1) determination of dosimetric and positional characteristics of sinusoidal patterns using a motor-driven base for several gating windows; 2) measurement of time delay using an oscilloscope; 3) positional verification of sinusoidal patterns and the pattern in the case of a lung cancer patient; 4) measurement of the half-value layer (HVL in mm AL), effective kVp, and air kerma, using a solid-state detector for each fluoroscopic condition, to determine the patient dose. The dose profile in a moving phantom with gated radiotherapy having a gating window ≤ 4 mm was in good agreement with that under static conditions for each photon beam. The total time delay between TrueBeam and SyncTraX was < 227 ms for each photon beam. The mean of the positional tracking error was < 0.4 mm for sinusoidal patterns and for the pattern in the case of a lung cancer patient. The air-kerma rates from one fluoroscopy direction were 1.93 ± 0.01, 2.86 ± 0.01, 3.92 ± 0.04, 5.28 ± 0.03, and 6.60 ± 0.05 mGy/min for 70, 80, 90, 100, and 110 kV X-ray beams at 80 mA, respectively. The combined system comprising TrueBeam and SyncTraX could track the motion of the fiducial marker and control radiation delivery with reasonable accuracy; therefore, this system provides significant dosimetric improvement. However, patient exposure dose from fluoroscopy was not clinically negligible. PMID:27455483

  6. Case report of a near medical event in stereotactic radiotherapy due to improper units of measure from a treatment planning system

    SciTech Connect

    Gladstone, D. J.; Li, S.; Jarvis, L. A.; Hartford, A. C.

    2011-07-15

    Purpose: The authors hereby notify the Radiation Oncology community of a potentially lethal error due to improper implementation of linear units of measure in a treatment planning system. The authors report an incident in which a patient was nearly mistreated during a stereotactic radiotherapy procedure due to inappropriate reporting of stereotactic coordinates by the radiation therapy treatment planning system in units of centimeter rather than in millimeter. The authors suggest a method to detect such errors during treatment planning so they are caught and corrected prior to the patient positioning for treatment on the treatment machine. Methods: Using pretreatment imaging, the authors found that stereotactic coordinates are reported with improper linear units by a treatment planning system. The authors have implemented a redundant, independent method of stereotactic coordinate calculation. Results: Implementation of a double check of stereotactic coordinates via redundant, independent calculation is simple and accurate. Use of this technique will avoid any future error in stereotactic treatment coordinates due to improper linear units, transcription, or other similar errors. Conclusions: The authors recommend an independent double check of stereotactic treatment coordinates during the treatment planning process in order to avoid potential mistreatment of patients.

  7. An imaging informatics-based system utilizing DICOM objects for treating pain in spinal cord injury patients utilizing proton beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Verma, Sneha K.; Liu, Brent J.; Chun, Sophia; Gridley, Daila S.

    2014-03-01

    Many US combat personnel have sustained nervous tissue trauma during service, which often causes Neuropathic pain as a side effect and is difficult to manage. However in select patients, synapse lesioning can provide significant pain control. Our goal is to determine the effectiveness of using Proton Beam radiotherapy for treating spinal cord injury (SCI) related neuropathic pain as an alternative to invasive surgical lesioning. The project is a joint collaboration of USC, Spinal Cord Institute VA Healthcare System, Long Beach, and Loma Linda University. This is first system of its kind that supports integration and standardization of imaging informatics data in DICOM format; clinical evaluation forms outcomes data and treatment planning data from the Treatment planning station (TPS) utilized to administer the proton therapy in DICOM-RT format. It also supports evaluation of SCI subjects for recruitment into the clinical study, which includes the development, and integration of digital forms and tools for automatic evaluation and classification of SCI pain. Last year, we presented the concept for the patient recruitment module based on the principle of Bayesian decision theory. This year we are presenting the fully developed patient recruitment module and its integration to other modules. In addition, the DICOM module for integrating DICOM and DICOM-RT-ION data is also developed and integrated. This allows researchers to upload animal/patient study data into the system. The patient recruitment module has been tested using 25 retrospective patient data and DICOM data module is tested using 5 sets of animal data.

  8. Anti-inflammatory effects of low-dose radiotherapy in an experimental model of systemic inflammation in mice

    SciTech Connect

    Arenas, Meritxell; Gil, Felix B.A.; Gironella, Meritxell; Hernandez, Victor; Jorcano, Sandra; Biete, Albert; Pique, Josep M.; Panes, Julian . E-mail: jpanes@clinic.ub.es

    2006-10-01

    Purpose: The aim of this study was to determine the effects of low-dose radiotherapy (LD-RT) on the inflammatory response and to characterize the potential mechanisms underlying these effects. Methods and Materials: Mice were irradiated with 0.1, 0.3, 0.6 Gy, or sham radiation before lipopolysaccharide (LPS) challenge. Leukocyte-endothelial cell interactions in intestinal venules were assessed using intravital microscopy. Intercellular adhesion molecule-1 (ICAM-1) expression was determined using radiolabeled antibodies 5 h after irradiation. Production of transforming growth factor-{beta}{sub 1} (TGF-{beta}{sub 1}) was measured by enzyme-linked immunosorbent assay and its in vivo functional relevance by immunoneutralization. Results: Compared with vehicle treated animals, LPS induced a marked increase in leukocyte adhesion (0.13 {+-} 0.59 vs. 5.89 {+-} 1.03, p < 0.0001) in intestinal venules. The number of adherent leukocytes was significantly reduced by the 3 doses of LD-RT tested; the highest inhibition was observed with 0.3 Gy (0.66 {+-} 1.96, p < 0.0001). LPS-induced ICAM-1 upregulation was not modified by LD-RT. Circulating levels of TGF-{beta}{sub 1} were significantly increased in response to LD-RT in controls and LPS challenged animals. Neutralization of TGF-{beta}{sub 1} partially restored LPS-induced adhesion (4.83 {+-} 1.41, p < 0.05). Conclusions: LD-RT has a significant anti-inflammatory effect, inhibiting leukocyte recruitment, which is maximal at 0.3 Gy. This effect results in part from increased TGF-{beta}{sub 1} production and is not related to modulation of ICAM-1 expression.

  9. Direct tumor in vivo dosimetry in highly-conformal radiotherapy: A feasibility study of implantable MOSFETs for hypofractionated extracranial treatments using the Cyberknife system

    SciTech Connect

    Scalchi, Paolo; Righetto, Roberto; Cavedon, Carlo; Francescon, Paolo; Colombo, Federico

    2010-04-15

    Purpose: In highly-conformal radiotherapy, due to the complexity of both beam configurations and dose distributions, traditional in vivo dosimetry is unpractical or even impossible. The ideal dosimeter would be implanted inside the planning treatment volume so that it can directly measure the total delivered dose during each fraction with no additional uncertainty due to calculation models. The aim of this work is to verify if implantable metal oxide semiconductors field effect transistors (MOSFETs) can achieve a sufficient degree of dosimetric accuracy when used inside extracranial targets undergoing radiotherapy treatments using the Cyberknife system. Methods: Based on the preliminary findings of this study, new prototypes for high dose fractionations were developed to reduce the time dependence for long treatment delivery times. These dosimeters were recently cleared and are marketed as DVS-HFT. Multiple measurements were performed using both Virtual Water and water phantoms to characterize implantable MOSFETs under the Cyberknife beams, and included the reference-dosimetry consistency, the dependence of the response on the collimator size, on the daily delivered dose, and the time irradiation modality. Finally a Cyberknife prostate treatment simulation using a body phantom was conducted, and both MOSFET and ionization readings were compared to Monte Carlo calculations. The feasibility analysis was conducted based on the ratios of the absorbed dose divided by the dose reading, named as ''further calibration factor'' (FCF). Results: The average FCFs resulted to be 0.98 for the collimator dependence test, and about 1.00 for the reference-dosimetry test, the dose-dependence test, and the time-dependence test. The average FCF of the prostate treatment simulation test was 0.99. Conclusions: The obtained results are well within DVS specifications, that is, the factory calibration is still valid for such kind of treatments using the Cyberknife system, with no need of

  10. [Radiotherapy of larynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Legouté, F; Trémolières, P; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    Intensity-modulated radiotherapy is the gold standard in the treatment of larynx cancers (except T1 glottic tumour). Early T1 and T2 tumours may be treated by exclusive radiation or surgery. For tumours requiring total laryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy is possible. For T4 tumour, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, the curative dose is 70Gy and the prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used in locally advanced cancer with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation was based on guidelines. PMID:27521037

  11. [Prostate cancer external beam radiotherapy].

    PubMed

    de Crevoisier, R; Pommier, P; Latorzeff, I; Chapet, O; Chauvet, B; Hennequin, C

    2016-09-01

    The prostate external beam radiotherapy techniques are described, when irradiating the prostate or after prostatectomy, with and without pelvic lymph nodes. The following parts are presented: indications of radiotherapy, total dose and fractionation, planning CT image acquisition, volume of interest delineation (target volumes and organs at risk) and margins, Intensity modulated radiotherapy planning and corresponding dose-volume constraints, and finally Image guided radiotherapy. PMID:27516051

  12. Dosimetric characterization of a multileaf collimator for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000

    SciTech Connect

    Nakamura, Mitsuhiro; Sawada, Akira; Ishihara, Yoshitomo; Takayama, Kenji; Mizowaki, Takashi; Kaneko, Shuji; Yamashita, Mikiko; Tanabe, Hiroaki; Kokubo, Masaki; Hiraoka, Masahiro

    2010-09-15

    Purpose: To present the dosimetric characterization of a multileaf collimator (MLC) for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000. Methods: MHI-TM2000 has an x-ray head composed of an ultrasmall linear accelerator guide and a system-specific MLC. The x-ray head can rotate along the two orthogonal gimbals (pan and tilt rotations) up to {+-}2.5 deg., which swings the beam up to {+-}41.9 mm in each direction from the isocenter on the isocenter plane perpendicular to the beam. The MLC design is a single-focus type, has 30 pairs of 5 mm thick leaves at the isocenter, and produces a maximum field size of 150x150 mm{sup 2}. Leaf height and length are 110 and 260 mm, respectively. Each leaf end is circular, with a radius of curvature of 370 mm. The distance that each leaf passes over the isocenter is 77.5 mm. Radiation leakage between adjacent leaves is minimized by an interlocking tongue-and-groove (T and G) arrangement with the height of the groove part 55 mm. The dosimetric characterizations including field characteristics, leaf position accuracy, leakage, and T and G effect were evaluated using a well-commissioned 6 MV photon beam, EDR2 films (Kodak, Rochester, NY), and water-equivalent phantoms. Furthermore, the field characteristics and leaf position accuracy were evaluated under conditions of pan or tilt rotation. Results: The differences between nominal and measured field sizes were within {+-}0.5 mm. Although the penumbra widths were greater with wider field size, the maximum width was <5.5 mm even for the fully opened field. Compared to the results of field characteristics without pan or tilt rotation, the variation in field size, penumbra width, flatness, and symmetry was within {+-}1 mm/1% at the maximum pan or tilt rotational angle. The leaf position accuracy was 0.0{+-}0.1 mm, ranging from -0.3 to 0.2 mm at four gantry angles of 0 deg., 90 deg., 180 deg., and 270 deg. with and without pan or tilt rotation

  13. Novel Luciferase-Based Reporter System to Monitor Activation of ErbB2/Her2/neu Pathway Noninvasively During Radiotherapy

    SciTech Connect

    Wolf, Frank; Li Wenrong; Li Fang; Li Chuanyuan

    2011-01-01

    Purpose: To develop a split-luciferase-based reporter system that allows for noninvasive monitoring of activation of the Her2/neu pathway in vivo in a quantitative and sensitive manner. Methods and Materials: Fusion proteins of the ErbB2/Her2/neu receptor to the N-terminal fragment of luciferase and of its downstream binding partner Shc to the C-terminal fragment of luciferase have been engineered owing to the rationale that on activation and binding of the Her2 receptor molecule to Shc, luciferase function will be reconstituted. Thus, the resulting bioluminescence signals can serve as a surrogate measure of receptor activation. Results: We have shown that our reporter systems functions well in vitro in breast cancer cells and in vivo in xenograft tumors. In particular, the activities of Her2/neu in xenograft tumors could be monitored serially for an extended period after radiotherapy. Conclusions: We believe that the novel ErbB2/Her2/neu reporter we have presented is a powerful tool to study the biology of the Her2-neu pathway in vitro and in vivo. It should also facilitate the development and rapid evaluation of new Her2/neu-targeted therapeutic agents.

  14. A novel luciferase based reporter system to monitor activation of the ErbB2/Her2/neu pathway non-invasively during radiotherapy

    PubMed Central

    Wolf, Frank; Li, Wenrong; Li, Fang; Li, Chuan-Yuan

    2010-01-01

    Purpose To develop a split-luciferase based reporter system that allows for non-invasive monitoring of activation of the Her2/neu pathway in vivo in a quantitative and sensitive manner. Methods and Materials Fusion proteins of the ErbB2/Her2/neu receptor to the N-terminal fragment of luciferase as well as of its downstream binding partner Shc to the C-terminal fragment of luciferase have been engineered based on the rationale that upon activation and binding of the Her2 receptor molecule to Shc, luciferase function will be reconstituted. Thus the resulting bioluminescence signals can serve as a surrogate measure of receptor activation. Results We show that our reporter systems functions well in vitro in breast cancer cells and in vivo in xenograft tumors. In particular, the activities of Her2/neu in xenograft tumors could be monitored serially for an extended period of time after radiotherapy. Conclusions We believe that the novel ErbB2/Her2/neu reporter presented here is a powerful tool to study the biology of the Her2-neu pathway in vitro as well as in vivo. It should also facilitate the development and rapid evaluation of new Her2/neu targeted therapeutics. PMID:20934271

  15. Radiotherapy of inoperable lung cancer

    SciTech Connect

    Namer, M.; Lalanne, C.M.; Boublil, J.L.; Hery, M.; Chauvel, P.; Verschoore, J.; Aubanel, J.M.; Bruneton, J.N.

    1980-08-01

    Evaluation of loco-regional results obtained by radiotherapy for 31 patients with inoperable epidermoid lung cancer revealed objective remission (over 50%) in only 25% of patients. These results emphasize the limited effectiveness of radiotherapy in such cases and point out the need for increased research in radiotherapy techniques if survival rates are to be improved.

  16. [Radiotherapy for brain metastases].

    PubMed

    Latorzeff, I; Antoni, D; Gaudaire-Josset, S; Feuvret, L; Tallet-Richard, A; Truc, G; Noël, G

    2016-09-01

    Radiotherapy for brain metastases has become more multifaceted. Indeed, with the improvement of the patient's life expectancy, side effects must be undeniably avoided and the retreatments or multiple treatments are common. The cognitive side effects should be warned and the most modern techniques of radiation therapy are used regularly to reach this goal. The new classifications of patients with brain metastases help guiding treatment more appropriately. Stereotactic radiotherapy has supplanted whole brain radiation therapy both for patients with metastases in place and for those who underwent surgery. Hippocampus protection is possible with intensity-modulated radiotherapy. Its relevance in terms of cognitive functioning should be more clearly demonstrated but the requirement, for using it, is increasingly strong. While addressing patients in palliative phase, the treatment of brain metastases is one of the localisations where technical thinking is the most challenging. PMID:27523410

  17. [Radiotherapy in Europe].

    PubMed

    Verheij, M; Slotman, B J

    2016-01-01

    Radiotherapy plays an important part in the curing of cancer patients and is an effective treatment for tumour-related symptoms. However, in many countries the level of access to this treatment modality is unacceptably low due to shortage of infrastructure, modern apparatus and trained staff. In Europe it is mainly the Eastern European countries that are behind in the provision of and accessibility to radiotherapy. Worldwide investment to narrow the gap would put an end to these undesirable differences. In addition, these investments would deliver economic benefits, especially in low-to-middle income countries. In this article, on the basis of a number of recently published reports, we discuss the differences that exist in the geographical spread of radiotherapy departments and the availability of apparatus within Europe. In conclusion we also take a short look at the Dutch situation. PMID:27334085

  18. Determination of action thresholds for electromagnetic tracking system-guided hypofractionated prostate radiotherapy using volumetric modulated arc therapy

    SciTech Connect

    Zhang, Pengpeng; Mah, Dennis; Happersett, Laura; Cox, Brett; Hunt, Margie; Mageras, Gig

    2011-07-15

    Purpose: Hypofractionated prostate radiotherapy may benefit from both volumetric modulated arc therapy (VMAT) due to shortened treatment time and intrafraction real-time monitoring provided by implanted radiofrequency(RF) transponders. The authors investigate dosimetrically driven action thresholds (whether treatment needs to be interrupted and patient repositioned) in VMAT treatment with electromagnetic (EM) tracking. Methods: VMAT plans for five patients are generated for prescription doses of 32.5 and 42.5 Gy in five fractions. Planning target volume (PTV) encloses the clinical target volume (CTV) with a 3 mm margin at the prostate-rectal interface and 5 mm elsewhere. The VMAT delivery is modeled using 180 equi-spaced static beams. Intrafraction prostate motion is simulated in the plan by displacing the beam isocenter at each beam assuming rigid organ motion according to a previously recorded trajectory of the transponder centroid. The cumulative dose delivered in each fraction is summed over all beams. Two sets of 57 prostate motion trajectories were randomly selected to form a learning and a testing dataset. Dosimetric end points including CTV D95%, rectum wall D1cc, bladder wall D1cc, and urethra Dmax, are analyzed against motion characteristics including the maximum amplitude of the anterior-posterior (AP), superior-inferior (SI), and left-right components. Action thresholds are triggered when intrafraction motion causes any violations of dose constraints to target and organs at risk (OAR), so that treatment is interrupted and patient is repositioned. Results: Intrafraction motion has a little effect on CTV D95%, indicating PTV margins are adequate. Tight posterior and inferior action thresholds around 1 mm need to be set in a patient specific manner to spare organs at risk, especially when the prescription dose is 42.5 Gy. Advantages of setting patient specific action thresholds are to reduce false positive alarms by 25% when prescription dose is low, and

  19. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    SciTech Connect

    Steinmann, A; Stafford, R; Yung, J; Followill, D

    2015-06-15

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR. Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.

  20. Poster — Thur Eve — 23: Dose and Position Quality Assurance using the RADPOS System for 4D Radiotherapy with CyberKnife

    SciTech Connect

    Marants, R; Vandervoort, E; Cygler, J E

    2014-08-15

    Introduction: RADPOS 4D dosimetry system consists of a microMOSFET dosimeter combined with an electromagnetic positioning sensor, which allows for performing real-time dose and position measurements simultaneously. In this report the use of RADPOS as an independent quality assurance (QA) tool during CyberKnife 4D radiotherapy treatment is described. In addition to RADPOS, GAFCHROMIC® films were used for simultaneous dose measurement. Methods: RADPOS and films were calibrated in a Solid Water® phantom at 1.5 cm depth, SAD= 80 cm, using 60 mm cone. CT based treatment plan was created for a Solid Water® breast phantom containing metal fiducials and RADPOS probe. Dose calculations were performed using iPlan pencil beam algorithm. Before the treatment delivery, GAFCHROMIC® film was inserted inside the breast phantom, next to the RADPOS probe. Then the phantom was positioned on the chest platform of the QUASAR, to which Synchrony LED optical markers were also attached. Position logging began for RADPOS and the Synchrony tracking system, the QUASAR motion was initiated and the treatment was delivered. Results: RADPOS position measurements very closely matched the LED marker positions recorded by the Synchrony camera tracking system. The RADPOS measured dose was 2.5% higher than the average film measured dose, which is within the experimental uncertainties. Treatment plan calculated dose was 4.1 and 1.6% lower than measured by RADPOS and film, respectively. This is most likely due to the inferior nature of the dose calculation algorithm. Conclusions: Our study demonstrates that RADPOS system is a useful tool for independent QA of CyberKnife treatments.

  1. Contact radiotherapy using a 50 kV X-ray system: Evaluation of relative dose distribution with the Monte Carlo code PENELOPE and comparison with measurements

    NASA Astrophysics Data System (ADS)

    Croce, Olivier; Hachem, Sabet; Franchisseur, Eric; Marcié, Serge; Gérard, Jean-Pierre; Bordy, Jean-Marc

    2012-06-01

    This paper presents a dosimetric study concerning the system named "Papillon 50" used in the department of radiotherapy of the Centre Antoine-Lacassagne, Nice, France. The machine provides a 50 kVp X-ray beam, currently used to treat rectal cancers. The system can be mounted with various applicators of different diameters or shapes. These applicators can be fixed over the main rod tube of the unit in order to deliver the prescribed absorbed dose into the tumor with an optimal distribution. We have analyzed depth dose curves and dose profiles for the naked tube and for a set of three applicators. Dose measurements were made with an ionization chamber (PTW type 23342) and Gafchromic films (EBT2). We have also compared the measurements with simulations performed using the Monte Carlo code PENELOPE. Simulations were performed with a detailed geometrical description of the experimental setup and with enough statistics. Results of simulations are made in accordance with experimental measurements and provide an accurate evaluation of the dose delivered. The depths of the 50% isodose in water for the various applicators are 4.0, 6.0, 6.6 and 7.1 mm. The Monte Carlo PENELOPE simulations are in accordance with the measurements for a 50 kV X-ray system. Simulations are able to confirm the measurements provided by Gafchromic films or ionization chambers. Results also demonstrate that Monte Carlo simulations could be helpful to validate the future applicators designed for other localizations such as breast or skin cancers. Furthermore, Monte Carlo simulations could be a reliable alternative for a rapid evaluation of the dose delivered by such a system that uses multiple designs of applicators.

  2. Radiotherapy for craniopharyngioma.

    PubMed

    Aggarwal, Ajay; Fersht, Naomi; Brada, Michael

    2013-03-01

    Radiotherapy remains the mainstay of multidisciplinary management of patients with incompletely resected and recurrent craniopharyngioma. Advances in imaging and radiotherapy technology offer new alternatives with the principal aim of improving the accuracy of treatment and reducing the volume of normal brain receiving significant radiation doses. We review the available technologies, their technical advantages and disadvantages and the published clinical results. Fractionated high precision conformal radiotherapy with image guidance remains the gold standard; the results of single fraction treatment are disappointing and hypofractionation should be used with caution as long term results are not available. There is insufficient data on the use of protons to assess the comparative efficacy and toxicity. The precision of treatment delivery needs to be coupled with experienced infrastructure and more intensive quality assurance to ensure best treatment outcome and this should be carried out within multidisciplinary teams experienced in the management of craniopharyngioma. The advantages of the combined skills and expertise of the team members may outweigh the largely undefined clinical gain from novel radiotherapy technologies.

  3. [Radiotherapy of cerebral metastases].

    PubMed

    Soffietti, R

    1984-05-31

    Radiotherapy of brain metastases is almost always palliative, as histologically documented cures are exceptional. Radiotherapy alone improves neurological symptoms in two-thirds of cases, but median survivals do not generally exceed 6 months. Whole brain radiation is mandatory as the lesions are often multiple, even when they escape clinical demonstration. There is no definite difference in prognosis after conventional rather than concentrated treatments. The role of steroids in the prevention and/or control of the acute effects of radiotherapy is controversial. Favorable prognostic factors are a good neurological and performance status, a solitary brain metastasis of a primary tumor under control, some histological types (i.e.: metastases from "oat" cell carcinomas, breast carcinomas, non-Hodgkin lymphomas are more responsive). Surgical excision before radiotherapy improves survival (6-12 months), especially in solitary metastases from melanomas, colon and renal tumors. Reirradiation can be useful, but the risk of delayed damage to the normal tissue in patients with longer survival (solitary operated and irradiated metastases) must be considered. The search for new radiotherapeutic modalities must be based on a deeper understanding of the biological factors involved in the response to radiation through controlled anatomo-clinical studies and biological research on experimental models.

  4. [Radiotherapy of lymphomas].

    PubMed

    Barillot, I; Mahé, M A; Antoni, D; Hennequin, C

    2016-09-01

    Radiotherapy for Hodgkin's lymphoma has evolved over time but retains a dominant position in the treatment of early stage tumours. Its indications are more limited for non-Hodgkin's lymphomas, but the techniques follow the same principles whatever the histological type. This review presents the French recommendations in terms of preparation and choice of irradiation techniques. PMID:27521031

  5. [Radiotherapy of breast cancer].

    PubMed

    Hennequin, C; Barillot, I; Azria, D; Belkacémi, Y; Bollet, M; Chauvet, B; Cowen, D; Cutuli, B; Fourquet, A; Hannoun-Lévi, J M; Leblanc, M; Mahé, M A

    2016-09-01

    In breast cancer, radiotherapy is an essential component of the treatment. After conservative surgery for an infiltrating carcinoma, radiotherapy must be systematically performed, regardless of the characteristics of the disease, because it decreases the rate of local recurrence and by this way, specific mortality. Partial breast irradiation could not be proposed routinely but only in very selected and informed patients. For ductal carcinoma in situ, adjuvant radiotherapy must be also systematically performed after lumpectomy. After mastectomy, chest wall irradiation is required for pT3-T4 tumours and if there is an axillary nodal involvement, whatever the number of involved lymph nodes. After neo-adjuvant chemotherapy and mastectomy, in case of pN0 disease, chest wall irradiation is recommended if there is a clinically or radiologically T3-T4 or node positive disease before chemotherapy. Axillary irradiation is recommended only if there is no axillary surgical dissection and a positive sentinel lymph node. Supra and infra-clavicular irradiation is advised in case of positive axillary nodes. Internal mammary irradiation must be discussed case by case, according to the benefit/risk ratio (cardiac toxicity). Dose to the chest wall or the breast must be between 45-50Gy with a conventional fractionation. A boost dose over the tumour bed is required if the patient is younger than 60 years old. Hypofractionation (42.5 Gy in 16 fractions, or 41.6 Gy en 13 or 40 Gy en 15) is possible after tumorectomy and if a nodal irradiation is not mandatory. Delineation of the breast, the chest wall and the nodal areas are based on clinical and radiological evaluations. 3D-conformal irradiation is the recommended technique, intensity-modulated radiotherapy must be proposed only in case of specific clinical situations. Respiratory gating could be useful to decrease the cardiac dose. Concomitant administration of chemotherapy in unadvised, but hormonal treatment could be start with

  6. Intensity-Modulated and 3D-Conformal Radiotherapy for Whole-Ventricular Irradiation as Compared With Conventional Whole-Brain Irradiation in the Management of Localized Central Nervous System Germ Cell Tumors

    SciTech Connect

    Chen, Michael Jenwei; Silva Santos, Adriana da; Sakuraba, Roberto Kenji; Lopes, Cleverson Perceu; Goncalves, Vinicius Demanboro; Weltman, Eduardo; Ferrigno, Robson; Cruz, Jose Carlos

    2010-02-01

    Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a 'boost' to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels of 20, 30, and 40 Gy, respectively, compared with 3D-CRT. Intensity-modulated radiotherapy provided statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment.

  7. Quantitative evaluation of patient setup uncertainty of stereotactic radiotherapy with the frameless 6D ExacTrac system using statistical modeling.

    PubMed

    Keeling, Vance; Hossain, Sabbir; Jin, Hosang; Algan, Ozer; Ahmad, Salahuddin; Ali, Imad

    2016-05-08

    The purpose of this study is to evaluate patient setup accuracy and quantify indi-vidual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless 6D ExacTrac system. A statistical model is used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the Brainlab 6D ExacTrac system using the positioning shifts of 35 patients having cranial lesions. All these patients are immobilized with rigid head-and-neck masks, simu-lated with Brainlab localizer and planned with iPlan treatment planning system. Stereoscopic X-ray images (XC) are acquired and registered to corresponding digitally reconstructed radiographs using bony-anatomy matching to calculate 6D translational and rotational shifts. When the shifts are within tolerance (0.7 mm and 1°), treatment is initiated. Otherwise corrections are applied and additional X-rays (XV) are acquired to verify that patient position is within tolerance. The uncertain-ties from the mask, localizer, IR -frame, X-ray imaging, MV, and kV isocentricity are quantified individually. Mask uncertainty (translational: lateral, longitudinal, vertical; rotational: pitch, roll, yaw) is the largest and varies with patients in the range (-2.07-3.71 mm, -5.82-5.62 mm, -5.84-3.61 mm; -2.10-2.40°, -2.23-2.60°, and -2.7-3.00°) obtained from mean of XC shifts for each patient. Setup uncer-tainty in IR positioning (0.88, 2.12, 1.40 mm, and 0.64°, 0.83°, 0.96°) is extracted from standard deviation of XC. Systematic uncertainties of the frame (0.18, 0.25, -1.27mm, -0.32°, 0.18°, and 0.47°) and localizer (-0.03, -0.01, 0.03mm, and -0.03°, 0.00°, -0.01°) are extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine are (0.27, 0.24, 0.34 mm) and kV imager (0.15, -0.4, 0.21 mm). A statisti-cal model is developed to

  8. Proposal for the 8th Edition of the AJCC/UICC Staging System for Nasopharyngeal Cancer in the Era of Intensity-Modulated Radiotherapy

    PubMed Central

    Pan, Jian Ji; Ng, Wai Tong; Zong, Jing Feng; Chan, Lucy L. K.; O’Sullivan, Brian; Lin, Shao Jun; Sze, Henry C. K.; Chen, Yun Bin; Choi, Horace C.W.; Guo, Qiao Juan; Kan, Wai Kuen; Xiao, You Ping; Wei, Xu; Le, Quynh Thu; Glastonbury, Christine M.; Colevas, A. Dimitrios; Weber, Randal S.; Shah, Jatin P.; Lee, Anne W. M.

    2016-01-01

    BACKGROUND An accurate staging system is crucial for cancer management. Evaluations for continual suitability and improvement are needed as staging and treatment methods evolve. METHODS This was a retrospective study of 1609 patients with nasopharyngeal carcinoma investigated by magnetic resonance imaging, staged with the 7th edition of the American Joint Committee on Cancer (AJCC)/International Union Against Cancer (UICC) staging system, and irradiated by intensity-modulated radiotherapy at 2 centers in Hong Kong and mainland China. RESULTS Among the patients without other T3/T4 involvement, there were no significant differences in overall survival (OS) between medial pterygoid muscle (MP)±lateral pterygoid muscle (LP), prevertebral muscle, and parapharyngeal space involvement. Patients with extensive soft tissue involvement beyond the aforementioned structures had poor OS similar to that of patients with intracranial extension and/or cranial nerve palsy. Only 2% of the patients had lymph nodes>6cm above the supraclavicular fossa (SCF), and their outcomes resembled the outcomes of those with low extension. Replacing SCF with the lower neck (extension below the caudal border of the cricoid cartilage) did not affect the hazard distinction between different N categories. With the proposed T and N categories, there were no significant differences in outcome between T4N0-2 and T1-4N3 disease. CONCLUSIONS After a review by AJCC/UICC preparatory committees, the changes recommended for the 8th edition include changing MP/LP involvement from T4 to T2, adding prevertebral muscle involvement as T2, replacing SCF with the lower neck and merging this with a maximum nodal diameter>6 cm as N3, and merging T4 and N3 as stage IVA criteria. These changes will lead not only to a better distinction of hazards between adjacent stages/categories but also to optimal balance in clinical practicability and global applicability. PMID:26588425

  9. Effects of Treatment Intensification on Acute Local Toxicity During Radiotherapy for Head and Neck Cancer: Prospective Observational Study Validating CTCAE, Version 3.0, Scoring System

    SciTech Connect

    Palazzi, Mauro Tomatis, Stefano; Orlandi, Ester; Guzzo, Marco; Sangalli, Claudia; Potepan, Paolo; Fantini, Simona; Bergamini, Cristiana; Gavazzi, Cecilia; Licitra, Lisa; Scaramellini, Gabriele; Cantu', Giulio; Olmi, Patrizia

    2008-02-01

    Purpose: To quantify the incidence and severity of acute local toxicity in head and neck cancer patients treated with radiotherapy (RT), with or without chemotherapy (CHT), using the Common Terminology Criteria for Adverse Events, version 3.0 (CTCAE v3.0), scoring system. Methods and Materials: Between 2004 and 2006, 149 patients with head and neck cancer treated with RT at our center were prospectively evaluated for local toxicity during treatment. On a weekly basis, patients were monitored and eight toxicity items were recorded according to the CTCAE v3.0 scoring system. Of the 149 patients, 48 (32%) were treated with RT alone (conventional fractionation), 82 (55%) with concomitant CHT and conventional fractionation RT, and 20 (13%) with accelerated-fractionation RT and CHT. Results: Severe (Grade 3-4) adverse events were recorded in 28% (mucositis), 33% (dysphagia), 40% (pain), and 12% (skin) of patients. Multivariate analysis showed CHT to be the most relevant factor independently predicting for worse toxicity (mucositis, dysphagia, weight loss, salivary changes). In contrast, previous surgery, RT acceleration and older age, female gender, and younger age, respectively, predicted for a worse outcome of mucositis, weight loss, pain, and dermatitis. The T-score method confirmed that conventional RT alone is in the 'low-burden' class (T-score = 0.6) and suggests that concurrent CHT and conventional fractionation RT is in the 'high-burden' class (T-score = 1.15). Combined CHT and accelerated-fractionation RT had the highest T-score at 1.9. Conclusions: The CTCAE v3.0 proved to be a reliable tool to quantify acute toxicity in head and neck cancer patients treated with various treatment intensities. The effect of CHT and RT acceleration on the acute toxicity burden was clinically relevant.

  10. SU-E-J-47: Development of a High-Precision, Image-Guided Radiotherapy, Multi- Purpose Radiation Isocenter Quality-Assurance Calibration and Checking System

    SciTech Connect

    Liu, C; Yan, G; Helmig, R; Lebron, S; Kahler, D

    2014-06-01

    Purpose: To develop a system that can define the radiation isocenter and correlate this information with couch coordinates, laser alignment, optical distance indicator (ODI) settings, optical tracking system (OTS) calibrations, and mechanical isocenter walkout. Methods: Our team developed a multi-adapter, multi-purpose quality assurance (QA) and calibration device that uses an electronic portal imaging device (EPID) and in-house image-processing software to define the radiation isocenter, thereby allowing linear accelerator (Linac) components to be verified and calibrated. Motivated by the concept that each Linac component related to patient setup for image-guided radiotherapy based on cone-beam CT should be calibrated with respect to the radiation isocenter, we designed multiple concentric adapters of various materials and shapes to meet the needs of MV and KV radiation isocenter definition, laser alignment, and OTS calibration. The phantom's ability to accurately define the radiation isocenter was validated on 4 Elekta Linacs using a commercial ball bearing (BB) phantom as a reference. Radiation isocenter walkout and the accuracy of couch coordinates, ODI, and OTS were then quantified with the device. Results: The device was able to define the radiation isocenter within 0.3 mm. Radiation isocenter walkout was within ±1 mm at 4 cardinal angles. By switching adapters, we identified that the accuracy of the couch position digital readout, ODI, OTS, and mechanical isocenter walkout was within sub-mm. Conclusion: This multi-adapter, multi-purpose isocenter phantom can be used to accurately define the radiation isocenter and represents a potential paradigm shift in Linac QA. Moreover, multiple concentric adapters allowed for sub-mm accuracy for the other relevant components. This intuitive and user-friendly design is currently patent pending.

  11. ENT COBRA (Consortium for Brachytherapy Data Analysis): interdisciplinary standardized data collection system for head and neck patients treated with interventional radiotherapy (brachytherapy)

    PubMed Central

    Tagliaferri, Luca; Kovács, György; Budrukkar, Ashwini; Guinot, Jose Luis; Hildebrand, Guido; Johansson, Bengt; Monge, Rafael Martìnez; Meyer, Jens E.; Niehoff, Peter; Rovirosa, Angeles; Takàcsi-Nagy, Zoltàn; Dinapoli, Nicola; Lanzotti, Vito; Damiani, Andrea; Soror, Tamer; Valentini, Vincenzo

    2016-01-01

    Purpose Aim of the COBRA (Consortium for Brachytherapy Data Analysis) project is to create a multicenter group (consortium) and a web-based system for standardized data collection. Material and methods GEC-ESTRO (Groupe Européen de Curiethérapie – European Society for Radiotherapy & Oncology) Head and Neck (H&N) Working Group participated in the project and in the implementation of the consortium agreement, the ontology (data-set) and the necessary COBRA software services as well as the peer reviewing of the general anatomic site-specific COBRA protocol. The ontology was defined by a multicenter task-group. Results Eleven centers from 6 countries signed an agreement and the consortium approved the ontology. We identified 3 tiers for the data set: Registry (epidemiology analysis), Procedures (prediction models and DSS), and Research (radiomics). The COBRA-Storage System (C-SS) is not time-consuming as, thanks to the use of “brokers”, data can be extracted directly from the single center's storage systems through a connection with “structured query language database” (SQL-DB), Microsoft Access®, FileMaker Pro®, or Microsoft Excel®. The system is also structured to perform automatic archiving directly from the treatment planning system or afterloading machine. The architecture is based on the concept of “on-purpose data projection”. The C-SS architecture is privacy protecting because it will never make visible data that could identify an individual patient. This C-SS can also benefit from the so called “distributed learning” approaches, in which data never leave the collecting institution, while learning algorithms and proposed predictive models are commonly shared. Conclusions Setting up a consortium is a feasible and practicable tool in the creation of an international and multi-system data sharing system. COBRA C-SS seems to be well accepted by all involved parties, primarily because it does not influence the center's own data storing

  12. ENT COBRA (Consortium for Brachytherapy Data Analysis): interdisciplinary standardized data collection system for head and neck patients treated with interventional radiotherapy (brachytherapy)

    PubMed Central

    Tagliaferri, Luca; Kovács, György; Budrukkar, Ashwini; Guinot, Jose Luis; Hildebrand, Guido; Johansson, Bengt; Monge, Rafael Martìnez; Meyer, Jens E.; Niehoff, Peter; Rovirosa, Angeles; Takàcsi-Nagy, Zoltàn; Dinapoli, Nicola; Lanzotti, Vito; Damiani, Andrea; Soror, Tamer; Valentini, Vincenzo

    2016-01-01

    Purpose Aim of the COBRA (Consortium for Brachytherapy Data Analysis) project is to create a multicenter group (consortium) and a web-based system for standardized data collection. Material and methods GEC-ESTRO (Groupe Européen de Curiethérapie – European Society for Radiotherapy & Oncology) Head and Neck (H&N) Working Group participated in the project and in the implementation of the consortium agreement, the ontology (data-set) and the necessary COBRA software services as well as the peer reviewing of the general anatomic site-specific COBRA protocol. The ontology was defined by a multicenter task-group. Results Eleven centers from 6 countries signed an agreement and the consortium approved the ontology. We identified 3 tiers for the data set: Registry (epidemiology analysis), Procedures (prediction models and DSS), and Research (radiomics). The COBRA-Storage System (C-SS) is not time-consuming as, thanks to the use of “brokers”, data can be extracted directly from the single center's storage systems through a connection with “structured query language database” (SQL-DB), Microsoft Access®, FileMaker Pro®, or Microsoft Excel®. The system is also structured to perform automatic archiving directly from the treatment planning system or afterloading machine. The architecture is based on the concept of “on-purpose data projection”. The C-SS architecture is privacy protecting because it will never make visible data that could identify an individual patient. This C-SS can also benefit from the so called “distributed learning” approaches, in which data never leave the collecting institution, while learning algorithms and proposed predictive models are commonly shared. Conclusions Setting up a consortium is a feasible and practicable tool in the creation of an international and multi-system data sharing system. COBRA C-SS seems to be well accepted by all involved parties, primarily because it does not influence the center's own data storing

  13. SU-E-J-12: An Image-Guided Soft Robotic Patient Positioning System for Maskless Head-And-Neck Cancer Radiotherapy: A Proof-Of-Concept Study

    SciTech Connect

    Ogunmolu, O; Gans, N; Jiang, S; Gu, X

    2015-06-15

    Purpose: We propose a surface-image-guided soft robotic patient positioning system for maskless head-and-neck radiotherapy. The ultimate goal of this project is to utilize a soft robot to realize non-rigid patient positioning and real-time motion compensation. In this proof-of-concept study, we design a position-based visual servoing control system for an air-bladder-based soft robot and investigate its performance in controlling the flexion/extension cranial motion on a mannequin head phantom. Methods: The current system consists of Microsoft Kinect depth camera, an inflatable air bladder (IAB), pressured air source, pneumatic valve actuators, custom-built current regulators, and a National Instruments myRIO microcontroller. The performance of the designed system was evaluated on a mannequin head, with a ball joint fixed below its neck to simulate torso-induced head motion along flexion/extension direction. The IAB is placed beneath the mannequin head. The Kinect camera captures images of the mannequin head, extracts the face, and measures the position of the head relative to the camera. This distance is sent to the myRIO, which runs control algorithms and sends actuation commands to the valves, inflating and deflating the IAB to induce head motion. Results: For a step input, i.e. regulation of the head to a constant displacement, the maximum error was a 6% overshoot, which the system then reduces to 0% steady-state error. In this initial investigation, the settling time to reach the regulated position was approximately 8 seconds, with 2 seconds of delay between the command start of motion due to capacitance of the pneumatics, for a total of 10 seconds to regulate the error. Conclusion: The surface image-guided soft robotic patient positioning system can achieve accurate mannequin head flexion/extension motion. Given this promising initial Result, the extension of the current one-dimensional soft robot control to multiple IABs for non-rigid positioning control

  14. Adjuvant Radiotherapy with Three-Dimensional Conformal Radiotherapy of Lacrimal Gland Adenoid Cystic Carcinoma

    PubMed Central

    Roshan, Vikas; Mallick, Supriya; Chander, Subhash; Sen, Seema; Chawla, Bhavna

    2015-01-01

    Background & Aim Adenoid cystic carcinoma (ACC) of lacrimal gland is a rare tumour with aggressive behaviour. There is sparse data to address optimum therapy for such tumours. So, the present study was aimed at evaluating the role of adjuvant three dimensional conformal radiotherapy (3D-CRT) in cases of incomplete (R1) resection along with review of literature pertaining to management of lacrimal adenoid cystic carcinoma Materials and Methods We retrospectively reviewed the demographic and treatment data of 10 biopsy proven ACC of lacrimal gland patients, treated from December 2006 to June 2013. They were treated with radiotherapy following surgical resection. Eight patients underwent gross total excision of the tumour mass (enbloc excision) followed by conformal radiotherapy to a dose of 60 Gray/30fractions/ 6 weeks. Two patients with advanced disease were treated with palliative radiotherapy after biopsy. Results The median age was 32 years. There were equal numbers of male and female patients. The median duration of symptoms was 7 months. At a median follow up of 21 months, eight patients had no evidence of disease and had complete tumour response, two patients worsened, and one of the two had systemic failure with bone metastasis. Conclusion Despite a small sample size and short follow, enbloc surgical excision with adjuvant radiotherapy is well tolerated and shows good control in ACC of lacrimal gland. PMID:26557600

  15. Evaluation of radiotherapy setup accuracy for head and neck cancer using a 3-D surface imaging system

    NASA Astrophysics Data System (ADS)

    Cho, H.-L.; Park, E.-T.; Kim, J.-Y.; Kwak, K.-S.; Kim, C.-J.; Ahn, K.-J.; Suh, T.-S.; Lee, Y.-K.; Kim, S.-W.; Kim, J.-K.; Lim, S.; Choi, Y.-M.; Park, S.-K.

    2013-11-01

    The purpose of this study was to measure the accuracy of a three-dimensional surface imaging system (3-D SIS) in comparison to a 3-laser system by analyzing the setup errors obtained from a RANDO Phantom and head and neck cancer patients. The 3-D SIS used for the evaluation of the setup errors was a C-RAD Sentinel. In the phantom study, the OBI setup errors without the thermoplastic mask of the 3-laser system vs. the 3-D SIS were measured. Furthermore, the setup errors with the thermoplastic mask of the 3-laser system vs. the 3-D SIS were measured. After comparison of the CBCT, setup correction about 1 mm was performed in a few cases. The probability of the error without the thermoplastic mask exceeding 1 mm in the 3-laser system vs. the 3-D SIS was 75.00% vs. 35.00% on the X-axis, 80.00% vs. 40.00% on the Y-axis, and 80.00% vs. 65.00% on the Z-axis. Moreover, the probability of the error with the thermoplastic mask exceeding 1 mm in the 3-laser system vs. the 3-D SIS was 70.00% vs. 15.00% on the X-axis, 75.00% vs. 25.00% on the Y-axis, and 70.00% vs. 35.00% on the Z-axis. These results showed that the 3-D SIS has a lower probability of setup error than the 3-laser system for the phantom. For the patients, the setup errors of the 3-laser system vs. the 3-D SIS were measured. The probability of the error exceeding more than 1 mm in the 3-laser system vs. the 3-D SIS was shown to be 81.82% vs. 36.36% on the X-axis, 81.82% vs. 45.45% on the Y-axis, and 86.36% vs. 72.73% on the Z-axis. As a result, the 3-D SIS also exhibited a lower probability of setup error for the cancer patients. Therefore, this study confirmed that the 3-D SIS is a promising method for setup verification.

  16. Radiotherapy of early glottic cancer.

    PubMed

    Harwood, A R; Hawkins, N V; Keane, T; Cummings, B; Beale, F A; Rider, W D; Bryce, D P

    1980-03-01

    Patients (383) with stage Tis, Tla and Tlb NoMo glottic cancer are reviewed. Radiotherapy cured 93% of Tis patients and 86% of Tla and Tlb cases. Of all recurrences, 63% were cured. No patient with stage Tis died as a result of tumor and only 5% of stage Tla and Tlb died from tumor. Involvement of the anterior commissure or both vocal cords did not influence control rates by radiotherapy. Mobility of the vocal cord and size of radiotherapy field were significant factors influencing control by radiotherapy. Late recurrences and/or second primaries in the larynx following radiotherapy are rare. Second primaries in the respiratory tract (especially lung) are common and are as important a cause of death as laryngeal cancer in T1 cases. It is concluded that moderate dose radiotherapy with surgery for salvage is a highly effective method of management for early glottic cancer. PMID:7359967

  17. Poster — Thur Eve — 28: Enabling trajectory-based radiotherapy on a TrueBeam accelerator with the Eclipse treatment planning system

    SciTech Connect

    Mullins, J; Asiev, K; DeBlois, F; Morcos, M; Seuntjens, J; Syme, A

    2014-08-15

    The TrueBeam linear accelerator platform has a developer's mode which permits the user dynamic control over many of the machine's mechanical and radiation systems. Using this research tool, synchronous couch and gantry motion can be programmed to simulate isocentric treatment with a shortened SAD, with benefits such as smaller projected MLC leaf widths and an increased dose rate. In this work, water tank measurements were used to commission a virtual linear accelerator with an 85 cm SAD in Eclipse, from which several arc-based radiotherapy treatments were generated, including an inverse optimized VMAT delivery. For each plan, the pertinent treatment delivery information was extracted from control points specified in the Eclipse-exported DICOM files using the pydicom package in Python, allowing construction of an XML control file. The dimensions of the jaws and MLC positions, defined for an 85 cm SAD in Eclipse, were scaled for delivery on a conventional SAD linear accelerator, and translational couch motion was added as a function of gantry angle to simulate delivery at 85 cm SAD. Ionization chamber and Gafchromic film measurements were used to compare the radiation delivery to dose calculations in Eclipse. With the exception of the VMAT delivery, ionization chamber measurements agreed within 3.3% of the Eclipse calculations. For the VMAT delivery, the ionization chamber was located in an inhomogeneous region, but gamma evaluation of the Gafchromic film plane resulted in a 94.5% passing rate using criteria of 3 mm/3%. The results indicate that Eclipse calculation infrastructure can be used.

  18. Radiotherapy and Concomitant Intra-Arterial Docetaxel Combined With Systemic 5-Fluorouracil and Cisplatin for Oropharyngeal Cancer: A Preliminary Report-Improvement of Locoregional Control of Oropharyngeal Cancer

    SciTech Connect

    Oikawa, Hirobumi Nakamura, Ryuji; Nakasato, Tatsuhiko; Nishimura, Kohji; Sato, Hiroaki; Ehara, Shigeru

    2009-10-01

    Purpose: To confirm the advantage of chemoradiotherapy using intra-arterial docetaxel with intravenous cisplatin and 5-fluorouracil. Patients and Methods: A total of 26 oropharyngeal cancer patients (1, 2, 2, and 21 patients had Stage I, II, III, and IVa-IVc, respectively) were treated with two sessions of this chemoradiotherapy regimen. External beam radiotherapy was delivered using large portals that included the primary site and the regional lymph nodes initially (range, 40-41.4 Gy) and the metastatic lymph nodes later (60 or 72 Gy). All tumor-supplying branches of the carotid arteries were cannulated, and 40 mg/m{sup 2} docetaxel was individually infused on Day 1. The other systemic chemotherapy agents included 60 mg/m{sup 2} cisplatin on Day 2 and 500 mg/m{sup 2} 5-fluorouracil on Days 2-6. Results: The primary response of the tumor was complete in 21 (81%), partial in 4 (15%), and progressive in 1 patient. Grade 4 mucositis, leukopenia, and dermatitis was observed in 3, 2, and 1 patients, respectively. During a median follow-up of 10 months, the disease recurred at the primary site and at a distant organ in 2 (8%) and 3 (12%) patients, respectively. Three patients died because of cancer progression. Two patients (8%) with a partial response were compromised by lethal bleeding from the tumor bed or chemotherapeutic toxicity. The 3-year locoregional control rate and the 3-year overall survival rate was 73% and 77%, respectively. Conclusion: This method resulted in an excellent primary tumor response rate (96%) and moderate acute toxicity. Additional follow-up is required to ascertain the usefulness of this modality.

  19. Health-related quality of life in outpatients with primary central nervous system lymphoma after radiotherapy and high-dose methotrexate chemotherapy

    PubMed Central

    Okita, Yoshiko; Narita, Yoshitaka; Miyakita, Yasuji; Miyahara, Ruriko; Ohno, Makoto; Takahashi, Masamichi; Nonaka, Masahiro; Kanemura, Yonehiro; Nakajima, Shin; Fujinaka, Toshiyuki

    2016-01-01

    Chemoradiotherapy for primary central nervous system lymphoma (PCNSL) is associated with a considerable risk of long-term neurotoxicity. The present study aimed to assess the health-related quality of life (HRQOL) of outpatients with PCNSL who have received radiotherapy and high-dose methotrexate (HDMTX) chemotherapy, and to determine the factors that cause a decline in HRQOL and interfere with home living. A total of 37 patients were surveyed 0.9–14.2 years after their initial diagnosis and treatment. Each patient completed a multi-part HRQOL questionnaire that was used to examine the associations of HRQOL scores with leukoencephalopathy, Karnofsky performance status (KPS) scores, age, history of recurrence and HDMTX-based chemoradiotherapy. The results demonstrated that the history of recurrence, number of cycles of MTX chemotherapy and age affected the development of leukoencephalopathy. Reductions in KPS score were associated with a history of recurrence (P=0.03), but not with leukoencephalopathy (P=0.8). KPS score, leukoencephalopathy and age were significantly associated with a decline in HRQOL score. A decline in the HRQOL associated with a reduction in KPS score was also observed by multivariate analyses. Deterioration of the HRQOL among outpatients with PCNSL post-chemoradiotherapy was significantly associated with older age (≥66 years) and decreased KPS score. Older patients with a history of recurrence had a higher risk for deteriorated QOL due to development of leukoencephalopathy. Therefore, it is recommended that clinicians monitor the KPS score among outpatients with PCNSL. QOL examination for older patients with a lower KPS score was found to be particularly important for identifying any obstacles for home living.

  20. Consolidation Radiotherapy in Primary Central Nervous System Lymphomas: Impact on Outcome of Different Fields and Doses in Patients in Complete Remission After Upfront Chemotherapy

    SciTech Connect

    Ferreri, Andres Jose Maria; Verona, Chiara; Politi, Letterio Salvatore; Chiara, Anna; Perna, Lucia; Villa, Eugenio; Reni, Michele

    2011-05-01

    Purpose: Avoidance radiotherapy or reduction of irradiation doses in patients with primary central nervous system lymphoma (PCNSL) in complete remission (CR) after high-dose methotrexate (HD-MTX)-based chemotherapy has been proposed to minimize the neurotoxicity risk. Nevertheless, no study has focused on the survival impact of radiation parameters, as far as we know, and the optimal radiation schedule remains to be defined. Methods and Materials: The impact on outcome and neurologic performance of different radiation fields and doses was assessed in 33 patients with PCNSL who achieved CR after MTX-containing chemotherapy and were referred to consolidation whole-brain irradiation (WBRT). Patterns of relapse were analyzed on computed tomography-guided treatment planning, and neurologic impairment was assessed by the Mini Mental Status Examination. Results: At a median follow-up of 50 months, 21 patients are relapse-free (5-year failure-free survival [FFS], 51%). WBRT doses {>=}40 Gy were not associated with improved disease control in comparison with a WBRT dose of 30 to 36 Gy (relapse rate, 46% vs. 30%; 5-year FFS, 51% vs. 50%; p = 0.26). Disease control was not significantly different between patients irradiated to the tumor bed with 45 to 54 Gy or with 36 to 44 Gy, with a 5-year FFS of 35% and 44% (p = 0.43), respectively. Twenty patients are alive (5-year overall survival, 54%); WB and tumor bed doses did not have an impact on survival. Impairment as assessed by the Mini Mental Status Examination was significantly more common in patients treated with a WBRT dose {>=}40 Gy. Conclusion: Consolidation with WBRT 36 Gy is advisable in patients with PCNSL in CR after HD-MTX-based chemotherapy. Higher doses do not change the outcome and could increase the risk of neurotoxicity.

  1. Upfront Systemic Chemotherapy and Short-Course Radiotherapy with Delayed Surgery for Locally Advanced Rectal Cancer with Distant Metastases: Outcomes, Compliance, and Favorable Prognostic Factors

    PubMed Central

    Kim, Tae Hyung; Ahn, Joong Bae; Jung, Minkyu; Kim, Tae Il; Kim, Hoguen; Shin, Sang Joon; Kim, Nam Kyu

    2016-01-01

    Purpose/Objective(s) Optimal treatment for locally advanced rectal cancer (LARC) with distant metastasis remains elusive. We aimed to evaluate upfront systemic chemotherapy and short-course radiotherapy (RT) followed by delayed surgery for such patients, and to identify favorable prognostic factors. Materials/Methods We retrospectively reviewed 50 LARC patients (cT4 or cT3, <2 mm from the mesorectal fascia) with synchronous metastatic disease. The primary endpoint was progression-free survival (PFS). The secondary endpoints were overall survival, treatment-related toxicity, and compliance. We considered P values <0.05 significant. Results At 22 months median follow-up, the median PFS time was 16 months and the 2-year PFS rate was 34.8%. Thirty-five patients who received radical surgery for primary and metastatic tumors were designated the curable group. Six patients with clinical complete response (ypCR) of metastases who underwent radical surgery for only the primary tumor were classified as potentially curable. Nine patients who received no radical surgery (3 received palliative surgery) were deemed the palliative group. The ypCR rate among surgery patients was 13.6%. PFS rates for the curable or potentially curable groups were significantly longer than that of the palliative group (P<0.001). On multivariate analysis, solitary organ metastasis and R0 status were independent prognostic factors for PFS. Conclusions These findings demonstrated that a strong possibility that upfront chemotherapy and short-course RT with delayed surgery are an effective alternative treatment for LARC with potentially resectable distant metastasis, owing to achievement of pathologic down-staging, R0 resection, and favorable compliance and toxicity, despite the long treatment duration. PMID:27536871

  2. Evaluation of the Effectiveness of the Stereotactic Body Frame in Reducing Respiratory Intrafractional Organ Motion Using the Real-Time Tumor-Tracking Radiotherapy System

    SciTech Connect

    Bengua, Gerard; Ishikawa, Masayori; Sutherland, Kenneth; Horita, Kenji; Yamazaki, Rie; Fujita, Katsuhisa; Onimaru, Rikiya; Katoh, Noriwo; Inoue, Tetsuya; Onodera, Shunsuke; Shirato, Hiroki

    2010-06-01

    Purpose: To evaluate the effectiveness of the stereotactic body frame (SBF), with or without a diaphragm press or a breathing cycle monitoring device (Abches), in controlling the range of lung tumor motion, by tracking the real-time position of fiducial markers. Methods and Materials: The trajectories of gold markers in the lung were tracked with the real-time tumor-tracking radiotherapy system. The SBF was used for patient immobilization and the diaphragm press and Abches were used to actively control breathing and for self-controlled respiration, respectively. Tracking was performed in five setups, with and without immobilization and respiration control. The results were evaluated using the effective range, which was defined as the range that includes 95% of all the recorded marker positions in each setup. Results: The SBF, with or without a diaphragm press or Abches, did not yield effective ranges of marker motion which were significantly different from setups that did not use these materials. The differences in the effective marker ranges in the upper lobes for all the patient setups were less than 1mm. Larger effective ranges were obtained for the markers in the middle or lower lobes. Conclusion: The effectiveness of controlling respiratory-induced organ motion by using the SBF+diaphragm press or SBF + Abches patient setups were highly dependent on the individual patient reaction to the use of these materials and the location of the markers. They may be considered for lung tumors in the lower lobes, but are not necessary for tumors in the upper lobes.

  3. Health-related quality of life in outpatients with primary central nervous system lymphoma after radiotherapy and high-dose methotrexate chemotherapy

    PubMed Central

    Okita, Yoshiko; Narita, Yoshitaka; Miyakita, Yasuji; Miyahara, Ruriko; Ohno, Makoto; Takahashi, Masamichi; Nonaka, Masahiro; Kanemura, Yonehiro; Nakajima, Shin; Fujinaka, Toshiyuki

    2016-01-01

    Chemoradiotherapy for primary central nervous system lymphoma (PCNSL) is associated with a considerable risk of long-term neurotoxicity. The present study aimed to assess the health-related quality of life (HRQOL) of outpatients with PCNSL who have received radiotherapy and high-dose methotrexate (HDMTX) chemotherapy, and to determine the factors that cause a decline in HRQOL and interfere with home living. A total of 37 patients were surveyed 0.9–14.2 years after their initial diagnosis and treatment. Each patient completed a multi-part HRQOL questionnaire that was used to examine the associations of HRQOL scores with leukoencephalopathy, Karnofsky performance status (KPS) scores, age, history of recurrence and HDMTX-based chemoradiotherapy. The results demonstrated that the history of recurrence, number of cycles of MTX chemotherapy and age affected the development of leukoencephalopathy. Reductions in KPS score were associated with a history of recurrence (P=0.03), but not with leukoencephalopathy (P=0.8). KPS score, leukoencephalopathy and age were significantly associated with a decline in HRQOL score. A decline in the HRQOL associated with a reduction in KPS score was also observed by multivariate analyses. Deterioration of the HRQOL among outpatients with PCNSL post-chemoradiotherapy was significantly associated with older age (≥66 years) and decreased KPS score. Older patients with a history of recurrence had a higher risk for deteriorated QOL due to development of leukoencephalopathy. Therefore, it is recommended that clinicians monitor the KPS score among outpatients with PCNSL. QOL examination for older patients with a lower KPS score was found to be particularly important for identifying any obstacles for home living. PMID:27602217

  4. Fractionated Radiotherapy with 3 x 8 Gy Induces Systemic Anti-Tumour Responses and Abscopal Tumour Inhibition without Modulating the Humoral Anti-Tumour Response

    PubMed Central

    Habets, Thomas H. P. M.; Oth, Tammy; Houben, Ans W.; Huijskens, Mirelle J. A. J.; Senden-Gijsbers, Birgit L. M. G.; Schnijderberg, Melanie C. A.; Brans, Boudewijn; Dubois, Ludwig J.; Lambin, Philippe; De Saint-Hubert, Marijke; Germeraad, Wilfred T. V.; Tilanus, Marcel G. J.; Mottaghy, Felix M.

    2016-01-01

    Accumulating evidence indicates that fractionated radiotherapy (RT) can result in distant non-irradiated (abscopal) tumour regression. Although preclinical studies indicate the importance of T cells in this infrequent phenomenon, these studies do not preclude that other immune mechanisms exhibit an addition role in the abscopal effect. We therefore addressed the question whether in addition to T cell mediated responses also humoral anti-tumour responses are modulated after fractionated RT and whether systemic dendritic cell (DC) stimulation can enhance tumour-specific antibody production. We selected the 67NR mammary carcinoma model since this tumour showed spontaneous antibody production in all tumour-bearing mice. Fractionated RT to the primary tumour was associated with a survival benefit and a delayed growth of a non-irradiated (contralateral) secondary tumour. Notably, fractionated RT did not affect anti-tumour antibody titers and the composition of the immunoglobulin (Ig) isotypes. Likewise, we demonstrated that treatment of tumour-bearing Balb/C mice with DC stimulating growth factor Flt3-L did neither modulate the magnitude nor the composition of the humoral immune response. Finally, we evaluated the immune infiltrate and Ig isotype content of the tumour tissue using flow cytometry and found no differences between treatment groups that were indicative for local antibody production. In conclusion, we demonstrate that the 67NR mammary carcinoma in Balb/C mice is associated with a pre-existing antibody response. And, we show that in tumour-bearing Balb/C mice with abscopal tumour regression such pre-existing antibody responses are not altered upon fractionated RT and/or DC stimulation with Flt3-L. Our research indicates that evaluating the humoral immune response in the setting of abscopal tumour regression is not invariably associated with therapeutic effects. PMID:27427766

  5. SU-E-P-48: Evaluation of Intensity Modulated Radiotherapy (IMRT) with Three Different Commercial Planning Systems for the Treatment of Cervical Cancer

    SciTech Connect

    Liu, D; Chi, Z; Yang, H; Miao, M; Jing, Z

    2015-06-15

    Purpose: To investigate the performances of three commercial treatment planning systems (TPS) for intensity modulated radiotherapy (IMRT) optimization regarding cervical cancer. Methods: For twenty cervical cancer patients, three IMRT plans were retrospectively re-planned: one with Pinnacle TPS,one with Oncentra TPS and on with Eclipse TPS. The total prescribed dose was 50.4 Gy delivered for PTV and 58.8 Gy for PTVnd by simultaneous integrated boost technique. The treatments were delivered using the Varian 23EX accelerator. All optimization schemes generated clinically acceptable plans. They were evaluated based on target coverage, homogeneity (HI) and conformity (CI). The organs at risk (OARs) were analyzed according to the percent volume under some doses and the maximum doses. The statistical method of the collected data of variance analysis was used to compare the difference among the quality of plans. Results: IMRT with Eclipse provided significant better HI, CI and all the parameters of PTV. However, the trend was not extension to the PTVnd, it was still significant better at mean dose, D50% and D98%, but plans with Oncentra showed significant better in the hight dosage volume, such as maximum dose and D2%. For the bladder wall, there were not notable difference among three groups, although Pinnacle and Oncentra systems provided a little lower dose sparing at V50Gy of bladder and rectal wall and V40Gy of bladder wall, respectively. V40Gy of rectal wall (p=0.037), small intestine (p=0.001 for V30Gy, p=0.010 for maximum dose) and V50Gy of right-femoral head (p=0.019) from Eclipse plans showed significant better than other groups. Conclusion: All SIB-IMRT plans were clinically acceptable which were generated by three commercial TPSs. The plans with Eclipse system showed advantages over the plans with Oncentra and Pinnacle system in the overwhelming majority of the dose coverage for targets and dose sparing of OARs in cervical cancer.

  6. Benchmarking a novel ultrasound-CT fusion system for respiratory motion management in radiotherapy: Assessment of spatio-temporal characteristics and comparison to 4DCT

    SciTech Connect

    Molloy, J. A.; Oldham, S. A.

    2008-01-15

    Management of respiratory motion during radiation therapy requires treatment planning and simulation using imaging modalities that possess sufficient spatio-temporal accuracy and precision. An investigation into the use of a novel ultrasound (United States) imaging system for assessment of respiratory motion is presented, exploiting its good soft tissue contrast and temporal precision. The system dynamically superimposes the appropriate image plane sampled from a reference CT data set with the corresponding US B-mode image. An articulating arm is used for spatial registration. While the focus of the study was to quantify the system's ability to track respiratory motion, certain unique spatial calibration procedures were devised that render the software potentially valuable to the general research community. These include direct access to all transformation matrix elements and image scaling factors, a manual latency correction function, and a three-point spatial registration procedure that allows the system to be used in any room possessing a traditional radiotherapy laser localization system. Counter-intuitively, it was discovered that a manual procedure for calibrating certain transformation matrix elements produced superior accuracy to that of an algorithmic Levenberg-Marquardt optimization method. The absolute spatial accuracy was verified by comparing the physical locations of phantom test objects measured using the spatially registered US system, and using data from a 3DCT scan of the phantom as a reference. The spatial accuracy of the display superposition was also tested in a similar manner. The system's dynamic properties were then assessed using three methods. First, the overall system response time was studied using a programmable motion phantom. This included US video update, articulating arm update, CT data set resampling, and image display. The next investigation verified the system's ability to measure the range of motion of a moving anatomical test

  7. Dosimetry in radiotherapy using a-Si EPIDs: Systems, methods, and applications focusing on 3D patient dose estimation

    NASA Astrophysics Data System (ADS)

    McCurdy, B. M. C.

    2013-06-01

    An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

  8. Risk-adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Yusung

    Currently, there is great interest in integrating biological information into intensity-modulated radiotherapy (IMRT) treatment planning with the aim of boosting high-risk tumor subvolumes. Selective boosting of tumor subvolumes can be accomplished without violating normal tissue complication constraints using information from functional imaging. In this work we have developed a risk-adaptive optimization-framework that utilizes a nonlinear biological objective function. Employing risk-adaptive radiotherapy for prostate cancer, it is possible to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing normal tissue complications. Subsequently, we have studied the impact of functional imaging accuracy, and found on the one hand that loss in sensitivity had a large impact on expected local tumor control, which was maximal when a low-risk classification for the remaining low risk PTV was chosen. While on the other hand loss in specificity appeared to have a minimal impact on normal tissue sparing. Therefore, it appears that in order to improve the therapeutic ratio a functional imaging technique with a high sensitivity, rather than specificity, is needed. Last but not least a comparison study between selective boosting IMRT strategies and uniform-boosting IMRT strategies yielding the same EUD to the overall PTV was carried out, and found that selective boosting IMRT considerably improves expected TCP compared to uniform-boosting IMRT, especially when lack of control of the high-risk tumor subvolumes is the cause of expected therapy failure. Furthermore, while selective boosting IMRT, using physical dose-volume objectives, did yield similar rectal and bladder sparing when compared its equivalent uniform-boosting IMRT plan, risk-adaptive radiotherapy, utilizing biological objective functions, did yield a 5.3% reduction in NTCP for the rectum. Hence, in risk-adaptive radiotherapy the

  9. Long-term stability and mechanical characteristics of kV digital imaging system for proton radiotherapy

    SciTech Connect

    Zhu, Mingyao Botticello, Thomas; Lu, Hsiao-Ming; Winey, Brian

    2014-04-15

    Purpose: To quantitatively evaluate the long-term image panel positioning stability and gantry angle dependence for gantry-mounted kV imaging systems. Methods: For patient setup digital imaging systems in isocentric rotating proton beam delivery facilities, physical crosshairs are commonly inserted into the snout to define the kV x-ray beam isocenter. Utilizing an automatic detection algorithm, the authors analyzed the crosshair center positions in 2744 patient setup kV images acquired with the four imagers in two treatment rooms from January 2012 to January 2013. The crosshair position was used as a surrogate for imaging panel position, and its long-term stability at the four cardinal angles and the panel flex dependency on gantry angle was investigated. Results: The standard deviation of the panel position distributions was within 0.32 mm (with the range of variation less than ± 1.4 mm) in both the X-Z plane and Y direction. The mean panel inplane rotations were not more than 0.51° for the four panels at the cardinal angles, with standard deviations ≤0.26°. The panel position variations with gantry rotation due to gravity (flex) were within ±4 mm, and were panel-specific. Conclusions: The authors demonstrated that the kV image panel positions in our proton treatment system were highly reproducible at the cardinal angles over 13 months and also that the panel positions can be correlated to gantry angles. This result indicates that the kV image panel positions are stable over time; the amount of panel sag is predictable during gantry rotation and the physical crosshair for kV imaging may eventually be removed, with the imaging beam isocenter position routinely verified by adequate quality assurance procedures and measurements.

  10. An automated image cytometry system for monitoring DNA ploidy and other cell features of radiotherapy and chemotherapy patients.

    PubMed

    Zhang, Y; LeRiche, J C; Jackson, S M; Garner, D; Palcic, B

    1999-01-01

    DNA content and distribution in cell nuclei were studied in samples of fine-needle aspiration (FNA) from 27 locally advanced breast and head and neck cancers in two going randomized trials that compared accelerated fractionation to standard fractionation radiation in locally advanced breast cancer and head and neck cancer. Two image cytometry methods were compared: a new, fully automated DNA image cytometry system (AIC) and a conventional image cytometry (CIC) system with manual selection, focusing, and segmentation of cells. The results of both techniques were compared on the basis of DNA histogram parameters including DNA index (DI), mean DNA values (MDV), and Auer's DNA histogram patterns. An excellent correlation was achieved between the two imaging techniques in terms of DI (r=0.985, p<0.001) and MDV (r=0.951, p<0.001) as well as between Auer's histogram patterns, where both methods agreed completely. It was concluded in these analyses that the two image cytometry methods were equivalent. However, the AIC offered an advantage by scanning samples in a fully automated way, which represented significant time saving for cytopathologists working with the system, as well as a larger number of cells used in the automated analysis. With the automated image cytometer, 500 relevant cells were collected and analyzed in about 10 minutes, where with the interactive (manual) method, it took typically an hour to collect and analyze only about 250 cells. Seventeen samples were sufficient for flow analysis. Image cytometry and flow cytometry showed good agreement in DI determination; however, three cases reported as diploid by flow cytometry were found to be aneuploid by image cytometry techniques.

  11. Multimedia educational services in stereotactic radiotherapy.

    PubMed

    Bazioglou, M; Theodorou, K; Kappas, C

    1999-01-01

    The computer-based learning methods in medicine have been well established as stand-alone learning systems. Recently, these systems were enriched with the use of telematics technology to provide distance learning capabilities. Stereotactic radiotherapy is one of the most representative advanced radiotherapy techniques. Due to the multidisciplinary character of the technique and the rapid evolution of technology implemented, the demands in training have increased. The potential of interactive multimedia and Internet technologies for the achievement of distance learning capabilities in this domain are investigated. The realization of a computer-based educational program in stereotactic radiotherapy in a multimedia format is a new application in the computer-aided distance learning field. The system is built according to a client and server architecture, based on the Internet infrastructure, and composed of server nodes. The impact of the system may be described in terms of: time and transportation costs saving, flexibility in training (scheduling, rate and subject selection), online communication and interaction with experts, cost effective access to material (delivery or access by a large number of users and revision of the material by avoiding high costs of computer-based training systems and database development). PMID:10394345

  12. Radiotherapy for idiopathic inflammatory orbital pseudotumor. Indications and results

    SciTech Connect

    Sergott, R.C.; Glaser, J.S.; Charyulu, K.

    1981-05-01

    Supervoltage radiotherapy was used in 21 orbits of 19 patients with idiopathic inflammatory orbital pseudotumor. Seventeen orbits (15 patients) were initially treated with systemic corticosteroids, but recurrence of orbital inflammation during dosage tapering was the most frequent indication for radiotherapy. Fifteen orbits (14 patients) responded favorably, as judged by reduced proptosis, decreased lid edema and conjunctival injection, improved ocular motility, and increased visual acuity. Six orbits (five patients) did not improve with radiotherapy. Patients who were successfully treated with radiotherapy have been free of recurrence for a mean follow-up period of 25.05 months; these patients have not required further corticosteroid treatment or additional radiotherapy. Low-dose (1,000 to 2,000 rad) supervoltage radiotherapy seems to have a definite role in the management of idiopathic orbital pseudotumor in the following instances: (1) when corticosteroids fail or systemic complications are unacceptable (2) when signs and symptoms recur during decreasing corticosteroid dosage, and (3) when systemic corticosteroids are medically contraindicated.

  13. Effect of audio instruction on tracking errors using a four-dimensional image-guided radiotherapy system.

    PubMed

    Nakamura, Mitsuhiro; Sawada, Akira; Mukumoto, Nobutaka; Takahashi, Kunio; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2013-09-06

    The Vero4DRT (MHI-TM2000) is capable of performing X-ray image-based tracking (X-ray Tracking) that directly tracks the target or fiducial markers under continuous kV X-ray imaging. Previously, we have shown that irregular respiratory patterns increased X-ray Tracking errors. Thus, we assumed that audio instruction, which generally improves the periodicity of respiration, should reduce tracking errors. The purpose of this study was to assess the effect of audio instruction on X-ray Tracking errors. Anterior-posterior abdominal skin-surface displacements obtained from ten lung cancer patients under free breathing and simple audio instruction were used as an alternative to tumor motion in the superior-inferior direction. First, a sequential predictive model based on the Levinson-Durbin algorithm was created to estimate the future three-dimensional (3D) target position under continuous kV X-ray imaging while moving a steel ball target of 9.5 mm in diameter. After creating the predictive model, the future 3D target position was sequentially calculated from the current and past 3D target positions based on the predictive model every 70 ms under continuous kV X-ray imaging. Simultaneously, the system controller of the Vero4DRT calculated the corresponding pan and tilt rotational angles of the gimbaled X-ray head, which then adjusted its orientation to the target. The calculated and current rotational angles of the gimbaled X-ray head were recorded every 5 ms. The target position measured by the laser displacement gauge was synchronously recorded every 10 msec. Total tracking system errors (ET) were compared between free breathing and audio instruction. Audio instruction significantly improved breathing regularity (p < 0.01). The mean ± standard deviation of the 95th percentile of ET (E95T ) was 1.7 ± 0.5 mm (range: 1.1-2.6mm) under free breathing (E95T,FB) and 1.9 ± 0.5 mm (range: 1.2-2.7 mm) under audio instruction (E95T,AI). E95T,AI was larger than E95T,FB for five

  14. EURAMET.RI(I)-S7 comparison of alanine dosimetry systems for absorbed dose to water measurements in gamma- and x-radiation at radiotherapy levels

    NASA Astrophysics Data System (ADS)

    Garcia, Tristan; Anton, Mathias; Sharpe, Peter

    2012-01-01

    The National Physical Laboratory (NPL), the Physikalisch-Technische Bundesanstalt (PTB) and the Laboratoire National Henri Becquerel (LNE-LNHB) are involved in the European project 'External Beam Cancer Therapy', a project of the European Metrology Research Programme. Within this project, the electron paramagnetic resonance (EPR)/alanine dosimetric method has been chosen for performing measurements in small fields such as those used in IMRT (intensity modulated radiation therapy). In this context, these three National Metrology Institutes (NMI) wished to compare the result of their alanine dosimetric systems (detector, modus operandi etc) at radiotherapy dose levels to check their consistency. This EURAMET.RI(I)-S7 comparison has been performed with the support of the Bureau International des Poids et Mesures (BIPM) which collected and distributed the results as a neutral organization, to ensure the comparison was 'blind'. Irradiations have been made under reference conditions by each laboratory in a 60Co beam and in an accelerator beam (10 MV or 12 MV) in a water phantom of 30 cm × 30 cm × 30 cm in a square field of 10 cm × 10 cm at the reference depth. Irradiations have been performed at known values of absorbed dose to water (Dw) within 10% of nominal doses of 5 Gy and 10 Gy, i.e. between 4.5 Gy and 5.5 Gy and between 9 Gy and 11 Gy, respectively. Each participant read out their dosimeters and assessed the doses using their own protocol (calibration curve, positioning device etc) as this comparison aims at comparing the complete dosimetric process. The results demonstrate the effectiveness of the EPR/alanine dosimetry systems operated by National Metrology Institutes as a method of assuring therapy level doses with the accuracy required. The maximum deviation in the ratio of measured to applied dose is less than 1%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key

  15. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    SciTech Connect

    Yan, Guanghua Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray

    2014-10-15

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  16. Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head.

    PubMed

    Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo

    2007-05-01

    We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1.

  17. SU-E-J-182: Reproducibility of Tumor Motion Probability Distribution Function in Stereotactic Body Radiation Therapy of Lung Using Real-Time Tumor-Tracking Radiotherapy System

    SciTech Connect

    Shiinoki, T; Hanazawa, H; Park, S; Takahashi, T; Shibuya, K; Kawamura, S; Uehara, T; Yuasa, Y; Koike, M

    2015-06-15

    Purpose: We aim to achieve new four-dimensional radiotherapy (4DRT) using the next generation real-time tumor-tracking (RTRT) system and flattening-filter-free techniques. To achieve new 4DRT, it is necessary to understand the respiratory motion of tumor. The purposes of this study were: 1.To develop the respiratory motion analysis tool using log files. 2.To evaluate the reproducibility of tumor motion probability distribution function (PDF) during stereotactic body RT (SBRT) of lung tumor. Methods: Seven patients having fiducial markers closely implanted to the lung tumor were enrolled in this study. The positions of fiducial markers were measured using the RTRT system (Mitsubishi Electronics Co., JP) and recorded as two types of log files during the course of SBRT. For each patients, tumor motion range and tumor motion PDFs in left-right (LR), anterior-posterior (AP) and superior-inferior (SI) directions were calculated using log files of all beams per fraction (PDFn). Fractional PDF reproducibility (Rn) was calculated as Kullback-Leibler (KL) divergence between PDF1 and PDFn of tumor motion. The mean of Rn (Rm) was calculated for each patient and correlated to the patient’s mean tumor motion range (Am). The change of Rm during the course of SBRT was also evluated. These analyses were performed using in-house developed software. Results: The Rm were 0.19 (0.07–0.30), 0.14 (0.07–0.32) and 0.16 (0.09–0.28) in LR, AP and SI directions, respectively. The Am were 5.11 mm (2.58–9.99 mm), 7.81 mm (2.87–15.57 mm) and 11.26 mm (3.80–21.27 mm) in LR, AP and SI directions, respectively. The PDF reproducibility decreased as the tumor motion range increased in AP and SI direction. That decreased slightly through the course of RT in SI direction. Conclusion: We developed the respiratory motion analysis tool for 4DRT using log files and quantified the range and reproducibility of respiratory motion for lung tumors.

  18. Precision, high dose radiotherapy. II. Helium ion treatment of tumors adjacent to critical central nervous system structures

    SciTech Connect

    Saunders, W.M.; Chen, G.T.Y.; Austin-Seymour, M.; Castro, J.R.; Collier, J.M.; Gauger, G.; Gutin, P.; Phillips, T.L.; Pitluck, S.; Walton, R.E.

    1985-07-01

    In this paper, the authors present a technique for treating relatively small, low grade tumors located very close to critical, radiation sensitive central nervous system structures such as the spinal cord and the brain stem. A beam of helium ions is used to irradiate the tumor. The nearby normal tissues are protected by exploiting the superb dose localization properties of this beam, particularly its well defined and controllable range in tissue, the increased dose deposited near the end of this range (i.e., the Bragg peak), the sharp decrease in dose beyond the Bragg peak, and the sharp penumbra of the beam. To illustrate the technique, the authors present a group of 19 patients treated for chordomas, meningiomas and low grade chondrosarcomas in the base of the skull or spinal column. They have been able to deliver high, uniform doses to the target volumes, while keeping the doses to the nearby critical tissues below the threshold for radiation damage. Follow-up on this group of patients is short, averaging 22 months (2 to 75 months). Currently, 15 patients have local control of their tumor. Two major complications, a spinal cord transsection and optic tract damage, are discussed in detail. Their treatment policies have been modified to minimize the risk of these complications in the future, and they are continuing to use this method to treat such patients.

  19. CHOD/BVAM CHEMOTHERAPY AND WHOLE-BRAIN RADIOTHERAPY FOR NEWLY DIAGNOSED PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA

    PubMed Central

    Laack, Nadia N.; O’Neill, Brian Patrick; Ballman, Karla V.; O’Fallon, Judith Rich; Carrero, Xiomara W.; Kurtin, Paul J.; Scheithauer, Bernd W.; Brown, Paul D.; Habermann, Thomas M.; Colgan, Joseph P.; Gilbert, Mark R.; Hawkins, Roland B.; Morton, Roscoe F.; Windschitl, Harry E.; Fitch, Tom R.; Pajon, Eduardo R.

    2014-01-01

    Purpose To assess the efficacy and toxicity of chemotherapy consisting of cyclophosphamide, doxorubicin (Adriamycin), vincristine, and dexamethasone (CHOD) plus bis-chloronitrosourea (BCNU), cytosine arabinoside, and methotrexate (BVAM) followed by whole-brain irradiation (WBRT) for patients with primary central nervous system lymphoma (PCNSL). Methods and Materials Patients 70 years old and younger with newly diagnosed, biopsy-proven PCNSL received one cycle of CHOD followed by two cycles of BVAM. Patients then received WBRT, 30.6 Gy, if a complete response was evoked, or 50.4 Gy if the response was less than complete; both doses were given in 1.8-Gy daily fractions. The primary efficacy endpoint was 1-year survival. Results Thirty-six patients (19 men, 17 women) enrolled between 1995 and 2000. Median age was 60.5 years (range, 34 to 69 years). Thirty (83%) patients had baseline Eastern Cooperative Oncology Group performance scores of 0 to 1. All 36 patients were eligible for survival and response evaluations. Median time to progression was 12.3 months, and median survival was 18.5 months. The percentages of patients alive at 1, 2, and 3 years were 64%, 36%, and 33%, respectively. The best response was complete response in 10 patients and immediate progression in 7 patients. Ten (28%) patients had at least one grade 3 or higher neurologic toxicity. Conclusions This regimen did improve the survival of PCNSL patients but also caused substantial toxicity. The improvement in survival is less than that reported with high-dose methotrexate-based therapies. PMID:20800387

  20. CHOD/BVAM Chemotherapy and Whole-Brain Radiotherapy for Newly Diagnosed Primary Central Nervous System Lymphoma

    SciTech Connect

    Laack, Nadia N.; O'Neill, Brian Patrick; Ballman, Karla V.; O'Fallon, Judith Rich; Carrero, Xiomara W.; Kurtin, Paul J.; Scheithauer, Bernd W.; Brown, Paul D.; Habermann, Thomas M.; Colgan, Joseph P.; Gilbert, Mark R.; Hawkins, Roland B.; Morton, Roscoe F.; Windschitl, Harry E.; Fitch, Tom R.; Pajon, Eduardo R.

    2011-10-01

    Purpose: To assess the efficacy and toxicity of chemotherapy consisting of cyclophosphamide, doxorubicin (Adriamycin), vincristine, and dexamethasone (CHOD) plus bis-chloronitrosourea (BCNU), cytosine arabinoside, and methotrexate (BVAM) followed by whole-brain irradiation (WBRT) for patients with primary central nervous system lymphoma (PCNSL). Methods and Materials: Patients 70 years old and younger with newly diagnosed, biopsy-proven PCNSL received one cycle of CHOD followed by two cycles of BVAM. Patients then received WBRT, 30.6 Gy, if a complete response was evoked, or 50.4 Gy if the response was less than complete; both doses were given in 1.8-Gy daily fractions. The primary efficacy endpoint was 1-year survival. Results: Thirty-six patients (19 men, 17 women) enrolled between 1995 and 2000. Median age was 60.5 years (range, 34 to 69 years). Thirty (83%) patients had baseline Eastern Cooperative Oncology Group performance scores of 0 to 1. All 36 patients were eligible for survival and response evaluations. Median time to progression was 12.3 months, and median survival was 18.5 months. The percentages of patients alive at 1, 2, and 3 years were 64%, 36%, and 33%, respectively. The best response was complete response in 10 patients and immediate progression in 7 patients. Ten (28%) patients had at least one grade 3 or higher neurologic toxicity. Conclusions: This regimen did improve the survival of PCNSL patients but also caused substantial toxicity. The improvement in survival is less than that reported with high-dose methotrexate-based therapies.

  1. [Juvenile angiofibroma. Results of radiotherapy].

    PubMed

    Rosset, A; Korzeniowski, S

    1990-01-01

    8 patients with the nasofibromata were treated by radiotherapy in Oncologic Center in Kraków. In most part of these patients tumors exceeded the nasopharynx or gave the massive postoperational recurrencies. Complete regression was obtained in 6 out of 8 cases. The radiation changes are described. The radiotherapy is effective in more advanced and recurrent stages of the juvenile nasofibroma.

  2. Adenocarcinoma of the ethmoid following radiotherapy for bilateral retinoblastoma

    SciTech Connect

    Rowe, L.D.; Lane, R.; Snow, J.B. Jr.

    1980-01-01

    Adenocarcinoma of the ethmoid sinus is rare, representing only 4 to 8% of malignancies of the paranasal sinuses. An extraordinary case of papillary adenocarcinoma of the ethmoid sinus arising 30 years following high-dose radiotherapy for bilateral retinoblastoma is presented. Second fatal mesenchymal and epithelial primaries have been described in 8.5% of patients with bilateral retinoblastomas previously treated with radiotherapy; however, papillary adenocarcinoma arising within the paranasal sinuses has not been reported. Aggressive treatment including partial maxillectomy, radical pansinusectomy, radical neck dissection followed by regional radiotherapy and systemic chemotherapy failed to prevent the development of fatal hepatic metastases. The high incidence of second fatal primary neoplasms in patients with bilateral retinoblastomas receiving radiation suggests an innate susceptibility that may add to the risk of radiotherapy.

  3. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide.

    PubMed

    Korreman, Stine; Rasch, Coen; McNair, Helen; Verellen, Dirk; Oelfke, Uwe; Maingon, Philippe; Mijnheer, Ben; Khoo, Vincent

    2010-02-01

    The past decade has provided many technological advances in radiotherapy. The European Institute of Radiotherapy (EIR) was established by the European Society of Therapeutic Radiology and Oncology (ESTRO) to provide current consensus statement with evidence-based and pragmatic guidelines on topics of practical relevance for radiation oncology. This report focuses primarily on 3D CT-based in-room image guidance (3DCT-IGRT) systems. It will provide an overview and current standing of 3DCT-IGRT systems addressing the rationale, objectives, principles, applications, and process pathways, both clinical and technical for treatment delivery and quality assurance. These are reviewed for four categories of solutions; kV CT and kV CBCT (cone-beam CT) as well as MV CT and MV CBCT. It will also provide a framework and checklist to consider the capability and functionality of these systems as well as the resources needed for implementation. Two different but typical clinical cases (tonsillar and prostate cancer) using 3DCT-IGRT are illustrated with workflow processes via feedback questionnaires from several large clinical centres currently utilizing these systems. The feedback from these clinical centres demonstrates a wide variability based on local practices. This report whilst comprehensive is not exhaustive as this area of development remains a very active field for research and development. However, it should serve as a practical guide and framework for all professional groups within the field, focussed on clinicians, physicists and radiation therapy technologists interested in IGRT.

  4. SU-E-T-545: A MLC-Equipped Robotic Radiosurgery-Radiotherapy Combined System in Treating Hepatic Lesions: Delivery Efficiency as Compared to a Standard Linac for Treating Hepatic Lesions

    SciTech Connect

    Jin, L; Price, R; Wang, L; Meyer, J; Ma, C; Fan, J

    2014-06-01

    Purpose: The CyberKnife (CK) M6 Series introduced a mulitleaf collimator (MLC) beam for extending its capability to the conventional radiotherapy. This work is to investigate delivery efficiency of this system as compared to a standard Varian linac when treating hepatic lesions. Methods: Nine previously treated patients were divided into three groups with three patients in each. Group one: fractionated radiotherapy; Group two: SBRT-like treatments and Group three: fractionated radiotherapy targeting two PTVs. The clinically used plans were generated with the Eclipse treatment planning system (TPS). We re-planned these cases using a Mulitplan (MP) TPS for the CK M6 and normalized to the same PTV dose coverage. CK factors (CF) (defined as modulation scaling factor in this work), number of nodes (NN), number of MLC segments (NS) and beam delivery time (BT) with an estimated image interval of 60 seconds, were used for evaluation of delivery efficiency. Results: Generated plans from the MP and Eclipse TPS demonstrated the similar quality in terms of PTV confomality index, minimum and maximum PTV doses, and doses received by critical structures. Group one: CF ranged from 8.1 to 8.7, NN from 30 to 40, NS from 120 to 155 and BT from 20 to 23 minutes; group two: CF from 4.7 to 8.5, NN from 15 to 19, NS from 82 to 141 and BT from 18 to 24 minutes; and group three: CF from 7.9 to 10, NN from 47 to 49, NS from 110 to 113 and BT from 20 to 22 minutes. Conclusions: Delivery time is longer for the CK M6 than for the Varian linac (7.8 to 13.7 minutes). Further investigation will be necessary to determine if a PTV reduction from the tracking feature will shorten the delivery time without decreasing plan quality.

  5. Comparison of Treatment Outcomes between Breast Conserving Surgery Followed by Radiotherapy and Mastectomy Alone in Patients with T1-2 Stage and 1-3 Axillary Lymph Nodes in the Era of Modern Adjuvant Systemic Treatments

    PubMed Central

    Kim, Sang-Won; Chun, Mison; Han, Sehwan; Jung, Yong Sik; Choi, Jin Hyuk; Kang, Seok Yun; Jang, Hyunsoo; Jo, Sunmi

    2016-01-01

    Purpose The role of postmastectomy radiotherapy in the treatment of T1–2 primary tumor with 1–3 positive lymph nodes is controversial. We compared treatment outcomes between breast conserving surgery followed by radiotherapy (BCS+RT) and total mastectomy alone (TM) in the setting of modern adjuvant systemic treatments. Methods Patients with T1–2 primary breast cancer and 1–3 positive lymph nodes who were treated between 2001 and 2011 were divided into 2 groups based on the treatment approach: BCS+RT (n = 169) and TM (n = 117). All patients received adjuvant chemotherapy including taxanes. Adjuvant endocrine therapy was administered to patients with positive hormone receptors according to their menstrual status. Results During a median follow-up of 76.5 months, 21 patients (7.3%) experienced locoregional recurrence as the first event, including 7 patients (4.1%) in the BCS+RT group and 14 patients (12.0%) in the TM group. The 5-year cumulative incidence rate of locoregional recurrence was 2.5% for BCS+RT versus 9.5% for TM (p = 0.016). Competing risk regression analysis revealed that TM was associated with a relative risk for locoregional recurrence of 5.347 (p = 0.003). TM was also associated with a significantly lower 5-year disease-free survival rate compared with BCS+RT (hazard ratio, 2.024; 95% confidence interval, 1.090–3.759; p = 0.026). Conclusion To improve treatment outcomes for TM even after modern systemic treatments, postmastectomy radiotherapy might be required for patients with T1–2 primary breast cancer and 1–3 positive lymph nodes. PMID:27685357

  6. Fertility impairment in radiotherapy

    PubMed Central

    Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning. PMID:27647982

  7. Imaging in radiotherapy

    NASA Astrophysics Data System (ADS)

    Calandrino, R.; Del Maschio, A.; Cattaneo, G. M.; Castiglioni, I.

    2009-09-01

    The diagnostic methodologies used for the radiotherapy planning have undergone great developments in the last 30 years. Since the 1980s, after the introduction of the CT scanner, the modality for the planning moved beyond the planar 2D assessment to approach a real and more realistic volumetric 3D definition. Consequently the dose distribution, previously obtained by means of an overly simple approximation, became increasingly complex, better tailoring the true shape of the tumour. The final therapeutic improvement has been obtained by a parallel increase in the complexity of the irradiating units: the Linacs for therapy have, in fact, been equipped with a full accessory set capable to modulate the fluence (IMRT) and to check the correct target position continuously during the therapy session (IMRT-IGRT). The multimodal diagnostic approach, which integrates diagnostic information, from images of the patient taken with CT, NMR, PET and US, further improves the data for a biological and topological optimization of the radiotherapy plan and consequently of the dose distribution in the Planning Target Volume. Proteomic and genomic analysis will be the next step in tumour diagnosis. These methods will provide the planners with further information, for a true personalization of the treatment regimen and the assessment of the predictive essays for each tumour and each patient.

  8. Fertility impairment in radiotherapy

    PubMed Central

    Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning.

  9. Fertility impairment in radiotherapy.

    PubMed

    Biedka, Marta; Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning. PMID:27647982

  10. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response.

    PubMed

    Surace, Laura; Lysenko, Veronika; Fontana, Andrea Orlando; Cecconi, Virginia; Janssen, Hans; Bicvic, Antonela; Okoniewski, Michal; Pruschy, Martin; Dummer, Reinhard; Neefjes, Jacques; Knuth, Alexander; Gupta, Anurag; van den Broek, Maries

    2015-04-21

    Radiotherapy induces DNA damage and cell death, but recent data suggest that concomitant immune stimulation is an integral part of the therapeutic action of ionizing radiation. It is poorly understood how radiotherapy supports tumor-specific immunity. Here we report that radiotherapy induced tumor cell death and transiently activated complement both in murine and human tumors. The local production of pro-inflammatory anaphylatoxins C3a and C5a was crucial to the tumor response to radiotherapy and concomitant stimulation of tumor-specific immunity. Dexamethasone, a drug frequently given during radiotherapy, limited complement activation and the anti-tumor effects of the immune system. Overall, our findings indicate that anaphylatoxins are key players in radiotherapy-induced tumor-specific immunity and the ensuing clinical responses.

  11. [External radiotherapy for hepatocellular carcinoma].

    PubMed

    Girard, N; Mornex, F

    2011-02-01

    For a long time radiotherapy has been excluded from the therapeutic strategy for hepatocellular carcinoma, given its significant toxicity on the non-tumoral liver parenchyma. Conformal radiation is a recent advance in the field of radiotherapy, allowing dose escalation and combination with other therapeutic options for hepatocellular carcinoma, including trans-arterial chemo-embolization. Conformal radiotherapy is associated with interesting features, especially in cirrhotic patients: wide availability, non-invasiveness, possibility to target multiple localizations anywhere within the liver parenchyma, and favorable tolerance profile even in patients with cirrhosis and/or in a poor medical condition. Recently, radiation delivery has been optimized through several technical developments: respiratory gating and intensity-modulated radiotherapy, which allow a better focalization of the ballistics, stereotactic techniques and proton-beam radiotherapy, whose availability is currently limited in Europe. Given the high response rates of hepatocellular carcinoma to radiation, conformal radiotherapy may be regarded as a curative-intent treatment for hepatocellular carcinoma, similar to surgery and per-cutaneous techniques. Yet the impact of radiotherapy has to be evaluated in randomized trials to better integrate in the complex therapeutic algorithm of hepatocellular carcinoma.

  12. Monte Carlo role in radiobiological modelling of radiotherapy outcomes

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam; Pater, Piotr; Seuntjens, Jan

    2012-06-01

    Radiobiological models are essential components of modern radiotherapy. They are increasingly applied to optimize and evaluate the quality of different treatment planning modalities. They are frequently used in designing new radiotherapy clinical trials by estimating the expected therapeutic ratio of new protocols. In radiobiology, the therapeutic ratio is estimated from the expected gain in tumour control probability (TCP) to the risk of normal tissue complication probability (NTCP). However, estimates of TCP/NTCP are currently based on the deterministic and simplistic linear-quadratic formalism with limited prediction power when applied prospectively. Given the complex and stochastic nature of the physical, chemical and biological interactions associated with spatial and temporal radiation induced effects in living tissues, it is conjectured that methods based on Monte Carlo (MC) analysis may provide better estimates of TCP/NTCP for radiotherapy treatment planning and trial design. Indeed, over the past few decades, methods based on MC have demonstrated superior performance for accurate simulation of radiation transport, tumour growth and particle track structures; however, successful application of modelling radiobiological response and outcomes in radiotherapy is still hampered with several challenges. In this review, we provide an overview of some of the main techniques used in radiobiological modelling for radiotherapy, with focus on the MC role as a promising computational vehicle. We highlight the current challenges, issues and future potentials of the MC approach towards a comprehensive systems-based framework in radiobiological modelling for radiotherapy.

  13. [Hepatic tumors and radiotherapy].

    PubMed

    Rio, E; Mornex, F; Peiffert, D; Huertas, A

    2016-09-01

    Recent technological developments led to develop the concept of focused liver radiation therapy. We must distinguish primary and secondary tumors as the indications are restricted and must be discussed as an alternative to surgical or medical treatments. For hepatocellular carcinoma 5 to 10cm (or more), a conformational radiation with or without intensity modulation is performed. Stereotactic body radiotherapy (SBRT) is being evaluated and is increasingly proposed as an alternative to radiofrequency ablative treatment for primary or secondary tumors (typically less than 5cm). Tumor (and liver) movements induced by respiratory motions must be taken into account. Strict dosimetric criteria must be met with particular attention to the dose-volume histograms to liver and the hollow organs, including cases of SBRT. PMID:27521035

  14. Medical Applications: Proton Radiotherapy

    NASA Astrophysics Data System (ADS)

    Keppel, Cynthia

    2009-05-01

    Proton therapy is a highly advanced and precise form of radiation treatment for cancer. Due to the characteristic Bragg peak associated with ion energy deposition, proton therapy provides the radiation oncologist with an improved method of treatment localization within a patient, as compared with conventional radiation therapy using X-rays or electrons. Controlling disease and minimizing side effects are the twin aims of radiation treatment. Proton beams enhance the opportunity for both by facilitating maximal dose to tumor and minimal dose to surrounding tissue. In the United States, five proton radiotherapy centers currently treat cancer patients, with more in the construction phase. New facilities and enabling technologies abound. An overview of the treatment modality generally, as well as of the capabilities and research planned for the field and for the Hampton University Proton Therapy Institute in particular, will be presented.

  15. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.

  16. Personalized radiotherapy: concepts, biomarkers and trial design.

    PubMed

    Ree, A H; Redalen, K R

    2015-07-01

    In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points-given the imperative development of open-source data repositories to allow investigators the access to the complex data sets-will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice. PMID:25989697

  17. Personalized radiotherapy: concepts, biomarkers and trial design

    PubMed Central

    Redalen, K R

    2015-01-01

    In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points—given the imperative development of open-source data repositories to allow investigators the access to the complex data sets—will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice. PMID:25989697

  18. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University

    PubMed Central

    Oike, Takahiro; Sato, Hiro; Noda, Shin-ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  19. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University.

    PubMed

    Oike, Takahiro; Sato, Hiro; Noda, Shin-Ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  20. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    NASA Astrophysics Data System (ADS)

    Gökçe, M.; Uslu, D. Koçyiǧit; Ertunç, C.; Karalı, T.

    2016-03-01

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3 percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.

  1. Adapting radiotherapy to hypoxic tumours

    NASA Astrophysics Data System (ADS)

    Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag

    2006-10-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields

  2. Dose factor entry and display tool for BNCT radiotherapy

    DOEpatents

    Wessol, Daniel E.; Wheeler, Floyd J.; Cook, Jeremy L.

    1999-01-01

    A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

  3. Time delays in gated radiotherapy.

    PubMed

    Smith, Wendy L; Becker, Nathan

    2009-07-28

    In gated radiotherapy, the accuracy of treatment delivery is determined by the accuracy with which both the imaging and treatment beams are gated. If the time delays (the time between the target entering/leaving the gated region and the first/last image acquired or treatment beam on/off) for the imaging and treatment systems are in the opposite directions, they may increase the required internal target volume (ITV) margin, above that indicated by the tolerance for either system measured individually. We measured a gating system's time delay on 3 fluoroscopy systems, and 3 linear accelerator treatment beams, using a motion phantom of known geometry, varying gating type (amplitude vs. phase), beam energy, dose rate, and period. The average beam on imaging time delays were -0.04 +/- 0.05 s (amplitude, 1 SD), -0.11 +/- 0.04 s (phase); while the average beam off imaging time delays were -0.18 +/- 0.08 s (amplitude) and -0.15 +/- 0.04 s (phase). The average beam on treatment time delays were 0.09 +/- 0.02 s (amplitude, 1 SD), 0.10 +/- 0.03 s (phase); while the average beam off time delays for treatment beams were 0.08 +/- 0.02 s (amplitude) and 0.07 +/- 0.02 s (phase). The negative value indicates the images were acquired early, and the positive values show the treatment beam was triggered late. We present a technique for calculating the margin necessary to account for time delays and found that the difference between the imaging and treatment time delays required a significant increase in the ITV margin in the direction of tumor motion at the gated level.

  4. Development of Advanced Multi-Modality Radiation Treatment Planning Software for Neutron Radiotherapy and Beyond

    SciTech Connect

    Nigg, D; Wessol, D; Wemple, C; Harkin, G; Hartmann-Siantar, C

    2002-08-20

    The Idaho National Engineering and Environmental Laboratory (INEEL) has long been active in development of advanced Monte-Carlo based computational dosimetry and treatment planning methods and software for advanced radiotherapy, with a particular focus on Neutron Capture Therapy (NCT) and, to a somewhat lesser extent, Fast-Neutron Therapy. The most recent INEEL software system of this type is known as SERA, Simulation Environment for Radiotherapy Applications. As a logical next step in the development of modern radiotherapy planning tools to support the most advanced research, INEEL and Lawrence Livermore National Laboratory (LLNL), the developers of the PEREGRTNE computational engine for radiotherapy treatment planning applications, have recently launched a new project to collaborate in the development of a ''next-generation'' multi-modality treatment planning software system that will be useful for all modern forms of radiotherapy.

  5. Complications from radiotherapy.

    PubMed

    Dhermain, Frédéric; Barani, Igor J

    2016-01-01

    Radiotherapy (RT) of the brain is associated with significant stigma in the neuro-oncology community. This is primarily because of the potentially severe complications with which it may be associated. These complications, especially in subacute and latent settings, are often unpredictable, potentially progressive, and irreversible. The onset of complications may start from the first fraction of 2 Gy, continuing over several months after end of RT with persistent drowsiness and apathy. It may also extend over many years with progressive onset of neurocognitive impairments such as memory decline, and diminished focus/attention. For long-term survivors, such as young patients irradiated for a favorable low-grade glioma, quality of life can be seriously impacted by RT. It is essential, as in the pediatric field, to propose patient-specific regimens from the very outset of therapy. The use of molecular biomarkers to better predict survival, control of comorbidities along with judicious use of medications such as steroids and antiepileptics, improved targeting with the help of modern imaging and RT techniques, modulation of the dose, and fractionation aimed at limiting integral dose to the healthy brain all have the potential to minimize treatment-related complications while maintaining the therapeutic efficacy for which RT is known. Sparing "radiosensitive" areas such as hippocampi could have a modest but measurable impact with regard to cognitive preservation, an effect that can possibly be enhanced when used in conjunction with memantine and/or donepezil. PMID:26948357

  6. Cancer Cell Death-Inducing Radiotherapy: Impact on Local Tumour Control, Tumour Cell Proliferation and Induction of Systemic Anti-tumour Immunity.

    PubMed

    Frey, Benjamin; Derer, Anja; Scheithauer, Heike; Wunderlich, Roland; Fietkau, Rainer; Gaipl, Udo S

    2016-01-01

    Radiotherapy (RT) predominantly is aimed to induce DNA damage in tumour cells that results in reduction of their clonogenicity and finally in tumour cell death. Adaptation of RT with higher single doses has become necessary and led to a more detailed view on what kind of tumour cell death is induced and which immunological consequences result from it. RT is capable of rendering tumour cells immunogenic by modifying the tumour cell phenotype and the microenvironment. Danger signals are released as well as the senescence-associated secretory phenotype. This results in maturation of dendritic cells and priming of cytotoxic T cells as well as in activation of natural killer cells. However, RT on the other hand can also result in immune suppressive events including apoptosis induction and foster tumour cell proliferation. That's why RT is nowadays increasingly combined with selected immunotherapies. PMID:27558821

  7. [Adaptative radiotherapy: The case for MRI-guided radiotherapy].

    PubMed

    Maingon, P

    2016-10-01

    The concept of image-guided radiotherapy benefits from the development of magnetic resonance imaging (MRI) associated with different capacities of tissue analyses such as spectroscopy or diffusion analysis. The production of devices allowing the repositioning of patients through MRI represents a strong added value without delivering any additional dose to the patient while the optimization of the adaptative strategies are facilitated by a better contrast of the soft tissues compared to the scanner. The advantages of MRI are well demonstrated for brain tumours, head and neck carcinomas, pelvic tumors, mediastinal malignancies, gastrointestinal tract diseases. Adaptative radiotherapy inaugurates a new area of radiotherapy with different modalities. Several technological solutions are provided or discussed allowing the patients to benefit from thses new technologies as soon as possible.

  8. [Adaptative radiotherapy: The case for MRI-guided radiotherapy].

    PubMed

    Maingon, P

    2016-10-01

    The concept of image-guided radiotherapy benefits from the development of magnetic resonance imaging (MRI) associated with different capacities of tissue analyses such as spectroscopy or diffusion analysis. The production of devices allowing the repositioning of patients through MRI represents a strong added value without delivering any additional dose to the patient while the optimization of the adaptative strategies are facilitated by a better contrast of the soft tissues compared to the scanner. The advantages of MRI are well demonstrated for brain tumours, head and neck carcinomas, pelvic tumors, mediastinal malignancies, gastrointestinal tract diseases. Adaptative radiotherapy inaugurates a new area of radiotherapy with different modalities. Several technological solutions are provided or discussed allowing the patients to benefit from thses new technologies as soon as possible. PMID:27599686

  9. 3D Radiotherapy Can Be Safely Combined With Sandwich Systemic Gemcitabine Chemotherapy in the Management of Pancreatic Cancer: Factors Influencing Outcome

    SciTech Connect

    Spry, Nigel Harvey, Jennifer; MacLeod, Craig; Borg, Martin; Ngan, Samuel Y.; Millar, Jeremy L.; Graham, Peter; Zissiadis, Yvonne; Kneebone, Andrew; Carroll, Susan; Davies, Terri; Reece, William H.H.; Iacopetta, Barry; Goldstein, David

    2008-04-01

    Purpose: The aim of this Phase II study was to examine whether concurrent continuous infusion 5-fluorouracil (CI 5FU) plus three-dimensional conformal planning radiotherapy sandwiched between gemcitabine chemotherapy is effective, tolerable, and safe in the management of pancreatic cancer. Methods and Materials: Patients were enrolled in two strata: (1) resected pancreatic cancer at high risk of local relapse (postsurgery arm, n = 22) or (2) inoperable pancreatic cancer in head or body without metastases (locally advanced arm, n = 41). Gemcitabine was given at 1,000 mg/m{sup 2} weekly for 3 weeks followed by 1 week rest then 5-6 weeks of radiotherapy and concurrent CI 5FU (200 mg/m{sup 2}/day). After 4 weeks' rest, gemcitabine treatment was reinitiated for 12 weeks. Results: For the two arms combined, treatment-related Grade 3 and 4 toxicities were reported by 25 (39.7%) and 7 (11.1%) patients, respectively. No significant late renal or hepatic toxicity was observed. In the postsurgery arm (R1 54.5%), median time to progressive disease from surgery was 11.0 months, median time to failure of local control was 32.9 months, and median survival time was 15.6 months. The 1- and 2-year survival rates were 63.6% and 31.8%. No significant associations between outcome and mutations in K-ras or TP53 or microsatellite instability were identified. Post hoc investigation of cancer antigen 19-9 levels found baseline levels and increases postbaseline were associated with shorter survival (p = 0.0061 and p < 0.0001, respectively). Conclusions: This three-dimensional chemoradiotherapy regimen is safe and promising, with encouraging local control for a substantial proportion of patients, and merits testing in a randomized trial.

  10. Improved outcome of nasopharyngeal carcinoma treated with conventional radiotherapy

    SciTech Connect

    Palazzi, Mauro . E-mail: mauro.palazzi@istitutotumori.mi.it; Guzzo, Marco; Tomatis, Stefano Ph.D.; Cerrotta, Annamaria; Potepan, Paolo; Quattrone, Pasquale; Cantu, Giulio

    2004-12-01

    Purpose: To describe the outcome of patients with nonmetastatic nasopharyngeal carcinoma (NPC) treated with conventional radiotherapy at a single institution. Methods and materials: From 1990 to 1999, 171 consecutive patients with NPC were treated with conventional (two-dimensional) radiotherapy. Tumor histology was undifferentiated in 82% of cases. Tumor-node-metastasis Stage (American Joint Committee on Cancer/International Union Against Cancer 1997 system) was I in 6%, II in 36%, III in 22%, and IV in 36% of patients. Mean total radiation dose was 68.4 Gy. Chemotherapy was given to 62% of the patients. The median follow-up for surviving patients was 6.3 years (range, 3.1-13.1 years). Results: The 5-year overall survival, disease-specific survival, and disease-free survival rates were 72%, 74%, and 62%, respectively. The 5-year local, regional, and distant control rates were 84%, 80%, and 83% respectively. Late effects of radiotherapy were prospectively recorded in 100 patients surviving without relapse; 44% of these patients had Grade 3 xerostomia, 33% had Grade 3 dental damage, and 11% had Grade 3 hearing loss. Conclusions: This analysis shows an improved outcome for patients treated from 1990 to 1999 compared with earlier retrospective series, despite the use of two-dimensional radiotherapy. Late toxicity, however, was substantial with conventional radiotherapy.

  11. Bilateral Rhegmatogenous Retinal Detachment during External Beam Radiotherapy.

    PubMed

    Hidaka, Takako; Chuman, Hideki; Nao-I, Nobuhisa

    2016-01-01

    Herein, we report a case of nontraumatic bilateral rhegmatogenous retinal detachment (RRD) during external beam radiotherapy for nonocular tumor, presented as an observational case study in conjunction with a review of the relevant literature. A 65-year-old male was referred to our hospital due to bilateral RRD. He underwent a biopsy for a tumor of the left frontal lobe 4 months prior to presentation, and the tumor had been diagnosed as primary central nerve system B-cell type lymphoma. He received chemotherapy and external beam radiotherapy for 1 month. There were no traumatic episodes. Bilateral retinal detachment occurred during a series of radiotherapies. Simultaneous nontraumatic bilateral retinal detachment is rare. The effects of radiotherapy on ocular functionality, particularly in cases involving retinal adhesion and vitreous contraction, may include RRD. Thus, it is necessary to closely monitor the eyes of patients undergoing radiotherapy, particularly those undergoing surgery for retinal detachment and those with a history of photocoagulation for retinal tears, a relevant family history, or risk factors known to be associated with RRD. PMID:27462261

  12. Low-dose prophylactic craniospinal radiotherapy for intracranial germinoma

    SciTech Connect

    Schoenfeld, Gordon O.; Amdur, Robert J. . E-mail: amdurrj@ufl.edu; Schmalfuss, Ilona M.; Morris, Christopher G.; Keole, Sameer R.; Mendenhall, William M.; Marcus, Robert B.

    2006-06-01

    Purpose: To report outcomes of patients with localized intracranial germinoma treated with low-dose craniospinal irradiation (CSI) followed by a boost to the ventricular system and primary site. Methods and Materials: Thirty-one patients had pathologically confirmed intracranial germinoma and no spine metastases. Low-dose CSI was administered in 29 patients: usually 21 Gy of CSI, 9.0 Gy of ventricular boost, and a 19.5-Gy tumor boost, all at 1.5 Gy per fraction. Our neuroradiologist recorded three-dimensional tumor size on magnetic resonance images before, during, and after radiotherapy. Results: With a median follow-up of 7.0 years, 29 of 31 patients (94%) are disease free. One failure had nongerminomatous histology; the initial diagnosis was a sampling error. Of 3 patients who did not receive CSI, 1 died. No patient developed myelopathy, visual deficits, dementia, or skeletal growth problems. In locally controlled patients, tumor response according to magnetic resonance scan was nearly complete within 6 months after radiotherapy. Conclusions: Radiotherapy alone with low-dose prophylactic CSI cures almost all patients with localized intracranial germinoma. Complications are rare when the daily dose of radiotherapy is limited to 1.5 Gy and the total CSI dose to 21 Gy. Patients without a near-complete response to radiotherapy should undergo resection to rule out a nongerminomatous element.

  13. Breast Molecular Profiling and Radiotherapy Considerations.

    PubMed

    Mahmoud, Omar; Haffty, Bruce G

    2016-01-01

    The last decade has seen major changes in the management of breast cancer. Heterogeneity regarding histology, therapeutic response, dissemination patterns, and patient outcome is evident. Molecular profiling provides an accurate tool to predict treatment outcome compared with classical clinicopathologic features. The genomic profiling unveiled the heterogeneity of breast cancer and identified distinct biologic subtypes. These advanced techniques were integrated into the clinical management; predicting systemic therapy benefit and overall survival. Utilizing genotyping to guide locoregional management decisions needs further characterization. In this chapter we will review available data on molecular classification of breast cancer, their association with locoregional outcome, their radiobiological properties and radiotherapy considerations. PMID:26987532

  14. Voice following radiotherapy.

    PubMed

    Stoicheff, M L

    1975-04-01

    This study was undertaken to provide information on the voice of patients following radiotherapy for glottic cancer. Part I presents findings from questionnaires returned by 227 of 235 patients successfully irradiated for glottic cancer from 1960 through 1971. Part II presents preliminary findings on the speaking fundamental frequencies of 22 irradiated patients. Normal to near-normal voice was reported by 83 percent of the 227 patients; however, 80 percent did indicate persisting vocal difficulties such as fatiguing of voice with much usage, inability to sing, reduced loudness, hoarse voice quality and inability to shout. Amount of talking during treatments appeared to affect length of time for voice to recover following treatments in those cases where it took from nine to 26 weeks; also, with increasing years since treatment, patients rated their voices more favorably. Smoking habits following treatments improved significantly with only 27 percent smoking heavily as compared with 65 percent prior to radiation therapy. No correlation was found between smoking (during or after treatments) and vocal ratings or between smoking and length of time for voice to recover. There was no relationship found between reported vocal ratings and stage of the disease. Data on mean speaking fundamental frequency seem to indicate a trend toward lower frequencies in irradiated patients as compared with normals. A trend was also noted in both irradidated and control groups for lower speaking fundamental frequencies in heavy smokers compared with non-smokers or previous smokers. These trends would indicate some vocal cord thickening or edema in irradiated patients and in heavy smokers. It is suggested that the study of irradiated patients' voices before, during and following treatments by means of audio, aerodynamic and acoustic instrumentation would yield additional information of diagnostic value on recovery of laryngeal function. It is also suggested that the voice pathologist could

  15. Introduction to suspension levels: radiotherapy.

    PubMed

    Horton, P; Lillicrap, S; Lamm, I-L; Lehmann, W

    2013-02-01

    In 2007, the European Commission (EC) commissioned a group of experts to undertake the revision of Report Radiation Protection (RP 91) 'Criteria for acceptability of radiological (including radiotherapy) and nuclear medicine installations' written in 1997. The revised draft report was submitted to the EC in 2010, who issued it for public consultation. The EC has commissioned the same group of experts to consider the comments of the public consultation for further improvement of the revised report. The EC intends to publish the final report under its Radiation Report Series as RP 162. This paper describes the background to the selection of the key performance parameters for radiotherapy equipment and sets out the sources of their criteria of acceptability including suspension levels for a wide range of radiotherapy equipment.

  16. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  17. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  18. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  19. The use of antioxidants in radiotherapy-induced skin toxicity.

    PubMed

    Amber, Kyle T; Shiman, Michael I; Badiavas, Evangelos V

    2014-01-01

    Radiation-induced skin damage is one of the most common complications of radiotherapy. In order to combat these side effects, patients often turn to alternative therapies, which often include antioxidants. Antioxidants such as those in the polyphenol chemical class, xanthine derivatives, tocepherol, sucralfate, and ascorbate have been studied for their use in either preventing or treating radiotherapy-induced skin damage. Apart from their known role as free radical scavengers, some of these antioxidants appear to alter cytokine release affecting cutaneous and systemic changes. We review the role of antioxidants in treating and preventing radiation-induced skin damage as well as the possible complications of using such therapy.

  20. [Feasibility of Automatic Treatment Planning in Intensity-modulated Radiotherapy of Nasopharyngeal Carcinoma].

    PubMed

    He, Yinbo; Zhang, Longbin; Xiao, Jianghong; Duan, Baofeng

    2015-12-01

    Intensity-modulated radiotherapy planning for nasopharyngeal carcinoma is very complex. The quality of plan is often closely linked to the experience of the treatment planner. In this study, 10 nasopharyngeal carcinoma patients at different stages were enrolled. Based on the scripting of Pinnacle 9. 2 treatment planning system, the computer program was used to set the basic parameters and objective parameters of the plans. At last, the nasopharyngeal carcinoma intensity-modulated radiotherapy plans were completed automatically. Then, the automatical and manual intensity-modulated radiotherapy plans were statistically compared and clinically evaluated. The results showed that there were no significant differences between those two kinds of plans with respect to the dosimetry parameters of most targets and organs at risk. The automatical nasopharyngeal carcinoma intensity-modulated radiotherapy plans can meet the requirements of clinical radiotherapy, significantly reduce planning time, and avoid the influence of human factors such as lack of experience to the quality of plan. PMID:27079103

  1. Second Malignant Neoplasms Following Radiotherapy

    PubMed Central

    Kumar, Sanath

    2012-01-01

    More than half of all cancer patients receive radiotherapy as a part of their treatment. With the increasing number of long-term cancer survivors, there is a growing concern about the risk of radiation induced second malignant neoplasm [SMN]. This risk appears to be highest for survivors of childhood cancers. The exact mechanism and dose-response relationship for radiation induced malignancy is not well understood, however, there have been growing efforts to develop strategies for the prevention and mitigation of radiation induced cancers. This review article focuses on the incidence, etiology, and risk factors for SMN in various organs after radiotherapy. PMID:23249860

  2. Patterns of care of radiotherapy in México

    PubMed Central

    Poitevin-Chacón, Adela; Hinojosa-Gómez, José

    2012-01-01

    Aim This survey is performed to learn about the structure of radiotherapy in México. Background Radiation oncology practice is increasing because of the higher incidence of cancer. There is no published data about radiotherapy in México. Materials and methods A questionnaire was sent to the 83 registered centers in the database of the Mexican regulatory agency. One out of the 32 states has no radiotherapy. 27 centers from 14 states provided their answers. Results 829 patients are treated annually with any radiotherapy modality in each center. Two centers have one cobalt machine, 7 have a cobalt and a linac and 10 have more than one linac. Five centers use 2D planning systems, 22 use 3D; 9, conventional simulators; 22, CT based simulation, and 1 center has no simulation. Most of the centers verify beams with films, electronic portal image devices and cone beam CTs are also used. Intensity modulated and image guided radiotherapy are performed in 5 states. Breast, prostate, cervix, lung, rectum and head and neck cancer are the six most common locations. There are 45 public and 38 private centers, 2 dedicated to children. Two gamma knife units, 5 Novalis systems, 1 tomotherapy and 2 cyberknife machines are working. All centers have at least one radiation oncologist, one physicist and one radiotherapist. Conclusions Definitive conclusions cannot be drawn from this limited feedback due to a low participation of centers. This survey about radiotherapy in Mexico shows the heterogeneity of equipment as well as medical and technical staff in the whole country. PMID:24416531

  3. [Intraoperative radiotherapy with electrons (IORT). Dosimetry problems, first experience].

    PubMed

    Bianciardi, L; Panichelli, V; Benassi, M; Sulprizio, S; Piermattei, A; Azario, L; Arcovito, G; Valentini, V

    1990-10-01

    In this paper, preliminary results on the IORT dosimetry performed on the two radiotherapy centers, "Regina Elena National Cancer Institute" and "S. Cuore Catholic University", are presented. The absolute dosimetry has been performed with ion chambers (ENEA chamber and Markus flat chamber) using a water phantom. The relative measurements have been performed with solid state diodes and radiographic films, calibrated on absolute dosimetry system.

  4. Radiotherapy for Esthesioneuroblastoma: Is Elective Nodal Irradiation Warranted in the Multimodality Treatment Approach?

    SciTech Connect

    Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do

    2011-02-01

    Purpose: The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Methods and Materials: Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Results: Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. Conclusions: ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy.

  5. [Which rules apply to hypofractionated radiotherapy?].

    PubMed

    Supiot, S; Clément-Colmou, K; Paris, F; Corre, I; Chiavassa, S; Delpon, G

    2015-10-01

    Hypofractionated radiotherapy is now more widely prescribed due to improved targeting techniques (intensity modulated radiotherapy, image-guided radiotherapy and stereotactic radiotherapy). Low dose hypofractionated radiotherapy is routinely administered mostly for palliative purposes. High or very high dose hypofractionated irradiation must be delivered according to very strict procedures since every minor deviation can lead to major changes in dose delivery to the tumor volume and organs at risk. Thus, each stage of the processing must be carefully monitored starting from the limitations and the choice of the hypofractionation technique, tumour contouring and dose constraints prescription, planning and finally dose calculation and patient positioning verification.

  6. Intraoperative radiotherapy: the Japanese experience. [Betatron

    SciTech Connect

    Abe, M.; Takahashi, M.

    1981-07-01

    Clinical results of intraoperative radiotherapy (IOR) which have been obtained since 1964 in Japan were reviewed. In this radiotherapy a cancerocidal dose can be delivered safely to the lesions, since critical organs are shifted from the field so that the lesions may be exposed directly to radiation. Intraoperative radiotherapy has spread in Japan and the number of institutions in which this radiotherapy is performed has continued to increase to a total of 26 in 1979. The total number of patients treated was 717. It has been demonstrated that intraoperative radiotherapy has definite effects on locally advanced abdominal neoplasms and unresectable radioresistant tumors.

  7. Excellent Local Control With Stereotactic Radiotherapy Boost After External Beam Radiotherapy in Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Hara, Wendy; Loo, Billy W.; Goffinet, Don R.; Chang, Steven D.; Adler, John R.; Pinto, Harlan A.; Fee, Willard E.; Kaplan, Michael J.; Fischbein, Nancy J.; Le, Quynh-Thu

    2008-06-01

    Purpose: To determine long-term outcomes in patients receiving stereotactic radiotherapy (SRT) as a boost after external beam radiotherapy (EBRT) for locally advanced nasopharyngeal carcinoma (NPC). Methods and Materials: Eight-two patients received an SRT boost after EBRT between September 1992 and July 2006. Nine patients had T1, 30 had T2, 12 had T3, and 31 had T4 tumors. Sixteen patients had Stage II, 19 had Stage III, and 47 had Stage IV disease. Patients received 66 Gy of EBRT followed by a single-fraction SRT boost of 7-15 Gy, delivered 2-6 weeks after EBRT. Seventy patients also received cisplatin-based chemotherapy delivered concurrently with and adjuvant to radiotherapy. Results: At a median follow-up of 40.7 months (range, 6.5-144.2 months) for living patients, there was only 1 local failure in a patient with a T4 tumor. At 5 years, the freedom from local relapse rate was 98%, freedom from nodal relapse 83%, freedom from distant metastasis 68%, freedom from any relapse 67%, and overall survival 69%. Late toxicity included radiation-related retinopathy in 3, carotid aneurysm in 1, and radiographic temporal lobe necrosis in 10 patients, of whom 2 patients were symptomatic with seizures. Of 10 patients with temporal lobe necrosis, 9 had T4 tumors. Conclusion: Stereotactic radiotherapy boost after EBRT provides excellent local control for patients with NPC. Improved target delineation and dose homogeneity of radiation delivery for both EBRT and SRT is important to avoid long-term complications. Better systemic therapies for distant control are needed.

  8. Big Data Analytics for Prostate Radiotherapy

    PubMed Central

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose–volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the “RadoncSpace”) in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  9. Clinical Applications of 3-D Conformal Radiotherapy

    NASA Astrophysics Data System (ADS)

    Miralbell, Raymond

    Although a significant improvement in cancer cure (i.e. 20% increment) has been obtained in the last 2-3 decades, 30-40% of patients still fail locally after curative radiotherapy. In order to improve local tumor control rates with radiotherapy high doses to the tumor volume are frequently necessary. Three-dimensional conformal radiation therapy (3-D CRT) is used to denote a spectrum of radiation planning and delivery techniques that rely on three-dimensional imaging to define the target (tumor) and to distinguish it from normal tissues. Modern, high-precision radiotherapy (RT) techniques are needed in order to implement the goal of optimal tumor destruction delivering minimal dose to the non-target normal tissues. A better target definition is nowadays possible with contemporary imaging (computerized tomography, magnetic resonance imaging, and positron emission tomography) and image registration technology. A highly precise dose distributions can be obtained with optimal 3-D CRT treatment delivery techniques such as stereotactic RT, intensity modulated RT (IMRT), or protontherapy (the latter allowing for in-depth conformation). Patient daily set-up repositioning and internal organ immobilization systems are necessary before considering to undertake any of the above mentioned high-precision treatment approaches. Prostate cancer, brain tumors, and base of skull malignancies are among the sites most benefitting of dose escalation approaches. Nevertheless, a significant dose reduction to the normal tissues in the vicinity of the irradiated tumor also achievable with optimal 3-D CRT may also be a major issue in the treatment of pediatric tumors in order to preserve growth, normal development, and to reduce the risk of developing radiation induced diseases such as cancer or endocrinologic disorders.

  10. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  11. Radiotherapy of chondrosarcoma of bone

    SciTech Connect

    Harwood, A.R.; Krajbich, J.I.; Fornasier, V.L.

    1980-06-01

    A retrospective analysis of 31 cases of chondrosarcoma of bone treated by radiotherapy is presented. In comparison with other large series, our group of patients were found to have been unfavourably selected with respect to the known prognostic factors: histology site, adequacy of operative treatment, and presenting symptoms. Twelve patients with primary chondrosarcoma were radically irradiated; 6 of these 12 have been alive and well without tumor for periods ranging from three and a half to 16 years and 3 of these are alive and well for 15 years or more following radiotherapy. The other 6 patients responded or desease stabilized following radiotherapy for periods ranging from 16 months to eight years. One poorly differentiated tumor was radically irradiated and did not respond. Eleven patients were irradiated palliatively, generally with low doses of irradiation, and only 4 responded transiently for periods ranging from three to 12 months. Seven patients with mesenchymal and dedifferentiated tumors were radically irradiated. Four responded or disease stabilized, and 1 of these patients was alive and well at 3 years; 3 did not respond. Six died with distant metastasis. It is concluded that chondrosarcoma of bone is a radioresponsive tumor and the place of radiotherapy in the treatment of this disease and the reason for its being labelled a radioresistant tumor are discussed. The problems of assessing response of chondrosarcoma to therapy are also discussed. It is suggested that chemotherapy may have a role in the management of mesenchymal and dedifferentiated chondrosarcoma.

  12. Pancreatic cancer: chemotherapy and radiotherapy

    PubMed Central

    Andrén-Sandberg, Åke

    2011-01-01

    Pancreatic cancer in many cases appears in a non-curatively resectable stage when the diagnosis is made. Palliative treatment become an option in the patients with advanced stage. The present article reviewed chemotherapy and radiotherapy in various advanced stage of pancreatic cancer. PMID:22540056

  13. Radiotherapy T1 glottic carcinoma

    SciTech Connect

    Zablow, A.I.; Erba, P.S.; Sanfillippo, L.J.

    1989-11-01

    From 1970 to 1985, curative radiotherapy was administered to 63 patients with stage I carcinoma of the true vocal cords. Precision radiotherapeutic technique yields cure rates comparable to surgical results. Good voice quality was preserved in a high percentage of patients.

  14. [Conformal radiotherapy: principles and classification].

    PubMed

    Rosenwald, J C; Gaboriaud, G; Pontvert, D

    1999-01-01

    'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during, the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2.

  15. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  16. Dose masking feature for BNCT radiotherapy planning

    DOEpatents

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  17. Lung cancer. Radiotherapy in lung cancer: Actual methods and future trends.

    PubMed

    Maciejczyk, Adam; Skrzypczyńska, Iga; Janiszewska, Marzena

    2014-11-01

    This survey is performed to update knowledge about methods and trends in lung cancer radiotherapy. A significant development has been noticed in radiotherapeutic techniques, but also in the identification of clinical prognostic factors. The improvement in the therapeutic line includes: application of the four-dimensional computer tomography (4DCT), taking advantage of positron emission tomography (PET-CT), designing of new computational algorithms, allowing more precise irradiation planning, development of treatment precision verification systems and introducing IMRT techniques in chest radiotherapy. The treatment outcomes have improved with high dose radiotherapy, but other fractionation alternations have been investigated as well.

  18. Intraoperative radiotherapy for breast cancer

    PubMed Central

    Williams, Norman R.; Pigott, Katharine H.; Brew-Graves, Chris

    2014-01-01

    Intra-operative radiotherapy (IORT) as a treatment for breast cancer is a relatively new technique that is designed to be a replacement for whole breast external beam radiotherapy (EBRT) in selected women suitable for breast-conserving therapy. This article reviews twelve reasons for the use of the technique, with a particular emphasis on targeted intra-operative radiotherapy (TARGIT) which uses X-rays generated from a portable device within the operating theatre immediately after the breast tumour (and surrounding margin of healthy tissue) has been removed. The delivery of a single fraction of radiotherapy directly to the tumour bed at the time of surgery, with the capability of adding EBRT at a later date if required (risk-adaptive technique) is discussed in light of recent results from a large multinational randomised controlled trial comparing TARGIT with EBRT. The technique avoids irradiation of normal tissues such as skin, heart, lungs, ribs and spine, and has been shown to improve cosmetic outcome when compared with EBRT. Beneficial aspects to both institutional and societal economics are discussed, together with evidence demonstrating excellent patient satisfaction and quality of life. There is a discussion of the published evidence regarding the use of IORT twice in the same breast (for new primary cancers) and in patients who would never be considered for EBRT because of their special circumstances (such as the frail, the elderly, or those with collagen vascular disease). Finally, there is a discussion of the role of the TARGIT Academy in developing and sustaining high standards in the use of the technique. PMID:25083504

  19. Treatment of Retinoblastoma: The Role of External Beam Radiotherapy

    PubMed Central

    Park, Younghee

    2015-01-01

    The risk of radiotherapy-related secondary cancers in children with constitutional retinoblastoma 1 (RB1) mutations has led to reduced use of external beam radiotherapy (EBRT) for RB. Presently, tumor reduction with chemotherapy with or without focal surgery (chemosurgery) is most commonly undertaken; EBRT is avoided as much as possible and is considered only as the last treatment option prior to enucleation. Nevertheless, approximately 80% of patients are diagnosed at a locally advanced stage, and only 20-25% of early stage RB patients can be cured with a chemosurgery strategy. As a whole, chemotherapy fails in more than two-thirds of eyes with advanced stage disease, requiring EBRT or enucleation. Radiotherapy is still considered necessary for patients with large tumor(s) who are not candidates for chemosurgery but who have visual potential. When radiation therapy is indicated, the lowest possible radiation dose combined with systemic or local chemotherapy and focal surgery may yield the best clinical outcomes in terms of local control and treatment-related toxicity. Proton beam therapy is one EBRT method that can be used for treatment of RB and reduces the radiation dose delivered to the adjacent orbital bone while maintaining an adequate dose to the tumor. To maximize the therapeutic success of treatment of advanced RB, the possibility of integrating radiotherapy at early stages of treatment may need to be discussed by a multidisciplinary team, rather than considering EBRT as only a last treatment option. PMID:26446627

  20. Impaired B lymphocyte reactivity in patients after radiotherapy

    SciTech Connect

    Sieber, G.; Zierach, P.; Herrmann, F.; Brust, V.J.; Ruehl, H.

    1985-04-01

    The effect of therapeutic irradiation upon B lymphocyte function was investigated in patients with various malignancies. The test system used was a reverse hemolytic plaque assay, which made it possible to study the activation and differentiation of B lymphocytes into immunoglobulin-secreting cells (ISC). Peripheral blood lymphocytes from normal individuals and patients before and after radiotherapy were stimulated in vitro with the polyclonal B cell activator pokeweed mitogen, and the number of ISC was estimated. B cell reactivity was markedly reduced in those patients who had received irradiation within the last six months. In patients in whom radiotherapy had been terminated more than 12 months before the lymphocytes were tested, B cell reactivity was comparable to that of patients prior to radiotherapy. By means of marker analyses, there was a reduction of B lymphocytes and T lymphocytes in the peripheral blood with a preponderance of T helper cells. Several mechanisms--e.g., reduced or defective B cell differentiation, altered regulatory T-helper or suppressor cell function or activation of suppressive monocytes--could be responsible for impaired B cell reactivity after radiotherapy.

  1. Bayesian network models for error detection in radiotherapy plans

    NASA Astrophysics Data System (ADS)

    Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.

    2015-04-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.

  2. Uses of megavoltage digital tomosynthesis in radiotherapy

    NASA Astrophysics Data System (ADS)

    Sarkar, Vikren

    , the software was extended to investigate if the digital tomosynthesis dataset could be used in an adaptive radiotherapy regimen through the use of the Pinnacle treatment planning software to recalculate dose delivered. The feasibility study showed that the megavoltage CBDT visually agreed with corresponding megavoltage computed tomography images. The comparative study showed that the best compromise between imaging quality and imaging dose is obtained when 11 projection images, acquired over an imaging angle of 40°, are used with the filtered back-projection algorithm. DART was successfully used to register reference and daily image sets to within 1 mm in-plane and 2.5 mm out of plane. The DART platform was also effectively used to generate updated files that the Pinnacle treatment planning system used to calculate updated dose in a rigidly shifted patient. These doses were then used to calculate a cumulative dose distribution that could be used by a physician as reference to decide when the treatment plan should be updated. In conclusion, this study showed that a software solution is possible to extend existing electronic portal imaging devices to function as cone-beam digital tomosynthesis devices and achieve daily requirement for image guided intensity modulated radiotherapy treatments. The DART platform also has the potential to be used as a part of adaptive radiotherapy solution.

  3. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  4. Data management and radiotherapy.

    PubMed

    Ragan, D P

    1978-12-01

    The realization by radiation therapists that computerized patient information is a valuable resource is slowly evolving. The uses of this data include business, quality control, and research applications. Computer applications in these areas have been limited due to the small numbers of patients and the complexity of radiation therapy problems. Reductions in costs and improved programming techniques over the last decade have made information processing computer systems feasible. Measureable progress has been made in the areas of billing and scheduling systems, improved department data handling systems, and increased participation in cooperative groups with increased data handling capability. A review of costs in terms of dollars, time, and effort supports the use of information processing systems in therapy.

  5. [Palliative radiotherapy for metastatic bone tumor].

    PubMed

    Yoshida, Kenji; Hiratsuka, Junichi

    2006-04-01

    Bone metastases are one of the most common conditions requiring radiation therapy today. Its main aim is relief of bone pain, prevention of pathological bone fractures as well as its healing, with anticipated effect upon improving mobility, function, and quality of life. For localized bone pain, external beam radiation therapy (EBRT) will be successful in reducing pain in some 80% of patients. However, optimal fraction dose and total doses of EBRT required for pain relief have been unknown. According to the recent reports, carbon ion radiotherapy seems to be a safe and effective modality in the management of metastatic bone tumor not eligible for conventional EBRT. For scattered painful metastases, the systemic administration of radioisotopes is thought to be effective. PMID:16582516

  6. Impact of radiotherapy for pediatric CNS atypical teratoid/rhabdoid tumor (single institute experience)

    SciTech Connect

    Chen, Y.-W.; Wong, T.-T.; Ho, Donald Ming-Tak; Huang, P.-I.; Chang, K.-P.; Shiau, C.-Y.; Yen, S.-H. . E-mail: shyen@vghtpe.gov.tw

    2006-03-15

    Purpose: To assess outcomes and prognostic factors in radiotherapy of pediatric central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Methods and Materials: Seventeen patients with central nervous system AT/RT were retrospectively reviewed after curative radiotherapy as primary or adjuvant therapy between January 1990 and December 2003. Overall and failure-free survival rates were calculated using the Kaplan-Meier method. The log-rank method was used to compare the effects of dosage (>50 Gy or {<=}50 Gy) and treatment duration (>45 days or {<=}45 days). Multivariate analysis was performed for prognostic factors. Results: Median overall survival and failure-free survival were 17 and 11 months, respectively. The 3 longest-surviving patients were older, underwent gross tumor removal, and completed both craniospinal and focal boost irradiation. Multivariate analysis revealed a significant relationship between the following: overall survival and performance status (p = 0.019), failure-free survival and total irradiation dose (p = 0.037), time interval between surgery and radiotherapy initiation (p = 0.031), and time interval between surgery and radiotherapy end point (p = 0.047). Conclusion: Radiotherapy is crucial in the treatment of AT/RT. We recommend initiating radiotherapy immediately postoperatively and before systemic chemotherapy in pediatric patients {>=}3 years of age.

  7. Radiotherapy in patients with connective tissue diseases.

    PubMed

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy.

  8. Management of radiotherapy-induced skin reactions.

    PubMed

    Trueman, Ellen

    2015-04-01

    Radiotherapy is a highly effective cancer treatment that not only offers cure but also excellent palliation of disease related symptoms and complications. Although radiotherapy is primarily an outpatient treatment, delivered within specialist centres, a diverse range of health professionals may be involved in the treatment pathway before, during and after treatment. Radiotherapy can, and does, make a significant contribution to improving a patient's wellbeing through effective symptom management. However, treatment-related side-effects do occur, with an acute skin reaction being one of the most common. It is imperative that radiotherapy-induced skin reactions are correctly assessed and appropriately managed in promoting patient comfort, treatment compliance and enhanced quality of life. This article describes how the use of a recognised assessment tool and evidence-based guidelines can facilitate consistent, high-quality care in the management of radiotherapy-induced skin reactions.

  9. Hadron accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan

    2014-04-01

    Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.

  10. Monte Carlo verification of gel dosimetry measurements for stereotactic radiotherapy

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Taylor, M. L.; Crowe, S. B.; Dunn, L.; Franich, R. D.; Kenny, J.; Knight, R. T.; Trapp, J. V.

    2012-06-01

    The quality assurance of stereotactic radiotherapy and radiosurgery treatments requires the use of small-field dose measurements that can be experimentally challenging. This study used Monte Carlo simulations to establish that PAGAT dosimetry gel can be used to provide accurate, high-resolution, three-dimensional dose measurements of stereotactic radiotherapy fields. A small cylindrical container (4 cm height, 4.2 cm diameter) was filled with PAGAT gel, placed in the parietal region inside a CIRS head phantom and irradiated with a 12-field stereotactic radiotherapy plan. The resulting three-dimensional dose measurement was read out using an optical CT scanner and compared with the treatment planning prediction of the dose delivered to the gel during the treatment. A BEAMnrc/DOSXYZnrc simulation of this treatment was completed, to provide a standard against which the accuracy of the gel measurement could be gauged. The three-dimensional dose distributions obtained from Monte Carlo and from the gel measurement were found to be in better agreement with each other than with the dose distribution provided by the treatment planning system's pencil beam calculation. Both sets of data showed close agreement with the treatment planning system's dose distribution through the centre of the irradiated volume and substantial disagreement with the treatment planning system at the penumbrae. The Monte Carlo calculations and gel measurements both indicated that the treated volume was up to 3 mm narrower, with steeper penumbrae and more variable out-of-field dose, than predicted by the treatment planning system. The Monte Carlo simulations allowed the accuracy of the PAGAT gel dosimeter to be verified in this case, allowing PAGAT gel to be utilized in the measurement of dose from stereotactic and other radiotherapy treatments, with greater confidence in the future. Experimental aspects of this work were originally presented at the Engineering and Physical Sciences in Medicine

  11. Optical spectroscopy of radiotherapy and photodynamic therapy responses in normal rat skin shows vascular breakdown products

    NASA Astrophysics Data System (ADS)

    Teles de Andrade, Cintia; Nogueira, Marcelo S.; Kanick, Stephen C.; Marra, Kayla; Gunn, Jason; Andreozzi, Jacqueline; Samkoe, Kimberley S.; Kurachi, Cristina; Pogue, Brian W.

    2016-03-01

    Photodynamic therapy (PDT) and radiotherapy are non-systemic cancer treatment options with different mechanisms of damage. So combining these techniques has been shown to have some synergy, and can mitigate their limitations such as low PDT light penetration or radiotherapy side effects. The present study monitored the induced tissue changes after PDT, radiotherapy, and a combination protocol in normal rat skin, using an optical spectroscopy system to track the observed biophysical changes. The Wistar rats were treated with one of the protocols: PDT followed by radiotherapy, PDT, radiotherapy and radiotherapy followed by PDT. Reflectance spectra were collected in order to observe the effects of these combined therapies, especially targeting vascular response. From the reflectance, information about oxygen saturation, met-hemoglobin and bilirubin concentration, blood volume fraction (BVF) and vessel radius were extracted from model fitting of the spectra. The rats were monitored for 24 hours after treatment. Results showed that there was no significant variation in the vessel size or BVF after the treatments. However, the PDT caused a significant increase in the met-hemoglobin and bilirubin concentrations, indicating an important blood breakdown. These results may provide an important clue on how the damage establishment takes place, helping to understand the effect of the combination of those techniques in order to verify the existence of a known synergistic effect.

  12. [Indications for radiotherapy of rectal cancer].

    PubMed

    Winkler, R; Franke, H D; Dörner, A

    1990-01-01

    Surgery and radiotherapy complete each other in local control of suffering from rectal carcinoma. A radiotherapeutic effect on tumor is secured often. The adjuvant radiotherapy is the most interesting indication, though the most controversial as present too. Analysing all data and with experiences of an own irradiation study we have not any doubt that the indication is qualified for a combined therapy, if the therapeutic aim with priority is to prevent a local relapse as the most frequent and complained of form of therapeutic failure. In this problem, radical irradiation forms, as pre- and accumulating irradiation (sandwich-technique) and after-irradiation, render superior to an exclusive pre irradiation. In result of this study we practise a preirradiation of 25 Gy with immediately following operation and an accumulating irradiation to 50 Gy in proved high-risk-stage (T greater than or equal to 3 NoMo,Tx N1-3 Mo). If there is a primary local incurability by tumor invasion into the neighbourhood a pre-irradiation is done with 50 Gy and following explorative laparatomy within 4-6 weeks. Nearly 60% of these tumors become operable after that. Likewise we practise in unirradiated patients with locoregional tumor recurrence. Also here the extirpation quota of patients with general or systemic incurability, that a stoma construction is required in, we carry out a transanal tumor reduction and irradiate with 50 Gy after that. Especially this therapeutic principle has proved its worth in patients that are past eighty. Here with acceptable living quality and avoiding a stoma construction a survival can be reached that corresponds to the statistical survival of this stage of life. PMID:2101452

  13. Quality assurance of onboard megavoltage computed tomography imaging and target localization systems for on- and off-line image-guided radiotherapy.

    PubMed

    Langen, Katja M; Meeks, Sanford L; Pouliot, Jean

    2008-01-01

    We reviewed the quality assurance procedures that have been used to test fan- and cone-beam megavoltage-based in-room imaging systems. Phantom-based tests have been used to establish the geometric accuracy and precision of megavoltage-based systems. However, the clinical implementation of any system is accompanied by challenges that are best tested in a clinical setting using clinical images. To objectively judge and monitor image quality, a set of standard tests and phantoms can be used. The image noise and spatial and contrast resolution have been assessed using standard computed tomography phantoms. The dose to the patient resulting from the imaging procedure can be determined using calculations or measurements. The off-line use of patient images is of interest for the evaluation of dosimetric changes throughout the treatment course. The accuracy of the dosimetric calculations based on the megavoltage images has been tested for the fan- and cone-beam systems. Some of the described tests are typically performed before the clinical implementation of the imaging system; others are suited to monitor the system's performances.

  14. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  15. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  16. An 87-year-old patient with repeated oligorecurrences over six years whose disease were treated with radiotherapy alone

    PubMed Central

    2014-01-01

    In the clinical state of oligometastases or oligorecurrence, a transitional state between localized and widespread systemic disease, local control of the disease may yield improved systemic control. Radiotherapy may be a good means for controlling oligometastatic tumors, particularly in very old patients for whom surgery may be infeasible. A combination of systemic therapy and local therapy is necessary to prevent systemic progression. Some kinds of cancers found in the elderly are known to be somewhat indolent for systemic progression. So, for very old patients who refuse or cannot tolerate chemotherapy, the use of radical radiotherapy alone to treat oligorecurrences may be very helpful. We successfully treated an 87-year-old patient who had been diagnosed with oligorecurrences three times over six years with radiotherapy alone. The patient is now, about four years after his first radiotherapy for liver metastasis, alive without any evidence of cancer and with fully active performance status. PMID:25568856

  17. An imaging informatics-based system to support animal studies for treating pain in spinal cord injury utilizing proton-beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Verma, Sneha K.; Liu, Brent J.; Gridley, Daila S.; Mao, Xiao W.; Kotha, Nikhil

    2015-03-01

    In previous years we demonstrated an imaging informatics system designed to support multi-institutional research focused on the utilization of proton radiation for treating spinal cord injury (SCI)-related pain. This year we will demonstrate an update on the system with new modules added to perform image processing on evaluation data using immunhistochemistry methods to observe effects of proton therapy. The overarching goal of the research is to determine the effectiveness of using the proton beam for treating SCI-related neuropathic pain as an alternative to invasive surgical lesioning. The research is a joint collaboration between three major institutes, University of Southern California (data collection/integration and image analysis), Spinal Cord Institute VA Healthcare System, Long Beach (patient subject recruitment), and Loma Linda University and Medical Center (human and preclinical animal studies). The system that we are presenting is one of its kind which is capable of integrating a large range of data types, including text data, imaging data, DICOM objects from proton therapy treatment and pathological data. For multi-institutional studies, keeping data secure and integrated is very crucial. Different kinds of data within the study workflow are generated at different stages and different groups of people who process and analyze them in order to see hidden patterns within healthcare data from a broader perspective. The uniqueness of our system relies on the fact that it is platform independent and web-based which makes it very useful in such a large-scale study.

  18. Whole-brain radiotherapy and high-dose methylprednisolone for elderly patients with primary central nervous system lymphoma: Results of North Central Cancer Treatment Group (NCCTG) 96-73-51

    SciTech Connect

    Laack, Nadia N.; Ballman, Karla V.; Brown, Paul B.; O'Neill, Brian Patrick . E-mail: boneill@mayo.edu

    2006-08-01

    Purpose: The aim of this study was to evaluate the efficacy, toxicity, and survival of whole-brain radiotherapy-treated (WBRT) and high-dose methylprednisolone (HDMP)-treated in elderly patients with primary central nervous system lymphoma (PCNSL). Methods and Materials: Patients with PCNSL who were 70 years and older received 1 g of methylprednisolone daily for 5 days, 30 days after WBRT. Patients then received 1 g of methylprednisolone every 28 days until progression. The primary endpoint was overall survival (OS) at 6 months. Results were compared with those in patients on the previous North Central Cancer Treatment Group (NCCTG) trial who received pre-WBRT cytoxan, adriamycin, vincristine, prednisone (CHOP) and high-dose cytarabine (CHOP-WBRT). A planned interim analysis was performed. The current regimen would be considered inactive if survival was not improved from patients treated with CHOP-WBRT. Results: Nineteen patients were accrued between 1998 and 2003. Median age was 76 years. Interim analysis revealed a 6-month survival of 33%, resulting in closure of the trial. Toxicity, OS, and event-free survival (EFS) were similar to those in patients more than 70 years of age who received CHOP-WBRT. The subgroup of patients who received HDMP had longer OS (12.1 vs. 7.0 months, p = 0.76) and EFS (11.7 vs. 4.0 months, p = 0.04) compared with the CHOP-WBRT patients alive 60 days after the start of treatment. Conclusions: Patients on-study long enough to receive HDMP had prolongation of OS and EFS compared to patients receiving CHOP-WBRT. Although the numbers of patients are too small for statistical conclusions, the HDMP regimen deserves further study.

  19. Commissioning and quality assurance of the X-ray volume Imaging system of an image-guided radiotherapy capable linear accelerator

    PubMed Central

    Muralidhar, K. R.; Murthy, P. Narayana; Kumar, Rajneesh

    2008-01-01

    An Image-Guided Radiotherapy–capable linear accelerator (Elekta Synergy) was installed at our hospital, which is equipped with a kV x-ray volume imaging (XVI) system and electronic portal imaging device (iViewGT). The objective of this presentation is to describe the results of commissioning measurements carried out on the XVI facility to verify the manufacturer's specifications and also to evolve a QA schedule which can be used to test its performance routinely. The QA program consists of a series of tests (safety features, geometric accuracy, and image quality). These tests were found to be useful to assess the performance of the XVI system and also proved that XVI system is very suitable for image-guided high-precision radiation therapy. PMID:19893694

  20. Stereotactic body radiotherapy: current strategies and future development

    PubMed Central

    2016-01-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  1. Stereotactic body radiotherapy: current strategies and future development

    PubMed Central

    2016-01-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon.

  2. Stereotactic body radiotherapy: current strategies and future development.

    PubMed

    Tsang, Maverick W K

    2016-07-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  3. VERO® radiotherapy for low burden cancer: 789 patients with 957 lesions

    PubMed Central

    Orecchia, R; Surgo, A; Muto, M; Ferrari, A; Piperno, G; Gerardi, MA; Comi, S; Garibaldi, C; Ciardo, D; Bazani, A; Golino, F; Pansini, F; Fodor, C; Romanelli, P; Maestri, D; Scroffi, V; Mazza, S; Jereczek-Fossa, BA

    2016-01-01

    Purpose The aim of this retrospective study is to evaluate patient profile, feasibility, and acute toxicity of RadioTherapy (RT) delivered by VERO® in the first 20 months of clinical activity. Methods Inclusion criteria: 1) adult patients; 2) limited volume cancer (M0 or oligometastatic); 3) small extracranial lesions; 4) treatment between April 2012 and December 2013 and 5) written informed consent. Two techniques were employed: intensity modulated radiotherapy (IMRT) and stereotactic body radiotherapy (SBRT). Toxicity was evaluated using Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer (RTOG/EORTC) criteria. Results Between April 2012 and December 2013, 789 consecutive patients (957 lesions) were treated. In 84% of them one lesion was treated and in 16% more than one lesion were treated synchronously/metachronously; first radiotherapy course in 85%, re-irradiation in 13%, and boost in 2% of cases. The treated region included pelvis 46%, thorax 38%, upper abdomen 15%, and neck 1%. Radiotherapy schedules included <5 and >5 fractions in 75% and 25% respectively. All patients completed the planned treatment and an acceptable acute toxicity was observed. Conclusions RT delivered by VERO® was administrated predominantly to thoracic and pelvic lesions (lung and urologic tumours) using hypofractionation. It is a feasible approach for limited burden cancer offering short and well accepted treatment with favourable acute toxicity profile. Further investigation including dose escalation and other available VERO® functionalities such as real-time dynamic tumour tracking is warranted in order to fully evaluate this innovative radiotherapy system. PMID:27729942

  4. Role of radiotherapy in the management of hepatocellular carcinoma: A systematic review

    PubMed Central

    Kalogeridi, Maria-Aggeliki; Zygogianni, Anna; Kyrgias, George; Kouvaris, John; Chatziioannou, Sofia; Kelekis, Nikolaos; Kouloulias, Vassilis

    2015-01-01

    Many patients with hepatocellular carcinoma (HCC) present with advanced disease, not amenable to curative therapies such as surgery, transplantation or radiofrequency ablation. Treatment options for this group of patients include transarterial chemoembolization (TACE) and radiation therapy. Especially TACE, delivering a highly concentrated dose of chemotherapy to tumor cells while minimizing systemic toxicity of chemotherapy, has given favorable results on local control and survival. Radiotherapy, as a therapeutic modality of internal radiation therapy with radioisotopes, has also achieved efficacious tumor control in advanced disease. On the contrary, the role of external beam radiotherapy for HCC has been limited in the past, due to the low tolerance of surrounding normal liver parenchyma. However, technological innovations in the field of radiotherapy treatment planning and delivery, have provided the means of delivering radical doses to the tumor, while sparing normal tissues. Advanced and highly conformal radiotherapy approaches such as stereotactic body radiotherapy and proton therapy, evaluated for efficacy and safety for HCC, report encouraging results. In this review, we present the role of radiotherapy in hepatocellular carcinoma patients not suitable for radical treatment. PMID:25625001

  5. Four-Dimensional Computed Tomography Based Respiratory-Gated Radiotherapy with Respiratory Guidance System: Analysis of Respiratory Signals and Dosimetric Comparison

    PubMed Central

    Kim, Chul Yong; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Lee, Suk; Kim, Young Bum

    2014-01-01

    Purpose. To investigate the effectiveness of respiratory guidance system in 4-dimensional computed tomography (4DCT) based respiratory-gated radiation therapy (RGRT) by comparing respiratory signals and dosimetric analysis of treatment plans. Methods. The respiratory amplitude and period of the free, the audio device-guided, and the complex system-guided breathing were evaluated in eleven patients with lung or liver cancers. The dosimetric parameters were assessed by comparing free breathing CT plan and 4DCT-based 30–70% maximal intensity projection (MIP) plan. Results. The use of complex system-guided breathing showed significantly less variation in respiratory amplitude and period compared to the free or audio-guided breathing regarding the root mean square errors (RMSE) of full inspiration (P = 0.031), full expiration (P = 0.007), and period (P = 0.007). The dosimetric parameters including V5 Gy, V10 Gy, V20 Gy, V30 Gy, V40 Gy, and V50 Gy of normal liver or lung in 4DCT MIP plan were superior over free breathing CT plan. Conclusions. The reproducibility and regularity of respiratory amplitude and period were significantly improved with the complex system-guided breathing compared to the free or the audio-guided breathing. In addition, the treatment plan based on the 4D CT-based MIP images acquired with the complex system guided breathing showed better normal tissue sparing than that on the free breathing CT. PMID:25276775

  6. [Current status and perspectives of radiotherapy for esophageal cancer].

    PubMed

    Wu, S X; Wang, L H

    2016-09-23

    Esophageal cancer is one of the most common cancers in China. More than 80% of esophageal cancer patients are diagnosed at a late stage and are not eligible for surgery. Radiotherapy is one of the most important modalities in esophageal cancer treatment. Here we reviewed the advances in esophageal cancer radiotherapy and radiotherapy-based combined-modality therapy, such as optimization of radiation dose and target volume, application of precise radiotherapy technique and the integration of radiotherapy with chemotherapy and targeted therapy.

  7. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    NASA Astrophysics Data System (ADS)

    Montes-Rodríguez, María de los Ángeles; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Mitsoura, Eleni; Santiago-Concha, Bernardino Gabriel

    2014-11-01

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  8. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    SciTech Connect

    Montes-Rodríguez, María de los Ángeles Mitsoura, Eleni; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Santiago-Concha, Bernardino Gabriel

    2014-11-07

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  9. [Conformal radiotherapy of brain tumors].

    PubMed

    Haie-Meder, C; Beaudré, A; Breton, C; Biron, B; Cordova, A; Dubray, B; Mazeron, J J

    1999-01-01

    Conformal irradiation of brain tumours is based on the three-dimensional reconstruction of the targeted volumes and at-risk organ images, the three-dimensional calculation of the dose distribution and a treatment device (immobilisation, beam energy, collimation, etc.) adapted to the high precision required by the procedure. Each step requires an appropriate methodology and a quality insurance program. Specific difficulties in brain tumour management are related to GTV and CTV definition depending upon the histological type, the quality of the surgical resection and the medical team. Clinical studies have reported dose escalation trials, mostly in high-grade gliomas and tumours at the base of the skull. Clinical data are now providing a better knowledge of the tolerance of normal tissues. As for small tumours, the implementation of beam intensity modulation is likely to narrow the gap between conformal and stereotaxic radiotherapy. PMID:10572510

  10. [Radiotherapy of benign intracranial tumors].

    PubMed

    Delannes, M; Latorzeff, I; Chand, M E; Huchet, A; Dupin, C; Colin, P

    2016-09-01

    Most of the benign intracranial tumors are meningiomas, vestibular schwannomas, pituitary adenomas, craniopharyngiomas, and glomus tumors. Some of them grow very slowly, and can be observed without specific treatment, especially if they are asymptomatic. Symptomatic or growing tumors are treated by surgery, which is the reference treatment. When surgery is not possible, due to the location of the lesion, or general conditions, radiotherapy can be applied, as it is if there is a postoperative growing residual tumor, or a local relapse. Indications have to be discussed in polydisciplinary meetings, with precise evaluation of the benefit and risks of the treatments. The techniques to be used are the most modern ones, as multimodal imaging and image-guided radiation therapy. Stereotactic treatments, using fractionated or single doses depending on the size or the location of the tumors, are commonly realized, to avoid as much a possible the occurrence of late side effects. PMID:27523417

  11. SU-E-J-129: A Strategy to Consolidate the Image Database of a VERO Unit Into a Radiotherapy Management System

    SciTech Connect

    Yan, Y; Medin, P; Yordy, J; Zhao, B; Jiang, S

    2014-06-01

    Purpose: To present a strategy to integrate the imaging database of a VERO unit with a treatment management system (TMS) to improve clinical workflow and consolidate image data to facilitate clinical quality control and documentation. Methods: A VERO unit is equipped with both kV and MV imaging capabilities for IGRT treatments. It has its own imaging database behind a firewall. It has been a challenge to transfer images on this unit to a TMS in a radiation therapy clinic so that registered images can be reviewed remotely with an approval or rejection record. In this study, a software system, iPump-VERO, was developed to connect VERO and a TMS in our clinic. The patient database folder on the VERO unit was mapped to a read-only folder on a file server outside VERO firewall. The application runs on a regular computer with the read access to the patient database folder. It finds the latest registered images and fuses them in one of six predefined patterns before sends them via DICOM connection to the TMS. The residual image registration errors will be overlaid on the fused image to facilitate image review. Results: The fused images of either registered kV planar images or CBCT images are fully DICOM compatible. A sentinel module is built to sense new registered images with negligible computing resources from the VERO ExacTrac imaging computer. It takes a few seconds to fuse registered images and send them to the TMS. The whole process is automated without any human intervention. Conclusion: Transferring images in DICOM connection is the easiest way to consolidate images of various sources in your TMS. Technically the attending does not have to go to the VERO treatment console to review image registration prior delivery. It is a useful tool for a busy clinic with a VERO unit.

  12. Estimation of patient setup uncertainty using BrainLAB Exatrac X-Ray 6D system in image-guided radiotherapy.

    PubMed

    Infusino, Erminia; Trodella, Lucio; Ramella, Sara; D'Angelillo, Rolando M; Greco, Carlo; Iurato, Aurelia; Trodella, Luca E; Nacca, Alessandro; Cornacchione, Patrizia; Mameli, Alessandra

    2015-03-08

    The purpose of this study was to evaluate setup uncertainties for brain sites with ExacTrac X-Ray 6D system and to provide optimal margin guidelines. Fifteen patients with brain tumor were included in this study. Two X-ray images with ExacTrac X-Ray 6D system were used to verify patient position and tumor target localization before each treatment. The 6D fusion software first generates various sets of DRRs with position variations in both three translational and three rotational directions (six degrees of freedom) for the CT images. Setup variations (translation and rotation) after correction were recorded and corrected before treatment. The 3D deviations are expressed as mean ± standard deviation. The random error (Σ(σi)), systematic error (μi), and group systematic error (M(μi)) for the different X-ray were calculated using the definitions of van Herk.(1) Mean setup errors were calculated from X-ray images acquired after all fractions. There is moderate patient-to-patient variation in the vertical direction and small variations in systematic errors and magnitudes of random errors are smaller. The global systematic errors were measured to be less than 2.0 mm in each direction. Random component of all patients are smaller ranging from 0.1-0.3 mm small. The safety margin (SM) to the lateral, is 0.5 mm and 2.6 mm for van Herk(1) and Stroom et al.,(2) respectively, craniocaudal axis is 1.5 mm and 3.4 mm, respectively, and with respect to the antero-posterior axis, 2.3 mm and 3.9 mm. Daily X-ray imaging is essential to compare and assess the accuracy of treatment delivery to different anatomical locations.

  13. Improving external beam radiotherapy by combination with internal irradiation.

    PubMed

    Dietrich, A; Koi, L; Zöphel, K; Sihver, W; Kotzerke, J; Baumann, M; Krause, M

    2015-07-01

    The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed.

  14. Energy Modulated Photon Radiotherapy: A Monte Carlo Feasibility Study

    PubMed Central

    Zhang, Ying; Feng, Yuanming; Ming, Xin

    2016-01-01

    A novel treatment modality termed energy modulated photon radiotherapy (EMXRT) was investigated. The first step of EMXRT was to determine beam energy for each gantry angle/anatomy configuration from a pool of photon energy beams (2 to 10 MV) with a newly developed energy selector. An inverse planning system using gradient search algorithm was then employed to optimize photon beam intensity of various beam energies based on presimulated Monte Carlo pencil beam dose distributions in patient anatomy. Finally, 3D dose distributions in six patients of different tumor sites were simulated with Monte Carlo method and compared between EMXRT plans and clinical IMRT plans. Compared to current IMRT technique, the proposed EMXRT method could offer a better paradigm for the radiotherapy of lung cancers and pediatric brain tumors in terms of normal tissue sparing and integral dose. For prostate, head and neck, spine, and thyroid lesions, the EMXRT plans were generally comparable to the IMRT plans. Our feasibility study indicated that lower energy (<6 MV) photon beams could be considered in modern radiotherapy treatment planning to achieve a more personalized care for individual patient with dosimetric gains. PMID:26977413

  15. Improving external beam radiotherapy by combination with internal irradiation

    PubMed Central

    Koi, L; Zöphel, K; Sihver, W; Kotzerke, J; Baumann, M; Krause, M

    2015-01-01

    The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed. PMID:25782328

  16. [Radiotherapy of carcinoma of the salivary glands].

    PubMed

    Servagi-Vernat, S; Tochet, F

    2016-09-01

    Indication, doses, and technique of radiotherapy for salivary glands carcinoma are presented, and the contribution of neutrons and carbon ions. The recommendations for delineation of the target volumes and organs at risk are detailed. PMID:27521038

  17. Imaging Instrumentation and Techniques for Precision Radiotherapy

    NASA Astrophysics Data System (ADS)

    Parodi, Katia; Parodi, Katia; Thieke, Christian; Thieke, Christian

    Over the last decade, several technological advances have considerably improved the achievable precision of dose delivery in radiation therapy. Clinical exploitation of the superior tumor-dose conformality offered by modern radiotherapy techniques like intensity-modulated radiotherapy and ion beam therapy requires morphological and functional assessment of the tumor during the entire therapy chain from treatment planning to beam application and treatment response evaluation. This chapter will address the main rationale and role of imaging in state-of-the-art external beam radiotherapy. Moreover, it will present the status of novel imaging instrumentation and techniques being nowadays introduced in clinical use or still under development for image guidance and, ultimately, dose guidance of precision radiotherapy.

  18. Historical aspects of heavy ion radiotherapy

    SciTech Connect

    Raju, M.R.

    1995-03-01

    This paper presents historical developments of heavy-ion radiotherapy including discussion of HILAC and HIMAC and discussion of cooperation between Japan and the United States, along with personal reflections.

  19. Heavy particle radiotherapy: prospects and pitfalls

    SciTech Connect

    Faju, M.R.

    1980-01-01

    The use of heavy particles in radiotherapy of tumor volumes is examined. Particles considered are protons, helium ions, heavy ions, negative pions, and fast neutrons. Advantages and disadvantages are discussed. (ACR)

  20. Efficacy of radiotherapy in optic gliomas.

    PubMed

    Gould, R J; Hilal, S K; Chutorian, A M

    1987-01-01

    Twenty-five children with optic gliomas were evaluated over a seven year period by sequential computed axial tomography in order to determine the efficacy of radiotherapy as a treatment modality. Indices of tumor progression or regression included both size and contrast enhancement characteristics. Twenty of 25 patients followed during this period received radiotherapy. Of these patients, ten had tumor regression, nine were stable, and one was worse. This result contrasts with five untreated patients, four of whom had tumor progression and one who was stable (x2 = 18.37, p less than .001). One of the children with tumor progression later received radiotherapy and demonstrated marked tumor regression. Of the 18 treated patients who could be tested reliably, visual function and/or regression occurred in seven children. None of the untreated patients improved. There were no definite complications of radiotherapy in this small group.

  1. Intensity-modulated radiotherapy in the treatment of gynaecological cancers.

    PubMed

    D'Souza, D P; Rumble, R B; Fyles, A; Yaremko, B; Warde, P

    2012-09-01

    Intensity-modulated radiotherapy (IMRT) is a newer method of radiotherapy that uses intensity-modulated beams that can provide multiple intensity levels for any single beam direction and any single source position allowing concave dose distributions and dose gradients with narrower margins than those possible using conventional methods. IMRT is ideal for treating complex treatment volumes and avoiding close proximity organs at risk that may be dose limiting and provides increased tumour control through an escalated dose and reduces normal tissue complications through organ at risk sparing. Given the potential advantages of IMRT and the availability of IMRT-enabled treatment planning systems and linear accelerators, IMRT has been introduced in a number of disease sites. This systematic review examined the evidence for IMRT in the treatment of gynaecological cancers to quantify the potential benefits of this new technology and to make recommendations for radiation treatment programmes considering adopting this technique. Findings were based on a review of four cohort studies, one of which was prospective, including a total of 619 patients. If reducing acute and chronic toxicity are the main outcomes of interest, then IMRT may be considered over three-dimensional conformal radiotherapy for women with gynaecological cancers; if disease-related outcomes are the main outcomes of interest, there are insufficient data to recommend IMRT over three-dimensional conformal radiotherapy. Future research should focus on prospective multicentre studies reporting on both acute and chronic toxicity as well as survival and recurrence. Dose escalation studies should be carried out to investigate the effect of higher doses on disease.

  2. Intensity-modulated radiotherapy in the treatment of prostate cancer.

    PubMed

    Bauman, G; Rumble, R B; Chen, J; Loblaw, A; Warde, P

    2012-09-01

    Three-dimensional conformal radiotherapy (3DCRT) as the primary treatment for prostate cancer has improved outcomes compared with conventional radiotherapy, but with an associated increase in toxicity due to radiation effects on the bladder and rectum. Intensity-modulated radiotherapy (IMRT) is a newer method of radiotherapy that uses intensity-modulated beams that can provide multiple intensity levels for any single beam direction and any single source position allowing concave dose distributions and dose gradients with narrower margins than those possible using conventional methods. IMRT is ideal for treating complex treatment volumes and avoiding close proximity organs at risk that may be dose limiting and provides increased tumour control through an escalated dose and reduces normal tissue complications through organ at risk sparing. Given the potential advantages of IMRT and the availability of IMRT-enabled treatment planning systems and linear accelerators, IMRT has been introduced in a number of disease sites, including prostate cancer. This systematic review examined the evidence for IMRT in the treatment of prostate cancer in order to quantify the potential benefits of this new technology and to make recommendations for radiation treatment programmes considering adopting this technique. The findings were in favour of recommending IMRT over 3DCRT in the radical treatment of localised prostate cancer where doses greater than 70 Gy are required, based on a review of 11 published reports including 4559 patients. There were insufficient data to recommend IMRT over 3DCRT in the postoperative setting. Future research should examine image-guided IMRT in the post-prostatectomy setting, with altered fractionation, and in combination with hormone and chemotherapy.

  3. SU-D-18A-06: Variation of Controlled Breath Hold From CT Simulation to Treatment and Its Dosimetric Impact for Left-Sided Breast Radiotherapy with a Real-Time Optical Tracking System

    SciTech Connect

    Mittauer, K; Deraniyagala, R; Li, J; Lu, B; Liu, C; Lightsey, J; Yan, G

    2014-06-01

    Purpose: Different breath-hold (BH) maneuvers (abdominal breathing vs. chest breathing) during CT simulation and treatment can lead to chest wall positional variation. The purpose of this study is to quantify the variation of active breathing control (ABC)-assisted BH and estimate its dosimetric impact for left-sided whole-breast radiotherapy with a real-time optical tracking system (OTS). Methods: Seven breast cancer patients were included. An in-house OTS tracked an infrared (IR) marker affixed over the xiphoid process of the patient at CT simulation and throughout the treatment course to measure BH variations. Correlation between the IR marker and the breast was studied for dosimetric purposes. The positional variations of 860 BHs were retrospectively incorporated into treatment plans to assess their dosimetric impact on breast and cardiac organs (heart and left anterior descending artery [LAD]). Results: The mean intrafraction variations were 2.8 mm, 2.7 mm, and 1.6 mm in the anteroposterior (AP), craniocaudal (CC), and mediolateral (ML) directions, respectively. Mean stability in any direction was within 1.5 mm. A general trend of BH undershoot at treatment relative to CT simulation was observed with an average of 4.4 mm, 3.6 mm, and 0.1 mm in the AP, CC, and ML directions, respectively. Undershoot up to 12.6 mm was observed for individual patients. The difference between the planned and delivered dose to breast targets was negligible. The average planned/delivered mean heart doses, mean LAD doses, and max LAD doses were 1.4/2.1, 7.4/15.7, and 18.6/31.0 Gy, respectively. Conclusion: Systematic undershoot was observed in ABC-assisted BHs from CT simulation to treatment. Its dosimetric impact on breast coverage was minimized with image guidance, but the benefits of cardiac organ sparing were degraded. A real-time tracking system can be used in junction with the ABC device to improve BH reproducibility.

  4. Radiotherapy in the treatment of vertebral hemangiomas

    SciTech Connect

    Faria, S.L.; Schlupp, W.R.; Chiminazzo, H. Jr.

    1985-02-01

    Symptomatic vertebral hemangiomas are not common. Although radiotherapy has been used as treatment, the data are sparse concerning total dose, fractionation and results. The authors report nine patients with vertebral hemangioma treated with 3000-4000 rad, 200 rad/day, 5 fractions per week, followed from 6 to 62 months. Seventy-seven percent had complete or almost complete disappearance of the symptoms. Radiotherapy schedules are discussed.

  5. Blisters - an unusual effect during radiotherapy.

    PubMed

    Höller, U; Schubert, T; Budach, V; Trefzer, U; Beyer, M

    2013-11-01

    The skin reaction to radiation is regularly monitored in order to detect enhanced radiosensitivity of the patient, unexpected interactions (e.g. with drugs) or any inadvertent overdosage. It is important to distinguish secondary disease from radiation reaction to provide adequate treatment and to avoid unnecessary discontinuation of radiotherapy. A case of bullous eruption or blisters during radiotherapy of the breast is presented. Differential diagnoses bullous pemphigoid, pemphigus vulgaris, and bullous impetigo are discussed and treatment described. PMID:24158604

  6. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    PubMed Central

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  7. Radiotherapy for Vestibular Schwannomas: A Critical Review

    SciTech Connect

    Murphy, Erin S.; Suh, John H.

    2011-03-15

    Vestibular schwannomas are slow-growing tumors of the myelin-forming cells that cover cranial nerve VIII. The treatment options for patients with vestibular schwannoma include active observation, surgical management, and radiotherapy. However, the optimal treatment choice remains controversial. We have reviewed the available data and summarized the radiotherapeutic options, including single-session stereotactic radiosurgery, fractionated conventional radiotherapy, fractionated stereotactic radiotherapy, and proton beam therapy. The comparisons of the various radiotherapy modalities have been based on single-institution experiences, which have shown excellent tumor control rates of 91-100%. Both stereotactic radiosurgery and fractionated stereotactic radiotherapy have successfully improved cranial nerve V and VII preservation to >95%. The mixed data regarding the ideal hearing preservation therapy, inherent biases in patient selection, and differences in outcome analysis have made the comparison across radiotherapeutic modalities difficult. Early experience using proton therapy for vestibular schwannoma treatment demonstrated local control rates of 84-100% but disappointing hearing preservation rates of 33-42%. Efforts to improve radiotherapy delivery will focus on refined dosimetry with the goal of reducing the dose to the critical structures. As future randomized trials are unlikely, we suggest regimented pre- and post-treatment assessments, including validated evaluations of cranial nerves V, VII, and VIII, and quality of life assessments with long-term prospective follow-up. The results from such trials will enhance the understanding of therapy outcomes and improve our ability to inform patients.

  8. Low-cost commercial glass beads as dosimeters in radiotherapy

    NASA Astrophysics Data System (ADS)

    Jafari, S. M.; Bradley, D. A.; Gouldstone, C. A.; Sharpe, P. H. G.; Alalawi, A.; Jordan, T. J.; Clark, C. H.; Nisbet, A.; Spyrou, N. M.

    2014-04-01

    Recent developments in advanced radiotherapy techniques using small field photon beams, require small detectors to determine the delivered dose in steep dose gradient fields. Commercially available glass jewellery beads exhibit thermoluminescent properties and have the potential to be used as dosimeters in radiotherapy due to their small size (<5 mm), low cost, reusability and inert nature. This study investigated the dosimetric characteristics of glass beads. The beads were irradiated by 6 MV photons using a medical linear-accelerator and 60Co gamma rays over doses ranging from 1 to 2500 cGy. A thermoluminescence (TL) system and an electron paramagnetic resonance (EPR) system were employed for read out. Both the TL and EPR studies demonstrated a radiation-induced signal, the sensitivity of which varied with bead colour. White coloured beads proved to be the most sensitive for both systems. The smallest and therefore least sensitive bead sizes allowed measurement of doses of 1 cGy using the TL system while that for the EPR system was approximately 1000 cGy. The fading rate was found to be 10% 30 days after irradiation with both readout systems. The dose response is linear with measured dose over the dose range 1 to 2500 cGy, with an R2 correlation coefficient of greater than 0.999. The batch-to-batch reproducibility of a set of dosimeters after a single irradiation was found to be 3% (1 SD). The reproducibility of individual dosimeters was found to be 1.7%. No measurable angular dependence was found (results agreed within 1%). Dose rate response was found to agree within 1% for dose rates of 100 to 600 cGy/min. These results demonstrate the potential use of glass beads as TL dosimeters over the dose range commonly applied in radiotherapy.

  9. SU-E-J-08: A Hybrid Three Dimensional Registration Framework for Image-Guided Accurate Radiotherapy System ARTS-IGRT

    SciTech Connect

    Wu, Q; Pei, X; Cao, R; Hu, L; Wu, Y

    2014-06-01

    Purpose: The purpose of this work was to develop a registration framework and method based on the software platform of ARTS-IGRT and implement in C++ based on ITK libraries to register CT images and CBCT images. ARTS-IGRT was a part of our self-developed accurate radiation planning system ARTS. Methods: Mutual information (MI) registration treated each voxel equally. Actually, different voxels even having same intensity should be treated differently in the registration procedure. According to their importance values calculated from self-information, a similarity measure was proposed which combined the spatial importance of a voxel with MI (S-MI). For lung registration, Firstly, a global alignment method was adopted to minimize the margin error and achieve the alignment of these two images on the whole. The result obtained at the low resolution level was then interpolated to become the initial conditions for the higher resolution computation. Secondly, a new similarity measurement S-MI was established to quantify how close the two input image volumes were to each other. Finally, Demons model was applied to compute the deformable map. Results: Registration tools were tested for head-neck and lung images and the average region was 128*128*49. The rigid registration took approximately 2 min and converged 10% faster than traditional MI algorithm, the accuracy reached 1mm for head-neck images. For lung images, the improved symmetric Demons registration process was completed in an average of 5 min using a 2.4GHz dual core CPU. Conclusion: A registration framework was developed to correct patient's setup according to register the planning CT volume data and the daily reconstructed 3D CBCT data. The experiments showed that the spatial MI algorithm can be adopted for head-neck images. The improved Demons deformable registration was more suitable to lung images, and rigid alignment should be applied before deformable registration to get more accurate result. Supported by

  10. A set of fortran subroutines for optimizing radiotherapy plans.

    PubMed

    Redpath, A T; Vickery, B L; Wright, D H

    1975-12-01

    Quadratic Programming techniques have been applied to the optimization of radiation field weighting in Radiotherapy planning. Wedge selection has also been included by means of an exhaustive search. The radiation dose at any point in the patient may be constrained to be less than a stated percentage of the tumour dose. The routines have been successfully interfaced into a small computer interactive planning system, but they could represent an even more powerful tool in batch and time sharing systems. Minimum operator intervention is required in their use.

  11. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  12. Automated radiotherapy treatment plan integrity verification

    SciTech Connect

    Yang Deshan; Moore, Kevin L.

    2012-03-15

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  13. Radiotherapy Treatment Planning for Testicular Seminoma

    SciTech Connect

    Wilder, Richard B.; Buyyounouski, Mark K.; Efstathiou, Jason A.; Beard, Clair J.

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  14. Ototoxicity after radiotherapy for head and neck tumors

    SciTech Connect

    Bhandare, Niranjan; Antonelli, Patrick J.; Morris, Christopher G.; Malayapa, Robert S.; Mendenhall, William M. . E-mail: mendewil@shands.ufl.edu

    2007-02-01

    Purpose: To investigate the incidence of radiation-induced ototoxicity according to the total dose delivered to specific parts of the auditory system, fractionation, and chemotherapy. Methods and Materials: Records of 325 patients treated for primary extracranial head and neck tumors with curative intent who received radiotherapy between 1964 and 2000 (median follow-up, 5.4 years) were retrospectively reviewed. Reconstructions of the treatment plans were generated to estimate the doses received by components of the auditory system. Results: Radiotherapy-induced morbidity developed in 41.8% of patients (external ear, 33.2%; middle ear, 28.6%; and inner ear, 26.8%). Univariate/multivariate analyses indicate that total dose received by parts of the auditory system seem to be significant, though fractionation and chemoradiation may contribute to the incidence of ototoxicities. Sensorineural hearing loss (SNHL) was observed in 49 patients (15.1%). Univariate and multivariate analyses indicated that age (p = 0.0177 and p = 0.005) and dose to cochlea (p < 0.0001 and p < 0.0001) were significant, and chemoradiation (p = 0.0281 and p = 0.006) may increase the incidence of SNHL. Five-year and 10-year actuarial risk of clinically overt SNHL increased to 37% (p > 0.0001) above doses of 60.5 Gy compared to 3% at doses below 60.5 Gy. For patients treated with adjuvant chemotherapy, clinically overt SNHL increased to 30% compared to 18% in the no-chemotherapy group at 10 years (p = 0.0281). Conclusion: Radiotherapy toxicity was observed in all parts of the auditory system with median doses for incidence varying between 60 Gy to 66 Gy. Total dose to organ seems to be a significant factor though fractionation and chemo-radiation may contribute to ototoxicities.

  15. Navigated marker placement for motion compensation in radiotherapy

    NASA Astrophysics Data System (ADS)

    Winterstein, A.; März, K.; Franz, A. M.; Hafezi, M.; Fard, N.; Sterzing, F.; Mehrabi, A.; Maier-Hein, L.

    2015-03-01

    Radiotherapy is frequently used to treat unoperated or partially resected tumors. Tumor movement, e.g. caused by respiration, is a major challenge in this context. Markers can be implanted around the tumor prior to radiation therapy for accurate tracking of tumor movement. However, accurate placement of these markers while keeping a secure margin around the target and while taking into account critical structures is a difficult task. Computer-assisted needle insertion has been an active field of research in the past decades. However, the challenge of navigated marker placement for motion compensated radiotherapy has not yet been addressed. This work presents a system to support marker implantation for radiotherapy under consideration of safety margins and optimal marker configuration. It is designed to allow placement of markers both percutaneously and during an open liver surgery. To this end, we adapted the previously proposed EchoTrack system which integrates ultrasound (US) imaging and electromagnetic (EM) tracking in a single mobile modality. The potential of our new marker insertion concept was evaluated in a phantom study by inserting sets of three markers around dedicated targets (n=22) simultaneously spacing the markers evenly around the target as well as placing the markers in a defined distance to the target. In all cases the markers were successfully placed in a configuration fulfilling the predefined criteria. This includes a minimum distance of 18.9 ± 2.4 mm between marker and tumor as well as a divergence of 2.1 ± 1.5 mm from the planned marker positions. We conclude that our system has high potential to facilitate the placement of markers in suitable configurations for surgeons without extensive experience in needle punctions as high quality configurations were obtained even by medical non-experts.

  16. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2014-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  17. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2013-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  18. Peripheral lymphocyte subset variation predicts prostate cancer carbon ion radiotherapy outcomes

    PubMed Central

    Shi, Ze-Liang; Li, Bing-Xin; Wu, Xian-Wei; Li, Ping; Zhang, Qing; Wei, Xun-Bin; Fu, Shen

    2016-01-01

    The immune system plays a complementary role in the cytotoxic activity of radiotherapy. Here, we examined changes in immune cell subsets after heavy ion therapy for prostate cancer. The lymphocyte counts were compared with acute radiotherapy-related toxicity, defined according to the Common Terminology Criteria for Adverse Events, and short-term local efficacy, defined based on prostate-specific antigen concentrations. Confirmed prostate cancer patients who had not received previous radiotherapy were administered carbon ion radiotherapy (CIR) in daily fractions of 2.74 GyE with a total dose of 63-66 GyE. Lymphocyte subset counts were investigated before, during and after radiotherapy, and at a 1 month follow-up. Most notable among our findings, the CD4/CD8 ratio and CD19+ cell counts were consistently higher in patients with a complete response (CR) or partial response (PR) to CIR than in those classified in the stable disease (SD) group (P<0.05 for both). But CD3+ and CD8+ cell counts were lower in the CR and PR groups than in the SD group. These results indicate that variations in peripheral lymphocyte subpopulations are predictive of outcome after CIR for prostate cancer. PMID:27029063

  19. [Image-guided radiotherapy and partial delegation to radiotherapy technicians: Clermont-Ferrand experience].

    PubMed

    Loos, G; Moreau, J; Miroir, J; Benhaïm, C; Biau, J; Caillé, C; Bellière, A; Lapeyre, M

    2013-10-01

    The various image-guided radiotherapy techniques raise the question of how to achieve the control of patient positioning before irradiation session and sharing of tasks between radiation oncologists and radiotherapy technicians. We have put in place procedures and operating methods to make a partial delegation of tasks to radiotherapy technicians and secure the process in three situations: control by orthogonal kV imaging (kV-kV) of bony landmarks, control by kV-kV imaging of intraprostatic fiducial goldmarkers and control by cone beam CT (CBCT) imaging for prostate cancer. Significant medical overtime is required to control these three IGRT techniques. Because of their competence in imaging, these daily controls can be delegated to radiotherapy technicians. However, to secure the process, initial training and regular evaluation are essential. The analysis of the comparison of the use of kV/kV on bone structures allowed us to achieve a partial delegation of control to radiotherapy technicians. Controlling the positioning of the prostate through the use and automatic registration of fiducial goldmarkers allows better tracking of the prostate and can be easily delegated to radiotherapy technicians. The analysis of the use of daily cone beam CT for patients treated with intensity modulated irradiation is underway, and a comparison of practices between radiotherapy technicians and radiation oncologists is ongoing to know if a partial delegation of this control is possible. PMID:24011600

  20. A dose comparison of proton radiotherapy and photon radiotherapy for pediatric brain tumor

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Cho, J. H.

    2014-12-01

    The purpose of this study was to investigate the effectiveness of photon radiotherapy and to compare the dose of treatment planning between proton radiotherapy and 3D conformal radiation therapy (3D-CRT) for pediatric brain tumor patients. This study was conducted in five pediatric brain tumor patients who underwent craniospinal irradiation treatment from October 2013 to April 2014 in the hospital. The study compared organs at risk (OARs) by assessing the dose distribution of normal tissue from the proton plan and 3D-CRT. Furthermore, this study assessed the treatment plans by looking at the homogeneity index (HI) and conformity index (CI). As a result, the study revealed OARs due to the small volume proton radiotherapy dose distribution in the normal tissue. Also, by comparing HI and CI between the 3D-CRT and proton radiotherapy plan, the study found that the dose of proton radiotherapy plan was homogenized. When conducting 3D-CRT and proton radiotherapy in a dose-volume histogram comparison, the dose of distribution turned out to be low. Consequently, proton radiotherapy is used for protecting the normal tissue, and is used in tumor tissue as a homogenized dose for effective treatment.

  1. Volumetric modulated arc therapy for hippocampal-sparing radiotherapy in transformed low-grade glioma: A treatment planning case report.

    PubMed

    Kazda, T; Pospisil, P; Vrzal, M; Sevela, O; Prochazka, T; Jancalek, R; Slampa, P; Laack, N N

    2015-05-01

    Timing of radiotherapy for low-grade gliomas is still controversial due to concerns of possible adverse late effects. Prevention of possible late cognitive sequelae by hippocampal avoidance has shown promise in phase II trials. A patient with progressive low-grade glioma with gradual dedifferentiation into anaplastic astrocytoma is presented along with description of radiotherapy planning process attempting to spare the hippocampus. To our knowledge, this is the first described case using volumetric modulated arc technique to spare hippocampus during transformed low-grade glioma radiotherapy. Using modern intensity-modulated radiotherapy systems it is possible to selectively spare hippocampus together with other standard organs at risk. For selected patients, an attempt to spare hippocampus can be considered as long as other dose characteristics are not significantly compromised compared to standard treatment plan created without any effort to avoid hippocampus. PMID:25835374

  2. Operations experience at the Bevalac radiotherapy facility

    SciTech Connect

    Alonso, J.R.; Criswell, T.L.; Howard, J.; Chu, W.T.; Singh, R.P.; Geller, D.; Nyman, M.

    1981-03-01

    During the first years of Bevalac operation the biomedical effort concentrated on radiobiology work, laying the foundation for patient radiotherapy. A dedicated radiotherapy area was created in 1978, and in 1979 full-scale patient treatment was begun. As of now over 500 treatments with carbon, neon and argon beams have been delivered to about 50 patients, some as boosts from other modalities and some as complete heavy ion treatments. Up to 12 patients per day have been treated in this facility. Continuing efforts in refining techniques and operating procedures are increasing efficiency and accuracy of treatments, and are contributing to the alleviation of scheduling difficulties caused by the unique requirements of radiotherapy with human patients.

  3. Challenges of Using High-Dose Fractionation Radiotherapy in Combination Therapy

    PubMed Central

    Yang, Ying-Chieh; Chiang, Chi-Shiun

    2016-01-01

    Radiotherapy is crucial and substantially contributes to multimodal cancer treatment. The combination of conventional fractionation radiotherapy (CFRT) and systemic therapy has been established as the standard treatment for many cancer types. With advances in linear accelerators and image-guided techniques, high-dose fractionation radiotherapy (HFRT) is increasingly introduced in cancer centers. Clinicians are currently integrating HFRT into multimodality treatment. The shift from CFRT to HFRT reveals different effects on the tumor microenvironment and responses, particularly the immune response. Furthermore, the combination of HFRT and drugs yields different results in different types of tumors or using different treatment schemes. We have reviewed clinical trials and preclinical evidence on the combination of HFRT with drugs, such as chemotherapy, targeted therapy, and immune therapy. Notably, HFRT apparently enhances tumor cell killing and antigen presentation, thus providing opportunities and challenges in treating cancer. PMID:27446811

  4. [Regulation of radiotherapy and chemotherapy services by health plan organizations in Brazil].

    PubMed

    Lima, Sheyla Maria Lemos; Portela, Margareth Crisóstomo; Ugá, Maria Alicia Domíngues; de Vasconcellos, Maurício Teixeira Leite

    2014-01-01

    This paper characterizes regulatory procedures applied by private health plan operators on their outpatient radiotherapy and chemotherapy services, especially via contracts, and outlines the health care providers’ perception on regulation. The study relied on primary data, taking into consideration 638 hospitals and outpatient health care units with the services in question. A stratified random sample was selected, resulting in the inclusion of 54 units that are representative of the population, excluding hospitals that only provide radiotherapy. Private chemotherapy services are largely funded by health insurance plans (75.0%), while radiotherapy services are predominantly covered by the public health system (49.0%). Contracts are not applied by third part payers, in their potential, as regulatory and health care coordination instruments. The mechanisms of regulation applied by third part payers are centered on services use control and administrative aspects. It is recognized the need of adjustments for a health care quality focus, and contracts may contribute in this sense.

  5. Challenges of Using High-Dose Fractionation Radiotherapy in Combination Therapy.

    PubMed

    Yang, Ying-Chieh; Chiang, Chi-Shiun

    2016-01-01

    Radiotherapy is crucial and substantially contributes to multimodal cancer treatment. The combination of conventional fractionation radiotherapy (CFRT) and systemic therapy has been established as the standard treatment for many cancer types. With advances in linear accelerators and image-guided techniques, high-dose fractionation radiotherapy (HFRT) is increasingly introduced in cancer centers. Clinicians are currently integrating HFRT into multimodality treatment. The shift from CFRT to HFRT reveals different effects on the tumor microenvironment and responses, particularly the immune response. Furthermore, the combination of HFRT and drugs yields different results in different types of tumors or using different treatment schemes. We have reviewed clinical trials and preclinical evidence on the combination of HFRT with drugs, such as chemotherapy, targeted therapy, and immune therapy. Notably, HFRT apparently enhances tumor cell killing and antigen presentation, thus providing opportunities and challenges in treating cancer. PMID:27446811

  6. The role of PET/CT scanning in radiotherapy planning.

    PubMed

    Jarritt, P H; Carson, K J; Hounsell, A R; Visvikis, D

    2006-09-01

    The introduction of functional data into the radiotherapy treatment planning process is currently the focus of significant commercial, technical, scientific and clinical development. The potential of such data from positron emission tomography (PET) was recognized at an early stage and was integrated into the radiotherapy treatment planning process through the use of image fusion software. The combination of PET and CT in a single system (PET/CT) to form an inherently fused anatomical and functional dataset has provided an imaging modality which could be used as the prime tool in the delineation of tumour volumes and the preparation of patient treatment plans, especially when integrated with virtual simulation. PET imaging typically using 18F-Fluorodeoxyglucose (18F-FDG) can provide data on metabolically active tumour volumes. These functional data have the potential to modify treatment volumes and to guide treatment delivery to cells with particular metabolic characteristics. This paper reviews the current status of the integration of PET and PET/CT data into the radiotherapy treatment process. Consideration is given to the requirements of PET/CT data acquisition with reference to patient positioning aids and the limitations imposed by the PET/CT system. It also reviews the approaches being taken to the definition of functional/tumour volumes and the mechanisms available to measure and include physiological motion into the imaging process. The use of PET data must be based upon a clear understanding of the interpretation and limitations of the functional signal. Protocols for the implementation of this development remain to be defined, and outcomes data based upon clinical trials are still awaited. PMID:16980683

  7. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications.

    PubMed

    Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan

    2015-09-01

    The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices. PMID:26046521

  8. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications.

    PubMed

    Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan

    2015-09-01

    The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices.

  9. Optimization approaches for planning external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Gozbasi, Halil Ozan

    Cancer begins when cells grow out of control as a result of damage to their DNA. These abnormal cells can invade healthy tissue and form tumors in various parts of the body. Chemotherapy, immunotherapy, surgery and radiotherapy are the most common treatment methods for cancer. According to American Cancer Society about half of the cancer patients receive a form of radiation therapy at some stage. External beam radiotherapy is delivered from outside the body and aimed at cancer cells to damage their DNA making them unable to divide and reproduce. The beams travel through the body and may damage nearby healthy tissue unless carefully planned. Therefore, the goal of treatment plan optimization is to find the best system parameters to deliver sufficient dose to target structures while avoiding damage to healthy tissue. This thesis investigates optimization approaches for two external beam radiation therapy techniques: Intensity-Modulated Radiation Therapy (IMRT) and Volumetric-Modulated Arc Therapy (VMAT). We develop automated treatment planning technology for IMRT that produces several high-quality treatment plans satisfying provided clinical requirements in a single invocation and without human guidance. A novel bi-criteria scoring based beam selection algorithm is part of the planning system and produces better plans compared to those produced using a well-known scoring-based algorithm. Our algorithm is very efficient and finds the beam configuration at least ten times faster than an exact integer programming approach. Solution times range from 2 minutes to 15 minutes which is clinically acceptable. With certain cancers, especially lung cancer, a patient's anatomy changes during treatment. These anatomical changes need to be considered in treatment planning. Fortunately, recent advances in imaging technology can provide multiple images of the treatment region taken at different points of the breathing cycle, and deformable image registration algorithms can

  10. Radiotherapy enhances the toxicity of aminoglutethimide

    SciTech Connect

    Vanek, N.; Hortobagyi, G.N.; Buzdar, A.U. )

    1990-01-01

    We report a case of radiotherapy-enhanced aminoglutethimide skin toxicity in a patient with metastatic breast cancer. This patient was started on aminoglutethimide 6 days prior to radiation therapy, for painful bone metastasis. On day 7 of radiation therapy, she developed an extensive erythematous maculopapular rash over her face, trunk, and extremities. The rash was confluent over the radiation ports, both anteriorly and posteriorly. Aminoglutethimide was discontinued until completion of radiotherapy, and the rash resolved. Concomitant irradiation apparently enhanced the skin toxicity of aminoglutethimide or possibly aminoglutethimide had a radiosensitizing role in this patient.

  11. Pelvic radiotherapy and sexual function in women

    PubMed Central

    Froeding, Ligita Paskeviciute

    2015-01-01

    Background During the past decade there has been considerable progress in developing new radiation methods for cancer treatment. Pelvic radiotherapy constitutes the primary or (neo) adjuvant treatment of many pelvic cancers e.g., locally advanced cervical and rectal cancer. There is an increasing focus on late effects and an increasing awareness that patient reported outcomes (PROs) i.e., patient assessment of physical, social, psychological, and sexual functioning provides the most valid information on the effects of cancer treatment. Following cure of cancer allow survivors focus on quality of life (QOL) issues; sexual functioning has proved to be one of the most important aspects of concern in long-term survivors. Methods An updated literature search in PubMed was performed on pelvic radiotherapy and female sexual functioning/dysfunction. Studies on gynaecological, urological and gastrointestinal cancers were included. The focus was on the period from 2010 to 2014, on studies using PROs, on potential randomized controlled trials (RCTs) where female sexual dysfunction (FSD) at least constituted a secondary outcome, and on studies reporting from modern radiotherapy modalities. Results The literature search revealed a few RCTs with FSD evaluated as a PRO and being a secondary outcome measure in endometrial and in rectal cancer patients. Very limited information could be extracted regarding FSD in bladder, vulva, and anal cancer patients. The literature before and after 2010 confirms that pelvic radiotherapy, independent on modality, increases the risk significantly for FSD both compared to data from age-matched healthy control women and compared to data on patients treated by surgery only. There was only very limited data available on modern radiotherapy modalities. These are awaited during the next five years. Several newer studies confirm that health care professionals are still reluctant to discuss treatment induced sexual dysfunction with patients. Conclusions

  12. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    SciTech Connect

    Suzuki, J; Okuda, T; Sakaino, S; Yokota, N

    2015-06-15

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determine the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However

  13. Stereotactic Body Radiotherapy (SBRT) for Intrahepatic and Hilar Cholangiocarcinoma

    PubMed Central

    Mahadevan, Anand; Dagoglu, Nergiz; Mancias, Joseph; Raven, Kristin; Khwaja, Khalid; Tseng, Jennifer F; Ng, Kimmie; Enzinger, Peter; Miksad, Rebecca; Bullock, Andrea; Evenson, Amy

    2015-01-01

    Background: Unresectable intrahepatic and hilar cholangiocarcinomas carry a dismal prognosis. Systemic chemotherapy and conventional external beam radiation and brachytherapy have been used with limited success. We explored the use of stereotactic body radiotherapy (SBRT) for these patients. Methods: Patients with unresectable intrahepatic or hilar cholangiocarcinoma or those with positive margins were included in this study. Systemic therapy was used at the discretion of the medical oncologist. The CyberknifeTM stereotactic body radiotherapy system used to treat these patients. Patients were treated with three daily fractions. Clinical and radiological follow-up were performed every three months. Results: 34 patients (16 male and 18 female) with 42 lesions were included in this study. There were 32 unresectable tumors and two patients with resected tumors with positive margins. The median SBRT dose was 30Gy in three fractions. The median follow-up was 38 months (range 8-71 months). The actuarial local control rate was 79%. The median overall survival was 17 months and the median progression free survival was ten months. There were four Grade III toxicities (12%), including duodenal ulceration, cholangitis and liver abscess. Conclusions: SBRT is an effective and reasonably safe local therapy option for unresectable intrahepatic or hilar cholangiocarcinoma. PMID:26516357

  14. Radiotherapy in the management of early breast cancer

    SciTech Connect

    Wang, Wei

    2013-03-15

    Radiotherapy is an indispensible part of the management of all stages of breast cancer. In this article, the common indications for radiotherapy in the management of early breast cancer (stages 0, I, and II) are reviewed, including whole-breast radiotherapy as part of breast-conserving treatment for early invasive breast cancer and pre-invasive disease of ductal carcinoma in situ, post-mastectomy radiotherapy, locoregional radiotherapy, and partial breast irradiation. Key clinical studies that underpin our current practice are discussed briefly.

  15. Clinical development of new drug-radiotherapy combinations.

    PubMed

    Sharma, Ricky A; Plummer, Ruth; Stock, Julie K; Greenhalgh, Tessa A; Ataman, Ozlem; Kelly, Stephen; Clay, Robert; Adams, Richard A; Baird, Richard D; Billingham, Lucinda; Brown, Sarah R; Buckland, Sean; Bulbeck, Helen; Chalmers, Anthony J; Clack, Glen; Cranston, Aaron N; Damstrup, Lars; Ferraldeschi, Roberta; Forster, Martin D; Golec, Julian; Hagan, Russell M; Hall, Emma; Hanauske, Axel-R; Harrington, Kevin J; Haswell, Tom; Hawkins, Maria A; Illidge, Tim; Jones, Hazel; Kennedy, Andrew S; McDonald, Fiona; Melcher, Thorsten; O'Connor, James P B; Pollard, John R; Saunders, Mark P; Sebag-Montefiore, David; Smitt, Melanie; Staffurth, John; Stratford, Ian J; Wedge, Stephen R

    2016-10-01

    In countries with the best cancer outcomes, approximately 60% of patients receive radiotherapy as part of their treatment, which is one of the most cost-effective cancer treatments. Notably, around 40% of cancer cures include the use of radiotherapy, either as a single modality or combined with other treatments. Radiotherapy can provide enormous benefit to patients with cancer. In the past decade, significant technical advances, such as image-guided radiotherapy, intensity-modulated radiotherapy, stereotactic radiotherapy, and proton therapy enable higher doses of radiotherapy to be delivered to the tumour with significantly lower doses to normal surrounding tissues. However, apart from the combination of traditional cytotoxic chemotherapy with radiotherapy, little progress has been made in identifying and defining optimal targeted therapy and radiotherapy combinations to improve the efficacy of cancer treatment. The National Cancer Research Institute Clinical and Translational Radiotherapy Research Working Group (CTRad) formed a Joint Working Group with representatives from academia, industry, patient groups and regulatory bodies to address this lack of progress and to publish recommendations for future clinical research. Herein, we highlight the Working Group's consensus recommendations to increase the number of novel drugs being successfully registered in combination with radiotherapy to improve clinical outcomes for patients with cancer. PMID:27245279

  16. Breast Cancer Patients’ Experience of External-Beam Radiotherapy

    PubMed Central

    Schnur, Julie B.; Ouellette, Suzanne C.; Bovbjerg, Dana H.; Montgomery, Guy H.

    2013-01-01

    Radiotherapy is a critical component of treatment for the majority of women with breast cancer, particularly those who receive breast conserving surgery. Although medically beneficial, radiotherapy can take a physical and psychological toll on patients. However, little is known about the specific thoughts and feelings experienced by women undergoing breast cancer radiotherapy. Therefore, the study aim was to use qualitative research methods to develop an understanding of these thoughts and feelings based on 180 diary entries, completed during radiotherapy by 15 women with Stage 0-III breast cancer. Thematic analysis identified four primary participant concerns: (a) a preoccupation with time; (b) fantasies (both optimistic and pessimistic) about life following radiotherapy; (c) the toll their side-effect experience takes on their self-esteem; and (d) feeling mystified by radiotherapy. These themes are consistent with previous literature on illness and identity. These findings have implications for the treatment and care of women undergoing breast cancer radiotherapy. PMID:19380502

  17. Results of radiotherapy for Peyronie's disease

    SciTech Connect

    Niewald, Marcus . E-mail: ramnie@uniklinikum-saarland.de; Wenzlawowicz, Knut v.; Fleckenstein, Jochen; Wisser, Lothar; Derouet, Harry; Ruebe, Christian

    2006-01-01

    Purpose: To retrospectively review the results of radiotherapy for Peyronie's disease. Patients and Methods: In the time interval 1983-2000, 154 patients in our clinic were irradiated for Peyronie's disease. Of those, 101 had at least one complete follow-up data set and are the subject of this study. In the majority of patients, penis deviation was between 30 and 50{sup o}, there were one or two indurated foci with a diameter between 5 and 15 mm. Pain was recorded in 48/92 patients. Seventy-two of the 101 patients received radiotherapy with a total dose of 30 Gy, and 25 received 36 Gy in daily fractions of 2.0 Gy. The remaining patients received the following dosage: 34 Gy (1 patient), 38-40 Gy (3 patients). Mean duration of follow-up was 5 years. Results: The best results ever at any time during follow-up were an improvement of deviation in 47%, reduction of number of foci in 32%, reduction of size of foci in 49%, and less induration in 52%. Approximately 50% reported pain relief after radiotherapy. There were 28 patients with mild acute dermatitis and only 4 patients with mild urethritis. There were no long-term side effects. Conclusion: Our results compare well with those of other studies in the literature. In our patient cohort, radiotherapy was an effective therapy option with only very rare and mild side effects.

  18. Radiotherapy reduces sialorrhea in amyotrophic lateral sclerosis.

    PubMed

    Neppelberg, E; Haugen, D F; Thorsen, L; Tysnes, O-B

    2007-12-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder. Sialorrhea is a frequent problem in ALS patients with bulbar symptoms, because of progressive weakness of oral, lingual and pharyngeal muscles. This prospective study aimed to investigate the putative effect of palliative single-dose radiotherapy on problematic sialorrhea in patients with ALS. Twenty patients with ALS and problematic drooling were included; 14 were given radiotherapy with a single fraction of 7.5 Grey (Gy). Five patients were treated with botulinum toxin A (BTX-A) injections (20 U) into the parotid glands; two of these were later given radiotherapy. Symptom assessment, clinical examination and measurements of salivary flow (ml/min) were performed before and after treatment (1-2 weeks, 3 months). Salivary secretion was significantly reduced after radiation treatment, with a mean reduction of 60% (1 week) and 51% (2 weeks). Three months post-treatment, 21% reduction of the salivary secretion was observed compared with salivation before treatment. Mean salivary flow was not reduced after BTX-A treatment in five patients. No serious side-effects were observed with either of the two treatment modalities. Single-dose radiotherapy (7.5 Gy) significantly reduces sialorrhea and is an effective and safe palliative treatment in patients with ALS.

  19. Prostate cancer radiotherapy 2002: the way forward.

    PubMed

    Lukka, Himu; Pickles, Tom; Morton, Gerard; Catton, Charles; Souhami, Luis; Warde, Padraig

    2005-02-01

    In November 2000, the GU Radiation Oncologists of Canada had their first meeting, "Controversies in prostate cancer radiotherapy: consensus development". The success of this meeting prompted a second meeting, held in December 2002 to discuss "The Way Forward" in prostate radiotherapy. Radiation oncologists from across Canada were brought together and integrated with key opinion leaders in prostate cancer treatment from throughout North America. The group debated current controversies including: intensity modulated radiotherapy (IMRT), external beam hypofractionation, high dose-rate brachytherapy, and hormone therapy in the management of prostate cancer. The meeting also sought to identify and prioritize clinical trial opportunities and to highlight steps required to achieve these research goals. In summary, advances involving IMRT have enabled the use of higher radiation doses without increasing morbidity. With renewed interest in hypofractionated radiation schedules, the value of hypofractionation using IMRT was discussed and initial results from ongoing clinical trials were presented. The emerging role for high dose-rate brachytherapy in higher risk patients was also discussed. Based on existing preliminary evidence the group expressed enthusiasm for further investigation of the role for brachytherapy in intermediate to high-risk patients. Despite significant advances in radiotherapy, hormone therapy continues to play an important role in prostate cancer treatment for patients with intermediate and high-risk disease. Although evidence supports the effectiveness of hormone therapy, the optimal timing, and duration of hormonal treatment are unclear. Results from ongoing clinical trials will provide insight into these questions and will assist in the design of future clinical trials.

  20. The Role of Radiotherapy in Acromegaly.

    PubMed

    Hannon, Mark J; Barkan, Ariel L; Drake, William M

    2016-01-01

    Radiotherapy has, historically, played a central role in the management of acromegaly, and the last 30 years have seen substantial improvements in the technology used in the delivery of radiation therapy. More recently, the introduction of highly targeted radiotherapy, or 'radiosurgery', has further increased the therapeutic options available in the management of secretory pituitary tumors. Despite these developments, improvements in primary surgical outcomes, an increase in the range and effectiveness of medical therapy options, and long-term safety concerns have combined to dictate that, although still deployed in selected cases, the use of radiotherapy in the management of acromegaly has declined steadily over the past 2 decades. In this article, we review some of the main studies that have documented the efficacy of pituitary radiotherapy on growth hormone hypersecretion and summarize the data around its potential deleterious effects, including hypopituitarism, cranial nerve damage, and the development of radiation-related intracerebral tumors. We also give practical recommendations to guide its future use in patients with acromegaly, generally, as a third-line intervention after neurosurgical intervention in combination with various medical therapy options.

  1. Does a too risk-averse approach to the implementation of new radiotherapy technologies delay their clinical use?

    PubMed Central

    Nyström, H; Fiorino, C; Thwaites, D

    2015-01-01

    Radiotherapy is a generally safe treatment modality in practice; nevertheless, recent well-reported accidents also confirm its potential risks. However, this may obstruct or delay the introduction of new technologies and treatment strategies/techniques into clinical practice. Risks must be addressed and judged in a realistic context: risks must be assessed realistically. Introducing new technology may introduce new possibilities of errors. However, delaying the introduction of such new technology therefore means that patients are denied the potentially better treatment opportunities. Despite the difficulty in quantitatively assessing the risks on both sides of the possible choice of actions, including the “lost opportunity”, the best estimates should be included in the overall risk–benefit and cost–benefit analysis. Radiotherapy requires a sufficiently high level of support for the safety, precision and accuracy required: radiotherapy development and implementation is exciting. However, it has been anxious with a constant awareness of the consequences of mistakes or misunderstandings. Recent history can be used to show that for introduction of advanced radiotherapy, the risk-averse medical physicist can act as an electrical fuse in a complex circuit. The lack of sufficient medical physics resource or expertise can short out this fuse and leave systems unsafe. Future technological developments will continue to present further safety and risk challenges. The important evolution of radiotherapy brings different management opinions and strategies. Advanced radiotherapy technologies can and should be safely implemented in as timely a manner as possible for the patient groups where clinical benefit is indicated. PMID:25993488

  2. Radioactive EGFR Antibody Cetuximab in Multimodal Cancer Treatment: Stability and Synergistic Effects With Radiotherapy

    SciTech Connect

    Rades, Dirk; Wolff, Christian; Nadrowitz, Roger; Breunig, Christian; Schild, Steven E.; Baehre, Manfred; Meller, Birgit

    2009-11-15

    Purpose: Systemic therapies when added to whole brain radiotherapy have failed to improve the survival of patients with multiple brain metastases. The epidermal growth factor receptor antibody cetuximab is an attractive option, if it is able to cross the blood-brain barrier. This might be proven with molecular imaging if the radiolabeled antibody is stable long enough to be effective. This study investigated the stability of radiolabeled cetuximab (Erbitux) ({sup 131}I-Erbi) and potential synergistic effects with radiotherapy in vitro. Methods and Materials: Two cell lines were investigated, A431 with numerous epidermal growth factor receptors, and JIMT without epidermal growth factor receptors. We labeled 0.4 mg cetuximab with 50 MBq of [{sup 131}I] iodide. Stability was determined for 72 h. The cell cultures were incubated with {sup 131}I-Erbi or cold cetuximab for 72 h. Uptake and cell proliferation were measured every 24 h after no radiotherapy or irradiation with 2, 4, or 10 Gy. Results: The radiolabeling yield of {sup 131}I-Erbi was always >80%. The radiochemical purity was still 93.6% after 72 h. A431 cells showed a {sup 131}I-Erbi uptake about 100-fold greater than the JIMT controls. After 48 h, the A431 cultures showed significantly decreased proliferation. At 72 h after irradiation, {sup 131}I-Erbi resulted in more pronounced inhibition of cell proliferation than the cold antibody in all radiation dose groups. Conclusion: {sup 131}I-Erbi was stable for <=72 h. Radiotherapy led to increased tumor cell uptake of {sup 131}I-Erbi. Radiotherapy and {sup 131}I-Erbi synergistically inhibited tumor cell proliferation. These results provide the prerequisite data for a planned in vivo study of whole brain radiotherapy plus cetuximab for brain metastases.

  3. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  4. Tomographic Imaging on a Cobalt Radiotherapy Machine

    NASA Astrophysics Data System (ADS)

    Marsh, Matthew Brendon

    Cancer is a global problem, and many people in low-income countries do not have access to the treatment options, such as radiation therapy, that are available in wealthy countries. Where radiation therapy is available, it is often delivered using older Co-60 equipment that has not been updated to modern standards. Previous research has indicated that an updated Co-60 radiation therapy machine could deliver treatments that are equivalent to those performed with modern linear accelerators. Among the key features of these modern treatments is a tightly conformal dose distribution-- the radiation dose is shaped in three dimensions to closely match the tumour, with minimal irradiation of surrounding normal tissues. Very accurate alignment of the patient in the beam is therefore necessary to avoid missing the tumour, so all modern radiotherapy machines include imaging systems to verify the patient's position before treatment. Imaging with the treatment beam is relatively cost-effective, as it avoids the need for a second radiation source and the associated control systems. The dose rate from a Co-60 therapy source, though, is more than an order of magnitude too high to use for computed tomography (CT) imaging of a patient. Digital tomosynthesis (DT), a limited-arc imaging method that can be thought of as a hybrid of CT and conventional radiography, allows some of the three-dimensional selectivity of CT but with shorter imaging times and a five- to fifteen-fold reduction in dose. In the present work, a prototype Co-60 DT imaging system was developed and characterized. A class of clinically useful Co-60 DT protocols has been identified, based on the filtered backprojection algorithm originally designed for CT, with images acquired over a relatively small arc. Parts of the reconstruction algorithm must be modified for the DT case, and a way to reduce the beam intensity will be necessary to reduce the imaging dose to acceptable levels. Some additional study is required to

  5. Modality comparison for small animal radiotherapy: A simulation study

    SciTech Connect

    Bazalova, Magdalena Nelson, Geoff; Noll, John M.; Graves, Edward E.

    2014-01-15

    Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCT scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by

  6. Risk Factors of Developing Long-Lasting Breast Pain After Breast Cancer Radiotherapy

    SciTech Connect

    Lundstedt, Dan; Gustafsson, Magnus; Steineck, Gunnar; Malmstroem, Per; Alsadius, David; Sundberg, Agnetha; Wilderaeng, Ulrica; Holmberg, Erik; Johansson, Karl-Axel; Karlsson, Per

    2012-05-01

    Purpose: Postoperative radiotherapy decreases breast cancer mortality. However, studies have revealed a long-lasting breast pain among some women after radiotherapy. The purpose of this study was to identify risk factors that contribute to breast pain after breast cancer radiotherapy. Methods and Materials: We identified 1,027 recurrence-free women in two cohorts of Swedish women treated for breast cancer. The women had breast-conserving surgery and postoperative radiotherapy, the breast was treated to 48 Gy in 2.4-Gy fractions or to 50 Gy in 2.0-Gy fractions. Young women received a boost of up to 16 Gy. Women with more than three lymph node metastases had locoregional radiotherapy. Systemic treatments were given according to health-care guidelines. Three to 17 years after radiotherapy, we collected data using a study-specific questionnaire. We investigated the relation between breast pain and potential risk modifiers: age at treatment, time since treatment, chemotherapy, photon energy, fractionation size, boost, loco-regional radiotherapy, axillary surgery, overweight, and smoking. Results: Eight hundred seventy-seven women (85%) returned the questionnaires. Among women up to 39 years of age at treatment, 23.1% had breast pain, compared with 8.7% among women older than 60 years (RR 2.66; 95% CI 1.33-5.36). Higher age at treatment (RR 0.96; 95% CI 0.94-0.98, annual decrease) and longer time since treatment (RR 0.93; 95% CI 0.88-0.98, annual decrease) were related to a lower occurrence of breast pain. Chemotherapy increased the occurrence of breast pain (RR 1.72; 95% CI 1.19-2.47). In the multivariable model only age and time since treatment were statistically significantly related to the occurrence of breast pain. We found no statistically significant relation between breast pain and the other potential risk modifiers. Conclusions: Younger women having undergone breast-conserving surgery with postoperative radiotherapy report a higher occurrence of long

  7. Estimating the need for palliative radiotherapy for brain metastasis: a benchmarking approach.

    PubMed

    Kong, W; Jarvis, C; Mackillop, W J

    2015-02-01

    Palliative radiotherapy (PRT) is useful in the management of many patients with brain metastases, but the need for this treatment in the general cancer population is unknown. The objective of this study was to estimate the appropriate rate of use of PRT for brain metastases (PRT.Br). Ontario's population-based cancer registry was used to identify patients who died of cancer. Radiotherapy records from all the province's radiotherapy centres were linked to Ontario's cancer registry to identify patients who received PRT.Br in the last 2 years of life. Multivariate analysis was used to identify social and health system-related barriers to the use of PRT.Br and to identify a subpopulation of patients with unimpeded access to PRT.Br. The rate of use of PRT.Br was measured in this benchmark subpopulation. The benchmark rate was standardised to the case mix of the overall cancer population. The study population included 231,397 patients who died of cancer in Ontario between 1998 and 2007. Overall, 13,944 patients received at least one course of PRT.Br in the last 2 years of life (6.0%). Multivariate analysis showed that the use of PRT.Br was strongly associated with: the availability of radiotherapy at the diagnosing hospital; the socioeconomic status of the community where the patient lived; and the distance from his/her home to the nearest radiotherapy centre. The benchmark subpopulation was defined as patients diagnosed in a hospital with radiotherapy facilities on site and who resided in a high income community, within 50 km of the nearest radiotherapy centre. The standardised benchmark rate of PRT.Br was 8.0% (95% confidence interval 7.5%, 8.5%). The overall shortfall between the actual rate and the benchmark was 25%, but varied by primary cancer site: lung, 27.6%; melanoma, 19.4%; breast, 13.9%. The magnitude of the shortfall in the use of PRT.Br varied widely across the province. At least 8.0% of patients who die of cancer require PRT.Br at least once in the last 2

  8. Radiation-induced complications in prostate cancer patients treated with radiotherapy

    SciTech Connect

    Azuddin, A. Yusof; Rahman, I. Abdul; Mohamed, F.; Siah, N. J.; Saadc, M.; Ismail, F.

    2014-09-03

    The purpose of the study is to determine the relationship between radiation-induced complications with dosimetric and radiobiological parameters for prostate cancer patients that underwent the conformal radiotherapy treatment. 17 prostate cancer patients that have been treated with conformal radiotherapy were retrospectively analysed. The dosimetric data was retrieved in the form of dose-volume histogram (DVH) from Radiotherapy Treatment Planning System. The DVH was utilised to derived Normal Tissue Complication Probability (NTCP) in radiobiological data. Follow-up data from medical records were used to grade the occurrence of acute gastrointestinal (GI) and genitourinary (GU) complications using Radiation Therapy Oncology Group (RTOG) scoring system. The chi-square test was used to determine the relationship between radiation-induced complication with dosimetric and radiobiological parameters. 8 (47%) and 7 (41%) patients were having acute GI and GU complications respectively. The acute GI complication can be associated with V60{sub rectum}, rectal mean dose and NTCP{sub rectum} with p-value of 0.016, 0.038 and 0.049 respectively. There are no significant relationships of acute GU complication with dosimetric and radiobiological variables. Further study can be done by increase the sample size and follow up duration for deeper understanding of the factors that effecting the GU and GI complication in prostate cancer radiotherapy.

  9. Radiation-induced complications in prostate cancer patients treated with radiotherapy

    NASA Astrophysics Data System (ADS)

    Azuddin, A. Yusof; Rahman, I. Abdul; Siah, N. J.; Mohamed, F.; Saadc, M.; Ismail, F.

    2014-09-01

    The purpose of the study is to determine the relationship between radiation-induced complications with dosimetric and radiobiological parameters for prostate cancer patients that underwent the conformal radiotherapy treatment. 17 prostate cancer patients that have been treated with conformal radiotherapy were retrospectively analysed. The dosimetric data was retrieved in the form of dose-volume histogram (DVH) from Radiotherapy Treatment Planning System. The DVH was utilised to derived Normal Tissue Complication Probability (NTCP) in radiobiological data. Follow-up data from medical records were used to grade the occurrence of acute gastrointestinal (GI) and genitourinary (GU) complications using Radiation Therapy Oncology Group (RTOG) scoring system. The chi-square test was used to determine the relationship between radiation-induced complication with dosimetric and radiobiological parameters. 8 (47%) and 7 (41%) patients were having acute GI and GU complications respectively. The acute GI complication can be associated with V60rectum, rectal mean dose and NTCPrectum with p-value of 0.016, 0.038 and 0.049 respectively. There are no significant relationships of acute GU complication with dosimetric and radiobiological variables. Further study can be done by increase the sample size and follow up duration for deeper understanding of the factors that effecting the GU and GI complication in prostate cancer radiotherapy.

  10. Time delay measurement for linac based treatment delivery in synchronized respiratory gating radiotherapy.

    PubMed

    Jin, Jian-Yue; Yin, Fang-Fang

    2005-05-01

    A time delay in a respiratory gating system could cause an unexpected phase mismatch for synchronized gating radiotherapy. This study presents a method of identifying and measuring the time delay in a gating system. Various port films were taken for a motion phantom at different gating window levels with a very narrow window size. The time delay for the gating system was determined by comparing the motion curve (the position of a moving object versus the gating time) measured in the port films to the motion curve determined by the video cameras. The measured time delay for a linac-based gating system was 0.17+/-0.03 s. This time delay could induce target missing if it was not properly taken into account for the synchronized gating radiotherapy. Measurement/verification of the time delay should be considered as an important part of the accepting/commissioning test before the clinical use of the gating system. PMID:15984681

  11. Technical advances in external radiotherapy for hepatocellular carcinoma

    PubMed Central

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  12. Evidence-based estimates of the demand for radiotherapy.

    PubMed

    Delaney, G P; Barton, M B

    2015-02-01

    There are different methods that may be used to estimate the future demand for radiotherapy services in a population ranging from expert opinion through to complex modelling techniques. This manuscript describes the use of evidence-based treatment guidelines to determine indications for radiotherapy. It also uses epidemiological data to estimate the proportion of the population who have attributes that suggest a benefit from radiotherapy in order to calculate the overall proportion of a population of new cases of cancer who appropriately could be recommended to undergo radiotherapy. Evidence-based methods are transparent and adaptable to different populations but require extensive information about the indications for radiotherapy and the proportion of cancer cases with those indications in the population. In 2003 this method produced an estimate that 52.4% of patients with a registered cancer-type had an indication for radiotherapy. The model was updated in 2012 because of changes in cancer incidence, stage distributions and indications for radiotherapy. The new estimate of the optimal radiotherapy utilisation rate was 48.3%. The decrease was due to changes in the relative frequency of cancer types and some changes in indications for radiotherapy. Actual rates of radiotherapy utilisation in most populations still fall well below this benchmark. PMID:25455408

  13. Technical advances in external radiotherapy for hepatocellular carcinoma

    PubMed Central

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy.

  14. Technical advances in external radiotherapy for hepatocellular carcinoma.

    PubMed

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-08-28

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  15. Radiotherapy induced hip joint avascular necrosis—Two cases report

    PubMed Central

    Michalecki, Łukasz; Gabryś, Dorota; Kulik, Roland; Wydmański, Jerzy; Trela, Krystyna

    2011-01-01

    Background Avascular necrosis (AVN) refers to the death of osteocytes and osteoblasts. Sites such as the femoral head, the head of the humerus and the mandibula with restricted access to local blood supply are particularly vulnerable to osteonecrosis. A combination of several factors is responsible for ischaemia and is associated with AVN: corticosteroids, alcohol abuse, Cushing's syndrome, SLE, systemic vasculitis, RA, scleroderma, haemoglobinopathies, radiotherapy. Management is based on proper diagnosis and treatment – conservative, pharmacological or surgical. Radiotherapy has become an integral part of the therapeutic programme of cancer patients. However, early and late after-effects of irradiation still constitute a significant issue in clinical practice. Aim The aim of this report is to present two cases of acetabular protrusion and femoral head deformities after a therapeutic pelvic irradiation and draw physicians’ attention to that clinical problem which continues to be underestimated. Materials and methods This report documents two cases of acetabular protrusion and femoral head deformities after a therapeutic pelvic radiation. Results Avascular necrosis (AVN) constitutes a severe and challenging long-term complication in radiation oncology. Conclusion It is necessary to take into account bone structures among organ at risk (OAR) involved in irradiation fields. The detailed analysis of the dose distribution and the use of collimators allow to decrease the total dose to OAR. An adequate management, early diagnosis and prompt, proper treatment may protect patients from long-term morbidities. PMID:24376980

  16. In vivo skin dose measurement in breast conformal radiotherapy

    PubMed Central

    Soleymanifard, Shokouhozaman; Noghreiyan, Atefeh Vejdani; Ghorbani, Mahdi; Jamali, Farideh; Davenport, David

    2016-01-01

    Aim of the study Accurate skin dose assessment is necessary during breast radiotherapy to assure that the skin dose is below the tolerance level and is sufficient to prevent tumour recurrence. The aim of the current study is to measure the skin dose and to evaluate the geometrical/anatomical parameters that affect it. Material and methods Forty patients were simulated by TIGRT treatment planning system and treated with two tangential fields of 6 MV photon beam. Wedge filters were used to homogenise dose distribution for 11 patients. Skin dose was measured by thermoluminescent dosimeters (TLD-100) and the effects of beam incident angle, thickness of irradiated region, and beam entry separation on the skin dose were analysed. Results Average skin dose in treatment course of 50 Gy to the clinical target volume (CTV) was 36.65 Gy. The corresponding dose values for patients who were treated with and without wedge filter were 35.65 and 37.20 Gy, respectively. It was determined that the beam angle affected the average skin dose while the thickness of the irradiated region and the beam entry separation did not affect dose. Since the skin dose measured in this study was lower than the amount required to prevent tumour recurrence, application of bolus material in part of the treatment course is suggested for post-mastectomy advanced breast radiotherapy. It is more important when wedge filters are applied to homogenize dose distribution. PMID:27358592

  17. Alternating chemo-radiotherapy in bladder cancer: A conservative approach

    SciTech Connect

    Orsatti, M.; Franzone, P.; Giudici, S.

    1995-08-30

    The aim of this Phase II study was to determine a bladder-sparing treatment in patients with invasive bladder cancer, allowing a better quality of life. Objectives were to test toxicity and disease-free and overall survival of patients given an alternated chemo-radiotherapy definitive treatment. Seventy-six patients with bladder cancer Stage T1G3 through T4 N0 M0 were entered in the same chemotherapy regimen (Cisplatin 20 mg/mq and 5-Fluorouracil 200 mg/mq daily for 5 days) alternated with different radiotherapy scheduling, the first 18 patients received two cycles of 20 Gy/10 fractions/12 days each; the second group of 58 patients received two cycles of 25 Gy/10 fractions/12 days each (the last 21 patients received Methotrexate 40 mg/mq instead of 5-Fluorouracil). A clinical complete response was observed in 57 patients (81%), partial response in 7 patients (10%), and a nonresponse in 6 patients (9%). At a median follow-up of 45 months, 33 patients (47%) were alive and free of tumor. The 6-year overall survival and progression-free survival was 42% and 40%, respectively. Systemic side effects were mild, while a moderate or severe local toxicity was observed in 14 patients and 13 patients (about 20%), respectively. Our conservative combination treatment allowed bladder-sparing in a high rate of patients and resulted in a survival comparable to that reported after radical cystectomy. 34 refs., 4 figs., 5 tabs.

  18. Temporal compartmental dosing effects for robotic prostate stereotactic body radiotherapy

    NASA Astrophysics Data System (ADS)

    Shiao, Stephen L.; Sahgal, Arjun; Hu, Weigang; Jabbari, Siavash; Chuang, Cynthia; Descovich, Martina; Hsu, I.-Chow; Gottschalk, Alexander R.; Roach, Mack, III; Ma, Lijun

    2011-12-01

    The rate of dose accumulation within a given area of a target volume tends to vary significantly for non-isocentric delivery systems such as Cyberknife stereotactic body radiotherapy. In this study, we investigated whether intra-target temporal dose distributions produce significant variations in the biological equivalent dose. For the study, time courses of ten patients were reconstructed and calculation of a biologically equivalent uniform dose (EUD) was performed using a formula derived from the linear quadratic model (α/β = 3 for prostate cancer cells). The calculated EUD values obtained for the actual patient treatments were then compared with theoretical EUD values for delivering the same physical dose distribution except that the whole target being irradiated continuously (e.g. large-field ‘dose-bathing’ type of delivery). For all the case, the EUDs for the actual treatment delivery were found to correlate strongly with the EUDs for the large-field delivery: a linear correlation coefficient of R2 = 0.98 was obtained and the average EUD for the actual Cyberknife delivery was somewhat higher (5.0 ± 4.7%) than that for the large-field delivery. However, no statistical significance was detected between the two types of delivery (p = 0.21). We concluded that non-isocentric small-field Cyberknife delivery produced consistent biological dosing that tracked well with the constant-dose-rate, large-field-type delivery for prostate stereotactic body radiotherapy.

  19. Collision prediction software for radiotherapy treatments

    SciTech Connect

    Padilla, Laura; Pearson, Erik A.; Pelizzari, Charles A.

    2015-11-15

    Purpose: This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient’s treatment position and allow for its modification if necessary. Methods: A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the SKANECT software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0° , while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in PINNACLE, and this information was exported to AlignRT (VisionRT, London, UK)—a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Results: Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation

  20. A technique using {sup 99m}Tc-mebrofenin SPECT for radiotherapy treatment planning for liver cancers or metastases

    SciTech Connect

    Shen, Sui; Jacob, Rojymon; Bender, Luvenia W.; Duan, Jun; Spencer, Sharon A.

    2014-04-01

    Radiotherapy or stereotactic body radiosurgery (SBRT) requires a sufficient functional liver volume to tolerate the treatment. The current study extended the work of de Graaf et al. (2010) [3] on the use of {sup 99m}Tc-mebrofenin imaging for presurgery planning to radiotherapy planning for liver cancer or metastases. Patient was immobilized and imaged in an identical position on a single-photon emission computed tomography/computed tomography (SPECT-CT) system and a radiotherapy simulation CT system. {sup 99m}Tc-mebrofenin SPECT was registered to the planning CT through image registration of noncontrast CT from SPECT-CT system to the radiotherapy planning CT. The voxels with higher uptake of {sup 99m}Tc-mebrofenin were transferred to the planning CT as an avoidance structure in optimizing a 2-arc RapidArc plan for SBRT delivery. Excellent dose coverage to the target and sparing of the healthy remnant liver volume was achieved. This report illustrated a procedure for the use of {sup 99m}Tc-mebrofenin SPECT for optimizing radiotherapy for liver cancers and metastases.

  1. [How to maximize skin care during radiotherapy?].

    PubMed

    Fromantin, I; Lesport, G; Le Mée, M

    2015-10-01

    No consensual guidelines exist regarding the management of early effects of radiotherapy. But preventive and curative care strategies could be adapted in the aim to delay erythema, limit complications and improve patients' comfort. Prevention involves encouraging patients to take care of their skin, avoid moisture, frictions, sun exposition and dry soap. When these rules seem insufficient, products (dressings, solution, or cream) could be prescribed, according to the individual risk of each patient. Preventive measures are accentuated when radiodermatitis appears and/or topics indicated for wound healing could be applied. Care (education, dressing, observation) needs a multidisciplinary approach. Improvements of radiotherapy treatments (methods, techniques) have been the most effective evolution on radiodermatitis. PMID:26344433

  2. [Personalized medicine in radiotherapy: practitioners' perception].

    PubMed

    Britel, Manon; Foray, Nicolas; Préau, Marie

    2015-01-01

    This exploratory study was designed to investigate the representations of radiotherapists in relation to personalized medicine. On the basis of current?>' available radiotherapy predictive tests, we tried to understand how these tests could be used in routine radiotherapy practice and in what way this possible change of practices could affect the role of radiotherapists in treatment protocols. In the absence of any available data allowing the construction of a quantitative tool, qualitative data were recorded by individual interviews with radiotherapists. Based on textual data analysis, a second national quantitative phase was conducted using a self-administered questionnaire. Crossover analysis of the two datasets highlighted the interest of radiotherapists in personalized medicine and the use of predictive tests, while indicating certain limitations and concerns in relation to ethical issues related to personalized medicine in oncology and the physician's position. PMID:26752033

  3. Complications of surgery for radiotherapy skin damage

    SciTech Connect

    Rudolph, R.

    1982-08-01

    Complications of modern surgery for radiotherapy skin damage reviewed in 28 patients who had 42 operations. Thin split-thickness skin grafts for ulcer treatment had a 100 percent complication rate, defined as the need for further surgery. Local flaps, whether delayed or not, also had a high rate of complications. Myocutaneous flaps for ulcers had a 43 percent complication rate, with viable flaps lifting off radiated wound beds. Only myocutaneous flaps for breast reconstruction and omental flaps with skin grafts and Marlex mesh had no complications. The deeper tissue penetration of modern radiotherapy techniques may make skin grafts and flaps less useful. In reconstruction of radiation ulcers, omental flaps and myocutaneous flaps are especially useful, particularly if the radiation damage can be fully excised. The pull of gravity appears detrimental to myocutaneous flap healing and, if possible, should be avoided by flap design.

  4. Radiotherapy of unicentric mediastinal Castleman's disease

    PubMed Central

    Li, Yue-Min; Liu, Peng-Hui; Zhang, Yu-Hai; Xia, Huo-Sheng; Li, Liang-Liang; Qu, Yi-Mei; Wu, Yong; Han, Shou-Yun; Liao, Guo-Qing; Pu, Yong-Dong

    2011-01-01

    Castleman's disease is a slowly progressive and rare lymphoproliferative disorder. Here, we report a 55-year-old woman with superior mediastinal Castleman's disease being misdiagnosed for a long term. We found a 4.3 cm mass localized in the superior mediastinum accompanied with severe clinical symptoms. The patient underwent an exploratory laparotomy, but the mass failed to be totally excised. Pathologic examination revealed a mediastinal mass of Castleman's disease. After radiotherapy of 30 Gy by 15 fractions, the patient no longer presented previous symptoms. At 3 months after radiotherapy of 60 Gy by 30 fractions, Computed tomography of the chest showed significantly smaller mass, indicating partial remission. Upon a 10-month follow-up, the patient was alive and free of symptoms. PMID:21527068

  5. Clinical Applications for Diffusion MRI in Radiotherapy

    PubMed Central

    Tsien, Christina; Cao, Yue; Chenevert, Thomas

    2014-01-01

    In this article, we review the clinical applications of diffusion MR imaging in the radiotherapy treatment of several key clinical sites, including those of the CNS, the head and neck, the prostate and cervix. Diffusion-weighted MRI (DWI) is an imaging technique that is rapidly gaining widespread acceptance due to its ease and wide availability. DWI measures the mobility of water within tissue at the cellular level without the need of any exogenous contrast agent. For radiotherapy treatment planning, DWI improves upon conventional imaging techniques, by better characterization of tumor tissue properties required for tumor grading, diagnosis and target volume delineation. Because diffusion weighted MRI is also a sensitive marker for alterations in tumor cellularity, it has potential clinical applications in the early assessment of treatment response following radiation therapy. PMID:24931097

  6. The efficacy of radiotherapy for vertebral hemangiomas.

    PubMed

    Miszczyk, L; Ficek, K; Trela, K; Spindel, J

    2001-01-01

    Vertebral hemangiomas are benign, slowly growing tumors sometimes causing local pain in the spine and/or neurologic disorders. The present paper includes 14 cases of painful vertebral hemangiomas treated by radiotherapy. All patients were irradiated using standard fractionation scheme with a total dose 20-30 Gy. One month after the treatment complete pain relief was noted in 36% of cases, five months later in 67% of cases, but in the remaining cases partial pain relief was noted. No correlation between treatment outcome and different biological and technical factors was found. No dose-response relationship was noted. The results suggest that anti-inflamatory effect of radiation plays the major role in this kind of treatment and that radiotherapy for vertebral hemangiomas is easy, short and highly effective analgetic treatment modality.

  7. Radiotherapy of nonfunctioning and gonadotroph adenomas.

    PubMed

    Kanner, Andrew A; Corn, Benjamin W; Greenman, Yona

    2009-01-01

    Transsphenoidal surgery is the treatment of choice for NFPA but is seldom curative. The management of patients in whom residual tumor is detected after surgery is not clear-cut. Radiation therapy is effective in controlling tumor mass in the majority of patients, but is associated with long term complications that call for restriction of its use to patients at high risk for tumor growth. New radiation techniques may prove to be safer while retaining the effectiveness of conventional radiotherapy, however longer follow-up is necessary to confirm this assumption. For now, it appears to be safe to withhold radiation and carefully follow patients with small tumor remnants, whereas large remnants from invasive tumors should be considered for radiotherapy. Nevertheless, there are no prospective controlled studies that support this empirical approach. PMID:18286373

  8. Second cancers following radiotherapy for cancer

    SciTech Connect

    Curtis, R.E.

    1997-03-01

    The study of second cancer risk after radiotherapy provides a unique opportunity to study carcinogenesis since large groups of humans are deliberately exposed to substantial doses of radiation in order to cure disease. Detailed radiotherapy records for cancer patients allow precise quantification of organ dose, and population-based cancer registries are frequently available to provide access to large groups of patients who are closely followed for long periods. Moreover, cancer patients treated with surgery alone (no radiation) are frequently available to serve as a non-irradiated comparison group. New information can be provided on relatively insensitive organs, and low dose exposures in the range of scientific interest are received by organs outside the radiation treatment fields. This paper will review several recently completed studies that characterize the risk of radiation-induced second cancers. Emphasis will be given to studies providing new information on the dose-response relationship of radiation-induced leukemia, breast cancer and lung cancer.

  9. Adaptive prediction of respiratory motion for motion compensation radiotherapy

    NASA Astrophysics Data System (ADS)

    Ren, Qing; Nishioka, Seiko; Shirato, Hiroki; Berbeco, Ross I.

    2007-11-01

    One potential application of image-guided radiotherapy is to track the target motion in real time, then deliver adaptive treatment to a dynamic target by dMLC tracking or respiratory gating. However, the existence of a finite time delay (or a system latency) between the image acquisition and the response of the treatment system to a change in tumour position implies that some kind of predictive ability should be included in the real-time dynamic target treatment. If diagnostic x-ray imaging is used for the tracking, the dose given over a whole image-guided radiotherapy course can be significant. Therefore, the x-ray beam used for motion tracking should be triggered at a relatively slow pulse frequency, and an interpolation between predictions can be used to provide a fast tracking rate. This study evaluates the performance of an autoregressive-moving average (ARMA) model based prediction algorithm for reducing tumour localization error due to system latency and slow imaging rate. For this study, we use 3D motion data from ten lung tumour cases where the peak-to-peak motion is greater than 8 mm. Some strongly irregular traces with variation in amplitude and phase were included. To evaluate the prediction accuracy, the standard deviations between predicted and actual motion position are computed for three system latencies (0.1, 0.2 and 0.4 s) at several imaging rates (1.25-10 Hz), and compared against the situation of no prediction. The simulation results indicate that the implementation of the prediction algorithm in real-time target tracking can improve the localization precision for all latencies and imaging rates evaluated. From a common initial setting of model parameters, the predictor can quickly provide an accurate prediction of the position after collecting 20 initial data points. In this retrospective analysis, we calculate the standard deviation of the predicted position from the twentieth position data to the end of the session at 0.1 s interval. For both

  10. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect

    Rossier, Christine; Schick, Ulrike; Miralbell, Raymond; Mirimanoff, Rene O.; Weber, Damien C.; Ozsahin, Mahmut

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  11. Radiotherapy equipment--purchase or lease?

    PubMed

    Nisbet, A; Ward, A

    2001-08-01

    Against a background of increasing demand for radiotherapy equipment, this study was undertaken to investigate options for equipment procurement, in particular to compare purchase with lease. The perceived advantages of lease are that equipment can be acquired within budget and cashflow constraints, with relatively low amounts of cash leaving the NHS in the first year, avoiding the necessity of capitalizing the equipment and providing protection against the risk of obsolescence associated with high technology equipment. The perceived disadvantages of leasing are that the Trust does not own the equipment, leasing can be more expensive in revenue terms, the tender process is extended and there may be lease conditions to be met, which may be costly and/or restrictive. There are also a number of technical considerations involved in the leasing of radiotherapy equipment that influence the financial analysis and practical operation of the radiotherapy service. The technical considerations include servicing and planned preventative maintenance, upgrades, spare parts, subsequent purchase of "add ons", modification of equipment, research and development work, commencement of the lease period, return of equipment at the end of the lease period and negotiations at the end of the lease period. A study from Raigmore Hospital, Inverness is described, which involves the procurement of new, state-of-the-art radiotherapy equipment. This provides an overview of the procurement process, including a summary of the advantages and disadvantages of leasing, with the figures from the financial analysis presented and explained. In addition, a detailed description is given of the technical considerations to be taken into account in the financial analysis and negotiation of any lease contract.

  12. Radiotherapy in the treatment of postoperative chylothorax

    PubMed Central

    2013-01-01

    Background Chylothorax is characterized by the presence of chyle in the pleural cavity. The healing rate of non-operative treatment varies enormously; the maximum success rate in series is 70%. We investigate the efficacy and outcomes of radiotherapy for postoperative chylothorax. Methods Chylothorax was identified based on the quantity and quality of the drainage fluid. Radiation was indicated if the daily chyle flow exceeded 450 ml after complete cessation of oral intake. Radiotherapy consisted of opposed isocentric portals to the mediastinum using 15 MV photon beams from a linear accelerator, a single dose of 1–1.5 Gy, and a maximum of five fractions per week. The radiation target area was the anatomical region between TH3 and TH10 depending on the localization of the resected lobe. The mean doses of the ionizing energy was 8.5 Gy ± 3.5 Gy. Results The median start date of the radiation was the fourth day after chylothorax diagnosis. The patients’ mediastinum was radiated an average of six times. Radiotherapy, in combination with dietary restrictions, was successful in all patients. The median time between the end of the radiation and the removal of the chest tube was one day. One patient underwent wound healing by secondary intention. The median time between the end of radiation and discharge was three days, and the overall hospital stay between the chylothorax diagnosis and discharge was 18 days (range: 11–30 days). After a follow-up of six months, no patient experienced chylothorax recurrence. Conclusions Our results suggest that radiotherapy in combination with dietary restriction in the treatment of postoperative chylothorax is very safe, rapid and successful. This novel interventional procedure can obviate repeat major thoracic surgery and shorten hospital stays and could be the first choice in the treatment of postthoracotomy chylothorax. PMID:23566741

  13. [Impact of radiotherapy on female fertility].

    PubMed

    Mazeron, Renaud; Maroun, Pierre; Cao, Kim; Mbagui, Rodrigue; Slocker-Escarpa, Andrea; Chargari, Cyrus; Haie-Meder, Christine

    2015-05-01

    Radiation therapy may have deleterious effects on female fertility. It can cause ovarian dysfunction, uterine damages or disrupt the hypothalamic-pituitary axis. These effects occur at varying dose levels usually relatively low compared to the prescribed doses. Other co-factors influence the effects of radiation therapy on fertility, such as age or therapy with alkylating agents. This review aims to make an update on the current state of knowledge about the impact of radiotherapy on female fertility.

  14. Radiotherapy equipment--purchase or lease?

    PubMed

    Nisbet, A; Ward, A

    2001-08-01

    Against a background of increasing demand for radiotherapy equipment, this study was undertaken to investigate options for equipment procurement, in particular to compare purchase with lease. The perceived advantages of lease are that equipment can be acquired within budget and cashflow constraints, with relatively low amounts of cash leaving the NHS in the first year, avoiding the necessity of capitalizing the equipment and providing protection against the risk of obsolescence associated with high technology equipment. The perceived disadvantages of leasing are that the Trust does not own the equipment, leasing can be more expensive in revenue terms, the tender process is extended and there may be lease conditions to be met, which may be costly and/or restrictive. There are also a number of technical considerations involved in the leasing of radiotherapy equipment that influence the financial analysis and practical operation of the radiotherapy service. The technical considerations include servicing and planned preventative maintenance, upgrades, spare parts, subsequent purchase of "add ons", modification of equipment, research and development work, commencement of the lease period, return of equipment at the end of the lease period and negotiations at the end of the lease period. A study from Raigmore Hospital, Inverness is described, which involves the procurement of new, state-of-the-art radiotherapy equipment. This provides an overview of the procurement process, including a summary of the advantages and disadvantages of leasing, with the figures from the financial analysis presented and explained. In addition, a detailed description is given of the technical considerations to be taken into account in the financial analysis and negotiation of any lease contract. PMID:11511499

  15. Hypothyroidism After Radiotherapy for Nasopharyngeal Cancer Patients

    SciTech Connect

    Wu, Y.-H.; Wang, H-M.; Chen, Hellen Hi-Wen; Lin, C.-Y.; Chen, Eric Yen-Chao; Fan, K.-H.; Huang, S.-F.; Chen, I-How; Liao, C.-T.; Cheng, Ann-Joy; Chang, Joseph Tung-Chieh

    2010-03-15

    Purpose: The aim of this study was to determine the long-term incidence and possible predictive factors for posttreatment hypothyroidism in nasopharyngeal carcinoma (NPC) patients after radiotherapy. Methods and Materials: Four hundred and eight sequential NPC patients who had received regular annual thyroid hormone surveys prospectively after radiotherapy were included in this study. Median patient age was 47.3 years, and 286 patients were male. Thyroid function was prospectively evaluated by measuring thyroid-stimulating hormone (TSH) and serum free thyroxine (FT4) levels. Low FT4 levels indicated clinical hypothyroidism in this study. Results: With a median follow-up of 4.3 years (range, 0.54-19.7 years), the incidence of low FT4 level was 5.3%, 9.0%, and 19.1% at 3, 5, and 10 years after radiotherapy, respectively. Hypothyroidism was more common with early T stage (p = 0.044), female sex (p = 0.037), and three-dimensional conformal therapy with the altered fractionation technique (p = 0.005) after univariate analysis. N stage, chemotherapy, reirradiation, and neck electron boost did not affect the incidence of hypothyroidism. Younger age and conformal therapy were significant factors that determined clinical hypothyroidism after multivariate analysis. Overall, patients presented with a low FT4 level about 1 year after presenting with an elevated TSH level. Conclusion: Among our study group of NPC patients, 19.1% experienced clinical hypothyroidism by 10 years after treatment. Younger age and conformal therapy increased the risk of hypothyroidism. We suggest routine evaluation of thyroid function in NPC patients after radiotherapy. The impact of pituitary injury should be also considered.

  16. Comparing the dosimetric characteristics of the electron beam from dedicated intraoperative and conventional radiotherapy accelerators.

    PubMed

    Baghani, Hamid Reza; Aghamiri, Seyed Mahmoud Reza; Mahdavi, Seyed Rabi; Akbari, Mohammad Esmail; Mirzaei, Hamid Reza

    2015-01-01

    The specific design of the mobile dedicated intraoperative radiotherapy (IORT) accelerators and different electron beam collimation system can change the dosimetric characteristics of electron beam with respect to the conventional accelerators. The aim of this study is to measure and compare the dosimetric characteristics of electron beam produced by intraoperative and conventional radiotherapy accelerators. To this end, percentage depth dose along clinical axis (PDD), transverse dose profile (TDP), and output factor of LIAC IORT and Varian 2100C/D conventional radiotherapy accelerators were measured and compared. TDPs were recorded at depth of maximum dose. The results of this work showed that depths of maximum dose, R90, R50, and RP for LIAC beam are lower than those of Varian beam. Furthermore, for all energies, surface doses related to the LIAC beam are substantially higher than those of Varian beam. The symmetry and flatness of LIAC beam profiles are more desirable compared to the Varian ones. Contrary to Varian accelerator, output factor of LIAC beam substantially increases with a decrease in the size of the applicator. Dosimetric characteristics of beveled IORT applicators along clinical axis were different from those of the flat ones. From these results, it can be concluded that dosimetric characteristics of intraoperative electron beam are substantially different from those of conventional clinical electron beam. The dosimetric characteristics of the LIAC electron beam make it a useful tool for intraoperative radiotherapy purposes.

  17. A Dosimetric Analysis of IMRT and Multistatic Fields Techniques for Left Breast Radiotherapy

    SciTech Connect

    Moon, Seong Kwon; Kim, Yeon Sil; Kim, Soo Young; Lee, Mi Jo; Keum, Hyun Sup; Kim, Seung Jin; Youn, Seon Min

    2011-10-01

    The purpose of this study was to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and multistatic field technique (MSF) in radiotherapy of the left breast. We made comparative analysis of two kinds of radiotherapy that can achieve improved dose homogeneity. First is a MSF that uses both major and small irradiation fields at the same time. The other is IMRT using 3 or 5 beams with an inverse planning system using multiple static multileaf collimators. We made treatment plans for 16 early left breast cancer patients who were randomly selected and had undergone breast conserving surgery and radiotherapy, and analyzed them in the dosimetric aspect. For the mean values of V{sub 95} and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving >110% of prescribed dose were not found in any of the three methods. Using Tukey's test, IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and the heart than MSF in the low-dose area, but in the high-dose area, MSF showed a slight increase. To improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered optimal as an alternative to IMRT for radiotherapy of early left breast cancer.

  18. [Elective radiotherapy of the regional lymph node areas in breast cancer].

    PubMed

    Poortmans, P-M-P

    2006-11-01

    In breast cancer patients, the incidence of involvement of the regional lymph nodes and the risk for developing a locoregional recurrence are highly influenced by several prognostic factors. A meta-analysis of the EBCTCG showed a reduction of about 70% of the locoregional recurrence rate with radiotherapy for all patients, independent of age, characteristics of the tumour or the administration of systemic treatment. At the same time, this meta-analysis confirmed that radiotherapy can lead to an increased risk for developing contralateral breast cancer and to an increase in the risk of non-breast cancer related mortality, mainly due to cardiac and pulmonary toxicity. Because of this, the net effect of regional radiotherapy will be strongly influenced by the individual risk factors of the patients and by the quality of the technical aspects of the radiotherapy. The thin line between the benefits of elective regional lymph node irradiation and the possible late toxicity for patients with early stage breast cancer is currently the subject of several prospective randomised trials, the results of which will only become available in several years. Moreover, recent developments in the field of novel prognostic factors will open completely new ways to be explored, which might give us new tools for estimating the individual benefit/risk ratio for every single patient. PMID:16962355

  19. Anal Cancer: An Examination of Radiotherapy Strategies

    SciTech Connect

    Glynne-Jones, Rob; Lim, Faye

    2011-04-01

    The Radiation Therapy Oncology Group 9811, ACCORD-03, and ACT II Phase III trials in anal cancer showed no benefit for cisplatin-based induction and maintenance chemotherapy, or radiation dose-escalation >59 Gy. This review examines the efficacy and toxicity of chemoradiation (CRT) in anal cancer, and discusses potential alternative radiotherapy strategies. The evidence for the review was compiled from randomized and nonrandomized trials of radiation therapy and CRT. A total of 103 retrospective/observational studies, 4 Phase I/II studies, 16 Phase II prospective studies, 2 randomized Phase II studies, and 6 Phase III trials of radiotherapy or chemoradiation were identified. There are no meta-analyses based on individual patient data. A 'one-size-fits-all' approach for all stages of anal cancer is inappropriate. Early T1 tumors are probably currently overtreated, whereas T3/T4 lesions might merit escalation of treatment. Intensity-modulated radiotherapy or the integration of biological therapy may play a role in future.

  20. Accuracy requirements in radiotherapy treatment planning.

    PubMed

    Buzdar, Saeed Ahmad; Afzal, Muhammad; Nazir, Aalia; Gadhi, Muhammad Asghar

    2013-06-01

    Radiation therapy attempts to deliver ionizing radiation to the tumour and can improve the survival chances and/or quality of life of patients. There are chances of errors and uncertainties in the entire process of radiotherapy that may affect the accuracy and precision of treatment management and decrease degree of conformation. All expected inaccuracies, like radiation dose determination, volume calculation, complete evaluation of the full extent of the tumour, biological behaviour of specific tumour types, organ motion during radiotherapy, imaging, biological/molecular uncertainties, sub-clinical diseases, microscopic spread of the disease, uncertainty in normal tissue responses and radiation morbidity need sound appreciation. Conformity can be increased by reduction of such inaccuracies. With the yearly increase in computing speed and advancement in other technologies the future will provide the opportunity to optimize a greater number of variables and reduce the errors in the treatment planning process. In multi-disciplined task of radiotherapy, efforts are needed to overcome the errors and uncertainty, not only by the physicists but also by radiologists, pathologists and oncologists to reduce molecular and biological uncertainties. The radiation therapy physics is advancing towards an optimal goal that is definitely to improve accuracy where necessary and to reduce uncertainty where possible.

  1. Proton beam radiotherapy of iris melanoma

    SciTech Connect

    Damato, Bertil . E-mail: Bertil@damato.co.uk; Kacperek, Andrzej; Chopra, Mona; Sheen, Martin A.; Campbell, Ian R.; Errington, R. Douglas

    2005-09-01

    Purpose: To report on outcomes after proton beam radiotherapy of iris melanoma. Methods and Materials: Between 1993 and 2004, 88 patients with iris melanoma received proton beam radiotherapy, with 53.1 Gy in 4 fractions. Results: The patients had a mean age of 52 years and a median follow-up of 2.7 years. The tumors had a median diameter of 4.3 mm, involving more than 2 clock hours of iris in 32% of patients and more than 2 hours of angle in 27%. The ciliary body was involved in 20%. Cataract was present in 13 patients before treatment and subsequently developed in another 18. Cataract had a 4-year rate of 63% and by Cox analysis was related to age (p = 0.05), initial visual loss (p < 0.0001), iris involvement (p < 0.0001), and tumor thickness (p < 0.0001). Glaucoma was present before treatment in 13 patients and developed after treatment in another 3. Three eyes were enucleated, all because of recurrence, which had an actuarial 4-year rate of 3.3% (95% CI 0-8.0%). Conclusions: Proton beam radiotherapy of iris melanoma is well tolerated, the main problems being radiation-cataract, which was treatable, and preexisting glaucoma, which in several patients was difficult to control.

  2. Cellular signalling effects in high precision radiotherapy

    NASA Astrophysics Data System (ADS)

    McMahon, Stephen J.; McGarry, Conor K.; Butterworth, Karl T.; Jain, Suneil; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2015-06-01

    Radiotherapy is commonly planned on the basis of physical dose received by the tumour and surrounding normal tissue, with margins added to address the possibility of geometric miss. However, recent experimental evidence suggests that intercellular signalling results in a given cell’s survival also depending on the dose received by neighbouring cells. A model of radiation-induced cell killing and signalling was used to analyse how this effect depends on dose and margin choices. Effective Uniform Doses were calculated for model tumours in both idealised cases with no delivery uncertainty and more realistic cases incorporating geometric uncertainty. In highly conformal irradiation, a lack of signalling from outside the target leads to reduced target cell killing, equivalent to under-dosing by up to 10% compared to large uniform fields. This effect is significantly reduced when higher doses per fraction are considered, both increasing the level of cell killing and reducing margin sensitivity. These effects may limit the achievable biological precision of techniques such as stereotactic radiotherapy even in the absence of geometric uncertainties, although it is predicted that larger fraction sizes reduce the relative contribution of cell signalling driven effects. These observations may contribute to understanding the efficacy of hypo-fractionated radiotherapy.

  3. [3D reconstructions in radiotherapy planning].

    PubMed

    Schlegel, W

    1991-10-01

    3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.

  4. A Fortran program for fast and compact processing of clinical radiotherapy data.

    PubMed

    Coles, I P; Dale, R G

    1984-01-01

    A set of Fortran IV programs have been developed to enable a patient registry to operate on a minicomputer of a type frequently used for treatment planning within radiotherapy departments. The system is both comprehensive and flexible, allowing the efficient storage of clinical data in the form of coded units. The coding format used enables inexperienced operators to enter, or extract data from the system with the minimum of keyboard operations.

  5. Errors in Radiotherapy: Motivation for Development of New Radiotherapy Quality Assurance Paradigms

    SciTech Connect

    Fraass, Benedick A.

    2008-05-01

    Modern radiotherapy practice has rapidly evolved during the past decade, making use of many highly complex and/or automated processes for planning and delivery, including new techniques, like intensity-modulated radiotherapy driven by inverse planning optimization methods, or near real-time image-guided adaptive therapy based on fluoroscopic or tomographic imaging on the treatment machine. In spite of the modern technology, or potentially because of it in some instances, errors and other problems continue to have a significant impact on the field. This report reviews example errors and problems, discusses some of the quality assurance issues that these types of problems raise, and motivates the development of more modern and sophisticated approaches to assure quality for our clinical radiotherapy treatment methods.

  6. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  7. Dysphagia after radiotherapy: state of the art and prevention.

    PubMed

    Servagi-Vernat, S; Ali, D; Roubieu, C; Durdux, C; Laccourreye, O; Giraud, P

    2015-02-01

    Adjuvant radiotherapy after surgery or exclusive radiotherapy, with or without concurrent chemotherapy is a valuable treatment option in the great majority of patients with head and neck cancer. Recent technical progress in radiotherapy has resulted in a decreased incidence of xerostomia. Another common toxicity of radiotherapy is dysphagia, which alters the nutritional status and quality of life of patients in remission. The objective of this review is to describe the physiology of swallowing function, the pathophysiology of radiation-induced dysphagia and the various strategies currently available to prevent this complication.

  8. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam. PMID:22974124

  9. Radiotherapy Alone With Curative Intent in Patients With Stage I Extranodal Nasal-Type NK/T-Cell Lymphoma

    SciTech Connect

    Li Yexiong; Wang Hua; Jin Jing; Wang Weihu; Liu Qingfeng; Song Yongwen; Wang Zhaoyang; Qi Shunan; Wang Shulian; Liu Yueping; Liu Xinfan; Yu Zihao

    2012-04-01

    Purpose: This study aims to evaluate the outcome and pattern of failure in a large cohort of patients with Stage I NK/T-cell lymphoma of the upper aerodigestive tract treated with radiotherapy alone. Methods and Materials: The pathological diagnosis was confirmed using standard criteria. All patients were treated with high-dose extended-field radiotherapy alone. The median dose was 50 Gy. The primary tumor was located in the nasal cavity (n = 80), Waldeyer ring (n = 5), or oral cavity (n = 2). Results: The overall response to radiotherapy was achieved in 85 of 87 (97.7%) patients, with a complete response rate of 95.4% and a partial response rate of 2.3%. The 5-year overall survival, progression-free survival, and local control rates for all patients were 80%, 69%, and 93%, respectively. Twenty patients (23%) had disease progression or relapse. Of these, 15 patients (17%) developed systemic extranodal disseminations, whereas only 4 (5%) patients had local relapse and 4 (5%) patients had lymph node relapse. Conclusions: Our study suggests that high-dose extended-field radiotherapy alone is a curative therapy and shows favorable clinical outcome in patients with Stage I disease. With the high possibility of local control and primary failure of systemic dissemination, the integration of optimal radiotherapy with more effective systematic therapy is warranted to bring additional improvement to the outcome for these patients.

  10. [Exchange of medical imaging and data information in radiotherapy: needs, methods and current limits].

    PubMed

    Manens, J P

    1997-01-01

    Extension of the image network within radiotherapy departments provides the technical infrastructure which is made necessary by the rapid evolution of techniques in the field of diagnosis and treatment in radiotherapy. The system is aimed at managing the whole set of data (textual data and images) that are needed for planning and control of treatments. The radiotherapy network addresses two objectives: managing both the information necessary for treatment planning (target volumes definition, planning dosimetry) and the control of all parameters involved during the patient's treatment under the treatment unit. The major challenge is to improve the quality of treatment. Multimodal imaging is a major advance as it allows the use of new dosimetry and simulation techniques. The need for standards to exchange medical imaging information is now recognized by all the institutions and a majority of users and manufacturers. It is widely accepted that the lack of standard has been one of the fundamental obstacles in the deployment of operational "Picture Archiving Communication Systems". The International Standard Organisation Open System Interconnection model is the standard reference mode used to describe network protocols. The network is based on the Ethernet and TCP/IP protocol that provides the means to interconnect imaging devices and workstations dedicated to specific image processing or machines used in radiotherapy. The network uses Ethernet cabled on twisted-pair (10 BaseT) or optical fibres in a star-shaped physical layout. Dicom V3.0 supports fundamental network interactions: transfer of images (computerized tomography magnetic resonance imaging query and retrieve of images), printing on network attached cameras, support of HIS/RIS related interfacing and image management. The supplement to the Dicom standard, Dicom RT, specifies five data objects known in Dicom as Information Object Definition for relevant radiotherapy. Dicom RT objects can provide a mean for

  11. [Exchange of medical imaging and data information in radiotherapy: needs, methods and current limits].

    PubMed

    Manens, J P

    1997-01-01

    Extension of the image network within radiotherapy departments provides the technical infrastructure which is made necessary by the rapid evolution of techniques in the field of diagnosis and treatment in radiotherapy. The system is aimed at managing the whole set of data (textual data and images) that are needed for planning and control of treatments. The radiotherapy network addresses two objectives: managing both the information necessary for treatment planning (target volumes definition, planning dosimetry) and the control of all parameters involved during the patient's treatment under the treatment unit. The major challenge is to improve the quality of treatment. Multimodal imaging is a major advance as it allows the use of new dosimetry and simulation techniques. The need for standards to exchange medical imaging information is now recognized by all the institutions and a majority of users and manufacturers. It is widely accepted that the lack of standard has been one of the fundamental obstacles in the deployment of operational "Picture Archiving Communication Systems". The International Standard Organisation Open System Interconnection model is the standard reference mode used to describe network protocols. The network is based on the Ethernet and TCP/IP protocol that provides the means to interconnect imaging devices and workstations dedicated to specific image processing or machines used in radiotherapy. The network uses Ethernet cabled on twisted-pair (10 BaseT) or optical fibres in a star-shaped physical layout. Dicom V3.0 supports fundamental network interactions: transfer of images (computerized tomography magnetic resonance imaging query and retrieve of images), printing on network attached cameras, support of HIS/RIS related interfacing and image management. The supplement to the Dicom standard, Dicom RT, specifies five data objects known in Dicom as Information Object Definition for relevant radiotherapy. Dicom RT objects can provide a mean for

  12. Lived experiences of everyday life during curative radiotherapy in patients with non-small-cell lung cancer: A phenomenological study

    PubMed Central

    Petri, Suzanne; Berthelsen, Connie B.

    2015-01-01

    Aim To explore and describe the essential meaning of lived experiences of the phenomenon: Everyday life during curative radiotherapy in patients with non-small-cell lung cancer (NSCLC). Background Radiotherapy treatment in patients with NSCLC is associated with severe side effects such as fatigue, anxiety, and reduced quality of life. However, little is known about the patients’ experience of everyday life during the care trajectory. Design This study takes a reflective lifeworld approach using an empirical application of phenomenological philosophy described by Dahlberg and colleagues. Method A sample of three patients treated with curative radiotherapy for NSCLC was interviewed 3 weeks after the end of radiotherapy treatment about their experiences of everyday life during their treatment. Data were collected in 2014 and interviews and analysis were conducted within the descriptive phenomenological framework. Findings The essential meaning structure of the phenomenon studied was described as “Hope for recovery serving as a compass in a changed everyday life,” which was a guide for the patients through the radiotherapy treatment to support their efforts in coping with side effects. The constituents of the structure were: Radiotherapy as a life priority, A struggle for acceptance of an altered everyday life, Interpersonal relationships for better or worse, and Meeting the health care system. Conclusion The meaning of hope was essential during radiotherapy treatment and our results suggest that interpersonal relationships can be a prerequisite to the experience of hope. “Hope for recovery serving as a compass in a changed everyday life,” furthermore identifies the essentials in the patients’ assertive approach to believing in recovery and thereby enabling hope in a serious situation. PMID:26610116

  13. Validation of modulated electron radiotherapy delivered with photon multileaf collimation

    NASA Astrophysics Data System (ADS)

    Klein, Eric E.

    There is a challenge in radiotherapy to treat shallow targets due to the inability to provide dose heterogeneity while simultaneously minimizing dose to distal critical organs. There is a niche for Modulated Electron Radiotherapy (MERT) to complement a photon IMRT program. Disease sites such as post-mastectomy chest wall, and subcutaneous lymphoma of the scalp, etc. are better suited for modulated electrons rather than photons, or perhaps a combination. Inherent collimation systems are not conducive for electron beam delivery (in lieu of extended applicators), nor do commercial treatment planning systems model electrons collimated without applicators. The purpose of this study is to evaluate modulation of electrons by inherent photon multileaf collimators, and calculated and optimized by means of Monte Carlo. Modulated electron radiotherapy (MERT) evaluation was conducted with a Trilogy 120 leaf MLC for 6-20 MeV. To provide a sharp penumbra, modulated beams were delivered with short SSDs (70-85cm). Segment widths (SW) ranging from 1 to 10cm were configured for delivery and planning, using BEAMnrc MC code with 109 particles, and DOSXYZnrc calculations. Calculations were set with: voxel size 0.2 x 0.2 x 0.1cm3, and photon/electron transport energy cutoffs of 0.01 MeV/0.521 MeV. Dosimetry was performed with film and micro chambers. Calculated and measured data were analyzed in MatLab. Once validation of static fields was successfully completed, modulated portals (segmented and dynamic) were configured for treatment and calculations. Optimization for target coverage and OAR sparing was achieved by choosing energies according to target depth, and SW according to spatial coverage. Intensity for each segment was optimized by MC methods. Beam sharpness (penumbra) degraded with: decreasing energy and SW, and increasing SSD. PDD decreased significantly with decreasing SW. We have demonstrated excellent calculation/measurement agreement (<3mm). Equal dose profiles were

  14. The place of radiotherapy in the management of rectal adenocarcinoma

    SciTech Connect

    Sischy, B.

    1982-12-01

    Surgery remains the mainstay in the management of carcinoma of the rectum. However, in spite of many improvements in techniques and anesthesia over the last fifty years, progress as regards increasing survival has been slow. Local recurrence and systemic disease remain the challenge. It appears that radiation therapy has a very definite role in the reduction of local recurrence. The part of radiation therapy presurgically and postsurgically and the incorporation of both in the 'sandwich technique' is reviewed. The use of chemotherapeutic agents for radiosensitization in an effort to improve the results of radiation therapy is described. Consideration is given to management of rectal carcinoma by radiation alone, in particular the endocavitary technique as a viable option to surgery in selected cases. Additional newer techniques such as intraoperative therapy are explained and the role that cooperative studies may take in answering some of the questions concerning the optimum sequence of radiotherapy and surgery are discussed.

  15. Outcomes of Kimura's disease after radiotherapy or nonradiotherapeutic treatment modalities

    SciTech Connect

    Chang, Ah Ram; Kim, Kyubo; Kim, Hak Jae; Kim, Il Han . E-mail: ihkim@snu.ac.kr; Park, Charn Il; Jun, Yoon Kyung

    2006-07-15

    Purpose: To evaluate the clinical outcome of Kimura's disease and to identify the optimal treatment regimen for Kimura's disease. Methods and Materials: Between 1984 and 2003, 14 patients with Kimura's disease were treated with radiotherapy (RT) and 9 patients were treated with local excision or systemic steroids. The radiation doses ranged from 20 to 45 Gy. Immunohistochemical studies were performed in 13 cases. Results: At RT completion, a marked response in terms of tumor size was noted in most cases. The median follow-up was 65 months. Local control was obtained in 9 (64.3%) of the 14 in the RT group and in 2 (22.2%) of the 9 in the non-RT group. No secondary malignancies were observed in the RT group. Conclusion: These results supports the finding that RT is more effective against Kimura's disease. Simple or immunohistochemical features did not influence the treatment outcome.

  16. Reconstruction of organ dose for external radiotherapy patients in retrospective epidemiologic studies

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik

    2015-03-01

    Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10 year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support

  17. Radiotherapy technical considerations in the management of locally advanced pancreatic cancer: American-French consensus recommendations.

    PubMed

    Huguet, Florence; Goodman, Karyn A; Azria, David; Racadot, Severine; Abrams, Ross A

    2012-08-01

    Pancreatic carcinoma is a leading cause of cancer-related mortality. Approximately 30% of pancreatic cancer patients present with locally advanced, unresectable nonmetastatic disease. For these patients, two therapeutic options exist: systemic chemotherapy or chemoradiotherapy. Within this context, the optimal technique for pancreatic irradiation is not clearly defined. A search to identify relevant studies was undertaken using the Medline database. All Phase III randomized trials evaluating the modalities of radiotherapy in locally advanced pancreatic cancer were included, as were some noncontrolled Phase II and retrospective studies. An expert panel convened with members of the Radiation Therapy Oncology Group and GERCOR cooperative groups to review identified studies and prepare the guidelines. Each member of the working group independently evaluated five endpoints: total dose, target volume definition, radiotherapy planning technique, dose constraints to organs at risk, and quality assurance. Based on this analysis of the literature, we recommend either three-dimensional conformal radiation therapy or intensity-modulated radiation therapy to a total dose of 50 to 54 Gy at 1.8 to 2 Gy per fraction. We propose gross tumor volume identification to be followed by an expansion of 1.5 to 2 cm anteriorly, posteriorly, and laterally, and 2 to 3 cm craniocaudally to generate the planning target volume. The craniocaudal margins can be reduced with the use of respiratory gating. Organs at risk are liver, kidneys, spinal cord, stomach, and small bowel. Stereotactic body radiation therapy should not be used for pancreatic cancer outside of clinical trials. Radiotherapy quality assurance is mandatory in clinical trials. These consensus recommendations are proposed for use in the development of future trials testing new chemotherapy combinations with radiotherapy. Not all of these recommendations will be appropriate for trials testing radiotherapy dose or dose intensity

  18. Radiotherapy Technical Considerations in the Management of Locally Advanced Pancreatic Cancer: American-French Consensus Recommendations

    SciTech Connect

    Huguet, Florence; Goodman, Karyn A.; Azria, David; Racadot, Severine; Abrams, Ross A.

    2012-08-01

    Summary: Pancreatic carcinoma is a leading cause of cancer-related mortality. Approximately 30% of pancreatic cancer patients present with locally advanced, unresectable nonmetastatic disease. For these patients, two therapeutic options exist: systemic chemotherapy or chemoradiotherapy. Within this context, the optimal technique for pancreatic irradiation is not clearly defined. A search to identify relevant studies was undertaken using the Medline database. All Phase III randomized trials evaluating the modalities of radiotherapy in locally advanced pancreatic cancer were included, as were some noncontrolled Phase II and retrospective studies. An expert panel convened with members of the Radiation Therapy Oncology Group and GERCOR cooperative groups to review identified studies and prepare the guidelines. Each member of the working group independently evaluated five endpoints: total dose, target volume definition, radiotherapy planning technique, dose constraints to organs at risk, and quality assurance. Based on this analysis of the literature, we recommend either three-dimensional conformal radiation therapy or intensity-modulated radiation therapy to a total dose of 50 to 54 Gy at 1.8 to 2 Gy per fraction. We propose gross tumor volume identification to be followed by an expansion of 1.5 to 2 cm anteriorly, posteriorly, and laterally, and 2 to 3 cm craniocaudally to generate the planning target volume. The craniocaudal margins can be reduced with the use of respiratory gating. Organs at risk are liver, kidneys, spinal cord, stomach, and small bowel. Stereotactic body radiation therapy should not be used for pancreatic cancer outside of clinical trials. Radiotherapy quality assurance is mandatory in clinical trials. These consensus recommendations are proposed for use in the development of future trials testing new chemotherapy combinations with radiotherapy. Not all of these recommendations will be appropriate for trials testing radiotherapy dose or dose

  19. Long-Term Results of Targeted Intraoperative Radiotherapy (Targit) Boost During Breast-Conserving Surgery

    SciTech Connect

    Vaidya, Jayant S.; Baum, Michael; Tobias, Jeffrey S.; Wenz, Frederik; Massarut, Samuele; Keshtgar, Mohammed; Hilaris, Basil; Saunders, Christobel; Williams, Norman R.; Brew-Graves, Chris; Corica, Tammy; Roncadin, Mario; Kraus-Tiefenbacher, Uta; Suetterlin, Marc; Bulsara, Max; Joseph, David

    2011-11-15

    Purpose: We have previously shown that delivering targeted radiotherapy to the tumour bed intraoperatively is feasible and desirable. In this study, we report on the feasibility, safety, and long-term efficacy of TARGeted Intraoperative radioTherapy (Targit), using the Intrabeam system. Methods and Materials: A total of 300 cancers in 299 unselected patients underwent breast-conserving surgery and Targit as a boost to the tumor bed. After lumpectomy, a single dose of 20 Gy was delivered intraoperatively. Postoperative external beam whole-breast radiotherapy excluded the usual boost. We also performed a novel individualized case control (ICC) analysis that computed the expected recurrences for the cohort by estimating the risk of recurrence for each patient using their characteristics and follow-up period. Results: The treatment was well tolerated. The median follow up was 60.5 months (range, 10-122 months). Eight patients have had ipsilateral recurrence: 5-year Kaplan Meier estimate for ipsilateral recurrence is 1.73% (SE 0.77), which compares well with that seen in the boosted patients in the European Organization for Research and Treatment of Cancer study (4.3%) and the UK STAndardisation of breast RadioTherapy study (2.8%). In a novel ICC analysis of 242 of the patients, we estimated that there should be 11.4 recurrences; in this group, only 6 recurrences were observed. Conclusions: Lumpectomy and Targit boost combined with external beam radiotherapy results in a low local recurrence rate in a standard risk patient population. Accurate localization and the immediacy of the treatment that has a favorable effect on tumour microenvironment may contribute to this effect. These long-term data establish the long-term safety and efficacy of the Targit technique and generate the hypothesis that Targit boost might be superior to an external beam boost in its efficacy and justifies a randomized trial.

  20. Effectiveness of Radiotherapy for Elderly Patients With Glioblastoma

    SciTech Connect

    Scott, Jacob; Tsai, Ya-Yu; Chinnaiyan, Prakash; Yu, Hsiang-Hsuan Michael

    2011-09-01

    Purpose: Radiotherapy plays a central role in the definitive treatment of glioblastoma. However, the optimal management of elderly patients with glioblastoma remains controversial, as the relative benefit in this patient population is unclear. To better understand the role that radiation plays in the treatment of glioblastoma in the elderly, we analyzed factors influencing patient survival using a large population-based registry. Methods and Materials: A total of 2,836 patients more than 70 years of age diagnosed with glioblastoma between 1993 and 2005 were identified from the Surveillance, Epidemiology, and End Results (SEER) registry. Demographic and clinical variables used in the analysis included gender, ethnicity, tumor size, age at diagnosis, surgery, and radiotherapy. Cancer-specific survival and overall survival were evaluated using the Kaplan-Meier method. Univariate and multivariate analysis were performed using Cox regression. Results: Radiotherapy was administered in 64% of these patients, and surgery was performed in 68%. Among 2,836 patients, 46% received surgery and radiotherapy, 22% underwent surgery only, 18% underwent radiotherapy only, and 14% did not undergo either treatment. The median survival for patients who underwent surgery and radiotherapy was 8 months. The median survival for patients who underwent radiotherapy only was 4 months, and for patients who underwent surgery only was 3 months. Those who received neither surgery nor radiotherapy had a median survival of 2 months (p < 0.001). Multivariate analysis showed that radiotherapy significantly improved cancer-specific survival (hazard ratio [HR], 0.43, 95% confidence interval [CI] 0.38-0.49) after adjusting for surgery, tumor size, gender, ethnicity, and age at diagnosis. Other factors associated with Cancer-specific survival included surgery, tumor size, age at diagnosis, and ethnicity. Analysis using overall survival as the endpoint yielded very similar results. Conclusions: Elderly

  1. Children Undergoing Radiotherapy: Swedish Parents' Experiences and Suggestions for Improvement.

    PubMed

    Ångström-Brännström, Charlotte; Engvall, Gunn; Mullaney, Tara; Nilsson, Kristina; Wickart-Johansson, Gun; Svärd, Anna-Maja; Nyholm, Tufve; Lindh, Jack; Lindh, Viveca

    2015-01-01

    Approximately 300 children, from 0 to 18 years old, are diagnosed with cancer in Sweden every year. Of these children, 80-90 of them undergo radiotherapy treatment for their cancer. Although radiotherapy is an encounter with advanced technology, few studies have investigated the child's and the parent's view of the procedure. As part of an ongoing multicenter study aimed to improve patient preparation and the care environment in pediatric radiotherapy, this article reports the findings from interviews with parents at baseline. The aim of the present study was twofold: to describe parents' experience when their child undergoes radiotherapy treatment, and to report parents' suggestions for improvements during radiotherapy for their children. Sixteen mothers and sixteen fathers of children between 2-16 years old with various cancer diagnoses were interviewed. Data were analyzed using content analysis. The findings showed that cancer and treatment turns people's lives upside down, affecting the entire family. Further, the parents experience the child's suffering and must cope with intense feelings. Radiotherapy treatment includes preparation by skilled and empathetic staff. The parents gradually find that they can deal with the process; and lastly, parents have suggestions for improvements during the radiotherapy treatment. An overarching theme emerged: that despair gradually turns to a sense of security, with a sustained focus on and close interaction with the child. In conclusion, an extreme burden was experienced around the start of radiotherapy, though parents gradually coped with the process.

  2. Updates on clinical studies of selenium supplementation in radiotherapy

    PubMed Central

    2014-01-01

    To establish guidelines for the selenium supplementation in radiotherapy we assessed the benefits and risks of selenium supplementation in radiotherapy. Clinical studies on the use of selenium in radiotherapy were searched in the PubMed electronic database in January 2013. Sixteen clinical studies were identified among the 167 articles selected in the initial search. Ten articles were observational studies, and the other 6 articles reported studies on the effects of selenium supplementation in patients with cancer who underwent radiotherapy. The studies were conducted worldwide including European, American and Asian countries between 1987 and 2012. Plasma, serum or whole blood selenium levels were common parameters used to assess the effects of radiotherapy and the selenium supplementation status. Selenium supplementation improved the general conditions of the patients, improved their quality of life and reduced the side effects of radiotherapy. At the dose of selenium used in these studies (200–500 μg/day), selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. Selenium supplementation may offer specific benefits for several types of cancer patients who undergo radiotherapy. Because high-dose selenium and long-term supplementation may be unsafe due to selenium toxicity, more evidence-based information and additional research are needed to ensure the therapeutic benefits of selenium supplementation. PMID:24885670

  3. Optimal radiotherapy utilisation rate in developing countries: An IAEA study.

    PubMed

    Rosenblatt, Eduardo; Barton, Michael; Mackillop, William; Fidarova, Elena; Cordero, Lisbeth; Yarney, Joel; Lim, Gerard; Abad, Anthony; Cernea, Valentin; Stojanovic-Rundic, Suzana; Strojan, Primoz; Kobachi, Lotfi; Quarneti, Aldo

    2015-07-01

    Optimal radiotherapy utilisation rate (RTU) is the proportion of all cancer cases that should receive radiotherapy. Optimal RTU was estimated for 9 Middle Income Countries as part of a larger IAEA project to better understand RTU and stage distribution. PMID:26164776

  4. Children Undergoing Radiotherapy: Swedish Parents’ Experiences and Suggestions for Improvement

    PubMed Central

    Mullaney, Tara; Nilsson, Kristina; Wickart-Johansson, Gun; Svärd, Anna-Maja; Nyholm, Tufve; Lindh, Jack; Lindh, Viveca

    2015-01-01

    Approximately 300 children, from 0 to 18 years old, are diagnosed with cancer in Sweden every year. Of these children, 80–90 of them undergo radiotherapy treatment for their cancer. Although radiotherapy is an encounter with advanced technology, few studies have investigated the child’s and the parent’s view of the procedure. As part of an ongoing multicenter study aimed to improve patient preparation and the care environment in pediatric radiotherapy, this article reports the findings from interviews with parents at baseline. The aim of the present study was twofold: to describe parents’ experience when their child undergoes radiotherapy treatment, and to report parents’ suggestions for improvements during radiotherapy for their children. Sixteen mothers and sixteen fathers of children between 2–16 years old with various cancer diagnoses were interviewed. Data were analyzed using content analysis. The findings showed that cancer and treatment turns people’s lives upside down, affecting the entire family. Further, the parents experience the child’s suffering and must cope with intense feelings. Radiotherapy treatment includes preparation by skilled and empathetic staff. The parents gradually find that they can deal with the process; and lastly, parents have suggestions for improvements during the radiotherapy treatment. An overarching theme emerged: that despair gradually turns to a sense of security, with a sustained focus on and close interaction with the child. In conclusion, an extreme burden was experienced around the start of radiotherapy, though parents gradually coped with the process. PMID:26509449

  5. Toxicity of oral radiotherapy in patients with acquired immunodeficiency syndrome

    SciTech Connect

    Cooper, J.S.; Fried, P.R.

    1987-03-01

    Although radiotherapy is a standard form of management of head and neck tumors, treatment of the oral cavity in patients who have the acquired immunodeficiency syndrome has produced unacceptable toxicity. Five such patients are described as a warning of enhanced toxicity of oral radiotherapy in this patient population.

  6. SU-E-T-501: Normal Tissue Toxicities of Pulsed Low Dose Rate Radiotherapy and Conventional Radiotherapy: An in Vivo Total Body Irradiation Study

    SciTech Connect

    Cvetkovic, D; Zhang, P; Wang, B; Chen, L; Ma, C

    2014-06-01

    Purpose: Pulsed low dose rate radiotherapy (PLDR) is a re-irradiation technique for therapy of recurrent cancers. We have previously shown a significant difference in the weight and survival time between the mice treated with conventional radiotherapy (CRT) and PLDR using total body irradiation (TBI). The purpose of this study was to investigate the in vivo effects of PLDR on normal mouse tissues.Materials and Methods: Twenty two male BALB/c nude mice, 4 months of age, were randomly assigned into a PLDR group (n=10), a CRT group (n=10), and a non-irradiated control group (n=2). The Siemens Artiste accelerator with 6 MV photon beams was used. The mice received a total of 18Gy in 3 fractions with a 20day interval. The CRT group received the 6Gy dose continuously at a dose rate of 300 MU/min. The PLDR group was irradiated with 0.2Gyx20 pulses with a 3min interval between the pulses. The mice were weighed thrice weekly and sacrificed 2 weeks after the last treatment. Brain, heart, lung, liver, spleen, gastrointestinal, urinary and reproductive organs, and sternal bone marrow were removed, formalin-fixed, paraffin-embedded and stained with H and E. Morphological changes were observed under a microscope. Results: Histopathological examination revealed atrophy in several irradiated organs. The degree of atrophy was mild to moderate in the PLDR group, but severe in the CRT group. The most pronounced morphological abnormalities were in the immune and hematopoietic systems, namely spleen and bone marrow. Brain hemorrhage was seen in the CRT group, but not in the PLDR group. Conclusions: Our results showed that PLDR induced less toxicity in the normal mouse tissues than conventional radiotherapy for the same dose and regimen. Considering that PLDR produces equivalent tumor control as conventional radiotherapy, it would be a good modality for treatment of recurrent cancers.

  7. WEE1 inhibition sensitizes osteosarcoma to radiotherapy

    PubMed Central

    2011-01-01

    Background The use of radiotherapy in osteosarcoma (OS) is controversial due to its radioresistance. OS patients currently treated with radiotherapy generally are inoperable, have painful skeletal metastases, refuse surgery or have undergone an intralesional resection of the primary tumor. After irradiation-induced DNA damage, OS cells sustain a prolonged G2 cell cycle checkpoint arrest allowing DNA repair and evasion of cell death. Inhibition of WEE1 kinase leads to abrogation of the G2 arrest and could sensitize OS cells to irradiation induced cell death. Methods WEE1 expression in OS was investigated by gene-expression data analysis and immunohistochemistry of tumor samples. WEE1 expression in OS cell lines and human osteoblasts was investigated by Western blot. The effect of WEE1 inhibition on the radiosensitivity of OS cells was assessed by cell viability and caspase activation analyses after combination treatment. The presence of DNA damage was visualized using immunofluorescence microscopy. Cell cycle effects were investigated by flow cytometry and WEE1 kinase regulation was analyzed by Western blot. Results WEE1 expression is found in the majority of tested OS tissue samples. Small molecule drug PD0166285 inhibits WEE1 kinase activity. In the presence of WEE1-inhibitor, irradiated cells fail to repair their damaged DNA, and show higher levels of caspase activation. The inhibition of WEE1 effectively abrogates the irradiation-induced G2 arrest in OS cells, forcing the cells into premature, catastrophic mitosis, thus enhancing cell death after irradiation treatment. Conclusion We show that PD0166285, a small molecule WEE1 kinase inhibitor, can abrogate the G2 checkpoint in OS cells, pushing them into mitotic catastrophe and thus sensitizing OS cells to irradiation-induced cell death. This suggests that WEE1 inhibition may be a promising strategy to enhance the radiotherapy effect in patients with OS. PMID:21529352

  8. Our intraoperative boost radiotherapy experience and applications

    PubMed Central

    Günay, Semra; Alan, Ömür; Yalçın, Orhan; Türkmen, Aygen; Dizdar, Nihal

    2016-01-01

    Objective: To present our experience since November 2013, and case selection criteria for intraoperative boost radiotherapy (IObRT) that significantly reduces the local recurrence rate after breast conserving surgery in patients with breast cancer. Material and Methods: Patients who were suitable for IObRT were identified within the group of patients who were selected for breast conserving surgery at our breast council. A MOBETRON (mobile linear accelerator for IObRT) was used for IObRt during surgery. Results: Patients younger than 60 years old with <3 cm invasive ductal cancer in one focus (or two foci within 2 cm), with a histologic grade of 2–3, and a high possibility of local recurrence were admitted for IObRT application. Informed consent was obtained from all participants. Lumpectomy and sentinel lymph node biopsy was performed and advancement flaps were prepared according to the size and inclination of the conus following evaluation of tumor size and surgical margins by pathology. Distance to the thoracic wall was measured, and a radiation oncologist and radiation physicist calculated the required dose. Anesthesia was regulated with slower ventilation frequency, without causing hypoxia. The skin and incision edges were protected, the field was radiated (with 6 MeV electron beam of 10 Gy) and the incision was closed. In our cases, there were no major postoperative surgical or early radiotherapy related complications. Conclusion: The completion of another stage of local therapy with IObRT during surgery positively effects sequencing of other treatments like chemotherapy, hormonotherapy and radiotherapy, if required. IObRT increases disease free and overall survival, as well as quality of life in breast cancer patients. PMID:26985156

  9. Surgery Followed by Radiotherapy Versus Radiotherapy Alone for Metastatic Spinal Cord Compression From Unfavorable Tumors

    SciTech Connect

    Rades, Dirk; Huttenlocher, Stefan; Bajrovic, Amira; Karstens, Johann H.; Adamietz, Irenaeus A.; Kazic, Nadja; Rudat, Volker; Schild, Steven E.

    2011-12-01

    Purpose: Despite a previously published randomized trial, controversy exists regarding the benefit of adding surgery to radiotherapy for metastatic spinal cord compression (MSCC). It is thought that patients with MSCC from relatively radioresistant tumors or tumors associated with poor functional outcome after radiotherapy alone may benefit from surgery. This study focuses on these tumors. Methods and Materials: Data from 67 patients receiving surgery plus radiotherapy (S+RT) were matched to 134 patients (1:2) receiving radiotherapy alone (RT). Groups were matched for 10 factors and compared for motor function, ambulatory status, local control, and survival. Additional separate matched-pair analyses were performed for patients receiving direct decompressive surgery plus stabilization of involved vertebrae (DDSS) and patients receiving laminectomy (LE). Results: Improvement of motor function occurred in 22% of patients after S+RT and 16% after RT (p = 0.25). Posttreatment ambulatory rates were 67% and 61%, respectively (p = 0.68). Of nonambulatory patients, 29% and 19% (p = 0.53) regained ambulatory status. One-year local control rates were 85% and 89% (p = 0.87). One-year survival rates were 38% and 24% (p = 0.20). The matched-pair analysis of patients receiving LE showed no significant differences between both therapies. In the matched-pair analysis of patients receiving DDSS, improvement of motor function occurred more often after DDSS+RT than RT (28% vs. 19%, p = 0.024). Posttreatment ambulatory rates were 86% and 67% (p = 0.30); 45% and 18% of patients regained ambulatory status (p = 0.29). Conclusions: Patients with MSCC from an unfavorable primary tumor appeared to benefit from DDSS but not LE when added to radiotherapy in terms of improved functional outcome.

  10. Prospective Study of Alternating Chemoradiotherapy Consisting of Extended-Field Dynamic Conformational Radiotherapy and Systemic Chemotherapy Using 5-FU and Nedaplatin for Patients in High-Risk Group With Cervical Carcinoma

    SciTech Connect

    Kodaira, Takeshi Fuwa, Nobukazu; Nakanishi, Toru; Tachibana, Hiroyuki; Nakamura, Tatsuya; Tomita, Natsuo; Nakahara, Rie; Inokuchi, Haruo

    2009-01-01

    Purpose: To assess the efficacy of alternating chemoradiotherapy combined with extended-field conformal radiotherapy for patients with high-risk cervical cancer. Methods and Materials: Patients with previously untreated cervical cancer, with Stage III/IVA disease, or Stage IB/II with high-risk factor (primary tumor diameter {>=}50 mm or positive lymph node) were entered into this study. Three cycles of chemotherapy with 3,500 mg/m{sup 2} of 5-fluorouracil (5-FU) and nedaplatin (NDP) were accompanied with pelvic irradiation of 45.6-51.3 Gy in 24-27 fractions over 6 weeks. Prophylactic (36 Gy/20 fractions) or definitive (45-56 Gy) irradiation for para-aortic region was followed by pelvic irradiation. Results: Between 1998 and 2004, 40 patients were recruited for this protocol study. Eighteen patients from Phase I setting were registered. Twenty-two patients were treated with NDP of 140 mg/m{sup 2} (the recommended dose) in the Phase II segment. Twenty-five patients had T3 disease, and 25 patients had nodal disease including para-aortic involvement (n = 5). Overall/progression-free survival rates at 5 years were 78.8 and 66.5%, respectively. The median follow-up time was 61.8 months (25.5-106.7). Hematologic and gastrointestinal Grade 3 or more toxicities were relatively high rate (27.5-45%); however, they were well manageable. Two for bladder toxicity of Grade 3 were noted. Comparing the data from historical control group evaluated by magnetic resonance imaging, alternating chemoradiotherapy revealed a significant favorable factor for survival and disease recurrence in multivariate analysis (p < 0.05). Conclusion: Acquired results from our unique protocol for cervical cancer with high-risk factor were thought to be promising, considering that the majority of our cohort consisted of high-risk population.

  11. Ichthyosiform scaling secondary to megavoltage radiotherapy

    SciTech Connect

    Ross, E.V. )

    1991-07-01

    Acquired ichthyosis is a rare dermatosis associated with a number of malignancies. Side effects seen on the skin secondary to megavoltage radiotherapy are uncommon but may include fine dry desquamation and tanning. The authors present a case of ichthyosiform scaling limited to the radiation fields in a patient treated for brain metastases of a primary small cell lung carcinoma. The reader is reminded that side effects of megavoltage treatment do occur on the skin. A brief review of these effects is included. 5 references.

  12. Intestinal lymphangiectasia secondary to radiotherapy and chemotherapy

    SciTech Connect

    Rao, S.S.; Dundas, S.; Holdsworth, C.D.

    1987-08-01

    We report a case of intestinal lymphangiectasia secondary to radiotherapy and chemotherapy. The patient also had small bowel bacterial overgrowth and pancreatic insufficiency. Lymphatic ectasia as a histological feature has been described previously in association with postradiotherapy malabsorption, but radiation-induced lymphangiectasia producing clinical manifestations has hitherto not been reported. Replacement of dietary long-chain fats with medium-chain triglycerides, pancreatic enzyme supplements, and a short course of oxytetracycline, resulted in dramatic clinical improvement. The possibility of intestinal lymphangiectasia should be borne in mind in patients with postradiotherapy malabsorption. A low serum albumin and lymphocyte count should draw attention to this possibility.

  13. [Quality and safety management for radiotherapy].

    PubMed

    Pourel, N; Meyrieux, C; Perrin, B

    2016-09-01

    Quality and safety management have been implemented for many years in healthcare structures (hospitals treating cancer, private radiotherapy centres). Their structure and formalization have improved progressively over time. These recommendations aim at describing the link between quality and safety management through its organization scheme based on quality-safety policy, process approach, document management and quality measurement. Dedicated tools, such as experience feedback, a priori risk mapping, to-do-lists and check-lists are shown as examples and recommended as routine practice. PMID:27523420

  14. Effects of radiotherapy on human parotid saliva

    SciTech Connect

    Mossman, K.L.; Shatzman, A.R.; Chencharick, J.D.

    1981-11-01

    Changes in parotide salivary function, as determined by flow rate and protein secretion, were measured in 31 cancer patients given radiotherapy to the head and neck. After the first week of treatment, a 50% decrease in salivary flow rate and a 60% decrease in protein secretion rate were observed. Salivary function remained at or below these levels during the next 3 week of treatment. Proteins in saliva were affected unequally, with the family of glycoproteins exhibiting greater sensitivity than amylase. Chromatography or irradiated (60 Gy) and unirradiated whole parotid saliva suggests that the observed alterations in salivary protein may be due to radiation effects on protein synthesis rather than on the proteins themselves.

  15. Dosimetric comparison of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and helical tomotherapy for lung stereotactic body radiotherapy

    PubMed Central

    Kinhikar, Rajesh Ashok; Ghadi, Yogesh G.; Sahoo, Priyadarshini; Laskar, Sarbani Ghosh; Deshpande, Deepak D.; Shrivastava, Shyam K.; Agarwal, Jaiprakash

    2015-01-01

    To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT), intensity modulated radiotherapy (IMRT), and helical tomotherapy (HT) for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer) were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT). A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription dose to 95% volume of planning target volume (PTV). Plan quality was assessed using conformity index (CI) and homogeneity index (HI). Doses to critical organs were assessed. Mean CI with 3DCRT, IMRT, and HT was 1.19 (standard deviation [SD] 0.13), 1.18 (SD 0.11), and 1.08 (SD 0.04), respectively. Mean HI with 3DCRT, IMRT, and HT was 1.14 (SD 0.05), 1.08 (SD 0.02), and 1.07 (SD 0.04), respectively. Mean R50% values for 3DCRT, IMRT, and HT was 8.5 (SD 0.35), 7.04 (SD 0.45), and 5.43 (SD 0.29), respectively. D2cm was found superior with IMRT and HT. Significant sparing of critical organs can be achieved with highly conformal techniques (IMRT and HT) without compromising the PTV conformity and homogeneity. PMID:26865754

  16. Hippocampal-sparing whole-brain radiotherapy using Elekta equipment.

    PubMed

    Nevelsky, Alexander; Ieumwananonthachai, Nantakan; Kaidar-Person, Orit; Bar-Deroma, Raquel; Nasrallah, Haitam; Ben-Yosef, Rahamim; Kuten, Abraham

    2013-01-01

    The purpose of this study was to evaluate the feasibility of hippocampal-sparing whole-brain radiotherapy (HS WBRT) using the Elekta Infinity linear accelerator and Monaco treatment planning system (TPS). Ten treatment plans were created for HS-WBRT to a dose of 30 Gy (10 fractions). RTOG 0933 recommendations were applied for treatment planning. Intensity-modulated radiotherapy (IMRT) plans for the Elekta Infinity linear accelerator were created using Monaco 3.1 TPS-based on a nine-field arrangement and step-and-shoot delivery method. Plan evaluation was performed using D2% and D98% for the whole-brain PTV (defined as whole brain excluding hippocampus avoidance region), D100% and maximum dose to the hippocampus, and maximum dose to optic nerves and chiasm. Homogeneity index (HI) defined as (D2%-D98%)/Dmedian was used to quantify dose homogeneity in the PTV. The whole-brain PTV D2% mean value was 37.28 Gy (range 36.95-37.49Gy), and D98% mean value was 25.37 Gy (range 25.40-25.89 Gy). The hippocampus D100% mean value was 8.37 Gy (range 7.48-8.97 Gy) and the hippocampus maximum dose mean value was 14.35 Gy (range 13.48-15.40 Gy). The maximum dose to optic nerves and optic chiasm for all patients did not exceed 37.50 Gy. HI mean value was 0.36 (range 0.34-0.37). Mean number of segments was 105 (range 88-122) and mean number of monitor units was 1724 (range 1622-1914). Gamma evaluation showed that all plans passed 3%, 3 mm criteria with more than 99% of the measured points. These results indicate that Elekta equipment (Elekta Infinity linac and Monaco TPS) can be used for HS WBRT planning according to compliance criteria defined by the RTOG 0933 protocol. PMID:23652251

  17. MO-G-BRF-06: Radiotherapy and Prompt Oxygen Dynamics

    SciTech Connect

    Kissick, M; Campos, D; Adamson, E; Niles, D; Torres, A; L, Che Fru; Kimple, R; Fain, S; Kogel, A van der; Jacques, S

    2014-06-15

    Purpose: Adaptive radiotherapy requires a knowledge of the changing local tumor oxygen concentrations for times on the order of the treatment time, a time scale far shorter than cell death and proliferation. This knowledge will be needed to guide hypofractionated radiotherapy. Methods: A diffuse optical probe system was developed to spatially average over the whole interior of athymic Sprague Dawley nude mouse xenografts of human head and neck cancers. The blood volume and hemoglobin saturation was measured in real time. The quantities were measured with spectral fitting before and after 10 Gy of radiation is applied. An MRI BOLD scan is acquired before and after 10 Gy that measures regional changes in R2* which is inversely proportional to oxygen availability. Simulations were performed to fit the blood oxygen dynamics and infer changes in hypoxia within the tumor. Results: The optical probe measured nearly constant blood volume and a significant drop in hemoglobin saturation of about 30% after 10 Gy over the time scale of less than 30 minutes. The averaged R2* within the tumor volume increased by 15% after the 10 Gy dose, which is consistent with the optical results. The simulations and experiments support likely dynamic metabolic changes and/or fast vasoconstrictive signals are occurring that change the oxygen concentrations significantly, but not cell death or proliferation. Conclusion: Significant oxygen changes were observed to occur within 30 minutes, coinciding with the treatment time scale. This dynamic is very important for patient specific adaptive therapy. For hypofractionated therapy, the local instantaneous oxygen content is likely the most important variable to control. The invention of a bedside device for the purpose of measuring the instantaneous response to large radiation doses would be an important step to future improvements in outcome.

  18. Integral dose: Comparison between four techniques for prostate radiotherapy

    PubMed Central

    Ślosarek, Krzysztof; Osewski, Wojciech; Grządziel, Aleksandra; Radwan, Michał; Dolla, Łukasz; Szlag, Marta; Stąpór-Fudzińska, Małgorzata

    2014-01-01

    Aim Comparisons of integral dose delivered to the treatment planning volume and to the whole patient body during stereotactic, helical and intensity modulated radiotherapy of prostate. Background Multifield techniques produce large volumes of low dose inside the patient body. Delivered dose could be the result of the cytotoxic injuries of the cells even away from the treatment field. We calculated the total dose absorbed in the patient body for four radiotherapy techniques to investigate whether some methods have a potential to reduce the exposure to the patient. Materials and methods We analyzed CyberKnife plans for 10 patients with localized prostate cancer. Five alternative plans for each patient were calculated with the VMAT, IMRT and TomoTherapy techniques. Alternative dose distributions were calculated to achieve the same coverage for PTV. Integral Dose formula was used to calculate the total dose delivered to the PTV and whole patient body. Results Analysis showed that the same amount of dose was deposited to the treated volume despite different methods of treatment delivery. The mean values of total dose delivered to the whole patient body differed significantly for each treatment technique. The highest integral dose in the patient's body was at the TomoTherapy and CyberKnife treatment session. VMAT was characterized by the lowest integral dose deposited in the patient body. Conclusions The highest total dose absorbed in normal tissue was observed with the use of a robotic radiosurgery system and TomoTherapy. These results demonstrate that the exposure of healthy tissue is a dosimetric factor which differentiates the dose delivery methods. PMID:25859398

  19. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors.

    PubMed

    Schölch, Sebastian; Rauber, Conrad; Tietz, Alexandra; Rahbari, Nuh N; Bork, Ulrich; Schmidt, Thomas; Kahlert, Christoph; Haberkorn, Uwe; Tomai, Mark A; Lipson, Kenneth E; Carretero, Rafael; Weitz, Jürgen; Koch, Moritz; Huber, Peter E

    2015-03-10

    In addition to local cytotoxic activity, radiotherapy may also elicit local and systemic antitumor immunity, which may be augmented by immunotherapeutic agents including Toll-like receptor (TLR) 7/8 agonists. Here, we investigated the ability of 3M-011 (854A), a TLR7/8 agonist, to boost the antigen-presenting activity of dendritic cells (DC) as an adjuvant to radiotherapy. The combined treatment induced marked local and systemic responses in subcutaneous and orthotopic mouse models of colorectal and pancreatic cancer. In vitro cytotoxicity assays as well as in vivo depletion experiments with monoclonal antibodies identified NK and CD8 T cells as the cell populations mediating the cytotoxic effects of the treatment, while in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-DTR transgenic mice revealed DC as the pivotal immune hub in this setting. The specificity of the immune reaction was confirmed by ELISPOT assays. TLR7/8 agonists therefore seem to be potent adjuvants to radiotherapy, inducing strong local and profound systemic immune responses to tumor antigens released by conventional therapy.

  20. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors

    PubMed Central

    Tietz, Alexandra; Rahbari, Nuh N.; Bork, Ulrich; Schmidt, Thomas; Kahlert, Christoph; Haberkorn, Uwe; Tomai, Mark A.; Lipson, Kenneth E.; Carretero, Rafael; Weitz, Jürgen; Koch, Moritz; Huber, Peter E.

    2015-01-01

    In addition to local cytotoxic activity, radiotherapy may also elicit local and systemic antitumor immunity, which may be augmented by immunotherapeutic agents including Toll-like receptor (TLR) 7/8 agonists. Here, we investigated the ability of 3M-011 (854A), a TLR7/8 agonist, to boost the antigen-presenting activity of dendritic cells (DC) as an adjuvant to radiotherapy. The combined treatment induced marked local and systemic responses in subcutaneous and orthotopic mouse models of colorectal and pancreatic cancer. In vitro cytotoxicity assays as well as in vivo depletion experiments with monoclonal antibodies identified NK and CD8 T cells as the cell populations mediating the cytotoxic effects of the treatment, while in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-DTR transgenic mice revealed DC as the pivotal immune hub in this setting. The specificity of the immune reaction was confirmed by ELISPOT assays. TLR7/8 agonists therefore seem to be potent adjuvants to radiotherapy, inducing strong local and profound systemic immune responses to tumor antigens released by conventional therapy. PMID:25609199

  1. External beam radiotherapy for prostate cancer.

    PubMed

    Budiharto, Tom; Haustermans, Karin; Kovacs, Gyoergy

    2010-05-01

    External beam radiotherapy (EBRT) constitutes an important management option for prostate cancer (PCa). Radiation doses >or=74 Gy are warranted. Dose escalation of EBRT using three-dimensional-conformal radiotherapy (RT) or intensity-modulated RT improves the therapeutic index by minimizing normal tissue complication probability and increasing tumor control probability. Although higher doses are associated with better biochemical disease-free survival, no impact on local recurrence or overall survival has been demonstrated. Hypofractionation for PCa may be an attractive therapeutic option, but toxicity data need to be confirmed in randomized phase III trials. Advances in RT technology, such as volumetric modulated arc therapy and image-guided RT, could facilitate the introduction of dose escalation and hypofractionation into clinical practice. Particle beam irradiation and more specific carbon ion RT are also very promising new techniques that are under investigation. Ultimately, these techniques may lead to focal dose escalation by selective boosting of dominant intraprostatic lesions, which is currently under investigation as a solution to overcome increased toxicity of homogenous dose escalation. This review will give a comprehensive overview of all the recent advances in these new radiation therapy techniques.

  2. Cataractogenesis after Cobalt-60 eye plaque radiotherapy

    SciTech Connect

    Kleineidam, M.; Augsburger, J.J. ); Hernandez, C.; Glennon, P.; Brady, L.W. )

    1993-07-15

    This study was designed to estimate the actuarial incidence of typical postirradiation cataracts and to identify prognostic factors related to their development in melanoma-containing eyes treated by Cobalt-60 plaque radiotherapy. A special interest was the impact of calculated radiation dose and dose-rate to the lens. The authors evaluated the actuarial occurrence of post-irradiation cataract in 365 patients with primary posterior uveal melanoma treated by Cobalt-60 plaque radiotherapy between 1976 and 1986. Only 22% (S.E. = 4.6%) of the patients who received a total dose of 6 to 20 Gy at the center of the lens developed a visually significant cataract attributable to the radiation within 5 years after treatment. Using multivariate Cox proportional hazards modeling, the authors identified thickness of the tumor, location of the tumor's anterior margin relative to the equatorward and the ora serrata, and diameter of the eye plaque used as the best combination of covariables for predicting length of time until development of cataract. Surprisingly, the dose of radiation delivered to the lens, which was strongly correlated to all of these covariables, was not a significant predictive factor in multivariate analysis. The results suggest that success of efforts to decrease the occurrence rate of post-irradiation cataracts by better treatment planning might be limited in patients with posterior uveal melanoma. 21 refs., 2 figs., 5 tabs.

  3. [Technical record in radiotherapy (author's transl)].

    PubMed

    Le Dorze, C; Horiot, J C; Laugier, A

    1977-11-01

    The term "technical record in radiotherapy" is used to describe collected information relative to treatment using radiation. The subject of this session of the chapter of Radiotherapy of the Société Française de Radiologie was the intrinsic functions of this record and its extrinsic limitations. The extreme diversity of the current state of the record is a known fact. A majority of participants express the desire for uniformisation of the collection of data or even, as a second stage, to have a common record. A library of technical records was set up under the responsibility of the Centre Georges-François Leclerc at Dijon (J.C. Horiot). One broad conclusion was seen to emerge: the creation of a minimum common record including essential information to which could be added the more specific data of each radiotherapist and at each time of use. Prior agreement will be necessary with regard to the standardisation of apparatus and the expression of the dose. This session was of necessity merely a reflection of future needs and it is to be hoped that the good will which was obvious during the course of the discussion may produce concrete results in the months to come.

  4. Liver-Directed Radiotherapy for Hepatocellular Carcinoma

    PubMed Central

    Keane, Florence K.; Wo, Jennifer Y.; Zhu, Andrew X.; Hong, Theodore S.

    2016-01-01

    Background The incidence of hepatocellular carcinoma (HCC) continues to increase world-wide. Many patients present with advanced disease with extensive local tumor or vascular invasion and are not candidates for traditionally curative therapies such as orthotopic liver transplantation (OLT) or resection. Radiotherapy (RT) was historically limited by its inability to deliver a tumoricidal dose; however, modern RT techniques have prompted renewed interest in the use of liver-directed RT to treat patients with primary hepatic malignancies. Summary The aim of this review was to discuss the use of external beam RT in the treatment of HCC, with particular focus on the use of stereotactic body radiotherapy (SBRT). We review the intricacies of SBRT treatment planning and delivery. Liver-directed RT involves accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. We also summarize the published data on liver-directed RT, and demonstrate that it is associated with excellent local control and survival rates, particularly in patients who are not candidates for OLT or resection. Key Messages Modern liver-directed RT is safe and effective for the treatment of HCC, particularly in patients who are not candidates for OLT or resection. Liver-directed RT, including SBRT, depends on accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. Further prospective studies are needed to fully delineate the role of liver-directed RT in the treatment of HCC. PMID:27493895

  5. Predicting toxicity in radiotherapy for prostate cancer.

    PubMed

    Landoni, Valeria; Fiorino, Claudio; Cozzarini, Cesare; Sanguineti, Giuseppe; Valdagni, Riccardo; Rancati, Tiziana

    2016-03-01

    This comprehensive review addresses most organs at risk involved in planning optimization for prostate cancer. It can be considered an update of a previous educational review that was published in 2009 (Fiorino et al., 2009). The literature was reviewed based on PubMed and MEDLINE database searches (from January 2009 up to September 2015), including papers in press; for each section/subsection, key title words were used and possibly combined with other more general key-words (such as radiotherapy, dose-volume effects, NTCP, DVH, and predictive model). Publications generally dealing with toxicity without any association with dose-volume effects or correlations with clinical risk factors were disregarded, being outside the aim of the review. A focus was on external beam radiotherapy, including post-prostatectomy, with conventional fractionation or moderate hypofractionation (<4Gy/fraction); extreme hypofractionation is the topic of another paper in this special issue. Gastrointestinal and urinary toxicity are the most investigated endpoints, with quantitative data published in the last 5years suggesting both a dose-response relationship and the existence of a number of clinical/patient related risk factors acting as dose-response modifiers. Some results on erectile dysfunction, bowel toxicity and hematological toxicity are also presented. PMID:27068274

  6. A scintillating fiber dosimeter for radiotherapy

    NASA Astrophysics Data System (ADS)

    Bartesaghi, G.; Conti, V.; Bolognini, D.; Grigioni, S.; Mascagna, V.; Prest, M.; Scazzi, S.; Mozzanica, A.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Giannini, G.; Vallazza, E.

    2007-10-01

    Radiotherapy, together with chemotherapy and surgery, is one of the main methods applied in the fight against cancer; in order to increase the chances of a successful radiotherapy treatment the dose delivery to the tumor and the surrounding normal tissues has to be computed with high accuracy. Traditional dosimeters are accurate but single channel (ionization chambers and diodes) or non real-time (radiographic films) devices. At present there is no device water equivalent that can perform real-time and bidimensional measurements of a dose distribution. This article describes the development of a real-time dosimeter based on scintillating fibers for photon and electron beams; the fibers are made of polystyrene, that is water equivalent and thus tissue equivalent, allowing a direct dose calculation. Three prototypes (single and multichannel) have been assembled, consisting in small scintillators coupled to white fibers that carry the light to photomultiplier tubes. In this article the prototypes and the readout electronics are described, together with the results of the measurements with electron and photon beams with energy up to 20 MeV (produced by linear accelerators Varian Clinac 1800 and 2100CD).

  7. Cerebral aneurysms following radiotherapy for medulloblastoma

    SciTech Connect

    Benson, P.J.; Sung, J.H.

    1989-04-01

    Three patients, two males and one female aged 21, 14, and 31 years, respectively, developed cerebral saccular aneurysms several years after undergoing radiotherapy for cerebellar medulloblastoma at 2, 5, and 14 years of age, respectively. Following surgery, all three received combined cobalt-60 irradiation and intrathecal colloidal radioactive gold (/sup 198/Au) therapy, and died from rupture of the aneurysm 19, 9, and 17 years after the radiotherapy, respectively. Autopsy examination revealed no recurrence of the medulloblastoma, but widespread radiation-induced vasculopathy was found at the base of the brain and in the spinal cord, and saccular aneurysms arose from the posterior cerebral arteries at the basal cistern or choroidal fissure. The aneurysms differed from the ordinary saccular aneurysms of congenital type in their location and histological features. Their locations corresponded to the areas where intrathecally administered colloidal /sup 198/Au is likely to pool, and they originated directly from a segment of the artery rather than from a branching site as in congenital saccular aneurysms. It is, therefore, concluded that the aneurysms in these three patients were most likely radiation-induced.

  8. Intensity-Modulated Radiotherapy-Based Stereotactic Body Radiotherapy for Medically Inoperable Early-Stage Lung Cancer: Excellent Local Control

    SciTech Connect

    Videtic, Gregory M.M.; Stephans, Kevin; Reddy, Chandana; Gajdos, Stephen; Kolar, Matthew; Clouser, Edward; Djemil, Toufik

    2010-06-01

    Purpose: To validate the use of stereotactic body radiotherapy (SBRT) using intensity-modulated radiotherapy (IMRT) beams for medically inoperable Stage I lung cancer. Methods and Materials: From February 2004 to November 2006, a total of 26 patients with 28 lesions received SBRT using a Novalis/BrainLAB system. Immobilization involved a Bodyfix vacuum cushion. A weighted abdominal belt limited respiratory excursion. Computed tomographic simulation images were acquired at rest, full inhalation, and full exhalation and were merged to generate an internal gross tumor volume (ITV). Dose was prescribed to cover the planning target volume (PTV), defined as PTV = ITV + 3-5 mm set-up margin. Heterogeneity corrections were used. Delivery of 50 Gy in five sequential fractions typically used seven nonopposing, noncoplanar beams. Image-guided target verification was provided by BrainLAB-ExacTrac. Results: Among the 26 patients, the mean age was 74 years (range, 49-88 years). Of the patients, 50% were male and 50% female. The median Karnofsky performance status was 70 (range, 40-100). The median follow-up was 30.9 months (range, 10.4-51.4 months). Tissue diagnosis was contraindicated in seven patients (26.9%). There were 22 T1 (78.6%) and six T2 (21.4%) tumors. The median conformality index was 1.38 (range, 1.12-1.8). The median heterogeneity index was 1.08 (range, 1.04-1.2). One patient (3.6%) developed acute Grade 3 dyspnea and one patient developed late Grade 2 chest wall pain. Actuarial local control and overall survival at 3 years were 94.4% and 52%, respectively. Conclusions: Use of IMRT-based delivery of SBRT using restriction of tumor motion in medically inoperable lung cancer demonstrates excellent local control and favorable survival.

  9. Specific recommendations for accurate and direct use of PET-CT in PET guided radiotherapy for head and neck sites

    SciTech Connect

    Thomas, C. M. Convery, D. J.; Greener, A. G.; Pike, L. C.; Baker, S.; Woods, E.; Hartill, C. E.

    2014-04-15

    Purpose: To provide specific experience-based guidance and recommendations for centers wishing to develop, validate, and implement an accurate and efficient process for directly using positron emission tomography-computed tomography (PET-CT) for the radiotherapy planning of head and neck cancer patients. Methods: A PET-CT system was modified with hard-top couch, external lasers and radiotherapy immobilization and indexing devices and was subject to a commissioning and quality assurance program. PET-CT imaging protocols were developed specifically for radiotherapy planning and the image quality and pathway tested using phantoms and five patients recruited into an in-house study. Security and accuracy of data transfer was tested throughout the whole data pathway. The patient pathway was fully established and tested ready for implementation in a PET-guided dose-escalation trial for head and neck cancer patients. Results: Couch deflection was greater than for departmental CT simulator machines. An area of high attenuation in the couch generated image artifacts and adjustments were made accordingly. Using newly developed protocols CT image quality was suitable to maintain delineation and treatment accuracy. Upon transfer of data to the treatment planning system a half pixel offset between PET and CT was observed and corrected. By taking this into account, PET to CT alignment accuracy was maintained below 1 mm in all systems in the data pathway. Transfer of structures delineated in the PET fusion software to the radiotherapy treatment planning system was validated. Conclusions: A method to perform direct PET-guided radiotherapy planning was successfully validated and specific recommendations were developed to assist other centers. Of major concern is ensuring that the quality of PET and CT data is appropriate for radiotherapy treatment planning and on-treatment verification. Couch movements can be compromised, bore-size can be a limitation for certain immobilization

  10. Conformal external radiotherapy of prostatic carcinoma: requirements and experimental results.

    PubMed

    Troccaz, J; Menguy, Y; Bolla, M; Cinquin, P; Vassal, P; Laieb, N; Desbat, L; Dusserre, A; Dal Soglio, S

    1993-11-01

    The aim of conformal radiotherapy is to deliver, with high precision, a specific dose (which may be a high dose) to a planning target volume, concurrently with irradiating as little as possible healthy tissue and organs at risk. Radiation therapy may suffer from a number of problems that result in both over- or under-sizing the irradiation fields, making over-rough simplifications of the irradiation ballistics and delivering an insufficient tumoral dose (to spare critical organs and reduce toxicity). One of these problems lies in the accurate positioning of the planning target volume with respect to the irradiation system, thence in the correct execution of the ballistics. In this paper, we describe a system aiming at achieving a higher overall accuracy in the delivery of prostatic boost for carcinoma of the prostate. The system is based on the use of ultrasonic images for measuring the actual position of the prostate just before irradiation. Since these images are registered with pre-operative (CT or MR) images, the position and orientation of the planning target volume is computed with respect to the irradiation system, and can be corrected accordingly. First experiments have been performed on dummies, and the results are discussed.

  11. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma.

    PubMed

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G; Watts, Colin; Welland, Mark

    2014-09-21

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.

  12. Dose profile measurements during respiratory-gated lung stereotactic radiotherapy: A phantom study

    NASA Astrophysics Data System (ADS)

    Jong, W. L.; Wong, J. H. D.; Ng, K. H.; Ung, N. M.

    2016-03-01

    During stereotactic body radiotherapy, high radiation dose (∼60 Gy) is delivered to the tumour in small fractionation regime. In this study, the dosimetric characteristics were studied using radiochromic film during respiratory-gated and non-gated lung stereotactic body radiotherapy (SBRT). Specifically, the effect of respiratory cycle and amplitude, as well as gating window on the dosimetry were studied. In this study, the dose profiles along the irradiated area were measured. The dose profiles for respiratory-gated radiation delivery with different respiratory or tumour motion amplitudes, gating windows and respiratory time per cycle were in agreement with static radiation delivery. The respiratory gating system was able to deliver the radiation dose accurately (±1.05 mm) in the longitudinal direction. Although the treatment time for respiratory-gated SBRT was prolonged, this approach can potentially reduce the margin for internal tumour volume without compromising the tumour coverage. In addition, the normal tissue sparing effect can be improved.

  13. Radiotherapy as a cause of complete atrioventricular block in Hodgkin's disease: an electrophysiological-pathological correlation

    SciTech Connect

    Cohen, S.I.; Bharati, S.; Glass, J.; Lev, M.

    1981-04-01

    A 20-year-old man contracted Hodgkin's disease and was treated with mantle radiotherapy. Heart block developed 11 years later. Electrocardiograms revealed predominant atrioventricular (AV) block and occasional AV conduction. Intracardiac electrograms demonstrated that the site of AV block was above the level of the His bundle. A permanent transvenous pacemaker was implanted. Seven months later the patient died of complications from cryptococcal meningitis. Pathological study of the heart revealed marked arteriosclerosis with fibrosis of the epicardium, myocardium, and endocardium. Examination of the conduction system revealed extensive arteriolosclerosis of the sinoatrial node and its approaches. In addition, there was marked fibrosis of the approaches to the AV node, the AV bundle, and both bundle branches. There was no evidence of Hodgkin's disease. This case documents the rare occurrence of AV block due to tissue destruction by radiotherapy. There was a good correlation between block proximal to the His bundle recording site and fibrosis of the approaches to the AV node.

  14. Radiotherapy as a cause of complete atrioventricular block in Hodgkin's disease. An electrophysiological-pathological correlation

    SciTech Connect

    Cohen, S.I.; Bharati, S.; Glass, J.; Lev, M.

    1981-04-01

    A 20-year-old man contracted Hodgkin's disease and was treated with mantle radiotherapy. Heart block developed 11 years later. Electrocardiograms revealed predominant atrioventricular (AV) block and occasional AV conduction. Intracardiac electrograms demonstrated that the site of AV block was above the level of the His bundle. A permanent transvenous pacemaker was implanted. Seven months later the patient died of complications from cryptococcal meningitis. Pathological study of the heart revealed marked arteriosclerosis with fibrosis of the epicardium, myocardium, and endocardium. Examination of the conduction system revealed extensive arteriolosclerosis of the sinoatrial node and its approaches. In addition, there was marked fibrosis of the approaches to the AV node, the AV bundle, and both bundle branches. There was no evidence of Hodgkin's disease. This case documents the rare occurrence of AV block due to tissue destruction by radiotherapy. There was a good correlation between block proximal to the His bundle recording site and fibrosis of the approaches to the AV node.

  15. Postoperative Radiotherapy for the Treatment of Solitary Fibrous Tumor With Malignant Transformation of the Pelvic

    PubMed Central

    Gao, Chao; Zhang, Yong; Jing, Ming; Qu, Wei; Li, Jia; Zhao, Xiang-Rong; Yu, Yong-Hua

    2016-01-01

    Abstract Solitary fibrous tumor of the pelvic is an uncommon neoplasm with nonspecific symptoms. Reports of malignant transformation are especially rare. We report a case of solitary fibrous tumor in pelvic. A unique feature of our case compared with previously reported is that this patient relapsed with malignant transformation and had significant response to radiotherapy. The patient was initially treated with surgery, followed by postoperative dimensional conformal intensity modulated radiation therapy (dynamic MLC VRIAN 23EX Linac, inversely optimized by the Eclipse system) to provide a radical cure for residual tumor. In this case, there were no signs of recurrence after six and a half years of further follow-up, indicating that postoperation radiotherapy may be an effective treatment for SFT with malignant transformation in pelvic. PMID:26765426

  16. SU-C-BRD-05: Implementation of Incident Learning in the Safety and Quality Management of Radiotherapy: The Primary Experience in a New Established Program with Advanced Techniques

    SciTech Connect

    Yang, R; Wang, J

    2014-06-15

    Purpose: To explore the implementation and effectiveness of incident learning for the safety and quality of radiotherapy in a new established radiotherapy program with advanced technology. Methods: Reference to the consensus recommendations by American Association of Physicist in Medicine, an incident learning system was specifically designed for reporting, investigating, and learning of individual radiotherapy incidents in a new established radiotherapy program, with 4D CBCT, Ultrasound guided radiotherapy, VMAT, gated treatment delivered on two new installed linacs. The incidents occurring in external beam radiotherapy from February, 2012 to January, 2014 were reported. Results: A total of 33 reports were analyzed, including 28 near misses and 5 incidents. Among them, 5 originated in imaging for planning, 25 in planning, 1 in plan transfer, 1 in commissioning and 1 in treatment delivery. Among them, three near misses originated in the safety barrier of the radiotherapy process. In terms of error type, 1 incident was classified as wrong patient, 7 near misses/incidents as wrong site, 6 as wrong laterality, 5 as wrong dose, 7 as wrong prescription, and 7 as suboptimal plan quality. 5 incidents were all classified as grade 1/2 of dosimetric severity, 1 as grade 0, and the other 4 as grade 1 of medical severity. For the causes/contributory factors, negligence, policy not followed, inadequate training, failure to develop an effective plan, and communication contributed to 19, 15, 12, 5 and 3 near misses/incidents, respectively. The average incident rate per 100 patients treated was 0.4; this rate fell to 0.28% in the second year from 0.56% in the first year. The rate of near miss fell to 1.24% from 2.22%. Conclusion: Effective incident learning can reduce the occurrence of near miss/incidents, enhance the culture of safety. Incident learning is an effective proactive method for improving the quality and safety of radiotherapy.

  17. Laryngeal sensation and pharyngeal delay time after (chemo)radiotherapy.

    PubMed

    Maruo, Takashi; Fujimoto, Yasushi; Ozawa, Kikuko; Hiramatsu, Mariko; Suzuki, Atsushi; Nishio, Naoki; Nakashima, Tsutomu

    2014-08-01

    The objective of the study was to evaluate the association between changes in laryngeal sensation and initiation of swallowing reflex or swallowing function before and after (chemo)radiotherapy. A prospective study was conducted in a tertiary referral university hospital. Thirteen patients who received (chemo)radiotherapy for treatment of laryngeal or hypopharyngeal cancer were included. Laryngeal sensation was evaluated at the tip of the epiglottis before and 1, 3 months, and 1 year after (chemo)radiotherapy. Videofluoroscopy was performed at the same time. Quantitative determinations included changes in laryngeal sensation, computed analysis of pharyngeal delay time, the distance and velocity of hyoid bone movement during the phase of hyoid excursion, and pharyngeal residue rate (the proportion of the bolus that was left as residue in the pharynx at the first swallow). Laryngeal sensation significantly deteriorated 1 month after (chemo)radiotherapy, but there was a tendency to return to pretreatment levels 1 year after treatment. Neither pharyngeal delay time nor displacement of the hyoid bone changed significantly before and after (chemo)radiotherapy. In addition, there was no significant difference in the mean velocity of hyoid bone movement and the amount of stasis in the pharynx at the first swallow before and after (chemo)radiotherapy. After (chemo)radiotherapy, laryngeal sensation deteriorated. But, in this study, videofluoroscopy showed that swallowing reflex and function were maintained.

  18. Quality assurance in radiotherapy: from radiation physics to patient- and trial-oriented control procedures.

    PubMed

    Bernier, J; Horiot, J C; Poortmans, P

    2002-03-01

    The stepwise process of the EORTC Quality Assurance Programme in Radiotherapy is described in function of two main criteria: the targets of the quality control procedures implemented, in Radiation Physics and clinical research, by the EORTC Radiotherapy Group and the development of both trial- and patient-oriented quality systems. This exhaustive program, which started in 1982, is characterised by three main periods. The first one was fully dedicated to pioneer steps in Radiation Physics measurements, on-site audits and inventories of human resources, staff workload and department infrastructure in institutions participating to EORTC trials. During the second period, which started in the late 1980s, a series of quality systems were implemented to test the compliance of the investigators to follow protocol guidelines, through the use of standard and uniform control procedures like the dummy runs, in order to tackle systematic errors in the participating institutions. Finally, the third period, which took place in the 1990s, was essentially patient-oriented, thanks to large scale individual case reviews, to check the validity of data recording and reporting processes and trace random errors throughout the radiotherapy treatments. Most of the results collected during these two decades allowed the implementation of well codified quality control procedures which, nowadays, can be used outside the field of clinical research, by national societies or bodies willing to improve treatment standards on a large scale.

  19. Immunological interactions in radiotherapy-opening a new window of opportunity.

    PubMed

    Bhattacharyya, Tapesh; Purushothaman, Kiran; Puthiyottil, Sanudev Sadanandan Vadakke; Bhattacharjee, Atanu; Muttah, Geetha

    2016-02-01

    After a span of significant developments & advances we have reached a plateau in all the oncological disciplines in last decade. Escalation of dose of radiotherapy (RT) became possible with emergence of intensity modulated radiotherapy (IMRT) and image guided radiotherapy (IGRT). Different radiosensitizing agents starting from conventional cytotoxic drugs to hypoxic radiosensitizers have been tried to increase the effect of RT. However technological advancement hasn't been translated into significant clinical benefits. Exploiting the immune system to enhance the effect of RT is a relatively new concept and a fast growing area in the field of oncology. RT cannot longer be considered as a localized treatment, but rather as a systemic weapon for solid tumors. The phenomenon of abscopal effect, meaning the action of RT upon distant 'out-of-field' foci of malignancies has been a major focus of recent research, and holds great promise for the future. In this review article we are going to discuss the immunological interactions in RT and its promising clinical implications.

  20. Review of hematological indices of cancer patients receiving combined chemotherapy & radiotherapy or receiving radiotherapy alone.

    PubMed

    Shahid, Saman

    2016-09-01

    We observed the outcomes of chemotherapy with radiotherapy (CR) or radiotherapy (RT) alone for cancer patients of larynx, breast, blood and brain origins through complete blood count (CBC). Following were more depressed in CR patients: mean corpuscular hemoglobin-MCH & lymphocytes-LYM, hematocrit, mean corpuscular hemoglobin concentration-MCHC, hemoglobin-HB and red blood cells-RBC. In RT patients, following were more depressed: LYM, MCH and MCHC. Overall, in all cancer patients, the lymphocytes were depressed 52%. There existed a significant difference between white blood cells and RBC in both CR and RT patients. A significant moderate negative correlation is found in HB with the dose range 30-78 (Gray) given to the CR cancer patients. More number of CBC parameters affected in patients treated with CR and RT; but in less percentage as compared to patients who treated with RT alone. The cancer patients suffered from anemia along with immune modulations from the treatments. PMID:27423975

  1. Radiotherapy for Graves' disease. The possible role of low-dose radiotherapy.

    PubMed

    Arenas, Meritxell; Sabater, Sebastià; Jiménez, Pedro Lara; Rovirosa, Àngels; Biete, Albert; Linares, Victoria; Belles, Montse; Panés, Julià

    2016-01-01

    Immunomodulatory effects of low-dose radiotherapy (LD-RT) have been used for the treatment of several benign diseases, including arthrodegenerative and inflammatory pathologies. Graves' disease is an autoimmune disease and radiotherapy (RT) is a therapeutic option for ocular complications. The dose recommended in the clinical practice is 20 Gy (2 Gy/day). We hypothesized that lower doses (<10 Gy total dose, <1 Gy/day) could results in higher efficacy if we achieved anti-inflammatory and immunomodulatory effects of LD-RT. We review current evidence on the effects of RT in the treatment of Graves' disease and the possible use of LD-RT treatment strategy. PMID:27601953

  2. Water-equivalent dosimeter array for small-field external beam radiotherapy

    SciTech Connect

    Archambault, Louis; Beddar, A. Sam; Gingras, Luc; Lacroix, Frederic; Roy, Rene; Beaulieu, Luc

    2007-05-15

    With the increasing complexity of dose patterns external beam radiotherapy, there is a great need for new types of dosimeters. We studied the first prototype of a new dosimeter array consisting of water-equivalent plastic scintillating fibers for dose measurement in external beam radiotherapy. We found that this array allows precise, rapid dose evaluation of small photon fields. Starting with a dosimeter system constructed with a single scintillating fiber coupled to a clear optical fiber and read using a charge coupled device camera, we looked at the dosimeter's spatial resolution under small radiation fields and angular dependence. Afterward, we analyzed the camera's light collection to determine the maximum array size that could be built. Finally, we developed a prototype made of ten scintillating fiber detectors to study the behavior and precision of this system in simple dosimetric situations. The scintillation detector showed no measurable angular dependence. Comparison of the scintillation detector and a small-volume ion chamber showed agreement except for 1x1 and 0.5x5.0 cm{sup 2} fields where the output factor measured by the scintillator was higher. The actual field of view of the camera could accept more than 4000 scintillating fiber detectors simultaneously. Evaluation of the dose profile and depth dose curve using a prototype with ten scintillating fiber detectors showed precise, rapid dose evaluation even with placement of more than 75 optical fibers in the field to simulate what would happen in a larger array. We concluded that this scintillating fiber dosimeter array is a valuable tool for dose measurement in external beam radiotherapy. It possesses the qualities necessary to evaluate small and irregular fields with various incident angles such as those encountered in intensity-modulated radiotherapy, radiosurgery, and tomotherapy.

  3. Development of a Novel Method for Intraoperative Radiotherapy During Kyphoplasty for Spinal Metastases (Kypho-IORT)

    SciTech Connect

    Schneider, Frank; Greineck, Fabian; Clausen, Sven; Mai, Sabine; Obertacke, Udo; Reis, Tina; Wenz, Frederik

    2011-11-15

    Purpose: Approximately 30% of patients with cancer receive bone metastases, of which 50% are in the spine. Approximately 20% present with unstable lesions requiring surgical intervention, followed by fractionated radiotherapy over 2-4 weeks to prevent early regrowth. Because of the limited survival time of patients with metastatic cancer, novel treatment concepts shortening the overall treatment time or hospitalization are desirable. In this study, we established a novel approach for intraoperative radiotherapy during kyphoplasty (Kypho-IORT), a method that combines stabilizing surgery and radiotherapy within one visit, after estimating the percentage of eligible patients for this treatment. Methods and Materials: To estimate the percentage of eligible patients, 53 planning CTs (897 vertebrae) of patients with spinal metastases were evaluated. The number of infiltrated vertebrae were counted and classified in groups eligible or not eligible for Kypho-IORT. The Kypho-IORT was performed in a donated body during a standard balloon kyphoplasty using the INTRABEAM system and specially designed applicators. A single dose of 10 Gy (in 10 mm) was delivered over 4 min to the vertebra. This was verified using two ionization chambers and a Monte Carlo simulation. Results: The estimation of eligible patients resulted in 34% of the evaluated patients, and thus 34% of patients with instable spinal metastases are suitable for Kypho-IORT. This study shows also that, using the approach presented here, it is possible to perform an IORT during kyphoplasty with an additional 15 min operation time. The measurement in the donated body resulted in a maximum dose of 3.8 Gy in the spinal cord. However, the Monte Carlo depth dose simulation in bone tissue showed 68% less dose to the prescription depth. Conclusion: We present for the first time a system using an x-ray source that can be used for single-dose IORT during kyphoplasty. The described Kypho-IORT can decrease the overall treatment

  4. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma

    NASA Astrophysics Data System (ADS)

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G.; Watts, Colin; Welland, Mark

    2014-08-01

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c

  5. Automatic respiration tracking for radiotherapy using optical 3D camera

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  6. Long-Term Breast Cancer Patient Outcomes After Adjuvant Radiotherapy Using Intensity-Modulated Radiotherapy or Conventional Tangential Radiotherapy

    PubMed Central

    Yang, Jen-Fu; Lee, Meei-Shyuan; Lin, Chun-Shu; Chao, Hsing-Lung; Chen, Chang-Ming; Lo, Cheng-Hsiang; Fan, Chao-Yueh; Tsao, Chih-Cheng; Huang, Wen-Yen

    2016-01-01

    Abstract The aim of the article is to analyze breast cancer patient clinical outcomes after long-term follow-up using intensity-modulated radiotherapy (IMRT) or conventional tangential radiotherapy (cRT). We retrospectively reviewed patients with stage 0–III breast cancer who received breast conserving therapy between April 2004 and December 2007. Of the 234 patients, 103 (44%) were treated with IMRT and 131 (56%) were treated with cRT. A total prescription dose of 45 to 50 Gy (1.8–2 Gy per fraction) was delivered to the whole breast. A 14 Gy boost dose was delivered in 7 fractions. The median follow-up was 8.2 years. Five of 131 (3.8%) cRT-treated patients and 2 of 103 (1.9%) IMRT-treated patients had loco-regional failure. The 8-year loco-regional failure-free survival rates were 96.7% and 97.6% (P = 0.393) in the cRT and IMRT groups, respectively, whereas the 8-year disease-free survival (DFS) rates were 91.2% and 93.1%, respectively (P = 0.243). Patients treated with IMRT developed ≥ grade 2 acute dermatitis less frequently than patients treated with cRT (40.8% vs 56.5%; P = 0.017). There were no differences in late toxicity. IMRT reduces ≥ grade 2 acute skin toxicity. Local control, DFS, and overall survival were equivalent with IMRT and cRT. IMRT can be considered a standard technique for breast cancer treatment. PMID:26986158

  7. Recent advancements in toxicity prediction following prostate cancer radiotherapy.

    PubMed

    Ospina, J D; Fargeas, A; Dréan, G; Simon, A; Acosta, O; de Crevoisier, R

    2015-01-01

    In external beam radiotherapy for prostate cancer limiting toxicities for dose escalation are bladder and rectum toxicities. Normal tissue complication probability models aim at quantifying the risk of developping adverse events following radiotherapy. These models, originally proposed in the context of uniform irradiation, have evolved to implementations based on the state-of-the-art classification methods which are trained using empirical data. Recently, the use of image processing techniques combined with population analysis methods has led to a new generation of models to understand the risk of normal tissue complications following radiotherapy. This paper overviews those methods in the case of prostate cancer radiation therapy and propose some lines of future research.

  8. Radiotherapy cost-calculation and its impact on capacity planning.

    PubMed

    Lievens, Yolande; Slotman, Berend Jan

    2003-08-01

    The rapid rise in health care expenses has resulted in an increased interest in the cost of treatments from a cost-effectiveness point of view for management purposes and in a reimbursement setting. The economics of radiotherapy within the global context of health care, and more specifically of cancer therapy, are discussed in this review. Furthermore, the calculation of radiotherapy costs from an institutional perspective using activity-based costing and on capacity planning in radiotherapy - at the departmental as well as at the national level - by integrating cost, epidemiological and scientifico-technological data are focused on. PMID:19807460

  9. Synergistic Effects of Gold Nanocages in Hyperthermia and Radiotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-wei; Guo, Wei-hua; Qi, Ya-fei; Wang, Jian-zhen; Ma, Xiang-xing; Yu, De-xin

    2016-06-01

    Gold nanocages (GNCs) are a promising material that not only converts near infrared (NIR) light to heat for the ablation of tumors but also acts as a radiosensitizer. The combination of hyperthermia and radiotherapy has a synergistic effect that can lead to significant tumor cell necrosis. In the current study, we synthesized GNCs that offered the combined effects of hyperthermia and radiotherapy. This combination strategy resulted in increased tumor cell apoptosis and significant tumor tissue necrosis. We propose that GNCs can be used for clinical treatment and to potentially overcome resistance to radiotherapy by clearly increasing the antitumor effect.

  10. Intensity-Modulated Radiotherapy for Sinonasal Cancer: Improved Outcome Compared to Conventional Radiotherapy

    SciTech Connect

    Dirix, Piet; Vanstraelen, Bianca; Jorissen, Mark; Vander Poorten, Vincent; Nuyts, Sandra

    2010-11-15

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 to 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.

  11. Integrating Geriatric Assessment into Decision-Making after Prostatectomy: Adjuvant Radiotherapy, Salvage Radiotherapy, or None?

    PubMed Central

    Goineau, Aurore; d’Aillières, Bénédicte; de Decker, Laure; Supiot, Stéphane

    2015-01-01

    Despite current advancements in the field, management of older prostate cancer patients still remains a big challenge for Geriatric Oncology. The International Society of Geriatric Oncology (ISGO) has recently updated its recommendations in this area, and these have been widely adopted, notably by the European Association of Urology. This article outlines the principles that should be observed in the management of elderly patients who have recently undergone prostatectomy for malignancy or with a biochemical relapse following prostatectomy. Further therapeutic intervention should not be considered in those patients who are classified as frail in the geriatric assessment. In patients presenting better health conditions, salvage radiotherapy is to be preferred to adjuvant radiotherapy, which is only indicated in certain exceptional cases. Radiotherapy of the operative bed presents a higher risk to the elderly. Additionally, hormone therapy clearly shows higher side effects in older patients and therefore it should not be administered to asymptomatic patients. We propose a decision tree based on the ISGO recommendations, with specific modifications for patients in biochemical relapse. PMID:26528437

  12. Radiotherapy in the Era of Precision Medicine.

    PubMed

    Yard, Brian; Chie, Eui Kyu; Adams, Drew J; Peacock, Craig; Abazeed, Mohamed E

    2015-10-01

    Current predictors of radiation response are largely limited to clinical and histopathologic parameters, and extensive systematic analyses of the correlation between radiation sensitivity and genomic parameters remain lacking. In the era of precision medicine, the lack of -omic determinants of radiation response has hindered the personalization of radiation delivery to the unique characteristics of each patient׳s cancer and impeded the discovery of new therapies that can be administered concurrently with radiation therapy. The cataloging of the -omic determinants of radiation sensitivity of cancer has great potential in enhancing efficacy and limiting toxicity in the context of a new approach to precision radiotherapy. Herein, we review concepts and data that contribute to the delineation of the radiogenomic landscape of cancer.

  13. Breast cellulitis after conservative surgery and radiotherapy

    SciTech Connect

    Rescigno, J.; McCormick, B.; Brown, A.E.; Myskowski, P.L. )

    1994-04-30

    Cellulitis is a previously unreported complication of conservative surgery and radiation therapy for early stage breast cancer. Patients who presented with breast cellulitis after conservative therapy are described. Eleven patients that developed cellulitis of the breast over a 38-month period of observation are the subject of this report. Clinical characteristics of patients with cellulitis and their treatment and outcome are reported. Potential patient and treatment-related correlates for the development of cellulitis are analyzed. The risk of cellulitis persists years after initial breast cancer therapy. The clinical course of the patients was variable: some patients required aggressive, long-duration antibiotic therapy, while others had rapid resolution with antibiotics. Three patients suffered from multiple episodes of cellulitis. Patients with breast cancer treated with conservative surgery and radiotherapy are at risk for breast cellulitis. Systematic characterization of cases of cellulitis may provide insight into diagnosis, prevention, and more effective therapy for this uncommon complication. 15 refs., 1 fig., 2 tabs.

  14. Biologically Optimized Treatments for Hadron Radiotherapy

    NASA Astrophysics Data System (ADS)

    Nazaryan, Vahagn; Keppel, Cynthia; Britten, Richard; George, Jerry; Nie, Xiliang

    2008-10-01

    Near future advances in proton radiotherapy technology will increasingly require complex, conformal treatment planning. However, the current state of knowledge of the biological efficiency of proton beams may be inadequate to facilitate precision, and reduced margins. A new project at the Hampton University Proton Therapy Institute and the Eastern Virginia Medical School aims to facilitate the expected benefits of increasingly conformal treatment capabilities. Specifically, we seek to establish with measurements the biological depth dose profile of protons with incident energies in the range 62-210 MeV, and to utilize these also to provide vastly improved model algorithms for patient treatment planning based on biological, rather than simply physical, depth dose profiles. A progress report on a model for proton biological efficiency calculations as an input algorithm for treatment planning with protons will be presented. The planned measurements will be discussed.

  15. High-LET charged particle radiotherapy

    SciTech Connect

    Castro, J.R. . Research Medicine and Radiation Biophysics Div. California Univ., San Francisco, CA . Dept. of Radiation Oncology)

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  16. Radiotherapy With Protons And Ion Beams

    SciTech Connect

    Jaekel, Oliver

    2010-04-26

    The use of proton and ion beams has been proposed more than 60 years ago in 1946 by Robert Wilson. In 1955 the first patients were treated with proton beams in Berkeley. Since then radiotherapy with proton and ion beams has constantly been developed at research centers. Within the last decade, however, a considerable number of hospital based facilities came into operation. In this paper an overview over the basic physical and biological properties of proton and ion beams is given. The basic accelerator concepts are outlined and the design of treatment facilities is described. Then the medical physics aspects of the beam delivery, dosimetry and treatment planning are discussed before the clinical concepts are briefly reviewed.

  17. Proton beam radiotherapy of uveal melanoma

    PubMed Central

    Damato, Bertil; Kacperek, Andrzej; Errington, Doug; Heimann, Heinrich

    2013-01-01

    Proton beam radiotherapy of uveal melanoma can be administered as primary treatment, as salvage therapy for recurrent tumor, and as neoadjuvant therapy prior to surgical resection. The physical properties of proton beams make it possible to deliver high-doses of radiation to the tumor with relative sparing of adjacent tissues. This form of therapy is effective for a wider range of uveal melanoma than any other modality, providing exceptionally-high rates of local tumor control. This is particularly the case with diffuse iris melanomas, many of which are unresectable. The chances of survival, ocular conservation, visual preservation and avoidance of iatrogenic morbidity depend greatly on the tumor size, location and extent. When treating any side-effects and/or complications, it is helpful to consider whether these are the result of collateral damage or persistence of the irradiated tumor (‘toxic tumor syndrome’). PMID:24227980

  18. Mean dose to lymphocytes during radiotherapy treatments

    SciTech Connect

    Brandan, M.E.; Perez-Pastenes, M.A.; Ostrosky-Wegman, P.; Gonsebatt, M.E.; Diaz-Perches, R.

    1994-10-01

    Using a probabilistic model with parameters from four radiotherapy protocols used in Mexican hospitals for the treatment of cervical cancer, the authors have calculated the distribution of dose to cells in peripheral blood of patients. Values of the mean dose to the lymphocytes during and after a {sup 60}Co treatment are compared to estimates from an in vivo chromosome aberration study performed on five patients. Calculations indicate that the mean dose to the circulating blood is about 2% of the tumor dose, while the mean dose to recirculating lymphocytes may reach up to 7% of the tumor dose. Differences up to a factor of two in the dose to the blood are predicted for different protocols delivering equal tumor doses. The data suggest mean doses higher than the predictions of the model. 10 refs., 3 figs., 2 tabs.

  19. Radiotherapy With Protons And Ion Beams

    NASA Astrophysics Data System (ADS)

    Jäkel, Oliver

    2010-04-01

    The use of proton and ion beams has been proposed more than 60 years ago in 1946 by Robert Wilson. In 1955 the first patients were treated with proton beams in Berkeley. Since then radiotherapy with proton and ion beams has constantly been developed at research centers. Within the last decade, however, a considerable number of hospital based facilities came into operation. In this paper an overview over the basic physical and biological properties of proton and ion beams is given. The basic accelerator concepts are outlined and the design of treatment facilities is described. Then the medical physics aspects of the beam delivery, dosimetry and treatment planning are discussed before the clinical concepts are briefly reviewed.

  20. Radiotherapy Dose Fractionation under Parameter Uncertainty

    NASA Astrophysics Data System (ADS)

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-01

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  1. TOPICAL REVIEW: Anatomical imaging for radiotherapy

    NASA Astrophysics Data System (ADS)

    Evans, Philip M.

    2008-06-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  2. Radiotherapy Dose Fractionation under Parameter Uncertainty

    SciTech Connect

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-30

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  3. Magnetic resonance imaging for prostate cancer radiotherapy.

    PubMed

    Dinh, Cuong V; Steenbergen, Peter; Ghobadi, Ghazaleh; Heijmink, Stijn W T J P; Pos, Floris J; Haustermans, Karin; van der Heide, Uulke A

    2016-03-01

    For radiotherapy of prostate cancer, MRI is used increasingly for delineation of the prostate gland. For focal treatment of low-risk prostate cancer or focal dose escalation for intermediate and high-risk cancer, delineation of the tumor is also required. While multi-parametric MRI is well established for detection of tumors and for staging of the disease, delineation of the tumor inside the prostate is not common practice. Guidelines, such as the PI-RADS classification, exist for tumor detection and staging, but no such guidelines are available for tumor delineation. Indeed, interobserver studies show substantial variation in tumor contours. Computer-aided tumor detection and delineation may help improve the robustness of the interpretation of multi-parametric MRI data. Comparing the performance of an earlier developed model for tumor segmentation with expert delineations, we found a significant correlation between tumor probability in a voxel and the number of experts identifying this voxel as tumor. This suggests that the model agrees with 'the wisdom of the crowd', and thus could serve as a reference for individual physicians in their decision making. With multi-parametric MRI it becomes feasible to revisit the GTV-CTV concept in radiotherapy of prostate cancer. While detection of index lesions is quite reliable, contouring variability and the low sensitivity to small lesions suggest that the remainder of the prostate should be treated as CTV. Clinical trials that investigate the options for dose differentiation, for example with dose escalation to the visible tumor or dose reduction to the CTV, are therefore warranted.

  4. Radiotherapy and temozolomide for anaplastic astrocytic gliomas

    PubMed Central

    Nayak, Lakshmi; Panageas, Katherine S.; Reiner, Anne S.; Huse, Jason T.; Pentsova, Elena; Braunthal, Stephanie G.; Abrey, Lauren E.; DeAngelis, Lisa M.

    2015-01-01

    We previously reported results of a phase II non-comparative trial that randomized patients with glioblastoma following radiotherapy to one of two different temozolomide schedules, followed by 13-cis-retinoic acid (RA) maintenance. Here we report the results of an exploratory cohort of patients accrued with anaplastic astrocytic tumors. Patients with newly diagnosed anaplastic astrocytoma (AA) or anaplastic oligo-astrocytoma (AOA) were treated with concurrent radiotherapy (60 Gy over 6 weeks) and temozolomide (75 mg/m2), and six adjuvant 28-day cycles of either dose-dense (150 mg/m2, days 1–7, 15–21) or metronomic (50 mg/m2, days 1–28) temozolomide. Subsequently, maintenance RA (100 mg/m2, days 1–21/28) was administered until disease progression. All outcome measures were descriptive without intention to compare between treatment arms. Survival was measured by the Kaplan–Meier method. There were 31 patients (21 men, 10 women) with median age 48 years (range 28–74), median KPS 90 (range 60–100). Extent of resection was gross-total in 35 %, subtotal 23 %, and biopsy 42 %. Histology was AA in 90 %, and AOA in 10 %. MGMT promoter methylation was methylated in 20 %, unmethylated in 50 %, and uninformative in 30 % of 30 tested. Median progression-free survival was 2.1 years (95 % CI 0.95–Not Reached), and overall survival 2.9 years (95 % CI 2.0–Not Reached). We report outcomes among a homogeneously treated population with anaplastic astrocytic tumors. Survival was unexpectedly short compared to other reports. These data may be useful as a contemporary historic control for other ongoing or future randomized trials. PMID:25920709

  5. Radiotherapy and temozolomide for anaplastic astrocytic gliomas.

    PubMed

    Nayak, Lakshmi; Panageas, Katherine S; Reiner, Anne S; Huse, Jason T; Pentsova, Elena; Braunthal, Stephanie G; Abrey, Lauren E; DeAngelis, Lisa M; Lassman, Andrew B

    2015-05-01

    We previously reported results of a phase II non-comparative trial that randomized patients with glioblastoma following radiotherapy to one of two different temozolomide schedules, followed by 13-cis-retinoic acid (RA) maintenance. Here we report the results of an exploratory cohort of patients accrued with anaplastic astrocytic tumors. Patients with newly diagnosed anaplastic astrocytoma (AA) or anaplastic oligo-astrocytoma (AOA) were treated with concurrent radiotherapy (60 Gy over 6 weeks) and temozolomide (75 mg/m(2)), and six adjuvant 28-day cycles of either dose-dense (150 mg/m(2), days 1-7, 15-21) or metronomic (50 mg/m(2), days 1-28) temozolomide. Subsequently, maintenance RA (100 mg/m(2), days 1-21/28) was administered until disease progression. All outcome measures were descriptive without intention to compare between treatment arms. Survival was measured by the Kaplan-Meier method. There were 31 patients (21 men, 10 women) with median age 48 years (range 28-74), median KPS 90 (range 60-100). Extent of resection was gross-total in 35%, subtotal 23%, and biopsy 42%. Histology was AA in 90%, and AOA in 10%. MGMT promoter methylation was methylated in 20%, unmethylated in 50%, and uninformative in 30% of 30 tested. Median progression-free survival was 2.1 years (95% CI 0.95-Not Reached), and overall survival 2.9 years (95 % CI 2.0-Not Reached). We report outcomes among a homogeneously treated population with anaplastic astrocytic tumors. Survival was unexpectedly short compared to other reports. These data may be useful as a contemporary historic control for other ongoing or future randomized trials. PMID:25920709

  6. Use of Postmastectomy Radiotherapy in Older Women

    SciTech Connect

    Smith, Benjamin D. Haffty, Bruce G.; Smith, Grace L.; Hurria, Arti; Buchholz, Thomas A.; Gross, Cary P.

    2008-05-01

    Purpose: Clinical trials and guidelines published between 1997 and 2001 concluded that postmastectomy radiotherapy (PMRT) improves overall survival for women with high-risk breast cancer. However, the effect of these findings on current practice is not known. Using the Surveillance, Epidemiology, and End Results-Medicare cohort, we sought to characterize the adoption of PMRT from 1992 to 2002 and identify risk factors for PMRT omission among high-risk older patients. Methods and Materials: We identified 28,973 women aged {>=}66 years who had been treated with mastectomy for invasive breast cancer between 1992 and 2002. Trends in the adoption of PMRT for low- (T1-T2N0), intermediate- (T1-T2N1), and high- (T3-T4 and/or N2-N3) risk patients were characterized using a Monte Carlo permutation algorithm. Multivariate logistic regression identified the risk factors for PMRT omission and calculated the adjusted use rates. Results: Postmastectomy radiotherapy use increased gradually and consistently for low-risk (+2.16%/y) and intermediate-risk (+7.20%/y) patients throughout the study interval. In contrast, PMRT use for high-risk patients increased sharply between 1996 and 1997 (+30.99%/y), but subsequently stabilized. Between 1998 and 2002, only 53% of high-risk patients received PMRT. The risk factors for PMRT omission included advanced age, moderate to severe comorbidity, smaller tumor size, fewer positive lymph nodes, and geographic region, with adjusted use rates ranging from 63.5% in San Francisco to 44.9% in Connecticut. Conclusion: Among the high-risk patients, PMRT use increased sharply in 1997 after the initial clinical trial publication. Despite subsequent guidelines recommending the use of PMRT, no further increase in PMRT use has occurred, and nearly 50% of high-risk patients still do not receive PMRT.

  7. Magnetic Resonance Imaging in Postprostatectomy Radiotherapy Planning

    SciTech Connect

    Sefrova, Jana; Odrazka, Karel; Paluska, Petr; B