Science.gov

Sample records for radiotherapy treatment room

  1. A new active method for the measurement of slow-neutron fluence in modern radiotherapy treatment rooms

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Iglesias, A.; Sánchez Doblado, F.

    2010-02-01

    This work focuses on neutron monitoring at clinical linac facilities during high-energy modality radiotherapy treatments. Active in-room measurement of neutron fluence is a complex problem due to the pulsed nature of the fluence and the presence of high photon background, and only passive methods have been considered reliable until now. In this paper we present a new active method to perform real-time measurement of neutron production around a medical linac. The device readout is being investigated as an estimate of patient neutron dose exposure on each radiotherapy session. The new instrument was developed based on neutron interaction effects in microelectronic memory devices, in particular using neutron-sensitive SRAM devices. This paper is devoted to the description of the instrument and measurement techniques, presenting the results obtained together with their comparison and discussion. Measurements were performed in several standard clinical linac facilities, showing high reliability, being insensitive to the photon fluence and EM pulse present inside the radiotherapy room, and having detector readout statistical relative uncertainties of about 2% on measurement of neutron fluence produced by 1000 monitor units irradiation runs.

  2. The use of high-density concretes in radiotherapy treatment room design.

    PubMed

    Facure, A; Silva, A X

    2007-09-01

    With the modernization of radiotherapic centers, medical linear accelerators are largely replacing (60)Co teletherapy units. In many cases, the same vault housing the (60)Co teletherapy unit is reused for the linear accelerator and, when space is at a premium, high-density concrete (3.0-5.0 g/cm(3)) is employed to provide shielding against the primary, scatter and leakage radiation. This work presents a study based on Monte Carlo simulations of transmission of some clinical photon spectra (of 4-10 MV accelerators) through some types of high-density concretes, normally used in the construction of radiotherapy bunkers. From the simulations, the initial and subsequent tenth-value layers (TVL) for these materials, taking into account realistic clinical photon spectra, are presented, for primary radiation.

  3. Radiation transport in a radiotherapy room

    SciTech Connect

    Agosteo, S.; Para, A.F.; Maggioni, B.

    1995-01-01

    The photoneutron dose equivalent in a linac radio-therapy room and its entrance maze was investigated by means of Monte Carlo simulations under different conditions. Particularly, the effect of neutron absorbers and moderator layers placed on the maze walls was considered. The contribution of prompt gamma rays emitted in absorption reactions of thermal neutrons was also taken into account. The simulation results are compared with some experimental measurements in the therapy room and in the maze. 13 refs., 5 figs., 5 tabs.

  4. Neutron fluxes in radiotherapy rooms.

    PubMed

    Agosteo, S; Foglio Para, A; Maggioni, B

    1993-01-01

    The spatial distribution of the neutron flux, originated in an electron accelerator therapy room when energies above the threshold of (y,n) and (e,e'n) reactions are employed, is physically due to a direct flux, coming from the accelerator head, and to a flux diffused from the walls. In this work, the flux is described to a high degree of approximation by a set of functions whose spatial behavior is univocally determined by the angular distributions of the neutrons emitted from the shield of the accelerator head and diffused from the walls. The analytical results are verified with an extended series of Monte Carlo simulations obtained with the MCNP code.

  5. Neutron measurements with ultra-thin 3D silicon sensors in a radiotherapy treatment room using a Siemens PRIMUS linac.

    PubMed

    Guardiola, C; Gómez, F; Fleta, C; Rodríguez, J; Quirion, D; Pellegrini, G; Lousa, A; Martínez-de-Olcoz, L; Pombar, M; Lozano, M

    2013-05-21

    The accurate detection and dosimetry of neutrons in mixed and pulsed radiation fields is a demanding instrumental issue with great interest both for the industrial and medical communities. In recent studies of neutron contamination around medical linacs, there is a growing concern about the secondary cancer risk for radiotherapy patients undergoing treatment in photon modalities at energies greater than 6 MV. In this work we present a promising alternative to standard detectors with an active method to measure neutrons around a medical linac using a novel ultra-thin silicon detector with 3D electrodes adapted for neutron detection. The active volume of this planar device is only 10 µm thick, allowing a high gamma rejection, which is necessary to discriminate the neutron signal in the radiotherapy peripheral radiation field with a high gamma background. Different tests have been performed in a clinical facility using a Siemens PRIMUS linac at 6 and 15 MV. The results show a good thermal neutron detection efficiency around 2% and a high gamma rejection factor.

  6. Neutron measurements with ultra-thin 3D silicon sensors in a radiotherapy treatment room using a Siemens PRIMUS linac

    NASA Astrophysics Data System (ADS)

    Guardiola, C.; Gómez, F.; Fleta, C.; Rodríguez, J.; Quirion, D.; Pellegrini, G.; Lousa, A.; Martínez-de-Olcoz, L.; Pombar, M.; Lozano, M.

    2013-05-01

    The accurate detection and dosimetry of neutrons in mixed and pulsed radiation fields is a demanding instrumental issue with great interest both for the industrial and medical communities. In recent studies of neutron contamination around medical linacs, there is a growing concern about the secondary cancer risk for radiotherapy patients undergoing treatment in photon modalities at energies greater than 6 MV. In this work we present a promising alternative to standard detectors with an active method to measure neutrons around a medical linac using a novel ultra-thin silicon detector with 3D electrodes adapted for neutron detection. The active volume of this planar device is only 10 µm thick, allowing a high gamma rejection, which is necessary to discriminate the neutron signal in the radiotherapy peripheral radiation field with a high gamma background. Different tests have been performed in a clinical facility using a Siemens PRIMUS linac at 6 and 15 MV. The results show a good thermal neutron detection efficiency around 2% and a high gamma rejection factor.

  7. Characteristic evaluation of photoneutron in radiotherapy room using MCNPX

    NASA Astrophysics Data System (ADS)

    Park, E.-T.; Kim, J.-H.; Kim, C.-S.; Kang, S.-S.

    2015-08-01

    Linear accelerators are now playing a pivotal role in radiotherapy and high energy photon beams of a strength exceeding 8 MV have recently been mainly used. However, when using high energy photons, neutron contamination due to photonuclear reaction develops. This study focused on the dose distribution of photoneutrons emitted from a linear accelerator using Monte Carlo MCNPX code. MCNPX was used to simulate transportation of photoneutrons in the linear accelerator and the entire space of the radiotherapy room and is useful for calculating the flux, spectrum and absorbed dose. As result of the simulation, we could know that the neutron absorbed dose was as less as negligible when comparing to the photon absorbed dose in radiotherapy room. And it was found that the photoneutron flux increased substantially starting from 10 MV while the absorbed dose rose sharply between 10 MV and 12 MV. It was observed that although the ratio of thermal neutrons to fast neutrons was not altered as the energy increased, it was found that as the distance from the source increased the ratio of thermal neutrons rose markedly.

  8. Shielding considerations for an operating room based intraoperative electron radiotherapy unit.

    PubMed

    Mills, M D; Almond, P R; Boyer, A L; Ochran, T G; Madigan, W; Rich, T A; Dally, E B

    1990-05-01

    The leakage radiation characteristics of a dedicated intraoperative radiotherapy linear accelerator have been measured on a machine designed to minimize the shielding required to allow it to be placed in an operating room suite. The scattering foil design was optimized to produce a flat beam for the field sizes employed while generating minimal bremsstrahlung contamination over the available energy range. More lead shielding was used in the treatment head than is used in conventional accelerators. A small amount of borated polyethylene shielding was also employed since neutron production was present at measurable levels. The room shielding installed in the operating room was demonstrated to be adequate to treat at least 20 patients each month to an average dose of 20 Gy. The worst case exposure was found to be 73% maximum permissible exposure. Administrative control was required for adjoining areas when calibrations and maintenance were performed.

  9. Collision prediction software for radiotherapy treatments

    SciTech Connect

    Padilla, Laura; Pearson, Erik A.; Pelizzari, Charles A.

    2015-11-15

    Purpose: This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient’s treatment position and allow for its modification if necessary. Methods: A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the SKANECT software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0° , while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in PINNACLE, and this information was exported to AlignRT (VisionRT, London, UK)—a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Results: Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation

  10. Radiotherapy in the treatment of vertebral hemangiomas

    SciTech Connect

    Faria, S.L.; Schlupp, W.R.; Chiminazzo, H. Jr.

    1985-02-01

    Symptomatic vertebral hemangiomas are not common. Although radiotherapy has been used as treatment, the data are sparse concerning total dose, fractionation and results. The authors report nine patients with vertebral hemangioma treated with 3000-4000 rad, 200 rad/day, 5 fractions per week, followed from 6 to 62 months. Seventy-seven percent had complete or almost complete disappearance of the symptoms. Radiotherapy schedules are discussed.

  11. Radiotherapy Treatment Planning for Testicular Seminoma

    SciTech Connect

    Wilder, Richard B.; Buyyounouski, Mark K.; Efstathiou, Jason A.; Beard, Clair J.

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  12. Oral verrucous carcinoma. Treatment with radiotherapy

    SciTech Connect

    Nair, M.K.; Sankaranarayanan, R.; Padmanabhan, T.K.; Madhu, C.S.

    1988-02-01

    Fifty-two cases of oral verrucous carcinoma treated with radiotherapy at the Regional Cancer Centre, Trivandrum, Kerala, India in 1982 were evaluated to determine the distribution within the oral cavity, clinical extent, and effectiveness of radiotherapy in controlling the disease. The most common site was the buccal mucosa. Fifty percent of the patients had clinically negative regional lymph nodes and 33% were in earlier stages (T1, T2, N0, and M0). The overall 3-year no evidence of disease (NED) survival rate was 44%. The 3-year NED survival rate with radium implant was 86%. We cannot comment on anaplastic transformation after radiotherapy because our treatment failures have not been subjected for biopsy concerning this matter. Because the results are comparable with those of well-differentiated squamous cell carcinoma, we think that the treatment policies advocated for oral squamous cell carcinoma are also applicable to oral verrucous carcinoma.

  13. Medical treatment for biochemical relapse after radiotherapy.

    PubMed

    Quero, L; Hennequin, C

    2014-10-01

    This article's purpose was to review the medical data justifying the use of a medical treatment for biochemical relapse after external beam radiotherapy. The MEDLINE database was searched to identify relevant information with the following medical subject headings: "prostate cancer", "radiotherapy" and "biochemical relapse". Prognostic factors affecting the overall survival of patients with a biochemical relapse after external beam radiotherapy have been identified: short prostate specific antigen (PSA)-doubling time (< 12 months), high PSA value (> 10 ng/mL) and short interval between treatment and biochemical relapse (< 18 months). If a second local treatment is not feasible, timing to initiate a salvage medical treatment is not defined. Particularly, randomized trials did not demonstrate a significant benefit of an early initiation of androgen deprivation treatment. Some retrospective studies suggest that an early androgen deprivation is justified if poor prognostic factors are found. However, if an androgen deprivation treatment is prescribed, intermittent schedule is non-inferior to a continuous administration and seems to offer a better quality of life. Many non-hormonal treatments have also been evaluated in this setting: only 5-alpha-reductase inhibitors could be proposed in some specific situations. In conclusion, the judicious use of a medical treatment for biochemical relapse is still debated. Given the natural history of this clinical situation, a simple surveillance is justified in many cases.

  14. Image guided dose escalated prostate radiotherapy: still room to improve

    PubMed Central

    Martin, Jarad M; Bayley, Andrew; Bristow, Robert; Chung, Peter; Gospodarowicz, Mary; Menard, Cynthia; Milosevic, Michael; Rosewall, Tara; Warde, Padraig R; Catton, Charles N

    2009-01-01

    Background Prostate radiotherapy (RT) dose escalation has been reported to result in improved biochemical control at the cost of greater late toxicity. We report on the application of 79.8 Gy in 42 fractions of prostate image guided RT (IGRT). The primary objective was to assess 5-year biochemical control and potential prognostic factors by the Phoenix definition. Secondary endpoints included acute and late toxicity by the Radiotherapy Oncology Group (RTOG) scoring scales. Methods From October/2001 and June/2003, 259 men were treated with at least 2-years follow-up. 59 patients had low, 163 intermediate and 37 high risk disease. 43 had adjuvant hormonal therapy (HT), mostly for high- or multiple risk factor intermediate-risk disease (n = 25). They received either 3-dimensional conformal RT (3DCRT, n = 226) or intensity modulated RT (IMRT) including daily on-line IGRT with intraprostatic fiducial markers. Results Median follow-up was 67.8 months (range 24.4-84.7). There was no severe (grade 3-4) acute toxicity, and grade 2 acute gastrointestinal (GI) toxicity was unusual (10.1%). The 5-year incidence of grade 2-3 late GI and genitourinary (GU) toxicity was 13.7% and 12.1%, with corresponding grade 3 figures of 3.5% and 2.0% respectively. HT had an association with an increased risk of grade 2-3 late GI toxicity (11% v 21%, p = 0.018). Using the Phoenix definition for biochemical failure, the 5 year-bNED is 88.4%, 76.5% and 77.9% for low, intermediate and high risk patients respectively. On univariate analysis, T-category and Gleason grade correlated with Phoenix bNED (p = 0.006 and 0.039 respectively). Hormonal therapy was not a significant prognostic factor on uni- or multi-variate analysis. Men with positive prostate biopsies following RT had a lower chance of bNED at 5 years (34.4% v 64.3%; p = 0.147). Conclusion IGRT to 79.8 Gy results in favourable rates of late toxicity compared with published non-IGRT treated cohorts. Future avenues of investigation for

  15. MR Imaging Based Treatment Planning for Radiotherapy of Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    treatment planning for radiotherapy : Dosimetric verification for prostate IiMRT" and " Dosimetric evaluation of MRI-based treatment planning for...Shawn M, Ma C-M, Freedman GM and Pollack A. MRI-Based Treatment Planning for Radiotherapy : Dosimetric Verification for Prostate IMRT. International...Freedman GM and Pollack A. MRI- Based Treatment Planning for Radiotherapy : Dosimetric Verification for Prostate ]IMRT. International Journal of Radiation

  16. IS THERE A ROOM IN BULGARIA FOR RADIOTHERAPY OF GASTRIC CANCER?

    PubMed

    Encheva, E; Shterev, Sht; Kolev, N; Tonev, A; Ignatov, V; Petrov, D; Zlatarov, Al; Koleva, Il; Kirilova, T; Ivanov, K

    2014-01-01

    Gastric cancer is the fourth most common cancer worldwide with one million new casesyearly and the second most frequent cause of cancer death. Although surgery is the leading treatment modality of gastric cancer the survival remains low (5- year survival is reported to be 25% in Europe and 60% in the Eastern world). The risk of locoregional recurrence grows with the increase of the tumor stage. In order to improve locoregional control a number of clinical studies in the last four decades have examined different strategies of adjuvant therapy, including chemotherapy, radiotherapy, chemoradiation with ambiguous results. Various regimens of radiotherapy alone, applied preand postoperatively or in combination with chemotherapy in pre- and postoperative settings have been studied. With the present article, the authors present the world experience of radiotherapy application in gastric carcinoma, supporting its introduction in to Bulgarian clinical practice. The study results concerning this topic have been discussed. SWOG/Intergroup 0116 study showed that postoperative chemoradiation leads to increased 5-year overall survival compared with surgery alone. A recent metaanalysis on randomized trials in operable gastric cancer, found that adjuvant radiotherapy leads to 20 % improvement in disease free survival and overall survival and found no subgroup of patients who do not benefit from adjuvant radiotherapy. The available data from the published studies and metaanalysis completely supports the introduction of chemoradiation for gastric cancer and in Bulgarian radiotherapy practice with the opportunity of gaining own experience.

  17. Radiotherapy treatments using Tsallis entropy statistical approach

    NASA Astrophysics Data System (ADS)

    D, Rodríguez-Pérez; O, Sotolongo-Grau; O, Sotolongo-Costa; C, Antoranz J.

    2014-03-01

    Several radiobiological models mimic the biologic effect of one single radiation dose on a living tissue. However, the actual fractionated radiotherapy requires accounting for a new magnitude, i.e., time. Here, we explore the biological consequences posed by the mathematical prolongation of a previous single radiation model to fractionated treatment. The survival fraction is obtained, together with the equivalent physical dose, in terms of a time dependent factor (similar to a repair coefficient) describing the tissue trend to recovering its radioresistance. The model describes how dose fractions add up to obtain the equivalent dose and how the repair coefficient poses a limit to reach an equivalent dose equal to the critical one that would completely annihilate the tumor. On the other hand, the surrounding healthy tissue is a limiting factor to treatment planning. This tissue has its own repair coefficient and thus should limit the equivalent dose of a treatment. Depending on the repair coefficient and the critical dose of each tissue, unexpected results (failure to fully remove the tumor) can be obtained. To illustrate these results and predictions, some realistic example calculations will be performed using parameter values within actual clinical ranges. In conclusion, the model warns about treatment limitations and proposes ways to overcome them.

  18. System Toward Automation in Radiotherapy Treatment: START

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew Y. S.; Tsoi, Kenneth Y. P.

    1994-10-01

    START is a new automation system invented for nasopharyngeal carcinoma treatment. A laser scanner system capable of non-contact digitization of 3D surface is used to digitize the contours of the patient's face, shoulder and special landmark reference features of the patient. These features are stored in the computer in 3D digitized format. The digitized facial features with traced landmark reference features are used for fabrication of a true sized wood-particle laminates mould by a computer numerical controlled milling system. A Cobex mask is formed on this mould by using vacuum forming technique. With an image analysis and computer aided design system, the X-ray film with treatment window marked is traced automatically and converted to match the prescanned 3D information. A computer controlled 6-axis robot can precisely mark out the required areas on the Cobex cast for treatment. Finally, the patient receives radiotherapy treatment with the Cobex case as a positioning registration device. The new system will replace the manual procedure with better patient comfort, higher efficiency and enhanced accuracy.

  19. Surgical Management of Combined Intramedullary Arteriovenous Malformation and Perimedullary Arteriovenous Fistula within the Hybrid Operating Room after Five Years of Performing Focus Fractionated Radiotherapy: Case Report

    PubMed Central

    GEKKA, Masayuki; SEKI, Toshitaka; HIDA, Kazutoshi; OSANAI, Toshiya; HOUKIN, Kiyohiro

    2014-01-01

    Perimedullary arteriovenous fistula (AVF) shunts occur on the spinal cord surface and can be treated surgically or by endovascular embolization. In contrast, the nidus of an intramedullary arteriovenous malformation (AVM) is located in the spinal cord and is difficult to treat surgically or by endovascular techniques. The benefits of radiotherapy for treating intramedullary AVM have been published, but are anecdotal and consist largely of case reports. We present a case of combined cervical intramedullary AVM and perimedullary AVF which received surgical treatment within a hybrid operating room (OR) after 5 years of focus fractionated radiotherapy. A 37-year-old male presented with stepwise worsening myelopathy. Magnetic resonance imaging and spinal angiography revealed intramedullary AVM and perimedullary AVF at the C3 to C5 levels. In order to reduce nidus size and blood flow, we first performed focal fractionated radiotherapy. Five years later, the lesion volume was reduced. Following this, direct surgery was performed by an anterior approach using corpectomy in the hybrid OR. The spinal cord was monitored by motor-evoked potential throughout the surgery. Complete obliteration of the fistulous connection was confirmed by intraoperative indocyanine green video-angiography and intraoperative angiography, preserving the anterior spinal artery. We conclude that surgical treatment following focal fractionated radiotherapy may become one strategy for patients who are initially deemed ineligible for endovascular embolization and surgical treatment. Furthermore, the hybrid OR enables safe and precise treatment for spinal vascular disorders in the fields of endovascular treatment and neurosurgery. PMID:25367581

  20. Synergistic Effects of Gold Nanocages in Hyperthermia and Radiotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-wei; Guo, Wei-hua; Qi, Ya-fei; Wang, Jian-zhen; Ma, Xiang-xing; Yu, De-xin

    2016-06-01

    Gold nanocages (GNCs) are a promising material that not only converts near infrared (NIR) light to heat for the ablation of tumors but also acts as a radiosensitizer. The combination of hyperthermia and radiotherapy has a synergistic effect that can lead to significant tumor cell necrosis. In the current study, we synthesized GNCs that offered the combined effects of hyperthermia and radiotherapy. This combination strategy resulted in increased tumor cell apoptosis and significant tumor tissue necrosis. We propose that GNCs can be used for clinical treatment and to potentially overcome resistance to radiotherapy by clearly increasing the antitumor effect.

  1. Treatment of ameloblastoma and ameloblastic carcinoma with radiotherapy.

    PubMed

    Kennedy, William R; Werning, John W; Kaye, Frederic J; Mendenhall, William M

    2016-10-01

    The purpose of this study is to report our institutional experience using radiotherapy in the treatment of ameloblastoma and ameloblastic carcinoma. Three patients with ameloblastoma and 3 patients with ameloblastic carcinoma were treated with radiotherapy alone (2 patients) or surgery and postoperative radiotherapy (4 patients) at the University of Florida between 1973 and 2007. Follow-up ranged from 4.0 to 13.1 years with a median of 7.8 years. Radiotherapy complications were scored using the Common Terminology Criteria for Adverse Events, version 4.0. Local control was achieved in 4 of the 6 patients. One patient treated with RT alone for an unresectable ameloblastoma developed a local recurrence and metastases in both the cervical lymph nodes and lungs, but had excellent response to dual BRAF/MEK inhibition with dabrafenib and trametinib. Another patient treated with surgery and postoperative radiotherapy for an ameloblastic carcinoma recurred locally without metastasis, but was not salvaged. No significant treatment-related complications were observed. For patients with local recurrence or inadequate margins after surgery, adjuvant radiotherapy provides the potential for disease control. In the setting of metastatic disease, targeted therapies may provide an additional opportunity for salvage.

  2. [Radiotherapy as primary treatment for chemodectoma?].

    PubMed

    Verniers, D; Van Limbergen, E; Leysen, J; Ostyn, F; Segers, A

    1990-01-01

    Chemodectomas are slowly growing tumours originating in the chemoreceptor bodies. The diagnosis is based on typical clinical symptoms and radiological investigation. CT scanning with contrast enhancement permits to establish diagnosis in most cases and gives a correct idea of tumour size, tumour extension, displacement of arteries and bone destruction. Small tympanic chemodectomas are successfully managed by surgery, without causing additional cranial nerve palsies. Surgery of larger lesions is frequently followed by a high percentage of local recurrence (greater than 50%) and important morbidity (neurologic sequelae). Our present series confirms that these tumours can successfully be treated by radiotherapy. Persisting local control rates can be obtained in more than 90% of cases with moderate doses (45-50 Gy in 5 weeks) of carefully planned radiotherapy.

  3. The role of radiotherapy in multimodal treatment of pancreatic carcinoma

    PubMed Central

    2010-01-01

    Pancreatic ductal carcinoma is one of the most lethal malignancies, but in recent years a number of positive developments have occurred in the management of pancreatic carcinoma. This article aims to give an overview of the current knowledge regarding the role of radiotherapy in the treatment of pancreatic ductal adenocarcinoma (PDAC). The results of meta-analyses, phase III-studies, and phase II-studies using chemoradiotherapy and chemotherapy for resectable and non-resectable PDAC were reviewed. The use of radiotherapy is discussed in the neoadjuvant and adjuvant settings as well as in the locally advanced situation. Whenever possible, radiotherapy should be performed as simultaneous chemoradiotherapy. Patients with PDAC should be offered entry into clinical trials to identify optimal treatment results. PMID:20615227

  4. Stereotactic fractionated radiotherapy for the treatment of benign meningiomas

    SciTech Connect

    Candish, Charles; McKenzie, Michael . E-mail: mmckenzi@bccancer.bc.edu; Clark, Brenda G.; Ma, Roy; Lee, Richard; Vollans, Emily; Robar, James; Gete, Ermias; Martin, Monty

    2006-11-15

    Purpose: To assess the use of stereotactic fractionated radiotherapy (SRT) for the treatment of meningiomas. Methods and Materials: Between April 1999 and October 2004, 38 patients underwent SRT. Of 34 patients (36 tumors) assessed, the median age was 53 years. The indication was primary treatment in 26 cases (no histology) and postoperative in 10 cases. The most common sites were cavernous sinus (17), optic nerve (6), and cerebellopontine angle (5). The median gross target volume and planning target volume were 8.9 cm{sup 3} and 18.9 cm{sup 3}, respectively. Stereotactic treatment was delivered with 6-MV photons with static conformal fields (custom-made blocks, 9 patients, and micromultileaf collimator, 25 patients). Median number of fields was six. The median dose prescribed was 50 Gy (range, 45-50.4 Gy) in 28 fractions. The median homogeneity and conformality indices were 1.1 and 1.79, respectively. Results: Treatment was well tolerated. Median follow-up was 26 months with 100% progression-free survival. One patient developed an area of possible radionecrosis related to previous radiotherapy, and 2 men developed mild hypogonadism necessitating testosterone replacement. The vision of 5 of 6 patients with optic pathway meningiomas improved or remained static. Conclusions: Stereotactic fractionated radiotherapy for the treatment of meningiomas is practical, and with early follow-up, seems to be effective.

  5. 14. Water treatment plant interior view of chlorination room. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Water treatment plant interior view of chlorination room. View to N - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  6. More Ions for Radiotherapy: About Treatment Planning and Track Simulations

    NASA Astrophysics Data System (ADS)

    Krämer, M.

    2017-03-01

    In the recent years, irradiation with swift light ions - from protons up to oxygen -has become an established method in tumour radiotherapy.A prerequisite for successful treatment is the sufficient knowledge of physical and radiobiological processes down to the microscopic or even nanoscopic scale. This report summarizes recent developments. In particular the application of ions other than protons and carbon will be addressed, as well as modelling approaches on the nanoscale.

  7. Radiotherapy combined with surgery as treatment for advanced cervical cancer.

    PubMed

    Perches, R D; Lobaton, A T; Garcia, M C

    1983-12-01

    Experience obtained in a group of 44 patients with advanced cervical cancer is reported here. In this study, patients with residual cancer underwent laparotomy eight weeks after one or two different radiotherapy protocols. Sixty-eight percent of patients underwent radical surgery, 85% of patients pelvic exenterations, and 15% radical hysterectomies. In 27% of patients, no evidence of residual cancer was found in surgical specimens. Radical surgery was well tolerated, and one-third of patients were free of disease for one year or more. Control of disease was obtained in 50% of pelvic exenterations and in 60% of radical hysterectomies, regardless of prognosis, clinical stage or radiotherapy scheme. Although results show an improvement of up to 22% when comparing this to other more conventional treatments, we have concluded that we must obtain a wider experience in order to support our findings.

  8. Colonic explosion during treatment of radiotherapy complications in prostatic cancer

    PubMed Central

    TRASTULLI, STEFANO; BARILLARO, IVAN; DESIDERIO, JACOPO; DI ROCCO, GIORGIO; COCHETTI, GIOVANNI; MECARELLI, VALERIO; CIROCCHI, ROBERTO; SANTORO, ALBERTO; BOSELLI, CARLO; REDLER, ADRIANO; AVENIA, NICOLA; NOYA, GIUSEPPE

    2012-01-01

    The use of lasers has been of great importance in the field of endoscopy and surgery for their applications in coagulation and the ability to vaporize tissue. In the 1990s, new machines were introduced based on a different technology, the argon-plasma-coagulation (APC) system. This technology causes different biological effects without direct contact. An example is the hemostasis of bleeding. In the literature, several cases of complications have been reported during endoscopic treatment with APC. In this study, we report our experience of a case with colon explosion during an APC procedure for bleeding due to radiotherapy and also review the literature on the complications of APC treatment. PMID:23162622

  9. Ion beams in radiotherapy - from tracks to treatment planning

    NASA Astrophysics Data System (ADS)

    Krämer, M.; Scifoni, E.; Wälzlein, C.; Durante, M.

    2012-07-01

    Several dozen clinical sites around the world apply beams of fast light ions for radiotherapeutical purposes. Thus there is a vested interest in the various physical and radiobiological processes governing the interaction of ion beams with matter, specifically living systems. We discuss the various modelling steps which lead from basic interactions to the application in actual patient treatment planning. The nano- and microscopic scale is covered by sample calculations with our TRAX code. On the macroscopic scale we feature the TRiP98 treatment planning system, which was clinically used in GSI's radiotherapy pilot project.

  10. Automatic liver contouring for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Kapp, Daniel S.; Xing, Lei

    2015-09-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems. The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours. The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  11. Automatic liver contouring for radiotherapy treatment planning.

    PubMed

    Li, Dengwang; Liu, Li; Kapp, Daniel S; Xing, Lei

    2015-10-07

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems.The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours.The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  12. 18. PLAIN OFFICE; SHOWS WOODWORK AND WALL TREATMENT. ROOM 2662, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. PLAIN OFFICE; SHOWS WOODWORK AND WALL TREATMENT. ROOM 2662, SECOND FLOOR, SOUTH SIDE. - Hughes Aircraft Company, Processing & Electronics Building, 6775 Centinela Avenue, Los Angeles, Los Angeles County, CA

  13. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery

    SciTech Connect

    Walker, M.D.; Green, S.B.; Byar, D.P.

    1980-12-04

    Within three weeks of definitive surgical intervention, 467 patients with histologically proved malignant glioma were randomized to receive one of four treatment regimens: semustine (MeCCNU), radiotherapy, carmustine (BCNU) plus radiotherapy, or semustine plus radiotherapy. We analyzed the data for the total randomized population and for the 358 patients in whom the initial protocol specifications were met (the valid study group). Observed toxicity included acceptable skin reactions secondary to radiotherapy and reversible leukopenia and thrombocytopenia due to chemotherapy. Radiotherapy used alone or in combination with a nitrosourea significantly improved survival in comparison with semustine alone. The group receiving carmustine plus radiotherapy had the best survival, but the difference in survival between the groups receiving carmustine plus radiotherapy and semustine plus radiotherapy was not statistically significant. The combination of carmustine plus radiotherapy produced a modest benefit in long-term (18-month) survival as compared with radiotherapy alone, although the difference between survival curves was not significant at the 0.05 level. This study suggests that it is best to use radiotherapy in the post-surgical treatment of malignant glioma and to continue the search for an effective chemotherapeutic regimen to use in addition to radiotherapy.

  14. Computational study of room scattering influence in the THOR BNCT treatment room.

    PubMed

    Hsiao, Ming-Chen; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2014-06-01

    BNCT dosimetry has often employed heavy Monte Carlo calculations for the beam characterization and the dose determination. However, these calculations commonly ignored the scattering influence between the radiations and the room structure materials in order to facilitate the calculation speed. The aim of this article attempts to explore how the room scattering affects the physical quantities such as the capture reaction rate and the gamma-ray dose rate under in-phantom and free-air conditions in the THOR BNCT treatment room. The geometry and structure materials of the treatment room were simulated in detail. The capture reaction rates per atom, as well as the gamma-ray dose rate were calculated in various sizes of phantoms and in the free-air condition. Results of this study showed that the room scattering has significant influence on the physical quantities, whether in small phantoms or in the free-air condition. This paper may be of importance in explaining the discrepancies between measurements and calculations in the BNCT dosimetry using small phantoms, in addition to provide a useful consideration with a better understanding of how the room scattering influence acts in a BNCT facility.

  15. The Efficacy of Radiotherapy in the Treatment of Orbital Pseudotumor

    SciTech Connect

    Matthiesen, Chance; Bogardus, Carl; Thompson, J. Spencer; Farris, Bradley; Hildebrand, Lloyd; Wilkes, Byron; Syzek, Elizabeth; Algan, Ozer; Ahmad, Salahuddin; Herman, Terence

    2011-04-01

    Purpose: To review institutional outcomes for patients treated with external-beam radiotherapy (EBRT) for orbital pseudotumor. Methods and Materials: This is a single-institution retrospective review of 20 orbits in 16 patients diagnosed with orbital pseudotumor that received EBRT at the University of Oklahoma, Department of Radiation Oncology. Treated patients had a median follow-up of 16.5 months. Results: Fifteen patients (93.7%) were initially treated with corticosteroids. Eight had recurrence after steroid cessation, six were unable to taper corticosteroids completely or partially, and one experienced progression of symptoms despite corticosteroid therapy. Fourteen patients (87.5%) initially responded to radiotherapy indicated by clinical improvement of preradiation symptoms and/or tapering of corticosteroid dose. Mean EBRT dose was 20 Gy (range, 14-30 Gy). Thirteen patients (81.2%) continued to improve after radiation therapy. Patient outcomes were complete cessation of corticosteroid therapy in nine patients (56.3%) and reduced corticosteroid dose in four patients (25%). Radiotherapy did not achieve long-term control for three patients (18.7%), who still required preradiation corticosteroid dosages. Three patients received retreatment(s) of four orbits, of which two patients achieved long-term symptom control without corticosteroid dependence. One patient received retreatment to an orbit three times, achieving long-term control without corticosteroid dependence. No significant late effects have been observed in retreated patients. Conclusions: Radiotherapy is an effective treatment for acute symptomatic improvement and long-term control of orbital pseudotumor. Orbital retreatment can be of clinical benefit, without apparent increase in morbidity, when initial irradiation fails to achieve complete response.

  16. Clinical application of multimodality imaging in radiotherapy treatment planning for rectal cancer.

    PubMed

    Wang, Yan Yang; Zhe, Hong

    2013-12-11

    Radiotherapy plays an important role in the treatment of rectal cancer. Three-dimensional conformal radiotherapy and intensity-modulated radiotherapy are mainstay techniques of radiotherapy for rectal cancer. However, the success of these techniques is heavily reliant on accurate target delineation and treatment planning. Computed tomography simulation is a cornerstone of rectal cancer radiotherapy, but there are limitations, such as poor soft-tissue contrast between pelvic structures and partial volume effects. Magnetic resonance imaging and positron emission tomography (PET) can overcome these limitations and provide additional information for rectal cancer treatment planning. PET can also reduce the interobserver variation in the definition of rectal tumor volume. However, there is a long way to go before these image modalities are routinely used in the clinical setting. This review summarizes the most promising studies on clinical applications of multimodality imaging in target delineation and treatment planning for rectal cancer radiotherapy.

  17. Production of neutrons in laminated barriers of radiotherapy rooms: comparison between the analytical methodology and Monte Carlo simulations.

    PubMed

    da Silva Rezende, Gabriel Fonseca; da Rosa, Luiz Antonio Ribeiro; Facure, Alessandro

    2014-11-01

    The necessity to build or adapt radiotherapy rooms in reduced areas leads to the search for unconventional solutions for shielding projects. In most cases, adding metals to the primary barriers is the best alternative to shield rooms properly. However, when photons with energies equal or higher than 10 MV interact with high atomic number nuclei, neutrons are ejected and may result in a radioprotection problem for both outside and inside the room. Currently, the most widely used mathematical model to estimate the neutron dose equivalents, beyond the barriers composed by concrete and metal, is applicable only in very specific conditions. Moreover, a validation work of this model had not yet been performed. In this work, the Monte Carlo code MCNPX was used to check the validity of the aforementioned mathematical model for cases of primary barriers containing steel or lead sheets, considering the existence of linear accelerators of 15 or 18 MV. The results of the study showed that over 80% of the values obtained by computational simulations revealed deviations above a factor of 2, when compared to the analytical formula. This led to the conclusion that the McGinley method cannot be considered an adequate mathematical model to describe the mentioned physical phenomenon. PACS numbers: 87.56.bd, 02.70.Uu.

  18. Production of neutrons in laminated barriers of radiotherapy rooms: comparison between the analytical methodology and Monte Carlo simulations.

    PubMed

    Rezende, Gabriel Fonseca da Silva; Da Rosa, Luiz Antonio Ribeiro; Facure, Alessandro

    2014-11-08

    The necessity to build or adapt radiotherapy rooms in reduced areas leads to the search for unconventional solutions for shielding projects. In most cases, adding metals to the primary barriers is the best alternative to shield rooms properly. However, when photons with energies equal or higher than 10 MV interact with high atomic number nuclei, neutrons are ejected and may result in a radioprotec- tion problem for both outside and inside the room. Currently, the most widely used mathematical model to estimate the neutron dose equivalents, beyond the barriers composed by concrete and metal, is applicable only in very specific conditions. Moreover, a validation work of this model had not yet been performed. In this work, the Monte Carlo code MCNPX was used to check the validity of the aforementioned mathematical model for cases of primary barriers containing steel or lead sheets, considering the existence of linear accelerators of 15 or 18 MV. The results of the study showed that over 80% of the values obtained by computational simulations revealed deviations above a factor of 2, when compared to the analytical formula. This led to the conclusion that the McGinley method cannot be considered an adequate mathematical model to describe the mentioned physical phenomenon. 

  19. Role of Radiotherapy and Newer Techniques in the Treatment of GI Cancers.

    PubMed

    Hajj, Carla; Goodman, Karyn A

    2015-06-01

    The role of radiotherapy in multidisciplinary treatment of GI malignancies is well established. Recent advances in imaging as well as radiotherapy planning and delivery techniques have made it possible to target tumors more accurately while sparing normal tissues. Intensity-modulated radiotherapy is an advanced method of delivering radiation using cutting-edge technology to manipulate beams of radiation. The role of intensity-modulated radiotherapy is growing for many GI malignancies, such as cancers of the stomach, pancreas, esophagus, liver, and anus. Stereotactic body radiotherapy is an emerging treatment option for some GI tumors such as locally advanced pancreatic cancer and primary or metastatic tumors of the liver. Stereotactic body radiotherapy requires a high degree of confidence in tumor location and subcentimeter accuracy of the delivered dose. New image-guided techniques have been developed to overcome setup uncertainties at the time of treatment, including real-time imaging on the linear accelerator. Modern imaging techniques have also allowed for more accurate pretreatment staging and delineation of the primary tumor and involved sites. In particular, magnetic resonance imaging and positron emission tomography scans can be particularly useful in radiotherapy planning and assessing treatment response. Molecular biomarkers are being investigated as predictors of response to radiotherapy with the intent of ultimately moving toward using genomic and proteomic determinants of therapeutic strategies. The role of all of these new approaches in the radiotherapeutic management of GI cancers and the evolving role of radiotherapy in these tumor sites will be highlighted in this review.

  20. Patients' Experience of Winter Depression and Light Room Treatment

    PubMed Central

    2017-01-01

    Background. There is a need for more knowledge on the effects of light room treatment in patients with seasonal affective disorder and to explore patients' subjective experience of the disease and the treatment. Methods. This was a descriptive and explorative study applying qualitative content analysis. A purposeful sample of 18 psychiatric outpatients with a major depressive disorder with a seasonal pattern and a pretreatment score ≥12 on the 9-item Montgomery-Åsberg Depression self-rating scale was included (10 women and 8 men, aged 24–65 years). All patients had completed light room treatment (≥7/10 consecutive weekdays). Data was collected two weeks after treatment using a semistructured interview guide. Results. Patients described a clear seasonal pattern and a profound struggle to adapt to seasonal changes during the winter, including deterioration in sleep, daily rhythms, energy level, mood, activity, and cognitive functioning. Everyday life was affected with reduced work capacity, social withdrawal, and disturbed relations with family and friends. The light room treatment resulted in a radical and rapid improvement in all the major symptoms with only mild and transient side effects. Discussion. The results indicate that light room treatment is essential for some patients' ability to cope with seasonal affective disorder. PMID:28293623

  1. What is changing in radiotherapy for the treatment of locally advanced nonsmall cell lung cancer patients? A review.

    PubMed

    Giaj-Levra, Niccoló; Ricchetti, Francesco; Alongi, Filippo

    2016-01-01

    Radiotherapy treatment continues to have a relevant impact in the treatment of nonsmall cell cancer (NSCLC). Use of concurrent chemotherapy and radiotherapy is considered the gold standard in the treatment of locally advanced NSCLC but clinical outcomes are not satisfactory. Introduction of new radiotherapy technology and chemotherapy regimens are under investigation in this setting with the goal to improve unsatisfactory results. We report how radiotherapy is changing in the treatment of locally advanced NSCLC.

  2. 20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. THE BUILDING 371/374 COMPLEX WAS DESIGNED TO EMPHASIZE AUTOMATICALLY CONTROLLED, REMOTELY OPERATED PROCESSES. (1/80) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  3. Erythema multiforme after radiotherapy with aromatase inhibitor administration in breast-conservation treatment for breast cancer.

    PubMed

    Nakatani, Kimiko; Matsumoto, Masaaki; Ue, Hironobu; Nishioka, Akihito; Tanaka, Yousuke; Kodama, Hajime; Sasaguri, Shiro; Ogawa, Yasuhiro

    2008-01-01

    Generalized eruptions associated with radiotherapy such as erythema multiforme (EM), Steven-Johnson syndrome and toxic epidermal necrolysis are uncommon reactions. A few cases of generalized eruptions during and after radiotherapy have been reported with the use of anticonvulsants and anticancer drugs. However, no reports have described mucocutaneous reactions associated with radiotherapy and concurrent use of anastrozole, an aromatase inhibitor. This report describes EM occurring after radiotherapy performed during breast-conserving treatment for breast cancer in a patient who was taking oral anastrozole.

  4. Development of Advanced Multi-Modality Radiation Treatment Planning Software for Neutron Radiotherapy and Beyond

    SciTech Connect

    Nigg, D; Wessol, D; Wemple, C; Harkin, G; Hartmann-Siantar, C

    2002-08-20

    The Idaho National Engineering and Environmental Laboratory (INEEL) has long been active in development of advanced Monte-Carlo based computational dosimetry and treatment planning methods and software for advanced radiotherapy, with a particular focus on Neutron Capture Therapy (NCT) and, to a somewhat lesser extent, Fast-Neutron Therapy. The most recent INEEL software system of this type is known as SERA, Simulation Environment for Radiotherapy Applications. As a logical next step in the development of modern radiotherapy planning tools to support the most advanced research, INEEL and Lawrence Livermore National Laboratory (LLNL), the developers of the PEREGRTNE computational engine for radiotherapy treatment planning applications, have recently launched a new project to collaborate in the development of a ''next-generation'' multi-modality treatment planning software system that will be useful for all modern forms of radiotherapy.

  5. Intensity-modulated radiotherapy for neoadjuvant treatment of gastric cancer

    SciTech Connect

    Knab, Brian; Rash, Carla; Farrey, Karl; Jani, Ashesh B. . E-mail: jani@rover.uchicago.edu

    2006-01-01

    Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range (<10 Gy) in comparison to the AP/PA plan; however, the IMRT plan irradiated a smaller liver volume within the higher dose region (>10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits

  6. External beam radiotherapy as curative treatment of prostate cancer.

    PubMed

    Pisansky, Thomas M

    2005-07-01

    External beam radiotherapy (RT) has been used as a curative treatment of prostate cancer for more than 5 decades, with the "modern" era emerging more than 3 decades ago. Its history is marked by gradual improvements punctuated by several quantum leaps that are increasingly driven by advancements in the computer and imaging sciences and by its integration with complementary forms of treatment. Consequently, the contemporary use of external beam RT barely resembles its earliest form, and this must be appreciated in the context of current patient care. The influence of predictive factors on the use and outcomes of external beam RT is presented, as is a selected review of the methods and outcomes of external beam RT as a single therapeutic intervention, in association with androgen suppression, or as a postoperative adjunct. Thus, the "state of the (radiotherapeutic) art" is presented to enhance the understanding of this treatment approach with the hope that this information will serve as a useful resource to physicians as they care for patients with prostate cancer.

  7. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    SciTech Connect

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  8. Monitor Unit Checking in Heterogeneous Stereotactic Body Radiotherapy Treatment Planning

    SciTech Connect

    Higgins, Patrick D.; Adolfson, Troy; Cho, L. Chinsoo; Saxena, Rishik

    2011-10-01

    Treatment of lung cancer using very-high-dose fractionation in small fields requires well-tested dose modeling, a method for density-averaging compound targets constructed from different parts of the breathing cycle, and monitor unit verification of the heterogeneity-corrected treatment plans. The quality and safety of each procedure are dependent on these factors. We have evaluated the dosimetry of our first 26 stereotactic body radiotherapy (SBRT) patients, including 260 treatment fields, planned with the Pinnacle treatment planning system. All targets were combined from full expiration and inspiration computed tomography scans and planned on the normal respiration scan with 6-MV photons. Combined GTVs (cGTVs) have been density-averaged in different ways for comparison of the effect on total monitor units. In addition, we have compared planned monitor units against hand calculations using 2 classic 1D correction methods: (1) effective attenuation and (2) ratio of Tissue-Maximum Ratios (TMRs) to determine the range of efficacy of simple verification methods over difficult-to-perform measurements. Different methods of density averaging for combined targets have been found to have minimal impact on total dose as evidenced by the range of total monitor units generated for each method. Nondensity-corrected treatment plans for the same fields were found to require about 8% more monitor units on average. Hand calculations, using the effective attenuation method were found to agree with Pinnacle calculations for nonproblematic fields to within {+-}10% for >95% of the fields tested. The ratio of TMRs method was found to be unacceptable. Reasonable choices for density-averaging of cGTVs using full inspiration/expiration scans should not strongly affect the planning dose. Verification of planned monitor units, as a check for problematic fields, can be done for 6-MV fields with simple 1D effective attenuation-corrected hand calculations.

  9. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    SciTech Connect

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-09-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  10. [What is the role of intraoperative radiotherapy in breast cancer treatment?].

    PubMed

    Aumont, M

    2016-10-01

    Breast-conserving surgery followed by whole breast postoperative irradiation is considered to be the current standard treatment for patients with early stage breast cancer. It allows an excellent local tumour control with 6% of local recurrence. Over the last years, partial breast radiotherapy has been developed to reduce treatment volume and duration. Intraoperative radiotherapy is one of the techniques. It offers an excellent delineation of the tumour bed and high normal tissue sparing. This purpose of this review is to describe the different intraoperative radiotherapy techniques available, to assess their potential clinical efficiency and tolerance, the recommendations for new practice with a selected population of patients and for future research.

  11. 33 CFR 149.685 - May a medical treatment room be used for other purposes?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... other purposes? A medical treatment room may be used as a sleeping space if the room meets the requirements of this subpart for both medical treatment rooms and sleeping spaces. It may also be used as an office. However, when used for medical purposes, the room may not be used as a sleeping space or...

  12. 33 CFR 149.685 - May a medical treatment room be used for other purposes?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other purposes? A medical treatment room may be used as a sleeping space if the room meets the requirements of this subpart for both medical treatment rooms and sleeping spaces. It may also be used as an office. However, when used for medical purposes, the room may not be used as a sleeping space or...

  13. 33 CFR 149.685 - May a medical treatment room be used for other purposes?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... other purposes? A medical treatment room may be used as a sleeping space if the room meets the requirements of this subpart for both medical treatment rooms and sleeping spaces. It may also be used as an office. However, when used for medical purposes, the room may not be used as a sleeping space or...

  14. 33 CFR 149.685 - May a medical treatment room be used for other purposes?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... other purposes? A medical treatment room may be used as a sleeping space if the room meets the requirements of this subpart for both medical treatment rooms and sleeping spaces. It may also be used as an office. However, when used for medical purposes, the room may not be used as a sleeping space or...

  15. 33 CFR 149.685 - May a medical treatment room be used for other purposes?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... other purposes? A medical treatment room may be used as a sleeping space if the room meets the requirements of this subpart for both medical treatment rooms and sleeping spaces. It may also be used as an office. However, when used for medical purposes, the room may not be used as a sleeping space or...

  16. Perspectives in Medical Applications of Monte Carlo Simulation Software for Clinical Practice in Radiotherapy Treatments

    NASA Astrophysics Data System (ADS)

    Boschini, Matteo; Giani, Simone; Ivanchenko, Vladimir; Rancoita, Pier-Giorgio

    2006-04-01

    We discuss the physics requirements to accurately model radiation dosimetry in the human body as performed for oncological radiotherapy treatment. Recent advancements in computing hardware and software simulation technology allow precise dose calculation in real-life imaging output, with speed suitable for clinical needs. An experimental programme, based on physics published literature, is proposed to demonstrate the actual possibility to improve the precision of radiotherapy treatment planning.

  17. Partial differential equations-based segmentation for radiotherapy treatment planning.

    PubMed

    Gibou, Frederic; Levy, Doron; Cardenas, Carlos; Liu, Pingyu; Boyer, Arthur

    2005-04-01

    The purpose of this study is to develop automatic algorithms for the segmentation phase of radiotherapy treatment planning. We develop new image processing techniques that are based on solving a partial diferential equation for the evolution of the curve that identifies the segmented organ. The velocity function is based on the piecewise Mumford-Shah functional. Our method incorporates information about the target organ into classical segmentation algorithms. This information, which is given in terms of a three- dimensional wireframe representation of the organ, serves as an initial guess for the segmentation algorithm. We check the performance of the new algorithm on eight data sets of three diferent organs: rectum, bladder, and kidney. The results of the automatic segmentation were compared with a manual seg- mentation of each data set by radiation oncology faculty and residents. The quality of the automatic segmentation was measured with the k-statistics", and with a count of over- and undersegmented frames, and was shown in most cases to be very close to the manual segmentation of the same data. A typical segmentation of an organ with sixty slices takes less than ten seconds on a Pentium IV laptop.

  18. Radiotherapy for Esthesioneuroblastoma: Is Elective Nodal Irradiation Warranted in the Multimodality Treatment Approach?

    SciTech Connect

    Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do

    2011-02-01

    Purpose: The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Methods and Materials: Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Results: Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. Conclusions: ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy.

  19. Role of Radiotherapy as Curative Treatment of Extramammary Paget's Disease

    SciTech Connect

    Hata, Masaharu; Omura, Motoko; Koike, Izumi; Wada, Hidefumi; Miyagi, Etsuko; Tayama, Yoshibumi; Odagiri, Kazumasa; Minagawa, Yumiko; Ogino, Ichiro; Inoue, Tomio

    2011-05-01

    Purpose: Extramammary Paget's disease (EMPD) is a relatively rare malignancy that usually arises in the genital areas. Wide surgical excision remains the standard and most reliable curative treatment of EMPD. However, surgery is sometimes not possible, because many patients are elderly, and complete excision can be difficult owing to the tumor location. We, therefore, performed a review to determine the role of radiotherapy (RT) for EMPD. Methods and Materials: A total of 22 patients with EMPD in their external genitalia (4 men and 18 women, age 52-94 years at RT) underwent RT with curative intent. Nine patients had regional lymph node metastases. A total dose of 45-70.2 Gy (median, 60) was delivered to the pelvis, including the tumors, in 25-39 fractions (median, 33). Results: In all but 3 patients, the irradiated tumors were controlled during a follow-up period of 8-133 months (median, 42). Of the 22 patients, 13 developed recurrences, including local progression within the radiation field in 3 and lymph node and/or distant metastases outside the radiation field in 10, at 3-43 months after treatment. The 2- and 5-year local progression-free rates were 91% and 84%, respectively. Of the 22 patients, 7 patients had died at 33-73 months after RT. The cause of death was tumor progression in 4, infectious pneumonia in 2, and renal failure in 1 patient. The overall and cause-specific survival rates were 100% for both at 2 years and 53% and 73% at 5 years, respectively. No therapy-related Grade 3 or greater toxicity was observed. Conclusions: RT is safe and effective for patients with EMPD. It appears to contribute to prolonged survival as a result of good tumor control.

  20. Conformal Radiotherapy in the Treatment of Advanced Juvenile Nasopharyngeal Angiofibroma With Intracranial Extension: An Institutional Experience

    SciTech Connect

    Chakraborty, Santam; Ghoshal, Sushmita; Patil, Vijay Maruti; Oinam, Arun Singh; Sharma, Suresh C.

    2011-08-01

    Purpose: To describe the results of conformal radiotherapy in advanced juvenile nasopharyngeal angiofibroma in a tertiary care institution. Methods and Materials: Retrospective chart review was conducted for 8 patients treated with conformal radiotherapy between 2006 and 2009. The median follow-up was 17 months. All patients had Stage IIIB disease with intracranial extension. Radiotherapy was considered as treatment because patients were deemed inoperable owing to extensive intracranial/intraorbital extension or proximity to optic nerve. All but 1 patient were treated with intensity-modulated radiotherapy using seven coplanar fields. Median (range) dose prescribed was 39.6 (30-46) Gy. Actuarial analysis of local control and descriptive analysis of toxicity profile was conducted. Results: Despite the large and complex target volume (median planning target volume, 292 cm{sup 3}), intensity-modulated radiotherapy achieved conformal dose distributions (median van't Reit index, 0.66). Significant sparing of the surrounding organs at risk was obtained. No significant Grade 3/4 toxicities were experienced during or after treatment. Actual local control at 2 years was 87.5%. One patient died 1 month after radiotherapy secondary to massive epistaxis. The remaining 7 patients had progressive resolution of disease and were symptom-free at last follow-up. Persistent rhinitis was the only significant toxicity, seen in 1 patient. Conclusions: Conformal radiotherapy results in good local control with minimal acute and late side effects in juvenile nasopharyngeal angiofibromas, even in the presence of advanced disease.

  1. Adjuvant Radiotherapy for Gastric Cancer: A Dosimetric Comparison of 3-Dimensional Conformal Radiotherapy, Tomotherapy (registered) and Conventional Intensity Modulated Radiotherapy Treatment Plans

    SciTech Connect

    Dahele, Max; Skinner, Matthew; Schultz, Brenda; Cardoso, Marlene; Bell, Chris; Ung, Yee C.

    2010-07-01

    Some patients with gastric cancer benefit from post-operative chemo-radiotherapy, but adequately irradiating the planning target volume (PTV) whilst avoiding organs at risk (OAR) can be difficult. We evaluate 3-dimensional conformal radiotherapy (CRT), conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy (TT). TT, 2 and 5-field (F) CRT and IMRT treatment plans with the same PTV coverage were generated for 5 patients and compared. Median values are reported. The volume of left/right kidney receiving at least 20Gy (V20) was 57/51% and 51/60% for 2 and 5F-CRT, and 28/14% for TT and 27/19% for IMRT. The volume of liver receiving at least 30Gy (V30) was 45% and 62% for 2 and 5F-CRT, and 37% for TT and 35% for IMRT. With TT, 98% of the PTV received 95-105% of the prescribed dose, compared with 45%, 34% and 28% for 2F-CRT, 5F-CRT and IMRT respectively. Using conventional metrics, conventional IMRT can achieve comparable PTV coverage and OAR sparing to TT, but at the expense of PTV dose heterogeneity. Both irradiate large volumes of normal tissue to low doses. Additional studies are needed to demonstrate the clinical impact of these technologies.

  2. Short treatment time and excellent treatment outcome in accelerated hyperfractionated radiotherapy for T1 glottic cancer.

    PubMed

    Tamaki, Yukihisa; Hieda, Yoko; Yoshida, Rika; Yoshizako, Takeshi; Fuchiwaki, Takafumi; Aoi, Noriaki; Sekihara, Kazumasa; Kitajima, Kazuhiro; Kawauchi, Hideyuki; Kitagaki, Hajime; Sasaki, Ryohei; Inomata, Taisuke

    2015-11-01

    Accelerated hyperfractionated radiotherapy was performed as treatment for patients with T1 glottic cancer, and its utility was evaluated based on treatment outcomes and adverse effects. Fifty-eight men who had undergone radiotherapy were retrospectively reviewed. Tumor classification was Tis in 4 patients, T1a in 38, and T1b in 16. Histological examination revealed squamous cell carcinoma in 55 patients. Travel time from home to hospital was 0-1 hour for 24 patients, 1-2 hours for 9, and >2 hours for 25. Laser vaporization was performed prior to radiotherapy in 38 patients, and 19 patients received concurrent chemotherapy with an agent such as S-1. Patients were irradiated twice daily using an irradiation container. Most patients received a dose of 1.5 Gy/fraction up to a total of 60 Gy. The median overall treatment time was 30 days, with a median observation period of 59.6 months. A complete response was observed in all patients. The 5-year overall survival, disease-free survival, and local control rates were 97.2%, 93.2%, and 97.8%, respectively. Although grade 3 pharyngeal mucositis was observed in 2 patients, there were no other grade 3 or higher acute adverse events. As late toxicity, grade 2 laryngeal edema and grade 1 laryngeal hemorrhage were observed in 1 patient each, but no serious events such as laryngeal necrosis or laryngeal stenosis were observed. In conclusion, this treatment method brings excellent outcome and will substantially reduce the treatment duration among patients who need to stay at nearby hotels while undergoing treatment at hospitals in rural areas.

  3. Stereotactic Body Radiotherapy for Treatment of Adrenal Metastases

    SciTech Connect

    Chawla, Sheema; Chen, Yuhchyau; Katz, Alan W.; Muhs, Ann G.; Philip, Abraham; Okunieff, Paul; Milano, Michael T.

    2009-09-01

    Purpose: To investigate the dosimetry and outcomes of patients undergoing stereotactic body radiotherapy (SBRT) for metastases to the adrenal glands. Methods and Materials: At University of Rochester, patients have been undergoing SBRT for limited metastases since 2001. We retrospectively reviewed 30 patients who had undergone SBRT for adrenal metastases from various primary sites, including lung (n = 20), liver (n = 3), breast (n = 3), melanoma (n = 1), pancreas (n = 1), head and neck (n = 1), and unknown primary (n = 1). Results: Of the 30 patients, 14 with five or fewer metastatic lesions (including adrenal) underwent SBRT, with the intent of controlling all known sites of metastatic disease, and 16 underwent SBRT for palliation or prophylactic palliation of bulky adrenal metastases. The prescribed dose ranged from 16 Gy in 4 fractions to 50 Gy in 10 fractions. The median dose was 40 Gy. Of the 30 patients, 24 had >3 months of follow-up with serial computed tomography. Of these 24 patients, 1 achieved a complete response, 15 achieved a partial response, 4 had stable disease, and 4 developed progressive disease. No patient developed symptomatic progression of their adrenal metastases. The 1-year survival, local control, and distant control rate was 44%, 55%, and 13%, respectively. No patient developed Radiation Therapy Oncology Group Grade 2 or greater toxicity. Conclusion: SBRT for adrenal metastases is well tolerated. Most patients developed widespread metastases shortly after treatment. Local control was poor, although this was a patient population selected for adverse risk factors, such as bulky disease. Additional studies are needed to determine the efficacy of SBRT for oligometastatic adrenal metastases, given the propensity of these patients to develop further disease progression.

  4. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  5. Radiotherapy treatment planning based on Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Juste, Belén; Miró, Rafael; Campayo, Juan M.; Díez, Sergio; Verdú, Gumersindo

    2010-07-01

    At the present, treatment planning systems (TPS) used in radiotherapy treatments use determinist correlations based on measurements in water to evaluate doses in the volume of interest and dose distributions around it. Nevertheless, it is well known that doses assigned with this type of planner can be problematic, especially in the presence of heterogeneities. The present work has developed a computational model using the Monte Carlo (MC) code MCNP5 (Monte Carlo N-Particle) for the simulation of a 6 MeV photon beam emitted by Elekta Precise medical linear accelerator treatment head. The model includes the major components of the accelerator head and the cube-shaped heterogeneous water tank " RFA-300". A low-density heterogeneity has been placed inside this water tank. It consists of a extruded polystyrene piece (97% air and 3% polystyrene) whose dimensions are 30 cm×10 cm×8 cm and with a density of 0.0311 g/cm 3. Calculations were performed for a photon beam setting 10 cm×10 cm and 20 cm×20 cm irradiation field sizes at 100 cm distance from source. The MC simulation is able to predict the absorbed dose distribution within the water tank using the *F8 or FMESH4 tally. These results have been compared with experimental values measured at the Hospital Clínic Universitari de Valencia. Dosimetric parameters calculated by simulation at the water tank and the experimental measures agreed, with an average deviation inside the heterogeneity region of 3%. Simulation results have been also compared with dose curves predicted by a commercial TPS in the same irradiation conditions, focusing attention on the accuracy that both systems reach in the dose calculation at the interphase zone and inside the heterogeneity. In contrast, TPS results overestimate the dose inside the heterogeneity and after it, with a maximum deviation of 7% for the 6 MeV photon beam and a field size of 20 cm×20 cm. We can conclude that the algorithms of computation of the TPS are not able to predict

  6. Unilateral Radiotherapy for the Treatment of Tonsil Cancer

    SciTech Connect

    Chronowski, Gregory M.; Garden, Adam S.; Morrison, William H.; Frank, Steven J.; Schwartz, David L.; Shah, Shalin J.; Beadle, Beth M.; Gunn, G. Brandon; Kupferman, Michael E.; Ang, Kian K.; Rosenthal, David I.

    2012-05-01

    Purpose: To assess, through a retrospective review, clinical outcomes of patients with squamous cell carcinoma of the tonsil treated at the M. D. Anderson Cancer Center with unilateral radiotherapy techniques that irradiate the involved tonsil region and ipsilateral neck only. Methods and Materials: Of 901 patients with newly diagnosed squamous cell carcinoma of the tonsil treated with radiotherapy at our institution, we identified 102 that were treated using unilateral radiotherapy techniques. All patients had their primary site of disease restricted to the tonsillar fossa or anterior pillar, with <1 cm involvement of the soft palate. Patients had TX (n = 17 patients), T1 (n = 52), or T2 (n = 33) disease, with Nx (n = 3), N0 (n = 33), N1 (n = 23), N2a (n = 21), or N2b (n = 22) neck disease. Results: Sixty-one patients (60%) underwent diagnostic tonsillectomy before radiotherapy. Twenty-seven patients (26%) underwent excision of a cervical lymph node or neck dissection before radiotherapy. Median follow-up for surviving patients was 38 months. Locoregional control at the primary site and ipsilateral neck was 100%. Two patients experienced contralateral nodal recurrence (2%). The 5-year overall survival and disease-free survival rates were 95% and 96%, respectively. The 5-year freedom from contralateral nodal recurrence rate was 96%. Nine patients required feeding tubes during therapy. Of the 2 patients with contralateral recurrence, 1 experienced an isolated neck recurrence and was salvaged with contralateral neck dissection only and remains alive and free of disease. The other patient presented with a contralateral base of tongue tumor and involved cervical lymph node, which may have represented a second primary tumor, and died of disease. Conclusions: Unilateral radiotherapy for patients with TX-T2, N0-N2b primary tonsil carcinoma results in high rates of disease control, with low rates of contralateral nodal failure and a low incidence of acute toxicity

  7. A semiautomatic tool for prostate segmentation in radiotherapy treatment planning

    PubMed Central

    2014-01-01

    Background Delineation of the target volume is a time-consuming task in radiotherapy treatment planning, yet essential for a successful treatment of cancers such as prostate cancer. To facilitate the delineation procedure, the paper proposes an intuitive approach for 3D modeling of the prostate by slice-wise best fitting ellipses. Methods The proposed estimate is initialized by the definition of a few control points in a new patient. The method is not restricted to particular image modalities but assumes a smooth shape with elliptic cross sections of the object. A training data set of 23 patients was used to calculate a prior shape model. The mean shape model was evaluated based on the manual contour of 10 test patients. The patient records of training and test data are based on axial T1-weighted 3D fast-field echo (FFE) sequences. The manual contours were considered as the reference model. Volume overlap (Vo), accuracy (Ac) (both ratio, range 0-1, optimal value 1) and Hausdorff distance (HD) (mm, optimal value 0) were calculated as evaluation parameters. Results The median and median absolute deviation (MAD) between manual delineation and deformed mean best fitting ellipses (MBFE) was Vo (0.9 ± 0.02), Ac (0.81 ± 0.03) and HD (4.05 ± 1.3)mm and between manual delineation and best fitting ellipses (BFE) was Vo (0.96 ± 0.01), Ac (0.92 ± 0.01) and HD (1.6 ± 0.27)mm. Additional results show a moderate improvement of the MBFE results after Monte Carlo Markov Chain (MCMC) method. Conclusions The results emphasize the potential of the proposed method of modeling the prostate by best fitting ellipses. It shows the robustness and reproducibility of the model. A small sample test on 8 patients suggest possible time saving using the model. PMID:24460666

  8. Oesophagus side effects related to the treatment of oesophageal cancer or radiotherapy of other thoracic malignancies.

    PubMed

    Adebahr, Sonja; Schimek-Jasch, Tanja; Nestle, Ursula; Brunner, Thomas B

    2016-08-01

    The oesophagus as a serial organ located in the central chest is frequent subject to "incidental" dose application in radiotherapy for several thoracic malignancies including oesophageal cancer itself. Especially due to the radiosensitive mucosa severe radiotherapy induced sequelae can occur, acute oesophagitis and strictures as late toxicity being the most frequent side-effects. In this review we focus on oesophageal side effects derived from treatment of gastrointestinal cancer and secondly provide an overview on oesophageal toxicity from conventional and stereotactic fractionated radiotherapy to the thoracic area in general. Available data on pathogenesis, frequency, onset, and severity of oesophageal side effects are summarized. Whereas for conventional radiotherapy the associations of applied doses to certain volumes of the oesophagus are well described, the tolerance dose to the mediastinal structures for hypofractionated therapy is unknown. The review provides available attempts to predict the risk of oesophageal side effects from dosimetric parameters of SBRT.

  9. Radiotherapy dose enhancement using BNCT in conventional LINACs high-energy treatment: Simulation and experiment

    PubMed Central

    Alikaniotis, Katia; Borla, Oscar; Monti, Valeria; Vivaldo, Gianna; Zanini, Alba; Giannini, Gianrossano

    2016-01-01

    Aim To employ the thermal neutron background that affects the patient during a traditional high-energy radiotherapy treatment for BNCT (Boron Neutron Capture Therapy) in order to enhance radiotherapy effectiveness. Background Conventional high-energy (15–25 MV) linear accelerators (LINACs) for radiotherapy produce fast secondary neutrons in the gantry with a mean energy of about 1 MeV due to (γ, n) reaction. This neutron flux, isotropically distributed, is considered as an unavoidable undesired dose during the treatment. Considering the moderating effect of human body, a thermal neutron fluence is localized in the tumour area: this neutron background could be employed for BNCT by previously administering 10B-Phenyl-Alanine (10BPA) to the patient. Materials and methods Monte Carlo simulations (MCNP4B-GN code) were performed to estimate the total amount of neutrons outside and inside human body during a traditional X-ray radiotherapy treatment. Moreover, a simplified tissue equivalent anthropomorphic phantom was used together with bubble detectors for thermal and fast neutron to evaluate the moderation effect of human body. Results Simulation and experimental results confirm the thermal neutron background during radiotherapy of 1.55E07 cm−2 Gy−1. The BNCT equivalent dose delivered at 4 cm depth in phantom is 1.5 mGy-eq/Gy, that is about 3 Gy-eq (4% of X-rays dose) for a 70 Gy IMRT treatment. Conclusions The thermal neutron component during a traditional high-energy radiotherapy treatment could produce a localized BNCT effect, with a localized therapeutic dose enhancement, corresponding to 4% or more of photon dose, following tumour characteristics. This BNCT additional dose could thus improve radiotherapy, acting as a localized radio-sensitizer. PMID:26933394

  10. The NUKDOS software for treatment planning in molecular radiotherapy.

    PubMed

    Kletting, Peter; Schimmel, Sebastian; Hänscheid, Heribert; Luster, Markus; Fernández, Maria; Nosske, Dietmar; Lassmann, Michael; Glatting, Gerhard

    2015-09-01

    The aim of this work was the development of a software tool for treatment planning prior to molecular radiotherapy, which comprises all functionality to objectively determine the activity to administer and the pertaining absorbed doses (including the corresponding error) based on a series of gamma camera images and one SPECT/CT or probe data. NUKDOS was developed in MATLAB. The workflow is based on the MIRD formalism For determination of the tissue or organ pharmacokinetics, gamma camera images as well as probe, urine, serum and blood activity data can be processed. To estimate the time-integrated activity coefficients (TIAC), sums of exponentials are fitted to the time activity data and integrated analytically. To obtain the TIAC on the voxel level, the voxel activity distribution from the quantitative 3D SPECT/CT (or PET/CT) is used for scaling and weighting the TIAC derived from the 2D organ data. The voxel S-values are automatically calculated based on the voxel-size of the image and the therapeutic nuclide ((90)Y, (131)I or (177)Lu). The absorbed dose coefficients are computed by convolution of the voxel TIAC and the voxel S-values. The activity to administer and the pertaining absorbed doses are determined by entering the absorbed dose for the organ at risk. The overall error of the calculated absorbed doses is determined by Gaussian error propagation. NUKDOS was tested for the operation systems Windows(®) 7 (64 Bit) and 8 (64 Bit). The results of each working step were compared to commercially available (SAAMII, OLINDA/EXM) and in-house (UlmDOS) software. The application of the software is demonstrated using examples form peptide receptor radionuclide therapy (PRRT) and from radioiodine therapy of benign thyroid diseases. For the example from PRRT, the calculated activity to administer differed by 4% comparing NUKDOS and the final result using UlmDos, SAAMII and OLINDA/EXM sequentially. The absorbed dose for the spleen and tumour differed by 7% and 8

  11. Radiotherapy treatment of keloid scars with a kilovoltage X-ray parallel pair.

    PubMed

    Eaton, David J; Barber, Elizabeth; Ferguson, Leila; Mark Simpson, G; Collis, Christopher H

    2012-03-01

    An established treatment for keloids is surgery and radiotherapy, using a single applied field. However, earlobe keloids lend themselves to a parallel opposed pair approach. Delivery with a superficial X-ray unit is practicable and improves homogeneity within the treatment volume. It has been implemented in this centre since 2007.

  12. Optimization of Breast Cancer Treatment by Dynamic Intensity Modulated Electron Radiotherapy

    DTIC Science & Technology

    2006-04-01

    AD_________________ Award Number: DAMD17-01-1-0435 TITLE: Optimization of Breast Cancer Treatment by...Optimization of Breast Cancer Treatment by Dynamic Intensity Modulated Electron Radiotherapy 5b. GRANT NUMBER DAMD17-01-1-0435 5c. PROGRAM ELEMENT

  13. SU-E-T-387: Achieving Optimal Patient Setup Imaging and Treatment Workflow Configurations in Multi-Room Proton Centers

    SciTech Connect

    Zhang, H; Prado, K; Langen, K; Yi, B; Mehta, M; Regine, W; D'Souza, W

    2014-06-01

    Purpose: To simulate patient flow in proton treatment center under uncertainty and to explore the feasibility of treatment preparation rooms to improve patient throughput and cyclotron utilization. Methods: Three center layout scenarios were modeled: (S1: In-Tx room imaging) patient setup and imaging (planar/volumetric) performed in treatment room, (S2: Patient setup in preparation room) each treatment room was assigned with preparation room(s) that was equipped with lasers only for patient setup and gross patient alignment, and (S3: Patient setup and imaging in preparation room) preparation room(s) was equipped with laser and volumetric imaging for patient setup, gross and fine patient alignment. A 'snap' imaging was performed in treatment room. For each scenario, the number of treatment rooms and the number of preparation rooms serving each treatment room were varied. We examined our results (average of 100 16-hour (two shifts) working days) by evaluating patient throughput and cyclotron utilization. Results: When the number of treatment rooms increased ([from, to]) [1, 5], daily patient throughput increased [32, 161], [29, 184] and [27, 184] and cyclotron utilization increased [13%, 85%], [12%, 98%], and [11%, 98%] for scenarios S1, S2 and S3 respectively. However, both measures plateaued after 4 rooms. With the preparation rooms, the throughput and the cyclotron utilization increased by 14% and 15%, respectively. Three preparation rooms were optimal to serve 1-3 treatment rooms and two preparation rooms were optimal to serve 4 or 5 treatment rooms. Conclusion: Patient preparation rooms for patient setup may increase throughput and decrease the need for additional treatment rooms (cost effective). Optimal number of preparation rooms serving each gantry room varies as a function of treatment rooms and patient setup scenarios. A 5th treatment room may not be justified by throughput or utilization.

  14. Early versus delayed postoperative radiotherapy for treatment of low-grade gliomas

    PubMed Central

    Sarmiento, J Manuel; Venteicher, Andrew S; Patil, Chirag G

    2015-01-01

    Background In most people with low-grade gliomas (LGG), the primary treatment regimen remains a combination of surgery followed by postoperative radiotherapy. However, the optimal timing of radiotherapy is controversial. It is unclear whether to use radiotherapy in the early postoperative period, or whether radiotherapy should be delayed until tumour progression occurs. Objectives To assess the effects of early postoperative radiotherapy versus radiotherapy delayed until tumour progression for low-grade intracranial gliomas in people who had initial biopsy or surgical resection. Search methods We searched up to September 2014 the following electronic databases: the Cochrane Register of Controlled Trials (CENTRAL, Issue 8, 2014), MEDLINE (1948 to Aug week 3, 2014), and EMBASE (1980 to Aug week 3, 2014) to identify trials for inclusion in this Cochrane review. Selection criteria We included randomised controlled trials (RCTs) that compared early versus delayed radiotherapy following biopsy or surgical resection for the treatment of people with newly diagnosed intracranial LGG (astrocytoma, oligodendroglioma, mixed oligoastrocytoma, astroblastoma, xanthoastrocytoma, or ganglioglioma). Radiotherapy may include conformal external beam radiotherapy (EBRT) with linear accelerator or cobalt-60 sources, intensity-modulated radiotherapy (IMRT), or stereotactic radiosurgery (SRS). Data collection and analysis Three review authors independently assessed the trials for inclusion and risk of bias, and extracted study data. We resolved any differences between review authors by discussion. Adverse effects were also extracted from the study report. We performed meta-analyses using a random-effects model with inverse variance weighting. Main results We included one large, multi-institutional, prospective RCT, involving 311 participants; the risk of bias in this study was unclear. This study found that early postoperative radiotherapy is associated with an increase in time to

  15. LINAC radiosurgery and radiotherapy treatment of acoustic neuromas. 2007.

    PubMed

    Likhterov, Ilya; Allbright, Robert M; Selesnick, Samuel H

    2008-04-01

    This article provides an introduction to radiation therapy as it applies to intracranial tumors. It also provides a review of the natural growth progression of acoustic neuromas and accuracy of tumor size determination. Literature on the use of linear accelerator stereotactic radiosurgery and fractionated radiotherapy in acoustic neuroma management is reviewed and summarized. Specifically, the rates of reported tumor control, hearing preservation, facial and trigeminal nerve complications, and hydrocephalus are analyzed. Although the complication rates associated with linear accelerator therapy are relatively low, hearing preservation is poor and acoustic neuroma control is variable.

  16. LINAC radiosurgery and radiotherapy treatment of acoustic neuromas.

    PubMed

    Likhterov, Ilya; Allbright, Robert M; Selesnick, Samuel H

    2007-06-01

    This article provides an introduction to radiation therapy as it applies to intracranial tumors. It also provides a review of the natural growth progression of acoustic neuromas and accuracy of tumor size determination. Literature on the use of linear accelerator stereotactic radiosurgery and fractionated radiotherapy in acoustic neuroma management is reviewed and summarized. Specifically, the rates of reported tumor control, hearing preservation, facial and trigeminal nerve complications, and hydrocephalus are analyzed. Although the complication rates associated with linear accelerator therapy are relatively low, hearing preservation is poor and acoustic neuroma control is variable.

  17. Place of radiotherapy in the treatment of synovial sarcoma

    SciTech Connect

    Carson, J.H.; Harwood, A.R.; Cummings, B.J.; Fornasier, V.; Langer, F.; Quirt, I.

    1981-01-01

    This paper reviews 36 patients with synovial sarcoma; 18 were referred within three months of surgery. None had undergone en bloc excision and all were treated with post-operative radiotherapy. Local control and survival were analyzed with respect to Tumor Node Metastasis Classification, histology, site of primary and surgical procedure. Eight patients with T1-2N0M0 tumors were alive and well (minimum two year follow-up) following excision and radiotherapy; 7 had a normally functional extremity. In contrast, only one of 8 patients with T3N0M0 tumors is alive and well. Seven of 8 patients with well or moderately differentiated histology were alive and well whereas no patient with poorly differentiated histologies survived. Six of 7 patients were alive and well if their tumor was distal to the elbow or knee whereas none of those who had a primary thigh synovial sarcoma survived. Eighteen patients were referred with recurrent disease and 2 were salvaged. A management policy is proposed for synovial sarcoma with the integrated use of surgery, radiation and chemotherapy; it emphasizes optimal cure rates and a functional extremity reserving amputation for salvage.

  18. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    SciTech Connect

    Ireland, Rob H. . E-mail: r.ireland@sheffield.ac.uk; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-07-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 {+-} 0.80 mm and 4.96 {+-} 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 {+-} 1.22 mm and 4.96 {+-} 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy.

  19. Combined treatment with interstitial hyperthermia and interstitial radiotherapy in an animal tumor model.

    PubMed

    Ruifrok, A C; Levendag, P C; Lakeman, R F; Deurloo, I K; Visser, A G

    1991-06-01

    An interstitial hyperthermia system operating at 27 MHz has been developed at the Dr. Daniel den Hoed Cancer Center. To test this system in combination with interstitial radiotherapy and to study the interactions of interstitial radiotherapy and interstitial hyperthermia, animal experiments were performed using rhabdomyosarcoma type R1 transplanted in the flanks of female Wag/Rij rats. Using the 27 MHz system, it appeared feasible to obtain hyperthermic temperatures. In this experiment a thermal dose of 44 degrees C for 30 minutes was delivered by controlling the temperature at the periphery of the tumor to 44 degrees C. The interstitial heating applicators were inserted in four standard afterloading catheters implanted with a fixed spacing of 7 mm; the same catheters were used for the radioactive sources for interstitial radiotherapy treatment following the interstitial hyperthermia sessions. Interstitial radiotherapy was given by means of four Ir192 wires with an average activity of 4.5.10(7) Bq/cm. Minimum tumor doses of 20 to 115 Gy with a mean dose rate of 47 cGy/hour were applied. Interstitial hyperthermia alone resulted in a growth delay (GD1) of 6 +/- 2 days without significant reduction of tumor volume. The 50% tumor cure dose after interstitial radiotherapy alone was 95 +/- 9 Gy. Combination of interstitial hyperthermia and interstitial radiotherapy resulted in reduction of the 50% tumor cure dose to 48 +/- 13 Gy. The dose-effect data for cure for these modalities are compared to existing data for external irradiation and external hyperthermia in the same tumor model. It was found that the addition of hyperthermia to different modes of irradiation, that is, either to single dose or protracted radiotherapy, results in a common level of radiosensitivity through impaired repair of sublethal damage. This study demonstrates the feasibility of the 27 MHz heating system in achieving hyperthermic temperatures; in the combined modality experiments a thermal

  20. Pain and quality of life in patients undergoing radiotherapy for spinal metastatic disease treatment

    PubMed Central

    2013-01-01

    Background Radiotherapy is an important tool in the control of pain in patients with spinal metastatic disease. We aimed to evaluate pain and of quality of life of patients with spinal metastatic disease undergoing radiotherapy with supportive treatment. Methods The study enrolled 30 patients. From January 2008 to January 2010, patients selection included those treated with a 20 Gy tumour dose in five fractions. Patients completed the visual analogue scale for pain assessment and the SF-36 questionnaire for quality of life assessment. Results The most frequent primary sites were breast, multiple myeloma, prostate and lymphoma. It was found that 14 spinal metastatic disease patients (46.66%) had restricted involvement of three or fewer vertebrae, while 16 patients (53.33%) had cases involving more than three vertebrae. The data from the visual analogue scale evaluation of pain showed that the average initial score was 5.7 points, the value 30 days after the end of radiotherapy was 4.60 points and the average value 6 months after treatment was 4.25 points. Notably, this final value was 25.43% lower than the value from the initial analysis. With regard to the quality of life evaluation, only the values for the functional capability and social aspects categories of the questionnaire showed significant improvement. Conclusion Radiotherapy with supportive treatment appears to be an important tool for the treatment of pain in patients with spinal metastatic disease. PMID:23418821

  1. Male Malignant Phyllodes Breast Tumor After Prophylactic Breast Radiotherapy and Bicalutamide Treatment: A Case Report.

    PubMed

    Karihtala, Peeter; Rissanen, Tarja; Tuominen, Hannu

    2016-07-01

    Phyllodes tumor in male breast is an exceptionally rare neoplasm with only few published case reports. Herein, we present a case of malignant phyllodes tumor in male breast nine years after prophylactic breast 10 Gy radiotherapy and after nine year bicalutamide treatment. The imaging findings of the tumor and pathological correlation are also presented.

  2. Biochemical Imaging of Gliomas Using MR Spectroscopic Imaging for Radiotherapy Treatment Planning

    NASA Astrophysics Data System (ADS)

    Heikal, Amr Ahmed

    This thesis discusses the main obstacles facing wide clinical implementation of magnetic resonance spectroscopic imaging (MRSI) as a tumor delineation tool for radiotherapy treatment planning, particularly for gliomas. These main obstacles are identified as 1. observer bias and poor interpretational reproducibility of the results of MRSI scans, and 2. the long scan times required to conduct MRSI scans. An examination of an existing user-independent MRSI tumor delineation technique known as the choline-to-NAA index (CNI) is conducted to assess its utility in providing a tool for reproducible interpretation of MRSI results. While working with spatial resolutions typically twice those on which the CNI model was originally designed, a region of statistical uncertainty was discovered between the tumor and normal tissue populations and as such a modification to the CNI model was introduced to clearly identify that region. To address the issue of long scan times, a series of studies were conducted to adapt a scan acceleration technique, compressed sensing (CS), to work with MRSI and to quantify the effects of such a novel technique on the modulation transfer function (MTF), an important quantitative imaging metric. The studies included the development of the first phantom based method of measuring the MTF for MRSI data, a study of the correlation between the k-space sampling patterns used for compressed sensing and the resulting MTFs, and the introduction of a technique circumventing some of side-effects of compressed sensing by exploiting the conjugate symmetry property of k-space. The work in this thesis provides two essential steps towards wide clinical implementation of MRSI-based tumor delineation. The proposed modifications to the CNI method coupled with the application of CS to MRSI address the two main obstacles outlined. However, there continues to be room for improvement and questions that need to be answered by future research.

  3. Treatment of Pediatric Migraine in the Emergency Room

    PubMed Central

    Gelfand, Amy A.; Goadsby, Peter J.

    2013-01-01

    Migraine is a relatively common reason for pediatric emergency room visits. Given the paucity of randomized trials involving pediatric migraineurs in the emergency department setting compared to adults, recommendations for managing these children are largely extrapolated from adult migraine emergency room studies and trials involving outpatient home pediatric migraine therapy. This paper reviews what is known about pediatric migraineurs who present to the emergency room and how they are currently managed, then goes on to summarize the best evidence currently available to guide clinical decision making. PMID:22964436

  4. The synergistic effects of traditional Chinese herbs and radiotherapy for cancer treatment

    PubMed Central

    JIA, LILI; MA, SHUMEI; HOU, XUE; WANG, XIN; QASED, ABU BAKER LAYTH; SUN, XUEFEI; LIANG, NAN; LI, HUICHENG; YI, HEQING; KONG, DEJUAN; LIU, XIAODONG; FAN, FEIYUE

    2013-01-01

    Traditional Chinese medicine (TCM) has been demonstrated to have potent cytotoxic activity against certain malignant tumors. Ionizing radiation (IR) is one of the most effective methods used in the clinical treatment of cancer. The drawback of a single formula is that it limits the treatment efficacy for cancer, while comprehensive strategies require additional theoretical support. However, a combination of different antitumor treatment modalities is advantageous in restricting the non-specific toxicity often observed with an extremely high dose of a single regimen. The induction of apoptotic cell death is a significant process in tumor cells following radiotherapy or chemotherapy, and resistance to these treatments has been linked to a low propensity for apoptosis. Autophagy is a response of cancer cells to IR or chemotherapy, and involves the prominent formation of autophagic vacuoles in the cytoplasm. In this review, the synergistic effects of TCM and radiotherapy are summarized and the underlying mechanisms are illustrated, providing new therapeutic strategies for cancer. PMID:23760551

  5. Chinese herbal medicines as adjuvant treatment during chemo- or radio-therapy for cancer.

    PubMed

    Qi, Fanghua; Li, Anyuan; Inagaki, Yoshinori; Gao, Jianjun; Li, Jijun; Kokudo, Norihiro; Li, Xiao-Kang; Tang, Wei

    2010-12-01

    Numerous studies have indicated that in cancer treatment Chinese herbal medicines in combination with chemo- or radio-therapy can be used to enhance the efficacy of and diminish the side effects and complications caused by chemo- and radio-therapy. Therefore, an understanding of Chinese herbal medicines is needed by physicians and other health care providers. This review provides evidence for use of Chinese herbal medicines as adjuvant cancer treatment during chemo- or radio-therapy. First, Chinese herbal medicines (e.g. Astragalus, Turmeric, Ginseng, TJ-41, PHY906, Huachansu injection, and Kanglaite injection) that are commonly used by cancer patients for treating the cancer and/or reducing the toxicity induced by chemo- or radio-therapy are discussed. Preclinical and clinical studies have shown that these Chinese herbal medicines possess great advantages in terms of suppressing tumor progression, increasing the sensitivity of chemo- and radio-therapeutics, improving an organism's immune system function, and lessening the damage caused by chemo- and radio-therapeutics. Second, clinical trials of Chinese herbal medicines as adjuvant cancer treatment are reviewed. By reducing side effects and complications during chemo- and radio-therapy, these Chinese herbal medicines have a significant effect on reducing cancer-related fatigue and pain, improving respiratory tract infections and gastrointestinal side effects including diarrhea, nausea, and vomiting, protecting liver function, and even ameliorating the symptoms of cachexia. This review should contribute to an understanding of Chinese herbal medicines as adjuvant treatment for cancer and provide useful information for the development of more effective anti-cancer drugs.

  6. Dosimetric Comparison Between 3-Dimensional Conformal and Robotic SBRT Treatment Plans for Accelerated Partial Breast Radiotherapy.

    PubMed

    Goggin, L M; Descovich, M; McGuinness, C; Shiao, S; Pouliot, J; Park, C

    2016-06-01

    treatment times and 50% lower number of delivered monitor units (MU) were achievable with CyberKnife-multi-leaf collimator than with CyberKnife-Iris. The CyberKnife-multi-leaf collimator treatment times were comparable to 3-dimensional conformal radiotherapy, however, the number of MU delivered was approximately 2.5 times larger. The suitability of 10 + 2 mm margins warrants further investigation.

  7. Dosimetric Feasibility of Hypofractionated Proton Radiotherapy for Neoadjuvant Pancreatic Cancer Treatment

    SciTech Connect

    Kozak, Kevin R.; Kachnic, Lisa A.; Adams, Judith C; Crowley, Elizabeth M.; Alexander, Brian M.; Mamon, Harvey J.; Ryan, David P.; DeLaney, Thomas F.; Hong, Theodore S. . E-mail: tshong1@partners.org

    2007-08-01

    Purpose: To evaluate tumor and normal tissue dosimetry of a 5 cobalt gray equivalent (CGE) x 5 fraction proton radiotherapy schedule, before initiating a clinical trial of neoadjuvant, short-course proton radiotherapy for pancreatic adenocarcinoma. Methods and Materials: The first 9 pancreatic cancer patients treated with neoadjuvant intensity-modulated radiotherapy (1.8 Gy x 28) at the Massachusetts General Hospital had treatment plans generated using a 5 CGE x 5 fraction proton regimen. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Hypofractionated proton and conventionally fractionated intensity-modulated radiotherapy plans both provided acceptable target volume coverage and dose homogeneity. Improved dose conformality provided by the hypofractionated proton regimen resulted in significant sparing of kidneys, liver, and small bowel, evidenced by significant reductions in the mean doses, expressed as percentage prescribed dose, to these structures. Kidney and liver sparing was most evident in low-dose regions ({<=}20% prescribed dose for both kidneys and {<=}60% prescribed dose for liver). Improvements in small-bowel dosimetry were observed in high- and low-dose regions. Mean stomach and duodenum doses, expressed as percentage prescribed dose, were similar for the two techniques. Conclusions: A proton radiotherapy schedule consisting of 5 fractions of 5 CGE as part of neoadjuvant therapy for adenocarcinoma of the pancreas seems dosimetrically feasible, providing excellent target volume coverage, dose homogeneity, and normal tissue sparing. Hypofractionated proton radiotherapy in this setting merits Phase I clinical trial investigation.

  8. Does the Time of Radiotherapy Affect Treatment Outcomes? A Review of the Literature.

    PubMed

    Chan, S; Rowbottom, L; McDonald, R; Bjarnason, G A; Tsao, M; Danjoux, C; Barnes, E; Popovic, M; Lam, H; DeAngelis, C; Chow, E

    2017-04-01

    Circadian rhythm-dependent cell cycle progression produces daily variations in radiosensitivity. This literature review aims to summarise the data on whether radiotherapy outcomes differ depending on administration time. A literature search was conducted on Ovid Medline, Embase, Cochrane Central Register of Controlled Trials and PubMed using key words such as 'radiotherapy', 'circadian rhythm', 'treatment outcome' and 'survival'. Articles evaluating the correlation between radiotherapy time and outcomes in cancer patients were included and relevant information was extracted. Nine studies met the inclusion criteria. Four investigated lung cancer patients undergoing stereotactic radiosurgery for brain metastases, with one study observing improved local control and survival in patients treated in the morning. Another two studies with breast and cervical cancer patients observed that the prevalence of toxicities was higher in afternoon and morning cohorts, respectively. Two studies in head and neck cancer patients found trends indicating morning patients experienced less oral mucositis. Increased toxicities and biochemical failure rates were associated with evening treatment in prostate cancer patients. As inconsistencies in the literature exist regarding the time dependency of radiotherapy outcomes, further investigation is warranted.

  9. The role of PET in target localization for radiotherapy treatment planning.

    PubMed

    Rembielak, Agata; Price, Pat

    2008-02-01

    Positron emission tomography (PET) is currently accepted as an important tool in oncology, mostly for diagnosis, staging and restaging purposes. It provides a new type of information in radiotherapy, functional rather than anatomical. PET imaging can also be used for target volume definition in radiotherapy treatment planning. The need for very precise target volume delineation has arisen with the increasing use of sophisticated three-dimensional conformal radiotherapy techniques and intensity modulated radiation therapy. It is expected that better delineation of the target volume may lead to a significant reduction in the irradiated volume, thus lowering the risk of treatment complications (smaller safety margins). Better tumour visualisation also allows a higher dose of radiation to be applied to the tumour, which may lead to better tumour control. The aim of this article is to review the possible use of PET imaging in the radiotherapy of various cancers. We focus mainly on non-small cell lung cancer, lymphoma and oesophageal cancer, but also include current opinion on the use of PET-based planning in other tumours including brain, uterine cervix, rectum and prostate.

  10. 33 CFR 149.680 - What are the requirements for medical treatment rooms?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the requirements for medical treatment rooms? 149.680 Section 149.680 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Design and Equipment Medical Treatment Rooms § 149.680 What are the requirements for medical...

  11. BEAM: a Monte Carlo code to simulate radiotherapy treatment units.

    PubMed

    Rogers, D W; Faddegon, B A; Ding, G X; Ma, C M; We, J; Mackie, T R

    1995-05-01

    This paper describes BEAM, a general purpose Monte Carlo code to simulate the radiation beams from radiotherapy units including high-energy electron and photon beams, 60Co beams and orthovoltage units. The code handles a variety of elementary geometric entities which the user puts together as needed (jaws, applicators, stacked cones, mirrors, etc.), thus allowing simulation of a wide variety of accelerators. The code is not restricted to cylindrical symmetry. It incorporates a variety of powerful variance reduction techniques such as range rejection, bremsstrahlung splitting and forcing photon interactions. The code allows direct calculation of charge in the monitor ion chamber. It has the capability of keeping track of each particle's history and using this information to score separate dose components (e.g., to determine the dose from electrons scattering off the applicator). The paper presents a variety of calculated results to demonstrate the code's capabilities. The calculated dose distributions in a water phantom irradiated by electron beams from the NRC 35 MeV research accelerator, a Varian Clinac 2100C, a Philips SL75-20, an AECL Therac 20 and a Scanditronix MM50 are all shown to be in good agreement with measurements at the 2 to 3% level. Eighteen electron spectra from four different commercial accelerators are presented and various aspects of the electron beams from a Clinac 2100C are discussed. Timing requirements and selection of parameters for the Monte Carlo calculations are discussed.

  12. Radiation shielding design of BNCT treatment room for D-T neutron source.

    PubMed

    Pouryavi, Mehdi; Farhad Masoudi, S; Rahmani, Faezeh

    2015-05-01

    Recent studies have shown that D-T neutron generator can be used as a proper neutron source for Boron Neutron Capture Therapy (BNCT) of deep-seated brain tumors. In this paper, radiation shielding calculations have been conducted based on the computational method for designing a BNCT treatment room for a recent proposed D-T neutron source. By using the MCNP-4C code, the geometry of the treatment room has been designed and optimized in such a way that the equivalent dose rate out of the treatment room to be less than 0.5μSv/h for uncontrolled areas. The treatment room contains walls, monitoring window, maze and entrance door. According to the radiation protection viewpoint, dose rate results of out of the proposed room showed that using D-T neutron source for BNCT is safe.

  13. The value of temozolomide in combination with radiotherapy during standard treatment for newly diagnosed glioblastoma.

    PubMed

    Park, Chul-Kee; Lee, Se-Hoon; Kim, Tae Min; Choi, Seung Hong; Park, Sung-Hye; Heo, Dae Seog; Kim, Il Han; Jung, Hee-Won

    2013-04-01

    The current best standard care for glioblastoma still has limitations and unsatisfactory outcomes in patients with an unmethylated O-6-methylguanine-DNA methyltransferase (MGMT) promoter. Whether the effects of temozolomide are primarily due to its concomitant use with radiotherapy or are also mediated by their independent use in the adjuvant phase remain unclear. To validate the concomitant use of temozolomide in the standard protocol, we compared the overall survival of two prospective patient groups: one treated with radiotherapy alone followed by adjuvant temozolomide (RT → TMZ group) and the other treated with concomitant radiotherapy and temozolomide followed by adjuvant temozolomide (CCRT-TMZ group). Each patient in the RT → TMZ group (n = 25) was matched with two patients in the CCRT-TMZ group (n = 50) with respect to age, extent of resection, MGMT promoter methylation status, and postsurgical performance status to minimize the influence of confounding factors. In patients with MGMT promoter methylation, the CCRT-TMZ group showed superior overall survival (OS; median, 41.0 months) and progression-free survival (PFS; median, 24.0 months) compared with the RT → TMZ group. However, the OS and PFS did not differ between the CCRT-TMZ and the RT → TMZ groups in the patients without MGMT promoter methylation. Although this data is from a retrospective analysis using small number of patients, the study might indicate that concomitant use of temozolomide with radiotherapy is a crucial step in the standard treatment for glioblastoma patients with MGMT promoter methylation. And the use of temozolomide, either concurrently or by adjuvant after radiotherapy, remains a questionable value for those with an unmethylated MGMT promoter.

  14. Evaluation of the Radiotherapy Treatment Planning in the Presence of a Magnetic Valve Tissue Expander

    PubMed Central

    Trombetta, Débora M.; Cardoso, Simone C.; Alves, Victor G. L.; Facure, Alessandro; Batista, Delano V. S.; da Silva, Ademir X.

    2015-01-01

    The combination of radiotherapy treatments and breast reconstruction, using temporary tissue expanders, generates several concerns due to the presence of a magnetic valve inside the radiation field. The objective of this work is to evaluate a radiotherapy treatment planning for a patient using a tissue expander. Isodose curve maps, obtained using radiochromic films, were compared to the ones calculated with two different dose calculation algorithms of the Eclipse radiotherapy Treatment Planning System (TPS), considering the presence or absence of the heterogeneity. The TPS calculation considering the presence of the heterogeneity shows changes around 5% in the isodose curves when they were compared with the calculation without heterogeneity correction. This calculation did not take in account the real density value of the heterogeneity. This limitation was quantified to be around 10% in comparison with the TPS calculation and experimental measurements using the radiochromic film. These results show that the magnetic valve should be taken in account in dose calculations of the TPS. With respect to the AAA and Pencil Beam Convolution algorithms, when the calculation is compared with the real distribution, AAA presents a distribution more similar to experimental dose distribution. PMID:25679529

  15. PET/CT for Radiotherapy Treatment Planning in Patients With Soft Tissue Sarcomas

    SciTech Connect

    Karam, Irene; Devic, Slobodan; Hickeson, Marc; Roberge, David; Turcotte, Robert E.; Freeman, Carolyn R.

    2009-11-01

    Purpose: To study the possibility of incorporating positron emission tomography/computed tomography (PET/CT) information into radiotherapy treatment planning in patients with high-grade soft tissue sarcomas (STS). Methods and Materials: We studied 17 patients treated with preoperative radiotherapy at our institution from 2005 to 2007. All patients had a high-grade STS and had had a staging PET/CT scan. For each patient, an MRI-based gross tumor volume (GTV), considered to be the contemporary standard for radiotherapy treatment planning, was outlined on a T1-gadolinium enhanced axial MRI (GTV{sub MRI}), and a second set of GTVs were outlined using different threshold values on PET images (GTV{sub PET}). PET-based target volumes were compared with the MRI-based GTV. Threshold values for target contouring were determined as a multiple (from 2 to 10 times) of the background soft tissue uptake values (B) sampled over healthy tissue. Results: PET-based GTVs contoured using a threshold value of 2 or 2.5 most closely resembled the GTV{sub MRI} volumes. Higher threshold values lead to PET volumes much smaller than the GTV{sub MRI}. The standard deviations between the average volumes of GTV{sub PET} and GTV{sub MRI} ratios for all thresholds were large, ranging from 36% for 2 xB up to 93% for 10 xB. Maximum uptake-to-background ratio correlated poorly with the maximum standardized uptake values. Conclusions: It is unlikely that PET/CT will make a significant contribution in GTV definition for radiotherapy treatment planning in patients with STS using threshold methods on PET images. Future studies will focus on molecular imaging and tumor physiology.

  16. Treatment-related toxicity and symptom-related bother following postoperative radiotherapy for prostate cancer

    PubMed Central

    Sia, Michael; Rodrigues, George; Menard, Cynthia; Bayley, Andrew; Bristow, Robert; Chung, Peter; Gospodarowicz, Mary; Milosevic, Michael; Warde, Padraig; Catton, Charles

    2010-01-01

    Introduction: Patients have reported late effects and symptom-related bother following postoperative radiotherapy for prostate cancer. Methods: Patients treated with postoperative radiotherapy were surveyed at a median 56 months after radiotherapy using the Prostate Cancer Radiation Therapy instrument. A retrospective review was undertaken to obtain Radiation Therapy Oncology Group-Late Effects Normal Tissue (RTOG-LENT) toxicity scores at baseline and during follow-up. Results: Survey response was 64.5%. Median prostate bed radiation dose was 66 Gy given at a median 14 months after surgery. Adjuvant hormone therapy was given for 2 to 3 years to 40 patients; 22 received salvage therapy. PCRT impairment subscales were reported as mild for gastrointestinal dysfunction, moderate for genitourinary dysfunction and marked for sexual dysfunction. The use of one or more incontinence pads daily was reported by 25.6% and was similar to 23% use reported at baseline. Frequent or worse urinary frequency or hematuria was reported by 4.8%, and by 8.4% of respondents for bowel dysfunction. Moderate to severe disruption from bowel and bladder dysfunction was reported by up to 5.4% and 2.4% of respondents, respectively. Erectile function was described as poor to none in 88.3% of respondents, and dissatisfaction with sexual functioning was reported by 42.7%. Counselling or treatment was offered to 59% of those followed. Conclusion: Combined surgery and postoperative radiotherapy are associated with low and moderate rates of bowel and bladder dysfunction respectively, with low reported bother. High levels of sexual dysfunction and bother are seen following combined therapy. More effective pre- and post-treatment counselling are required, along with research into more effective prevention and treatment strategies. PMID:20368892

  17. Integration of second cancer risk calculations in a radiotherapy treatment planning system

    NASA Astrophysics Data System (ADS)

    Hartmann, M.; Schneider, U.

    2014-03-01

    Second cancer risk in patients, in particular in children, who were treated with radiotherapy is an important side effect. It should be minimized by selecting an appropriate treatment plan for the patient. The objectives of this study were to integrate a risk model for radiation induced cancer into a treatment planning system which allows to judge different treatment plans with regard to second cancer induction and to quantify the potential reduction in predicted risk. A model for radiation induced cancer including fractionation effects which is valid for doses in the radiotherapy range was integrated into a treatment planning system. From the three-dimensional (3D) dose distribution the 3D-risk equivalent dose (RED) was calculated on an organ specific basis. In addition to RED further risk coefficients like OED (organ equivalent dose), EAR (excess absolute risk) and LAR (lifetime attributable risk) are computed. A risk model for radiation induced cancer was successfully integrated in a treatment planning system. Several risk coefficients can be viewed and used to obtain critical situations were a plan can be optimised. Risk-volume-histograms and organ specific risks were calculated for different treatment plans and were used in combination with NTCP estimates for plan evaluation. It is concluded that the integration of second cancer risk estimates in a commercial treatment planning system is feasible. It can be used in addition to NTCP modelling for optimising treatment plans which result in the lowest possible second cancer risk for a patient.

  18. Similar Treatment Outcomes for Radical Cystectomy and Radical Radiotherapy in Invasive Bladder Cancer Treated at a United Kingdom Specialist Treatment Center

    SciTech Connect

    Kotwal, Sanjeev; Choudhury, Ananya; Johnston, Colin; Paul, Alan B.; Whelan, Peter; Kiltie, Anne E.

    2008-02-01

    Purpose: To conduct a retrospective analysis within a large university teaching hospital, comparing outcomes between patients receiving either radical surgery or radiotherapy as curative treatment for bladder cancer. Patients and Methods: Between March 1996 and December 2000, 169 patients were treated radically for muscle-invasive bladder cancer. Data were collected from patient notes. Statistical analyses were performed using Kaplan-Meier methods and Cox proportional hazards regression analysis to compare radiotherapy and surgical outcome data. Results: There was no difference in overall, cause-specific, and distant recurrence-free survival at 5 years between the two groups, despite the radiotherapy group being older (median age, 75.3 years vs. 68.2 years). There were 31 local bladder recurrences in the radiotherapy group (24 solitary), but there was no significant difference in distant recurrence-free survival. In a more recent (2002-2006) cohort, the median age of radiotherapy patients but not the cystectomy patients was higher than in the 1996-2000 cohort (78.4 years vs. 75.3 years for radiotherapy and 67.9 years vs. 68.2 years for surgery). Conclusions: Although the patients undergoing radical cystectomy were significantly younger than the radiotherapy patients, treatment modality did not influence survival. Bladder cancer patients are an increasingly elderly group. Radical radiotherapy is a viable treatment option for these patients, with the advantage of organ preservation.

  19. Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems.

    PubMed

    Zanini, A; Durisi, E; Fasolo, F; Ongaro, C; Visca, L; Nastasi, U; Burn, K W; Scielzo, G; Adler, J O; Annand, J R M; Rosner, G

    2004-02-21

    Bremsstrahlung photon beams produced by linac accelerators are currently the most commonly used method of radiotherapy for tumour treatments. When the photon energy exceeds 10 MeV the patient receives an undesired dose due to photoneutron production in the accelerator head. In the last few decades, new sophisticated techniques such as multileaf collimators have been used for a better definition of the target volume. In this case it is crucial to evaluate the photoneutron dose produced after giant dipole resonance (GDR) excitation of the high Z materials (mainly tungsten and lead) constituting the collimator leaves in view of the optimization of the radiotherapy treatment. A Monte Carlo approach has been used to calculate the photoneutron dose arising from the GDR reaction during radiotherapy with energetic photon beams. The simulation has been performed using the code MCNP4B-GN which is based on MCNP4B, but includes a new routine GAMMAN to model photoneutron production. Results for the facility at IRCC (Istituto per la Ricerca e la Cura del Cancro) Candiolo (Turin), which is based on 18 MV x-rays from a Varian Clinac 2300 C/D, are presented for a variety of different collimator configurations.

  20. Intracatheter hyperthermia and iridium-192 radiotherapy in the treatment of bile duct carcinoma.

    PubMed

    Wong, J Y; Vora, N L; Chou, C K; McDougall, J A; Chan, K W; Findley, D O; Forell, B W; Luk, K H; Philben, V J; Beatty, J D

    1988-02-01

    We report a case of a patient with locally advanced bile duct carcinoma treated with 4500 cGy external beam radiotherapy, followed 3 weeks later by intracatheter 915 MHz microwave hyperthermia and radiotherapy delivered through a biliary U-tube placed at the time of surgery. Heating was to 43-45 degrees C for 1 hour followed immediately by intracatheter Iridium-192 seeds to deliver 5000 cGy over a 72 hour period. Prior to treatment, a thermal dosimetry study in phanton was conducted, using the same type of U-tube catheter tubing as in the patient. Orthogonal X rays of the patient's porta hepatis region were used to reconstruct the catheter geometry in the phantom. Proper insertion depth was determined thermographically to obtain maximum heating at the center of the tumor. The maximum SAR was 8.8 watts per kilogram per watt input. During the treatment, the average power applied was 30 W. Six months after therapy, the patient is asymptomatic. Although alkaline phosphatase, SGOT and SGPT have remained elevated, bilirubin has returned to normal and computerized tomographic scans and cholangiograms remain stable. A duodenal ulcer developed after therapy and is healing well with conservative medical management. This case demonstrates that hyperthermia applied through biliary drainage catheters is technically feasible and clinically tolerated. We believe the use of intracatheter hyperthermia in conjunction with external and/or intracatheter radiotherapy in selected patients with unresectable bile duct carcinomas warrants further study.

  1. Prevention and treatment of chemo- and radiotherapy-induced oral mucositis.

    PubMed

    Demarosi, F; Bez, C; Carrassi, A

    2002-05-01

    The administration of many chemo-radiotherapy regimens in patients with cancer may be complicated by toxicities that limit the clinicians' abilities to deliver the most effective doses of active agents. Oral mucositis is a major dose-limiting toxic effect and the most important cause of morbidity in patients undergoing chemo-radiotherapy for head and neck cancers, in patients undergoing bone marrow transplantation and those receiving certain chemotherapeutic agents for a variety of human malignancies. The intent of this paper is to review preventive strategies and treatment approaches for patients with established oral mucositis. Many agents of differing mechanisms of action have been used in the prevention and treatment of oral mucositis induced by anticancer therapies. Currently, no intervention is completely successful at preventing or treating oral mucositis. The several solutions, drugs and methods used and studied in the prophylaxis and therapy of chemotherapy or radiotherapy-induced oral mucositis reflects the need of new, more efficient tools in the management of this complication. Current studies and our increasing understanding of the etiology and pathogenesis of oral mucositis will lead to new approaches to the management and improved quality of life for these patients.

  2. Intraoperative Radiotherapy for Breast Cancer: The Lasting Effects of a Fleeting Treatment

    PubMed Central

    Rosenberg, Anne L.

    2014-01-01

    In well-selected patients who choose to pursue breast conservation therapy (BCT) for early-stage breast cancer, partial breast irradiation (PBI) delivered externally or intraoperatively, may be a viable alternative to conventional whole breast irradiation. Two large, contemporary randomized trials have demonstrated breast intraoperative radiotherapy (IORT) to be noninferior to whole breast external beam radiotherapy (EBRT) when assessing for ipsilateral breast tumor recurrence in select patients. Additionally, IORT and other PBI techniques are likely to be more widely adopted in the future because they improve patient convenience by offering an accelerated course of treatment. Coupled with these novel techniques for breast radiotherapy (RT) are distinct toxicity profiles and unique cosmetic alterations that differ from conventional breast EBRT and have the potential to impact disease surveillance and patient satisfaction. This paper will review the level-one evidence for treatment efficacy as well as important secondary endpoints like RT toxicity, breast cosmesis, quality of life, patient satisfaction, and surveillance mammography following BCT with IORT. PMID:25180098

  3. Low-Dose Involved-Field Radiotherapy as Alternative Treatment of Nodular Lymphocyte Predominance Hodgkin's Lymphoma

    SciTech Connect

    Haas, Rick L.M. Girinsky, Theo; Aleman, Berthe; Henry-Amar, Michel; Boer, Jan-Paul de; Jong, Daphne de

    2009-07-15

    Purpose: Nodular lymphocyte predominance Hodgkin's lymphoma is a very rare disease, characterized by an indolent clinical course, with sometimes very late relapses occurring in a minority of all patients. Considerable discussion is ongoing on the treatment of primary and relapsed disease. Patients and Methods: A group of 9 patients were irradiated to a dose of 4 Gy on involved areas only. Results: After a median follow-up of 37 months (range, 6-66), the overall response rate was 89%. Six patients had complete remission (67%), two had partial remission (22%), and one had stable disease (11%). Of 8 patients, 5 developed local relapse 9-57 months after radiotherapy. No toxicity was noted. Conclusion: In nodular lymphocyte predominance Hodgkin's lymphoma, low-dose radiotherapy provided excellent response rates and lasting remissions without significant toxicity.

  4. Postoperative Radiotherapy for the Treatment of Solitary Fibrous Tumor With Malignant Transformation of the Pelvic

    PubMed Central

    Gao, Chao; Zhang, Yong; Jing, Ming; Qu, Wei; Li, Jia; Zhao, Xiang-Rong; Yu, Yong-Hua

    2016-01-01

    Abstract Solitary fibrous tumor of the pelvic is an uncommon neoplasm with nonspecific symptoms. Reports of malignant transformation are especially rare. We report a case of solitary fibrous tumor in pelvic. A unique feature of our case compared with previously reported is that this patient relapsed with malignant transformation and had significant response to radiotherapy. The patient was initially treated with surgery, followed by postoperative dimensional conformal intensity modulated radiation therapy (dynamic MLC VRIAN 23EX Linac, inversely optimized by the Eclipse system) to provide a radical cure for residual tumor. In this case, there were no signs of recurrence after six and a half years of further follow-up, indicating that postoperation radiotherapy may be an effective treatment for SFT with malignant transformation in pelvic. PMID:26765426

  5. Dose calculation accuracies in whole breast radiotherapy treatment planning: a multi-institutional study.

    PubMed

    Hatanaka, Shogo; Miyabe, Yuki; Tohyama, Naoki; Kumazaki, Yu; Kurooka, Masahiko; Okamoto, Hiroyuki; Tachibana, Hidenobu; Kito, Satoshi; Wakita, Akihisa; Ohotomo, Yuko; Ikagawa, Hiroyuki; Ishikura, Satoshi; Nozaki, Miwako; Kagami, Yoshikazu; Hiraoka, Masahiro; Nishio, Teiji

    2015-07-01

    Our objective in this study was to evaluate the variation in the doses delivered among institutions due to dose calculation inaccuracies in whole breast radiotherapy. We have developed practical procedures for quality assurance (QA) of radiation treatment planning systems. These QA procedures are designed to be performed easily at any institution and to permit comparisons of results across institutions. The dose calculation accuracy was evaluated across seven institutions using various irradiation conditions. In some conditions, there was a >3 % difference between the calculated dose and the measured dose. The dose calculation accuracy differs among institutions because it is dependent on both the dose calculation algorithm and beam modeling. The QA procedures in this study are useful for verifying the accuracy of the dose calculation algorithm and of the beam model before clinical use for whole breast radiotherapy.

  6. [Case report: a gastrectomized patient under treatment with chemotherapy and radiotherapy].

    PubMed

    Cañones Castelló, María Estrella

    2008-01-01

    The adjuvant treatment of gastric cancer includes radiotherapy and chemotherapy. The patient underwent gastrectomy on November 10, 2006 and began adjuvant chemotherapy (McDonald scheme) on january 2, 2007, finishing on june 1, 2007. Radiotherapy was started on February 6, 2007 and finished on March 16, 2007. The care plan presented was designed following the Virginia Henderson model and is routinely used at the Reina Sofía Hospital. This care plan follows the NANDA, NOC and NIC taxonomies and is based on the following nursing diagnoses: risk of infection, fear, and disposition to improve knowledge. During the clinical course, two new nursing diagnoses were identified: deterioration of oral mucosa and skin integrity.

  7. Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer

    NASA Astrophysics Data System (ADS)

    Winkel, D.; Bol, G. H.; van Asselen, B.; Hes, J.; Scholten, V.; Kerkmeijer, L. G. W.; Raaymakers, B. W.

    2016-12-01

    To develop an automated radiotherapy treatment planning and optimization workflow to efficiently create patient specifically optimized clinical grade treatment plans for prostate cancer and to implement it in clinical practice. A two-phased planning and optimization workflow was developed to automatically generate 77Gy 5-field simultaneously integrated boost intensity modulated radiation therapy (SIB-IMRT) plans for prostate cancer treatment. A retrospective planning study (n  =  100) was performed in which automatically and manually generated treatment plans were compared. A clinical pilot (n  =  21) was performed to investigate the usability of our method. Operator time for the planning process was reduced to  <5 min. The retrospective planning study showed that 98 plans met all clinical constraints. Significant improvements were made in the volume receiving 72Gy (V72Gy) for the bladder and rectum and the mean dose of the bladder and the body. A reduced plan variance was observed. During the clinical pilot 20 automatically generated plans met all constraints and 17 plans were selected for treatment. The automated radiotherapy treatment planning and optimization workflow is capable of efficiently generating patient specifically optimized and improved clinical grade plans. It has now been adopted as the current standard workflow in our clinic to generate treatment plans for prostate cancer.

  8. Treatment Planning Study to Determine Potential Benefit of Intensity-Modulated Radiotherapy Versus Conformal Radiotherapy for Unresectable Hepatic Malignancies

    SciTech Connect

    Eccles, Cynthia L.; Bissonnette, Jean-Pierre; Craig, Tim; Taremi, Mojgan; Wu Xia; Dawson, Laura A.

    2008-10-01

    Purpose: To compare intensity-modulated radiotherapy (IMRT) with conformal RT (CRT) for hypofractionated isotoxicity liver RT and explore dose escalation using IMRT for the same/improved nominal risk of liver toxicity in a treatment planning study. Methods and Materials: A total of 26 CRT plans were evaluated. Prescription doses (24-54 Gy within six fractions) were individualized on the basis of the effective liver volume irradiated maintaining {<=}5% risk of radiation-induced liver disease. The dose constraints included bowel (0.5 cm{sup 3}) and stomach (0.5 cm{sup 3}) to {<=}30 Gy, spinal cord to {<=}25 Gy, and planning target volume (PTV) to {<=}140% of the prescribed dose. Two groups were evaluated: (1) PTV overlapping or directly adjacent to serial functioning normal tissues (n = 14), and (2) the liver as the dose-limiting normal tissue (n = 12). IMRT plans using direct machine parameter optimization maintained the CRT plan beam arrangements, an estimated radiation-induced liver disease risk of 5%, and underwent dose escalation, if all normal tissue constraints were maintained. Results: IMRT improved PTV coverage in 19 of 26 plans (73%). Dose escalation was feasible in 9 cases by an average of 3.8 Gy (range, 0.6-13.2) in six fractions. Three of seven plans without improved PTV coverage had small gross tumor volumes ({<=}105 cm{sup 3}) already receiving 54 Gy, the maximal prescription dose allowed. In the remaining cases, the PTV range was 9.6-689 cm{sup 3}; two had overlapped organs at risk; and one had four targets. IMRT did not improve these plans owing to poor target coverage (n = 2) and nonliver (n = 2) dose limits. Conclusion: Direct machine parameter optimization IMRT improved PTV coverage while maintaining normal tissue tolerances in most CRT liver plans. Dose escalation was possible in a minority of patients.

  9. Cobalt 60 radiotherapy for treatment of squamous cell carcinoma of the nasal cavity and paranasal sinuses in three horses.

    PubMed

    Walker, M A; Schumacher, J; Schmitz, D G; McMullen, W C; Ruoff, W W; Crabill, M R; Hawkins, J F; Hogan, P M; McClure, S R; Vacek, J R; Edwards, J F; Helman, R G; Frelier, P F

    1998-03-15

    Three adult horses underwent aggressive treatment of squamous cell carcinoma of the nasal cavity and paranasal sinuses, using course-fractionated cobalt 60 radiotherapy. Squamous cell carcinoma of the nasal cavity and paranasal sinuses is not commonly diagnosed in horses. Historically, horses with this type of neoplasm have not been treated or have undergone some form of surgery. The prognosis for long-term survival or cure has been poor. Long-term results of cobalt 60 radiotherapy were good to excellent and exceeded those usually reported for horses treated surgically. On the basis of these results, use of radiotherapy for these neoplasms is recommended.

  10. Involved-Node Radiotherapy and Modern Radiation Treatment Techniques in Patients With Hodgkin Lymphoma

    SciTech Connect

    Paumier, Amaury; Ghalibafian, Mithra; Beaudre, Anne; Ferreira, Ivaldo; Pichenot, Charlotte; Messai, Taha; Lessard, Nathalie Athalie; Lefkopoulos, Dimitri; Girinsky, Theodore

    2011-05-01

    Purpose: To assess the clinical outcome of the involved-node radiotherapy (INRT) concept using modern radiation treatments (intensity-modulated radiotherapy [IMRT]or deep-inspiration breath-hold radiotherapy [DIBH) in patients with localized supradiaphragmatic Hodgkin lymphoma. Methods and Materials: All but 2 patients had early-stage Hodgkin lymphoma, and they were treated with chemotherapy prior to irradiation. Radiation treatments were delivered using the INRT concept according to European Organization for Research and Treatment of Cancer guidelines. IMRT was performed with the patient free-breathing. For the adapted breath-hold technique, a spirometer dedicated to DIBH radiotherapy was used. Three-dimensional conformal radiotherapy was performed with those patients. Results: Fifty patients with Hodgkin lymphoma (48 patients with primary Hodgkin lymphoma, 1 patient with recurrent disease, and 1 patient with refractory disease) entered the study from January 2003 to August 2008. Thirty-two patients were treated with IMRT, and 18 patients were treated with the DIBH technique. The median age was 28 years (range, 17-62 years). Thirty-four (68%) patients had stage I - (I-IIA) IIA disease, and 16 (32%) patients had stage I - (I-IIB) IIB disease. All but 3 patients received three to six cycles of adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD). The median radiation doses to patients treated with IMRT and DIBH were, respectively, 40 Gy (range, 21.6-40 Gy) and 30.6 Gy (range, 19.8-40 Gy). Protection of various organs at risk was satisfactory. Median follow-up was 53.4 months (range, 19.1-93 months). The 5-year progression-free and overall survival rates for the whole population were 92% (95% confidence interval [CI], 80%-97%) and 94% (95% CI, 75%-98%), respectively. Recurrences occurred in 4 patients: 2 patients had in-field relapses, and 2 patients had visceral recurrences. Grade 3 acute lung toxicity (transient pneumonitis) occurred in 1 case. Conclusions

  11. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system.

    PubMed

    Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E; Wemple, Charles A; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; Denardo, Gerald

    2005-03-07

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4-2%, MCNP-10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of the

  12. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system

    NASA Astrophysics Data System (ADS)

    Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E.; Wemple, Charles A.; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; DeNardo, Gerald

    2005-03-01

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4—2%, MCNP—10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of

  13. Monte Carlo Treatment Planning for Molecular Targeted Radiotherapy within the MINERVA System

    SciTech Connect

    Lehmann, J; Siantar, C H; Wessol, D E; Wemple, C A; Nigg, D; Cogliati, J; Daly, T; Descalle, M; Flickinger, T; Pletcher, D; DeNardo, G

    2004-09-22

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry, and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU), and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo-based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (Modality Inclusive Environment for Radiotherapeutic Variable Analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plug-in architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4 - 2%, MCNP - 10%)(Descalle et al. 2003). The code is currently being benchmarked against experimental data. The interpatient variability of the drug pharmacokinetics in MTR

  14. Physical aspects of external beam radiotherapy for the treatment of malignant pleural mesothelioma

    SciTech Connect

    Soubra, M.; Dunscombe, P.B.; Hodson, D.I.; Wong, G. )

    1990-06-01

    The optimization of radiotherapy for the treatment of malignant mesothelioma highlights many of the currently outstanding problems in clinical radiation physics. The experimental investigation of an intuitively attractive irradiation technique with combined photon and electron beams using a specially constructed phantom has established that, due to the penetration in low density material of both primary electrons and those secondary to photon irradiation, the normal lung tissue is not spared to any significant degree by such a technique. Furthermore, great care needs to be exercised in the treatment planning calculations for this approach if absolute dosimetry errors as large as 50% are to be avoided.

  15. RADIOTHERAPY IN THE TREATMENT OF PATIENTS WITH UNRESECTABLE EXTRAHEPATIC CHOLANGIOCARCINOMA

    PubMed Central

    Ghafoori, A. Paiman; Nelson, John W.; Willett, Christopher G.; Chino, Junzo; Tyler, Douglas S.; Hurwitz, Herbert I.; Uronis, Hope E.; Morse, Michael A.; Clough, Robert W.; Czito, Brian G.

    2014-01-01

    Purpose Extrahepatic cholangiocarcinoma is an uncommon but lethal malignancy. We analyzed the role of definitive chemoradiotherapy for patients with nonmetastatic, locally advanced extrahepatic cholangiocarcinoma treated at a single institution. Methods and Materials This retrospective analysis included 37 patients who underwent external beam radiation therapy (EBRT) with concurrent chemotherapy and/or brachytherapy (BT) for locally advanced extrahepatic cholangiocarcinoma. Local control (LC) and overall survival (OS) were assessed, and univariate regression analysis was used to evaluate the effects of patient- and treatment-related factors on clinical outcomes. Results Twenty-three patients received EBRT alone, 8 patients received EBRT plus BT, and 6 patients received BT alone (median follow-up of 14 months). Two patients were alive without evidence of recurrence at the time of analysis. Actuarial OS and LC rates at 1 year were 59% and 90%, respectively, and 22% and 71%, respectively, at 2 years. Two patients lived beyond 5 years without evidence of recurrence. On univariate analysis, EBRT with or without BT improved LC compared to BT alone (97% vs. 56% at 1 year; 75% vs. 56% at 2 years; p = 0.096). Patients who received EBRT alone vs. BT alone also had improved LC (96% vs. 56% at 1 year; 80% vs. 56% at 2 years; p = 0.113). Age, gender, tumor location (proximal vs. distal), histologic differentiation, EBRT dose (≤ or >50 Gy), EBRT planning method (two-dimensional vs. three-dimensional), and chemotherapy were not associated with patient outcomes. Conclusions Patients with locally advanced extrahepatic cholangiocarcinoma have poor survival. Long-term survival is rare. The majority of patients treated with EBRT had local control at the time of death, suggesting that symptoms due to the local tumor effect might be effectively controlled with radiation therapy, and EBRT is an important element of treatment. Novel treatment approaches are indicated in the therapy for

  16. Radiotherapy in the Treatment of Patients With Unresectable Extrahepatic Cholangiocarcinoma

    SciTech Connect

    Ghafoori, A. Paiman; Nelson, John W.; Willett, Christopher G.; Chino, Junzo; Tyler, Douglas S.; Hurwitz, Herbert I.; Uronis, Hope E.; Morse, Michael A.; Clough, Robert W.; Czito, Brian G.

    2011-11-01

    Purpose: Extrahepatic cholangiocarcinoma is an uncommon but lethal malignancy. We analyzed the role of definitive chemoradiotherapy for patients with nonmetastatic, locally advanced extrahepatic cholangiocarcinoma treated at a single institution. Methods and Materials: This retrospective analysis included 37 patients who underwent external beam radiation therapy (EBRT) with concurrent chemotherapy and/or brachytherapy (BT) for locally advanced extrahepatic cholangiocarcinoma. Local control (LC) and overall survival (OS) were assessed, and univariate regression analysis was used to evaluate the effects of patient- and treatment-related factors on clinical outcomes. Results: Twenty-three patients received EBRT alone, 8 patients received EBRT plus BT, and 6 patients received BT alone (median follow-up of 14 months). Two patients were alive without evidence of recurrence at the time of analysis. Actuarial OS and LC rates at 1 year were 59% and 90%, respectively, and 22% and 71%, respectively, at 2 years. Two patients lived beyond 5 years without evidence of recurrence. On univariate analysis, EBRT with or without BT improved LC compared to BT alone (97% vs. 56% at 1 year; 75% vs. 56% at 2 years; p = 0.096). Patients who received EBRT alone vs. BT alone also had improved LC (96% vs. 56% at 1 year; 80% vs. 56% at 2 years; p = 0.113). Age, gender, tumor location (proximal vs. distal), histologic differentiation, EBRT dose ({<=} or >50 Gy), EBRT planning method (two-dimensional vs. three-dimensional), and chemotherapy were not associated with patient outcomes. Conclusions: Patients with locally advanced extrahepatic cholangiocarcinoma have poor survival. Long-term survival is rare. The majority of patients treated with EBRT had local control at the time of death, suggesting that symptoms due to the local tumor effect might be effectively controlled with radiation therapy, and EBRT is an important element of treatment. Novel treatment approaches are indicated in the therapy

  17. Prophylaxis versus treatment: Is there a better way to manage radiotherapy-induced nausea and vomiting?

    SciTech Connect

    Horiot, Jean-Claude . E-mail: horiotjc@dijon.fnclcc.fr

    2004-11-15

    Nausea and vomiting are two of the most distressing side effects of radiotherapy and cytotoxic drugs, which currently are often combined to treat moderately advanced and advanced solid tumors. Inadequate control of these symptoms may result in significant patient suffering and decrease in the patient's quality of life, which has been shown to decrease patients' compliance to treatment, with potential impact on disease outcome. It is, therefore, important that radiation oncologists recognize the need for adequate prophylactic treatment of radiation-induced nausea and vomiting (RINV) to avoid the detrimental effects on patients' quality of life, and optimize chances for cure. The 5-hydroxytryptamine type 3 (5-HT{sub 3})-receptor antagonists have been proved to provide effective antiemetic therapy in patients undergoing highly emetogenic radiotherapy. Nevertheless, several large surveys have shown that optimal treatments are not always used. Hence, a risk exists that waiting for RINV symptoms rather than prescribing prophylactic antiemetic treatment may lead to increased patient suffering, poorer disease control, and less cost-effective therapy options. Prophylactic management with an effective 5-HT{sub 3}-receptor antagonist should offer a better treatment option for patients at high to moderate risk of RINV. Adequate control of RINV should contribute to patient compliance to treatment, improved therapy outcomes, and decreased burdens on nursing and health care resources.

  18. AutoLock: a semiautomated system for radiotherapy treatment plan quality control.

    PubMed

    Dewhurst, Joseph M; Lowe, Matthew; Hardy, Mark J; Boylan, Christopher J; Whitehurst, Philip; Rowbottom, Carl G

    2015-05-08

    A semiautomated system for radiotherapy treatment plan quality control (QC), named AutoLock, is presented. AutoLock is designed to augment treatment plan QC by automatically checking aspects of treatment plans that are well suited to computational evaluation, whilst summarizing more subjective aspects in the form of a checklist. The treatment plan must pass all automated checks and all checklist items must be acknowledged by the planner as correct before the plan is finalized. Thus AutoLock uniquely integrates automated treatment plan QC, an electronic checklist, and plan finalization. In addition to reducing the potential for the propagation of errors, the integration of AutoLock into the plan finalization workflow has improved efficiency at our center. Detailed audit data are presented, demonstrating that the treatment plan QC rejection rate fell by around a third following the clinical introduction of AutoLock.

  19. [Radiotherapy of bone metastases].

    PubMed

    Thureau, S; Vieillard, M-H; Supiot, S; Lagrange, J-L

    2016-09-01

    Radiotherapy plays a major role in palliative treatment of bone metastases. Recent developments of stereotactic radiotherapy and intensity modulated radiation therapy give the possibility to treat oligometastatic diseases. The objective of this paper is to report indications and treatment modalities of radiotherapy in these situations.

  20. Postoperative Irradiation of Gynecologic Malignancies: Improving Treatment Delivery Using Aperture-Based Intensity-Modulated Radiotherapy

    SciTech Connect

    Nadeau, Sylvain . E-mail: sylvainn@rrsb.nb.ca; Bouchard, Myriam; Germain, Isabelle; Raymond, Paul-Emile; Beaulieu, Frederic; Beaulieu, Luc; Roy, Rene; Gingras, Luc

    2007-06-01

    Purpose: To evaluate dosimetric and treatment delivery advantages of aperture-based intensity-modulated radiotherapy (AB-IMRT) for the treatment of patients receiving whole pelvic radiotherapy for gynecologic malignancies. Methods and Materials: Nineteen patients undergoing pelvic radiotherapy after resection of endometrial cancers were selected. A 45-Gy dose was prescribed to the target volume delineated on a planning CT scan. An in-house inverse planning system, Ballista, was used to develop a treatment plan using aperture-based multileaf collimator segments. This approach was compared with conventional four-field, enlarged four-field, and static beamlet-based IMRT (BB-IMRT) techniques in terms of target coverage, dose-volume histogram statistics for surrounding normal tissues, and numbers of segments and monitor units (MU). Results: Three quarters (76.4%) of the planning target volume received the prescription dose with conventional four-field plans. With adequate target coverage, the Ballista plans significantly reduced the volume of bowel and bladder irradiated at the prescribed dose (p < 0.001), whereas the two approaches provided equivalent results for the rectum (p 0.5). On the other hand, AB-IMRT and BB-IMRT plans showed only small differences in dose-volume histogram statistics of unknown clinical impact, whereas Ballista plan delivery required on average 73% and 59% fewer segments and MU, respectively. Conclusion: With respect to conventional techniques, AB-IMRT for the treatment of gynecologic malignancies provides dosimetric advantages similar to those with BB-IMRT but with clear treatment delivery improvements.

  1. Modified radiotherapy technique in the treatment of medulloblastoma

    SciTech Connect

    Dewit, L.; Van Dam, J.; Rijnders, A.; Van De Velde, G.; Ang, K.K.; Van Der Schueren, E.

    1984-02-01

    Craniospinal irradiation is a standard treatment technique in patients who receive surgery for medulloblastoma. In most centers megavoltage photon irradiation is used, resulting in significant irradiation exposure to critical organs. In order to overcome this difficulty, the authors recently modified the technique applied in their center, by using high energy electrons (20 MeV) for irradiation of the spinal cord. The reliability of this technique was checked by performing dosimetry in a specially constructed wax phantom. Attention was focused upon dose variations at the junction of fields. Furthermore, the influence of vertebrae on the absorbed dose distribution of high energy electrons is presented. This technique seems to be safe and reliable in selected patients (children and teenagers).

  2. Combination ibandronate and radiotherapy for the treatment of bone metastases: Clinical evaluation and radiologic assessment

    SciTech Connect

    Vassiliou, Vassilios; Kalogeropoulou, Christine; Christopoulos, Christos; Solomou, Ekaterini; Leotsinides, Michael; Kardamakis, Dimitrios . E-mail: kardim@med.upatras.gr

    2007-01-01

    Purpose: Ibandronate is a single-nitrogen, noncyclic bisphosphonate with proven efficacy for reducing metastatic bone pain. In this study, we assessed the palliative effects of combined ibandronate and radiotherapy. Methods and Materials: Forty-five patients with bone metastases from various solid tumors received external-beam radiotherapy, 30-40 Gy over 3-4.5, weeks combined with 10 cycles of monthly intravenous ibandronate, 6 mg. Results: After combined therapy, mean bone pain scores (graded from 0 to 10) were reduced from 6.3 at baseline to 0.8 after 3 months, with further reductions at later time points (all p < 0.001). Opioid use decreased from 84% of patients at baseline (38/45) to 24% (11/45) at 3 months, with further subsequent reductions (all p < 0.001). Mean performance status and functioning scores also significantly improved. Bone density (assessed by computed tomography scan) increased by 20% vs. baseline at 3 months, 46% at 6 months, and 73% at 10 months (all p < 0.001). Lesion improvement was also demonstrated by magnetic resonance imaging. Treatment was well tolerated with no renal toxicity. Conclusions: In this pilot study, combined radiotherapy and ibandronate provided substantial bone pain relief and increased bone density. Computed tomography-based or magnetic resonance imaging-based evaluations offer objective methods for assessing therapeutic outcomes.

  3. A feasibility study of treatment verification using EPID cine images for hypofractionated lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoli; Lin, Tong; Jiang, Steve

    2009-09-01

    We propose a novel approach for potential online treatment verification using cine EPID (electronic portal imaging device) images for hypofractionated lung radiotherapy based on a machine learning algorithm. Hypofractionated radiotherapy requires high precision. It is essential to effectively monitor the target to ensure that the tumor is within the beam aperture. We modeled the treatment verification problem as a two-class classification problem and applied an artificial neural network (ANN) to classify the cine EPID images acquired during the treatment into corresponding classes—with the tumor inside or outside of the beam aperture. Training samples were generated for the ANN using digitally reconstructed radiographs (DRRs) with artificially added shifts in the tumor location—to simulate cine EPID images with different tumor locations. Principal component analysis (PCA) was used to reduce the dimensionality of the training samples and cine EPID images acquired during the treatment. The proposed treatment verification algorithm was tested on five hypofractionated lung patients in a retrospective fashion. On average, our proposed algorithm achieved a 98.0% classification accuracy, a 97.6% recall rate and a 99.7% precision rate. This work was first presented at the Seventh International Conference on Machine Learning and Applications, San Diego, CA, USA, 11-13 December 2008.

  4. [The hypofractionated radiotherapy in the treatment of the prostate cancer: radiate less to treat more].

    PubMed

    Boissier, R; Gross, E

    2010-05-01

    The principle of the hypofractionation in radiotherapy is to deliver a higher dose by session and to reduce the duration of treatment. In the particular case of the cancer of prostate, a hypofractionned protocol allows to deliver an equivalent radiobiological dose identical even higher than a standard plan of irradiation. The hypofractionation is presented as a solution to improve the access to the care (fewer processing times by patient, more patients treated by machine) while increasing the quality of the care: better carcinologic control, less radiotoxicity. The objective of this article is to make a clarification on the hypofractionned radiotherapy in first intention in the treatment of the localized prostate cancer. We count three studies on large cohorts, comparing standard plans to 1.8-2 Gy/session and hypofractionned plans (2.5-3 Gy/session). The inferior carcinologic results of the two first comparative studies with regard to the study of phase I/II of the Cleveland clinic were owed to a sub-dosage of hypofractionned plans. The administered equivalent biological doses were lower than the at present recommended total doses and lower than the theoretical doses, calculated on the bases of an erroneous evaluation of the radiosensibility of the prostate cancer. In the comparative study of Arcangeli, the rate of survival without biological recurrence in 4 years (82%) was significantly to the advantage of the hypofractionned group, while reducing the duration of treatment of 3 weeks. Four comparative studies reported aigues/late toxicity, gastrointestinal (GI)/genito-urinary acceptable (GU) even lower with a hypofractionned plan. The hypofractionation is potentially the future of the radiotherapy in the treatment of the localized prostate cancer thanks to the technological innovation, but for all that does not constitute at present a standard.

  5. Reinforcing of QA/QC programs in radiotherapy departments in Croatia: Results of treatment planning system verification

    SciTech Connect

    Jurković, Slaven; Švabić, Manda; Diklić, Ana; Smilović Radojčić, Đeni; Dundara, Dea; Kasabašić, Mladen; Ivković, Ana; Faj, Dario

    2013-04-01

    Implementation of advanced techniques in clinical practice can greatly improve the outcome of radiation therapy, but it also makes the process much more complex with a lot of room for errors. An important part of the quality assurance program is verification of treatment planning system (TPS). Dosimetric verifications in anthropomorphic phantom were performed in 4 centers where new systems were installed. A total of 14 tests for 2 photon energies and multigrid superposition algorithms were conducted using the CMS XiO TPS. Evaluation criteria as specified in the International Atomic Energy Agency Technical Reports Series (IAEA TRS) 430 were employed. Results of measurements are grouped according to the placement of the measuring point and the beam energy. The majority of differences between calculated and measured doses in the water-equivalent part of the phantom were in tolerance. Significantly more out-of-tolerance values were observed in “nonwater-equivalent” parts of the phantom, especially for higher-energy photon beams. This survey was done as a part of continuous effort to build up awareness of quality assurance/quality control (QA/QC) importance in the Croatian radiotherapy community. Understanding the limitations of different parts of the various systems used in radiation therapy can systematically improve quality as well.

  6. Retrieval with Clustering in a Case-Based Reasoning System for Radiotherapy Treatment Planning

    NASA Astrophysics Data System (ADS)

    Khussainova, Gulmira; Petrovic, Sanja; Jagannathan, Rupa

    2015-05-01

    Radiotherapy treatment planning aims to deliver a sufficient radiation dose to cancerous tumour cells while sparing healthy organs in the tumour surrounding area. This is a trial and error process highly dependent on the medical staff's experience and knowledge. Case-Based Reasoning (CBR) is an artificial intelligence tool that uses past experiences to solve new problems. A CBR system has been developed to facilitate radiotherapy treatment planning for brain cancer. Given a new patient case the existing CBR system retrieves a similar case from an archive of successfully treated patient cases with the suggested treatment plan. The next step requires adaptation of the retrieved treatment plan to meet the specific demands of the new case. The CBR system was tested by medical physicists for the new patient cases. It was discovered that some of the retrieved cases were not suitable and could not be adapted for the new cases. This motivated us to revise the retrieval mechanism of the existing CBR system by adding a clustering stage that clusters cases based on their tumour positions. A number of well-known clustering methods were investigated and employed in the retrieval mechanism. Results using real world brain cancer patient cases have shown that the success rate of the new CBR retrieval is higher than that of the original system.

  7. An integrated Monte Carlo dosimetric verification system for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Mizowaki, T.; Miyabe, Y.; Takegawa, H.; Narita, Y.; Yano, S.; Nagata, Y.; Teshima, T.; Hiraoka, M.

    2007-04-01

    An integrated Monte Carlo (MC) dose calculation system, MCRTV (Monte Carlo for radiotherapy treatment plan verification), has been developed for clinical treatment plan verification, especially for routine quality assurance (QA) of intensity-modulated radiotherapy (IMRT) plans. The MCRTV system consists of the EGS4/PRESTA MC codes originally written for particle transport through the accelerator, the multileaf collimator (MLC), and the patient/phantom, which run on a 28-CPU Linux cluster, and the associated software developed for the clinical implementation. MCRTV has an interface with a commercial treatment planning system (TPS) (Eclipse, Varian Medical Systems, Palo Alto, CA, USA) and reads the information needed for MC computation transferred in DICOM-RT format. The key features of MCRTV have been presented in detail in this paper. The phase-space data of our 15 MV photon beam from a Varian Clinac 2300C/D have been developed and several benchmarks have been performed under homogeneous and several inhomogeneous conditions (including water, aluminium, lung and bone media). The MC results agreed with the ionization chamber measurements to within 1% and 2% for homogeneous and inhomogeneous conditions, respectively. The MC calculation for a clinical prostate IMRT treatment plan validated the implementation of the beams and the patient/phantom configuration in MCRTV.

  8. Low-Dose-Rate Californium-252 Neutron Intracavitary Afterloading Radiotherapy Combined With Conformal Radiotherapy for Treatment of Cervical Cancer

    SciTech Connect

    Zhang Min; Xu Hongde; Pan Songdan; Lin Shan; Yue Jianhua; Liu Jianren

    2012-07-01

    Purpose: To study the efficacy of low-dose-rate californium-252 ({sup 252}Cf) neutron intracavitary afterloading radiotherapy (RT) combined with external pelvic RT for treatment of cervical cancer. Methods and Materials: The records of 96 patients treated for cervical cancer from 2006 to 2010 were retrospectively reviewed. For patients with tumors {<=}4 cm in diameter, external beam radiation was performed (1.8 Gy/day, five times/week) until the dose reached 20 Gy, and then {sup 252}Cf neutron intracavitary afterloading RT (once/week) was begun, and the frequency of external beam radiation was changed to four times/week. For patients with tumors >4 cm, {sup 252}Cf RT was performed one to two times before whole-pelvis external beam radiation. The tumor-eliminating dose was determined by using the depth limit of 5 mm below the mucosa as the reference point. In all patients, the total dose of the external beam radiation ranged from 46.8 to 50 Gy. For {sup 252}Cf RT, the dose delivered to point A was 6 Gy/fraction, once per week, for a total of seven times, and the total dose was 42 Gy. Results: The mean {+-} SD patient age was 54.7 {+-} 13.7 years. Six patients had disease assessed at stage IB, 13 patients had stage IIA, 49 patients had stage IIB, 3 patients had stage IIIA, 24 patients had stage IIIB, and 1 patient had stage IVA. All patients obtained complete tumor regression (CR). The mean {+-} SD time to CR was 23.5 {+-} 3.4 days. Vaginal bleeding was fully controlled in 80 patients within 1 to 8 days. The mean {+-} SD follow-up period was 27.6 {+-} 12.7 months (range, 6-48 months). Five patients died due to recurrence or metastasis. The 3-year survival and disease-free recurrence rates were 89.6% and 87.5 %, respectively. Nine patients experienced mild radiation proctitis, and 4 patients developed radiocystitis. Conclusions: Low-dose-rate {sup 252}Cf neutron RT combined with external pelvic RT is effective for treating cervical cancer, with a low incidence of

  9. The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning

    PubMed Central

    Alobaidli, S; McQuaid, S; South, C; Prakash, V; Evans, P

    2014-01-01

    Predicting a tumour's response to radiotherapy prior to the start of treatment could enhance clinical care management by enabling the personalization of treatment plans based on predicted outcome. In recent years, there has been accumulating evidence relating tumour texture to patient survival and response to treatment. Tumour texture could be measured from medical images that provide a non-invasive method of capturing intratumoural heterogeneity and hence could potentially enable a prior assessment of a patient's predicted response to treatment. In this article, work presented in the literature regarding texture analysis in radiotherapy in relation to survival and outcome is discussed. Challenges facing integrating texture analysis in radiotherapy planning are highlighted and recommendations for future directions in research are suggested. PMID:25051978

  10. Intrathecal Methotrexate and Craniospinal Radiotherapy Can Be an Effective Treatment of Carcinomatous Meningitis in Patients with Breast Cancer: Case Reports

    PubMed Central

    Meissner, Magdalena; Addeo, Alfredo

    2016-01-01

    Introduction Carcinomatous meningitis in breast cancer occurs as a complication in up to 5% of all cases. It is a very devastating diagnosis, with a median patient survival of about 3 months. Treatment is very controversial, and different modalities of treatment have been used but none of them show significant benefit for overall survival. Case Reports We report 2 cases of carcinomatous meningitis in breast cancer patients. They received a similar treatment of a combination of intrathecal (IT) methotrexate followed by craniospinal radiotherapy. Both patients survived for many years after treatment and are in complete clinical and radiological remission. Conclusion Meningeal metastasis from breast cancer can be very effectively treated with IT and/or systemic chemotherapy followed by craniospinal radiotherapy. Further studies are needed to determine the effectiveness of this sequential combination of chemotherapy with radiotherapy. PMID:27920689

  11. Treatment outcomes after adjuvant radiotherapy following surgery for patients with stage I endometrial cancer

    PubMed Central

    Kim, Jiyoung; Lee, Kyung-Ja; Park, Kyung-Ran; Ha, Boram; Kim, Yi-Jun; Jung, Wonguen; Lee, Rena; Kim, Seung Cheol; Moon, Hye Sung; Ju, Woong; Kim, Yun Hwan; Lee, Jihae

    2016-01-01

    Purpose The purpose of this study is to evaluate the treatment outcomes of adjuvant radiotherapy using vaginal brachytherapy (VB) with a lower dose per fraction and/or external beam radiotherapy (EBRT) following surgery for patients with stage I endometrial carcinoma. Materials and Methods The subjects were 43 patients with the International Federation of Gynecology and Obstetrics (FIGO) stage I endometrial cancer who underwent adjuvant radiotherapy following surgery between March 2000 and April 2014. Of these, 25 received postoperative VB alone, while 18 received postoperative EBRT to the whole pelvis; 3 of these were treated with EBRT plus VB. The median EBRT dose was 50.0 Gy (45.0–50.4 Gy) and the VB dose was 24 Gy in 6 fractions. Tumor dose was prescribed at a depth of 5 mm from the cylinder surface and delivered twice per week. Results The median follow-up period for all patients was 57 months (range, 9 to 188 months). Five-year disease-free survival (DFS) and overall survival (OS) for all patients were 92.5% and 95.3%, respectively. Adjuvant radiotherapy was performed according to risk factors and stage IB, grade 3 and lymphovascular invasion were observed more frequently in the EBRT group. Five-year DFS for EBRT and VB alone were 88.1% and 96.0%, respectively (p = 0.42), and 5-year OS for EBRT and VB alone were 94.4% and 96%, respectively (p = 0.38). There was no locoregional recurrence in any patient. Two patients who received EBRT and 1 patient who received VB alone developed distant metastatic disease. Two patients who received EBRT had severe complications, one each of grade 3 gastrointestinal complication and pelvic bone insufficiency fracture. Conclusion Adjuvant radiotherapy achieved high DFS and OS with acceptable toxicity in stage I endometrial cancer. VB (with a lower dose per fraction) may be a viable option for selected patients with early-stage endometrial cancer following surgery. PMID:27703126

  12. Comparison of selected dose calculation algorithms in radiotherapy treatment planning for tissues with inhomogeneities

    NASA Astrophysics Data System (ADS)

    Woon, Y. L.; Heng, S. P.; Wong, J. H. D.; Ung, N. M.

    2016-03-01

    Inhomogeneity correction is recommended for accurate dose calculation in radiotherapy treatment planning since human body are highly inhomogeneous with the presence of bones and air cavities. However, each dose calculation algorithm has its own limitations. This study is to assess the accuracy of five algorithms that are currently implemented for treatment planning, including pencil beam convolution (PBC), superposition (SP), anisotropic analytical algorithm (AAA), Monte Carlo (MC) and Acuros XB (AXB). The calculated dose was compared with the measured dose using radiochromic film (Gafchromic EBT2) in inhomogeneous phantoms. In addition, the dosimetric impact of different algorithms on intensity modulated radiotherapy (IMRT) was studied for head and neck region. MC had the best agreement with the measured percentage depth dose (PDD) within the inhomogeneous region. This was followed by AXB, AAA, SP and PBC. For IMRT planning, MC algorithm is recommended for treatment planning in preference to PBC and SP. The MC and AXB algorithms were found to have better accuracy in terms of inhomogeneity correction and should be used for tumour volume within the proximity of inhomogeneous structures.

  13. Fractionated Stereotactic Radiotherapy in the Treatment of Vestibular Schwannoma (Acoustic Neuroma): Predicting the Risk of Hydrocephalus;Vestibular schwannoma; Hydrocephalus; Fractionated; Stereotactic radiotherapy

    SciTech Connect

    Powell, Ceri; Micallef, Caroline; Gonsalves, Adam; Wharram, Bev; Ashley, Sue; Brada, Michael

    2011-07-15

    Purpose: To determine the incidence and predictive factors for the development of hydrocephalus in patients with acoustic neuromas (AN) treated with fractionated stereotactic radiotherapy. Patients and Methods: Seventy-two patients with AN were treated with fractionated stereotactic radiotherapy between 1998 and 2007 (45-50 Gy in 25-30 fractions over 5 to 6 weeks). The pretreatment MRI scan was assessed for tumor characteristics and anatomic distortion independently of subsequent outcome and correlated with the risk of hydrocephalus. Results: At a median follow-up of 49 months (range, 1-120 months), 5-year event-free survival was 95%. Eight patients (11%) developed hydrocephalus within 19 months of radiotherapy, which was successfully treated. On univariate analysis, pretreatment factors predictive of hydrocephalus were maximum diameter (p = 0.005), proximity to midline (p = 0.009), displacement of the fourth ventricle (p = 0.02), partial effacement of the fourth ventricle (p < 0.001), contact with the medulla (p = 0.005), and more brainstem structures (p = 0.004). On multivariate analysis, after adjusting for fourth ventricular effacement, no other variables remained independently associated with hydrocephalus formation. Conclusions: Fractionated stereotactic radiotherapy results in excellent tumor control of AN, albeit with a risk of developing hydrocephalus. Patients at high risk, identified as those with larger tumors with partial effacement of the fourth ventricle before treatment, should be monitored more closely during follow-up. It would also be preferable to offer treatment to patients with progressive AN while the risk of hydrocephalus is low, before the development of marked distortion of fourth ventricle before tumor diameter significantly exceeds 2 cm.

  14. Stereotactic Fractionated Radiotherapy in the Treatment of Juxtapapillary Choroidal Melanoma: The McGill University Experience

    SciTech Connect

    Al-Wassia, Rolina; Dal Pra, Alan; Shun, Kitty; Shaban, Ahmed; Corriveau, Christine; Edelstein, Chaim; Deschenes, Jean; Ruo, Russel; Patrocinio, Horacio; Cury, Fabio L.B.; DeBlois, Francois; Shenouda, George

    2011-11-15

    Purpose: To report our experience with linear accelerator-based stereotactic fractionated radiotherapy in the treatment of juxtapapillary choroidal melanoma. Methods and Materials: We performed a retrospective review of 50 consecutive patients diagnosed with juxtapapillary choroidal melanoma and treated with linear accelerator-based stereotactic fractionated radiotherapy between April 2003 and December 2009. Patients with small to medium sized lesions (Collaborative Ocular Melanoma Study classification) located within 2 mm of the optic disc were included. The prescribed radiation dose was 60 Gy in 10 fractions. The primary endpoints included local control, enucleation-free survival, and complication rates. Results: The median follow-up was 29 months (range, 1-77 months). There were 31 males and 29 females, with a median age of 69 years (range, 30-92 years). Eighty-four percent of the patients had medium sized lesions, and 16% of patients had small sized lesions. There were four cases of local progression (8%) and three enucleations (6%). Actuarial local control rates at 2 and 5 years were 93% and 86%, respectively. Actuarial enucleation-free survival rates at 2 and 5 years were 94% and 84%, respectively. Actuarial complication rates at 2 and 5 years were 33% and 88%, respectively, for radiation-induced retinopathy; 9.3% and 46.9%, respectively, for dry eye; 12% and 53%, respectively, for cataract; 30% and 90%, respectively, for visual loss [Snellen acuity (decimal equivalent), <0.1]; 11% and 54%, respectively, for optic neuropathy; and 18% and 38%, respectively, for neovascular glaucoma. Conclusions: Linear accelerator-based stereotactic fractionated radiotherapy using 60 Gy in 10 fractions is safe and has an acceptable toxicity profile. It has been shown to be an effective noninvasive treatment for juxtapapillary choroidal melanomas.

  15. Physician Expectations of Treatment Outcomes for Patients With Brain Metastases Referred for Whole Brain Radiotherapy

    SciTech Connect

    Barnes, Elizabeth A.; Chow, Edward; Tsao, May N.; Bradley, Nicole M.; Doyle, Meagan; Li, Kathy; Lam, Kelvin; Danjoux, Cyril

    2010-01-15

    Purpose: Patients with advanced cancer are referred to our Rapid Response Radiotherapy Program for quick access to palliative radiotherapy. The primary objective of this prospective study was to determine the physician expectations of the treatment outcomes for patients with brain metastases referred for whole brain radiotherapy (WBRT). The secondary objectives were to determine the factors influencing the expectations and to examine the accuracy of the physician-estimated patient survival. Methods and Materials: Patients were identified during a 17-month period. The referring physicians were sent a survey by facsimile to be completed and returned before the patient consultation. Information was sought on the patient's disease status, the physician's expectations of WBRT, the estimated patient survival and performance status, and physician demographic data. Results: A total of 137 surveys were sent out, and the overall response rate was 57.7%. The median patient age was 66 years (range, 35-87), 78.5% had multiple brain metastases, 42.3% had a controlled primary tumor, and 62.3% had extracranial disease. WBRT was thought to stabilize neurologic symptoms, improve quality of life, and allow for a Decadron (dexamethasone) taper by >=94.9% of the referring physicians; 87.0% thought WBRT would improve performance status; 77.9% thought it would improve neurologic symptoms; and 40.8% thought it would improve survival. The referring physicians estimated patient survival as a median of 6.0 months; however, the actual survival was a median of 2.5 months, for a median individual difference of 1.9 months (p < .0001). Conclusion: Physicians referring patients with brain metastases for consideration of WBRT are often overly optimistic when estimating the clinical benefit of the treatment and overestimate patient survival. These findings highlight the need for education and additional research in this field.

  16. Radiation-induced temporo-mandibular joint disorder in post-radiotherapy nasopharyngeal carcinoma patients: assessment and treatment.

    PubMed

    Wu, Vincent W C; Lam, Ying-Na

    2016-06-01

    Nasopharyngeal carcinoma (NPC) is endemic in southern China, and its incidence in Hong Kong is relatively high. Radiotherapy is the mainstay treatment for NPC due to its relatively high radiosensitivity and deep-seated anatomical position, which is not readily accessible by surgery. Although the technique of radiotherapy in NPC has been advancing and offers promising treatment outcome, complications around the irradiation areas are inevitable and the quality of life of the post-radiotherapy patients is often compromised. Trismus, which is defined as the restricted mouth opening or jaw movement due to the disorder of temporo-mandibular joint (TMJ), is one of the possible late complications for radiotherapy of NPC and is found in 5-17% of the post-radiotherapy (post-RT) patients. Trismus at early stage may only affect the speech, but in severe cases nutritional intake and oral hygiene condition may deteriorate seriously. This article reviewed the possible causes of radiation-induced TMJ damage, the various assessments including imaging modalities and possible treatments. The conclusion is that the availability of simple, yet effective examinations for trismus is essential for delaying the progression and restoring TMJ functions. Although there is no absolutely effective treatment for trismus, many supportive, restorative and palliative management are possible under different clinical situations.

  17. Radiotherapy and Hyperthermia for Treatment of Primary Locally Advanced Cervix Cancer: Results in 378 Patients

    SciTech Connect

    Franckena, Martine Lutgens, Ludy C.; Koper, Peter C.; Kleynen, Catharina E.; Steen-Banasik, Elsbieta M. van der; Jobsen, Jan J.; Leer, Jan Willem; Creutzberg, Carien L.; Dielwart, Michel F.; Norden, Yvette van; Canters, Richard A.M.; Rhoon, Gerard C. van; Zee, Jacoba van der

    2009-01-01

    Purpose: To report response rate, pelvic tumor control, survival, and late toxicity after treatment with combined radiotherapy and hyperthermia (RHT) for patients with locally advanced cervical carcinoma (LACC) and compare the results with other published series. Methods and Materials: From 1996 to 2005, a total of 378 patients with LACC (International Federation of Gynecology and Obstetrics Stage IB2-IVA) were treated with RHT. External beam radiotherapy (RT) was applied to 46-50.4 Gy and combined with brachytherapy. The hyperthermia (HT) was prescribed once weekly. Primary end points were complete response (CR) and local control. Secondary end points were overall survival, disease-specific survival, and late toxicity. Patient, tumor, and treatment characteristics predictive for the end points were identified in univariate and multivariate analyses. Results: Overall, a CR was achieved in 77% of patients. At 5 years, local control, disease-specific survival, and incidence of late toxicity Common Terminology Criteria for Adverse Events Grade 3 or higher were 53%, 47%, and 12%, respectively. In multivariate analysis, number of HT treatments emerged as a predictor of outcome in addition to commonly identified prognostic factors. Conclusions: The CR, local control, and survival rates are similar to previously observed results of RHT in the randomized Dutch Deep Hyperthermia Trial. Reported treatment results for currently applied combined treatment modalities (i.e., RT with chemotherapy and/or HT) do not permit definite conclusions about which combination is superior. The present results confirm previously shown beneficial effects from adding HT to RT and justify the application of RHT as first-line treatment in patients with LACC as an alternative to chemoradiation.

  18. Movie making as a cognitive distraction for paediatric patients receiving radiotherapy treatment: qualitative interview study

    PubMed Central

    Shrimpton, Bradley J M; Willis, David J; Tongs, Cáthal D; Rolfo, Aldo G

    2013-01-01

    Objectives To establish the outcomes achieved by using an innovative movie-making programme designed to reduce fear of radiotherapy among paediatric patients. Design Qualitative descriptive evaluation based on semistructured, qualitative interviews with purposeful sampling and thematic analysis. Setting Tertiary Cancer Centre. Participants 20 parents of paediatric patients who had produced a movie of their radiation therapy experience and were in a follow-up phase of cancer management. Results Participants attributed a broad range of outcomes to the movie-making program. These included that the programme had helped reduce anxiety and distress exhibited by paediatric patients and contributed to a willingness to receive treatment. Other outcomes were that the completed movies had been used in school reintegration and for maintaining social connections. Conclusions Allowing children to create a video of their experience of radiotherapy provided a range of benefits to paediatric patients that varied according to their needs. For some patients, movie-making offered a valuable medium for overcoming fear of the unknown as well as increasing understanding of treatment processes. For others, the development of a personalised video offered an important cognitive/attentional distraction through engaging with an age-appropriate activity. Together these outcomes helped children maintain self-control and a positive outlook. PMID:23328308

  19. Involved field radiotherapy for limited stage Hodgkin lymphoma: balancing treatment efficacy against long-term toxicities.

    PubMed

    Goda, Jayant S; Tsang, Richard W

    2009-09-01

    Limited stage Hodgkin lymphoma (HL) refers to patients with stage IA or IIA disease in the absence of any bulky mass or unfavourable prognostic factors. In this group, the long-term disease control with treatment can be expected in more than 90%, and management has now been directed to make strategies to reduce late morbidities related to therapy. With the advent of very effective chemotherapy, the role of radiation therapy has evolved from a first line single modality treatment, to an adjuvant therapy following brief cycles of chemotherapy. Optimal radiation volume and dose parameters have been refined in the combined modality setting. Furthermore, with the progress in diagnostic functional imaging and advances in radiotherapy, it is possible to accurately deliver low to moderate doses of radiation to defined regions resulting in durable control of disease. This review will evaluate the literature that shapes the current standard of care in limited stage Hodgkin lymphoma with special emphasis on the use of limited field radiotherapy.

  20. Analysis of electromagnetic transponders tracking data to quantify intrafraction prostate motion during radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Carrara, M.; Giandini, T.; Bonfantini, F.; Avuzzi, B.; Villa, S.; Bedini, N.; Morlino, S.; Carabelli, G.; Frasca, S.; Valdagni, R.; Pignoli, E.

    2017-02-01

    The Calypso tracking system (Varian, Palo Alto, CA, USA) is used to track the prostate isocenter on patients undergoing prostate radiotherapy after implantation of electromagnetic transponders. Aim of this study was to assign 226 recorded prostate tracks to different patterns of prostate intrafraction motion (i.e. stable target (ST), continuous target drift (CTD) and irregular wave motion (IWM)) and excursion (i.e. transient excursion (TE), persistent excursion (PE) and high-frequency excursion (HFE)). Relative frequencies of STs, CTDs and IWMs were 51.8%, 44.6% and 3.6%, respectively. TEs, PEs and HFEs were revealed in 9.4%, 5.4% and 14.3% cases, respectively, with maximum values of 8.0 mm, 8.7 mm and 15.5 mm, respectively. The equation D(t) = 8.0*10-3 mm/s * t + 0.93 mm was established to calculate the average prostate drift D with time t. Intrafraction prostate motion and excursions can be significant and should be in particular taken into account with treatment deliveries that require a prolonged treatment time, as for instance stereotactic body radiotherapy (SBRT) or hadrontherapy.

  1. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning

    SciTech Connect

    El Naqa, Issam; Yang Deshan; Apte, Aditya; Khullar, Divya; Mutic, Sasa; Zheng Jie; Bradley, Jeffrey D.; Grigsby, Perry; Deasy, Joseph O.

    2007-12-15

    Multimodality imaging information is regularly used now in radiotherapy treatment planning for cancer patients. The authors are investigating methods to take advantage of all the imaging information available for joint target registration and segmentation, including multimodality images or multiple image sets from the same modality. In particular, the authors have developed variational methods based on multivalued level set deformable models for simultaneous 2D or 3D segmentation of multimodality images consisting of combinations of coregistered PET, CT, or MR data sets. The combined information is integrated to define the overall biophysical structure volume. The authors demonstrate the methods on three patient data sets, including a nonsmall cell lung cancer case with PET/CT, a cervix cancer case with PET/CT, and a prostate patient case with CT and MRI. CT, PET, and MR phantom data were also used for quantitative validation of the proposed multimodality segmentation approach. The corresponding Dice similarity coefficient (DSC) was 0.90{+-}0.02 (p<0.0001) with an estimated target volume error of 1.28{+-}1.23% volume. Preliminary results indicate that concurrent multimodality segmentation methods can provide a feasible and accurate framework for combining imaging data from different modalities and are potentially useful tools for the delineation of biophysical structure volumes in radiotherapy treatment planning.

  2. RTtxGap: An android radiobiological tool for compensation of radiotherapy treatment interruption

    NASA Astrophysics Data System (ADS)

    Yusoff, A. L.; Mohamad, M.; Abdullah, R.; Bhavaraju, V. M. K.; Nik Idris, N. R.

    2016-03-01

    Treatment interruption is not uncommon in radiotherapy. Common reasons for treatment interruption include machine breakdown, holidays and patient severe radiation reactions. Here RTtxGap, an Android application to assist calculations of compensation for treatment gap, is reported. It uses linear quadratic (LQ) model to calculate the biological effective dose (BED) that is used to solve for treatment gap compensations. Solutions are calculated using BED equation, with consideration for tissue proliferation. The accuracy of results has been verified using LQL Equiv software to be accurate within 1%. Five treatment interruption examples were used to illustrate the capability of the software to calculate the treatment compensation schedules. Solving these examples also illustrates the general consensus regarding compensating for unscheduled treatment interruptions, which ultimately involves balancing the BEDs of tumour and organ at risk. In addition to compensation for treatment gap, RTtxGap can also be used to calculate equivalent total dose in 2-Gy fraction (EQD2), to modify treatment schedule and to calculate alternative dose prescriptions having the same isoeffect.

  3. Glioblastoma Treatment: Bypassing the Toxicity of Platinum Compounds by Using Liposomal Formulation and Increasing Treatment Efficiency With Concomitant Radiotherapy

    SciTech Connect

    Charest, Gabriel; Sanche, Leon; Fortin, David; Mathieu, David; Paquette, Benoit

    2012-09-01

    Purpose: Treatments of glioblastoma with cisplatin or oxaliplatin only marginally improve the overall survival of patients and cause important side effects. To prevent adverse effects, improve delivery, and optimize the tumor response to treatment in combination with radiotherapy, a potential approach consists of incorporating the platinum agent in a liposome. Methods and Materials: In this study, cisplatin, oxaliplatin, carboplatin, Lipoplatin (the liposomal formulation of cisplatin), and Lipoxal (the liposomal formulation of oxaliplatin) were tested on F98 glioma orthotopically implanted in Fischer rats. The platinum compounds were administered by intracarotid infusion and were assessed for the ability to reduce toxicity, improve cancer cell uptake, and increase survival of animals when combined or not combined with radiotherapy. Results: The tumor uptake was 2.4-fold more important for Lipoxal than the liposome-free oxaliplatin. Lipoxal also improved the specificity of oxaliplatin as shown by a higher ratio of tumor to right hemisphere uptake. Surprisingly, Lipoplatin led to lower tumor uptake compared with cisplatin. However, Lipoplatin had the advantage of largely reducing the toxicity of cisplatin and allowed us to capitalize on the anticancer activity of this agent. Conclusion: Among the five platinum compounds tested, carboplatin showed the best increase in survival when combined with radiation for treatment of glioma implanted in Fischer rats.

  4. Glioblastoma Treatment: Bypassing the Toxicity of Platinum Compounds by Using Liposomal Formulation and Increasing Treatment Efficiency With Concomitant Radiotherapy

    PubMed Central

    Charest, Gabriel; Sanche, Léon; Fortin, David; Mathieu, David; Paquette, Benoit

    2013-01-01

    PURPOSE Treatments of glioblastoma (GBM) with cisplatin or oxaliplatin only marginally improve the overall survival of patients and cause important side effects. To prevent adverse effects, improve delivery and optimize the tumor response to treatment in combination with radiotherapy, a potential approach consists in incorporating the platinum agent in a liposome. METHODS AND MATERIALS In this study, cisplatin, oxaliplatin, carboplatin, Lipoplatin™ and Lipoxal™, the liposomal formulations of cisplatin and oxaliplatin respectively, were tested on F98 glioma orthotopically implanted in Fischer rats. The platinum compounds were administered by intracarotid infusion and were assessed for the ability to reduce toxicity, improve cancer cell uptake and increase survival of animals when combined or not with radiotherapy. RESULTS The tumor uptake was 2.4-fold more important for Lipoxal™ than the liposome-free oxaliplatin. Lipoxal™ also improved the specificity of oxaliplatin as shown by a higher ratio of tumor/right hemisphere uptake. Surprisingly, Lipoplatin™ led to lower tumor uptake compare to cisplatin. However, Lipoplatin™ had the advantage of largely reducing the toxicity of cisplatin and allowed to capitalize on the anti-cancer activity of this agent. CONCLUSION Among the five platinum compounds tested, carboplatin showed the best increase in survival when combined with radiation for treatment of glioma implanted in Fischer rats. PMID:22284691

  5. Treatment of equine cutaneous neoplasia by radiotherapy using iridium 192 linear sources.

    PubMed

    Wyn-Jones, G

    1983-10-01

    The treatment of equine cutaneous tumours by conventional or cryosurgical techniques can be limited where the position of the tumour makes radical excision or freezing impractical or dangerous. Radiotherapy provides an effective and practical alternative. The use of iridium pins with guide needles allows accurate positioning of sources and uniform radiation fields to be achieved. The subsequent removal of the pins reduces the period of incapacity and reduces the radiation risk when compared to permanently implanted sources. Twenty-seven tumours on 26 horses were treated by this method with a 100 per cent success rate after a single irradiation. The technique of implantation is described and the criteria used to select cases and to assess the efficacy of this treatment are discussed.

  6. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    NASA Astrophysics Data System (ADS)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and

  7. Ascorbic-acid Treatment for Progressive Bone Metastases After Radiotherapy: A Pilot Study.

    PubMed

    Kiziltan, Huriye Senay; Bayir, Ayse Gunes; Demirtas, Murat; Meral, Ismail; Taspinar, Ozgur; Eris, Ali Hikmet; Aydin, Teoman; Mayadagli, Alparslan

    2014-10-01

    Context • Researchers have reported improved survival rates for patients with cancer when 10-75 g of vitamin C (ascorbic acid, or AA) is administered intravenously. AA exhibits a cytotoxic effect upon entering a cancer cell. Objective • The current study examined the benefits of intravenous administration of AA in treatment of bone metastases. Design • The study was a pilot study. Setting • The study was performed at Bezmialem Vakif University Medical Facility (BVUMF) in the Department of Radiation Oncology, from 2010-2012. Participants • Participants were 11 cancer patients with bone metastases who were unresponsive to standard cancer treatments and who experienced the following issues after receiving a total of 3000 cGy of radiotherapy: (1) intensifying pain, (2) an increase in metastatic sites, and/or (3) a deterioration in general health. Intervention • The 11 patients received 2.5 g of AA in a physiological saline solution, within 1 h period with 3-10 applications following at 1-wk intervals. Outcome Measures • The ECOG Performance Scale and Visual Analog Scale were used to assess performance and pain. Results • Among the participants administered AA, the mean reduction in pain was 55%, and the median survival time was 10 mo. Participants experienced a 40% grade-I gastrointestinal toxicity and a 30% urinary toxicity. Conclusions • Given the study's results, the current research team found considerable encouragement in the use of AA after radiotherapy for treatment of patients with bone metastases. Toxicity was in the acceptable range for AA treatment.

  8. Feasibility of using glass-bead thermoluminescent dosimeters for radiotherapy treatment plan verification

    PubMed Central

    Jordan, Tom J; Distefano, Gail; Bradley, David A; Spyrou, Nicholas M; Nisbet, Andrew; Clark, Catharine H

    2015-01-01

    Objective: To investigate the feasibility of using glass beads as novel thermoluminescent dosemeters (TLDs) for radiotherapy treatment plan verification. Methods: Commercially available glass beads with a size of 1-mm thickness and 2-mm diameter were characterized as TLDs. Five clinical treatment plans including a conventional larynx, a conformal prostate, an intensity-modulated radiotherapy (IMRT) prostate and two stereotactic body radiation therapy (SBRT) lung plans were transferred onto a CT scan of a water-equivalent phantom (Solid Water®, Gammex, Middleton, WI) and the dose distribution recalculated. The number of monitor units was maintained from the clinical plan and delivered accordingly. The doses determined by the glass beads were compared with those measured by a graphite-walled ionization chamber, and the respective expected doses were determined by the treatment-planning system (TPS) calculation. Results: The mean percentage difference between measured dose with the glass beads and TPS was found to be 0.3%, −0.1%, 0.4%, 1.8% and 1.7% for the conventional larynx, conformal prostate, IMRT prostate and each of the SBRT delivery techniques, respectively. The percentage difference between measured dose with the ionization chamber and glass bead was found to be −1.2%, −1.4%, −0.1%, −0.9% and 2.4% for the above-mentioned plans, respectively. The results of measured doses with the glass beads and ionization chamber in comparison with expected doses from the TPS were analysed using a two-sided paired t-test, and there was no significant difference at p < 0.05. Conclusion: It is feasible to use glass-bead TLDs as dosemeters in a range of clinical plan verifications. Advances in knowledge: Commercial glass beads are utilized as low-cost novel TLDs for treatment-plan verification. PMID:26258442

  9. Radiotherapy for testicular seminoma stage I: treatment results and long-term post-irradiation morbidity in 365 patients

    SciTech Connect

    Fossa, S.D.A.; Aass, N.; Kaalhus, O.

    1989-02-01

    After infradiaphragmatic radiotherapy the cancer-related 10 year survival was 99% in 365 patients with seminoma Stage I referred to the Norwegian Radium Hospital between 1970 and 1982. Thirteen patients relapsed, 11 of them within the first 3 years after treatment. Nine of the recurrent patients were cured by radiotherapy alone (4) or in combination with chemotherapy (5). There is no need to include the inguinal lymph nodes into the irradiation field or to give scrotal irradiation, not even to patients with tumor infiltration beyond the testicular tissue, or to those with prior scrotal or inguinal surgery. At least 1 year after radiotherapy moderate or more severe dyspepsia was observed in 16 patients. Nine patients developed a peptic ulcer. In general, there was no increased risk for development of a second non-germ cell cancer after radiotherapy. However, 4 patients developed a pulmonary cancer indicating a border-line significance of increased risk for this type of malignancy. (p:0.05). In conclusion, infradiaphragmatic radiotherapy remains the optimal routine treatment in seminoma patients with Stage I.

  10. SU-C-17A-01: MRI-Based Radiotherapy Treatment Planning In Pelvis

    SciTech Connect

    Hsu, S; Cao, Y; Jolly, S; Balter, J

    2014-06-15

    Purpose: To support radiotherapy dose calculation, synthetic CT (MRCT) image volumes need to represent the electron density of tissues with sufficient accuracy. This study compares CT and MRCT for pelvic radiotherapy. Methods: CT and multi-contrast MRI acquired using T1- based Dixon, T2 TSE, and PETRA sequences were acquired on an IRBapproved protocol patient. A previously published method was used to create a MRCT image volume by applying fuzzy classification on T1- weighted and calculated water image volumes (air and fluid voxels were excluded using thresholds applied to PETRA and T2-weighted images). The correlation of pelvic bone intensity between CT and MRCT was investigated. Two treatment plans, based on CT and MRCT, were performed to mimic treatment for: (a) pelvic bone metastasis with a 16MV parallel beam arrangement, and (b) gynecological cancer with 6MV volumetric modulated arc therapy (VMAT) using two full arcs. The CT-calculated fluence maps were used to recalculate doses using the MRCT-derived density grid. The dose-volume histograms and dose distributions were compared. Results: Bone intensities in the MRCT volume correlated linearly with CT intensities up to 800 HU (containing 96% of the bone volume), and then decreased with CT intensity increase (4% volume). There was no significant difference in dose distributions between CT- and MRCTbased plans, except for the rectum and bladder, for which the V45 differed by 15% and 9%, respectively. These differences may be attributed to normal and visualized organ movement and volume variations between CT and MR scans. Conclusion: While MRCT had lower bone intensity in highly-dense bone, this did not cause significant dose deviations from CT due to its small percentage of volume. These results indicate that treatment planning using MRCT could generate comparable dose distributions to that using CT, and further demonstrate the feasibility of using MRI-alone to support Radiation Oncology workflow. NIH R01EB016079.

  11. Feasibility Study of Intensity-Modulated Radiotherapy (IMRT) Treatment Planning Using Brain Functional MRI

    SciTech Connect

    Chang Jenghwa Kowalski, Alex; Hou, Bob; Narayana, Ashwatha

    2008-04-01

    The purpose of this work was to study the feasibility of incorporating functional magnetic resonance imaging (fMRI) information for intensity modulated radiotherapy (IMRT) treatment planning of brain tumors. Three glioma patients were retrospectively replanned for radiotherapy (RT) with additional fMRI information. The fMRI of each patient was acquired using a bilateral finger-tapping paradigm with a gradient echo EPI (Echo Planer Imaging) sequence. The fMRI data were processed using the Analysis of Functional Neuroimaging (AFNI) software package for determining activation volumes, and the volumes were fused with the simulation computed tomography (CT) scan. The actived pixels in left and right primary motor cortexes (PMCs) were contoured as critical structures for IMRT planning. The goal of replanning was to minimize the RT dose to the activation volumes in the PMC regions, while maintaining a similar coverage to the planning target volume (PTV) and keeping critical structures within accepted dose tolerance. Dose-volume histograms of the treatment plans with and without considering the fMRI information were compared. Beam angles adjustment or additional beams were needed for 2 cases to meet the planning criteria. Mean dose to the contralateral and ipsilateral PMC was significantly reduced by 66% and 55%, respectively, for 1 patient. For the other 2 patients, mean dose to contralateral PMC region was lowered by 73% and 69%. In general, IMRT optimization can reduce the RT dose to the PMC regions without compromising the PTV coverage or sparing of other critical organs. In conclusion, it is feasible to incorporate the fMRI information into the RT treatment planning. IMRT planning allows a significant reduction in RT dose to the PMC regions, especially if the region does not lie within the PTV.

  12. Radiobiological assessment of non-standard and novel radiotherapy treatments using the linear-quadratic model.

    PubMed

    Dale, R G

    1993-01-01

    The linear-quadratic (LQ) model is useful in the radiobiological assessment of a wide variety of radiotherapy treatment techniques, not being confined to analysis of fractionated treatments alone. The model uses parameters that must be separately specified for tumours and dose-limiting normal tissues, and may therefore be used to help identify treatments that are most likely to maximise tumour cell kill while minimising the risk of severe normal-tissue damage. Additionally, the model is capable of making tentative allowance for the tumour repopulation that can occur during extended treatments. Intercomparisons between different types of treatment are made through the concept of the Extrapolated Response Dose (ERD). The ERD is calculated for each critical tissue and takes account of both the radiobiological parameters and the dose/time pattern of radiation delivery. Known tolerance doses for specified organs may be expressed as an ERDtolerance value, and, if a proposed 'new' treatment is to be successful, its associated ERD value must not exceed ERDtolerance. Examples of this procedure are given in this paper. It is particularly important that medical physicists fully appreciate the scope and limitations of LQ equations, as the analysis of radiobiology problems using the model often requires a degree of mathematical understanding that clinicians may not possess.

  13. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy.

    PubMed

    Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B; Gu, Xuejun

    2015-11-07

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient's unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient's geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.

  14. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy

    NASA Astrophysics Data System (ADS)

    Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B.; Gu, Xuejun

    2015-11-01

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient’s unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient’s geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.

  15. Treatment of Solitary Painful Osseous Metastases with Radiotherapy, Cryoablation or Combined Therapy: Propensity Matching Analysis in 175 Patients

    PubMed Central

    Zugaro, Luigi; Bonfili, Pierluigi; Gregori, Lorenzo; Franzese, Pietro; Marampon, Francesco; Vittorini, Francesca; Moro, Roberto; Tombolini, Vincenzo; Di Cesare, Ernesto; Masciocchi, Carlo

    2015-01-01

    Purpose aim of this study was to identify outcomes in pain relief and quality of life in patients with a solitary painful osseous metastasis treated by radiotherapy, cryoablation or the combination using a propensity score matching study design. Materials and Methods 175 patients with painful bone metastases were included in the study. Twenty-five of them underwent a radiation course (20 Gy in five daily fractions) 15 days after the cryoablation. These subjects were retrospectively matched by propensity analysis with a group of subjects treated by radiotherapy (125 subjects) and with a group treated byCryoablation (25 subjects). The pain relief in terms of complete response, rate of subjects requiring analgesics after treatments and the changes in self-rated quality of life were measured. Informed consent was obtained from the subject and the study was approved by the local Ethical Committee. Results An higher proportion of subjects treated by cryoablation (32%) or cryoablation followed by RT (72%;) experienced a complete response compared with patients treated by radiotherapy alone (11.2%). After Bonferroni correction strategy, the addition of radiotherapy to cryoablation significantly improved the rate of complete response compared with cryoablation alone (p = 0.011) and this paralleled with an improved self-rated quality of life. Seventeen subjects (13.6%) of patients in the radiotherapy group, 9 (36%) in the cryoablation group, and 19 (76)% in the cryoablation- radiotherapy group did not require narcotic medications. Conclusions The addition of radiotherapy to cryoablation favorably impacts on perceived pain, with a favorable toxicity profile. However, our data should be interpreted with caution and could serve as a framework around which to design future trials. PMID:26103516

  16. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    SciTech Connect

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B

    2014-06-01

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup.

  17. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Drying, blending, packaging, and heat treatment rooms and facilities. 590.548 Section 590.548 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG...

  18. LPT. Shield test facility (TAN646) interior. Water treatment room contains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-646) interior. Water treatment room contains water softeners, deionizers, and display panel. Note metal ceiling and walls. Photographer: Jack L. Anderson. Date: February 20, 1959. INEEL negative no. 59-856 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  19. The hidden experience of radiotherapy to the head and neck: a qualitative study of patients after completion of treatment.

    PubMed

    Wells, M

    1998-10-01

    Only a small proportion of cancer patients undergo radical radiotherapy to the head and neck, but their needs are particularly complex. Radiation reactions often exacerbate existing functional difficulties and may severely limit 'normal' life. Few existing studies examine what happens when radiotherapy is over, yet this is the time when reactions are at their peak and day to day links with the hospital are severed. This naturalistic inquiry uses a combination of methods to explore the experiences of 12 patients after completion of radiotherapy to the head and neck. The impact of radiotherapy and the profound disruption to daily life is shown by the uncertainty and unpredictability of symptoms, the waiting, ambiguity and loss of self integrity which occurs throughout this time. Despite considerable physical and emotional trauma, patients showed remarkable resilience and a profound reluctance to ask for help. The findings demand that we re-examine our styles of communication, and consider how well we give information and listen to what is really happening. It is imperative that we provide greater consistency and continuity of care during radiotherapy, recognize the impact of the whole experience and respond to the post-treatment needs of this unique patient group.

  20. A technique using {sup 99m}Tc-mebrofenin SPECT for radiotherapy treatment planning for liver cancers or metastases

    SciTech Connect

    Shen, Sui; Jacob, Rojymon; Bender, Luvenia W.; Duan, Jun; Spencer, Sharon A.

    2014-04-01

    Radiotherapy or stereotactic body radiosurgery (SBRT) requires a sufficient functional liver volume to tolerate the treatment. The current study extended the work of de Graaf et al. (2010) [3] on the use of {sup 99m}Tc-mebrofenin imaging for presurgery planning to radiotherapy planning for liver cancer or metastases. Patient was immobilized and imaged in an identical position on a single-photon emission computed tomography/computed tomography (SPECT-CT) system and a radiotherapy simulation CT system. {sup 99m}Tc-mebrofenin SPECT was registered to the planning CT through image registration of noncontrast CT from SPECT-CT system to the radiotherapy planning CT. The voxels with higher uptake of {sup 99m}Tc-mebrofenin were transferred to the planning CT as an avoidance structure in optimizing a 2-arc RapidArc plan for SBRT delivery. Excellent dose coverage to the target and sparing of the healthy remnant liver volume was achieved. This report illustrated a procedure for the use of {sup 99m}Tc-mebrofenin SPECT for optimizing radiotherapy for liver cancers and metastases.

  1. The role of radiotherapy in the treatment of bile duct carcinoma.

    PubMed

    Veeze-Kuijpers, B; Meerwaldt, J H; Lameris, J S; van Blankenstein, M; van Putten, W L; Terpstra, O T

    1990-01-01

    Forty-two patients with irresectable bile duct carcinoma (n = 31) or with microscopic evidence of tumor rest after aggressive surgery for bile duct carcinoma (n = 11) were given radiotherapy consisting intentionally of external-beam therapy and intraluminal 192Iridium (192Ir) wire application(s) following bile drainage procedures. The treatment was well tolerated; complications were mainly infectious and related to the success of the drainage. A median survival of 10 months was achieved for the group as a whole. Patients treated following microscopically incomplete resection survived longer than patients with an irresectable tumor (15 vs 8 months median survival, p = 0.06). Gross lymph node involvement also proved to be a prognostic factor.

  2. The role of radiotherapy in the treatment of bile duct carcinoma

    SciTech Connect

    Veeze-Kuijpers, B.; Meerwaldt, J.H.; Lameris, J.S.; van Blankenstein, M.; van Putten, W.L.; Terpstra, O.T. )

    1990-01-01

    Forty-two patients with irresectable bile duct carcinoma (n = 31) or with microscopic evidence of tumor rest after aggressive surgery for bile duct carcinoma (n = 11) were given radiotherapy consisting intentionally of external-beam therapy and intraluminal 192Iridium ({sup 192}Ir) wire application(s) following bile drainage procedures. The treatment was well tolerated; complications were mainly infectious and related to the success of the drainage. A median survival of 10 months was achieved for the group as a whole. Patients treated following microscopically incomplete resection survived longer than patients with an irresectable tumor (15 vs 8 months median survival, p = 0.06). Gross lymph node involvement also proved to be a prognostic factor.

  3. Benefit of Carbon Ion Radiotherapy in the Treatment of Radio-resistant Tumors

    SciTech Connect

    Kamada, Tadashi; Tsujii, Hirohiko; Tsuji, Hiroshi; Yanagi, Tsuyoshi; Imai, Reiko; Mizoe, Jun-etsu; Miyamoto, Tadaaki; Kato, Hirotoshi; Yamada, Shigeru; Kato, Shingo; Yoshikawa, Kyousan; Kandatsu, Susumu

    2003-08-26

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Heavy ions have superior depth-dose distribution and greater cell-killing ability. In June 1994, clinical research for the treatment of cancer was begun using carbon ions generated by HIMAC. Until August 2002, a total of 1,297 patients were enrolled in clinical trials. Most of the patients had locally advanced and/or medically inoperable tumors. Tumors radio-resistant and/or located near critical organs were also included. The clinical trials revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in a variety of tumors that were hard to cure by other modalities.

  4. Overview of recent advances in treatment planning for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Krämer, Michael; Scifoni, Emanuele; Schmitz, Frederike; Sokol, Olga; Durante, Marco

    2014-10-01

    To achieve practical calculations of dose delivery in ion beam radiotherapy, the physical models of beam propagation need to be properly implemented and supplemented by models describing the complex mechanisms of radiation damage in the biological tissues. TRiP98 is the first and most advanced treatment planning system for particles, in which physical and biological models have been incorporated to develop a clinically applicable tool for dose optimization and delivery. We report our recent advances in TRiP98 code development, in particular towards hypoxia-driven and multi-modal dose optimization. We also discuss the present needs and possible extensions of our models for which input from nanoscale physics is required. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  5. Speedup of lexicographic optimization by superiorization and its applications to cancer radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Bonacker, Esther; Gibali, Aviv; Küfer, Karl-Heinz; Süss, Philipp

    2017-04-01

    Multicriteria optimization problems occur in many real life applications, for example in cancer radiotherapy treatment and in particular in intensity modulated radiation therapy (IMRT). In this work we focus on optimization problems with multiple objectives that are ranked according to their importance. We solve these problems numerically by combining lexicographic optimization with our recently proposed level set scheme, which yields a sequence of auxiliary convex feasibility problems; solved here via projection methods. The projection enables us to combine the newly introduced superiorization methodology with multicriteria optimization methods to speed up computation while guaranteeing convergence of the optimization. We demonstrate our scheme with a simple 2D academic example (used in the literature) and also present results from calculations on four real head neck cases in IMRT (Radiation Oncology of the Ludwig-Maximilians University, Munich, Germany) for two different choices of superiorization parameter sets suited to yield fast convergence for each case individually or robust behavior for all four cases.

  6. Quality assurance of radiotherapy in cancer treatment: toward improvement of patient safety and quality of care.

    PubMed

    Ishikura, Satoshi

    2008-11-01

    The process of radiotherapy (RT) is complex and involves understanding of the principles of medical physics, radiobiology, radiation safety, dosimetry, radiation treatment planning, simulation and interaction of radiation with other treatment modalities. Each step in the integrated process of RT needs quality control and quality assurance (QA) to prevent errors and to give high confidence that patients will receive the prescribed treatment correctly. Recent advances in RT, including intensity-modulated and image-guided RT, focus on the need for a systematic RTQA program that balances patient safety and quality with available resources. It is necessary to develop more formal error mitigation and process analysis methods, such as failure mode and effect analysis, to focus available QA resources optimally on process components. External audit programs are also effective. The International Atomic Energy Agency has operated both an on-site and off-site postal dosimetry audit to improve practice and to assure the dose from RT equipment. Several countries have adopted a similar approach for national clinical auditing. In addition, clinical trial QA has a significant role in enhancing the quality of care. The Advanced Technology Consortium has pioneered the development of an infrastructure and QA method for advanced technology clinical trials, including credentialing and individual case review. These activities have an impact not only on the treatment received by patients enrolled in clinical trials, but also on the quality of treatment administered to all patients treated in each institution, and have been adopted globally; by the USA, Europe and Japan also.

  7. Routine EPID in-vivo dosimetry in a reference point for conformal radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Fidanzio, Andrea; Azario, Luigi; Greco, Francesca; Cilla, Savino; Piermattei, Angelo

    2015-04-01

    In-vivo dosimetry (IVD) in external beam radiotherapy is used to detect major clinically relevant differences between planned and delivered dose. Moreover, a detailed analysis of its results, when routinely reported and discussed by the radiotherapy staff, can limit the likelihood of error transmission to many treatments. A first experience of routine EPID-based IVD in a reference point has been performed in our department for 3D-CRT treatments over a three-year period. More than 14 000 images were acquired and 1287 treatment plans were verified. The IVD checks were obtained three times in the first week and then weekly. Tolerance levels of ±5% for pelvic-abdomen, head-neck and breast irradiations and ±6% for lung treatments were adopted for the in-vivo measured dose per fraction. A statistical analysis of the IVD results was performed grouping the data by: anatomical regions, treatment units, open and wedged fields and gantry angles. About 10% of the checked doses per fraction showed dosimetric discrepancies out of the tolerance levels. The causes of the discrepancies were 70% delivery or planning errors, 20% morphological changes and 10% procedural limitations. 41 cases (3.2%) have required special investigations because their in-vivo doses per fraction, averaged over the first three sessions, were out of the tolerance levels and in 19 cases (1.5%) the deviations gave rise to an intervention. Statistically significant differences of average variations between planned and delivered doses were observed for: (i) 30° wedged 10 MV fields with respect to those of other wedged or open 10 MV fields delivered by two linacs, due to the incorrect TPS implementation of that wedge transmission factor; (ii) anterior-posterior and posterior-anterior beams with respect to the other gantry orientations for one linac, due to the beam attenuation introduced by the treatment couch; (iii) lateral fields with respect to medial fields of breast irradiations for all linacs, due

  8. Routine EPID in-vivo dosimetry in a reference point for conformal radiotherapy treatments.

    PubMed

    Fidanzio, Andrea; Azario, Luigi; Greco, Francesca; Cilla, Savino; Piermattei, Angelo

    2015-04-21

    In-vivo dosimetry (IVD) in external beam radiotherapy is used to detect major clinically relevant differences between planned and delivered dose. Moreover, a detailed analysis of its results, when routinely reported and discussed by the radiotherapy staff, can limit the likelihood of error transmission to many treatments. A first experience of routine EPID-based IVD in a reference point has been performed in our department for 3D-CRT treatments over a three-year period. More than 14,000 images were acquired and 1287 treatment plans were verified. The IVD checks were obtained three times in the first week and then weekly. Tolerance levels of ± 5% for pelvic-abdomen, head-neck and breast irradiations and ± 6% for lung treatments were adopted for the in-vivo measured dose per fraction. A statistical analysis of the IVD results was performed grouping the data by: anatomical regions, treatment units, open and wedged fields and gantry angles. About 10% of the checked doses per fraction showed dosimetric discrepancies out of the tolerance levels. The causes of the discrepancies were 70% delivery or planning errors, 20% morphological changes and 10% procedural limitations. 41 cases (3.2%) have required special investigations because their in-vivo doses per fraction, averaged over the first three sessions, were out of the tolerance levels and in 19 cases (1.5%) the deviations gave rise to an intervention. Statistically significant differences of average variations between planned and delivered doses were observed for: (i) 30° wedged 10 MV fields with respect to those of other wedged or open 10 MV fields delivered by two linacs, due to the incorrect TPS implementation of that wedge transmission factor; (ii) anterior-posterior and posterior-anterior beams with respect to the other gantry orientations for one linac, due to the beam attenuation introduced by the treatment couch; (iii) lateral fields with respect to medial fields of breast irradiations for all linacs, due to

  9. Malignant obstructive jaundice: treatment with external-beam and intracavitary radiotherapy.

    PubMed

    Johnson, D W; Safai, C; Goffinet, D R

    1985-02-01

    Eleven patients with obstructive jaundice from unresectable cholangiocarcinoma, metastatic porta hepatis adenopathy, or direct compression from a pancreatic malignancy were treated at the Stanford University Medical Center from 1978-1983 with an external drainage procedure followed by high-dose external-beam radiotherapy and by an intracavitary boost to the site of obstruction with Iridium192 (Ir192). A median dose of 5000 cGy was delivered with 4-6 Mv photons to the tumor bed and regional lymphatics in 9 patients, 1 patient received 2100 cGy to the liver in accelerated fractions because of extensive intrahepatic disease, and 1 patient received 7000 "equivalent" cGy to his pancreatic tumor bed and regional lymphatics with neon heavy particles. An Ir192 wire source later delivered a 3100-10,647 cGy boost to the site of biliary obstruction in each patient, for a mean combined dose of 10,202 cGy to a point 5 mm from the line source. Few acute complications were noted, but 3/11 patients (27%) subsequently developed upper gastrointestinal bleeding from duodenitis or frank duodenal ulceration 4 weeks, 4 months, and 7.5 months following treatment. Eight patients died--5 with local recurrence +/- distant metastasis, 2 with sepsis, and 1 with widespread systemic metastasis. Autopsies revealed no evidence of biliary tree obstruction in 3/3 patients. Mean survival time from initial laparotomy and bypass was 16.1 months, and from radiotherapy completion was 8.3 months. Evolution of radiation treatment techniques for biliary obstruction in the literature is reviewed. High-dose external-beam therapy followed by high-dose Ir192 intracavitary boost is well tolerated and provides significant palliation. Survival of these aggressively managed patients approaches that of patients with primarily resectable tumors.

  10. Optimized PET imaging for 4D treatment planning in radiotherapy: the virtual 4D PET strategy.

    PubMed

    Gianoli, Chiara; Riboldi, Marco; Fontana, Giulia; Giri, Maria G; Grigolato, Daniela; Ferdeghini, Marco; Cavedon, Carlo; Baroni, Guido

    2015-02-01

    The purpose of the study is to evaluate the performance of a novel strategy, referred to as "virtual 4D PET", aiming at the optimization of hybrid 4D CT-PET scan for radiotherapy treatment planning. The virtual 4D PET strategy applies 4D CT motion modeling to avoid time-resolved PET image acquisition. This leads to a reduction of radioactive tracer administered to the patient and to a total acquisition time comparable to free-breathing PET studies. The proposed method exploits a motion model derived from 4D CT, which is applied to the free-breathing PET to recover respiratory motion and motion blur. The free-breathing PET is warped according to the motion model, in order to generate the virtual 4D PET. The virtual 4D PET strategy was tested on images obtained from a 4D computational anthropomorphic phantom. The performance was compared to conventional motion compensated 4D PET. Tests were also carried out on clinical 4D CT-PET scans coming from seven lung and liver cancer patients. The virtual 4D PET strategy was able to recover lesion motion, with comparable performance with respect to the motion compensated 4D PET. The compensation of the activity blurring due to motion was successfully achieved in terms of spill out removal. Specific limitations were highlighted in terms of partial volume compensation. Results on clinical 4D CT-PET scans confirmed the efficacy in 4D PET count statistics optimization, as equal to the free-breathing PET, and recovery of lesion motion. Compared to conventional motion compensation strategies that explicitly require 4D PET imaging, the virtual 4D PET strategy reduces clinical workload and computational costs, resulting in significant advantages for radiotherapy treatment planning.

  11. Radiobiological comparison of two radiotherapy treatment techniques for high-risk prostate cancer

    PubMed Central

    Hernández, Trinitat García; González, Aurora Vicedo; Peidro, Jorge Pastor; Ferrando, Juan V. Roselló; González, Luis Brualla; Cabañero, Domingo Granero; Torrecilla, José López

    2013-01-01

    Background To make a radiobiological comparison, for high risk prostate cancer (T3a, PSA > 20 ng/ml or Gleason > 7) of two radiotherapy treatment techniques. One technique consists of a treatment in three phases of the pelvic nodes, vesicles and prostate using a conventional fractionation scheme of 2 Gy/fraction (SIMRT). The other technique consists of a treatment in two phases that gives simultaneously different dose levels in each phase, 2 Gy/fraction, 2.25 Gy/fraction and 2.5 Gy/fraction to the pelvic nodes, vesicles and prostate, respectively (SIBIMRT). Materials and methods The equivalent dose at fractionation of 2 Gy (EQD2), calculated using the linear quadratic model with α/βprostate = 1.5 Gy, was the same for both treatment strategies. For comparison the parameters employed were D95, mean dose and Tumour Control Probabilities for prostate PTV and D15, D25, D35, D50, mean dose and Normal Tissue Complication Probabilities for the rectum and bladder, with physical doses converted to EQD2. Parameters were obtained for α/βprostate = 1.5, 3 and 10 Gy and for α/βoar = 1, 2, 3, 4, 6 and 8. Results For prostate PTV, both treatment strategies are equivalent for α/βprostate = 1.5 Gy but for higher α/βprostate, EQD2 and TCP, decrease for the SIBIMRT technique. For the rectum and bladder when α/βoar ≤ 2 Gy, EQD2 and NTCP are lower for the SIMRT technique or equal in both techniques. For α/βoar ≥ 2–3 Gy, EQD2 and NTCP increase for the SIMRT treatment. Conclusions A comparison between two radiotherapy techniques is presented. The SIBIMRT technique reduces EQD2 and NTCP for α/βoar from 2 to 8 Gy. PMID:24416563

  12. Ozone treatment for radiotherapy skin reactions: is there an evidence base for practice?

    PubMed

    Jordan, Liz; Beaver, Kinta; Foy, Sharon

    2002-12-01

    Clinical staff and researchers working together can do much to bridge the gap between research and practice. This paper reports on the practice of treating severe radiotherapy skin reactions with ozone therapy; a practice that has been in place for a number of years at a specialist oncology hospital in England and perceived to be beneficial in terms of wound healing and pain relief. A multidisciplinary team of clinical staff and researchers questioned the evidence base for this practice and a literature search revealed little support for the effectiveness of this treatment in this particular context. The views of patients receiving ozone therapy were sought and assessment forms were completed to gain objective information on the progress (or otherwise) of wound healing. While patients perceived the ozone treatment to be beneficial in terms of pain relief, it was impossible to isolate the impact of ozone alone as other preparations and treatments were also being given. Patient reports and nursing assessments did not support that ozone was effective at wound healing. A more formal evaluation of this treatment is being planned, supported by the shared governance initiative at the study site and a continued collaboration between clinical staff and researchers.

  13. Fractionated Stereotactic Radiotherapy Treatment of Cavernous Sinus Meningiomas: A Study of 100 Cases

    SciTech Connect

    Litre, Claude Fabien Colin, Philippe; Noudel, Remy; Peruzzi, Philippe; Bazin, Arnaud; Sherpereel, Bernard; Bernard, Marie Helene; Rousseaux, Pascal

    2009-07-15

    Purpose: We discuss our experiences with fractionated stereotactic radiotherapy (FSR) in the treatment of cavernous sinus meningiomas. Methods and Materials: From 1995 to 2006, we monitored 100 patients diagnosed with cavernous sinus meningiomas; 84 female and 16 male patients were included. The mean patient age was 56 years. The most common symptoms were a reduction in visual acuity (57%), diplopia (50%), exophthalmy (30%), and trigeminal neuralgia (34%). Surgery was initially performed on 26 patients. All patients were treated with FSR. A total of 45 Gy was administered to the lesion, with 5 fractions of 1.8 Gy completed each week. Patient treatment was performed using a Varian Clinac linear accelerator used for cranial treatments and a micro-multileaf collimator. Results: No side effects were reported. Mean follow-up period was 33 months, with 20% of patients undergoing follow-up evaluation of more than 4 years later. The tumor control rate at 3 years was 94%. Three patients required microsurgical intervention because FSR proved ineffective. In terms of functional symptoms, an 81% improvement was observed in patients suffering from exophthalmy, with 46% of these patients being restored to full health. A 52% improvement was observed in diplopia, together with a 67% improvement in visual acuity and a 50% improvement in type V neuropathy. Conclusions: FSR facilitates tumor control, either as an initial treatment option or in combination with microsurgery. In addition to being a safe procedure with few side effects, FSR offers the significant benefit of superior functional outcomes.

  14. External beam radiotherapy as postoperative treatment of diffuse pigmented villonodular synovitis

    SciTech Connect

    Berger, Bernhard . E-mail: Bernhard.Berger@med.uni-tuebingen.de; Ganswindt, Ute; Bamberg, Michael; Hehr, Thomas

    2007-03-15

    Purpose: Diffuse pigmented villonodular synovitis is a rare proliferative disorder of synovial membranes with invasive and expansive growth patterns. Radical synovectomy is regarded as the treatment of choice. However, because of the high recurrence rates, additive treatment might be useful. Radiotherapy (RT) has been evaluated with positive results, but the optimal treatment schedules are vague. We have reviewed our experience with postoperative RT in cases of suspected or proven residual disease. Methods and Materials: Between December 1996 and January 2006, 7 diffuse pigmented villonodular synovitis patients underwent RT at our institution. The most common location was the knee joint (5 patients). All patients underwent radical surgery and were treated subsequently with 6-MV photon RT. The total doses applied were 30-50 Gy, depending on the resection status and estimated risk of relapse. For analysis, we retrospectively reviewed all patients in April 2006. Results: The mean follow-up time was 29 months (range, 3-112 months). RT had no acute adverse effects. At the assessment, no evidence was found of recurrent or persisting disease in any patient. Of the 7 patients, 6 reported asymptomatic limb function and excellent quality of life; 1 patient had persistent restriction of joint movement after repeated surgery. No radiotherapeutic late effects were seen. Conclusion: The results of our series have confirmed the efficacy and safety of postoperative RT for diffuse pigmented villonodular synovitis. Hence, this treatment should be considered for patients with suspected or proven residual disease.

  15. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes.

    PubMed

    Sánchez-Parcerisa, D; Kondrla, M; Shaindlin, A; Carabe, A

    2014-12-07

    FoCa is an in-house modular treatment planning system, developed entirely in MATLAB, which includes forward dose calculation of proton radiotherapy plans in both active and passive modalities as well as a generic optimization suite for inverse treatment planning. The software has a dual education and research purpose. From the educational point of view, it can be an invaluable teaching tool for educating medical physicists, showing the insights of a treatment planning system from a well-known and widely accessible software platform. From the research point of view, its current and potential uses range from the fast calculation of any physical, radiobiological or clinical quantity in a patient CT geometry, to the development of new treatment modalities not yet available in commercial treatment planning systems. The physical models in FoCa were compared with the commissioning data from our institution and show an excellent agreement in depth dose distributions and longitudinal and transversal fluence profiles for both passive scattering and active scanning modalities. 3D dose distributions in phantom and patient geometries were compared with a commercial treatment planning system, yielding a gamma-index pass rate of above 94% (using FoCa's most accurate algorithm) for all cases considered. Finally, the inverse treatment planning suite was used to produce the first prototype of intensity-modulated, passive-scattered proton therapy, using 13 passive scattering proton fields and multi-leaf modulation to produce a concave dose distribution on a cylindrical solid water phantom without any field-specific compensator.

  16. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes

    NASA Astrophysics Data System (ADS)

    Sánchez-Parcerisa, D.; Kondrla, M.; Shaindlin, A.; Carabe, A.

    2014-12-01

    FoCa is an in-house modular treatment planning system, developed entirely in MATLAB, which includes forward dose calculation of proton radiotherapy plans in both active and passive modalities as well as a generic optimization suite for inverse treatment planning. The software has a dual education and research purpose. From the educational point of view, it can be an invaluable teaching tool for educating medical physicists, showing the insights of a treatment planning system from a well-known and widely accessible software platform. From the research point of view, its current and potential uses range from the fast calculation of any physical, radiobiological or clinical quantity in a patient CT geometry, to the development of new treatment modalities not yet available in commercial treatment planning systems. The physical models in FoCa were compared with the commissioning data from our institution and show an excellent agreement in depth dose distributions and longitudinal and transversal fluence profiles for both passive scattering and active scanning modalities. 3D dose distributions in phantom and patient geometries were compared with a commercial treatment planning system, yielding a gamma-index pass rate of above 94% (using FoCa’s most accurate algorithm) for all cases considered. Finally, the inverse treatment planning suite was used to produce the first prototype of intensity-modulated, passive-scattered proton therapy, using 13 passive scattering proton fields and multi-leaf modulation to produce a concave dose distribution on a cylindrical solid water phantom without any field-specific compensator.

  17. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning.

    PubMed

    Thomas, T Hannah Mary; Devakumar, D; Purnima, S; Ravindran, B Paul

    2009-04-07

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm x 10 cm beam at a gantry angle of 0 degrees and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between +/-6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  18. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Thomas, T. Hannah Mary; Devakumar, D.; Purnima, S.; Ravindran, B. Paul

    2009-04-01

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm × 10 cm beam at a gantry angle of 0° and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between ±6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  19. Postoperative Radiotherapy for Maxillary Sinus Cancer: Long-Term Outcomes and Toxicities of Treatment

    SciTech Connect

    Bristol, Ian J. . E-mail: ijbristol@mdanderson.org; Ahamad, Anesa; Garden, Adam S.; Morrison, William H.; Hanna, Ehab Y.; Papadimitrakopoulou, Vassiliki A.; Rosenthal, David I.; Ang, K. Kian

    2007-07-01

    Purpose: To determine the effects of three changes in radiotherapy technique on the outcomes for patients irradiated postoperatively for maxillary sinus cancer. Methods and Materials: The data of 146 patients treated between 1969 and 2002 were reviewed. The patients were separated into two groups according to the date of treatment. Group 1 included 90 patients treated before 1991 and Group 2 included 56 patients treated after 1991, when the three changes were implemented. The outcomes were compared between the two groups. Results: No differences were found in the 5-year overall survival, recurrence-free survival, local control, nodal control, or distant metastasis rates between the two groups (51% vs. 62%, 51% vs. 57%, 76% vs. 70%, 82% vs. 83%, and 28% vs. 17% for Groups 1 and 2, respectively). The three changes were to increase the portals to cover the base of the skull in patients with perineural invasion, reducing their risk of local recurrence; the addition of elective neck irradiation in patients with squamous or undifferentiated histologic features, improving the nodal control, distant metastasis, and recurrence-free survival rates (64% vs. 93%, 20% vs. 3%, and 45% vs. 67%, respectively; p < 0.05 for all comparisons); and improving the dose distributions within the target volume, reducing the late Grade 3-4 complication rates (34% in Group 1 vs. 8% in Group 2, p = 0.014). Multivariate analysis revealed advancing age, the need for enucleation, and positive margins as independent predictors of worse overall survival. The need for enucleation also predicted for worse local control. Conclusion: The three changes in radiotherapy technique improved the outcomes for select patients as predicted. Despite these changes, little demonstrable overall improvement occurred in local control or survival for these patients and additional work must be done.

  20. [Radiotherapy of hypopharynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Trémolières, P; Legouté, F; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    The intensity-modulated radiotherapy is the gold standard in the treatment of hypopharynx cancers. Early T1 and T2 tumours could be treated by exclusive radiotherapy or surgery. For tumours requiring total pharyngolaryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy are possible. For T4 tumours, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, curative dose is 70Gy and prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used for locally advanced cancers with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation is based on guidelines.

  1. Investigation of patient, tumour and treatment variables affecting residual motion for respiratory-gated radiotherapy

    NASA Astrophysics Data System (ADS)

    George, R.; Ramakrishnan, V.; Siebers, J. V.; Chung, T. D.; Keall, P. J.

    2006-10-01

    Respiratory gating can reduce the apparent respiratory motion during imaging and treatment; however, residual motion within the gating window remains. Respiratory training can improve respiratory reproducibility and, therefore, the efficacy of respiratory-gated radiotherapy. This study was conducted to determine whether residual motion during respiratory gating is affected by patient, tumour or treatment characteristics. The specific aims of this study were to: (1) identify significant characteristics affecting residual motion, (2) investigate time trends of residual motion over a period of days (inter-session) and (3) investigate time trends of residual motion within the same day (intra-session). Twenty-four lung cancer patients were enrolled in an Institutional Review Board (IRB)-approved protocol. For approximately five sessions, 331 four-minute, respiratory motion traces were acquired with free breathing, audio instructions and audio-visual biofeedback for each patient. The residual motion was quantified by the standard deviation of the displacement within the gating window. The generalized linear model was used to obtain coefficients for each variable within the model and to evaluate the clinical and statistical significance. The statistical significance was determined by a p-value <0.05, while effect sizes of >=0.1 cm (one standard deviation) were considered clinically significant. This data analysis was applied to patient, tumour and treatment variables. Inter- and intra-session variations were also investigated. The only variable that was significant for both inhale- and exhale-based gating was disease type. In addition, visual-training displacement, breathing type and Karnofsky performance status (KPS) values were significant for inhale-based gating, and dose-per-fraction was significant for exhale-based gating. Temporal respiratory variations within and between sessions were observed for individual patients. However inter- and intra-session analyses did

  2. Hypofractionated proton boost combined with external beam radiotherapy for treatment of localized prostate cancer.

    PubMed

    Johansson, Silvia; Aström, Lennart; Sandin, Fredrik; Isacsson, Ulf; Montelius, Anders; Turesson, Ingela

    2012-01-01

    Proton boost of 20 Gy in daily 5 Gy fractions followed by external beam radiotherapy (EBRT) of 50 Gy in daily 2 Gy fractions were given to 278 patients with prostate cancer with T1b to T4N0M0 disease. Fifty-three percent of the patients received neoadjuvant androgen deprivation therapy (N-ADT). The medium followup was 57 months. The 5-year PSA progression-free survival was 100%, 95%, and 74% for low-, intermediate-, and high-risk patients, respectively. The toxicity evaluation was supported by a patient-reported questionnaire before every consultant visit. Cumulative probability and actuarial prevalence of genitourinary (GU) and gastrointestinal (GI) toxicities are presented according to the RTOG classification. N-ADT did not influence curability. Mild pretreatment GU-symptoms were found to be a strong predictive factor for GU-toxicity attributable to treatment. The actuarial prevalence declined over 3 to 5 years for both GU and GI toxicities, indicating slow resolution of epithelial damage to the genitourinary and gastrointestinal tract. Bladder toxicities rather than gastrointestinal toxicities seem to be dose limiting. More than 5-year followup is necessary to reveal any sign of true progressive late side effects of the given treatment. Hypofractionated proton-boost combined with EBRT is associated with excellent curability of localized PC and acceptable frequencies of treatment toxicity.

  3. Hypofractionated Proton Boost Combined with External Beam Radiotherapy for Treatment of Localized Prostate Cancer

    PubMed Central

    Johansson, Silvia; Åström, Lennart; Sandin, Fredrik; Isacsson, Ulf; Montelius, Anders; Turesson, Ingela

    2012-01-01

    Proton boost of 20 Gy in daily 5 Gy fractions followed by external beam radiotherapy (EBRT) of 50 Gy in daily 2 Gy fractions were given to 278 patients with prostate cancer with T1b to T4N0M0 disease. Fifty-three percent of the patients received neoadjuvant androgen deprivation therapy (N-ADT). The medium followup was 57 months. The 5-year PSA progression-free survival was 100%, 95%, and 74% for low-, intermediate-, and high-risk patients, respectively. The toxicity evaluation was supported by a patient-reported questionnaire before every consultant visit. Cumulative probability and actuarial prevalence of genitourinary (GU) and gastrointestinal (GI) toxicities are presented according to the RTOG classification. N-ADT did not influence curability. Mild pretreatment GU-symptoms were found to be a strong predictive factor for GU-toxicity attributable to treatment. The actuarial prevalence declined over 3 to 5 years for both GU and GI toxicities, indicating slow resolution of epithelial damage to the genitourinary and gastrointestinal tract. Bladder toxicities rather than gastrointestinal toxicities seem to be dose limiting. More than 5-year followup is necessary to reveal any sign of true progressive late side effects of the given treatment. Hypofractionated proton-boost combined with EBRT is associated with excellent curability of localized PC and acceptable frequencies of treatment toxicity. PMID:22848840

  4. Treatment outcomes and late complications of 849 patients with nasopharyngeal carcinoma treated with radiotherapy alone

    SciTech Connect

    Yeh, S.-A. . E-mail: yehsa@hotmail.com; Tang Yeh; Lui, C.-C.; Huang, Y.-J.; Huang, E.-Y.

    2005-07-01

    Purpose: The objective of this study was to describe the treatment outcomes and treatment-related complications of nasopharyngeal carcinoma (NPC) patients treated with radiotherapy alone. Methods and Materials: Retrospective analysis was performed on 849 consecutive NPC patients treated between 1983 and 1998 in our institution. Potentially significant patient-related and treatment-related variables were analyzed. Radiation-related complications were recorded. Results: The 5-year overall and disease-free survival rates of these patients were 59% and 52%, respectively. Advanced parapharyngeal space (PPS) invasion showed stronger prognostic value than PPS invasion. Multiple neck lymph node (LN) involvement was demonstrated to be one of the most powerful independent prognostic factors among all LN-related parameters. External beam radiation dose more than 72 Gy was associated with significantly higher incidence of hearing impairment, trismus, and temporal lobe necrosis. Conclusions: We recommend that the extent of PPS should be clarified and stratified. Multiple neck LN involvement could be integrated into the N-classification in further revisions of the American Joint Committee on Cancer stage. Boost irradiation is not suggested for node-negative necks. For node-positive necks, boost irradiation is indicated and a longer interval between initial and boost irradiation would reduce the incidence of neck fibrosis without compromising the neck control rate.

  5. [Can the prophylactic treatment of mycotic mucositis improve the time of performing radiotherapy in head and neck tumors?].

    PubMed

    Gava, A; Ferrarese, F; Tonetto, V; Coghetto, F; Marazzato, G; Zorat, P L

    1996-04-01

    Radiotherapy-related mucositis is the most frequent complication in the patients submitted to irradiation for head and neck cancers. Many such patients may develop mycotic infections which may lead to treatment discontinuation, with possible consequences on the local control of these cancers. In this study, we investigated the efficacy of fluconazole in preventing mycotic mucositis in 80 patients undergoing radiation therapy for head and neck cancers. The patients were randomized to two groups: 41 patients in group A received the supporting treatment we usually administer, plus fluconazole (50 mg/day) starting from the 6th irradiation session throughout the treatment; 39 patients in group B received the same baseline treatment, but were given the drug only when mycotic infections appeared. The clinical characteristics, treated sites, treatment doses and volumes were similar in the two groups of patients. Fluconazole was well tolerated and no early or late toxicity was observed. We had 1 mycotic mucositis and 14 non-scheduled treatment discontinuations in group A, vs. 19 and 30, respectively, in group B. Radiation therapy lasted 52.3 days (mean) in group A and 55.6 days (mean) in group B; the differences were statistically significant. In our experience, fluconazole, used prophylactically from the 6th radiotherapy session on, reduced the number of mycotic infections and improved radiotherapy schedule in our head and neck cancer patients.

  6. Mechanical and dosimetric quality control for computer controlled radiotherapy treatment equipment.

    PubMed

    Thompson, A V; Lam, K L; Balter, J M; McShan, D L; Martel, M K; Weaver, T A; Fraass, B A; Ten Haken, R K

    1995-05-01

    Modern computer controlled radiotherapy treatment equipment offers the possibility of delivering complex, multiple field treatments with minimal operator intervention, thus making multiple field conformal therapy practical. Conventional quality control programs are inadequate for this new technology, so new quality control procedures are needed. A reasonably fast, sensitive, and complete daily quality control program has been developed in our clinic that includes nearly automated mechanical as well as dosimetric tests. Automated delivery of these quality control fields is performed by the control system of the MM50 racetrack microtron, directed by the CCRS sequence processor [D. L. McShan and B. A. Fraass, Proceedings of the XIth International Conference on the use of computers in Radiation Therapy, 20-24 March 1994, Manchester, U.K. (North Western Medical Physics Department, Manchester, U.K., 1994), pp. 210-211], which controls the treatment process. The mechanical tests involve multiple irradiations of a single film to check the accuracy and reproducibility of the computer controlled setup of gantry and collimator angles, table orientation, collimator jaws, and multileaf collimator shape. The dosimetric tests, which involve multiple irradiations of an array of ionization chambers in a commercial dose detector (Keithly model 90100 Tracker System) rigidly attached to the head of the treatment gantry, check the output and symmetry of the treatment unit as a function of gantry and collimator angle and other parameters. For each of the dosimetric tests, readings from the five ionization chambers are automatically read out, stored, and analyzed by the computer, along with the geometric parameters of the treatment unit for that beam.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Intensity-Modulated Radiotherapy Causes Fewer Side Effects than Three-Dimensional Conformal Radiotherapy When Used in Combination With Brachytherapy for the Treatment of Prostate Cancer

    SciTech Connect

    Forsythe, Kevin; Blacksburg, Seth; Stone, Nelson; Stock, Richard G.

    2012-06-01

    Purpose: To measure the benefits of intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3D-CRT) when used in combination with brachytherapy for the treatment of prostate cancer. Methods and Materials: We conducted a retrospective review of all patients with localized prostate cancer who received external-beam radiotherapy (EBRT) in combination with brachytherapy with at least 1 year follow-up (n = 812). Combination therapy consisted of {sup 103}Pd or {sup 125}I implant, followed by a course of EBRT. From 1993 to March 2003 521 patients were treated with 3D-CRT, and from April 2003 to March 2009 291 patients were treated with IMRT. Urinary symptoms were prospectively measured with the International Prostate Symptom Score questionnaire with a single quality of life (QOL) question; rectal bleeding was assessed per the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Schema. The Pearson {chi}{sup 2} test was used to compare toxicities experienced by patients who were treated with either IMRT or 3D-CRT. Logistic regression analyses were also performed to rule out possible confounding factors. Results: Within the first 3 months after treatment, patients treated with 3D-CRT scored their urinary symptoms as follows: 19% mild, 44% moderate, and 37% severe; patients treated with IMRT scored their urinary symptoms as follows: 36% mild, 47% moderate, and 17% severe (p < 0.001). The 3D-CRT patients rated their QOL as follows: 35% positive, 20% neutral, and 45% negative; IMRT patients rated their QOL as follows: 51% positive, 18% neutral, and 31% negative (p < 0.001). After 1 year of follow-up there was no longer any difference in urinary morbidity between the two groups. Logistic regression confirmed the differences in International Prostate Symptom Score and QOL in the acute setting (p < 0.001 for both). Grade {>=}2 rectal bleeding was reported by 11% of 3D

  8. Resistance of Nonmelanoma Skin Cancer to Nonsurgical Treatments. Part II: Photodynamic Therapy, Vismodegib, Cetuximab, Intralesional Methotrexate, and Radiotherapy.

    PubMed

    Gracia-Cazaña, T; Salazar, N; Zamarrón, A; Mascaraque, M; Lucena, S R; Juarranz, Á

    2016-11-01

    A wide range of treatments is now available for nonmelanoma skin cancer, including 5-fluorouracil, ingenol mebutate, imiquimod, diclofenac, photodynamic therapy, methotrexate, cetuximab, vismodegib, and radiotherapy. All are associated with high clinical and histologic response rates. However, some tumors do not respond due to resistance, which may be primary or acquired. Study of the resistance processes is a broad area of research that aims to increase our understanding of the nature of each tumor and the biologic features that make it resistant, as well as to facilitate the design of new therapies directed against these tumors. In this second article, having covered the topical treatments of nonmelanoma skin cancer, we review resistance to other nonsurgical treatments, such as monoclonal antibodies against basal and squamous cell carcinomas, intralesional chemotherapy, photodynamic therapy, and radiotherapy.

  9. Shielding design of a treatment room for an accelerator-based neutron source for BNCT

    SciTech Connect

    Evans, J.F.; Blue, T.E.

    1995-12-31

    For several years, research has been ongoing in the Ohio State University (OSU) Nuclear Engineering Program toward the development of an accelerator-based irradiation facility (ANIF) neutron source for boron neutron capture therapy (BNCT). The ANIF, which is planned to be built in a hospital, has been conceptually designed and analyzed. After Qu, an OSU researcher, determined that the shielding design of a 6-MV X-ray treatment room was inadequate to protect personnel from an accelerator neutron source operating at 30 mA, we decided to analyze and determine the shielding requirements of a treatment room for an ANIF. We determined the amount of shielding that would be sufficient to protect facility personnel from excessive radiation exposure caused by operation of the accelerator at 30 mA.

  10. Radiotherapy as an effective treatment modality for follicular lymphoma: a single institution experience

    PubMed Central

    Choi, Seo Hee; Cho, Jaeho; Kim, Jin Seok; Cheong, June-Won

    2015-01-01

    Purpose Follicular lymphoma (FL) is an indolent non-Hodgkin's lymphoma that is highly sensitive to radiotherapy (RT). However, the effectiveness of RT has not been well established. We reviewed our experiences to assess the role of RT for FL and analyze treatment results. Materials and Methods Retrospective analysis was done on 29 patients who received first RT between January 2003 and August 2013. Of 23 early stage (stage I, II) patients, 16 received RT alone, four received chemotherapy followed by RT, two received RT postoperatively, and one received salvage RT for relapse after resection. Six advanced-stage (stage III, IV) patients received RT after chemotherapy: two received consolidation RT, three received salvage RT for residual lesions, and one received RT for progressive sites. Median RT dose was 30.6 Gy (range, 21.6 to 48.6 Gy). Median follow-up duration was 62 months (range, 6 to 141 months). Results All patients showed complete response in the radiation field. Eight outfield relapses were reported. Seven patients received salvage treatment (three chemotherapy, four RT). Four patients showed excellent responses, especially to RT. Estimated 5-year and 10-year relapse-free survivals were 72% and 60%. In the RT-alone group, 5-year relapse-free survival was 74.5%. All advanced-stage patients were disease-free with 100% 5-year overall survival. Disease-specific death was noted in only one patient; four others died of other unrelated causes. No significant toxicity was reported. Conclusion RT resulted in excellent treatment outcomes for all FL stages when used as a primary treatment modality for early stage or salvage-treatment modality for advanced-stage disease. PMID:26756031

  11. Proton Radiotherapy for Prostate Cancer Is Not Associated With Post-Treatment Testosterone Suppression

    SciTech Connect

    Nichols, R. Charles; Morris, Christopher G.; Hoppe, Bradford S.; Henderson, Randal H.; Marcus, Robert B.; Mendenhall, William M.; Li Zuofeng; Williams, Christopher R.; Costa, Joseph A.; Mendenhall, Nancy P.

    2012-03-01

    Purpose: Three independent studies of photon (x-ray) radiotherapy (RT) for prostate cancer have demonstrated evidence of testosterone suppression after treatment. The present study was undertaken to determine whether this would also be the case with conformal protons. Methods and Materials: Between August 2006 and October 2007, 171 patients with low- and intermediate-risk prostate cancer were enrolled and underwent treatment according to University of Florida Proton Therapy Institute institutional review board-approved PR01 and PR02 protocols. Of the 171 patients, 18 were excluded because they had received androgen deprivation therapy either before (n = 17) or after (n = 1) RT. The pretreatment serum testosterone level was available for 150 of the remaining 153 patients. These 150 patients were included in the present study. The post-treatment levels were compared with the pretreatment levels. Results: The median baseline pretreatment serum testosterone level was 357.9 ng/dL. The median post-treatment testosterone value was 375.5 ng/dL at treatment completion (p = .1935) and 369.9 ng/dL (p = .1336), 348.7 ng/dL (p = .7317), 353.4 ng/dL (p = .6996), and 340.9 ng/dL (p = .1669) at 6, 12, 18, and 24 months after proton therapy, respectively. Conclusions: Conformal proton therapy to the prostate, as delivered using University of Florida Proton Therapy Institute PR01 and PR02 protocols, did not appear to significantly affect the serum testosterone levels within 24 months after RT.

  12. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning

    SciTech Connect

    Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.

    2014-06-15

    Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment

  13. Dosimetry characterization of a multibeam radiotherapy treatment for age-related macular degeneration

    SciTech Connect

    Lee, Choonsik; Chell, Erik; Gertner, Michael; Hansen, Steven; Howell, Roger W.; Hanlon, Justin; Bolch, Wesley E.

    2008-11-15

    Age-related macular degeneration (ARMD) is a major health problem worldwide. Advanced ARMD, which ultimately leads to profound vision loss, has dry and wet forms, which account for 20% and 80% of cases involving severe vision loss, respectively. A new device and approach for radiation treatment of ARMD has been recently developed by Oraya Therapeutics, Inc. (Newark, CA). The goal of the present study is to provide a initial dosimetry characterization of the proposed radiotherapy treatment via Monte Carlo radiation transport simulation. A 3D eye model including cornea, anterior chamber, lens, orbit, fat, sclera, choroid, retina, vitreous, macula, and optic nerve was carefully designed. The eye model was imported into the MCNPX2.5 Monte Carlo code and radiation transport simulations were undertaken to obtain absorbed doses and dose volume histograms (DVH) to targeted and nontargeted structures within the eye. Three different studies were undertaken to investigate (1) available beam angles that maximized the dose to the macula target tissue, simultaneously minimizing dose to normal tissues, (2) the energy dependency of the DVH for different x-ray energies (80, 100, and 120 kVp), and (3) the optimal focal spot size among options of 0.0, 0.4, 1.0, and 5.5 mm. All results were scaled to give 8 Gy to the macula volume, which is the current treatment requirement. Eight beam treatment angles are currently under investigation. In all eight beam angles, the source-to-target distance is 13 cm, and the polar angle of entry is 30 degree sign from the geometric axis of the eye. The azimuthal angle changes in eight increments of 45 degree sign in a clockwise fashion, such that an azimuthal angle of 0 degree sign corresponds to the 12 o'clock position when viewing the treated eye. Based on considerations of nontarget tissue avoidance, as well as facial-anatomical restrictions on beam delivery, treatment azimuthal angles between 135 degree sign and 225 degree sign would be available

  14. Intensity-Modulated Radiotherapy in Postoperative Treatment of Oral Cavity Cancers

    SciTech Connect

    Gomez, Daniel R. Zhung, Joanne E.; Gomez, Jennifer; Chan, Kelvin; Wu, Abraham J.; Wolden, Suzanne L.; Pfister, David G.; Shaha, Ashok; Shah, Jatin P.; Kraus, Dennis H.; Wong, Richard J.; Lee, Nancy Y.

    2009-03-15

    Purpose: To present our single-institution experience of intensity-modulated radiotherapy (IMRT) for oral cavity cancer. Methods and Materials: Between September 2000 and December 2006, 35 patients with histologically confirmed squamous cell carcinoma of the oral cavity underwent surgery followed by postoperative IMRT. The sites included were buccal mucosa in 8, oral tongue in 11, floor of the mouth in 9, gingiva in 4, hard palate in 2, and retromolar trigone in 1. Most patients had Stage III-IV disease (80%). Ten patients (29%) also received concurrent postoperative chemotherapy with IMRT. The median prescribed radiation dose was 60 Gy. Results: The median follow-up for surviving patients was 28.1 months (range, 11.9-85.1). Treatment failure occurred in 11 cases as follows: local in 4, regional in 2, and distant metastases in 5. Of the 5 patients with distant metastases, 2 presented with dermal metastases. The 2- and 3-year estimates of locoregional progression-free survival, distant metastasis-free survival, disease-free survival, and overall survival were 84% and 77%, 85% and 85%, 70% and 64%, and 74% and 74%, respectively. Acute Grade 2 or greater dermatitis, mucositis, and esophageal reactions were experienced by 54%, 66%, and 40% of the patients, respectively. Documented late complications included trismus (17%) and osteoradionecrosis (5%). Conclusion: IMRT as an adjuvant treatment after surgical resection for oral cavity tumors is feasible and effective, with promising results and acceptable toxicity.

  15. Control of a HexaPOD treatment couch for robot-assisted radiotherapy.

    PubMed

    Hermann, Christian; Ma, Lei; Wilbert, Jürgen; Baier, Kurt; Schilling, Klaus

    2012-10-01

    Moving tumors, for example in the vicinity of the lungs, pose a challenging problem in radiotherapy, as healthy tissue should not be irradiated. Apart from gating approaches, one standard method is to irradiate the complete volume within which a tumor moves plus a safety margin containing a considerable volume of healthy tissue. This work deals with a system for tumor motion compensation using the HexaPOD® robotic treatment couch (Medical Intelligence GmbH, Schwabmünchen, Germany). The HexaPOD, carrying the patient during treatment, is instructed to perform translational movements such that the tumor motion, from the beams-eye view of the linear accelerator, is eliminated. The dynamics of the HexaPOD are characterized by time delays, saturations, and other non-linearities that make the design of control a challenging task. The focus of this work lies on two control methods for the HexaPOD that can be used for reference tracking. The first method uses a model predictive controller based on a model gained through system identification methods, and the second method uses a position control scheme useful for reference tracking. We compared the tracking performance of both methods in various experiments with real hardware using ideal reference trajectories, prerecorded patient trajectories, and human volunteers whose breathing motion was compensated by the system.

  16. Radiotherapy Treatment of Early-Stage Prostate Cancer with IMRT and Protons: A Treatment Planning Comparison

    SciTech Connect

    Trofimov, Alexei Nguyen, Paul L.; Coen, John J.; Doppke, Karen P.; Schneider, Robert J. C.; Adams, Judith A. C.; Bortfeld, Thomas R.; Zietman, Anthony L.; DeLaney, Thomas F.; Shipley, William U.

    2007-10-01

    Purpose: To compare intensity-modulated photon radiotherapy (IMRT) with three-dimensional conformal proton therapy (3D-CPT) for early-stage prostate cancer, and explore the potential utility of intensity-modulated proton therapy (IMPT). Methods and Materials: Ten patients were planned with both 3D-CPT (two parallel-opposed lateral fields) and IMRT (seven equally spaced coplanar fields). Prescribed dose was 79.2 Gy (or cobalt Gray-equivalent, [CGE] for protons) to the prostate gland. Dose-volume histograms, dose conformity, and equivalent uniform dose (EUD) were compared. Additionally, plans were optimized for 3D-CPT with nonstandard beam configuration, and for IMPT assuming delivery with beam scanning. Results: At least 98% of the planning target volume received the prescription dose. IMRT plans yielded better dose conformity to the target, whereas proton plans achieved higher dose homogeneity and better sparing of rectum and bladder in the range below 30 Gy/CGE. Bladder volumes receiving more than 70 Gy/CGE (V{sub 70}) were reduced, on average, by 34% with IMRT vs. 3D-CPT, whereas rectal V{sub 70} were equivalent. EUD from 3D-CPT and IMRT plans were indistinguishable within uncertainties for both bladder and rectum. With the use of small-angle lateral-oblique fields in 3D-CPT and IMPT, the rectal V{sub 70} was reduced by up to 35% compared with the standard lateral configuration, whereas the bladder V{sub 70} increased by less than 10%. Conclusions: In the range higher than 60 Gy/CGE, IMRT achieved significantly better sparing of the bladder, whereas rectal sparing was similar with 3D-CPT and IMRT. Dose to healthy tissues in the range lower than 50% of the target prescription was substantially lower with proton therapy.

  17. Salvage Treatment With Hypofractionated Radiotherapy in Patients With Recurrent Small Hepatocellular Carcinoma

    SciTech Connect

    Bae, Sun Hyun; Park, Hee Chul; Lim, Do Hoon; Lee, Jung Ae; Gwak, Geum Yeon; Choi, Moon Seok; Lee, Joon Hyoek; Koh, Kwang Cheol; Paik, Seung Woon; Yoo, Byung Chul

    2012-03-15

    Purpose: To investigate the rates of tumor response and local control in patients with recurrent small hepatocellular carcinoma (HCC) treated with hypofractionated radiotherapy (RT) as a salvage treatment and to evaluate treatment-related toxicities. Methods and Materials: Between 2006 and 2009, a total of 20 patients with recurrent small HCC were treated with hypofractionated RT after the failure of previous treatment. The eligibility criteria for hypofractionated RT were as follows: 1) HCC less than 5 cm, 2) HCC not adjacent to critical organs, 3) HCC without portal vein tumor thrombosis, and 4) less than 15% of normal liver volume that would be irradiated with 50% of prescribed dose. The RT dose was 50 Gy in 10 fractions. The tumor response was determined by CT scans performed 3 months after the end of RT. Results: The median follow-up period after RT was 22 months. The overall survival rates at 1 and 2 years were 100% and 87.9%, respectively. Complete response (CR) was achieved in seven of 20 lesions (35%) evaluated by CT scans performed 3 months after the end of RT. In-field local control was achieved in 85% of patients. Fourteen patients (70%) developed intra-hepatic metastases. Six patients developed grade 1 nausea or anorexia during RT, and two patients had progression of ascites after RT. There was no grade 3 or greater treatment-related toxicities. Conclusions: The current study showed a favorable outcome with respect to hypofractionated RT for small HCC. Partial liver irradiation with 50 Gy in 10 fractions is considered tolerable without severe complications.

  18. [Stereotactic radiotherapy and radiosurgery in treatment of patients with intracranial schwannomas].

    PubMed

    Zolotova, S V; Golanov, A V; Kotel'nikova, T M; Soboleva, O I; Gorlachev, G E; Fil'chenkova, N A; Nikonova, N G; Kapitanov, D N; Makhmudov, U B; Shimanskiĭ, V N; Arutiunov, N V; Pronin, I N

    2010-01-01

    Aim of this study is to assess the role of stereotactic radiosurgery (SRS) and radiotherapy (SRT) in management of cranial nerves schwannomas by analysis of tumor control, clinical response and variables affecting treatment outcomes. Between April 2005 and January 2009 patients with schwannomas of VIII (63), V (14) and caudal nerves (2) were treated in Burdenko Moscow Neurosurgical Institute using linear accelerator. Mean age was 49 years (13-82). In 42 cases radiation treatment was preceded by surgical resection. 13 patients had type I or II neurofibromatosis. Mean volume of the tumor was 3.9 cm3 (0.5-14.4 cm3) and 13.4 cm3 (2.8-41.3 cm3) for SRS and SRT, respectively. Mean SRS dose was 12 Gy (10.8-14.4 Gy) for vestibular schwannomas and 15 Gy (13.2-18 Gy) for schwannomas of other nerves. In hypofractionated SRT the dose of 35 Gy was delivered in 7 fractions or 30 Gy in 6 fractions. In cases of classical fractioning total dose of 50-60 Gy was divided into daily fractions of 1.8-2.0 Gy. Radiographic tumor control rate reached 97.5% at the last follow-up. 5 patients experienced trigeminal dysfunction, it was transient in 3 cases and persistent in 2. Permanent decline in House-Brackmann facial nerve scale developed in 2 of 79 patients. After treatment effective hearing (class I-II) was preserved in 7 of 9 patients (67%) who had same level of hearing before SRS. Linear accelerator-based stereotactic radiation treatment provides long-term tumor control associated with high rates of preservation of neurological functions. No further tumor surgery was necessary in 100% of cases with solitary tumors with a minimal follow-up of 5 years.

  19. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning

    SciTech Connect

    Wu, Vincent; Podgorsak, Matthew B.; Tran, Tuan-Anh; Malhotra, Harish K.; Wang, Iris Z.

    2011-07-15

    Purpose: Traditional computed tomography (CT) units provide a maximum scan field-of-view (sFOV) diameter of 50 cm and a limited bore size, which cannot accommodate a large patient habitus or an extended simulation setup in radiation therapy (RT). Wide-bore CT scanners with increased bore size were developed to address these needs. Some scanners have the capacity to reconstruct the CT images at an extended FOV (eFOV), through data interpolation or extrapolation, using projection data acquired with a conventional sFOV. Objects that extend past the sFOV for eFOV reconstruction may generate image artifacts resulting from truncated projection data; this may distort CT numbers and structure contours in the region beyond the sFOV. The purpose of this study was to evaluate the dosimetric impact of image artifacts from eFOV reconstruction with a wide-bore CT scanner in radiotherapy (RT) treatment planning. Methods: Testing phantoms (i.e., a mini CT phantom with equivalent tissue inserts, a set of CT normal phantoms and anthropomorphic phantoms of the thorax and the pelvis) were used to evaluate eFOV artifacts. Reference baseline images of these phantoms were acquired with the phantom centrally positioned within the sFOV. For comparison, the phantoms were then shifted laterally and scanned partially outside the sFOV, but still within the eFOV. Treatment plans were generated for the thoracic and pelvic anthropomorphic phantoms utilizing the Eclipse treatment planning system (TPS) to study the potential effects of eFOV artifacts on dose calculations. All dose calculations of baseline and test treatment plans were carried out using the same MU. Results: Results show that both body contour and CT numbers are altered by image artifacts in eFOV reconstruction. CT number distortions of up to -356 HU for bone tissue and up to 323 HU for lung tissue were observed in the mini CT phantom. Results from the large body normal phantom, which is close to a clinical patient size, show

  20. [High-intensity focused ultrasound (HIFU): our experience in the treatment of prostate cancer relapsing after radiotherapy].

    PubMed

    Giovanessi, Luca; Peroni, Angelo; Mirabella, Giuseppe; Fugini, Andrea Vismara; Zani, Danilo; Cunico, Sergio Cosciani; Simeone, Claudio

    2011-01-01

    The aim of the study is to evaluate the safety and efficacy of high-intensity focused ultrasound (HIFU) treatment in patients with local prostate cancer recurrence after radiotherapy. From February 2009 to June 2010, 14 patients with prostate cancer recurrence after radiotherapy were selected for HIFU treatment; all patients had a positive TRUS-guided biopsy and the absence of distant metastases was confirmed by computer tomography, PET choline or bone scintigraphy. We classified all patients in 3 groups using D'Amico's classification: 4 patients high risk (PSA >20 ng/ml - 8≤ Gleason Score≤ 10 - clinical stage≥T2c), 8 patients intermediate risk (10 PSAnadir+1.2ng/ml) or after adjuvant therapy introduction. All complications were recorded. Of the 14 patients selected, 12 patients underwent HIFU treatments; 2 patients were excluded because of rectal strictures induced by radiotherapy. At a mean 13 months' follow-up, biochemical success rate was obtained in 1 of the high risk patients and in 5 of the low and intermediate risk patients; 1 man died for a disease not correlated with prostate cancer recurrence. Complications included urinary tract infection, acute urinary retentions, urethral strictures and light stress incontinence. In our experience salvage HIFU is a safe treatment option for local relapse after radiotherapy; its efficacy depends on a careful patient selection.

  1. [Role of radiotherapy in the treatment of NK/T-cell nasal type and primary cerebral lymphomas].

    PubMed

    Boros, A; Michot, J-M; Hoang-Xuan, K; Mazeron, R

    2016-10-01

    The head and neck are common sites for extranodal non-Hodgkin lymphomas. Radiotherapy plays an important role in the treatment of low-grade lymphomas, with curative or palliative intent. In the case of high-grade lymphomas, its combination with chemotherapy is debated. Its role is however undeniable in two specific entities: NK/T-cell lymphoma NK/T nasal type, and primary central nervous system lymphomas, which are the subject of this review.

  2. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    NASA Astrophysics Data System (ADS)

    Bocci, A.; Cortés-Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Arráns, R.; Alvarez, M. A. G.; Abou-Haïdar, Z.; Quesada, J. M.; Pérez Vega-Leal, A.; Pérez Nieto, F. J.

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  3. The Impact of Radiotherapy Fields in the Treatment of Patients With Choroid Plexus Carcinoma

    SciTech Connect

    Mazloom, Ali; Wolff, Johannes E.; Paulino, Arnold C.

    2010-09-01

    Purpose: To perform a comprehensive literature review and analysis of cases dealing with choroid plexus carcinoma (CPC) to determine the optimal radiotherapy (RT) treatment field. Methods and Materials: A PubMed search of English language articles from 1979 to 2008 was performed, yielding 33 articles with 56 patients who had available data regarding RT treatment field. The median age at diagnosis was 2.7 years (range, 1 month-53 years). Of 54 patients with data regarding type of surgery, 21 (38.9%) had complete resection. Chemotherapy was delivered to 27 (48%) as part of initial therapy. The RT treatment volume was the craniospinal axis in 38 (68%), whole brain in 9 (16%), and tumor/tumor bed in 9 (16%). Median follow-up for surviving patients was 40 months. Results: The 5-year overall survival and progression-free survival (PFS) rates were 59.5% and 37.2%, respectively. Complete resection (p = 0.035) and use of craniospinal irradiation (CSI; p = 0.025) were found to positively affect PFS. The 5-year PFS for patients who had CSI vs. whole brain and tumor/tumor bed RT were 44.2% and 15.3%. For the 19 patients who relapsed, 9 (47%) had a recurrence in the RT field, 6 (32%) had a recurrence outside the RT field, and 4 (21%) had a recurrence inside and outside the irradiated field. Conclusion: Patients with CPC who received CSI had better PFS compared with those receiving less than CSI. This study supports the use of CSI in the multimodality management of patients with CPC.

  4. Clinical Outcome of Adjuvant Treatment of Endometrial Cancer Using Aperture-Based Intensity-Modulated Radiotherapy

    SciTech Connect

    Bouchard, Myriam; Nadeau, Sylvain M.Sc.; Gingras, Luc; Raymond, Paul-Emile; Beaulieu, Frederic; Beaulieu, Luc; Fortin, Andre; Germain, Isabelle

    2008-08-01

    Purpose: To assess disease control and acute and chronic toxicity with aperture-based intensity-modulated radiotherapy (AB-IMRT) for postoperative pelvic irradiation of endometrial cancer. Methods and Materials: Between January and July 2005, after hysterectomy for endometrial cancer, 15 patients received 45 Gy to the pelvis using AB-IMRT. The AB-IMRT plans were generated by an in-house treatment planning system (Ballista). The AB-IMRT plans were used for treatment and were dosimetrically compared with three other approaches: conventional four-field, enlarged four-field, and beamlet-based IMRT (BB-IMRT). Disease control and toxicity were prospectively recorded and compared with retrospective data from 30 patients treated with a conventional four-field technique. Results: At a median follow-up of 27 months (range, 23-30), no relapse was noted among the AB-IMRT group compared with five relapses in the control group (p = 0.1). The characteristics of each group were similar, except for the mean body mass index, timing of brachytherapy, and applicator type used. Patients treated with AB-IMRT experienced more frequent Grade 2 or greater gastrointestinal acute toxicity (87% vs. 53%, p 0.02). No statistically significant difference was noted between the two groups regarding the incidence or severity of chronic toxicities. AB-IMRT plans significantly improved target coverage (93% vs. 76% of planning target volume receiving 45 Gy for AB-IMRT vs. conventional four-field technique, respectively). The sparing of organs at risk was similar to that of BB-IMRT. Conclusion: The results of our study have shown that AB-IMRT provides excellent disease control with equivalent late toxicity compared with the conventional four-field technique. AB-IMRT provided treatment delivery and quality assurance advantages compared with BB-IMRT and could reduce the risk of second malignancy compared with BB-IMRT.

  5. Proton Radiotherapy: The Biological Effect of Treating Alternating Subsets of Fields for Different Treatment Fractions

    SciTech Connect

    Engelsman, Martijn; DeLaney, Thomas F.; Hong, Theodore S.

    2011-02-01

    Purpose: Common practice in proton radiotherapy is to deliver a subset of all fields in the treatment plan on any given treatment day. We investigate using biological modeling if the resulting variation in daily dose to normal tissues has a relevant detrimental biological effect. Methods and Materials: For four patient groups, the cumulative normalized total dose (NTD) was determined for normal tissues (OARs) of each patient using the clinically delivered fractionation schedule (FS{sub clin}), and for hypothetical fractionation schedules delivering all fields every day (FS{sub all}) or only a single field each day (FS{sub single}). Cumulative three-dimensional NTD distributions were summarized using the generalized equivalent uniform dose (gEUD) model. Results: For the skull base/cervical spine chordoma group, the largest effect is a 4-Gy increase in gEUD of the chiasm when treating only a subset of fields on any day. For lung cancer and pancreatic cancer patients, the variation in the gEUD of normal tissues is <0.2 Gy. For the prostate group, FS{sub clin} increases the gEUD of the femoral heads by 9 Gy compared with FS{sub all}. Use of FS{sub single} resulted in the highest NTD to normal tissues for any patient. FS{sub all} resulted in an integral NTD to the patient that is on average 5% lower than FS{sub clin} and 10% lower than FS{sub single}. Conclusion: The effects of field set of the day treatment delivery depend on the tumor site and number of fields treated each day. Modeling these effects may be important for accurate risk assessment.

  6. The role of external beam radiotherapy in the treatment of papillary thyroid cancer.

    PubMed

    Lee, Nancy; Tuttle, Michael

    2006-12-01

    The role of external beam radiotherapy (EBRT) in treating thyroid cancer has brought forth controversy. Due to various histologic presentations and different natural histories, there is no uniform approach/recommendation among centers and/or authorities regarding the role of EBRT for thyroid cancer. This is particularly true for papillary thyroid carcinoma (PTC) where the clinical course can range from a disease that is cured with simple surgery to an aggressive form of poorly differentiated thyroid cancer with high rates of recurrence/death from disease. In addition, because the majority of the patients with PTC undergo postoperative radioactive iodine (RAI) treatment, the question remains as to what is the exact role of EBRT for PTC in the setting of RAI treatment? In this issue of Endocrine-Related Cancer, Chow and colleagues identified indications for EBRT and RAI therapy for PTC based on a retrospective review of 1300 patients. The authors concluded that postoperative RAI treatment is indicated in patients with pT2-pT4, pN0-pN1b while postoperative EBRT is recommended for patients with gross residual, positive margin, pT4, pN1b, and lymph nodes>2 cm disease. Other centers have also published their experience on the value of EBRT for PTC but with different indications. The reasons for the variations from different centers are complex. However, when all published results are taken together, the findings confirm the added value of EBRT to the present management of PTC in a select group of patients, particularly those with high risk features. In this commentary, these issues will be discussed and recommendations regarding the role of EBRT will be given.

  7. Impact of the accuracy of automatic tumour functional volume delineation on radiotherapy treatment planning.

    PubMed

    Le Maitre, Amandine; Hatt, Mathieu; Pradier, Olivier; Cheze-le Rest, Catherine; Visvikis, Dimitris

    2012-09-07

    Over the past few years several automatic and semi-automatic PET segmentation methods for target volume definition in radiotherapy have been proposed. The objective of this study is to compare different methods in terms of dosimetry. For such a comparison, a gold standard is needed. For this purpose, realistic GATE-simulated PET images were used. Three lung cases and three H&N cases were designed with various shapes, contrasts and heterogeneities. Four different segmentation approaches were compared: fixed and adaptive thresholds, a fuzzy C-mean and the fuzzy locally adaptive Bayesian method. For each of these target volumes, an IMRT treatment plan was defined. The different algorithms and resulting plans were compared in terms of segmentation errors and ground-truth volume coverage using different metrics (V(95), D(95), homogeneity index and conformity index). The major differences between the threshold-based methods and automatic methods occurred in the most heterogeneous cases. Within the two groups, the major differences occurred for low contrast cases. For homogeneous cases, equivalent ground-truth volume coverage was observed for all methods but for more heterogeneous cases, significantly lower coverage was observed for threshold-based methods. Our study demonstrates that significant dosimetry errors can be avoided by using more advanced image-segmentation methods.

  8. Impact of the accuracy of automatic tumour functional volume delineation on radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Le Maitre, Amandine; Hatt, Mathieu; Pradier, Olivier; Cheze-le Rest, Catherine; Visvikis, Dimitris

    2012-09-01

    Over the past few years several automatic and semi-automatic PET segmentation methods for target volume definition in radiotherapy have been proposed. The objective of this study is to compare different methods in terms of dosimetry. For such a comparison, a gold standard is needed. For this purpose, realistic GATE-simulated PET images were used. Three lung cases and three H&N cases were designed with various shapes, contrasts and heterogeneities. Four different segmentation approaches were compared: fixed and adaptive thresholds, a fuzzy C-mean and the fuzzy locally adaptive Bayesian method. For each of these target volumes, an IMRT treatment plan was defined. The different algorithms and resulting plans were compared in terms of segmentation errors and ground-truth volume coverage using different metrics (V95, D95, homogeneity index and conformity index). The major differences between the threshold-based methods and automatic methods occurred in the most heterogeneous cases. Within the two groups, the major differences occurred for low contrast cases. For homogeneous cases, equivalent ground-truth volume coverage was observed for all methods but for more heterogeneous cases, significantly lower coverage was observed for threshold-based methods. Our study demonstrates that significant dosimetry errors can be avoided by using more advanced image-segmentation methods.

  9. Technical innovation in adjuvant radiotherapy: Evolution and evaluation of new treatments for today and tomorrow.

    PubMed

    Kunkler, Ian H; Ward, Carol; Langdon, Simon P

    2015-11-01

    Recent innovations in breast cancer radiotherapy include intensity modulated radiotherapy, brachytherapy and intraoperative radiotherapy and current trials are seeking to evaluate their value in optimizing local control while maintaining cosmetic effects. Future clinical dividends in local control and survival may come from the identification of molecular signatures of breast cancer radiosensitivity, the development of predictive signatures and identification of immunohistochemical markers of risk of local recurrence. The importance of tumour heterogeneity is being increasingly recognized as an important factor in determining radiotherapy response and an improved understanding of the biology of the tumour microenvironment may identify targets that allow enhanced radiosensitisation or reversal of radioresistance when inhibited. This review describes recent developments in these areas.

  10. Short-Course Accelerated Radiotherapy in Palliative Treatment of Advanced Pelvic Malignancies: A Phase I Study

    SciTech Connect

    Caravatta, Luciana; Padula, Gilbert D.A.; Macchia, Gabriella; Ferrandina, Gabriella; Bonomo, Pierluigi; Deodato, Francesco; Massaccesi, Mariangela; Mignogna, Samantha; Tambaro, Rosa; Rossi, Marco; Flocco, Mariano; Scapati, Andrea; and others

    2012-08-01

    Purpose: To define the maximum tolerated dose of a conformal short-course accelerated radiotherapy in patients with symptomatic advanced pelvic cancer. Methods and Materials: A phase I trial in 3 dose-escalation steps was designed: 14 Gy (3.5-Gy fractions), 16 Gy (4-Gy fractions), and 18 Gy (4.5-Gy fractions). The eligibility criteria included locally advanced and/or metastatic pelvic cancer and Eastern Cooperative Oncology Group performance status of {<=}3. Treatment was delivered in 2 days with twice-daily fractionation and at least an 8-hour interval. Patients were treated in cohorts of 6-12 to define the maximum tolerated dose. The dose-limiting toxicity was defined as any acute toxicity of grade 3 or greater, using the Radiation Therapy Oncology Group scale. Pain was recorded using a visual analog scale. The effect on quality of life was evaluated according to Cancer Linear Analog Scale (CLAS). Results: Of the 27 enrolled patients, 11 were male and 16 were female, with a median age of 72 years (range 47-86). The primary tumor sites were gynecologic (48%), colorectal (33.5%), and genitourinary (18.5%). The most frequent baseline symptoms were bleeding (48%) and pain (33%). Only grade 1-2 acute toxicities were recorded. No patients experienced dose-limiting toxicity. With a median follow-up time of 6 months (range 3-28), no late toxicities were observed. The overall (complete plus partial) symptom remission was 88.9% (95% confidence interval 66.0%-97.8%). Five patients (41.7%) had complete pain relief, and six (50%) showed >30% visual analog scale reduction. The overall response rate for pain was 91.67% (95% confidence interval 52.4%-99.9%). Conclusions: Conformal short course radiotherapy in twice-daily fractions for 2 consecutive days was well tolerated up to a total dose of 18 Gy. A phase II study is ongoing to confirm the efficacy on symptom control and quality of life indexes.

  11. A cosmetic evaluation of breast cancer treatment: A randomized study of radiotherapy boost technique

    SciTech Connect

    Vass, Sylvie . E-mail: sylvie.vass@ssss.gouv.qc.ca; Bairati, Isabelle

    2005-08-01

    Purpose: To compare cosmetic results of two different radiotherapy (RT) boost techniques used in the treatment of breast cancer after whole breast radiotherapy and to identify factors affecting cosmetic outcomes. Methods and Materials: Between 1996 and 1998, 142 patients with Stage I and II breast cancer were treated with breast conservative surgery and adjuvant RT. Patients were then randomly assigned to receive a boost dose of 15 Gy delivered to the tumor bed either by iridium 192, or a combination of photons and electrons. Cosmetic evaluations were done on a 6-month basis, with a final evaluation at 36 months after RT. The evaluations were done using a panel of global and specific subjective scores, a digitized scoring system using the breast retraction assessment (BRA) measurement, and a patient's self-assessment evaluation. As cosmetic results were graded according to severity, the comparison of boost techniques was done using the ordinal logistic regression model. Adjusted odds ratios (OR) and their 95% confidence intervals (CI) are presented. Results: At 36 months of follow-up, there was no significant difference between the two groups with respect to the global subjective cosmetic outcome (OR = 1.40; 95%CI = 0.69-2.85, p = 0.35). Good to excellent scores were observed in 65% of implant patients and 62% of photon/electron patients. At 24 months and beyond, telangiectasia was more severe in the implant group with an OR of 9.64 (95%CI = 4.05-22.92, p < 0.0001) at 36 months. The only variable associated with a worse global cosmetic outcome was the presence of concomitant chemotherapy (OR = 3.87; 95%CI = 1.74-8.62). The BRA value once adjusted for age, concomitant chemotherapy, and boost volume showed a positive association with the boost technique. The BRA value was significantly greater in the implant group (p 0.03). There was no difference in the patient's final self-assessment score between the two groups. Three variables were statistically associated with

  12. Exploiting biological and physical determinants of radiotherapy toxicity to individualize treatment

    PubMed Central

    Scaife, J E; Barnett, G C; Noble, D J; Jena, R; Thomas, S J; West, C M L

    2015-01-01

    The recent advances in radiation delivery can improve tumour control probability (TCP) and reduce treatment-related toxicity. The use of intensity-modulated radiotherapy (IMRT) in particular can reduce normal tissue toxicity, an objective in its own right, and can allow safe dose escalation in selected cases. Ideally, IMRT should be combined with image guidance to verify the position of the target, since patients, target and organs at risk can move day to day. Daily image guidance scans can be used to identify the position of normal tissue structures and potentially to compute the daily delivered dose. Fundamentally, it is still the tolerance of the normal tissues that limits radiotherapy (RT) dose and therefore tumour control. However, the dose–response relationships for both tumour and normal tissues are relatively steep, meaning that small dose differences can translate into clinically relevant improvements. Differences exist between individuals in the severity of toxicity experienced for a given dose of RT. Some of this difference may be the result of differences between the planned dose and the accumulated dose (DA). However, some may be owing to intrinsic differences in radiosensitivity of the normal tissues between individuals. This field has been developing rapidly, with the demonstration of definite associations between genetic polymorphisms and variation in toxicity recently described. It might be possible to identify more resistant patients who would be suitable for dose escalation, as well as more sensitive patients for whom toxicity could be reduced or avoided. Daily differences in delivered dose have been investigated within the VoxTox research programme, using the rectum as an example organ at risk. In patients with prostate cancer receiving curative RT, considerable daily variation in rectal position and dose can be demonstrated, although the median position matches the planning scan well. Overall, in 10 patients, the mean difference between

  13. Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management

    NASA Astrophysics Data System (ADS)

    Fontanarosa, Davide; van der Meer, Skadi; Bamber, Jeffrey; Harris, Emma; O'Shea, Tuathan; Verhaegen, Frank

    2015-02-01

    In modern radiotherapy, verification of the treatment to ensure the target receives the prescribed dose and normal tissues are optimally spared has become essential. Several forms of image guidance are available for this purpose. The most commonly used forms of image guidance are based on kilovolt or megavolt x-ray imaging. Image guidance can also be performed with non-harmful ultrasound (US) waves. This increasingly used technique has the potential to offer both anatomical and functional information. This review presents an overview of the historical and current use of two-dimensional and three-dimensional US imaging for treatment verification in radiotherapy. The US technology and the implementation in the radiotherapy workflow are described. The use of US guidance in the treatment planning process is discussed. The role of US technology in inter-fraction motion monitoring and management is explained, and clinical studies of applications in areas such as the pelvis, abdomen and breast are reviewed. A companion review paper (O’Shea et al 2015 Phys. Med. Biol. submitted) will extensively discuss the use of US imaging for intra-fraction motion quantification and novel applications of US technology to RT.

  14. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    PubMed Central

    de Moraes, Fabio Ynoe; Taunk, Neil Kanth; Laufer, Ilya; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; de Andrade Carvalho, Heloisa; Yamada, Yoshiya

    2016-01-01

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and nonrandomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. PMID:26934240

  15. Radiotherapy in Ewing tumors of the vertebrae: Treatment results and local relapse analysis of the Chess 81/86 and EICESS 92 trials

    SciTech Connect

    Schuck, Andreas . E-mail: schuck@uni-muenster.de; Ahrens, Susanne; Schorlemer, Ines von; Kuhlen, Michaela; Paulussen, Michael; Hunold, Andrea; Gosheger, Georg; Winkelmann, Winfried; Dunst, Juergen; Willich, Normann; Juergens, Heribert

    2005-12-01

    Purpose: Treatment results in patients with Ewing tumors of the vertebrae enrolled in the Cooperative Ewing's Sarcoma Study (CESS) 81, 86, and the European Intergroup Cooperative Ewing's Sarcoma Study (EICESS) 92 trials were analyzed with special emphasis on radiation-associated factors. Patients and Methods: A retrospective analysis was performed on 116 patients with primary tumors of the cervical, thoracic, or lumbar vertebrae treated between 1981 and 1999. Furthermore, a relapse analysis was done on those patients who underwent radiotherapy and subsequently had a local recurrence. Results: A total of 64.6% of the patients received definitive radiotherapy; 27.5% of patients had surgery and radiotherapy. Only 4 patients (3.4%) underwent definitive surgery. Twenty-seven patients presented with metastases at diagnosis. 22.4% of the total group developed a local relapse. Among the subgroup with definitive radiotherapy, local recurrence was seen in 17 of 75 patients (22.6%). Event-free survival and survival at 5 years were 47% and 58%, respectively. Of the 14 evaluable patients with a local relapse after radiotherapy, 13 were in-field. No correlation between radiation dose and local control could be found. Conclusion: Surgery with wide resection margins is rarely possible. The results after definitive radiotherapy in vertebral tumors are comparable to those of other tumor sites when definitive radiotherapy is given. Nearly all local relapses after radiotherapy are in-field.

  16. Radiotherapy for the treatment of pain in malignant pleural mesothelioma: a systematic review.

    PubMed

    Macleod, N; Price, A; O'Rourke, N; Fallon, M; Laird, B

    2014-02-01

    Radiotherapy is commonly used to treat pain in malignant pleural mesothelioma (MPM). The purpose of this systematic review is to examine the evidence for this practice. Medline (1946-2013), Embase (1974-2013) and Central (The Cochrane Library Issue 9, 2012) databases were searched. Eligible studies met the following criteria: MPM (histological or radiological diagnosis), radiotherapy given with the intent of improving pain, response rates to radiotherapy reported, dose and fractionation reported and the relationship between radiotherapy and pain response explored. All studies had independent review and were graded according to evidence level. Eight studies met the eligibility criteria. Two studies were prospective single arm phase II studies while the remainder were retrospective case series. All were graded as either Level 2 or Level 3 evidence. Due to marked heterogeneity among studies, quantitative synthesis of results was not possible. No high quality evidence currently exists to support radiotherapy in treating pain in MPM. Studies focusing on clear pain endpoints and improving target delineation are needed. Such studies should also use modern radiotherapy techniques and concentrate on dose escalation.

  17. A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning

    SciTech Connect

    Wu, Vincent W.C.; Tse, Teddy K.H.; Ho, Cola L.M.; Yeung, Eric C.Y.

    2013-07-01

    Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each case by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time.

  18. Treatment planning considerations in contrast-enhanced radiotherapy: energy and beam aperture optimization.

    PubMed

    Garnica-Garza, H M

    2011-01-21

    It has been shown that the use of kilovoltage x-rays in conjunction with a contrast agent incorporated into the tumor can lead to acceptable treatment plans with regard to the absorbed dose distribution produced in the target as well as in the tissue and organs at risk surrounding it. In this work, several key aspects related to the technology and irradiation techniques necessary to clinically implement this treatment modality are addressed by means of Monte Carlo simulation. The Zubal phantom was used to model a prostate radiotherapy treatment, a challenging site due to the depth of the prostate and the presence of bony structures that must be traversed by the x-ray beam on its way to the target. It is assumed that the concentration levels of the enhancing agent present in the tumor are at or below 10 mg per 1 g of tissue. The Monte Carlo code PENELOPE was used to model a commercial x-ray tube having a tungsten target. X-ray energy spectra for several combinations of peak electron energy and added filtration were obtained. For each energy spectrum, a treatment plan was calculated, with the PENELOPE Monte Carlo code, by modeling the irradiation of the patient as 72 independent conformal beams distributed at intervals of 5° around the phantom in order to model a full x-ray source rotation. The Cimmino optimization algorithm was then used to find the optimum beam weight and energy for different treatment strategies. It is shown that for a target dose prescription of 72 Gy covering the whole tumor, the maximum rectal wall and bladder doses are kept below 52 Gy for the largest concentration of contrast agent of 10 mg per 1 g of tissue. It is also shown that concentrations of as little as 5 mg per 1 g of tissue also render dose distributions with excellent sparing of the organs at risk. A treatment strategy to address the presence of non-uniform distributions of the contrast agent in the target is also modeled and discussed.

  19. [{sup 18}FDG] PET-CT-Based Intensity-Modulated Radiotherapy Treatment Planning of Head and Neck Cancer

    SciTech Connect

    El-Bassiouni, Mazen; Ciernik, I. Frank Davis, J. Bernard; El-Attar, Inas; Reiner, Beatrice; Burger, Cyrill; Goerres, Gerhard W.; Studer, Gabriela M.

    2007-09-01

    Purpose: To define the best threshold for tumor volume delineation of the (18) fluoro-2-deoxy-glucose positron emission tomography ({sup 18}FDG-PET) signal for radiotherapy treatment planning of intensity-modulated radiotherapy (IMRT) in head and neck cancer. Methods and Materials: In 25 patients with head-and-neck cancer, CT-based gross tumor volume (GTV{sub CT}) was delineated. After PET-CT image fusion, window level (L) was adapted to best fit the GTV{sub CT}, and GTV{sub PET} was delineated. Tumor maximum (S) and background uptake (B) were measured, and the threshold of the background-subtracted tumor maximum uptake (THR) was used for PET signal segmentation. Gross tumor volumes were expanded to planning target volumes (PTVs) and analyzed. Results: The mean value of S was 40 kBq/mL, S/B ratio was 16, and THR was 26%. The THR correlated with S (r = -0.752), but no correlation between THR and the S/B ratio was seen (r = -0.382). In 77% of cases, S was >30 kBq/mL, and in 23% it was {<=}30 kBq/mL, with a mean THR of 21.4% and 41.6%, respectively (p < 0.001). Using PTV{sub PET} in radiotherapy treatment planning resulted in a reduced PTV in 72% of cases, while covering 88.2% of GTV{sub CT}, comparable to the percentage of GTV{sub PET} covered by PTV{sub CT} (p = 0.15). Conclusions: A case-specific PET signal threshold is optimal in PET-based radiotherapy treatment planning. Signal gating using a THR of 20% in tumors with S >30% {+-} 1.6% kBq/mL and 40% in tumors with S {<=}30% {+-} 1.6% kBq/mL is suitable.

  20. sup 211 At-methylene blue for targeted radiotherapy of human melanoma xenografts: Treatment of micrometastases

    SciTech Connect

    Link, E.M.; Carpenter, R.N. )

    1990-05-15

    Treatment of micrometastases of HX34 human melanoma grown as xenografts in nude mice represents an advanced stage of preclinical investigations concerning targeted radiotherapy of this neoplasm using 3,7-(dimethylamino)phenazathionium chloride methylene blue (MTB) labeled with astatine-211 (211At) (alpha-particle emitter). The therapeutic effectiveness of 211At-MTB administered i.v. was determined by a lung colony assay combined with a search for metastases to organs other than the lungs. A single dose of 211At-MTB lowered the HX34 cell surviving fraction in lungs to below 10% almost independently of the time interval between cell inoculation and radioisotope injection and of 211At-MTB radioactivity within its investigated range. Radiation dose and the time of its administration did, however, influence the size of lung colonies. In contrast, the efficacy of 211At-MTB treatment as assessed by both surviving fraction and colony size was significantly dependent on a number of HX34 cells inoculated initially into mice. These results are explained by a short range of alpha-particles emitted by 211At and a mechanism of growth of lung colonies from tumor cells circulating with blood and blocking lung capillaries. Metastases in organs other than lungs and characteristic of control animals were not found in mice treated with 211At-MTB. The high therapeutic efficacy achieved proved that 211At-MTB is a very efficient scavenger of single melanoma cells distributed through blood and micrometastases with sizes below the limit of clinical detection.

  1. Accuracy of Breath-hold CT in Treatment Planning for Lung Stereotactic Ablative Radiotherapy

    PubMed Central

    Martel, Charles; Campeau, Marie-Pierre; Filion, Édith; Roberge, David; Bahig, Houda; Vu, Toni; Lambert, Louise; Boudam, Karim; Carrier, Jean-Francois

    2014-01-01

    Purpose: The objectives of this study are (1) to measure concordance of tumor position on breath-hold (BH) computed tomography (CT) scans relative to the natural tumor path during free breathing (FB) and (2) to evaluate the benefits of the breathing monitoring device Abches (Apex Medical, Tokyo) for stereotactic ablative radiotherapy (SABR) treatment planning. Methods: In 53 lung cancer patients treated with CyberKnife™ robotic radiosurgery system, FB four-dimensional computerized tomography (4DCT) and end-expiration (EE) BH CT images were obtained. Extent of natural tumor motion was assessed with rigid registration derived from end-inspiration (EI) and EE phases of the 4DCT. Tumor displacement in BH scans relative to the natural tumor path was measured relative to the EE 4DCT phase. Results: Mean tumor motion (+/- 1 SD) during natural FB was 1 ± 1 mm, 2 ± 2 mm, and 6 ± 6 mm in medio-lateral, anterior-posterior, and cranio-caudal directions, respectively. Tumor position on BH CT scan was closer to EE than EI 4DCT phase for 35/53 patients (66%). Difference of BH tumor position vs. EE state was 4 ± 3 mm. Gross tumor displacements perpendicular to natural tumor path were as great as 11 mm (anterior-posterior) and were seen with or without the breathing monitoring device. Conclusion: Tumor position during BH CT may not accurately correspond to positions observed on FB 4DCT. Hence, accurate and custom 4D analysis for each individual patient is recommended for treatment planning, especially those involving BH acquisitions. PMID:28003937

  2. Postoperative radiotherapy for oral cavity cancers: Impact of anatomic subsite on treatment outcome

    SciTech Connect

    Zelefsky, M.J.; Harrison, L.B.; Fass, D.E.; Armstrong, J.; Spiro, R.H.; Shah, J.P.; Strong, E.W. )

    1990-11-01

    We have retrospectively reviewed the treatment results of postoperative radiotherapy (RT) for advanced oral cavity cancers. The purpose of this study was to determine the impact of anatomic subsite on the results of treatment. Between 1975 and 1985, 51 patients with squamous cell carcinoma of the oral tongue (OT = 29 patients) and floor of mouth (FOM = 22 patients) were treated with combined surgery plus RT. All had an indication(s) for RT including advanced primary disease (T3 or T4) (29 patients), close or positive margins (34 patients), and multiple positive neck nodes and/or extracapsular extension (41 patients). With a median follow-up of 6 years, the 5-year actuarial local control rate was 74% and the rate of distant metastasis (DM) was 34%. Despite the similar T stage, margin status and median RT dose, the 5-year actuarial local failure rate was 38% for OT vs. 11% for FOM (p = 0.03). Furthermore, the median survival after recurrence was 9 months for OT and 40 months for FOM (p = 0.02). At 5 years the determinate survival for both sites was (55%), and the likelihood of developing a second malignancy was 31%. The likelihood of developing DM was 50% for FOM (N0-N1 = 3 of 12, N2-N3 = 8 of 10) and 21% for OT (N0-N1 = 4 of 21, N2-N3 = 1 of 8). This study highlights significant differences between FOM and OT cancers in response to combined surgery and RT. Future strategies should be directed at the enhancement of local control for OT and better systemic therapy for those with advanced N-stage FOM.

  3. Effectiveness of Carbon Ion Radiotherapy in the Treatment of Skull-Base Chordomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Karger, Christian P.; Feuerhake, Alexandra; Nikoghosyan, Anna; Combs, Stephanie E.; Jaekel, Oliver; Edler, Lutz; Scholz, Michael; Debus, Juergen

    2007-06-01

    Purpose: The aim of this study was to evaluate the effectiveness and toxicity of carbon ion radiotherapy in chordomas of the skull base. Methods and Materials: Between November 1998 and July 2005, a total of 96 patients with chordomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt, Germany. All patients had gross residual tumors. Median total dose was 60 CGE (range, 60-70 CGE) delivered in 20 fractions within 3 weeks. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and the Radiation Therapy Oncology Group (RTOG) / European Organization for Research and Treatment of Cancer (EORTC) score. Results: Mean follow-up was 31 months (range, 3-91 months). Fifteen patients developed local recurrences after carbon ion RT. The actuarial local control rates were 80.6% and 70.0% at 3 and 5 years, respectively. Target doses in excess of 60 CGE and primary tumor status were associated with higher local control rates. Overall survival was 91.8% and 88.5% at 3 and 5 years, respectively. Late toxicity consisted of optic nerve neuropathy RTOG/EORTC Grade 3 in 4.1% of the patients and necrosis of a fat plomb in 1 patient. Minor temporal lobe injury (RTOG/EORTC Grade 1-2) occurred in 7 patients (7.2%). Conclusions: Carbon ion RT offers an effective treatment option for skull-base chordomas with acceptable toxicity. Doses in excess of 75 CGE with 2 CGE per fraction are likely to increase local control probability.

  4. Radiotherapy Is Associated With Improved Survival in Adjuvant and Palliative Treatment of Extrahepatic Cholangiocarcinomas

    SciTech Connect

    Shinohara, Eric T. Mitra, Nandita; Guo Mengye; Metz, James M.

    2009-07-15

    Purpose: Extrahepatic cholangiocarcinomas (EHC) are rare tumors of the biliary tree because of their low incidence, large randomized studies examining radiotherapy (RT) for EHC have not been performed. The purpose of this study was to examine the role of adjuvant and palliative RT in the treatment of EHC in a large patient population. Methods and Materials: This was a retrospective analysis of 4,758 patients with EHC collected from the Surveillance, Epidemiology, and End Results database. The primary endpoint was overall survival. Results: Patients underwent surgery (28.8%), RT (10.0%), surgery and RT (14.7%), or no RT or surgery (46.4%). The median age of the patient population was 73 years (range, 23-104), 52.5% were men, and 80.7% were white. The median overall survival time was 16 months (95% confidence interval [CI] 15-17), 9 months (95% CI 9-11), 9 months (95% CI 9-10), and 4 months (95% CI 3-4) for surgery and RT, surgery, RT, and no RT or surgery, respectively. The overall survival was significantly different between the surgery and surgery and RT groups (p < .0001) and RT and no RT or surgery groups (p < .0001) on the log-rank test. The propensity score-adjusted analyses of surgery and RT vs. surgery (hazard ratio, 0.94; 95% CI, 0.84-1.05) were not significantly different, but that for RT vs. no RT or surgery (hazard ratio, 0.61; 95% CI, 0.54-0.70) was significantly different. Conclusion: These results suggest that palliative RT prolongs survival in patients with EHC. The benefit associated with surgery and RT was significant on univariate analysis but not after controlling for potential confounders using the propensity score. Future studies should evaluate the addition of chemotherapy and biologic agents for the treatment of EHC.

  5. SU-E-T-148: Efficient Verification Method for Modulated Electron Radiotherapy Treatment Plans

    SciTech Connect

    Henzen, D; Chatelain, C; Manser, P; Frei, D; Volken, W; Joosten, A; Loessl, K; Aebersold, D M; Fix, M K; Neuenschwander, H

    2014-06-01

    Purpose: For shallow tumors, modulated electron radiotherapy (MERT) promises a reduction of dose to distal organs at risk. At our institution a framework was developed in order to create treatment plans for MERT employing both forward and inverse optimization. In this work, an efficient quality assurance (QA) process is established. Methods: Treatment plans for three different tumor sites were created using an inverse optimization. These plans consist of 6–12 segments and energies between 6 and 18 MeV. An already established QA process for photon IMRT plans is now extended to additionally handle MERT plans. First, the dose distributions are calculated in a homogenous water phantom. For this task a dedicated Monte Carlo (MC) framework for MERT is used. Second, the segments are applied on a stand-alone amorphous silicon electronic portal imaging device (EPID) using a source-to-surface distance of 70 cm. This device was calibrated for electron beams in a previous work. An in-house developed analysis software, is then utilized for comparisons and evaluation of the measured and calculated dose distributions. Results: For all three plans the calculated dose distributions agree well with the measured ones. Using a 2D gamma comparison (2% of dose max/2 mm and 10% dose threshold) passing rates >98% are achieved.The dose calculation for each plan on the water phantom, using voxels of 0.2×0.2×0.2 cm{sup 3}, takes at maximum 30 min on a single core Pentium 2.66 GHz system with 6 GB RAM, to reach a statistical uncertainty of 2% (1 std. dev.). Conclusion: An already established QA procedure for IMRT photon plans was applied for MERT. The dedicated MC framework and the use of EPID measurements allow an efficient QA procedure in a clinical environment. This work was supported by Varian Medical Systems.

  6. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Purdie, Thomas G.

    2017-01-01

    Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.

  7. A geometric atlas to predict lung tumor shrinkage for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Zhang, Pengpeng; Rimner, Andreas; Yorke, Ellen; Hu, Yu-Chi; Kuo, Licheng; Apte, Aditya; Lockney, Natalie; Jackson, Andrew; Mageras, Gig; Deasy, Joseph O.

    2017-02-01

    To develop a geometric atlas that can predict tumor shrinkage and guide treatment planning for non-small-cell lung cancer. To evaluate the impact of the shrinkage atlas on the ability of tumor dose escalation. The creation of a geometric atlas included twelve patients with lung cancer who underwent both planning CT and weekly CBCT for radiotherapy planning and delivery. The shrinkage pattern from the original pretreatment to the residual posttreatment tumor was modeled using a principal component analysis, and used for predicting the spatial distribution of the residual tumor. A predictive map was generated by unifying predictions from each individual patient in the atlas, followed by correction for the tumor’s surrounding tissue distribution. Sensitivity, specificity, and accuracy of the predictive model for classifying voxels inside the original gross tumor volume were evaluated. In addition, a retrospective study of predictive treatment planning (PTP) escalated dose to the predicted residual tumor while maintaining the same level of predicted complication rates for a clinical plan delivering uniform dose to the entire tumor. The effect of uncertainty on the predictive model’s ability to escalate dose was also evaluated. The sensitivity, specificity and accuracy of the predictive model were 0.73, 0.76, and 0.74, respectively. The area under the receiver operating characteristic curve for voxel classification was 0.87. The Dice coefficient and mean surface distance between the predicted and actual residual tumor averaged 0.75, and 1.6 mm, respectively. The PTP approach allowed elevation of PTV D95 and mean dose to the actual residual tumor by 6.5 Gy and 10.4 Gy, respectively, relative to the clinical uniform dose approach. A geometric atlas can provide useful information on the distribution of resistant tumors and effectively guide dose escalation to the tumor without compromising the organs at risk complications. The atlas can be further refined by using

  8. Monte Carlo study of neutron-ambient dose equivalent to patient in treatment room.

    PubMed

    Mohammadi, A; Afarideh, H; Abbasi Davani, F; Ghergherehchi, M; Arbabi, A

    2016-12-01

    This paper presents an analytical method for the calculation of the neutron ambient dose equivalent H* (10) regarding patients, whereby the different concrete types that are used in the surrounding walls of the treatment room are considered. This work has been performed according to a detailed simulation of the Varian 2300C/D linear accelerator head that is operated at 18MV, and silver activation counter as a neutron detector, for which the Monte Carlo MCNPX 2.6 code is used, with and without the treatment room walls. The results show that, when compared to the neutrons that leak from the LINAC, both the scattered and thermal neutrons are the major factors that comprise the out-of field neutron dose. The scattering factors for the limonite-steel, magnetite-steel, and ordinary concretes have been calculated as 0.91±0.09, 1.08±0.10, and 0.371±0.01, respectively, while the corresponding thermal factors are 34.22±3.84, 23.44±1.62, and 52.28±1.99, respectively (both the scattering and thermal factors are for the isocenter region); moreover, the treatment room is composed of magnetite-steel and limonite-steel concretes, so the neutron doses to the patient are 1.79 times and 1.62 times greater than that from an ordinary concrete composition. The results also confirm that the scattering and thermal factors do not depend on the details of the chosen linear accelerator head model. It is anticipated that the results of the present work will be of great interest to the manufacturers of medical linear accelerators.

  9. Ultrafast Room-Temperature Crystallization of TiO2 Nanotubes Exploiting Water-Vapor Treatment

    NASA Astrophysics Data System (ADS)

    Lamberti, Andrea; Chiodoni, Angelica; Shahzad, Nadia; Bianco, Stefano; Quaglio, Marzia; Pirri, Candido F.

    2015-01-01

    In this manuscript a near-room temperature crystallization process of anodic nanotubes from amorphous TiO2 to anatase phase with a fast 30 minutes treatment is reported for the first time. This method involves the exposure of as-grown TiO2 nanotubes to water vapor flow in ambient atmosphere. The water vapor-crystallized samples are deeply investigated in order to gain a whole understanding of their structural, physical and chemical properties. The photocatalytic activity of the converted material is tested by dye degradation experiment and the obtained performance confirms the highly promising properties of this low-temperature processed material.

  10. Radiotherapy Treatment Plans With RapidArc for Prostate Cancer Involving Seminal Vesicles and Lymph Nodes

    SciTech Connect

    Yoo, Sua; Wu, Q. Jackie; Lee, W. Robert; Yin Fangfang

    2010-03-01

    Purpose: Dosimetric results and treatment delivery efficiency of RapidArc plans to those of conventional intensity-modulated radiotherapy (IMRT) plans were compared using the Eclipse treatment planning system for high-risk prostate cancer. Materials and Methods: This study included 10 patients. The primary planning target volume (PTV{sub P}) contained prostate, seminal vesicles, and pelvic lymph nodes with a margin. The boost PTV (PTV{sub B}) contained prostate and seminal vesicles with a margin. The total prescription dose was 75.6 Gy (46.8 Gy to PTV{sub P} and an additional 28.8 Gy to PTV{sub B}; 1.8 Gy/fraction). Three plans were generated for each PTV: Multiple-field IMRT, one-arc RapidArc (1ARC), and two-arc RapidArc (2ARC). Results: In the primary IMRT with PTV{sub P}, average mean doses to bladder, rectum and small bowel were lower by 5.9%, 7.7% and 4.3%, respectively, than in the primary 1ARC and by 3.6%, 4.8% and 3.1%, respectively, than in the primary 2ARC. In the boost IMRT with PTV{sub B}, average mean doses to bladder and rectum were lower by 2.6% and 4.8% than with the boost 1ARC and were higher by 0.6% and 0.2% than with the boost 2ARC. Integral doses were 7% to 9% higher with RapidArc than with IMRT for both primary and boost plans. Treatment delivery time was reduced by 2-7 minutes using RapidArc. Conclusion: For PTVs including prostate, seminal vesicles, and lymph nodes, IMRT performed better in dose sparing for bladder, rectum, and small bowel than did RapidArc. For PTVs including prostate and seminal vesicles, RapidArc with two arcs provided plans comparable to those for IMRT. The treatment delivery is more efficient with RapidArc.

  11. Forward treatment planning for modulated electron radiotherapy (MERT) employing Monte Carlo methods

    SciTech Connect

    Henzen, D. Manser, P.; Frei, D.; Volken, W.; Born, E. J.; Lössl, K.; Aebersold, D. M.; Fix, M. K.; Neuenschwander, H.; Stampanoni, M. F. M.

    2014-03-15

    Purpose: This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). Methods: As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. Results: The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V{sub 95%} increased from 90% to 96% and V{sub 107%} decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan

  12. A prospective longitudinal study of voice characteristics and health-related quality of life outcomes following laryngeal cancer treatment with radiotherapy.

    PubMed

    Karlsson, Therese; Bergström, Liza; Ward, Elizabeth; Finizia, Caterina

    2016-06-01

    Background To investigate potential changes in perceptual, acoustic and patient-reported outcomes over 12 months for laryngeal cancer patients treated with radiotherapy. Material and methods A total of 40 patients with Tis-T3 laryngeal cancer treated with curative intent by radiotherapy were included in this prospective longitudinal descriptive study. Patients were followed pre-radiotherapy, one month, six months and 12 months post-radiotherapy, where voice recordings and patient-reported outcome instruments (European Organization for Research and Treatment of Cancer Quality-of-Life Questionnaire Core30, Head and Neck35, Swedish Self-Evaluation of Communication Experiences after Laryngeal Cancer) were completed at each appointment. Perceptual analysis, using the Grade-Roughness-Breathiness-Asthenia-Strain scale and vocal fry parameters, and acoustic measures including harmonics-to-noise ratio (HNR), jitter, shimmer and mean spoken fundamental frequency (MSFF) were produced from voice recordings. Results All patients presented with dysphonic voices pre-radiotherapy, where 95% demonstrated some degree of vocal roughness. This variable improved significantly immediately post-radiotherapy, however, then deteriorated again between six and 12 months. Vocal fry also increased significantly at 12 months. Acoustic measures were abnormal pre- and post-treatment with no significant change noted except for MSFF, which lowered significantly by 12 months. Health-related quality of life (HRQL) deteriorated post-radiotherapy but returned to pretreatment levels by 12 months. Conclusion By 12 months, most perceptual, acoustic, patient-reported voice and HRQL outcomes for laryngeal cancer patients treated by radiotherapy had showed no significant improvements compared to pretreatment function. Further studies are required to investigate potential benefits of voice rehabilitation following radiotherapy.

  13. Combined treatment of anaplastic thyroid carcinoma with surgery, chemotherapy, and hyperfractionated accelerated external radiotherapy

    SciTech Connect

    De Crevoisier, Renaud . E-mail: rdecrevo@mdanderson.org; Baudin, Eric; Bachelot, Anne; Leboulleux, Sophie; Travagli, Jean-Paul; Caillou, Bernard; Schlumberger, Martin

    2004-11-15

    Purpose: To analyze a prospective protocol combining surgery, chemotherapy (CT), and hyperfractionated accelerated radiotherapy (RT) in anaplastic thyroid carcinoma. Methods and materials: Thirty anaplastic thyroid carcinoma patients (mean age, 59 years) were treated during 1990-2000. Tumor extended beyond the capsule gland in 26 patients, with tracheal extension in 8. Lymph node metastases were present in 18 patients and lung metastases in 6. Surgery was performed before RT-CT in 20 patients and afterwards in 4. Two cycles of doxorubicin (60 mg/m{sup 2}) and cisplatin (120 mg/m{sup 2}) were delivered before RT and four cycles after RT. RT consisted of two daily fractions of 1.25 Gy, 5 days per week to a total dose of 40 Gy to the cervical lymph node areas and the superior mediastinum. Results: Acute toxicity (World Health Organization criteria) was Grade 3 or 4 pharyngoesophagitis in 10 patients; Grade 4 neutropenia in 21, with infection in 13; and Grade 3 or 4 anemia and thrombopenia in 8 and 4, respectively. At the end of the treatment, a complete local response was observed in 19 patients. With a median follow-up of 45 months (range, 12-78 months), 7 patients were alive in complete remission, of whom 6 had initially received a complete tumor resection. Overall survival rate at 3 years was 27% (95% confidence interval 10-44%) and median survival 10 months. In multivariate analysis, tracheal extension and macroscopic complete tumor resection were significant factors in overall survival. Death was related to local progression in 5% of patients, to distant metastases in 68%, and to both in 27%. Conclusions: Main toxicity was hematologic. High long-term survival was obtained when RT-CT was given after complete surgery. This protocol avoided local tumor progression, and death was mainly caused by distant metastases.

  14. Pulmonary Changes After Radiotherapy for Conservative Treatment of Breast Cancer: A Prospective Study

    SciTech Connect

    Krengli, Marco Sacco, Mariano; Loi, Gianfranco; Masini, Laura; Ferrante, Daniela; Gambaro, Giuseppina; Ronco, Marco; Magnani, Corrado; Carriero, Alessandro

    2008-04-01

    Purpose: Radiotherapy (RT) after conservative surgery for breast cancer involves part of the pulmonary parenchyma with a potential detrimental effect of reducing the normal functional reserve. Such an effect deserves to be studied in depth, considering the given long life expectancy of these women. We prospectively analyzed high-resolution computed tomography (HRCT) and pulmonary function tests (PFTs) with correlation with dosimetric data from RT. Methods and Materials: Lung HRCT and PFTs were performed in 41 women who had undergone conservative surgery for breast cancer before and 3 and 9 months after postoperative RT. The PFTs included forced vital capacity, forced expiratory volume in 1 s, total lung capacity, maximal expiratory flow at 50% and 25% of vital capacity, and the diffusion capacity of carbon monoxide. HRCT was matched with the RT treatment plan images to analyze the dosimetric correlation. Results: At 3 months after RT, the lung alterations were classified at HRCT as follows: 46.3% were Grade 1, 24.4% Grade 2, and 7.3% Grade 3, and at 9 months, 58.5% were Grade 1, 19.5% Grade 2, and 0% Grade 3. The PFTs showed a significant decrease at 3 months, with only partial recovery at 9 months. Chemotherapy, but not hormonal therapy, was associated with PFT changes. The grade of fibrosis increased with increasing lung volume treated to a dose {>=}25 Gy. Conclusion: Lung changes, mainly related to damage to the alveolar-capillary barrier and smallest airway ramifications, were observed at 3 months, with only partial recovery at 9 months after RT. Minimizing the lung volume receiving {>=}25 Gy could reduce pulmonary toxicity.

  15. Adjunctive radiotherapy with strontium-90 in the treatment of conjunctival squamous cell carcinoma

    SciTech Connect

    Kearsley, J.H.; Fitchew, R.S.; Taylor, R.G.

    1988-03-01

    Squamous cell carcinoma of the ocular conjunctiva is a relatively rare malignancy which is attended by a high rate of local recurrence following simple surgical excision. To date, the management of conjunctival squamous cell cancer has been controversial. From 1950 to 1985, 146 consecutive patients with superficial conjunctival squamous cell cancer were treated at the Queensland Radium Institute. All patients were treated by simple surgical excision of the visible conjunctival lesion followed by adjunctive radiotherapy. Of 140 patients with histologically confirmed squamous cell cancer, 123 were treated with a strontium-90 source, 10 with a radon ring, and 7 with superficial X ray therapy. Standard policy since 1960 has been to deliver an incident dose of 30 Gy in a single fraction within the first 48 post-operative hours to the surgical bed using a strontium-90 source on a stand-off eye applicator. This report will largely focus on the 123 patients who were treated with a strontium-90 source, of whom 107 received 30 Gy, 14 received 40 Gy (pre 1960) and one patient each received 20 and 25 Gy incident dose. Of 131 evaluable patients, there were only 3 who developed local recurrence. All 3 local recurrences developed in elderly men who had presented with extensive superficial primary tumors. Two of the three recurrences occurred in the two patients who were treated with doses less than 30 Gy. Both early and late radiation-induced complications following ablative surgery and treatment with strontium-90 were very uncommon. Three patients developed unsightly conjunctival telangiectasia, 2 patients developed a persistent scleral ulcer and 2 patients developed clinically significant cataracts.

  16. 0-7-21 hypofractionated palliative radiotherapy: an effective treatment for advanced head and neck cancers

    PubMed Central

    Doerwald-Munoz, L; Zhang, H; Kim, D-H; Sagar, S; Wright, J R; Hodson, D I

    2015-01-01

    Objective: We report our experience in providing palliative radiotherapy (RT) to patients with head and neck cancers (HNCs). Our hypofractionated regimen, “0-7-21”, treats patients with 24 Gy in three fractions. Methods: Patients, disease and response data were retrieved for candidates of 0-7-21 from 2005 to 2012. Primary end points included symptom and tumour size responses to RT based on response evaluation criteria in solid tumours (RECIST) guidelines. Secondary end points included progression-free survival (PFS) within the irradiated field, overall survival (OS) and symptomatic PFS (SPFS), calculated using Kaplan–Meier method and adverse events. Cox proportional hazards regression and logistic regression were used to investigate for prognostic factors. Results: A total of 110 patients were included. Among the patients, 40% and 31% had complete response for symptoms and tumour size, respectively; 42% and 50% had partial response for symptoms and tumour size, respectively; and 15% had stability of symptoms and tumour size. Median 6-month OS was 51%, and PFS within the irradiated field was 39%. Planning target volume was predictive of OS (p < 0.001), PFS (p < 0.001) and SPFS (p < 0.005), while higher TNM stage was associated with poorer tumour response (p = 0.02). Conclusion: 0-7-21 is an effective and well-tolerated palliative RT regimen for patients with HNC. There was excellent symptom and local control with acceptable toxicity profile in these patients. Advances in knowledge: This is the first study to describe the outcomes of 0-7-21 in treating advanced HNCs. The positive results suggest that 0-7-21 provides excellent palliation with minimal toxicity, with significantly less on-treatment time than current published palliative RT regimen. PMID:25694259

  17. New insights for pelvic radiation disease treatment: Multipotent stromal cell is a promise mainstay treatment for the restoration of abdominopelvic severe chronic damages induced by radiotherapy

    PubMed Central

    Chapel, Alain; Francois, Sabine; Douay, Luc; Benderitter, Marc; Voswinkel, Jan

    2013-01-01

    Radiotherapy may induce irreversible damage on healthy tissues surrounding the tumor. It has been reported that the majority of patients receiving pelvic radiation therapy show early or late tissue reactions of graded severity as radiotherapy affects not only the targeted tumor cells but also the surrounding healthy tissues. The late adverse effects of pelvic radiotherapy concern 5% to 10% of them, which could be life threatening. However, a clear medical consensus concerning the clinical management of such healthy tissue sequelae does not exist. Although no pharmacologic interventions have yet been proven to efficiently mitigate radiotherapy severe side effects, few preclinical researches show the potential of combined and sequential pharmacological treatments to prevent the onset of tissue damage. Our group has demonstrated in preclinical animal models that systemic mesenchymal stromal cell (MSC) injection is a promising approach for the medical management of gastrointestinal disorder after irradiation. We have shown that MSCs migrate to damaged tissues and restore gut functions after irradiation. We carefully studied side effects of stem cell injection for further application in patients. We have shown that clinical status of four patients suffering from severe pelvic side effects resulting from an over-dosage was improved following MSC injection in a compationnal situation. PMID:24179599

  18. Radioactive EGFR Antibody Cetuximab in Multimodal Cancer Treatment: Stability and Synergistic Effects With Radiotherapy

    SciTech Connect

    Rades, Dirk; Wolff, Christian; Nadrowitz, Roger; Breunig, Christian; Schild, Steven E.; Baehre, Manfred; Meller, Birgit

    2009-11-15

    Purpose: Systemic therapies when added to whole brain radiotherapy have failed to improve the survival of patients with multiple brain metastases. The epidermal growth factor receptor antibody cetuximab is an attractive option, if it is able to cross the blood-brain barrier. This might be proven with molecular imaging if the radiolabeled antibody is stable long enough to be effective. This study investigated the stability of radiolabeled cetuximab (Erbitux) ({sup 131}I-Erbi) and potential synergistic effects with radiotherapy in vitro. Methods and Materials: Two cell lines were investigated, A431 with numerous epidermal growth factor receptors, and JIMT without epidermal growth factor receptors. We labeled 0.4 mg cetuximab with 50 MBq of [{sup 131}I] iodide. Stability was determined for 72 h. The cell cultures were incubated with {sup 131}I-Erbi or cold cetuximab for 72 h. Uptake and cell proliferation were measured every 24 h after no radiotherapy or irradiation with 2, 4, or 10 Gy. Results: The radiolabeling yield of {sup 131}I-Erbi was always >80%. The radiochemical purity was still 93.6% after 72 h. A431 cells showed a {sup 131}I-Erbi uptake about 100-fold greater than the JIMT controls. After 48 h, the A431 cultures showed significantly decreased proliferation. At 72 h after irradiation, {sup 131}I-Erbi resulted in more pronounced inhibition of cell proliferation than the cold antibody in all radiation dose groups. Conclusion: {sup 131}I-Erbi was stable for <=72 h. Radiotherapy led to increased tumor cell uptake of {sup 131}I-Erbi. Radiotherapy and {sup 131}I-Erbi synergistically inhibited tumor cell proliferation. These results provide the prerequisite data for a planned in vivo study of whole brain radiotherapy plus cetuximab for brain metastases.

  19. Evaluating changes in tumor volume using magnetic resonance imaging during the course of radiotherapy treatment of high-grade gliomas: Implications for conformal dose-escalation studies

    SciTech Connect

    Tsien, Christina . E-mail: ctsien@umich.edu; Gomez-Hassan, Diana; Haken, Randall K. ten; Tatro, Daniel C.; Junck, L.; Chenevert, T.L.; Lawrence, T.

    2005-06-01

    Objective: To determine whether changes in tumor volume occur during the course of conformal 3D radiotherapy of high-grade gliomas by use of magnetic resonance imaging (MRI) during treatment and whether these changes had an impact on tumor coverage. Methods and Materials: Between December 2000 and January 2004, 21 patients with WHO Grades 3 to 4 supratentorial malignant gliomas treated with 3D conformal radiotherapy (median dose, 70 Gy) were enrolled in a prospective clinical study. All patients underwent T1-weighted contrast-enhancing and T2-weighted and fluid-attenuated inversion recovery (FLAIR) imaging at approximately 1 to 2 weeks before radiotherapy, during radiotherapy (Weeks 1 and 3), and at routine intervals thereafter. All MRI scans were coregistered to the treatment-planning CT. Gross tumor volume (GTV Pre-Rx) was defined from a postoperative T1-weighted contrast-enhancing MRI performed 1 to 2 weeks before start of radiotherapy. A second GTV (GTV Week 3) was defined by use of an MRI performed during Week 3 of radiotherapy. A uniform 0.5 cm expansion of the respective GTV, PTV (Pre-Rx), and PTV (Week 3) was applied to the final boost plan. Dose-volume histograms (DVH) were used to analyze any potential adverse changes in tumor coverage based on Week 3 MRI. Results: All MRI scans were reviewed independently by a neuroradiologist (DGH). Two patients were noted to have multifocal disease at presentation and were excluded from analysis. In 19 cases, changes in the GTV based on MRI at Week 3 during radiotherapy were as follows: 2 cases had an objective decrease in GTV ({>=}50%); 12 cases revealed a slight decrease in the rim enhancement or changes in cystic appearance of the GTV; 2 cases showed no change in GTV; and 3 cases demonstrated an increase in tumor volume. Both cases with objective decreases in GTV during treatment were Grade 3 tumors. No cases of tumor progression were noted in Grade 3 tumors during treatment. In comparison, three of 12 Grade 4

  20. Radiotherapy induced xerostomia: mechanisms, diagnostics, prevention and treatment--evidence based up to 2013.

    PubMed

    Kałużny, Jarosław; Wierzbicka, Małgorzata; Nogala, Hanna; Milecki, Piotr; Kopeć, Tomasz

    2014-01-01

    Definition and prevalence of xerostomia were shortly presented. Radiosensitivity of the salivary glands, mechanism, diagnostics, and possible prediction methods of the intensity of xerostomia in the pre-radiotherapy period are widely discussed. Prevention of xerostomia: salivary gland sparing radiotherapy, cytoprotective agents, preservation by stimulation with cholinergic muscarinic agonists, surgical transfer of submandibular glands according to ASCO Management Guidelines and Quality of Life Recommendations were cited. Oral Care Study Group (2010) therapeutic approaches for relieving xerostomia are referred. Current therapies, restricted to symptom relief such as oral hygiene with fluoride agents, antimicrobials to prevent dental caries, saliva substitutes to relieve symptoms, and sialogenic agents to stimulate saliva were also discussed.

  1. X-ray volumetric imaging in image-guided radiotherapy: The new standard in on-treatment imaging

    SciTech Connect

    McBain, Catherine A.; Henry, Ann M. . E-mail: catherine.mcbain@christie-tr.nwest.nhs.uk; Sykes, Jonathan; Amer, Ali; Marchant, Tom; Moore, Christopher M.; Davies, Julie; Stratford, Julia; McCarthy, Claire; Porritt, Bridget; Williams, Peter; Khoo, Vincent S.; Price, Pat

    2006-02-01

    Purpose: X-ray volumetric imaging (XVI) for the first time allows for the on-treatment acquisition of three-dimensional (3D) kV cone beam computed tomography (CT) images. Clinical imaging using the Synergy System (Elekta, Crawley, UK) commenced in July 2003. This study evaluated image quality and dose delivered and assessed clinical utility for treatment verification at a range of anatomic sites. Methods and Materials: Single XVIs were acquired from 30 patients undergoing radiotherapy for tumors at 10 different anatomic sites. Patients were imaged in their setup position. Radiation doses received were measured using TLDs on the skin surface. The utility of XVI in verifying target volume coverage was qualitatively assessed by experienced clinicians. Results: X-ray volumetric imaging acquisition was completed in the treatment position at all anatomic sites. At sites where a full gantry rotation was not possible, XVIs were reconstructed from projection images acquired from partial rotations. Soft-tissue definition of organ boundaries allowed direct assessment of 3D target volume coverage at all sites. Individual image quality depended on both imaging parameters and patient characteristics. Radiation dose ranged from 0.003 Gy in the head to 0.03 Gy in the pelvis. Conclusions: On-treatment XVI provided 3D verification images with soft-tissue definition at all anatomic sites at acceptably low radiation doses. This technology sets a new standard in treatment verification and will facilitate novel adaptive radiotherapy techniques.

  2. The Adjoint Method for The Optimization of Brachytherapy and Radiotherapy Patient Treatment Planning Procedures Using Monte Carlo Calculations

    SciTech Connect

    D.L. Henderson; S. Yoo; M. Kowalok; T.R. Mackie; B.R. Thomadsen

    2001-10-30

    The goal of this project is to investigate the use of the adjoint method, commonly used in the reactor physics community, for the optimization of radiation therapy patient treatment plans. Two different types of radiation therapy are being examined, interstitial brachytherapy and radiotherapy. In brachytherapy radioactive sources are surgically implanted within the diseased organ such as the prostate to treat the cancerous tissue. With radiotherapy, the x-ray source is usually located at a distance of about 1-metere from the patient and focused on the treatment area. For brachytherapy the optimization phase of the treatment plan consists of determining the optimal placement of the radioactive sources, which delivers the prescribed dose to the disease tissue while simultaneously sparing (reducing) the dose to sensitive tissue and organs. For external beam radiation therapy the optimization phase of the treatment plan consists of determining the optimal direction and intensity of beam, which provides complete coverage of the tumor region with the prescribed dose while simultaneously avoiding sensitive tissue areas. For both therapy methods, the optimal treatment plan is one in which the diseased tissue has been treated with the prescribed dose and dose to the sensitive tissue and organs has been kept to a minimum.

  3. Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study

    SciTech Connect

    Park, Jong Min; Kim, Jung-in; Heon Choi, Chang; Chie, Eui Kyu; Kim, Il Han; Ye, Sung-Joon

    2012-03-15

    Purpose: To demonstrate the feasibility of photon energy-modulated radiotherapy during beam-on time. Methods: A cylindrical device made of aluminum was conceptually proposed as an energy modulator. The frame of the device was connected with 20 tubes through which mercury could be injected or drained to adjust the thickness of mercury along the beam axis. In Monte Carlo (MC) simulations, a flattening filter of 6 or 10 MV linac was replaced with the device. The thickness of mercury inside the device varied from 0 to 40 mm at the field sizes of 5 x 5 cm{sup 2} (FS5), 10 x 10 cm{sup 2} (FS10), and 20 x 20 cm{sup 2} (FS20). At least 5 billion histories were followed for each simulation to create phase space files at 100 cm source to surface distance (SSD). In-water beam data were acquired by additional MC simulations using the above phase space files. A treatment planning system (TPS) was commissioned to generate a virtual machine using the MC-generated beam data. Intensity modulated radiation therapy (IMRT) plans for six clinical cases were generated using conventional 6 MV, 6 MV flattening filter free, and energy-modulated photon beams of the virtual machine. Results: As increasing the thickness of mercury, Percentage depth doses (PDD) of modulated 6 and 10 MV after the depth of dose maximum were continuously increased. The amount of PDD increase at the depth of 10 and 20 cm for modulated 6 MV was 4.8% and 5.2% at FS5, 3.9% and 5.0% at FS10 and 3.2%-4.9% at FS20 as increasing the thickness of mercury from 0 to 20 mm. The same for modulated 10 MV was 4.5% and 5.0% at FS5, 3.8% and 4.7% at FS10 and 4.1% and 4.8% at FS20 as increasing the thickness of mercury from 0 to 25 mm. The outputs of modulated 6 MV with 20 mm mercury and of modulated 10 MV with 25 mm mercury were reduced into 30%, and 56% of conventional linac, respectively. The energy-modulated IMRT plans had less integral doses than 6 MV IMRT or 6 MV flattening filter free plans for tumors located in the

  4. Prognostic factors and treatment outcome after radiotherapy in cervical cancer patients with isolated para-aortic lymph node metastases

    PubMed Central

    Jang, Hyunsoo; Cho, Oyeon; Heo, Jae Sung; Ryu, Hee-Sug; Chang, Suk-Joon

    2013-01-01

    Objective The purpose of the present study was to evaluate treatment outcomes and prognostic factors in cervical cancer patients with isolated para-aortic lymph node (PALN) metastases. We especially tried to evaluate PALN factors such as size, site and number. Methods From August 1994 to December 2009, 40 cervical cancer patients with isolated PALN node metastases at initial diagnosis were selected for analysis. Patients underwent both extended field external beam and intracavitary brachytherapy. Fourteen patients received 5-fluorouracil and cisplatin (FP) and 16 patients received weekly concurrent cisplatin. Information of PALN, such as size, site, and number, was founded before PALN radiotherapy. Results The median follow-up time after primary treatment was 28.5 months (range, 2 to 213 months). The 3-year overall and progression-free survival rate after primary treatment was 44.3% and 31.3%, respectively. In multivariate analysis including tumor stage, performance status, and chemotherapy, FP regimen concurrent chemoradiotherapy was more effective than radiotherapy alone (p=0.030). The 3-year progression-free survival rate was 41.9% and 11.1% in patients with PALN numbers of ≤1 and ≥2, respectively (p=0.008). The 3-year progression-free survival rate was 42.1% and 19.2% in patients with PALN size of <1.5 cm and ≥1.5 cm, respectively (p=0.031). Conclusion The radiologic features of PALN, such as number or size, can be used to determine prognosis in PALN metastatic cervical cancer patients. Furthermore, FP regimen concurrent chemoradiotherapy was associated with better patient survival than radiotherapy alone. However, more studies are required to confirm possible different treatment outcomes between FP and weekly cisplatin regimens. PMID:23875072

  5. Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems

    PubMed Central

    Mahmoudi, Reza; Jabbari, Nasrollah; aghdasi, Mehdi; Khalkhali, Hamid Reza

    2016-01-01

    Introduction For accurate dose calculations, it is necessary to provide a correct relationship between the CT numbers and electron density in radiotherapy treatment planning systems (TPSs). The purpose of this study was to investigate the energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy TPSs and the resulting errors in the treatment planning calculation doses. Materials and Methods In this study, we designed a cylindrical water phantom with different materials used as tissue equivalent materials for the simulation of tissues and obtaining the related CT numbers. For evaluating the effect of CT number variations of substituted materials due to energy changing of scanner (kVp) on the dose calculation of TPS, the slices of the scanned phantom at three kVp's were imported into the desired TPSs (MIRS and CorePLAN). Dose calculations were performed on two TPSs. Results The mean absolute percentage differences between the CT numbers of CT scanner and two treatment planning systems for all the samples were 3.22%±2.57% for CorePLAN and 2.88%±2.11% for MIRS. It was also found that the maximum absolute percentage difference between all of the calculated doses from each photon beam of linac (6 and 15 MV) at three kVp's was less than 1.2%. Discussion The present study revealed that, for the materials with effective low atomic number, the mean CT number increased with increasing energy, which was opposite for the materials with an effective high atomic number. We concluded that the tissue substitute materials had a different behavior in the energy ranges from 80 to 130 kVp. So, it is necessary to consider the energy dependence of the substitute materials used for the measurement or calibration of CT number for radiotherapy treatment planning systems. PMID:27391672

  6. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    SciTech Connect

    Welsh, James; Amini, Arya; Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt; Soh, Hendrick; Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing; Bluett, Jaques; Mohan, Radhe; Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y.

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V{sub 20}, V{sub 30}, or V{sub 40}) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within < 2.5 cm of the CW. We found 260 cases; of these, chronic grade ≥ 2 CW pain was identified in 23 patients. We then selected 10 representative patients from this group and generated proton SBRT treatment plans, using the identical dose of 50 Gy in 4 fractions, and assessed potential differences in CW dose between the 2 plans. The proton SBRT plans reduced the CW doses at all dose levels measured. The median CW V{sub 20} was 364.0 cm{sup 3} and 160.0 cm{sup 3} (p < 0.0001), V{sub 30} was 144.6 cm{sup 3}vs 77.0 cm{sup 3} (p = 0.0012), V{sub 35} was 93.9 cm{sup 3}vs 57.9 cm{sup 3} (p = 0.005), V{sub 40} was 66.5 cm{sup 3}vs 45.4 cm{sup 3} (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures.

  7. SU-E-T-43: Analytical Model for Photon Peripheral Dose in Radiotherapy Treatments

    SciTech Connect

    Nieto, B Sanchez; El far, R; Romero-Exposito, M; Lagares, J; Mateo, JC; Terron, JA; Irazola, L; Sanchez-Doblado, F

    2014-06-01

    Purpose: The higher survival rate of radiotherapy patients entails a growing concern on second cancers associated to peripheral doses. Currently, dosimetry of out-of field doses is still under development. Our group has developed a methodology to estimate neutron equivalent dose in organs (1,2). We aimed to propose a model to estimate out-of-field photon doses in isocentric treatments from basic clinical data. Methods: The proposed function models the dose as the sum of leakage and scatter terms. The latter is modeled as a virtual source at the collimator, which suffers from attenuation in air and tissue, corrected by the inverse-square-law. The model was parameterized using experimental measurements with TLD700 chips placed inside an anthropomorphic phantom (6–18MV) irradiated with conformal and modulated techniques in Elekta, Siemens and Varian linacs. This model provides photon dose at a point as a function of clinical parameters as prescription dose/UM, PTV volume, distance to the field edge, height of the MLC leaves and distance from the the MLC to the isocenter. Model was tested against independent measurements (TLD100) for a VMAT treatment on a Elekta. Dose to organs is modeled from dose to points along the head-to-feet axis of the organ of a “standard man” escalated by patient height. Results: Our semi-empirical model depends on 3 given parameters (leakage parameter can be individualized). A novelty of our model, over other models (e.g., PERIDOSE), arises from its applicability to any technique (independently of the number of MU needed to deliver a dose). Differences between predictions and measurements were < 0.005mSv/UM. Conclusion: We have proposed a unique model which successfully account for photon peripheral organ dose. This model can be applied in the day-to-day clinic as it only needs a few basic parameters which are readily accessible.1. Radiother. Oncol. 107:234–243, 2013. 2. Phys. Med. Biol. 57:6167–6191, 2012.

  8. Impact of 18F-Fluoro-2-Deoxyglucose Positron Emission Tomography on Treatment Strategy and Radiotherapy Planning for Stage I-II Hodgkin Disease: A Prospective Multicenter Study

    SciTech Connect

    Pommier, Pascal; Dussart, Sophie; Girinsky, Theodore; Chabaud, Sylvie; Lagrange, Jean Leon; Nguyen, Tan Dat; Beckendorff, Veronique; D'Hombres, Anne; Artignan, Xavier; Bondiau, Pierre Yves; Carrie, Christian; Giammarile, Francesco

    2011-03-01

    Purpose: To quantify the impact of preradiotherapy 18F-fluoro-2-deoxyglucose positron-emission tomography (FDG-PET) on treatment strategy and radiotherapy planning for patients with Stage I/II Hodgkin disease included in a large prospective multicenter study. Patients and Methods: Conventional computed tomography and FDG-PET were performed just before the planned radiotherapy. The radiotherapy plan was first elaborated under blinded conditions for FDG-PET data. Then, the medical staff was asked to confirm or not confirm the treatment strategy and, if appropriate, to modify the radiotherapy plan based on additional information from FDG-PET. Results: Between January 2004 and January 2006, 137 patients were included (124 were available for analysis) in 11 centers (108 adults, 16 children). All but 1 patient had received chemotherapy before inclusion. Prechemotherapy work-up included FDG-PET for 61 patients, and data were available for elaboration of the first radiotherapy plan. Based on preradiotherapy FDG-PET data, the radiotherapy was cancelled in 6 patients (4.8%), and treatment plan modifications occurred in 16 patients (12.9%): total dose (11 patients), CTV volume (5 patients), number of beam incidences (6 patients), and number of CTV (6 patients). The concordance between the treatment strategies with or without preradiotherapy FDG-PET was 82.3%. Concordance results were not significantly different when prechemotherapy PET-CT information was available. Conclusion: Preradiotherapy FDG-PET for treatment planning in Hodgkin lymphoma may lead to significant modification of the treatment strategy and the radiotherapy planning in patients with Stage I or II Hodgkin disease, even in those who have undergone FDG-PET as part of the prechemotherapy work-up.

  9. Radiotherapy in the treatment of primary central nervous system lymphoma (PCNSL).

    PubMed

    Nelson, D F

    1999-07-01

    The use of radiotherapy alone to treat primary central nervous system lymphoma (PCNSL) does not produce the high local control and survival rates that it does in limited extranodal non-Hodgkin's lymphoma outside the central nervous system (CNS). Even with doses of whole brain radiation therapy (WBRT) to 40+20 Gy boost, the Radiation Therapy Oncology Group (RTOG) reported a local control rate of 39%. Seventy-nine percent of recurrences were in the 60 Gy region. The median survival was 11.6 months. This response to local radiotherapy is quite different from the response of non-CNS Diffuse Large Cell Lymphoma where doses of 30-40 and >40 Gy have a 75-90% local control rate. Neither systemic lymphoma nor PCNSL have a classic radiotherapy dose response. For PCNSL there appears to be a threshold dose that ranges in the literature between 30 and > 50 Gy with a median of 40 Gy. Therefore, when radiotherapy is combined with chemotherapy that crosses the BBB, WBRT and/or boost doses may be able to be decreased, especially in patients achieving a complete response. Promising data from the Centre Leon Berard suggest that this is possible. When such chemotherapy was combined with intrathecal chemotherapy and 20 Gy WBRT, they obtained a 56% actuarial 5 year survival rate. Confirmation of single institution reports of favorable results such as these are needed. Cooperative group and intergroup trials are needed to define optimal therapy.

  10. The Development and Evaluation of a Virtual Radiotherapy Treatment Machine Using an Immersive Visualisation Environment

    ERIC Educational Resources Information Center

    Bridge, P.; Appleyard, R. M.; Ward, J. W.; Philips, R.; Beavis, A. W.

    2007-01-01

    Due to the lengthy learning process associated with complicated clinical techniques, undergraduate radiotherapy students can struggle to access sufficient time or patients to gain the level of expertise they require. By developing a hybrid virtual environment with real controls, it was hoped that group learning of these techniques could take place…

  11. Validation of in-house treatment planning system software for cobalt-60 teletherapy unit at two radiotherapy installations

    NASA Astrophysics Data System (ADS)

    Mu'minah, I. A. S.; Toresano, L. O. H. Z.; Wibowo, W. E.; Sugiyantari; Pawiro, S. A.

    2016-03-01

    DSSuperDose v.1.0 is an in-house treatment planning system (TPS) developed by Medical Physics and Biophysics Laboratory (LFMB) Universitas Indonesia as a treatment planning software for Cobalt-60 teletherapy unit. The main objective of this study was the validation of in-house TPS calculation as an essential part in quality assurance (QA) of radiotherapy. Validation of an in-house TPS was performed with two Cobalt-60 teletherapy units by comparison between in-house TPS and ISIS TPS and by measurements of absorbed dose. Mean dose deviations between in-house TPS and measurement were (1.97 ± 2.42)% for open field, (1.32 ± 1.30)% for tray field, and (2.91 ± 2.36)% for wedge field treatments. In-house TPS provide optimal planning for open and tray beam conditions with depth fewer than 10 cm (≤ 10 cm) and field sizes up to 20×20 cm2, while for wedge beam conditions with field sizes fewer than the physical size of the wedge. Comparison of in-house TPS and ISIS TPS demonstrated a good match of 96%. From the results, it is concluded that DSSuperDose v.1.0 is adequately accurate for treatment planning of radiotherapy.

  12. Pilot study of estramustine added to radiosurgery and radiotherapy for treatment of high grade glioma.

    PubMed

    Landy, Howard; Markoe, Arnold; Potter, Priscilla; Lasalle, Garrett; Marini, Angela; Savaraj, Niramol; Reis, Isildinha; Heros, Deborah; Wangpaichitr, Medhi; Feun, Lynn

    2004-01-01

    Patients with high grade glioma generally have poor prognoses. Addition of radiosensitizing agents might improve the response to irradiation. The chemotherapeutic agent estramustine sensitizes experimental gliomas to radiation. Gliomas express estramustine binding proteins, and cytotoxic concentrations of estramustine metabolites are found in gliomas after oral administration. Twenty three patients, aged 25-78, with new or recurrent high grade glioma were treated with estramustine and radiosurgery and/or radiotherapy. Patients with recurrent tumors were treated with estramustine and Gamma Knife stereotactic radiosurgery; eligible tumors were limited to 4 cm maximal diameter. Patients with newly diagnosed tumors were treated with estramustine and fractionated radiotherapy, with radiosurgery also performed if the tumor was less than 4 cm maximal diameter. Estramustine (16 mg/kg per day orally) was started three days prior to radiosurgery, or, if only radiotherapy was performed, on the first day of radiotherapy. Estramustine was continued until the completion of radiosurgery and/or radiotherapy (72 Gy, 60 fractions, 1.2 Gy bid over 6 weeks). Of the 13 patients treated for newly diagnosed glioblastoma, median survival was 16 months with 38% 2-year survival. Of five patients treated for recurrent glioblastoma, survival was 3, 8, 9, 15, and 23 + months. Two patients with recurrent anaplastic astrocytoma survived for 24 and 48+ months. One patient with recurrent anaplastic mixed glioma survived 5+ months. Two patients with newly diagnosed anaplastic oligodendroglioma survived 20 and 42+ months. Four of the new glioblastoma patients developed deep vein thrombosis. The results of this pilot study indicate some benefit, and further investigation incorporating estramustine into clinical trials is suggested.

  13. The end-of-treatment telephone response and prognosis of post-radiotherapy nasopharyngeal carcinoma patients in southern China.

    PubMed

    Chen, Mu-Yao; Chen, Yu-Shan; Hu, Li-Jing; Lun, Xue-Ping; He, Dan-Dan; Chen, Pei-Fen; Hu, Lian-Ying

    2015-01-01

    Nasopharyngeal Carcinoma (NPC) patients' end-of-treatment survival status has drawn more attention in recent years. Telephone follow-up, as a most operative approach among all the clinical follow-ups, is an effective means to extend medical service to patients' home and is thus widely used in clinical practice. This study aimed to analyze the post-radiotherapy NPC patients' phone response rate and its factors, and to discuss the independent prognostic factors of NPC patients' radiotherapy. We prospectively designed a nurses-led telephone follow-up to include 2520 NPC patients who received simple radical radiotherapy between Jan. 2007 and Jun. 2012 at Sun Yat-sen University Cancer Center. The patients' response rate and its factors were calculated. Survival analysis was used to estimate the patients' survival and the influencing factors. The overall response rate was 90.5%; Patients with reserved contact type of mobile + landlinephone or landline phone had higher follow-up response rate than patients with mobile contact only; patients with 2 or more reserved contacts, and family cancer history had higher response rate than patients with only 1 number and those without family history. Patients' cumulative survival rate of 1, 3 and 5 years were 98.9%, 75.3%, 50.3%, respectively. T-staging, N-staging, higher clinical staging, with basicranial invasion were the influencing factors of the patients' poor prognosis. The telephone follow-up response was affected by reserved contact type, number of contacts and family medical history; T-staging, N-staging, higher clinical staging, with basicranial invasion were the influencing factors of the patients' poor prognosis. This study provides a scientific basis for increasing the NPC patients' end-of-treatment response and promoting the individualized clinical treatment.

  14. Written information material and availability of sexual health care for men experiencing sexual dysfunction after prostate cancer treatment: An evaluation of Dutch urology and radiotherapy departments.

    PubMed

    Grondhuis Palacios, L A; Krouwel, E M; Duijn, M; den Oudsten, B L; den Ouden, M E M; Putter, H; Pelger, R C M; Elzevier, H W

    2017-03-01

    Objective was to investigate content of written information material and availability of sexual health care for men experiencing sexual dysfunction (SD) after prostate cancer treatment. A cross-sectional survey was conducted among Dutch urology and radiotherapy departments to evaluate information materials and availability of sexual health care. Out of 71 eligible departments, 34 urology and 15 radiotherapy departments participated in the survey (response rate 69.0%). Fifty-nine brochures corresponding to 31 urology and 11 radiotherapy departments were analysed. In 88.1% of collected information material, sexual health was mentioned. Regarding extensiveness, 20.4% of the brochures contained extensive information, 50.8% moderate amount of information and 28.8% contained little or no information. Urology departments provided pre-treatment nurse consultations more often than radiotherapy departments. Sexual counselling was more frequently provided by urology departments. Urology departments were more aware of adequate referral possibilities. Information material provided by Dutch urology and radiotherapy departments does not address treatment-related SD routinely. Sexual health care is not available everywhere for men experiencing SD. Applying a standard regarding content of sexual health in information material is recommended as well as improved awareness of referral possibilities and enhanced provision of pre-treatment nurse consultations for men experiencing SD after prostate cancer treatment.

  15. The feasibility of using a conventional flexible RF coil for an online MR-guided radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Hoogcarspel, Stan J.; Crijns, Sjoerd P. M.; Lagendijk, Jan J. W.; van Vulpen, Marco; Raaymakers, Bas W.

    2013-03-01

    The purpose of this paper is to evaluate the impact of a flexible radiofrequency coil on the treatment delivery of an online MR-guided radiotherapy treatment. For this study, we used a Synergy MR body coil (Philips, Best) in combination with the current MRL prototype of the UMC Utrecht. The compatibility of the coil is evaluated in two steps. First, we evaluated the dosimetric impact of the MR coil on both a simple and a complex irradiation strategy for treating spinal bone metastases. This tumor site will likely be chosen for the first in-man treatments with the UMC Utrecht MRL system. Second, we investigated the impact of the treatment beam on the MRI performance of the body coil. In case a single posterior-anterior rectangular field was applied, dose to the target volume was underestimated up to 2.2% as a result of beam attenuation in the MR coil. This underestimation however, decreased to 1% when a stereotactic treatment strategy was employed. The presence of the MR coil in or near the distal site of the treatment beam decreased the exit dose when a magnetic field was present. The MRI performance of the coil was unaffected as the result of the radiation. It is feasible to use the Synergy MR body coil for an online MR-guided radiotherapy treatment without any modification to the coil or attenuation correction methods in the planning stage. The effect of the MRI coil on the dose delivery is minimal and there is no effect of the treatment beam on the SNR of the acquired MRI data.

  16. Alternate calibration method of radiochromic EBT3 film for quality assurance verification of clinical radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Park, Soah; Kang, Sei-Kwon; Cheong, Kwang-Ho; Hwang, Taejin; Yoon, Jai-Woong; Koo, Taeryool; Han, Tae Jin; Kim, Haeyoung; Lee, Me Yeon; Bae, Hoonsik; Kim, Kyoung Ju

    2016-07-01

    EBT3 film is utilized as a dosimetry quality assurance tool for the verification of clinical radiotherapy treatments. In this work, we suggest a percentage-depth-dose (PDD) calibration method that can calibrate several EBT3 film pieces together at different dose levels because photon beams provide different dose levels at different depths along the axis of the beam. We investigated the feasibility of the film PDD calibration method based on PDD data and compared the results those from the traditional film calibration method. Photon beams at 6 MV were delivered to EBT3 film pieces for both calibration methods. For the PDD-based calibration, the film pieces were placed on solid phantoms at the depth of maximum dose (dmax) and at depths of 3, 5, 8, 12, 17, and 22 cm, and a photon beam was delivered twice, at 100 cGy and 400 cGy, to extend the calibration dose range under the same conditions. Fourteen film pieces, to maintain their consistency, were irradiated at doses ranging from approximately 30 to 400 cGy for both film calibrations. The film pieces were located at the center position on the scan bed of an Epson 1680 flatbed scanner in the parallel direction. Intensity-modulated radiation therapy (IMRT) plans were created, and their dose distributions were delivered to the film. The dose distributions for the traditional method and those for the PDD-based calibration method were evaluated using a Gamma analysis. The PDD dose values using a CC13 ion chamber and those obtained by using a FC65-G Farmer chamber and measured at the depth of interest produced very similar results. With the objective test criterion of a 1% dosage agreement at 1 mm, the passing rates for the four cases of the three IMRT plans were essentially identical. The traditional and the PDD-based calibrations provided similar plan verification results. We also describe another alternative for calibrating EBT3 films, i.e., a PDD-based calibration method that provides an easy and time-saving approach

  17. Integration of surgery with fractionated stereotactic radiotherapy for treatment of nonfunctioning pituitary macroadenomas

    SciTech Connect

    Paek, Sun Ha; Downes, M. Beverly; Bednarz, Greg; Keane, William M.; Werner-Wasik, Maria; Curran, Walter J.; Andrews, David W. . E-mail: david.andrews@jefferson.edu

    2005-03-01

    Objective: To evaluate the efficacy of fractionated stereotactic radiotherapy (FSRT) after surgery in the management of residual or recurrent nonfunctioning pituitary adenomas with respect to tumor control and the development of complications. Methods and materials: The clinical records of patients with nonfunctioning pituitary adenomas who underwent FSRT were retrospectively analyzed. For newly diagnosed tumors, transsphenoidal surgery was performed, and, if residual tumor was identified at 3 months, FSRT was performed. If significant tumor volume persisted, transcranial surgery was performed before FSRT. We originally initiated FSRT with 2-Gy fractions to 46 Gy. We escalated the dose to 50.4 Gy thereafter. As a final modification, we dropped the daily dose to 1.8-Gy fractions delivered within 6 weeks. High-dose conformality and homogeneity was achieved with arc beam shaping and differential beam weighting. The radiographic, endocrinologic, and visual outcomes after FSRT were evaluated. Results: The 68 patients included 36 males and 32 females with an age range of 15-81 years. The median follow-up was 30 months (range, 2-82 months), and the median tumor volume was 6.2 cm{sup 3}. Of the 68 patients, 20 were treated to 46 Gy and 48 to 50-52.2 Gy. Most were treated to 50.4 Gy. Eleven patients had recurrent tumors, 54 had residual tumors, and no surgery was performed in 3 patients before FSRT. We noted no radiation-induced acute or late toxicities, except for radiation-induced optic neuropathy in 2 patients. At latest follow-up, the tumor had decreased in size in 26 patients and remained stable in 41 of the 42 remaining patients. Of the 68 patients, 4 (6%) developed hypopituitarism at 6, 11, 12, and 17 months after FSRT. Reviewing available serial Humphrey visual fields, visual fields were objectively improved in 28 patients, and remained stable in 24 patients, and worsened in 2 patients. Conclusion: The findings of this analysis support the use of surgery followed by

  18. A new approach to quantify the mechanical and radiation isocentres of radiotherapy treatment machine gantries

    NASA Astrophysics Data System (ADS)

    Skworcow, Piotr; Mills, John A.; Haas, Olivier C. L.; Burnham, Keith J.

    2007-12-01

    In this paper a new method is proposed to quantify and reduce the radiation beam position uncertainty due to the radiotherapy treatment machine gantry deflection. A new tool has been designed and manufactured to provide the means to measure the alignment of the collimator axis and of the beam central axis in space, using the NDI Polaris optical tracking system and Gafchromic® films. The tool can be mounted onto the accessory tray of the linacs from different manufacturers. The approach has been demonstrated with measurements of the mechanical isocentre being performed on ten linacs from three major manufacturers at four clinical sites. Measurements of the radiation isocentre were performed on a single linac. The collimator axis trajectory is modelled using a vector-end effector in order to provide more information than standard mechanical assessment methods. The method uses a mathematical optimization technique to calculate the position of the mechanical isocentre and the 'size' of the collimator axes intersection locus. Deviations of the collimator axes from the isocentre are expressed in terms of systematic and random error. The effects of measurement uncertainties are evaluated both via simulations and experimentally. The use of optical tracking and optimization techniques combined with an operator-induced measurement error compensation algorithm leads to a faster measurement of the mechanical isocentre (20 min for 24 angles) and eliminates operator-induced uncertainties. The uncertainty of the measurement of the mechanical isocentre was between 40 µm and 70 µm in terms of standard deviation. For some of the linacs assessed, the mechanical isocentre obtained using a standard approach with an adjustable pointer was displaced by over 1 mm from that found with the proposed method. The radii of the collimator axes intersection locus found with the proposed method were between 0.4 mm and 0.72 mm for the linacs assessed. Film measurement revealed a misalignment of

  19. 3D printed facial laser scans for the production of localised radiotherapy treatment masks - A case study.

    PubMed

    Briggs, Matthew; Clements, Helen; Wynne, Neil; Rennie, Allan; Kellett, Darren

    This study investigates the use of 3D printing for patients that require localised radiotherapy treatment to the face. The current process involves producing a lead mask in order to protect the healthy tissue from the effects of the radiotherapy. The mask is produced by applying a thermoplastic sheet to the patient's face and allowing to set hard. This can then be used as a mould to create a plaster impression of the patient's face. A sheet of lead is then hammered on to the plaster to create a bespoke fitted face mask. This process can be distressing for patients and can be problematic when the patient is required to remain motionless for a prolonged time while the thermoplastic sets. In this study, a 1:1 scale 3D print of a patient's face was generated using a laser scanner. The lead was hammered directly on to the surface of the 3D print in order to create a bespoke fitted treatment mask. This eliminated the thermoplastic moulding stage and significantly reduced the time needed for the patient to be in clinic. The higher definition impression of the the face resulted in a more accurate, better fitting treatment mask.

  20. A Review of Radiotherapy-Induced Late Effects Research after Advanced Technology Treatments.

    PubMed

    Newhauser, Wayne D; Berrington de Gonzalez, Amy; Schulte, Reinhard; Lee, Choonsik

    2016-01-01

    The number of incident cancers and long-term cancer survivors is expected to increase substantially for at least a decade. Advanced technology radiotherapies, e.g., using beams of protons and photons, offer dosimetric advantages that theoretically yield better outcomes. In general, evidence from controlled clinical trials and epidemiology studies are lacking. To conduct these studies, new research methods and infrastructure will be needed. In the paper, we review several key research methods of relevance to late effects after advanced technology proton-beam and photon-beam radiotherapies. In particular, we focus on the determination of exposures to therapeutic and stray radiation and related uncertainties, with discussion of recent advances in exposure calculation methods, uncertainties, in silico studies, computing infrastructure, electronic medical records, and risk visualization. We identify six key areas of methodology and infrastructure that will be needed to conduct future outcome studies of radiation late effects.

  1. A Review of Radiotherapy-Induced Late Effects Research after Advanced Technology Treatments

    PubMed Central

    Newhauser, Wayne D.; de Gonzalez, Amy Berrington; Schulte, Reinhard; Lee, Choonsik

    2016-01-01

    The number of incident cancers and long-term cancer survivors is expected to increase substantially for at least a decade. Advanced technology radiotherapies, e.g., using beams of protons and photons, offer dosimetric advantages that theoretically yield better outcomes. In general, evidence from controlled clinical trials and epidemiology studies are lacking. To conduct these studies, new research methods and infrastructure will be needed. In the paper, we review several key research methods of relevance to late effects after advanced technology proton-beam and photon-beam radiotherapies. In particular, we focus on the determination of exposures to therapeutic and stray radiation and related uncertainties, with discussion of recent advances in exposure calculation methods, uncertainties, in silico studies, computing infrastructure, electronic medical records, and risk visualization. We identify six key areas of methodology and infrastructure that will be needed to conduct future outcome studies of radiation late effects. PMID:26904500

  2. Consideration of the radiation dose delivered away from the treatment field to patients in radiotherapy

    PubMed Central

    Taylor, Michael L.; Kron, Tomas

    2011-01-01

    Radiation delivery to cancer patients for radiotherapy is invariably accompanied by unwanted radiation to other parts of the patient’s body. Traditionally, considerable effort has been made to calculate and measure the radiation dose to the target as well as to nearby critical structures. Only recently has attention been focused also on the relatively low doses that exist far from the primary radiation beams. In several clinical scenarios, such doses have been associated with cardiac toxicity as well as an increased risk of secondary cancer induction. Out-of-field dose is a result of leakage and scatter and generally difficult to predict accurately. The present review aims to present existing data, from measurements and calculations, and discuss its implications for radiotherapy. PMID:21731221

  3. Successful Treatment of Advanced Primary Cutaneous Apocrine Carcinoma on the Scrotum with Systemic Chemotherapy and Radiotherapy Followed by Denosumab

    PubMed Central

    Furudate, Sadanori; Fujimura, Taku; Tsukada, Akira; Sato, Yota; Hidaka, Takanori; Tanita, Kayo; Kambayashi, Yumi; Haga, Takahiro; Hashimoto, Akira; Aiba, Setsuya

    2017-01-01

    Primary cutaneous apocrine carcinoma (PCAC) is a rare and highly aggressive cutaneous adnexal type of tumor that has a high metastasis rate and a poor prognosis. Although there are several case reports describing the successful treatment of PCAC with chemoradiotherapy or molecular targeting therapy, no standard therapy for the treatment of advanced PCAC has been established yet. Since receptor activator of nuclear factor kappa-B ligand (RANKL) is expressed in cancers of apocrine origin, leading to immunosuppression at the tumor site, we hypothesized that targeting RANKL with denosumab might be useful for the treatment of PCAC. In this report, we describe a case with advanced PCAC on the scrotum successfully treated with systemic chemotherapy using carboplatin and paclitaxel, and radiotherapy followed by denosumab. PMID:28203164

  4. Progressive Muscle Atrophy and Weakness After Treatment by Mantle Field Radiotherapy in Hodgkin Lymphoma Survivors

    SciTech Connect

    Leeuwen-Segarceanu, Elena M. van; Dorresteijn, Lucille D.A.; Pillen, Sigrid; Biesma, Douwe H.; Vogels, Oscar J.M.; Alfen, Nens van

    2012-02-01

    Purpose: To describe the damage to the muscles and propose a pathophysiologic mechanism for muscle atrophy and weakness after mantle field radiotherapy in Hodgkin lymphoma (HL) survivors. Methods and Materials: We examined 12 patients treated by mantle field radiotherapy between 1969 and 1998. Besides evaluation of their symptoms, the following tests were performed: dynamometry; ultrasound of the sternocleidomastoid, biceps, and antebrachial flexor muscles; and needle electromyography of the neck, deltoid, and ultrasonographically affected arm muscles. Results: Ten patients (83%) experienced neck complaints, mostly pain and muscle weakness. On clinical examination, neck flexors were more often affected than neck extensors. On ultrasound, the sternocleidomastoid was severely atrophic in 8 patients, but abnormal echo intensity was seen in only 3 patients. Electromyography of the neck muscles showed mostly myogenic changes, whereas the deltoid, biceps, and antebrachial flexor muscles seemed to have mostly neurogenic damage. Conclusions: Many patients previously treated by mantle field radiotherapy develop severe atrophy and weakness of the neck muscles. Neck muscles within the radiation field show mostly myogenic damage, and muscles outside the mantle field show mostly neurogenic damage. The discrepancy between echo intensity and atrophy suggests that muscle damage is most likely caused by an extrinsic factor such as progressive microvascular fibrosis. This is also presumed to cause damage to nerves within the radiated field, resulting in neurogenic damage of the deltoid and arm muscles.

  5. Radiotherapy in the treatment of mucosal melanoma of the upper aerodigestive tract: Analysis of 74 cases. A Rare Cancer Network study

    SciTech Connect

    Krengli, Marco . E-mail: krengli@tera.it; Masini, Laura; Kaanders, Johannes; Maingon, Philippe; Oei, Swan Bing; Zouhair, Abderrahim; Ozyar, Enis; Roelandts, Martine; Amichetti, Maurizio; Bosset, Mathieu; Mirimanoff, Rene-Olivier

    2006-07-01

    Purpose: To retrospectively analyze a series of mucosal melanoma of the upper aerodigestive tract to determine the prognostic factors and contribute to understanding the role of radiotherapy in the therapeutic strategy. Methods and Materials: Seventy-four patients were analyzed. The most frequent locations were nasal and oral, in 31 patients (41.9%) and 12 patients (16.2%), respectively. Sixty-three patients (85.1%) were in Stage I, 5 (6.8%) in Stage II, and 6 (8.1%) in Stage III. Treatment consisted of surgery in 17 patients (23.0%), surgery and radiotherapy in 42 (56.8%), radiotherapy in 11 (14.9%), and chemo-immunotherapy in 4 (5.4%). Median follow-up was 20 months. Results: Local control at 3 years was 57% after surgery alone and 71% after surgery and radiotherapy. Overall and disease-free survival rates, respectively, were 41% and 31% at 3 years and 14% and 22% at 10 years. After univariate analysis, female gender, melanosis, tumor size {<=}3 cm, Stage I, postoperative radiotherapy, and complete remission were favorable prognostic factors. Stage I and melanosis were confirmed by multivariate analysis. Conclusions: Local control was improved by postoperative radiotherapy, despite survival being as poor as in other published series. Stage I and melanosis at diagnosis were the most favorable prognostic factors.

  6. Does the Couse of Astragalus-Containing Chinese Herbal Prescriptions and Radiotherapy Benefit to Non-Small-Cell Lung Cancer Treatment: A Meta-Analysis of Randomized Trials

    PubMed Central

    Zhou, Xianmei; Wang, Qian; Zhao, Yang

    2013-01-01

    Background. Radiotherapy has been widely used for non-small-cell lung cancer (NSCLC), while its low efficacy and high toxicity raise big concerns. Astragalus (as a monarch drug)-containing Chinese herbal prescriptions and radiotherapy were frequently coused for NSCLC in China; however, the effects were not systematically analyzed. Objective. To evaluate the benefits of Astragalus-containing Chinese herbal prescriptions combined with radiotherapy for NSCLC. Methods. The randomized controlled trials involving NSCLC treatment with Astragalus-containing Chinese herbal prescriptions combined with radiotherapy were searched. The Review Manager 5.1 software was employed for data analysis. Funnel plot and Egger's test were applied to evaluate publication bias. Results. 29 eligible studies met our criteria. Of the studies, 8, 6, and 4 reported reduced risk of death at one year, two years, and three years, respectively. 26 studies revealed amended tumor response. Six studies showed improved Karnofsky performance status. Among the studies, 14 and 18 displayed a lowered white blood cells (WBC) toxicity and an ameliorated radiation pneumonia, respectively. Conclusion. Couse of Astragalus-containing Chinese herbal prescriptions and radiotherapy may benefit the patients with NSCLC via increasing the therapeutic effectiveness and reducing the toxicity of radiotherapy. To confirm the exact merits, further rigorously designed trials are warranted. PMID:24454494

  7. Effects of postoperative adjuvant chemotherapy and radiotherapy on ovarian function in women undergoing treatment for soft tissue sarcoma

    SciTech Connect

    Shamberger, R.C.; Sherins, R.J.; Ziegler, J.L.; Glatstein, E.; Rosenberg, S.A.

    1981-12-01

    Ovarian function was evaluated in 11 women 16 to 43 years of age at treatment who received doxorubicin, cyclophosphamide, and high doses of methotrexate with or without radiotherapy in adjuvant therapy of soft tissue sarcoma. Five women (16-33 yr old) who received chemotherapy alone or combined with radiotherapy only at sites distant from the ovaries (chest wall, thigh, and leg) had minimal menstrual irregularities or temporary cessation of menses during therapy; cyclic menses returned promptly after therapy. Gonadotropin levels (expressed as means +/- SD (follicle-stimulating hormone (FSH), 10 +/- 5 mlU/ml; luteinizing hormone (LH), 10 +/- 4 mlU/ml) and 17 beta-estradiol (E2) levels (means +/- SD, 208 +/- 147 pg/ml) were normal. By contrast, 4 older women (ages 36-43 yr) who received similar treatment developed persistent amenorrhea with postmenopausal levels of gonadotropin (FSH, 108 +/- 29 mlU/ml; LH, 72 +/- 19 mlU/ml) and E2 (19 +/- 8 pg/ml). Two additional women (ages 21 and 39 yr) who received radiation (7,000 rad) to the pelvis plus chemotherapy developed prompt cessation of menses and became functional castrates (FSH, 77 and 80 mlU/ml; LH, 40 and 58 mlU/ml; E2, 10 and 19 pg/ml). However, this result would be expected from the radiation dose alone. The data demonstrated that ovarian dysfunction may follow the use of doxorubicin, cyclophosphamide, and high doses of methotrexate and that the injury is age related.

  8. Perspectives on the combination of radiotherapy and targeted therapy with DNA repair inhibitors in the treatment of pancreatic cancer

    PubMed Central

    Yang, Shih-Hung; Kuo, Ting-Chun; Wu, Hsu; Guo, Jhe-Cyuan; Hsu, Chiun; Hsu, Chih-Hung; Tien, Yu-Wen; Yeh, Kun-Huei; Cheng, Ann-Lii; Kuo, Sung-Hsin

    2016-01-01

    Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation (radiosensitization) through inhibition of DNA repair pathways. The synergistic effects, of two or more combined non-lethal treatments, led to co-administration of chemotherapy and radiosensitization in BRCA-defective cells and patients, with promising results. ATM/Chk2 and ATR/Chk1 pathways are principal regulators of cell cycle arrest, following DNA double-strand or single-strand breaks. DNA double-stranded breaks activate DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). It forms a holoenzyme with Ku70/Ku80 heterodimers, called DNA-PK, which catalyzes the joining of nonhomologous ends. This is the primary repair pathway utilized in human cells after exposure to ionizing radiation. Radiosensitization, induced by inhibitors of ATM, ATR, Chk1, Chk2, Wee1, PP2A, or DNA-PK, has been demonstrated in preclinical pancreatic cancer studies. Clinical trials are underway. Development of agents that inhibit DNA repair pathways to be clinically used in combination with radiotherapy is warranted for the treatment of pancreatic cancer. PMID:27621574

  9. Comparative evaluation of a novel 3D segmentation algorithm on in-treatment radiotherapy cone beam CT images

    NASA Astrophysics Data System (ADS)

    Price, Gareth; Moore, Chris

    2007-03-01

    Image segmentation and delineation is at the heart of modern radiotherapy, where the aim is to deliver as high a radiation dose as possible to a cancerous target whilst sparing the surrounding healthy tissues. This, of course, requires that a radiation oncologist dictates both where the tumour and any nearby critical organs are located. As well as in treatment planning, delineation is of vital importance in image guided radiotherapy (IGRT): organ motion studies demand that features across image databases are accurately segmented, whilst if on-line adaptive IGRT is to become a reality, speedy and correct target identification is a necessity. Recently, much work has been put into the development of automatic and semi-automatic segmentation tools, often using prior knowledge to constrain some grey level, or derivative thereof, interrogation algorithm. It is hoped that such techniques can be applied to organ at risk and tumour segmentation in radiotherapy. In this work, however, we make the assumption that grey levels do not necessarily determine a tumour's extent, especially in CT where the attenuation coefficient can often vary little between cancerous and normal tissue. In this context we present an algorithm that generates a discontinuity free delineation surface driven by user placed, evidence based support points. In regions of sparse user supplied information, prior knowledge, in the form of a statistical shape model, provides guidance. A small case study is used to illustrate the method. Multiple observers (between 3 and 7) used both the presented tool and a commercial manual contouring package to delineate the bladder on a serially imaged (10 cone beam CT volumes ) prostate patient. A previously presented shape analysis technique is used to quantitatively compare the observer variability.

  10. 4D ML reconstruction as a tool for volumetric PET-based treatment verification in ion beam radiotherapy

    SciTech Connect

    De Bernardi, E.; Ricotti, R.; Riboldi, M.; Baroni, G.; Parodi, K.; Gianoli, C.

    2016-02-15

    Purpose: An innovative strategy to improve the sensitivity of positron emission tomography (PET)-based treatment verification in ion beam radiotherapy is proposed. Methods: Low counting statistics PET images acquired during or shortly after the treatment (Measured PET) and a Monte Carlo estimate of the same PET images derived from the treatment plan (Expected PET) are considered as two frames of a 4D dataset. A 4D maximum likelihood reconstruction strategy was adapted to iteratively estimate the annihilation events distribution in a reference frame and the deformation motion fields that map it in the Expected PET and Measured PET frames. The outputs generated by the proposed strategy are as follows: (1) an estimate of the Measured PET with an image quality comparable to the Expected PET and (2) an estimate of the motion field mapping Expected PET to Measured PET. The details of the algorithm are presented and the strategy is preliminarily tested on analytically simulated datasets. Results: The algorithm demonstrates (1) robustness against noise, even in the worst conditions where 1.5 × 10{sup 4} true coincidences and a random fraction of 73% are simulated; (2) a proper sensitivity to different kind and grade of mismatches ranging between 1 and 10 mm; (3) robustness against bias due to incorrect washout modeling in the Monte Carlo simulation up to 1/3 of the original signal amplitude; and (4) an ability to describe the mismatch even in presence of complex annihilation distributions such as those induced by two perpendicular superimposed ion fields. Conclusions: The promising results obtained in this work suggest the applicability of the method as a quantification tool for PET-based treatment verification in ion beam radiotherapy. An extensive assessment of the proposed strategy on real treatment verification data is planned.

  11. Introducing therapeutic lasers in the hospitals and treatment rooms in Romania

    NASA Astrophysics Data System (ADS)

    Siposan, Dan G.; Manastireanu, Dan I.

    2005-11-01

    Background: Presently, there is no unanimous consensus regarding the methods to introduce laser therapy, on a large scale, into a medical assistance system. These methods may vary from one country to another, depending on some factors. Although, there are some compulsory stages that must be reached. Purpose: This paper's purpose is to present the necessary stages, in our opinion, to successfully introduce laser therapy in hospitals and treatment rooms in our country. They include, among others: an information of the public at large, by brochures or other informative materials, on therapeutic lasers' action; the introducing in high level medicine schools of courses on the biological action of low-level lasers; laboratory studies on action mechanisms of low level laser radiation on live tissues; establishing the more objective methods of patients' assessment; obtaining approval from the Bioethics Committee for clinical studies on volunteers, according to current legislation. Materials and methods: There had been done a preliminary clinical study on volunteers (over 100 in number), using mainly subjective methods of evaluation. The patients have been also monitored also after the treatment, during one to six months. We present briefly a method of monitoring and objective assessment, by optical means, for laser therapy results, which we intend to use in the near future. Results:-There are presented the stages we reached till now. In the preliminary clinical study we have treated patients with various pathologies: skin diseases, dental, surgical and neuralgic pathology etc. We observed an amelioration or total remission on the most patients and also a good mood after the treatments. There are presented a few cases with significant results. Discussion and conclusion: We estimate the success rate of our treatments with over 60 percents. We hope this study shall be useful for the purpose mentioned in the paper's title. In a country where living standard is low, laser

  12. [Interdisciplinary treatment of severely injured patients in the trauma resuscitation room].

    PubMed

    Wurmb, Thomas; Müller, Thorben; Jansen, Hendrik; Ruchholtz, Steffen; Roewer, Norbert; Kühne, Christian A

    2010-06-01

    The trauma resuscitation room in emergency departments is an important link between preclinical treatment and clinical management of patients with multiple trauma. For the trauma team (Trauma Surgery, Anaesthesiology, Radiology) to respond adequately, a high degree of training and standardisation is required. With arrival of the patient, the trauma team starts with priority orientated resuscitation. After life-threatening problems have been resolved, the diagnostic work is started with plain films of the chest and the pelvis and FAST. Additional plain films are made depending on further suspected injuries. Reassessment of the patient is done and necessary emergency interventions are performed before the patient is transferred to the radiology department for organ focused computed tomography. CT has gained importance in the early diagnostic phase of trauma care. The development of Multislice Helical Computed Tomography (MSCT) has led to substantial refinement in the diagnostic work-up. For many institutions it has become an essential part of the imaging of the traumatized patient. Delayed and insufficient medical interventions have a high impact on negative patient outcome. Anticipating and dealing with critical situations might reduce preventable errors in the treatment process and can be achieved by implementation of an algorithm-based structured workflow. In that context some elements of quality management are well established in clinical practice. In the presented paper we describe the effort that needs to be done to provide optimal care for multiple trauma patients after admission to a designed trauma centre.

  13. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning.

    PubMed

    Fraass, B; Doppke, K; Hunt, M; Kutcher, G; Starkschall, G; Stern, R; Van Dyke, J

    1998-10-01

    In recent years, the sophistication and complexity of clinical treatment planning and treatment planning systems has increased significantly, particularly including three-dimensional (3D) treatment planning systems, and the use of conformal treatment planning and delivery techniques. This has led to the need for a comprehensive set of quality assurance (QA) guidelines that can be applied to clinical treatment planning. This document is the report of Task Group 53 of the Radiation Therapy Committee of the American Association of Physicists in Medicine. The purpose of this report is to guide and assist the clinical medical physicist in developing and implementing a comprehensive but viable program of quality assurance for modern radiotherapy treatment planning. The scope of the QA needs for treatment planning is quite broad, encompassing image-based definition of patient anatomy, 3D beam descriptions for complex beams including multileaf collimator apertures, 3D dose calculation algorithms, and complex plan evaluation tools including dose volume histograms. The Task Group recommends an organizational framework for the task of creating a QA program which is individualized to the needs of each institution and addresses the issues of acceptance testing, commissioning the planning system and planning process, routine quality assurance, and ongoing QA of the planning process. This report, while not prescribing specific QA tests, provides the framework and guidance to allow radiation oncology physicists to design comprehensive and practical treatment planning QA programs for their clinics.

  14. The Relationship Between Local Recurrence and Radiotherapy Treatment Volume for Soft Tissue Sarcomas Treated With External Beam Radiotherapy and Function Preservation Surgery

    SciTech Connect

    Dickie, Colleen I.; Griffin, Anthony M.; Parent, Amy L.; Chung, Peter W.M.; Catton, Charles N.; Svensson, Jon; Ferguson, Peter C.; Wunder, Jay S.; Bell, Robert S.; Sharpe, Michael B.; O'Sullivan, Brian

    2012-03-15

    Purpose: To examine the geometric relationship between local recurrence (LR) and external beam radiotherapy (RT) volumes for soft-tissue sarcoma (STS) patients treated with function-preserving surgery and RT. Methods and Materials: Sixty of 768 (7.8%) STS patients treated with combined therapy within our institution from 1990 through 2006 developed an LR. Thirty-two received preoperative RT, 16 postoperative RT, and 12 preoperative RT plus a postoperative boost. Treatment records, RT simulation images, and diagnostic MRI/CT data sets of the original and LR disease were retrospectively compared. For LR location analysis, three RT target volumes were defined according to the International Commission on Radiation Units and Measurements 29 as follows: (1) the gross tumor or operative bed; (2) the treatment volume (TV) extending 5 cm longitudinally beyond the tumor or operative bed unless protected by intact barriers to spread and at least 1-2 cm axially (the TV was enclosed by the isodose curve representing the prescribed target absorbed dose [TAD] and accounted for target/patient setup uncertainty and beam characteristics), and (3) the irradiated volume (IRV) that received at least 50% of the TAD, including the TV. LRs were categorized as developing in field within the TV, marginal (on the edge of the IRV), and out of field (occurring outside of the IRV). Results: Forty-nine tumors relapsed in field (6.4% overall). Nine were out of field (1.1% overall), and 2 were marginal (0.3% overall). Conclusions: The majority of STS tumors recur in field, indicating that the incidence of LR may be affected more by differences in biologic and molecular characteristics rather than aberrations in RT dose or target volume coverage. In contrast, only two patients relapsed at the IRV boundary, suggesting that the risk of a marginal relapse is low when the TV is appropriately defined. These data support the accurate delivery of optimal RT volumes in the most precise way using advanced

  15. A Treatment Planning Study of Stereotactic Body Radiotherapy for Atrial Fibrillation

    PubMed Central

    Kotecha, Rupesh; Sharma, Naveen; Andrews, Martin; Stephans, Kevin L; Oberti, Carlos; Lin, Sara; Wazni, Oussama; Tchou, Patrick; Saliba, Walid I; Suh, John

    2016-01-01

    Purpose: To explore the feasibility of using stereotactic body radiotherapy (SBRT) to irradiate the antra of the four pulmonary veins while protecting nearby critical organs, such as the esophagus. Materials and Methods: Twenty patients who underwent radiofrequency catheter ablation for atrial fibrillation were selected. For each patient, the antra of the four pulmonary veins were identified as the target volumes on a pre-catheterization contrast or non-contrast CT scan. On each CT scan, the esophagus, trachea, heart, and total lung were delineated and the esophagus was identified as the critical organ. For each patient, three treatment plans were designed with 0, 2, and 5 mm planning margins around the targets while avoiding overlap with a planning organ at risk volume (PRV) generated by a 2 mm expansion of the esophagus. Using three non-coplanar volumetric modulated arcs (VMAT), 60 plans were created to deliver a prescription dose of 50 Gy in five fractions, following the SBRT dose regimen for central lung tumors. With greater than 97% of the planning target volumes (PTV) receiving the prescription doses, we examined dosimetry to 0.03 cc and 5 cc of the esophagus PRV volume as well as other contoured structures. Results: The average PTV-0 mm, PTV-2 mm, and PTV-5 mm volumes were 3.05 ± 1.90 cc, 14.70 ± 5.00 cc, and 40.85 ± 10.20 cc, respectively. With three non-coplanar VMAT arcs, the average conformality indices (ratio of prescription isodose volume to the PTV volume) for the PTV-0 mm, PTV-2 mm and PTV-5 mm were 4.81 ± 2.0, 1.71 ± 0.19, and 1.23 ± 0.08, respectively. Assuming patients were treated under breath-hold with 2 mm planning margins to account for cardiac motion, all plans met esophageal PRV maximum dose limits < 50 Gy to 0.03 cc and 16 plans (80%) met < 27.5 Gy to 5 cc of the esophageal PRVs. For PTV-5 mm plans, 18 plans met the maximum dose limit < 50 Gy to 0.03 cc and only two plans met the maximum dose limit < 27.5 Gy to 5 cc of the

  16. Optimization of Stereotactic Radiotherapy Treatment Delivery Technique for Base-Of-Skull Meningiomas

    SciTech Connect

    Clark, Brenda G. Candish, Charles; Vollans, Emily; Gete, Ermias; Lee, Richard; Martin, Monty; Ma, Roy; McKenzie, Michael

    2008-10-01

    This study compares static conformal field (CF), intensity modulated radiotherapy (IMRT), and dynamic arcs (DA) for the stereotactic radiotherapy of base-of-skull meningiomas. Twenty-one cases of base-of-skull meningioma (median planning target volume [PTV] = 21.3 cm{sup 3}) previously treated with stereotactic radiotherapy were replanned with each technique. The plans were compared for Radiation Therapy Oncology Group conformity index (CI) and homogeneity index (HI), and doses to normal structures at 6 dose values from 50.4 Gy to 5.6 Gy. The mean CI was 1.75 (CF), 1.75 (DA), and 1.66 (IMRT) (p < 0.05 when comparing IMRT to either CF or DA plans). The CI (IMRT) was inversely proportional to the size of the PTV (Spearman's rho = -0.53, p = 0.01) and at PTV sizes above 25 cm{sup 3}, the CI (IMRT) was always superior to CI (DA) and CI (CF). At PTV sizes below 25 cm{sup 3}, there was no significant difference in CI between each technique. There was no significant difference in HI between plans. The total volume of normal tissue receiving 50.4, 44.8, and 5.6 Gy was significantly lower when comparing IMRT to CF and DA plans (p < 0.05). There was significantly improved dose sparing for the brain stem and ipsilateral temporal lobe with IMRT but no significant difference for the optic chiasm or pituitary gland. These results demonstrate that stereotactic IMRT should be considered to treat base-of-skull meningiomas with a PTV larger than 25 cm{sup 3}, due to improved conformity and normal tissue sparing, in particular for the brain stem and ipsilateral temporal lobe.

  17. Salvage endoscopic resection as a treatment for locoregional failure or recurrence following chemoradiotherapy or radiotherapy for esophageal cancer

    PubMed Central

    NAKAMURA, RIEKO; OMORI, TAI; TAKEUCHI, HIROYA; KAWAKUBO, HIROFUMI; TAKAHASHI, TSUNEHIRO; WADA, NORIHITO; SAIKAWA, YOSHIRO; KITAGAWA, YUKO

    2016-01-01

    Radiotherapy (RT) or chemoradiotherapy (CRT) is a potentially curative, non-surgical treatment option for esophageal cancer, although the rate of local failure within the esophagus remains relatively high. Salvage esophagectomy is not regarded as a common treatment for esophageal cancer, since it is a high-risk surgery with a relatively high surgical mortality rate. Salvage endoscopic resection (ER) for local failure is used for treatment when esophageal cancer is localized and superficial. To evaluate to usefulness of salvage ER, the present study reviewed the clinicopathological records and follow-up data of 37 patients that underwent salvage ER for esophageal cancer, following initial treatment with RT or CRT. Salvage ER was conducted on a total of 78 lesions observed in the 37 patients. Since a thick epithelium and lack of normal vessels on the surface of the mucosa are characteristics of esophageal mucosa following RT or CRT, almost all the lesions were detected using iodine dyeing, and not by narrow band imaging. The growth rate of the detected lesions was relatively high, and early treatment was required. No particular complications occurred during the endoscopic treatment. A total of 11 patients survived for >5 years subsequent to initial endoscopic treatment. Only 4 patients succumbed to esophageal cancer. In conclusion, the present study demonstrated that salvage ER following CRT or RT for esophageal cancer is a minimally invasive, safe, adaptive and curative method for superficial lesions without distant metastases in patients with esophageal cancer with local failure following CRT or RT. PMID:27284365

  18. [A case of recurrent pancreatic cancer brought into a complete response by a multimodal treatment with intraarterial chemotherapy and radiotherapy].

    PubMed

    Minari, Y; Nio, Y; Endo, S; Yano, S; Itakura, M; Yamasawa, K; Tamura, K

    2000-01-01

    We achieved a complete response of recurrent pancreatic cancer using a multimodal treatment with intravenous, oral and intraarterial chemotherapies and radiotherapy. A 55-year-old female patient had a recurrent pancreatic cancer, which had invaded the portal vein, 2 years after pancreatoduodenectomy. Angiography demonstrated prominent stenosis of the portal vein, which was enlarged by the insertion of a metalic stent to maintain blood flow to the liver. Chemotherapy included intravenous mitomycin C, 5-FU and 4'-epirubicin (EPI), oral UFT and cyclophosphamide, and intraarterial cisplatin, 5-FU and EPI through a catheter inserted into the celiac artery. Furthermore, the patient received a total of 50 Gy radiotherapy. Four months after the initiation of therapy, a computed tomography image demonstrated a complete disappearance of the recurrent tumor and a prominent decrease in the serum CA19-9 level. At present, 11 months have passed after the initiation of therapy, and she has been followed at our outpatient department without any symptoms of recurrence.

  19. Treatment of mandibular squamous cell carcinoma in cats by use of mandibulectomy and radiotherapy: seven cases (1987-1989).

    PubMed

    Hutson, C A; Willauer, C C; Walder, E J; Stone, J L; Klein, M K

    1992-09-01

    Seven cats with squamous cell carcinoma involving the mandible were treated by surgery and radiotherapy. Surgery consisted of hemimandibulectomy or combined rostral and hemimandibulectomy, gastrostomy tube placement, and submandibular lymph node excisional biopsy. Radiotherapy (orthovoltage or 60Co) commenced 2 weeks after surgery. Histologically, the tumor invaded surgical margins in 6 of 7 cats. Nerve infiltration was histologically identified in 2 cats. All cats had stage-3 disease with radiographic evidence of mandibular bone involvement. Age ranged between 8 and 16 years (median, 10 years). Hypercalcemia (2), feline immunodeficiency virus (2), and hyperthyroidism (1), were detected in cats prior to treatment. Survival after surgery was a median of 14 months (range = 3 to 36 months, mean = 15 months). Six cats were euthanatized because of recurrence of disease at 3, 7, 9, 16, 21, and 36 months. One cat was euthanatized at 14 months because of an unrelated disease. Complications of tongue lagging, drooling after meals, mandibular drift, maxillary ulceration, and alopecia of the jaw developed in a few cats. Radiation at the primary site and regional lymph nodes after surgery of curative intent extended survival in cats with mandibular squamous cell carcinoma.

  20. Multiobjective optimization with a modified simulated annealing algorithm for external beam radiotherapy treatment planning

    SciTech Connect

    Aubry, Jean-Francois; Beaulieu, Frederic; Sevigny, Caroline; Beaulieu, Luc; Tremblay, Daniel

    2006-12-15

    Inverse planning in external beam radiotherapy often requires a scalar objective function that incorporates importance factors to mimic the planner's preferences between conflicting objectives. Defining those importance factors is not straightforward, and frequently leads to an iterative process in which the importance factors become variables of the optimization problem. In order to avoid this drawback of inverse planning, optimization using algorithms more suited to multiobjective optimization, such as evolutionary algorithms, has been suggested. However, much inverse planning software, including one based on simulated annealing developed at our institution, does not include multiobjective-oriented algorithms. This work investigates the performance of a modified simulated annealing algorithm used to drive aperture-based intensity-modulated radiotherapy inverse planning software in a multiobjective optimization framework. For a few test cases involving gastric cancer patients, the use of this new algorithm leads to an increase in optimization speed of a little more than a factor of 2 over a conventional simulated annealing algorithm, while giving a close approximation of the solutions produced by a standard simulated annealing. A simple graphical user interface designed to facilitate the decision-making process that follows an optimization is also presented.

  1. The treatment of intraperitoneal malignant disease with monoclonal antibody guided 131I radiotherapy.

    PubMed Central

    Ward, B.; Mather, S.; Shepherd, J.; Crowther, M.; Hawkins, L.; Britton, K.; Slevin, M. L.

    1988-01-01

    Seven patients with small volume ovarian carcinoma, remaining after conventional therapy with surgery and a platinum containing chemotherapy regimen, were treated with intraperitoneal monoclonal antibody guided radiotherapy. 100 mCi131I conjugated to 10 mg of monoclonal antibody were injected i.p. in 2,000 ml peritoneal dialysis fluid. Patients were evaluated 3 months later; 3 had clinical progressive disease while third look laparotomy demonstrated progressive disease in 3 of the remaining 4 patients. The seventh patient did not have a third look laparotomy and is currently inevaluable for response. Five patients with recurrent malignant ascites not controlled by diuretics or repeated paracentesis were similarly treated with 75-170 mCi131I conjugated to 10 mg monoclonal antibody. In three patients the ascites was controlled for a mean of 4 months. One patient died too early to assess the control of his ascites but tumour cells disappeared from the ascitic fluid after therapy. In the patient whose ascites were not controlled, a subpopulation of antigen-negative tumour cells was demonstrated. This study was unable to demonstrate a therapeutic benefit for i.p. injected monoclonal antibody guided radiotherapy for solid intraperitoneal tumour but suggests that it may be capable of controlling the accumulation of antigen positive malignant ascites. Images Figure 1 Figure 3 Figure 4 PMID:3219277

  2. Self-Medication: Initial Treatments Used by Patients Seen in an Ophthalmologic Emergency Room

    PubMed Central

    Carvalho, Regina Souza; Kara-José, Newton; Temporini, Edméa Rita; Kara-Junior, Newton; Noma-Campos, Regina

    2009-01-01

    OJECTIVE This study seeks to identify practices of self-medication in the treatment of ocular emergencies. We examine patients’ use of both homemade preparations and manufactured products before seeking specialized care. MATERIALS AND METHODS We conducted a cross-sectional analytic survey of consecutive patients seen in the ophthalmology emergency room of a teaching hospital. RESULTS The sample included 561 subjects, 51.3% males and 48.7% females, with a mean age of 39.8 years. Prior to seeking emergency care, 40.5% reported self-medicating; 29.4% used a homemade preparation (13.9% referred to an industrialized product like boric acid as a homemade preparation), and 11.1% used a manufactured product. The most frequently used products included a boric acid solution (53.3%), a normal saline solution (35.7%), herbal infusions (6.1%) and breast milk (4.8%). Viral conjunctivitis was the most frequent diagnosis (24.4%), followed by the presence of a corneal foreign body (7.4%). No significant differences were found in the self-treatment of ocular injuries according to gender (p = 0.95), level of education (p = 0.21) or age (p = 0.14). In addition, self-medication practices were not related to the medically judged severity of the condition. CONCLUSION Patients often attempt to treat conditions that require ophthalmologic emergency care by self-medicating with homemade or manufactured products. The most widely used products include boric acid, normal saline, leaf infusions and breast milk. This behavior occurs independently of educational level, gender, age or the nature of the ocular condition. Self-medication is a culturally driven practice that is used even in cases of acute ocular injuries. PMID:19690656

  3. Refinement of Treatment Setup and Target Localization Accuracy Using Three-Dimensional Cone-Beam Computed Tomography for Stereotactic Body Radiotherapy

    SciTech Connect

    Wang Zhiheng Nelson, John W.; Yoo, Sua; Wu, Q. Jackie; Kirkpatrick, John P.; Marks, Lawrence B.; Yin Fangfang

    2009-02-01

    Purposes: To quantitatively compare two-dimensional (2D) orthogonal kV with three-dimensional (3D) cone-beam CT (CBCT) for target localization; and to assess intrafraction motion with kV images in patients undergoing stereotactic body radiotherapy (SBRT). Methods and Materials: A total of 50 patients with 58 lesions received 178 fractions of SBRT. After clinical setup using in-room lasers and skin/cradle marks placed at simulation, patients were imaged and repositioned according to orthogonal kV/MV registration of bony landmarks to digitally reconstructed radiographs from the planning CT. A subsequent CBCT was registered to the planning CT using soft tissue information, and the resultant 'residual error' was measured and corrected before treatment. Posttreatment 2D kV and/or 3D CBCT images were compared with pretreatment images to determine any intrafractional position changes. Absolute averages, statistical means, standard deviations, and root mean square (RMS) values of observed setup error were calculated. Results: After initial setup to external marks with laser guidance, 2D kV images revealed vector mean setup deviations of 0.67 cm (RMS). Cone-beam CT detected residual setup deviations of 0.41 cm (RMS). Posttreatment imaging demonstrated intrafractional variations of 0.15 cm (RMS). The individual shifts in three standard orthogonal planes showed no obvious directional biases. Conclusions: After localization based on superficial markings in patients undergoing SBRT, orthogonal kV imaging detects setup variations of approximately 3 to 4 mm in each direction. Cone-beam CT detects residual setup variations of approximately 2 to 3 mm.

  4. Hormono-radiotherapy in prostatic carcinoma: prognostic factors and implications for combined modality treatment.

    PubMed

    Cellini, Numa; Luzi, Stefano; Morganti, Alessio Giuseppe; Mantini, Giovanna; Valentini, Vincenzo; Racioppi, Marco; Leone, Mariavittoria; Mattiucci, Gian Carlo; Di Gesù, Cinzia; Giustacchini, Mario; Destito, Antonio; Smaniotto, Daniela; Alcini, Eugenio

    2002-01-01

    The aim of this study was to evaluate the prognostic role of several clinical variables in a patient population undergoing neoadjuvant hormonotherapy (NHT) with external beam radiotherapy (ERT) to identify subsets of patients with an unfavorable prognosis who require intensified therapy. Eighty-four patients (mean age, 68.2 +/- 6.1 years; range, 52-81 years) underwent ERT (45 Gy to pelvic volume; 65 Gy mean dose to prostate volume) and NHT (oral flutamide: 250 mg three times daily for 30 days; LH-RH analogue: one vial every 28 days starting two months before radiotherapy and for its entire duration). The distribution according to clinical stage was T2: 46.4%, T3: 50.0%, T4: 3.6%. The distribution according to the Gleason score was grade 2-4: 17.9%; grade 5-7: 53.6%; grade 8-10: 28.5%. The distribution according to pretreatment PSA levels (in ng/mL) was 0-4: 5.9%; 4-10: 26.2%; 10-20:16.7%; > or = 20: 51.2%. With a median follow-up of 36 months, 3.6% of patients died; hematogenous metastases and local disease progression were found in 16.7% and 6% of patients, respectively. Overall, the incidence of disease progression was 17.9%. 32.9% of patients showed biochemical failure during followup. Overall, metastasis-free, local progression-free and biochemical failure-free actuarial survival at five years was 89.2%, 66.5%, 85.0% and 41.9%, respectively. At univariate analysis (log-rank) clinical stage (cT) was shown to be significantly correlated with the incidence of metastasis (P = 0.0004), local progression (P < 0.0001) and disease-free survival (P = 0.0005). At multivariate analysis (Cox) the correlations between clinical stage and metastasis (P = 0.0175), local progression (P = 0.0200) and disease-free survival (P = 0.0175) were confirmed. Gleason score and pretreatment PSA levels did not show any significant correlation with these endpoints. These results confirm the indications of the recent literature, which, in prostate carcinoma at higher clinical stages, suggest

  5. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    SciTech Connect

    Wang, Xin; Li, Guangjun; Zhang, Yingjie; Bai, Sen; Xu, Feng; Wei, Yuquan; Gong, Youling

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMAT plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.

  6. Treatment of primary glioblastoma multiforme with cetuximab, radiotherapy and temozolomide (GERT) – phase I/II trial: study protocol

    PubMed Central

    Combs, Stephanie E; Heeger, Steffen; Haselmann, Renate; Edler, Lutz; Debus, Jürgen; Schulz-Ertner, Daniela

    2006-01-01

    Background The implementation of combined radiochemotherapy (RCHT) with temozolomide (TMZ) has lead to a significant increase in overall survival times in patients with Glioblastoma multiforme (GBM), however, outcome still remains unsatisfactory. The majority of GBMs show an overexpression and/or amplification of the epidermal growth factor receptor (EGFR). Therefore, addition of EGFR-inhibition with cetuximab to the current standard treatment approach with radiotherapy and TMZ seems promising. Methods/design GERT is a one-armed single-center phase I/II trial. In a first step, dose-escalation of TMZ from 50 mg/m2 to 75 mg/m2 together with radiotherapy and cetuximab will be performed. Should safety be proven, the phase II trial will be initiated with the standard dose of 75 mg/m2 of TMZ. Cetuximab will be applied in the standard application dose of 400 mg/m2 in week 1, thereafter at a dose of 250 mg/m2 weekly. A total of 46 patients will be included into this phase I/II trial. Primary endpoints are feasibility and toxicity, secondary endpoints are overall and progression-free survival. An interim analysis will be performed after inclusion of 15 patients into the main study. Patients' enrolment will be performed over a period of 2 years. The observation time will end 2 years after inclusion of the last patient. Discussion The goal of this study is to evaluate the safety and efficacy of combined RCHT-immunotherapy with TMZ and cetuximab as first-line treatment for patients with primary GBM. PMID:16709245

  7. Long-Term Outcomes With Intraoperative Radiotherapy as a Component of Treatment for Locally Advanced or Recurrent Uterine Sarcoma

    SciTech Connect

    Barney, Brandon M.; Petersen, Ivy A.; Dowdy, Sean C.; Bakkum-Gamez, Jamie N.; Haddock, Michael G.

    2012-05-01

    Purpose: To report our institutional experience with intraoperative radiotherapy (IORT) as a component of treatment for women with locally advanced or recurrent uterine sarcoma. Methods and Materials: From 1990 to 2010, 16 women with primary (n = 3) or locoregionally recurrent (n = 13) uterine sarcoma received IORT as a component of combined modality treatment. Tumor histology studies found leiomyosarcoma (n = 9), endometrial stromal sarcoma (n = 4), and carcinosarcoma (n = 3). Surgery consisted of gross total resection in 2 patients, subtotal resection in 6 patients, and resection with close surgical margins in 8 patients. The median IORT dose was 12.5 Gy (range, 10-20 Gy). All patients received perioperative external beam radiotherapy (EBRT; median dose, 50.4 Gy; range, 20-62.5 Gy), and 6 patients also received perioperative systemic therapy. Results: Seven of the 16 patients are alive at a median follow-up of 44 months (range, 11-203 months). The 3-year Kaplan-Meier estimate of local relapse (within the EBRT field) was 7%, and central control (within the IORT field) was 100%. No local failures occurred in any of the 6 patients who underwent subtotal resection. The 3-year freedom from distant relapse was 48%, with failures occurring most frequently in the lungs or mediastinum. Median survival was 18 months, and 3-year Kaplan-Meier estimates of cause-specific and overall survival were 58% and 53%, respectively. Three patients (19%) experienced late Grade 3 toxicity. Conclusions: A combined modality approach with perioperative EBRT, surgery, and IORT for locally advanced or recurrent uterine sarcoma resulted in excellent local disease control with acceptable toxicity, even in patients with positive resection margins. With this approach, some patients were able to experience long-term freedom from recurrence.

  8. Effects of postoperative adjuvant chemotherapy and radiotherapy on ovarian function in women undergoing treatment for soft tissue sarcoma

    SciTech Connect

    Shamberger, R.C.; Sherins, R.J.; Ziegler, J.L.; Glatstein, E.; Rosenberg, S.A.

    1981-12-01

    Ovarian function was evaluated in 11 women 16 to 43 years of age at treatment who received doxorubicin, cyclophosphamide, and high doses of methotrexate with or without radiotherapy in adjuvant therapy of soft tissue sarcoma. Five women (16-33 yr old) who received chemotherapy alone or combined with radiotherapy only at sites distant from the ovaries (chest wall, thigh, and leg) had minimal menstrual irregularities or temporary cessation of menses during therapy; cyclic menses returned promptly after therapy. Gonadotropin levels (expressed as means +/- SD) (follicle-stimulating hormone (FSH), 10 +/- 15 mlU/ml; luteinizing hormone (LH), 10 +/- 4 mlU/ml) and 17 ..beta..-estradiol (E/sub 2/) levels (means +/- SD, 208 +/- 147 pg/ml) were normal. By contrast, 4 older women (ages 36-43 yr) who received similar treatment developd persistent amenorrhea with postmenopausal levels of gonadotropin (FSH, 109 +/- 29 mlU/ml; LH, 72 +/- 19 mlU/ml) and E/sub 2/ (19 +/- 8 pg/ml). Two additional women (ages 21 and 39 yr) who received radiation (7000 rad) to the pelvis plus chemotherapy developed prompt cessation of menses and became functional castrates (FSH, 77 and 80mlU/ml; LH, 40 and 58 mlU/ml; E/sub 2/, 10 and 19 pg/ml). However, this result would be expected from the radiation dose alone. The data demonstrated that ovarian dysfunction may follow the use of doxorubicin, cyclophosphamide, and high doses of methotrexate and that the injury is age related.

  9. Effect of Intensity-Modulated Pelvic Radiotherapy on Second Cancer Risk in the Postoperative Treatment of Endometrial and Cervical Cancer

    SciTech Connect

    Zwahlen, Daniel R. Ruben, Jeremy D.; Jones, Phillip; Gagliardi, Frank; Millar, Jeremy L.; Schneider, Uwe

    2009-06-01

    Purpose: To estimate and compare intensity-modulated radiotherapy (IMRT) with three-dimensional conformal radiotherapy (3DCRT) in terms of second cancer risk (SCR) for postoperative treatment of endometrial and cervical cancer. Methods and Materials: To estimate SCR, the organ equivalent dose concept with a linear-exponential, a plateau, and a linear dose-response model was applied to dose distributions, calculated in a planning computed tomography scan of a 68-year-old woman. Three plans were computed: four-field 18-MV 3DCRT and nine-field IMRT with 6- and 18-MV photons. SCR was estimated as a function of target dose (50.4 Gy/28 fractions) in organs of interest according to the International Commission on Radiological Protection Results: Cumulative SCR relative to 3DCRT was +6% (3% for a plateau model, -4% for a linear model) for 6-MV IMRT and +26% (25%, 4%) for the 18-MV IMRT plan. For an organ within the primary beam, SCR was +12% (0%, -12%) for 6-MV and +5% (-2%, -7%) for 18-MV IMRT. 18-MV IMRT increased SCR 6-7 times for organs away from the primary beam relative to 3DCRT and 6-MV IMRT. Skin SCR increased by 22-37% for 6-MV and 50-69% for 18-MV IMRT inasmuch as a larger volume of skin was exposed. Conclusion: Cancer risk after IMRT for cervical and endometrial cancer is dependent on treatment energy. 6-MV pelvic IMRT represents a safe alternative with respect to SCR relative to 3DCRT, independently of the dose-response model. 18-MV IMRT produces second neutrons that modestly increase the SCR.

  10. Functional imaging for radiotherapy treatment planning: current status and future directions—a review

    PubMed Central

    2015-01-01

    In recent years, radiotherapy (RT) has been subject to a number of technological innovations. Today, RT is extremely flexible, allowing irradiation of tumours with high doses, whilst also sparing normal tissues from doses. To make use of these additional degrees of freedom, integration of functional image information may play a key role (i) for better staging and tumour detection, (ii) for more accurate RT target volume delineation, (iii) to assess functional information about biological characteristics and individual radiation resistance and (iv) to apply personalized dose prescriptions. In this article, we discuss the current status and future directions of different clinically available functional imaging modalities; CT, MRI, positron emission tomography (PET) as well as the hybrid imaging techniques PET/CT and PET/MRI and their potential for individualized RT. PMID:25827209

  11. Deformable image registration for geometrical evaluation of DIBH radiotherapy treatment of lung cancer patients

    NASA Astrophysics Data System (ADS)

    Ottosson, W.; Lykkegaard Andersen, J. A.; Borrisova, S.; Mellemgaard, A.; Behrens, C. F.

    2014-03-01

    Respiration and anatomical variation during radiotherapy (RT) of lung cancer yield dosimetric uncertainties of the delivered dose, possibly affecting the clinical outcome if not corrected for. Adaptive radiotherapy (ART), based on deformable image registration (DIR) and Deep-Inspiration-Breath-Hold (DIBH) gating can potentially improve the accuracy of RT. Purpose: The objective was to investigate the performance of contour propagation on repeated CT and Cone Beam CT (CBCT) images in DIBH compared to images acquired in free breathing (FB), using a recently released DIR software. Method: Three locally advanced non-small cell lung cancer patients were included, each with a planning-, midterm- and final CT (pCT, mCT, fCT) and 7 CBCTs acquired weekly and on the same day as the mCT and fCT. All imaging were performed in both FB and DIBH, using Varian RPM system for respiratory tracking. Delineations of anatomical structures were performed on each image set. The CT images were retrospective rigidly and deformable registered to all obtained images using the Varian Smart Adapt v. 11.0. The registered images were analysed for volume change and Dice Similarity Coefficient (DSC). Result: Geometrical similarities were found between propagated and manually delineated structures, with a slightly favour of FB imaging. Special notice should be taken to registrations where image artefacts or low tissue contrast are present. Conclusion: This study does not support the hypothesis that DIBH images perform better image registration than FB images. However DIR is a feasible tool for ART of lung cancer.

  12. Postoperative External Beam Radiotherapy for Differentiated Thyroid Cancer: Outcomes and Morbidity With Conformal Treatment

    SciTech Connect

    Schwartz, David L. Lobo, Mark J.; Ang, K. Kian; Morrison, William H.; Rosenthal, David I.; Ahamad, Anesa; Evans, Douglas B.; Clayman, Gary; Sherman, Steven I.; Garden, Adam S.

    2009-07-15

    Purpose: To review institutional outcomes for patients treated for differentiated thyroid cancer with postoperative conformal external beam radiotherapy (EBRT). Methods and Materials: This is a single-institution retrospective review of 131 consecutive patients with differentiated thyroid cancer who underwent EBRT between January 1996 and December 2005. Histologic diagnoses included 104 papillary, 21 follicular, and six mixed papillary-follicular types. American Joint Committee on Cancer stage distribution was Stage III in 2 patients, Stage IVa-IVc in 128, and not assessable in 1. Thirty-four patients (26%) had high-risk histologic types and 76 (58%) had recurrent disease. Extraglandular disease spread was seen in 126 patients (96%), microscopically positive surgical margins were seen in 62 patients (47%), and gross residual disease was seen in 15 patients (11%). Median EBRT dose was 60 Gy (range, 38-72 Gy). Fifty-seven patients (44%) were treated with intensity-modulated radiotherapy (IMRT) to a median dose of 60 Gy (range, 56-66 Gy). Median follow-up was 38 months (range, 0-134 months). Results: Kaplan-Meier estimates of locoregional relapse-free survival, disease-specific survival, and overall survival at 4 years were 79%, 76%, and 73%, respectively. On multivariate analysis, high-risk histologic features and gross residual disease predicted for inferior locoregional relapse-free survival, whereas high-risk histologic features, M1 disease, and gross residual disease predicted for inferior disease-specific and overall survival. The IMRT did not impact on survival outcomes, but was associated with less frequent severe late morbidity (12% vs. 2%). Conclusions: Postoperative conformal EBRT provides durable locoregional disease control for patients with high-risk differentiated thyroid cancer if disease is reduced to microscopic burden. Patients with gross disease face significantly worse outcomes. The IMRT may significantly reduce chronic radiation morbidity, but

  13. A Phase II Study of Radiotherapy and Concurrent Paclitaxel Chemotherapy in Breast-Conserving Treatment for Node-Positive Breast Cancer

    SciTech Connect

    Chen, William C.; Kim, Janice; Kim, Edward; Silverman, Paula; Overmoyer, Beth; Cooper, Brenda W.; Anthony, Sue; Shenk, Robert; Leeming, Rosemary; Hanks, Shelli H.; Lyons, Janice A.

    2012-01-01

    Purpose: Administering adjuvant chemotherapy before breast radiotherapy decreases the risk of systemic recurrence, but delays in radiotherapy could yield higher local failure. We assessed the feasibility and efficacy of placing radiotherapy earlier in the breast-conserving treatment course for lymph node-positive breast cancer. Methods and Materials: Between June 2000 and December 2004, 44 women with node-positive Stage II and III breast cancer were entered into this trial. Breast-conserving surgery and 4 cycles of doxorubicin (60 mg/m{sup 2})/cyclophosphamide (600 mg/m{sup 2}) were followed by 4 cycles of paclitaxel (175 mg/m{sup 2}) delivered every 3 weeks. Radiotherapy was concurrent with the first 2 cycles of paclitaxel. The breast received 39.6 Gy in 22 fractions with a tumor bed boost of 14 Gy in 7 fractions. Regional lymphatics were included when indicated. Functional lung volume was assessed by use of the diffusing capacity for carbon monoxide as a proxy. Breast cosmesis was evaluated with the Harvard criteria. Results: The 5-year actuarial rate of disease-free survival is 88%, and overall survival is 93%. There have been no local failures. Median follow-up is 75 months. No cases of radiation pneumonitis developed. There was no significant change in the diffusing capacity for carbon monoxide either immediately after radiotherapy (p = 0.51) or with extended follow-up (p = 0.63). Volume of irradiated breast tissue correlated with acute cosmesis, and acute Grade 3 skin toxicity developed in 2 patients. Late cosmesis was not adversely affected. Conclusions: Concurrent paclitaxel chemotherapy and radiotherapy after breast-conserving surgery shortened total treatment time, provided excellent local control, and was well tolerated.

  14. Radiotherapy for lung cancer

    SciTech Connect

    Bleehen, N.M.; Cox, J.D.

    1985-05-01

    The role of radiation therapy in the management of lung cancer was reviewed at a workshop held in Cambridge, England, in June 1984. It was concluded that there was a continuing role for radiation therapy in the primary management of small cell lung cancer, including the loco-regional treatment for patients with limited disease. Radical radiotherapy for patients with non-small cell carcinoma could be curative for a proportion of patients with limited disease. Careful planning and quality control was essential. Palliative radiotherapy provided useful treatment for many other patients. Other related aspects of treatment are also presented.

  15. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans

    SciTech Connect

    Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey; Jensen, Christopher; Maxim, Peter G. E-mail: BWLoo@Stanford.edu; Loo, Billy W. E-mail: BWLoo@Stanford.edu; Hårdemark, Björn; Hynning, Elin

    2015-05-15

    Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphical user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric

  16. Intraparticle phosphorus diffusion in a drinking water treatment residual at room temperature.

    PubMed

    Makris, Konstantinos C; El-Shall, Hassan; Harris, Willie G; O'Connor, George A; Obreza, Thomas A

    2004-09-15

    Phosphorus (P) has been recognized as one of the major limiting nutrients that are responsible for eutrophication of surface waters, worldwide. Efforts have been concentrated on reducing P loads reaching water bodies, via surface runoff and/or leaching through a soil profile. Use of drinking water treatment residuals (WTRs) is an emerging cost-effective practice to reduce soluble P in poorly P-sorbing soils or systems high in P. Literature suggests that WTRs have huge P sorption capacities. We hypothesized that P sorption would be limited by diffusional constraints imposed by the WTR particles. Selected chemical and physical (specific surface area, particle size distribution) characteristics of an iron-based WTR were measured. Sorption P isotherms at room temperature were constructed, and sorption kinetics were monitored. An intraparticle diffusion model was utilized to fit the kinetic data. Results showed that the WTR dramatically reduced soluble P, showing nonequilibrium characteristics, even after 80 d of reaction. Specific surface area (SSA) measured with CO2 gas was significantly greater than the traditional BET-N2 value (28 versus 3.5 m2 g(-1)), suggesting that a large amount of internal surfaces might be present in the WTR. The intraparticle P diffusion model was modified to include the wide particle size distribution of the WTR. The intraparticle diffusion model fitted the data well (r2 = 0.83). We calculated a maximum apparent P diffusion coefficient value of 4 x 10(-15) cm2 s(-1), which agrees with published values for intraparticle diffusion in microporous sorbents. This work may be useful for predicting long-term sorption characteristics of WTRs, since WTRs have been suggested as potential long-term immobilizers of sorbed P in P-sensitive ecosystems.

  17. RADIATION DOSIMETRY IN THE BNCT PATIENT TREATMENT ROOM AT THE BMRR.

    SciTech Connect

    HOLDEN, N.E.; RECINIELLO, R.N.; HU, J.-P.

    2005-05-08

    The Medical Research Reactor at the Brookhaven National Laboratory (BMRR) was a heterogeneous, tank type, light water cooled and moderated, graphite reflected reactor, which was operated on demand at a power level up to 3 mega-watts (MW) for medical and biological research [1]. The reactor first went critical on March 15, 1959, with 17 fresh fuel elements (2.52 kg uranium-235 in a total of 2.7 kg uranium) in the center core. The BMRR had two treatment rooms on opposite sides of the core. It had a predominately thermal neutron beam in the Thermal Neutron Irradiation Facility (TNE) on the west side of the core. By early 1990, a redesigned beam line had a predominately epithermal neutron beam in the Epithermal Neutron Irradiation Facility (ENIF) on the east side of the core [2]. The ENP was approximately 11 feet by 21 feet in size with its focal point consisting of a bismuth plate mounted in the wall adjacent to the reactor shield about 36 inches above the floor. The beam originated at a shutter constructed of 0.75 inch steel filled with concrete and weighing {approx}21 tons. Access to the ENIF was through a pair of hand operated steel shielding doors, each 42 inches wide, 84 inches high and 5 inches thick. The inner door had a 4-inch thick layer of paraffin on the side facing the reactor. The doors 5000 pounds weighed each. Additional shielding material had been added to the entire beam port at reactor wall within the ENIF. The shielding material consisted of 2-inch thick polyethylene sheets, which were impregnated with 95%-enriched {sup 6}Li in lithium carbonate (Li{sub 2}CO{sub 3}). The shielding sheets around the port face were designed to allow the insertion of a variety of different beam collimators.

  18. CT-Guided 125I Seed Interstitial Brachytherapy as a Salvage Treatment for Recurrent Spinal Metastases after External Beam Radiotherapy

    PubMed Central

    Yao, Lihong; Cao, Qianqian; Yang, Jiwen; Meng, Na; Guo, Fuxin; Jiang, Yuliang; Tian, Suqing; Sun, Haitao

    2016-01-01

    The aim of this study is to evaluate the feasibility, safety, and clinical efficacy of CT-guided 125I seed interstitial brachytherapy in patients with recurrent spinal metastases after external beam radiotherapy (EBRT). Between August 2003 and September 2015, 26 spinal metastatic lesions (24 patients) were reirradiated by this salvage therapy modality. Treatment for all patients was preplanned using a three-dimensional treatment planning system 3–5 days before 125I seed interstitial brachytherapy; dosimetry verification was performed immediately after seed implantation. Median actual D90 was 99 Gy (range, 90–176), and spinal cord median Dmax was 39 Gy (range, 6–110). Median local control (LC) was 12 months (95% CI: 7.0–17.0). The 6- and 12-month LC rates were 52% and 40%, respectively. Median overall survival (OS) was 11 months (95% CI: 7.7–14.3); 6-month and 1-, 2-, and 3-year OS rates were 65%, 37%, 14%, and 9%, respectively. Pain-free survival ranged from 2 to 42 months (median, 6; 95% CI: 4.6–7.4). Treatment was well-tolerated, with no radiation-induced vertebral compression fractures or myelopathy reported. Reirradiation with CT-guided 125I seed interstitial brachytherapy appears to be feasible, safe, and effective as pain relief or salvage treatment for patients with recurrent spinal metastases after EBRT. PMID:28105434

  19. Peripheral dose in ocular treatments with CyberKnife and Gamma Knife radiosurgery compared to proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Zytkovicz, A.; Daftari, I.; Phillips, T. L.; Chuang, C. F.; Verhey, L.; Petti, P. L.

    2007-09-01

    Peripheral radiation can have deleterious effects on normal tissues throughout the body, including secondary cancer induction and cataractogenesis. The aim of this study is to evaluate the peripheral dose received by various regions of the body after ocular treatment delivered with the Model C Gamma Knife, proton radiotherapy with a dedicated ocular beam employing no passive-scattering system, or a CyberKnife unit before and after supplemental shielding was introduced. TLDs were used for stray gamma and x-ray dosimetry, whereas CR-39 dosimeters were used to measure neutron contamination in the proton experiments. Doses to the contralateral eye, neck, thorax and abdomen were measured on our anthropomorphic phantom for a 56 Gy treatment to a 588 mm3 posterior ocular lesion. Gamma Knife (without collimator blocking) delivered the highest dose in the contralateral eye, with 402-2380 mSv, as compared with 118-234 mSv for CyberKnife pre-shielding, 46-255 mSv for CyberKnife post-shielding and 9-12 mSv for proton radiotherapy. Gamma Knife and post-shielding CyberKnife delivered comparable doses proximal to the treatment site, with 190 versus 196 mSv at the thyroid, whereas protons doses at these locations were less than 10 mSv. Gamma Knife doses decreased dramatically with distance from the treatment site, delivering only 13 mSv at the lower pelvis, comparable to the proton result of 4 to 7 mSv in this region. In contrast, CyberKnife delivered between 117 and 132 mSv to the lower pelvis. In conclusion, for ocular melanoma treatments, a proton beam employing no double scattering system delivers the lowest peripheral doses proximally to the contralateral eye and thyroid when compared to radiosurgery with the Model C Gamma Knife or CyberKnife. At distal locations in the pelvis, peripheral doses delivered with proton and Gamma Knife are of an order of magnitude smaller than those delivered with CyberKnife.

  20. Dosimetric difference amongst 3 techniques: TomoTherapy, sliding-window intensity-modulated radiotherapy (IMRT), and RapidArc radiotherapy in the treatment of late-stage nasopharyngeal carcinoma (NPC)

    SciTech Connect

    Lee, Francis Kar-ho Yip, Celia Wai-yi; Cheung, Frankie Chun-hung; Leung, Alex Kwok-cheung; Chau, Ricky Ming-chun; Ngan, Roger Kai-cheong

    2014-04-01

    To investigate the dosimetric difference amongst TomoTherapy, sliding-window intensity-modulated radiotherapy (IMRT), and RapidArc radiotherapy in the treatment of late-stage nasopharyngeal carcinoma (NPC). Ten patients with late-stage (Stage III or IV) NPC treated with TomoTherapy or IMRT were selected for the study. Treatment plans with these 3 techniques were devised according to departmental protocol. Dosimetric parameters for organ at risk and treatment targets were compared between TomoTherapy and IMRT, TomoTherapy and RapidArc, and IMRT and RapidArc. Comparison amongst the techniques was done by statistical tests on the dosimetric parameters, total monitor unit (MU), and expected delivery time. All 3 techniques achieved similar target dose coverage. TomoTherapy achieved significantly lower doses in lens and mandible amongst the techniques. It also achieved significantly better dose conformity to the treatment targets. RapidArc achieved significantly lower dose to the eye and normal tissue, lower total MU, and less delivery time. The dosimetric advantages of the 3 techniques were identified in the treatment of late-stage NPC. This may serve as a guideline for selection of the proper technique for different clinical cases.

  1. [Radiotherapy for retroperitoneal sarcomas].

    PubMed

    Sargos, P; Stoeckle, E; Henriques de Figueiredo, B; Antoine, M; Delannes, M; Mervoyer, A; Kantor, G

    2016-10-01

    The management of retroperitoneal sarcoma can be very challenging, and the quality of initial treatment strategy appears to be a crucial prognostic factor. En bloc surgery is currently the standard of care for these rare tumours and perioperative treatments such as chemotherapy or radiotherapy have not been validated yet. However, local-regional relapse constitutes the most common disease course. While adjuvant radiotherapy is less and less common due to gastrointestinal toxicities, preoperative radiation therapy offers numerous advantages and is being evaluated as part of a national multicentre phase II study (TOMOREP trial) and is the subject of a European randomized phase III study (STRASS trial). The objective of this article is to present data on preoperative irradiation in terms of dose, volumes and optimal radiotherapy techniques for the treatment of this rare disease.

  2. An optimization method for importance factors and beam weights based on genetic algorithms for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Wu, Xingen; Zhu, Yunping

    2001-04-01

    We propose a new method for selecting importance factors (for regions of interest like organs at risk) used to plan conformal radiotherapy. Importance factors, also known as weighting factors or penalty factors, are essential in determining the relative importance of multiple objectives or the penalty ratios of constraints incorporated into cost functions, especially in dealing with dose optimization in radiotherapy treatment planning. Researchers usually choose importance factors on the basis of a trial-and-error process to reach a balance between all the objectives. In this study, we used a genetic algorithm and adopted a real-number encoding method to represent both beam weights and importance factors in each chromosome. The algorithm starts by optimizing the beam weights for a fixed number of iterations then modifying the importance factors for another fixed number of iterations. During the first phase, the genetic operators, such as crossover and mutation, are carried out only on beam weights, and importance factors for each chromosome are not changed or `frozen'. In the second phase, the situation is reversed: the beam weights are `frozen' and the importance factors are changed after crossover and mutation. Through alternation of these two phases, both beam weights and importance factors are adjusted according to a fitness function that describes the conformity of dose distribution in planning target volume and dose-tolerance constraints in organs at risk. Those chromosomes with better fitness are passed into the next generation, showing that they have a better combination of beam weights and importance factors. Although the ranges of the importance factors should be set in advance by using this algorithm, it is much more convenient than selecting specific numbers for importance factors. Three clinical examples are presented and compared with manual plans to verify this method. Three-dimensional standard displays and dose-volume histograms are shown to

  3. Hypofractionated passively scattered proton radiotherapy for low- and intermediate-risk prostate cancer is not associated with post-treatment testosterone suppression

    PubMed Central

    2013-01-01

    Background. To investigate post-treatment changes in serum testosterone in low- and intermediate-risk prostate cancer patients treated with hypofractionated passively scattered proton radiotherapy. Material and methods. Between April 2008 and October 2011, 228 patients with low- and intermediate-risk prostate cancer were enrolled into an institutional review board-approved prospective protocol. Patients received doses ranging from 70 Cobalt Gray Equivalent (CGE) to 72.5 CGE at 2.5 CGE per fraction using passively scattered protons. Three patients were excluded for receiving androgen deprivation therapy (n = 2) or testosterone supplementation (n = 1) before radiation. Of the remaining 226 patients, pretreatment serum testosterone levels were available for 217. Of these patients, post-treatment serum testosterone levels were available for 207 in the final week of treatment, 165 at the six-month follow-up, and 116 at the 12-month follow-up. The post-treatment testosterone levels were compared with the pretreatment levels using Wilcoxon's signed-rank test for matched pairs. Results. The median pretreatment serum testosterone level was 367.7 ng/dl (12.8 nmol/l). The median changes in post-treatment testosterone value were as follows: +3.0 ng/dl (+0.1 nmol/l) at treatment completion; +6.0 ng/dl (+0.2 nmol/l) at six months after treatment; and +5.0 ng/dl (0.2 nmol/l) at 12 months after treatment. None of these changes were statistically significant. Conclusion. Patients with low- and intermediate-risk prostate cancer treated with hypofractionated passively scattered proton radiotherapy do not experience testosterone suppression. Our findings are consistent with physical measurements demonstrating that proton radiotherapy is associated with less scatter radiation exposure to tissues beyond the beam paths compared with intensity-modulated photon radiotherapy. PMID:23477360

  4. Stereotactic Body Radiotherapy as Primary Treatment for Elderly Patients with Medically Inoperable Head and Neck Cancer

    PubMed Central

    Vargo, John A.; Ferris, Robert L.; Clump, David A.; Heron, Dwight E.

    2014-01-01

    Purpose: With a growing elderly population, elderly patients with head and neck cancers represent an increasing challenge with limited prospective data to guide management. The complex interplay between advanced age, associated co-morbidities, and conventional local therapies, such as surgery and external beam radiotherapy ± chemotherapy, can significantly impact elderly patients’ quality of life (QoL). Stereotactic body radiotherapy (SBRT) is a well-established curative strategy for medical-inoperable early-stage lung cancers even in elderly populations; however, there is limited data examining SBRT as primary therapy in head and neck cancer. Material/methods: Twelve patients with medically inoperable head and neck cancer treated with SBRT ± cetuximab from 2002 to 2013 were retrospectively reviewed. SBRT consisted of primarily 44 Gy in five fractions delivered on alternating days over 1–2 weeks. Concurrent cetuximab was administered at a dose of 400 mg/m2 on day −7 followed by 250 mg/m2 on day 0 and +7 in n = 3 (25%). Patient-reported quality of life (PRQoL) was prospectively recorded using the previously validated University of Washington quality of life revised (UW-QoL-R). Results: Median clinical follow-up was 6 months (range: 0.5–29 months). The 1-year actuarial local progression-free survival, distant progression-free survival, progression-free survival, and overall survival for definitively treated patients were 69, 100, 69, and 64%, respectively. One patient (8%) experienced acute grade 3 dysphagia and one patient (8%) experienced late grade 3 mucositis; there were no grade 4–5 toxicities. Prospective collection of PRQoL as assessed by UW-QoL-R was preserved across domains. Conclusion: Stereotactic body radiotherapy shows encouraging survival and relatively low toxicity in elderly patients with unresectable head and neck cancer, which may provide an aggressive potentially curative local therapy while maintaining QoL. PMID

  5. Particle radiotherapy for prostate cancer.

    PubMed

    Shioyama, Yoshiyuki; Tsuji, Hiroshi; Suefuji, Hiroaki; Sinoto, Makoto; Matsunobu, Akira; Toyama, Shingo; Nakamura, Katsumasa; Kudo, Sho

    2015-01-01

    Recent advances in external beam radiotherapy have allowed us to deliver higher doses to the tumors while decreasing doses to the surrounding tissues. Dose escalation using high-precision radiotherapy has improved the treatment outcomes of prostate cancer. Intensity-modulated radiation therapy has been widely used throughout the world as the most advanced form of photon radiotherapy. In contrast, particle radiotherapy has also been under development, and has been used as an effective and non-invasive radiation modality for prostate and other cancers. Among the particles used in such treatments, protons and carbon ions have the physical advantage that the dose can be focused on the tumor with only minimal exposure of the surrounding normal tissues. Furthermore, carbon ions also have radiobiological advantages that include higher killing effects on intrinsic radio-resistant tumors, hypoxic tumor cells and tumor cells in the G0 or S phase. However, the degree of clinical benefit derived from these theoretical advantages in the treatment of prostate cancer has not been adequately determined. The present article reviews the available literature on the use of particle radiotherapy for prostate cancer as well as the literature on the physical and radiobiological properties of this treatment, and discusses the role and the relative merits of particle radiotherapy compared with current photon-based radiotherapy, with a focus on proton beam therapy and carbon ion radiotherapy.

  6. [Emergency Decompressive Craniotomy in the Emergency Room was Effective in Severe Acute Subdural Hematoma Treatment:Two Case Reports].

    PubMed

    Shiomi, Naoto; Echigo, Tadashi; Oka, Hideki; Nozawa, Masahiro; Okada, Michiko; Hiraizumi, Shiho; Kato, Fumitaka; Koseki, Hirokazu; Hashimoto, Yoichi; Hino, Akihiko

    2017-02-01

    The outcome of severe acute subdural hematoma is unfavorable. In particular, patients with levels of consciousness of Glasgow Coma Scale(GCS)3 or 4 tend to be refractory to treatment. Decompressive craniotomy should be promptly performed to remove hematoma. However, if an operating room is not immediately available, emergency burr hole surgery is sometimes performed in the emergency room(primary care room)prior to craniotomy. A previous study has reported that the interval from injury to surgery influences the outcome of severe acute subdural hematoma. Therefore, emergency decompression is important to effectively treat patients with severe acute subdural hematoma. We present the cases of two patients with acute subdural hematomas. In both cases, emergency decompressive craniotomy(hematoma removal after craniotomy and external decompression)was performed in the emergency room of the Emergency and Critical Care Center. In both cases, the surgery was followed by favorable outcomes. Case 1 was a 36-year-old female. The patient's level of consciousness upon arrival was GCS 3. The interval from injury to diagnosis on the basis of CT findings was 75 minutes. Surgery began 20 minutes after diagnosis. Case 2 was a 25-year-old male. The second patient's level of consciousness upon arrival was GCS 4. The interval from injury to diagnosis on the basis of CT findings was 60 minutes. Surgery was begun 40 minutes after diagnosis. In both patients, we observed anisocoria and the loss of the light reflex. However, the postoperative course was favorable, and both patients were discharged. In summary, to treat severe acute subdural hematomas, early emergency decompressive craniotomy is optimal. Emergency decompressive surgery in the emergency room is independent of operating room or staff. Therefore, emergency decompressive craniotomy may improve the outcome of patients with severe acute subdural hematomas.

  7. [Radiotherapy of larynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Legouté, F; Trémolières, P; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    Intensity-modulated radiotherapy is the gold standard in the treatment of larynx cancers (except T1 glottic tumour). Early T1 and T2 tumours may be treated by exclusive radiation or surgery. For tumours requiring total laryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy is possible. For T4 tumour, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, the curative dose is 70Gy and the prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used in locally advanced cancer with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation was based on guidelines.

  8. Radiotherapy supports protective tumor-specific immunity

    PubMed Central

    Gupta, Anurag; Sharma, Anu; von Boehmer, Lotta; Surace, Laura; Knuth, Alexander; van den Broek, Maries

    2012-01-01

    Radiotherapy is an important therapeutic option for the treatment of cancer. Growing evidence indicates that, besides inducing an irreversible DNA damage, radiotherapy promotes tumor-specific immune response, which significantly contribute to therapeutic efficacy. We postulate that radiotherapy activates tumor-associated dendritic cells, thus changing the tolerogenic tumor environment into an immunogenic one. PMID:23264910

  9. Adjuvant radiotherapy for the treatment of stage IV rectal cancer after curative resection

    PubMed Central

    Kim, Min Jung; Kim, Sang Jin; Park, Sung-Chan; Kim, Dae Yong; Park, Ji Won; Ryoo, Seung-Bum; Jeong, Seung-Yong; Park, Kyu Joo; Oh, Heung Kwon; Kim, Duck-Woo; Kang, Sung-Bum; Joo, Jung Nam; Oh, Jae Hwan

    2016-01-01

    Abstract The role of pelvic radiotherapy (RT) in stage IV rectal cancer with total mesorectal excision (TME) has not been defined. We evaluated the impact of RT on oncologic outcomes among patients with stage IV rectal cancer who underwent TME and performed a meta-analysis of published studies. The records of stage IV rectal cancer patients who underwent TME between August 2001 and December 2011 were reviewed. Patients who received pelvic RT (RT group) and those who did not (non-RT group) were matched using a propensity score. Oncologic outcomes were compared between the groups. A systematic literature search and meta-analysis was conducted. One hundred seventy-six patients were matched with propensity score matching, resulting in 39 patients in each group. The local recurrence-free survival (LRFS) of the RT group was significantly higher than that of the non-RT group (2-year LRFS: 100% vs 83.6%, respectively, P = 0.038). The overall survival, disease-free survival, and systemic recurrence were not significantly different between the groups. In the meta-analysis, the RT group had a reduced risk for loco-regional recurrence than the non-RT group (RR: 0.48, 95% confidence interval: 0.29–0.79). Pelvic RT might have benefits for loco-regional control in patients with stage IV rectal cancer who undergo TME. PMID:27893653

  10. Influence of Radiotherapy Treatment Concept on the Outcome of Patients With Localized Ependymomas

    SciTech Connect

    Combs, Stephanie E. Kelter, Verena; Welzel, Thomas; Behnisch, Wolfgang; Kulozik, Andreas E.; Bischof, Marc; Hof, Holger; Debus, Juergen; Schulz-Ertner, Daniela

    2008-07-15

    Purpose: To assess the outcome of 57 patients with localized ependymomas treated with radiotherapy (RT). Methods and Materials: Fifty-seven patients with localized ependymomas were treated with RT. Histology was myxopapillary ependymoma (n = 4), ependymoma (n = 23), and anaplastic ependymoma (n = 30). In 16 patients, irradiation of the craniospinal axis (CSI) was performed with a median dose of 20 Gy. Forty-one patients were treated with local RT, with a local dose of 45 Gy to the posterior fossa, including a boost to the tumor bed of 9 Gy. In 19 patients, the tumor bed was irradiated with a median dose of 54 Gy. Results: Overall survival after primary diagnosis was 83% and 71% at 3 and 5 years. Five-year overall survival was 80% in low-grade and 79% in high-grade tumors. Survival from RT was 79% at 3 and 64% at 5 years. We could not show a significant difference in overall survival between CSI and local RT only. Freedom of local failure was 67% at 5 years in patients treated with CSI and 60% at 5 years after local RT. A rate of 83% for distant failure-free survival could be observed in the CSI group as opposed to 93% in the group receiving local RT only. Conclusion: Local RT in patients with localized tumors is equieffective to CSI. The radiation oncologist must keep in mind that patients with localized ependymomas benefit from local doses {>=}45 Gy.

  11. Conformal radiotherapy in the adjuvant treatment of gastric cancer: Review of 82 cases

    SciTech Connect

    Kassam, Zahra |; Lockwood, Gina |; O'Brien, Catherine; Brierley, James |; Swallow, Carol ||; Oza, Amit |; Siu, Lillian |; Knox, Jennifer J. |; Wong, Rebecca |; Cummings, Bernard; Kim, John |; Moore, Malcolm |; Ringash, Jolie |. E-mail: jolie.ringash@rmp.uhn.on.cag

    2006-07-01

    Background: The Intergroup 0116 study showed a survival benefit with adjuvant chemoradiotherapy (CRT) for resected gastric cancer. We report our experience using conformal radiotherapy (RT). Methods and Materials: Eighty-two patients with resected gastric or gastroesophageal junction (GEJ) adenocarcinoma, Stage IB to IV (M0), were treated with 45 Gy in 25 fractions using a 5-field conformal technique. Chemotherapy was in accordance with the Intergroup 0116 study, or infusional 5-fluorouracil and cisplatin in a phase I/II trial. Results: Mean age was 56.4 years. Median follow-up was 22.8 months. Grade 3 or greater acute toxicity (National Cancer Institute Common Terminology Criteria of Adverse Events, version 3.0) was noted in 57% of patients (upper gastrointestinal tract 34%, hematologic 33%). One patient died of neutropenic sepsis. Radiation Therapy Oncology Group Grade 3 late toxicity included esophageal strictures (3 patients) and small bowel obstruction (1 patient). Full course CRT was completed by 67% of patients. Of 26 patients who relapsed, 20 died. Site of first relapse was available on 23 patients: 8 locoregional and distant, 4 locoregional alone, 11 distant alone. Overall and relapse-free survival were 69% and 54% at 3 years. Conclusion: Adjuvant CRT for gastric cancer, even with conformal RT, is associated with significant toxicity. Survival was comparable to that reported in the Intergroup 0116 study.

  12. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment?

    PubMed

    Decrock, Elke; Hoorelbeke, Delphine; Ramadan, Raghda; Delvaeye, Tinneke; De Bock, Marijke; Wang, Nan; Krysko, Dmitri V; Baatout, Sarah; Bultynck, Geert; Aerts, An; Vinken, Mathieu; Leybaert, Luc

    2017-02-11

    Although radiotherapy is commonly used to treat cancer, its beneficial outcome is frequently hampered by the radiation resistance of tumor cells and adverse reactions in normal tissues. Mechanisms of cell-to-cell communication and how intercellular signals are translated into cellular responses, have become topics of intense investigation, particularly within the field of radiobiology. A substantial amount of evidence is available demonstrating that both gap junctional and paracrine communication pathways can propagate radiation-induced biological effects at the intercellular level, commonly referred to as radiation-induced bystander effects (RIBE). Multiple molecular signaling mechanisms involving oxidative stress, kinases, inflammatory molecules, and Ca(2+) are postulated to contribute to RIBE. Ca(2+) is a highly versatile and ubiquitous second messenger that regulates diverse cellular processes via the interaction with various signaling cascades. It furthermore provides a fast system for the dissemination of information at the intercellular level. Channels formed by transmembrane connexin (Cx) proteins, i.e. hemichannels and gap junction channels, can mediate the cell-to-cell propagation of increases in intracellular Ca(2+) by ministering paracrine and direct cell-cell communication, respectively. We here review current knowledge on radiation-induced signaling mechanisms in irradiated and bystander cells, particularly focusing on the contribution of oxidative stress, Ca(2+) and Cx channels. By illustrating the tight interplay between these different partners, we provide a conceptual framework for intercellular Ca(2+) signaling as a key player in modulating the RIBE and the overall response to radiation.

  13. An optimization model and solution for radiation shielding design of radiotherapy treatment vaults.

    PubMed

    Newman, Francis; Asadi-Zeydabadi, Masoud

    2008-01-01

    In radiation shielding design, one is usually faced with a set of conflicting goals that are navigated by an experienced physicist. If one has abundant space, the task is simplified because concrete is relatively inexpensive and will provide adequate shielding for high energy photons and neutrons, when applicable. However, if space is constrained (which is usually the case), the design becomes more difficult since one will likely have to employ combinations of steel, lead, and concrete, or other new materials--each with different properties and costs. Very experienced shielding designers can draw upon previous plans, but they do not know if their design is optimal in any sense. We have constructed a linear program that minimizes the cost of the shielding materials and minimizes the dose at the protection point or the shielding thickness subject to space constraints and to Federal or State regulations regarding the allowable exposure to individuals adjacent to the radiotherapy vault. In spite of what appears to be a simple model, the solution may require iterations of the optimization to arrive at the optimal solution.

  14. Could preoperative short-course radiotherapy be the treatment of choice for localized advanced rectal carcinoma?

    PubMed Central

    Ciria, Juan Pablo; Eguiguren, Mikel; Cafiero, Sergio; Uranga, Intza; Diaz de Cerio, Ivan; Querejeta, Arrate; Urraca, Jose Maria; Minguez, Julian; Guimon, Elena; Puertolas, Jose Ramón

    2014-01-01

    Short-course preoperative radiotherapy (RT) is widely used in northern Europe for locally advanced resectable rectal cancer, but its role in the era of advanced imaging techniques is uncertain. Here, we reviewed articles and abstracts on SCRT published from 1974 through 2013 with the goal of identifying patients who might be best suited for short-course RT. We included relevant articles comparing surgery with or without preoperative radiation published before and after the advent of total mesorectal excision. We also analyzed two randomized trials directly comparing short-course RT with conventionally fractionated chemoradiation (the Polish Colorectal Study Group and the Trans-Tasman Radiation Oncology Group) that compared short-course RT with conventional chemoradiotherapy. We conclude from our review that short-course RT can be generally applied for operable rectal cancer and produces high rates of pelvic control with acceptable toxicity; it reduces local recurrence rates but does not increase overall survival. SCRT seems to be best used for tumors considered “low risk,” i.e., those that are >5 cm from the anal margin, without circumferential margin involvement, and involvement of fewer than 4 lymph nodes. Whether sequential chemotherapy can further improve outcomes remains to be seen, as does the best time for surgery (immediately or 6–8 weeks after RT). We further recommend that selection of patients for short-course RT should be based on findings from magnetic resonance imaging or transrectal ultrasonography. PMID:25535578

  15. SU-E-J-265: Feasibility Study of Texture Analysis for Prognosis of Local Tumor Recurrence Within 5-Years for Pharyngeal-Laryngeal Carcinoma Patients Received Radiotherapy Treatment

    SciTech Connect

    Huang, W; Tu, S

    2015-06-15

    Purpose: Pharyngeal and laryngeal carcinomas (PLC) are among the top leading cancers in Asian populations. Typically the tumor may recur and progress in a short period of time if radiotherapy fails to deliver a successful treatment. Here we used image texture features extracted from images of computed tomography (CT) planning and conducted a retrospective study to evaluate whether texture analysis is a feasible approach to predict local tumor recurrence for PLC patients received radiotherapy treatment. Methods: CT planning images of 100 patients with PLC treated by radiotherapy at our facility between 2001 and 2010 are collected. These patients were received two separate CT scans, before and mid-course of the treatment delivery. Before the radiotherapy, a CT scanning was used for the first treatment planning. A total of 30 fractions were used in the treatment and patients were scanned with a second CT around the end of the fifteenth delivery for an adaptive treatment planning. Only patients who were treated with intensity modulated radiation therapy and RapidArc were selected. Treatment planning software of Eclipse was used. The changes of texture parameters between two CT acquisitions were computed to determine whether they were correlated to the local tumor recurrence. The following texture parameters were used in the preliminary assessment: mean, variance, standard deviation, skewness, kurtosis, energy, entropy, inverse difference moment, cluster shade, inertia, cluster prominence, gray-level co-occurrence matrix, and gray-level run-length matrix. The study was reviewed and approved by the committee of our institutional review board. Results: Our calculations suggested the following texture parameters were correlated with the local tumor recurrence: skewness, kurtosis, entropy, and inertia (p<0.0.05). Conclusion: The preliminary results were positive. However some works remain crucial to be completed, including addition of texture parameters for different image

  16. SU-C-17A-07: The Development of An MR Accelerator-Enabled Planning-To-Delivery Technique for Stereotactic Palliative Radiotherapy Treatment of Spinal Metastases

    SciTech Connect

    Hoogcarspel, S J; Kontaxis, C; Velden, J M van der; Bol, G H; Vulpen, M van; Lagendijk, J J W; Raaymakers, B W

    2014-06-01

    Purpose: To develop an MR accelerator-enabled online planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases. The technical challenges include; automated stereotactic treatment planning, online MR-based dose calculation and MR guidance during treatment. Methods: Using the CT data of 20 patients previously treated at our institution, a class solution for automated treatment planning for spinal bone metastases was created. For accurate dose simulation right before treatment, we fused geometrically correct online MR data with pretreatment CT data of the target volume (TV). For target tracking during treatment, a dynamic T2-weighted TSE MR sequence was developed. An in house developed GPU based IMRT optimization and dose calculation algorithm was used for fast treatment planning and simulation. An automatically generated treatment plan developed with this treatment planning system was irradiated on a clinical 6 MV linear accelerator and evaluated using a Delta4 dosimeter. Results: The automated treatment planning method yielded clinically viable plans for all patients. The MR-CT fusion based dose calculation accuracy was within 2% as compared to calculations performed with original CT data. The dynamic T2-weighted TSE MR Sequence was able to provide an update of the anatomical location of the TV every 10 seconds. Dose calculation and optimization of the automatically generated treatment plans using only one GPU took on average 8 minutes. The Delta4 measurement of the irradiated plan agreed with the dose calculation with a 3%/3mm gamma pass rate of 86.4%. Conclusions: The development of an MR accelerator-enabled planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases was presented. Future work will involve developing an intrafraction motion adaptation strategy, MR-only dose calculation, radiotherapy quality-assurance in a magnetic field, and streamlining the entire treatment

  17. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    SciTech Connect

    Evans, J.F.; Blue, T.E.

    1996-11-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions {open_quotes}How much?{close_quotes} and {open_quotes}What kind?{close_quotes} of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient {open_quotes}scatterer,{close_quotes} and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h{sup {minus}1} was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs.

  18. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT.

    PubMed

    Evans, J F; Blue, T E

    1996-11-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions "How much?" and "What kind?" of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room , patient "scatterer," and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h-1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel.

  19. Treatment Planning and Delivery of External Beam Radiotherapy for Pediatric Sarcoma: The St. Jude Children's Research Hospital Experience

    SciTech Connect

    Hua Chiaho Gray, Jonathan M.; Merchant, Thomas E.; Kun, Larry E.; Krasin, Matthew J.

    2008-04-01

    Purpose: To describe and review the radiotherapy (RT) treatment planning and delivery techniques used for pediatric sarcoma patients at St. Jude Children's Research Hospital. The treatment characteristics serve as a baseline for future comparison with developing treatment modalities. Patients and Methods: Since January 2003, we have prospectively treated pediatric and young-adult patients with soft-tissue and bone sarcomas on an institutional Phase II protocol evaluating local control and RT-related treatment effects from external-beam RT (conformal or intensity-modulated RT; 83.4%), low-dose-rate brachytherapy (8.3%), or both (8.3%). Here we describe the treatment dosimetry and delivery parameters of the initial 72 patients (median, 11.6 years; range, 1.4-21.6 years). Results: Cumulative doses from all RT modalities ranged from 41.4 to 70.2 Gy (median, 50.4 Gy). Median D{sub 95} and V{sub 95} of the planning target volume of external-beam RT plans were, respectively, 93.4% of the prescribed dose and 94.6% of the target volume for the primary phase and 97.8% and 99.2% for the cone-down/boost phase. The dose-volume histogram statistics for 27 critical organs varied greatly. The spinal cord in 13 of 36 patients received dose >45 Gy (up to 52 Gy in 1 cc) because of tumor proximity. Conclusions: Planning and delivery of complex multifield external beam RT is feasible in pediatric patients with sarcomas. Improvements on conformity and dose gradients are still desired in many cases with sensitive adjacent critical structures. Long-term follow-up will determine the risk of local failure and the benefit of normal tissue avoidance for this population.

  20. Music therapy as a non-pharmacological anxiolytic for paediatric radiotherapy patients.

    PubMed

    O'Callaghan, C; Sexton, M; Wheeler, G

    2007-04-01

    Outpatient radiotherapy treatment in the paediatric cancer patient can be a traumatic and an anxiety-provoking experience for both the patient and the family. Music therapy has been widely reported to have psychosocial, educational and physical benefits for the paediatric cancer patient. Using individual case reports, this paper shows the successful use of music therapy as a non-pharmacological anxiolytic in the paediatric radiotherapy, outpatient waiting room setting, by providing the patient and the family with a means of communication, self-expression and creativity.

  1. A Novel Active Contour Model for MRI Brain Segmentation used in Radiotherapy Treatment Planning

    PubMed Central

    Mostaar, Ahmad; Houshyari, Mohammad; Badieyan, Saeedeh

    2016-01-01

    Introduction Brain image segmentation is one of the most important clinical tools used in radiology and radiotherapy. But accurate segmentation is a very difficult task because these images mostly contain noise, inhomogeneities, and sometimes aberrations. The purpose of this study was to introduce a novel, locally statistical active contour model (ACM) for magnetic resonance image segmentation in the presence of intense inhomogeneity with the ability to determine the position of contour and energy diagram. Methods A Gaussian distribution model with different means and variances was used for inhomogeneity, and a moving window was used to map the original image into another domain in which the intensity distributions of inhomogeneous objects were still Gaussian but were better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying a bias field by the original signal within the window. Then, a statistical energy function is defined for each local region. Also, to evaluate the performance of our method, experiments were conducted on MR images of the brain for segment tumors or normal tissue as visualization and energy functions. Results In the proposed method, we were able to determine the size and position of the initial contour and to count iterations to have a better segmentation. The energy function for 20 to 430 iterations was calculated. The energy function was reduced by about 5 and 7% after 70 and 430 iterations, respectively. These results showed that, with increasing iterations, the energy function decreased, but it decreased faster during the early iterations, after which it decreased slowly. Also, this method enables us to stop the segmentation based on the threshold that we define for the energy equation. Conclusion An active contour model based on the energy function is a useful tool for medical image segmentation. The proposed method combined the information about neighboring pixels that

  2. Discrete and continuous description of a three-dimensional scene for quality control of radiotherapy treatment planning systems

    NASA Astrophysics Data System (ADS)

    Denis, Eloise; Guédon, JeanPierre; Beaumont, Stéphane; Normand, Nicolas

    2006-03-01

    Quality Control (QC) procedures are mandatory to achieve accuracy in radiotherapy treatments. For that purpose, classical methods generally use physical phantoms that are acquired by the system in place of the patient. In this paper, the use of digital test objects (DTO) replace the actual acquisition1. A DTO is a 3D scene description composed of simple and complex shapes from which discrete descriptions can be obtained. For QC needs, both the DICOM format (for Treatment Planning System (TPS) inputs) as well as continuous descriptions are required. The aim of this work is to define an equivalence model between a continuous description of the three dimensional (3D) scene used to define the DTO, and the DTO characteristics. The purpose is to have an XML- DTO description in order to compute discrete calculations from a continuous description. The defined structure allows also to obtain the three dimensional matrix of the DTO and then the series of slices stored in the DICOM format. Thus, it is shown how possibly design DTO for quality control in CT simulation and dosimetry.

  3. Prognostic Value of Subclassification Using MRI in the T4 Classification Nasopharyngeal Carcinoma Intensity-Modulated Radiotherapy Treatment

    SciTech Connect

    Chen Lei; Liu Lizhi; Chen Mo; Li Wenfei; Yin Wenjing; Lin Aihua; Sun Ying; Li Li; Ma Jun

    2012-09-01

    Purpose: To subclassify patients with the T4 classification nasopharyngeal carcinoma (NPC), according to the seventh edition of the American Joint Committee on Cancer staging system, using magnetic resonance imaging (MRI), and to evaluate the prognostic value of subclassification after intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 140 patients who underwent MRI and were subsequently histologically diagnosed with nondisseminated classification T4 NPC received IMRT as their primary treatment and were included in this retrospective study. T4 patients were subclassified into two grades: T4a was defined as a primary nasopharyngeal tumor with involvement of the masticator space only; and T4b was defined as involvement of the intracranial region, cranial nerves, and/or orbit. Results: The 5-year overall survival (OS) rate and distant metastasis-free survival (DMFS) rate for T4a patients (82.5% and 87.0%, respectively), were significantly higher than for T4b patients (62.6% and 66.8%; p = 0.033 and p = 0.036, respectively). The T4a/b subclassification was an independent prognostic factor for OS (hazard ratio = 2.331, p = 0.032) and DMFS (hazard ratio = 2.602, p = 0.034), and had no significant effect on local relapse-free survival. Conclusions: Subclassification of T4 patients, as T4a or T4b, using MRI according to the site of invasion, has prognostic value for the outcomes of IMRT treatment in NPC.

  4. Treatment outcomes and prognostic factors in mexican patients with endometrial carcinoma with emphasis on patients receiving radiotherapy after surgery: an institutional perspective.

    PubMed

    Flores, Christian; Mariscal, Carlos; Celis, Alfredo; Balcázar, Nidia M; Meneses, Abelardo; Mohar, Alejandro; Mota, Aida; Trejo, Elizabeth

    2012-01-01

    Aim. To analyze the clinical characteristics and treatment outcomes in patients with endometrial carcinoma treated in a Latin American institute with emphasis in patients receiving adjuvant radiotherapy. Methods. A total of 412 patients with endometrial carcinoma admitted to our hospital between 1998 and 2008 were evaluated, retrospectively. The mean age was 55 years (28-87). Two hundred seventy patients received RT following surgery. Stage distribution was as follows: 221 patients (54%) stage I, 86 patients (21%) stage II, and 103 patients (24.5%) stage III and 2 patients (0.5%) stage IVA. Results. Overall survival rate was 95% at 2 years, 84% at 5 years, and 79% at 10 years. By the end of followup, 338 patients (82%) were disease-free, and 13 (3%) were alive with disease. Univariate and multivariate analyses identified age, grade, serosal and adnexial involvement as significant predictors for overall survival. Conclusion. The results of our study suggests that early-stage, low-grade endometrial cancer with no risk factors should not receive external beam radiotherapy, intermediate risk patients should receive only vaginal vault brachytherapy, and the use of chemotherapy with radiotherapy for patients high-risk and advanced-stage carcinoma the addition of radiotherapy is associated with a better survival being an effective therapeutic option.

  5. Treatment complications after sequential combination chemotherapy and radiotherapy with or without surgery in previously untreated squamous cell carcinoma of the head and neck

    SciTech Connect

    Posner, M.R.; Weichselbaum, R.R.; Fitzgerald, T.J.; Clark, J.R.; Rose, C.; Fabian, R.L.; Norris, C.M. Jr.; Miller, D.; Tuttle, S.A.; Ervin, T.J.

    1985-11-01

    One hundred consecutive patients with previously untreated advanced squamous cell carcinoma of the head and neck were treated with induction combination chemotherapy followed by definitive surgery and/or radiotherapy, and were evaluated for radiotherapy related toxicity. The induction regimen consisted of cisplatin, bleomycin and methotrexate/leucovorin. Acute toxicity consisted predominantly of mucositis and weight loss, and was mild or moderate by degree in 94% of patients. Six percent of patients experienced severe or life threatening acute toxicities. Two acute toxic deaths were noted in this series, one from a combination of mucositis, weight loss and infection and one from hypoglycemia of unknown origin. Thirty-five percent of patients had radiation treatment interrupted briefly because of acute toxicity. Radiotherapy dose, surgical intervention and age did not have an impact on the presence or degree of acute toxicity. Late toxicities included: hypothyroidism in 32% of patients tested: osteoradionecrosis in 5% of patients, associated primarily with a composite resection (4 of 5 cases); and soft tissue ulcerations in 3%. Taken together, these data indicate that induction combination chemotherapy did not significantly increase the toxicity of subsequent radiotherapy with or without surgery.

  6. SU-E-T-608: Performance Comparison of Four Commercial Treatment Planning Systems Applied to Intensity-Modulated Radiotherapy

    SciTech Connect

    Cao, Y; Li, R; Chi, Z

    2014-06-01

    Purpose: To compare the performances of four commercial treatment planning systems (TPS) used for the intensity-modulated radiotherapy (IMRT). Methods: Ten patients of nasopharyngeal (4 cases), esophageal (3 cases) and cervical (3 cases) cancer were randomly selected from a 3-month IMRT plan pool at one radiotherapy center. For each patient, four IMRT plans were newly generated by using four commercial TPS (Corvus, Monaco, Pinnacle and Xio), and then verified with Matrixx (two-dimensional array/IBA Company) on Varian23EX accelerator. A pass rate (PR) calculated from the Gamma index by OminiPro IMRT 1.5 software was evaluated at four plan verification standards (1%/1mm, 2%/2mm, 3%/3mm, 4%/4mm and 5%/5mm) for each treatment plan. Overall and multiple pairwise comparisons of PRs were statistically conducted by analysis of covariance (ANOVA) F and LSD tests among four TPSs. Results: Overall significant (p>0.05) differences of PRs were found among four TPSs with F test values of 3.8 (p=0.02), 21.1(>0.01), 14.0 (>0.01), 8.3(>0.01) at standards of 1%/1mm to 4%/4mm respectively, except at 5%/5mm standard with 2.6 (p=0.06). All means (standard deviation) of PRs at 3%/3mm of 94.3 ± 3.3 (Corvus), 98.8 ± 0.8 (Monaco), 97.5± 1.7 (Pinnacle), 98.4 ± 1.0 (Xio) were above 90% and met clinical requirement. Multiple pairwise comparisons had not demonstrated a consistent low or high pattern on either TPS. Conclusion: Matrixx dose verification results show that the validation pass rates of Monaco and Xio plans are relatively higher than those of the other two; Pinnacle plan shows slight higher pass rate than Corvus plan; lowest pass rate was achieved by the Corvus plan among these four kinds of TPS.

  7. Fractionated stereotactic radiotherapy plus bevacizumab after response to bevacizumab plus irinotecan as a rescue treatment for high-grade gliomas

    PubMed Central

    Conde-Moreno, Antonio José; García-Gómez, Raquel; Albert-Antequera, María; Almendros-Blanco, Piedad; De Las Peñas-Bataller, Ramón; González-Vidal, Verónica; López-Torrecilla, José Luis; Ferrer-Albiach, Carlos

    2015-01-01

    Aim To evaluate the possibility of implementing a new scheme of rescue treatment after relapse or progression of high-grade glioma (HGG) treated at the first-line with bevacizumab and irinotecan (BVZ+CPT11), evaluating the response and toxicity of associating BVZ and fractionated stereotactic radiotherapy (BVZ+FSRT). Materials and methods We retrospectively analysed data from 59 patients with relapse of HGG. Nine patients with HGG relapse after treatment using the Stupp protocol that were treated with BVZ+CPT11 for progression between July 2007 and August 2012, after which the response was assessed according to the Revised Assessment in Neuro-Oncology (RANO) criteria. BVZ was administered at a dose of 10 mg/kg and FSRT up to a prescribed dose of 30 Gy, 500 cGy per fraction, three days a week. The median follow-up was 38 months. Results The treatment was well-tolerated by all patients. The response after nuclear magnetic resonance imaging (MRI) at 3–6 months was progression in two patients, stable disease in four, and three patients had a partial response. The median overall survival (OS) from diagnosis until death or the last control was 36.8 months. The median progression-free survival (PFS) was 10.8 months. The results from tumour sub-group analysis indicated that the PFS was not statistically significant although it seemed that it was higher in grade-III. The OS was higher in grade-III gliomas. Conclusions The combination of BVZ+FSRT as a second-line HGG relapse rescue treatment is well-tolerated and seems to offer promising results. We believe that multi-centre prospective studies are needed to determine the long-term efficacy and toxicity of this therapeutic approach. PMID:25949228

  8. Dosimetric Impact of Breathing Motion in Lung Stereotactic Body Radiotherapy Treatment Using Image-Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    SciTech Connect

    Rao Min; Wu Jianzhou; Cao Daliang; Wong, Tony; Mehta, Vivek; Shepard, David; Ye Jinsong

    2012-06-01

    Purpose: The objective of this study was to investigate the influence of tumor motion on dose delivery in stereotactic body radiotherapy (SBRT) for lung cancer, using fixed field intensity- modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods and Materials: For each of 10 patients with stage I/II non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was carried out. The internal target volume was delineated on the maximum intensity projection CT, which was reconstructed from the 4DCT dataset. A 5-mm margin was used for generation of the planning target volume. VMAT and five-field IMRT plans were generated using Pinnacle{sup 3} SmartArc and direct machine parameter optimization, respectively. All plans were generated for an Elekta Synergy linear accelerator using 6-MV photons. Simulation was performed to study the interplay between multileaf collimator (MLC) sequences and target movement during the delivery of VMAT and IMRT. For each plan, 4D dose was calculated using deformable image registration of the 4DCT images. Target volume coverage and doses to critical structures calculated using 4D methodology were compared with those calculated using 3D methodology. Results: For all patients included in this study, the interplay effect was found to present limited impact (less than 1% of prescription) on the target dose distribution, especially for SBRT, in which fewer fractions (three fractions) are delivered. Dose to the gross tumor volume (GTV) was, on average, slightly decreased (1% of prescription) in the 4D calculation compared with the 3D calculation. The motion impact on target dose homogeneity was patient-dependent and relatively small. Conclusions: Both VMAT and IMRT plans experienced negligible interplay effects between MLC sequence and tumor motion. For the most part, the 3D doses to the GTV and critical structures provided good approximations of the 4D dose calculations.

  9. Clinical Application of In-Room Positron Emission Tomography for In Vivo Treatment Monitoring in Proton Radiation Therapy

    SciTech Connect

    Min, Chul Hee; Zhu, Xuping; Winey, Brian A.; Grogg, Kira; Testa, Mauro; El Fakhri, Georges; Bortfeld, Thomas R.; Paganetti, Harald; Shih, Helen A.

    2013-05-01

    Purpose: The purpose of this study is to evaluate the potential of using in-room positron emission tomography (PET) for treatment verification in proton therapy and for deriving suitable PET scan times. Methods and Materials: Nine patients undergoing passive scattering proton therapy underwent scanning immediately after treatment with an in-room PET scanner. The scanner was positioned next to the treatment head after treatment. The Monte Carlo (MC) method was used to reproduce PET activities for each patient. To assess the proton beam range uncertainty, we designed a novel concept in which the measured PET activity surface distal to the target at the end of range was compared with MC predictions. The repositioning of patients for the PET scan took, on average, approximately 2 minutes. The PET images were reconstructed considering varying scan times to test the scan time dependency of the method. Results: The measured PET images show overall good spatial correlations with MC predictions. Some discrepancies could be attributed to uncertainties in the local elemental composition and biological washout. For 8 patients treated with a single field, the average range differences between PET measurements and computed tomography (CT) image-based MC results were <5 mm (<3 mm for 6 of 8 patients) and root-mean-square deviations were 4 to 11 mm with PET-CT image co-registration errors of approximately 2 mm. Our results also show that a short-length PET scan of 5 minutes can yield results similar to those of a 20-minute PET scan. Conclusions: Our first clinical trials in 9 patients using an in-room PET system demonstrated its potential for in vivo treatment monitoring in proton therapy. For a quantitative range prediction with arbitrary shape of target volume, we suggest using the distal PET activity surface.

  10. Herbal preparation extract for skin after radiotherapy treatment. Part One--Preclinical tests.

    PubMed

    Skalska-Kamińska, Agnieszka; Woźniak, Anna; Paduch, Roman; Kocjan, Ryszard; Rejdak, Robert

    2014-01-01

    Naran R is a herbal composition made of Plantago lanceolate folium, Malvae arboreae flos, Calendulae flos, Chamomillae inflorescentia, Lamii albi flos to prepare compresses or to wash skin with inflammations. The extract of this preparation is mixed to be applied as an ointment on patients' skin after radiotherapy. Experiments performed in vitro are part of pre-clinical tests with Naran R ointment. This study examined the impact of the plant composition for ethanol-water extract on human skin fibroblasts (HSF) culture. Samples of extract, prepared from patented amounts of herbs, were in the range of 25-225 μg/mL. Six methods were applied: standard spectrophotometric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, neutral red (NR) uptake assay, DPPH free radical scavenging test, labeling of cytoskeleton F-actin, staining of argyrophilic nucleolar organizer regions (AgNORs) and trypan blue coloration. The extract concentration 75 μg/mL was established as safe for application on human skin. In labeling of F-actin with rhodamine-phalloidin dye at this concentration the cytoskeleton was stable. The extract did not influence the membrane stability and had positive influence on the proliferation activity. It was confirmed in AgNOR test during incubation with extract, which led to formation of larger amount of smaller nucleolins. In DPPH scavenging activity test, the extract revealed over 8% higher free-radical scavenging activity in comparison to control. After trypan blue staining, the extract in concentration 125 μg/mL significantly lowered the cell viability. When the cytotoxic and anti-proliferative activity of the extracts were analyzed, MTT and Neutral Red (NR) methods were used. The cells' viability was maintained on a constant level (80-110%) after 24, 48 and 72 h of incubation. During all time of NR test (72 h) and even when 225 μg/mL of extract was applied, the viability of cells was in range 80-110% of control. Positive influence

  11. [Radiotherapy of bladder cancer].

    PubMed

    Riou, O; Chauvet, B; Lagrange, J-L; Martin, P; Llacer Moscardo, C; Charissoux, M; Lauche, O; Aillères, N; Fenoglietto, P; Azria, D

    2016-09-01

    Surgery (radical cystectomy) is the standard treatment of muscle-invasive bladder cancer. Radiochemotherapy has risen as an alternative treatment option to surgery as part as organ-sparing combined modality treatment or for patients unfit for surgery. Radiochemotherapy achieves 5-year bladder intact survival of 40 to 65% and 5-year overall survival of 40 to 50% with excellent quality of life. This article introduces the French recommendations for radiotherapy of bladder cancer: indications, exams, technique, dosimetry, delivery and image guidance.

  12. Implementation of in vivo Dosimetry with Isorad{sup TM} Semiconductor Diodes in Radiotherapy Treatments of the Pelvis

    SciTech Connect

    Rodriguez, Miguel L. Abrego, Eladio; Pineda, Amalia

    2008-04-01

    This report describes the results obtained with the Isorad{sup TM} (Red) semiconductor detectors for implementing an in vivo dosimetry program in patients subject to radiotherapy treatment of the pelvis. Four n-type semiconductor diodes were studied to characterize them for the application. The diode calibration consisted of establishing reading-to-dose conversion factors in reference conditions and a set of correction factors accounting for deviations of the diode response in comparison to that of an ion chamber. Treatments of the pelvis were performed by using an isocentric 'box' technique employing a beam of 18 MV with the shape of the fields defined by a multileaf collimator. The method of Rizzotti-Leunen was used to assess the dose at the isocenter based on measurements of the in vivo dose at the entrance and at the exit of each radiation field. The in vivo dose was evaluated for a population of 80 patients. The diodes exhibit good characteristics for their use in in vivo dosimetry; however, the high attenuation of the beam ({approx}12% at 5.0-cm depth) produced, and some important correction factors, must be taken into account. The correction factors determined, including the source-to-surface factor, were within a range of {+-}4%. The frequency histograms of the relative difference between the expected and measured doses at the entrance, the exit, and the isocenter, have mean values and standard deviations of -0.09% (2.18%), 0.77% (2.73%), and -0.11% (1.76%), respectively. The method implemented has proven to be very useful in the assessment of the in vivo dose in this kind of treatment.

  13. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    SciTech Connect

    Barrera, M. T. Barros, H.; Pino, F.; Sajo-Bohus, L.; Dávila, J.

    2015-07-23

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  14. Californium-252 Brachytherapy Combined With External-Beam Radiotherapy for Cervical Cancer: Long-Term Treatment Results

    SciTech Connect

    Lei Xin; Qian Chengyuan; Qing Yi; Zhao Kewei; Yang Zhengzhou; Dai Nan; Zhong Zhaoyang; Tang Cheng; Li Zheng; Gu Xianqing; Zhou Qian; Feng Yan; Xiong Yanli; Shan Jinlu; Wang Dong

    2011-12-01

    Purpose: To observe, by retrospective analysis, the curative effects and complications due to californium-252 ({sup 252}Cf) neutron intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT) in the treatment of cervical cancer. Methods and Materials: From February 1999 to December 2007, 696 patients with cervical cancer (Stages IB to IIIB) were treated with {sup 252}Cf-ICBT in combination of EBRT. Of all, 31 patients were at Stage IB, 104 at IIA, 363 at IIB, 64 at IIIA, and 134 at IIIB. Californium-252 ICBT was delivered at 7-12 Gy per insertion per week, with a total dose of 29-45 Gy to reference point A in three to five insertions. The whole pelvic cavity was treated with 8-MV X-ray external irradiation at 2 Gy per fraction, four times per week. After 16-38 Gy of external irradiation, the center of the whole pelvic field was blocked with a 4-cm-wide lead shield, with a total external irradiation dose of 44-56 Gy. The total treatment course was 5 to 6 weeks. Results: Overall survival rate at 3 and 5 years for all patients was 76.0% and 64.9%, respectively. Disease-free 3- and 5-year survival rates of patients were 71.2% and 58.4%, respectively. Late complications included vaginal contracture and adhesion, radiation proctitis, radiation cystitis, and inflammatory bowel, which accounted for 5.8%, 7.1%, 6.2%, and 4.9%, respectively. Univariate analysis results showed significant correlation of stage, age, histopathologic grade, and lymph node status with overall survival. Cox multiple regression analysis showed that the independent variables were stage, histopathologic grade, tumor size, and lymphatic metastasis in all patients. Conclusion: Results of this series suggest that the combined use of {sup 252}Cf-ICBT with EBRT is an effective method for treatment of cervical cancer.

  15. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    NASA Astrophysics Data System (ADS)

    Barrera, M. T.; Barros, H.; Pino, F.; Dávila, J.; Sajo-Bohus, L.

    2015-07-01

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e'n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction 10B(n,α)7Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (˜1.6 104 neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  16. An attenuation integral digital imaging technique for the treatment portal verification of conventional and intensity-modulated radiotherapy

    SciTech Connect

    Guan Huaiqun

    2010-07-15

    Purpose: To propose an attenuation integral digital imaging (AIDI) technique for the treatment portal verification of conventional and intensity-modulated radiotherapy (IMRT). Methods: In AIDI technique, an open in air fluence image I{sub o} and a patient fluence image I were acquired under the same exposure. Then after doing the dark field correction for both the I{sub o} and I, the AIDI image was simply calculated as log(I{sub o}/I), which is the attenuation integral along the ray path from the x-ray source to a detector pixel element. Theoretical analysis for the low contrast detection and the contrast to noise ratio (CNR) of AIDI was presented and compared to those for the fluence imaging. With AIDI, the variation of x-ray fluence and the variation of individual detector pixel's response can be automatically compensated without using the flood field correction. Results: The AIDI image for a contrast detail phantom demonstrated that it can efficiently suppress the background structures such as the couch and generate better visibility for low contrast objects with megavoltage x rays. The AIDI image acquired for a Catphan 500 phantom using a 60 deg. electronic dynamic wedge field also revealed more contrast disks than the fluence imaging did. Finally, AIDI for an IMRT field of a head/neck patient successfully displayed the anatomical structures underneath the treatment portal but not shown in fluence imaging. Conclusions: For IMRT and high degree wedge beams, direct imaging using them is difficult because their photon fluence is highly nonuniform. But AIDI can be used for the treatment portal verification of these beams.

  17. External Beam Radiotherapy With Endocavitary Boost for Nasopharyngeal Cancer: Treatment Results and Late Toxicity After Extended Follow-Up

    SciTech Connect

    Schinagl, Dominic A.X.; Marres, Henri A.M.; Kappelle, Arnoud C.; Merkx, Matthias A.W.; Pop, Lucas A.M.; Verstappen, Suzan M.M.; Kaanders, Johannes H.A.M.

    2010-11-01

    Purpose: To evaluate the long-term outcome after treatment of nasopharyngeal carcinoma and assess late toxicity in a multidisciplinary clinic. Methods and Materials: A retrospective analysis of 117 patients treated for nasopharyngeal cancer in a single institute between 1985 and 2002 was performed. Fifty-one long-term survivors were evaluated for late toxicity by a multidisciplinary team comprising a radiation oncologist, otolaryngologist, neurologist, and oral and maxillofacial surgeon. Results: The 5-year local control rate for T1 to T2 and T3 to T4 tumors was 97% and 76%, respectively. Five-year disease-free survival and overall survival were 82% and 88% for Stage I to IIb disease and 46% and 52% for Stage III to IVb, respectively. Late morbidity evaluation revealed Radiation Therapy Oncology Group (RTOG) Grade III to IV toxicity in 71% of patients. A high incidence of cranial nerve palsies (47%) and mandibular osteolysis (82%) was found, although these complications had limited clinical impact. Conclusions: The multidisciplinary late morbidity clinic revealed an unexpected high incidence of cranial nerve palsies and mandibular osteolysis and overall an RTOG Grade III to IV toxicity in 71% of patients treated for nasopharyngeal cancer. External beam radiotherapy with endocavitary brachytherapy produces excellent rates of local control for T1 to T2 tumors, but the high incidence of late toxicity suggests an overtreatment.

  18. Weekly large fraction radiotherapy and 5 fluorouracil as a palliative treatment for large bowel carcinoma: a pilot study

    SciTech Connect

    Habeshaw, T.; Adam, J.S.; Kirk, J.

    1982-07-01

    Palliative radiotherapy for large bowel cancer is generally given in fraction sizes of 2-3 Gy. Theoretical considerations led us to believe that a larger fraction size would not lead to a decreased response rate and practical considerations led us to treat patients once a week. The results of a pilot study of 32 patients with large bowel cancer are presented. Patients were treated with a fraction size of 6 Gy given weekly and combined with 5 FU. The response rate of 58% and the median survival of 9 months seems comparable with other regimens, as does the rate of acute side effects. The late high dose effect of subcutaneous fibrosis was seen in 30% of the long term survivors; the implications of this are discussed. We draw the conclusion that this treatment is convenient and effective in terms of tumor response, but that the late high dose effects were more severe than expected and that these effects may be potentiated by 5 FU.

  19. Effects of Honey on Oral Mucositis among Pediatric Cancer Patients Undergoing Chemo/Radiotherapy Treatment at King Abdulaziz University Hospital in Jeddah, Kingdom of Saudi Arabia

    PubMed Central

    Al Jaouni, Soad K.; Al Muhayawi, Mohammad S.; Hussein, Abear; Elfiki, Iman; Al-Raddadi, Rajaa; Al Muhayawi, Saad M.; Almasaudi, Saad

    2017-01-01

    One of the most common complications of cancer chemotherapy is oral mucositis. This study evaluates the therapeutic effects of honey with the focus on grade III and IV oral mucositis, reduction of bacterial and fungal infections, duration of episodes of oral mucositis, and body weight in pediatric leukemic patients undergoing chemo/radiotherapy. This is an open labeled randomized controlled study conducted at our hospital on 40 pediatric cancer patients undergoing chemo/radiotherapy. All the 40 patients included in this study experienced a sum total of 390 episodes of fever and neutropenia associated with oral mucositis. A significant reduction of oral mucositis, associated Candida, and aerobic pathogenic bacterial infections was noted in patients in the honey treatment group. Also, there is a significant decrease in the duration of hospitalization for all those in the treatment group combined with a significant increase of body weight, delayed onset, and decreased severity of pain related to oral mucositis. Complications of oral mucositis can be tremendously reduced by the topical application of local Saudi honey and honey should be used as an integrative approach in prophylaxis and treatment of chemo/radiotherapy-induced oral mucositis in pediatric cancer patients. Further research is needed to elucidate and better understand the underlying mechanism. PMID:28270852

  20. Effect of radiotherapy delay in overall treatment time on local control and survival in head and neck cancer: Review of the literature

    PubMed Central

    González Ferreira, José A.; Jaén Olasolo, Javier; Azinovic, Ignacio; Jeremic, Branislav

    2015-01-01

    Treatment delays in completing radiotherapy (RT) for many neoplasms are a major problem affecting treatment outcome, as increasingly shown in the literature. Overall treatment time (OTT) could be a critical predictor of local tumor control and/or survival. In an attempt to establish a protocol for managing delays during RT, especially for heavily overloaded units, we have extensively reviewed the available literature on head and neck cancer. We confirmed a large deleterious effect of prolonged OTT on both local control and survival of these patients. PMID:26549990

  1. Integral dose investigation of non-coplanar treatment beam geometries in radiotherapy

    SciTech Connect

    Nguyen, Dan; Dong, Peng; Ruan, Dan; Low, Daniel A.; Sheng, Ke; Long, Troy; Romeijn, Edwin

    2014-01-15

    Purpose: Automated planning and delivery of non-coplanar plans such as 4π radiotherapy involving a large number of fields have been developed to take advantage of the newly available automated couch and gantry on C-arm gantry linacs. However, there is an increasing concern regarding the potential changes in the integral dose that needs to be investigated. Methods: A digital torso phantom and 22 lung and liver stereotactic body radiation therapy (SBRT) patients were included in the study. The digital phantom was constructed as a water equivalent elliptical cylinder with a major axis length of 35.4 cm and minor axis of 23.6 cm. A 4.5 cm diameter target was positioned at varying depths along the major axis. Integral doses from intensity modulated, non-coplanar beams forming a conical pattern were compared against the equally spaced coplanar beam plans. Integral dose dependence on the phantom geometry and the beam number was also quantified. For the patient plans, the non-coplanar and coplanar beams and fluences were optimized using a column generation and pricing approach and compared against clinical VMAT plans using two full (lung) or partial coplanar arcs (liver) entering at the side proximal to the tumor. Both the average dose to the normal tissue volume and the total volumes receiving greater than 2 Gy (V2) and 5 Gy (V5) were evaluated and compared. Results: The ratio of integral dose from the non-coplanar and coplanar plans depended on the tumor depth for the phantom; for tumors shallower than 10 cm, the non-coplanar integral doses were lower than coplanar integral doses for non-coplanar angles less than 60°. Similar patterns were observed in the patient plans. The smallest non-coplanar integral doses were observed for tumor 6–8 cm deep. For the phantom, the integral dose was independent of the number of beams, consistent with the liver SBRT patients but the lung SBRT patients showed slight increase in the integral dose when more beams were used. Larger

  2. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    SciTech Connect

    Boehling, Nicholas S.; Grosshans, David R.; Bluett, Jaques B.; Palmer, Matthew T.; Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan; Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y.

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  3. [Adjuvant treatment of breast cancer by concomitant hormonotherapy and radiotherapy: state of the art].

    PubMed

    Azria, D; Lemanski, C; Zouhair, A; Gutowski, M; Belkacémi, Y; Dubois, J B; Romieu, G; Ozsahin, M

    2004-06-01

    Combining radiation and hormone therapy has become common clinical practice in recent years for locally advanced prostate cancer. The use of such concomitant therapy in the treatment of breast disease has been very infrequently reported in the literature, but such an application seems justified given the common hormonal dependence of breast cancer and the potential synergetic effect of these two treatment modalities. As adjuvant therapy, tamoxifen is the key drug in the hormonal treatment arsenal, providing a significant improvement in both local control and global survival rates. Aromatase inhibitors are currently being evaluated in this setting, and initial results are promising. In vitro, tamoxifen does not seem to offer a protective effect against radiation. In clinical use, the few available published studies confirm the superiority of the association of radiation with tamoxifen as opposed to radiation therapy alone in decreasing local recurrences of surgically removed breast tumors. Toxicity associated with such concomitant therapy includes mainly subcutaneous and pulmonary fibroses. However, subcutaneous fibrosis and its cosmetic impact on the treated breast are frequently described side effects of radiation therapy, and their incidence may actually be reduced when tamoxifen is associated. The evidence is less controversial for pulmonary fibrosis, which is more common with the concomitant therapy. The association of radiation and aromatase inhibitors has as of yet rarely been reported. Letrozole (Femara) has a radiosensitizing effect on breast-cancer cell lines transfected with the aromatase gene. Clinical data assessing this effect in vivo are not available. The FEMTABIG study (letrozole vs. tamoxifen vs. sequential treatment) did not specify the sequence of radiation and hormonal therapy. The ATAC study comparing the adjuvant use of anastrozole (Arimidex) and tamoxifen does not provide any information on the number of patients receiving radiation

  4. Treatment outcome of patients with advanced stage natural killer/T-cell lymphoma: elucidating the effects of asparaginase and postchemotherapeutic radiotherapy.

    PubMed

    Bi, Xi-Wen; Jiang, Wen-Qi; Zhang, Wen-Wen; Huang, Jia-Jia; Xia, Yi; Wang, Yu; Sun, Peng; Li, Zhi-Ming

    2015-07-01

    The prognosis of advanced stage natural killer/T-cell lymphoma (NKTCL) remains relatively disappointing, and the optimal treatment strategy for this disease has yet to be discovered. Seventy-three patients with Ann Arbor stage III or IV NKTCL were retrospectively reviewed. The treatment efficacies of asparaginase-containing and asparaginase-absent chemotherapy regimens were compared, and the effects of postchemotherapeutic radiotherapy were explored. The overall response rate (ORR) of the asparaginase-containing regimens was marginally higher than that of the asparaginase-absent regimens (56.5 vs 32.6 %, P = 0.057). However, no significant difference was observed in 2-year overall survival (OS) (38.3 vs 22.7 %, P = 0.418) or 2-year progression-free survival (PFS) (25.4 vs 14.9 %, P = 0.134) between the asparaginase-containing and asparaginase-absent groups. Postchemotherapeutic radiotherapy was associated with a significantly prolonged survival (2-year OS 57.5 vs 14.5 %, P < 0.001; 2-year PFS 46.3 vs 8.4 %, P < 0.001) and was an independent predictor of both OS and PFS. Radiotherapy significantly improved the prognosis among the patients who exhibited complete or partial remission after initial chemotherapy (2-year OS 81.5 vs 40.2 %, P = 0.002; 2-year PFS 65.6 vs 23.4 %, P = 0.008) but failed to provide a significant survival advantage among those who experienced stable or progressive disease after initial chemotherapy. In conclusion, the use of asparaginase did not significantly improve survival for the treatment of patients with stage III/IV NKTCL. Postchemotherapeutic radiotherapy provided additional prognostic benefits to patients who responded well to the initial chemotherapy, which requires further validation in future prospective studies using larger sample sizes.

  5. Role of Radiotherapy in the Treatment of Cervical Lymph Node Metastases From an Unknown Primary Site: Retrospective Analysis of 113 Patients

    SciTech Connect

    Beldi, Debora; Jereczek-Fossa, Barbara A.; D'Onofrio, Alberto; Gambaro, Giuseppina; Fiore, Maria Rosaria; Pia, Francesco; Chiesa, Fausto; Orecchia, Roberto; Krengli, Marco

    2007-11-15

    Purpose: The management of patients with cervical lymph-node metastases from unknown primary site (UPS) remains a matter of discussion. This study aimed to analyze the results and prognostic factors in a series of patients treated with radiotherapy. Methods and Materials: Data from 113 patients who presented with cervical lymph nodes metastases from UPS treated from 1980 to 2004 were reviewed. Eighty-seven patients (77.0%) were squamous cell carcinoma (SCC). Ninety-one patients were treated with curative and 22 with palliative intent. Fifty-nine of 113 patients (52.2%) received surgery followed by radiotherapy and 54 of 113 (47.8%) received radiotherapy alone. Radiotherapy was delivered to the neck and pharyngeal mucosa in 67 patients and to the ipsilateral or bilateral neck in 45 patients. Twenty-one patients (18.5%) also received chemotherapy. Results: The 5-year overall survival rates were 40.7% for the entire group and 46.6% for the SCC subgroup. The occurrence of the occult primary was observed in 23 of 113 patients (20.3%), 19 (82.6%) within the head and neck region. At multivariate analysis, treatment with curative intent and extensive irradiation of bilateral neck and pharyngeal mucosa were favorable prognostic factors for the whole series, and treatment with curative intent, extensive irradiation of bilateral neck and pharyngeal mucosa, and absence of extracapsular spread were favorable prognostic factors for the SCC subgroup. Conclusions: Patients with cervical lymph node metastases from UPS have a similar prognosis to those affected by other head and neck malignancies. Curative treatment strategies including neck dissection and extensive irradiation by three-dimensional conformal radiation therapy resulted in significantly better outcomes.

  6. Room temperature wafer direct bonding of smooth Si surfaces recovered by Ne beam surface treatments

    NASA Astrophysics Data System (ADS)

    Kurashima, Yuichi; Maeda, Atsuhiko; Takagi, Hideki

    2013-06-01

    We examined the applicability of a Ne fast atom beam (FAB) to surface activated bonding of Si wafers at room temperature. With etching depth more than 1.5 nm, the bonding strength comparable to Si bulk strength was attained. Moreover, we found the improvement of the bonding strength by surface smoothing effect of the Ne FAB. Silicon surface roughness decreased from 0.40 to 0.17 nm rms by applying a Ne FAB of 30 nm etching depth. The bonding strength between surfaces recovered by Ne FAB surface smoothing was largely improved and finally became equivalent to Si bulk strength.

  7. A moment-based approach for DVH-guided radiotherapy treatment plan optimization

    NASA Astrophysics Data System (ADS)

    Zarepisheh, M.; Shakourifar, M.; Trigila, G.; Ghomi, P. S.; Couzens, S.; Abebe, A.; Noreña, L.; Shang, W.; Jiang, Steve B.; Zinchenko, Y.

    2013-03-01

    The dose-volume histogram (DVH) is a clinically relevant criterion to evaluate the quality of a treatment plan. It is hence desirable to incorporate DVH constraints into treatment plan optimization for intensity modulated radiation therapy. Yet, the direct inclusion of the DVH constraints into a treatment plan optimization model typically leads to great computational difficulties due to the non-convex nature of these constraints. To overcome this critical limitation, we propose a new convex-moment-based optimization approach. Our main idea is to replace the non-convex DVH constraints by a set of convex moment constraints. In turn, the proposed approach is able to generate a Pareto-optimal plan whose DVHs are close to, or if possible even outperform, the desired DVHs. In particular, our experiment on a prostate cancer patient case demonstrates the effectiveness of this approach by employing two and three moment formulations to approximate the desired DVHs.

  8. Chemotherapy and radiotherapy for treatment of cutaneous lymphoma in a ground cuscus (Phalanger gymnotis).

    PubMed

    Goodnight, Andrea L; Couto, C Guillermo; Green, Eric; Barrie, Michael; Myers, Gwen

    2008-09-01

    A 15-year-old female ground cuscus (Phalanger gymnotis) was presented with an isolated ulcerated, nonhealing lesion on the lateral thorax. Histopathology and immunohistochemistry were diagnostic for cutaneous T-cell lymphoma with incomplete excision. Oral chemotherapy with CCNU (lomustine) resulted in clinical remission that lasted 255 days, with no appreciable toxicity. Tumor recurrence was treated with radiation therapy, which resulted in 120 additional days of clinical remission. Subsequently, the tumor developed at a distant site and the cuscus was humanely euthanized. A slight decrease in appetite early in disease progression was the only adverse effect noted throughout the treatment period. Oral, minimally invasive chemotherapy, and adjunct radiation therapy were viable treatment options for this ground cuscus and should be considered for treatment of neoplasia in other nontraditional species.

  9. Treatment of metastatic para-aortic paraganglioma by surgery, radiotherapy and I-131 mIBG.

    PubMed

    Ball, A B; Tait, D M; Fisher, C; Sinnett, H D; Harmer, C L

    1991-10-01

    A patient with a malignant, functioning, aortico-sympathetic paraganglioma and a solitary bone metastasis causing paraplegia was treated by spinal decompression, irradiation of the metastasis, surgical excision of the primary tumour and systemic I-131 meta-iodobenzyl-guanidine (mIBG). Sixteen months after treatment there was no clinical, radiological or biochemical evidence of residual disease and neurological function was restored. The case supports the use of combined treatment incorporating mIBG in patients with metastatic neuroendocrine tumours which demonstrate mIBG uptake.

  10. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    NASA Astrophysics Data System (ADS)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm-3 and 1.1 g cm-3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  11. Radiotherapy plus nimotuzumab or placebo in the treatment of high grade glioma patients: results from a randomized, double blind trial

    PubMed Central

    2013-01-01

    Background The prognosis of patients bearing high grade glioma remains dismal. Epidermal Growth Factor Receptor (EGFR) is well validated as a primary contributor of glioma initiation and progression. Nimotuzumab is a humanized monoclonal antibody that recognizes the EGFR extracellular domain and reaches Central Nervous System tumors, in nonclinical and clinical setting. While it has similar activity when compared to other anti-EGFR antibodies, it does not induce skin toxicity or hypomagnesemia. Methods A randomized, double blind, multicentric clinical trial was conducted in high grade glioma patients (41 anaplastic astrocytoma and 29 glioblastoma multiforme) that received radiotherapy plus nimotuzumab or placebo. Treatment and placebo groups were well-balanced for the most important prognostic variables. Patients received 6 weekly doses of 200 mg nimotuzumab or placebo together with irradiation as induction therapy. Maintenance treatment was given for 1 year with subsequent doses administered every 3 weeks. The objectives of this study were to assess the comparative overall survival, progression free survival, response rate, immunogenicity and safety. Results The median cumulative dose was 3200 mg of nimotuzumab given over a median number of 16 doses. The combination of nimotuzumab and RT was well-tolerated. The most prevalent related adverse reactions included nausea, fever, tremors, anorexia and hepatic test alteration. No anti-idiotypic response was detected, confirming the antibody low immunogenicity. The mean and median survival time for subjects treated with nimotuzumab was 31.06 and 17.76 vs. 21.07 and 12.63 months for the control group. Conclusions In this randomized trial, nimotuzumab showed an excellent safety profile and significant survival benefit in combination with irradiation. Trial registration Cuban National Register for clinical trials (No. 1745) (http://registroclinico.sld.cu/ensayos). PMID:23782513

  12. Twenty years' experience in the treatment of acoustic neuromas with fractionated radiotherapy: A review of 45 cases

    SciTech Connect

    Maire, Jean-Philippe . E-mail: jean-philippe.maire@chu-bordeaux.fr; Huchet, Aymeri; Milbeo, Yann; Darrouzet, Vincent; Causse, Nicole; Celerier, Denis; Liguoro, Dominique; Bebear, Jean-Pierre

    2006-09-01

    Purpose: To evaluate very long-term results of fractionated radiotherapy (FRT) of acoustic neuromas (AN). Methods and Materials: From January 1986 to January 2004, FRT was performed in 45 consecutive patients (46 AN). Indications were as follows: poor general condition contraindicating surgery, hearing preservation in bilateral neuromas, partial resection, nonsurgical recurrence. A 3-field to 5-field technique with static beams was used. A mean total dose of 51 Gy was given (1.80 Gy/fraction). The median tumor diameter was 31 mm (range, 11-55 mm). The median follow-up from FRT was 80 months (range, 4-227 months). Results: The particularity of our series consists of a very long-term follow-up of FRT given to selected patients. Nineteen patients died, two with progressive disease, and 17 from non-AN causes. A serviceable level of hearing was preserved in 7/9 hearing patients. No patient had facial or trigeminal neuropathy. Tumor shrinkage was observed in 27 (59%) and stable disease in 16 (35%). Tumor progression occurred in three patients, 12 to 15 months after FRT. Two additional tumors recurred after shrinkage 20 and 216 months after treatment and were operated on. Actuarial local tumor control rates at 5 and 15 years were 86%. For the patient who had a tumor recurrence at 216 months, histologic examination documented transformation to a low-grade malignant peripheral nerve sheath tumor. Conclusion: Very long-term efficacy of FRT is well documented in this series. However, our results suggest that malignant transformation can occur many years after FRT so we advocate caution when using this treatment for young patients.

  13. Clinical study on the influence of motion and other factors on stereotactic radiotherapy in the treatment of adrenal gland tumor

    PubMed Central

    Wang, Jingsheng; Li, Fengtong; Dong, Yang; Song, Yongchun; Yuan, Zhiyong

    2016-01-01

    Background The aim of this study was to investigate the adrenal tumor motion law and influence factors in the treatment of adrenal gland tumor and provide a reference value basis for determining the planning target volume margins for therapy. Materials and methods The subjects considered in this study were 38 adrenal tumor patients treated with CyberKnife with the placement of 45 gold fiducials. Fiducials were implanted into each adrenal tumor using β-ultrasonic guidance. Motion amplitudes of gold fiducials were measured with a Philips SLS simulator and motion data in the left–right, anterior–posterior, and cranio–caudal directions were obtained. Multiple linear regression models were used to analyze influencing factors. t-Test was used for motion amplitude comparison of different tumor locations along the z-axis. Results The motion distances were 0.1–0.4 cm (0.27±0.07 cm), 0.1–0.5 cm (0.31±0.11 cm), and 0.5–1.2 cm (0.87±0.21 cm) along the x-, y-, and z-axes, respectively. Motion amplitude along the z-axis may be affected by tumor location, but movement along the other axes was not affected by age, height, body mass, location, and size. Conclusion The maximum motion distance was along the z-axis. Therefore, this should be the main consideration when defining the planning target volume safety margin. Due to the proximity of the liver, adrenal gland tumor motion amplitude was smaller on the right than the left. This study analyzed adrenal tumor motion amplitude data to evaluate how motion and other factors influence the treatment of adrenal tumor with a goal of providing a reference for stereotactic radiotherapy boundary determination. PMID:27486331

  14. Progestin-releasing intrauterine device insertion plus palliative radiotherapy in frail, elderly uterine cancer patients unfit for radical treatment

    PubMed Central

    MACCHIA, GABRIELLA; DEODATO, FRANCESCO; CILLA, SAVINO; LEGGE, FRANCESCO; CARONE, VITO; CHIANTERA, VITO; VALENTINI, VINCENZO; MORGANTI, ALESSIO GIUSEPPE; FERRANDINA, GABRIELLA

    2016-01-01

    The present study investigated the combination of levonorgestrel-releasing intrauterine device (LNG-IUD) insertion and palliative radiotherapy (RT) as a potential approach for treating frail, elderly endometrial cancer (EC) patients considered unfit for curative oncological treatments. The inclusion criteria were an age of ≥65 years, pathological confirmation of a uterine neoplasm, a Charlson comorbidity index (CCI) value of ≥4 and the presence of vaginal bleeding. Patients underwent intrauterine insertion of an LNG-IUD, and thereafter, received a total dose of 30 Gy at 3 Gy per fraction, over 10 days. The clinical target volume (CTV) was defined as the uterus and disease-involved tissues in the pelvis plus a 1-cm margin. The planning target volume was obtained by adding a 1-cm isotropic margin to the CTV. A total of 9 patients with EC (median age, 85 years; Eastern Cooperative Oncology Group performance status ≥2, ≥88.8%; obesity, 55.5%; median CCI, 5) received an LNG-IUD plus RT. An early complete resolution of bleeding was documented in 8 patients (88.8%), while the remaining patient experienced a marked improvement. The median duration of bleeding control was 18 months, while the 2-year actuarial rate of bleeding-free survival was 53.3% (median follow-up time, 20 months; range, 9–60 months). No LNG-IUD- or severe RT-related complications were documented. Overall, a high rate of bleeding remission, durable bleeding-free survival in face of the easy intrauterine insertion of an LNG-IUD and a negligible toxicity profile of the complete treatment were documented in this study, indicating a requirement for further investigation in a larger series. PMID:27123133

  15. Impact of dose calculation models on radiotherapy outcomes and quality adjusted life years for lung cancer treatment: do we need to measure radiotherapy outcomes to tune the radiobiological parameters of a normal tissue complication probability model?

    PubMed Central

    Docquière, Nicolas; Bondiau, Pierre-Yves; Balosso, Jacques

    2016-01-01

    Background The equivalent uniform dose (EUD) radiobiological model can be applied for lung cancer treatment plans to estimate the tumor control probability (TCP) and the normal tissue complication probability (NTCP) using different dose calculation models. Then, based on the different calculated doses, the quality adjusted life years (QALY) score can be assessed versus the uncomplicated tumor control probability (UTCP) concept in order to predict the overall outcome of the different treatment plans. Methods Nine lung cancer cases were included in this study. For the each patient, two treatments plans were generated. The doses were calculated respectively from pencil beam model, as pencil beam convolution (PBC) turning on 1D density correction with Modified Batho’s (MB) method, and point kernel model as anisotropic analytical algorithm (AAA) using exactly the same prescribed dose, normalized to 100% at isocentre point inside the target and beam arrangements. The radiotherapy outcomes and QALY were compared. The bootstrap method was used to improve the 95% confidence intervals (95% CI) estimation. Wilcoxon paired test was used to calculate P value. Results Compared to AAA considered as more realistic, the PBCMB overestimated the TCP while underestimating NTCP, P<0.05. Thus the UTCP and the QALY score were also overestimated. Conclusions To correlate measured QALY’s obtained from the follow-up of the patients with calculated QALY from DVH metrics, the more accurate dose calculation models should be first integrated in clinical use. Second, clinically measured outcomes are necessary to tune the parameters of the NTCP model used to link the treatment outcome with the QALY. Only after these two steps, the comparison and the ranking of different radiotherapy plans would be possible, avoiding over/under estimation of QALY and any other clinic-biological estimates. PMID:28149761

  16. Health-Related Quality of Life 2 Years After Treatment With Radical Prostatectomy, Prostate Brachytherapy, or External Beam Radiotherapy in Patients With Clinically Localized Prostate Cancer

    SciTech Connect

    Ferrer, Montserrat Suarez, Jose Francisco; Guedea, Ferran; Fernandez, Pablo; Macias, Victor; Marino, Alfonso; Hervas, Asuncion; Herruzo, Ismael; Ortiz, Maria Jose; Villavicencio, Humberto; Craven-Bratle, Jordi; Garin, Olatz; Aguilo, Ferran

    2008-10-01

    Purpose: To compare treatment impact on health-related quality of life (HRQL) in patients with localized prostate cancer, from before treatment to 2 years after the intervention. Methods and Materials: This was a longitudinal, prospective study of 614 patients with localized prostate cancer treated with radical prostatectomy (134), three-dimensional external conformal radiotherapy (205), and brachytherapy (275). The HRQL questionnaires administered before and after treatment (months 1, 3, 6, 12, and 24) were the Medical Outcomes Study 36-Item Short Form, the Functional Assessment of Cancer Therapy (General and Prostate Specific), the Expanded Prostate Cancer Index Composite (EPIC), and the American Urological Association Symptom Index. Differences between groups were tested by analysis of variance and within-group changes by univariate repeated-measures analysis of variance. Generalized estimating equations (GEE) models were constructed to assess between-group differences in HRQL at 2 years of follow-up after adjusting for clinical variables. Results: In each treatment group, HRQL initially deteriorated after treatment with subsequent partial recovery. However, some dimension scores were still significantly lower after 2 years of treatment. The GEE models showed that, compared with the brachytherapy group, radical prostatectomy patients had worse EPIC sexual summary and urinary incontinence scores (-20.4 and -14.1; p < 0.001), and external radiotherapy patients had worse EPIC bowel, sexual, and hormonal summary scores (-3.55, -5.24, and -1.94; p < 0.05). Prostatectomy patients had significantly better EPIC urinary irritation scores than brachytherapy patients (+4.16; p < 0.001). Conclusions: Relevant differences between treatment groups persisted after 2 years of follow-up. Radical prostatectomy had a considerable negative effect on sexual functioning and urinary continence. Three-dimensional conformal radiotherapy had a moderate negative impact on bowel

  17. Vega library for processing DICOM data required in Monte Carlo verification of radiotherapy treatment plans.

    PubMed

    Locke, C; Zavgorodni, S

    2008-12-01

    Monte Carlo (MC) methods provide the most accurate to-date dose calculations in heterogeneous media and complex geometries, and this spawns increasing interest in incorporating MC calculations into treatment planning quality assurance process. This involves MC dose calculations for clinically produced treatment plans. To perform these calculations, a number of treatment plan parameters specifying radiation beam and patient geometries need to be transferred to MC codes, such as BEAMnrc and DOSXYZnrc. Extracting these parameters from DICOM files is not a trivial task, one that has previously been performed mostly using Matlab-based software. This paper describes the DICOM tags that contain information required for MC modeling of conformal and IMRT plans, and reports the development of an in-house DICOM interface, through a library (named Vega) of platform-independent, object-oriented C++ codes. The Vega library is small and succinct, offering just the fundamental functions for reading/modifying/writing DICOM files in a C++ program. The library, however, is flexible enough to extract all MC required data from DICOM files, and write MC produced dose distributions into DICOM files that can then be processed in a treatment planning system environment. The library can be made available upon request to the authors.

  18. Palliative radiotherapy fractionation schedules prescribed are dependent on the distance a patient travels to receive treatment.

    PubMed

    Barnes, Mark; Tiwana, Manpreet S; Miller, Stacy; Kiraly, Andrew; Olivotto, Ivo A; Emmons, Scott; Olson, Robert A

    2015-11-01

    This study assessed the impact of the distance a patient travelled to the treatment centre on the use of single fraction RT for bone metastases. There was significant variability in the prescription of SFRT by distance at which the patient lives from a cancer centre (p<0.001).

  19. Efficacy and treatment-related toxicity of radiotherapy for early-stage primary non-Hodgkin lymphoma of the parotid gland

    SciTech Connect

    Olivier, Kenneth R. . E-mail: kolivier@ufl.edu; Brown, Paul D.; Stafford, Scott L.; Ansell, Stephen M.; Martenson, James A.

    2004-12-01

    Purpose: To assess the efficacy of radiotherapy (RT) in the treatment of primary non-Hodgkin lymphoma (NHL) of the parotid gland. Methods and materials: Data on 35 consecutive patients seen at Mayo Clinic between 1974 and 2000 with Ann Arbor Stage I and II NHL of the parotid gland were reviewed retrospectively. Radiotherapy was given to 23 patients, and 12 patients were observed. Eight patients received RT to local fields only. In addition to local fields, 9 patients received ipsilateral neck irradiation, and 6 patients received both ipsilateral and contralateral neck irradiation. Results: Median follow-up was 6.5 years (range, 2 months-24 years). Local control was significantly improved in the RT group compared with the observation group (p = 0.03). Both overall survival and disease-specific survival were 90% at 5 years and 71% at 10 years. There was no significant difference in disease-specific survival or overall survival between the RT and observation groups. Conclusions: The overall prognosis for this rare presentation of NHL is excellent. Radiotherapy provided significant improvement in local control with minimal morbidity and should be considered in the treatment of these patients.

  20. Metronomic chemotherapy and radiotherapy as salvage treatment in refractory or relapsed pediatric solid tumours

    PubMed Central

    Ali, A.M.; El-Sayed, M.I.

    2016-01-01

    Background Metronomic chemotherapy (mctx) combined with radiation therapy (rt) is an emerging anticancer strategy. The aim of the present study was to assess the efficacy of mctx combined with rt as salvage treatment in children with refractory or relapsed solid malignancies. Methods This prospective study enrolled patients with refractory or relapsed pediatric solid tumours from January 2013 to January 2015. Treatment consisted of 3–12 courses of mctx in all patients, followed by rt in patients who experienced local recurrence, distant metastases, or both. Each course of mctx consisted of oral celecoxib 100–400 mg twice daily (days 1–42), intravenous vinblastine 3 mg/m2 weekly (weeks 1–6), oral cyclophosphamide 2.5 mg/m2 daily (days 1–21), and oral methotrexate 15 mg/m2 twice weekly (days 21–42). Statistical methods used were the log-rank test and binary logistic regression. Results A favourable disease response (partial response or stable disease) was seen in 49 of 64 patients (76.6%), with mild acute toxicity occurring in 41 (64%). After a median follow-up of 14 months, 1-year overall survival was 62%. Pattern of disease relapse (p < 0.0001), time from initial treatment to relapse (p = 0.0002), and response to treatment (p < 0.0001) significantly affected survival. Age was the only factor that significantly correlated with treatment toxicity (p = 0.002; hazard ratio: 3.37; 95% confidence interval: 1.53 to 7.35) Conclusions Combining mctx with rt resulted in a favourable response rate, minimal toxicity, and 62% 1-year overall survival in patients with heavily pretreated recurrent disease. Patients with localized late recurrence or disease progression are the most likely to benefit from this regimen. PMID:27330362

  1. Is intensity-modulated radiotherapy better than conventional radiation treatment and three-dimensional conformal radiotherapy for mediastinal masses in patients with Hodgkin's disease, and is there a role for beam orientation optimization and dose constraints assigned to virtual volumes?

    SciTech Connect

    Girinsky, Theodore . E-mail: girinsky@igr.fr; Pichenot, Charlotte; Beaudre, Anne; Ghalibafian, Mithra; Lefkopoulos, Dimitri

    2006-01-01

    Purpose: To evaluate the role of beam orientation optimization and the role of virtual volumes (VVs) aimed at protecting adjacent organs at risk (OARs), and to compare various intensity-modulated radiotherapy (IMRT) setups with conventional treatment with anterior and posterior fields and three-dimensional conformal radiotherapy (3D-CRT). Methods and Materials: Patients with mediastinal masses in Hodgkin's disease were treated with combined modality therapy (three to six cycles of adriamycin, bleomycin, vinblastine, and dacarbazine [ABVD] before radiation treatment). Contouring and treatment planning were performed with Somavision and CadPlan Helios (Varian Systems, Palo Alto, CA). The gross tumor volume was determined according to the prechemotherapy length and the postchemotherapy width of the mediastinal tumor mass. A 10-mm isotropic margin was added for the planning target volume (PTV). Because dose constraints assigned to OARs led to unsatisfactory PTV coverage, VVs were designed for each patient to protect adjacent OARs. The prescribed dose was 40 Gy to the PTV, delivered according to guidelines from International Commission on Radiation Units and Measurements Report No. 50. Five different IMRT treatment plans were compared with conventional treatment and 3D-CRT. Results: Beam orientation was important with respect to the amount of irradiated normal tissues. The best compromise in terms of PTV coverage and protection of normal tissues was obtained with five equally spaced beams (5FEQ IMRT plan) using dose constraints assigned to VVs. When IMRT treatment plans were compared with conventional treatment and 3D-CRT, dose conformation with IMRT was significantly better, with greater protection of the heart, coronary arteries, esophagus, and spinal cord. The lungs and breasts in women received a slightly higher radiation dose with IMRT compared with conventional treatments. The greater volume of normal tissue receiving low radiation doses could be a cause for

  2. Treatment planning system and dose delivery accuracy in extracranial stereotactic radiotherapy using Elekta body frame

    NASA Astrophysics Data System (ADS)

    Dawod, Tamer; Bremer, Michael; Karstens, Johann H.; Werner, Martin

    2010-01-01

    The purpose of this study was to measure the photon beam transmission through the Elekta Stereotactic Body Frame (ESBF) and treatment couch, to determine the dose calculations accuracy of the MasterPlan Treatment Planning System (TPS) using Pencil Beam (PBA) and Collapsed Cone (CCA) algorithms during the use of Elekta Stereotactic Body Frame (ESBF), and to demonstrate a simple calculation method to put this transmission into account during the treatment planning dose calculations. The dose was measured at the center of an in-house custom-built inhomogeneous PMMA thorax phantom with and without ‘the frame + treatment couch’. The phantom was CT-imaged inside the ESBF and planned with multiple 3D-CRT fields using PBA and CCA for photon beams of energies 6 MV and 10 MV. There were two treatment plans for dose calculations. In the first plan, the ‘frame + couch’ were included in the body contour and, therefore, included in the TPS dose calculations. In the second plan, the ‘frame + couch’ were not included in the body contour and, therefore, not included in the calculations. Transmission of the ‘frame + couch’ was determined by the ratio of the dose measurements with the ‘frame + couch’ to the measurements without them. To validate the accuracy of the calculation model, plans with and without the ‘frame + couch’ surrounding the phantoms were compared with their corresponding measurements. The transmission of the ‘frame + couch’ varies from 90.23-97.54% depending on the energy, field size, the angle of the beams and whether the beams also intercept them. The validation accuracy of the Pencil Beam (PBA) and Collapsed Cone (CCA) algorithms were within 5.33% and 4.04% respectively for the individual measurements for all gantry angles under this study. The results showed that both PBA and CCA algorithms can calculate the dose to the target within 4.25% and 1.95% of the average measured value. The attenuation caused by the ESBF and couch must be

  3. Surface treatment of aluminum alloy at room temperature with titanium-nitride films by dynamic mixing

    NASA Astrophysics Data System (ADS)

    Sato, T.; Ohata, K.; Asahi, N.; Ono, Y.; Oka, Y.; Hashimoto, I.; Arimatsu, K.

    Titanium-nitride coating films were prepared on aluminum alloy plates at room temperature with simultaneous ion implantation and metal vapor deposition (dynamic mixing) by using a high current ion source. The films were analysed by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The results showed the presence of small amount of oxygen and carbon impurities due to a high current density (0.5-1.0 mA/cm 2) of the nitrogen beam (energy: 20 keV). Films of 1.2 μm thickness showed uniform composition. Titanium-nitride coated aluminum alloy (film thickness: 15 μm) was ten times harder than the untreated one. The coated plate was examined by a pin-on-disc wear tester. The results showed better wear properties.

  4. Evaluation of the peripheral dose in stereotactic radiotherapy and radiosurgery treatments

    SciTech Connect

    Di Betta, Erika; Fariselli, Laura; Bergantin, Achille; Locatelli, Federica; Del Vecchio, Antonella; Broggi, Sara; Fumagalli, Maria Luisa

    2010-07-15

    Purpose: The main purpose of this work was to compare peripheral doses absorbed during stereotactic treatment of a brain lesion delivered using different devices. These data were used to estimate the risk of stochastic effects. Methods: Treatment plans were created for an anthropomorphic phantom and delivered using a LINAC with stereotactic cones and a multileaf collimator, a CyberKnife system (before and after a supplemental shielding was applied), a TomoTherapy system, and a Gamma Knife unit. For each treatment, 5 Gy were prescribed to the target. Measurements were performed with thermoluminescent dosimeters inserted roughly in the position of the thyroid, sternum, upper lung, lower lung, and gonads. Results: Mean doses ranged from of 4.1 (Gamma Knife) to 62.8 mGy (LINAC with cones) in the thyroid, from 2.3 (TomoTherapy) to 30 mGy (preshielding CyberKnife) in the sternum, from 1.7 (TomoTherapy) to 20 mGy (preshielding CyberKnife) in the upper part of the lungs, from 0.98 (Gamma Knife) to 15 mGy (preshielding CyberKnife) in the lower part of the lungs, and between 0.3 (Gamma Knife) and 10 mGy (preshielding CyberKnife) in the gonads. Conclusions: The peripheral dose absorbed in the sites of interest with a 5 Gy fraction is low. Although the risk of adverse side effects calculated for 20 Gy delivered in 5 Gy fractions is negligible, in the interest of optimum patient radioprotection, further studies are needed to determine the weight of each contributor to the peripheral dose.

  5. Investigating the Temporal Effects of Respiratory-Gated and Intensity-Modulated Radiotherapy Treatment Delivery on In Vitro Survival: An Experimental and Theoretical Study

    SciTech Connect

    Keall, Paul J. Chang, Michael; Benedict, Stanley; Thames, Howard; Vedam, S. Sastry; Lin, Peck-Sun

    2008-08-01

    Purpose: To experimentally and theoretically investigate the temporal effects of respiratory-gated and intensity-modulated radiotherapy (IMRT) treatment delivery on in vitro survival. Methods and Materials: Experiments were designed to isolate the effects of periodic irradiation (gating), partial tumor irradiation (IMRT), and extended treatment time (gating and IMRT). V79 Chinese hamster lung fibroblast cells were irradiated to 2 Gy with four delivery methods and a clonogenic assay performed. Theoretical incomplete repair model calculations were performed using the incomplete repair model. Results: Treatment times ranged from 1.67 min (conformal radiotherapy, CRT) to 15 min (gated IMRT). Survival fraction calculations ranged from 68.2% for CRT to 68.7% for gated IMRT. For the same treatment time (5 min), gated delivery alone and IMRT delivery alone both had a calculated survival fraction of 68.3%. The experimental values ranged from 65.7% {+-} 1.0% to 67.3% {+-} 1.3%, indicating no significant difference between the experimental observations and theoretical calculations. Conclusion: The theoretical results predicted that of the three temporal effects of radiation delivery caused by gating and IMRT, extended treatment time was the dominant effect. Care should be taken clinically to ensure that the use of gated IMRT does not significantly increase treatment times, by evaluating appropriate respiratory gating duty cycles and IMRT delivery complexity.

  6. A simple DVH generation technique for various radiotherapy treatment planning systems for an independent information system

    NASA Astrophysics Data System (ADS)

    Min, Byung Jun; Nam, Heerim; Jeong, Il Sun; Lee, Hyebin

    2015-07-01

    In recent years, the use of a picture archiving and communication system (PACS) for radiation therapy has become the norm in hospital environments and has been suggested for collecting and managing data using Digital Imaging and Communication in Medicine (DICOM) objects from different treatment planning systems (TPSs). However, some TPSs do not provide the ability to export the dose-volume histogram (DVH) in text or other format. In addition, plan review systems for various TPSs often allow DVH recalculations with different algorithms. These algorithms result in inevitable discrepancies between the values obtained with the recalculation and those obtained with TPS itself. The purpose of this study was to develop a simple method for generating reproducible DVH values by using the TPSs. Treatment planning information, including structures and delivered dose, was exported in the DICOM format from the Eclipse v8.9 or the Pinnacle v9.6 planning systems. The supersampling and trilinear interpolation methods were employed to calculate the DVH data from 35 treatment plans. The discrepancies between the DVHs extracted from each TPS and those extracted by using the proposed calculation method were evaluated with respect to the supersampling ratio. The volume, minimum dose, maximum dose, and mean dose were compared. The variations in DVHs from multiple TPSs were compared by using the MIM software v6.1, which is a commercially available treatment planning comparison tool. The overall comparisons of the volume, minimum dose, maximum dose, and mean dose showed that the proposed method generated relatively smaller discrepancies compared with TPS than the MIM software did compare with the TPS. As the structure volume decreased, the overall percent difference increased. The largest difference was observed in small organs such as the eye ball, eye lens, and optic nerve which had volume below 10 cc. A simple and useful technique was developed to generate a DVH with an acceptable

  7. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    SciTech Connect

    Ipsen, S.; Blanck, O.; Rades, D.; Oborn, B.; Bode, F.; Liney, G.; Hunold, P.; Schweikard, A.; Keall, P. J.

    2014-12-15

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  8. Optimization of Breast Cancer Treatment by Dynamic Intensity Modulated Electron Radiotherapy

    DTIC Science & Technology

    2004-10-01

    reasonable time . Included in this "gross optimization" will be use of precalculated fluence maps reflective of the treatment head geometry, so that the initial parameter set can be determined using Monte Carlo calculations only within the individual patient anatomy. These techniques will make determination of the final leaf settings very straightforward. Additionally, beam data sets have been verified for the clinical range of field sizes and energies. Lastly, we are working with Varian Medical Systems to determine a transition path from our

  9. The effect of radiotherapy in the treatment of retinoblastoma upon the developing dentition

    SciTech Connect

    Doline, S.; Needleman, H.L.; Petersen, R.A.; Cassady, J.R.

    1980-03-01

    Two patients who received supervoltage x-ray external beam irradiation for treatment of retinoblastoma by standard techniques showed interference with the root formation of the maxillary deciduous molars and abnormalities of crown and root formation of the permanent maxillary molars. Both patients showed a relative maxillary retrognathism thought to be related to radiation effects on maxillary bone growth. Simulation of lateral radiation portals with subsequent beam shaping using an appropriate block placed in the radiation beam is suggested as a means to eliminate the dental complications of radiation therapy for retinoblastoma.

  10. Evaluation of normalized metal artifact reduction (NMAR) in kVCT using MVCT prior images for radiotherapy treatment planning

    SciTech Connect

    Paudel, M. R.; Mackenzie, M.; Rathee, S.; Fallone, B. G.

    2013-08-15

    Purpose: To evaluate the metal artifacts in kilovoltage computed tomography (kVCT) images that are corrected using a normalized metal artifact reduction (NMAR) method with megavoltage CT (MVCT) prior images.Methods: Tissue characterization phantoms containing bilateral steel inserts are used in all experiments. Two MVCT images, one without any metal artifact corrections and the other corrected using a modified iterative maximum likelihood polychromatic algorithm for CT (IMPACT) are translated to pseudo-kVCT images. These are then used as prior images without tissue classification in an NMAR technique for correcting the experimental kVCT image. The IMPACT method in MVCT included an additional model for the pair/triplet production process and the energy dependent response of the MVCT detectors. An experimental kVCT image, without the metal inserts and reconstructed using the filtered back projection (FBP) method, is artificially patched with the known steel inserts to get a reference image. The regular NMAR image containing the steel inserts that uses tissue classified kVCT prior and the NMAR images reconstructed using MVCT priors are compared with the reference image for metal artifact reduction. The Eclipse treatment planning system is used to calculate radiotherapy dose distributions on the corrected images and on the reference image using the Anisotropic Analytical Algorithm with 6 MV parallel opposed 5 × 10 cm{sup 2} fields passing through the bilateral steel inserts, and the results are compared. Gafchromic film is used to measure the actual dose delivered in a plane perpendicular to the beams at the isocenter.Results: The streaking and shading in the NMAR image using tissue classifications are significantly reduced. However, the structures, including metal, are deformed. Some uniform regions appear to have eroded from one side. There is a large variation of attenuation values inside the metal inserts. Similar results are seen in commercially corrected image

  11. The Essential Role of Radiotherapy in the Treatment of Merkel Cell Carcinoma: A Study From the Rare Cancer Network

    SciTech Connect

    Ghadjar, Pirus; Kaanders, Johannes H.; Poortmans, Philipp; Zaucha, Renata; Krengli, Marco; Lagrange, Jean L.; Oezsoy, Orhan; Nguyen, Tan D.; Miralbell, Raymond; Baize, Adele; Boujelbene, Noureddine; Collen, Timothy; Scandolaro, Luciano; Untereiner, Michel; Goldberg, Hadassah; Pesce, Gianfranco A.; Anacak, Yavuz; Friedrich, Esther E.; Aebersold, Daniel M.; Beer, Karl T.

    2011-11-15

    Purpose: To evaluate the role of postoperative radiotherapy (RT) in Merkel cell carcinoma (MCC). Methods and Materials: A retrospective multicenter study was performed in 180 patients with MCC treated between February 1988 and September 2009. Patients who had had surgery alone were compared with patients who received surgery and postoperative RT or radical RT. Local relapse-free survival (LRFS), regional relapse-free survival (RRFS), and distant metastasis-free survival (DMFS) rates were assessed together with disease-free survival (DFS), cancer-specific survival (CSS), and overall survival (OS) rates. Results: Seventy-nine patients were male and 101 patients were female, and the median age was 73 years old (range, 38-93 years). The majority of patients had localized disease (n = 146), and the remaining patients had regional lymph node metastasis (n = 34). Forty-nine patients underwent surgery for the primary tumor without postoperative RT to the primary site; the other 131 patients received surgery for the primary tumor, followed by postoperative RT (n = 118) or a biopsy of the primary tumor followed by radical RT (n = 13). Median follow-up was 5 years (range, 0.2-16.5 years). Patients in the RT group had improved LRFS (93% vs. 64%; p < 0.001), RRFS (76% vs. 27%; p < 0.001), DMFS (70% vs. 42%; p = 0.01), DFS (59% vs. 4%; p < 0.001), and CSS (65% vs. 49%; p = 0.03) rates compared to patients who underwent surgery for the primary tumor alone; LRFS, RRFS, DMFS, and DFS rates remained significant with multivariable Cox regression analysis. However OS was not significantly improved by postoperative RT (56% vs. 46%; p = 0.2). Conclusions: After multivariable analysis, postoperative RT was associated with improved outcome and seems to be an important component in the multimodality treatment of MCC.

  12. Definitive Radiotherapy for Ewing Tumors of Extremities and Pelvis: Long-Term Disease Control, Limb Function, and Treatment Toxicity

    SciTech Connect

    Indelicato, Daniel J. Keole, Sameer R.; Shahlaee, Amir H.; Marcus, Robert B.

    2008-11-01

    Purpose: More than 70% of Ewing tumors occur in the extremities and pelvis. This study identified factors influencing local control and functional outcomes after management with definitive radiotherapy (RT). Patients and Methods: A total of 75 patients with a localized Ewing tumor of the extremity or pelvis were treated with definitive RT at the University of Florida between 1970 and 2006 (lower extremity tumors in 30, pelvic tumors in 26, and upper extremity tumors in 19). RT was performed on a once-daily (40%) or twice-daily (60%) basis. The median dose was 55.2 Gy in 1.8-Gy daily fractions or 55.0 Gy in 1.2-Gy twice-daily fractions. The median observed follow-up was 4.7 years. Functional outcome was assessed using the Toronto Extremity Salvage Score. Results: The 10-year actuarial overall survival, cause-specific survival, freedom from relapse, and local control rate was 48%, 48%, 42%, and 71%, respectively. Of the 72 patients, 3 required salvage amputation. Inferior cause-specific survival was associated with larger tumors (81% for tumors <8 cm vs. 39% for tumors {>=}8 cm, p <0.05). No patient characteristics or treatment variables were predictive of local failure. No fractures occurred in patients treated with hyperfractionation or with tumors of the distal extremities. Severe late complications were more frequently associated with use of <8-MV photons and fields encompassing the entire bone or hemipelvis. A significantly better Toronto Extremity Salvage Score was associated with a late-effect biologically effective dose of <91.7 Gy{sub 3}. Conclusions: Limb preservation was effectively achieved through definitive RT. Treating limited field sizes with hyperfractionated high-energy RT could minimize long-term complications and provides superior functional outcomes.

  13. Primary Tumor Site as a Predictor of Treatment Outcome for Definitive Radiotherapy of Advanced-Stage Oral Cavity Cancers

    SciTech Connect

    Lin, Chien-Yu; Wang, Hung-Ming; Kang, Chung-Jan; Lee, Li-Yu; Huang, Shiang-Fu; Fan, Kang-Hsing; Chen, Eric Yen-Chao

    2010-11-15

    Purpose: To evaluate the outcome of definitive radiotherapy (RT) for oral cavity cancers and to assess prognostic factors. Methods and Materials: Definitive RT was performed on 115 patients with oral cavity cancers at Stages III, IVA, and IVB, with a distribution of 6%, 47%, and 47%, respectively. The median dose of RT was 72Gy (range, 62-76Gy). Cisplatin-based chemotherapy was administered to 95% of the patients. Eleven patients underwent salvage surgery after RT failure. Results: Eight-eight (76.5%) patients responded partially and 23 (20%) completely; of the patients who responded, 18% and 57%, respectively, experienced a durable effect of treatment. The 3-year overall survival, disease-specific survival, and progression-free survival were 22%, 27%, and 25%, respectively. The 3-year PFS rates based on the primary tumor sites were as follows: Group I (buccal, mouth floor, and gum) 51%, Group II (retromolar and hard palate) 18%, and Group III (tongue and lip) 6% (p < 0.0001). The 3-year progression-free survival was 41% for N0 patients and 19% for patients with N+ disease (p = 0.012). The T stage and RT technique did not affect survival. The patients who underwent salvage surgery demonstrated better 3-year overall survival and disease-specific survival (53% vs. 19%, p = 0.015 and 53% vs. 24%, p = 0.029, respectively). Subsite group, N+, and salvage surgery were the only significant prognostic factors for survival after multivariate analysis. Conclusion: The primary tumor site and neck stage are prognostic predictors in advanced-stage oral cancer patients who received radical RT. The primary tumor extension and RT technique did not influence survival.

  14. Dosimetric Comparison of Bone Marrow-Sparing Intensity-Modulated Radiotherapy Versus Conventional Techniques for Treatment of Cervical Cancer

    SciTech Connect

    Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun; Mundt, Arno J.; Roeske, John C.; Aydogan, Bulent

    2008-08-01

    Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprised the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.

  15. WE-E-BRE-02: BEST IN PHYSICS (THERAPY) - Stereotactic Radiotherapy for Renal Sympathetic Ablation for the Treatment of Refractory Hypertension

    SciTech Connect

    Maxim, P; Wheeler, M; Loo, B; Maguire, P

    2014-06-15

    Purpose: To determine the safety and efficacy of stereotactic radiotherapy as a novel treatment for patients with refractory hypertension in a swine model. Uncontrolled hypertension is a significant contributor to morbidity and mortality, substantially increasing the risk of ischemic stroke, ischemic heart disease, and kidney failure. Methods: High-resolution computed tomography (CT) images of anesthetized pigs were acquired and treatment plans for each renal artery and nerve were developed using our clinically implemented treatment planning system. Stereotactic radiotherapy, 40Gy in single fraction was delivered bilaterally to the renal nerves using a state-of-the-art medical linear accelerator under image guidance utilizing dynamic conformal arcs. Dose to nearby critical organs was evaluated by dosevolume histogram analysis and correlated to toxicity data obtained through follow up pathology analysis. The animals were observed for six months with serial measurements of blood pressure, urine analysis, serum laboratories, and overall clinical and behavioral status. Results: All animals survived to the follow-up point without evidence of renal dysfunction (stable serum creatinine), skin changes, or behavioral changes that might suggest animal discomfort. Plasma norepinephrine levels (ng/ml) were followed monthly for 6 months. The average reduction observed was 63%, with the median reduction at 73.5%. Microscopic evaluation 4–6 weeks after treatment showed evidence of damage to the nerves around treated renal arteries. Considerable attenuation in pan neurofilament expression by immunohistochemistry was observed with some vacuolar changes indicative of injury. There was no histological or immunohistochemical evidence of damage to nearby spinal cord or spinal nerve root structures. Conclusion: Our preclinical studies have shown stereotactic radiotherapy to the renal sympathetic plexus to be safe and effective in reducing blood pressure, thus this approach holds great

  16. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs.

    PubMed

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Graves, Yan Jiang; Gautier, Quentin; Mell, Loren; Zhou, Linghong; Jia, Xun; Jiang, Steve

    2013-12-21

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose-volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30 s using

  17. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs

    NASA Astrophysics Data System (ADS)

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Jiang Graves, Yan; Gautier, Quentin; Mell, Loren; Zhou, Linghong; Jia, Xun; Jiang, Steve

    2013-12-01

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose-volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30 s using

  18. Gating characteristics of an Elekta radiotherapy treatment unit measured with three types of detector.

    PubMed

    Evans, Philip M; Symonds-Tayler, J Richard N; Colgan, Ruth; Hugo, Geoffrey D; Letts, Nicky; Sandin, Carlos

    2010-04-21

    The characteristics of an Elekta Precise treatment machine with a gating interface were investigated. Three detectors were used: a Farmer ionization chamber, a MatriXX ionization chamber array and an in-house, single pulse-measurement ionization chamber (IVC). Measurements were made of dosimetric accuracy, flatness and symmetry characteristics and duty cycle for a range of beam-on times and gating periods. Results were compared with a standard ungated delivery as a reference. For all beam-on times, down to 0.5 s, dosimetric differences were below +/-1% and flatness and symmetry parameter variations were below +/-1.5%. For the shorter beam-on times the in-house detector deviated from the other two detectors, suggesting that this device should be used in conjunction with other detectors for absolute dosimetry purposes. However, it was found to be useful for studying gated beam characteristics pulse by pulse.

  19. NOTE: Gating characteristics of an Elekta radiotherapy treatment unit measured with three types of detector

    NASA Astrophysics Data System (ADS)

    Evans, Philip M.; Symonds-Tayler, J. Richard N.; Colgan, Ruth; Hugo, Geoffrey D.; Letts, Nicky; Sandin, Carlos

    2010-04-01

    The characteristics of an Elekta Precise treatment machine with a gating interface were investigated. Three detectors were used: a Farmer ionization chamber, a MatriXX ionization chamber array and an in-house, single pulse-measurement ionization chamber (IVC). Measurements were made of dosimetric accuracy, flatness and symmetry characteristics and duty cycle for a range of beam-on times and gating periods. Results were compared with a standard ungated delivery as a reference. For all beam-on times, down to 0.5 s, dosimetric differences were below ±1% and flatness and symmetry parameter variations were below ±1.5%. For the shorter beam-on times the in-house detector deviated from the other two detectors, suggesting that this device should be used in conjunction with other detectors for absolute dosimetry purposes. However, it was found to be useful for studying gated beam characteristics pulse by pulse.

  20. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.

    PubMed

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-07

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to

  1. Clinical and endocrine responses to pituitary radiotherapy in pediatric Cushing's disease: an effective second-line treatment.

    PubMed

    Storr, Helen L; Plowman, P Nicholas; Carroll, Paul V; François, Inge; Krassas, Gerasimos E; Afshar, Farhad; Besser, G Michael; Grossman, Ashley B; Savage, Martin O

    2003-01-01

    Transsphenoidal surgery (TSS) is considered first-line treatment for Cushing's disease (CD). Options for treatment of postoperative persisting hypercortisolemia are pituitary radiotherapy (RT), repeat TSS, or bilateral adrenalectomy. From 1983 to 2001, we treated 18 pediatric patients (age, 6.4-17.8 yr) with CD. All underwent TSS, and 11 were cured (postoperative serum cortisol, <50 nM). Seven (39%) had 0900-h serum cortisol of 269-900 nM during the immediate postoperative period (2-20 d), indicating lack of cure. These patients (6 males and 1 female; mean age, 12.8 yr; range, 6.4-17.8 yr; 4 prepubertal; 3 pubertal) received external beam RT to the pituitary gland, using a 6-MV linear accelerator, with a dose of 45 Gy in 25 fractions over 35 d. Until the RT became effective, hypercortisolemia was controlled with ketoconazole (dose, 200-600 mg/d) (n = 4) and metyrapone (750 mg-3 g/d) +/- aminoglutethimide (1 g/d) or o'p'DDD (mitotane, 3 mg/d) (n = 3). All patients were cured after pituitary RT. The mean interval from RT to cure (mean serum cortisol on 5-point day curve, <150 nM) was 0.94 yr (0.25-2.86 yr). Recovery of pituitary-adrenal function (mean cortisol, 150-300 nM) occurred at mean 1.16 yr (0.40-2.86 yr) post RT. At 2 yr post RT, puberty occurred early in one male patient (age, 9.8 yr) but was normal in the others. GH secretion was assessed at 0.6-2.5 yr post RT in all patients: six had GH deficiency (peak on glucagon/insulin provocation, <1.0-17.9 mU/liter) and received human GH replacement. Follow-up of pituitary function 7.6 and 9.5 yr post RT in two patients showed normal gonadotropin secretion and recovery of GH peak to 29.7 and 19.2 mU/liter. The seven patients were followed for mean 6.9 yr (1.4-12.0 yr), with no evidence of recurrence of CD. In conclusion, pituitary RT is an effective and relatively rapid-onset treatment for pediatric CD after failure of TSS. GH deficiency occurred in 86% patients. Long-term follow-up suggests some recovery of GH

  2. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-01

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to

  3. Poster — Thur Eve — 58: Dosimetric validation of electronic compensation for radiotherapy treatment planning

    SciTech Connect

    Gräfe, James; Khan, Rao; Meyer, Tyler

    2014-08-15

    In this study we investigate the deliverability of dosimetric plans generated by the irregular surface compensator (ISCOMP) algorithm for 6 MV photon beams in Eclipse (Varian Medical System, CA). In contrast to physical tissue compensation, the electronic ISCOMP uses MLCs to dynamically modulate the fluence of a photon beam in order to deliver a uniform dose at a user defined plane in tissue. This method can be used to shield critical organs that are located within the treatment portal or improve dose uniformity by tissue compensation in inhomogeneous regions. Three site specific plans and a set of test fields were evaluated using the γ-metric of 3%/ 3 mm on Varian EPID, MapCHECK, and Gafchromic EBT3 film with a clinical tolerance of >95% passing rates. Point dose measurements with an NRCC calibrated ionization chamber were also performed to verify the absolute dose delivered. In all cases the MapCHECK measured plans met the gamma criteria. The mean passing rate for the six EBT3 film field measurements was 96.2%, with only two fields at 93.4 and 94.0% passing rates. The EPID plans passed for fields encompassing the central ∼10 × 10 cm{sup 2} region of the detector; however for larger fields and greater off-axis distances discrepancies were observed and attributed to the profile corrections and modeling of backscatter in the portal dose calculation. The magnitude of the average percentage difference for 21 ion chamber point dose measurements and 17 different fields was 1.4 ± 0.9%, and the maximum percentage difference was −3.3%. These measurements qualify the algorithm for routine clinical use subject to the same pre-treatment patient specific QA as IMRT.

  4. Practical aspects and applications of the biological effective dose three-dimensional calculation for multi-phase radiotherapy treatment plans

    NASA Astrophysics Data System (ADS)

    Kauweloa, Kevin Ikaika

    The approximate BED (BEDA) is calculated for multi-phase cases due to current treatment planning systems (TPSs) being incapable of performing BED calculations. There has been no study on the mathematical accuracy and precision of BEDA relative to the true BED (BEDT), and how that might negatively impact patient care. The purpose of the first aim was to study the mathematical accuracy and precision in both hypothetical and clinical situations, while the next two aims were to create multi-phase BED optimization ideas for both multi-target liver stereotactic body radiation therapy (SBRT) cases, and gynecological cases where patients are treated with high-dose rate (HDR) brachytherapy along with external beam radiotherapy (EBRT). MATLAB algorithms created for this work were used to mathematically analyze the accuracy and precision of BEDA relative to BEDT in both hypothetical and clinical situations on a 3D basis. The organs-at-risk (OARs) of ten head & neck and ten prostate cancer patients were studied for the clinical situations. The accuracy of BEDA was shown to vary between OARs as well as between patients. The percentage of patients with an overall BEDA percent error less than 1% were, 50% for the Optic Chiasm and Brainstem, 70% for the Left and Right Optic Nerves, as well as the Rectum and Bladder, and 80% for the Normal Brain and Spinal Cord. As seen for each OAR among different patients, there were always cases where the percent error was greater than 1%. This is a cause for concern since the goal of radiation therapy is to reduce the overall uncertainty of treatment, and calculating BEDA distributions increases the treatment uncertainty with percent errors greater than 1%. The revealed inaccuracy and imprecision of BEDA supports the argument to use BEDT. The multi-target liver study involved applying BEDT in order to reduce the number of dose limits to one rather than have one for each fractionation scheme in multi-target liver SBRT treatments. A BEDT limit

  5. Prospective multicenter study of combined treatment with chemotherapy and radiotherapy in breast cancer women with the rare clinical scenario of ipsilateral supraclavicular node recurrence without distant metastases

    SciTech Connect

    Pergolizzi, Stefano . E-mail: Stefano.Pergolizzi@unime.it; Adamo, Vincenzo; Russi, Elvio; Santacaterina, Anna; Maisano, Roberto; Numico, Gianmauro; Palazzolo, Carmela; Ferrau, Francesco; Settineri, Nicola; Altavilla, Giuseppe; Girlando, Andrea; Spadaro, Pietro; Cascinu, Stefano

    2006-05-01

    Purpose: To evaluate the role of chemotherapy combined with curative radiotherapy in breast cancer patients who presented with recurrent ipsilateral supraclavicular lymph node metastases (ISLM) without 'nonregional disease,' we designed an observational study performed prospectively. Patients and Methods: Forty-four consecutive patients with ISLM from breast cancer as part of recurrent regional disease without distant metastases were included in this study. All patients received chemotherapy with doxorubicin-based schema or paclitaxel for six courses and curative radiotherapy (60 Gy/30 fractions of 2 Gy/5 days a week). An 'involved field' radiation was delivered during the interval between the third and fourth chemotherapy course; hormonal therapy was given based on receptor status. Results: The rate of overall clinical response after chemotherapy and radiotherapy was 94.9%. Median time to progression and overall survival were 28 and 40 months, respectively; the 5-year actuarial overall survival and disease-free survival rates were 35% (95% confidence interval, 19-51) and 20% (95% confidence interval, 6-34), respectively. Conclusion: A curative course of intravenous chemotherapy and radical irradiation is feasible in patients with ISLM. All patients presenting recurrence in supraclavicular nodes should be treated with definitive locoregional treatments and systemic therapy because the outcomes are better than might be historically assumed.

  6. Statistical analysis of surrogate signals to incorporate respiratory motion variability into radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Wilms, Matthias; Ehrhardt, Jan; Werner, René; Marx, Mirko; Handels, Heinz

    2014-03-01

    Respiratory motion and its variability lead to location uncertainties in radiation therapy (RT) of thoracic and abdominal tumors. Current approaches for motion compensation in RT are usually driven by respiratory surrogate signals, e.g., spirometry. In this contribution, we present an approach for statistical analysis, modeling and subsequent simulation of surrogate signals on a cycle-by-cycle basis. The simulated signals represent typical patient-specific variations of, e.g., breathing amplitude and cycle period. For the underlying statistical analysis, all breathing cycles of an observed signal are consistently parameterized using approximating B-spline curves. Statistics on breathing cycles are then performed by using the parameters of the B-spline approximations. Assuming that these parameters follow a multivariate Gaussian distribution, realistic time-continuous surrogate signals of arbitrary length can be generated and used to simulate the internal motion of tumors and organs based on a patient-specific diffeomorphic correspondence model. As an example, we show how this approach can be employed in RT treatment planning to calculate tumor appearance probabilities and to statistically assess the impact of respiratory motion and its variability on planned dose distributions.

  7. PET guidance in prostate cancer radiotherapy: Quantitative imaging to predict response and guide treatment.

    PubMed

    Cattaneo, G M; Bettinardi, V; Mapelli, P; Picchio, M

    2016-03-01

    Positron emission tomography (PET) allows a monitoring and recording of the spatial and temporal distribution of molecular/cellular processes for diagnostic and therapeutic applications. The aim of this review is to describe the current applications and to explore the role of PET in prostate cancer management, mainly in the radiation therapy (RT) scenario. The state-of-the art of PET for prostate cancer will be presented together with the impact of new specific PET tracers and technological developments aiming at obtaining better imaging quality, increased tumor detectability and more accurate volume delineation. An increased number of studies have been focusing on PET quantification methods as predictive biomarkers capable of guiding individualized treatment and improving patient outcome; the sophisticated advanced intensity modulated and imaged guided radiation therapy techniques (IMRT/IGRT) are capable of boosting more radioresistant tumor (sub)volumes. The use of advanced feature analyses of PET images is an approach that holds great promise with regard to several oncological diseases, but needs further validation in managing prostate diseases.

  8. Interactive approach to segment organs at risk in radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Dolz, Jose; Kirisli, Hortense A.; Viard, Romain; Massoptier, Laurent

    2014-03-01

    Accurate delineation of organs at risk (OAR) is required for radiation treatment planning (RTP). However, it is a very time consuming and tedious task. The use in clinic of image guided radiation therapy (IGRT) becomes more and more popular, thus increasing the need of (semi-)automatic methods for delineation of the OAR. In this work, an interactive segmentation approach to delineate OAR is proposed and validated. The method is based on the combination of watershed transformation, which groups small areas of similar intensities in homogeneous labels, and graph cuts approach, which uses these labels to create the graph. Segmentation information can be added in any view - axial, sagittal or coronal -, making the interaction with the algorithm easy and fast. Subsequently, this information is propagated within the whole volume, providing a spatially coherent result. Manual delineations made by experts of 6 OAR - lungs, kidneys, liver, spleen, heart and aorta - over a set of 9 computed tomography (CT) scans were used as reference standard to validate the proposed approach. With a maximum of 4 interactions, a Dice similarity coefficient (DSC) higher than 0.87 was obtained, which demonstrates that, with the proposed segmentation approach, only few interactions are required to achieve similar results as the ones obtained manually. The integration of this method in the RTP process may save a considerable amount of time, and reduce the annotation complexity.

  9. Long-term results of radiotherapy in the treatment of pituitary adenomas in children and adolescents

    SciTech Connect

    Grigsby, P.W.; Thomas, P.R.; Simpson, J.R.; Fineberg, B.B.

    1988-12-01

    A retrospective review was performed of 11 children and adolescents (less than 19 years of age) with diagnosed pituitary adenomas. The patients were treated with subtotal resection and postoperative irradiation (S + R) or with irradiation alone (RT) at the Radiation Oncology Center, Mallinckrodt Institute of Radiology, Washington University Medical Center, from January 1958 through December 1982. Patient conditions at diagnosis were acromegaly in one, Nelson's syndrome in one, prolactinoma in three, chromophobe adenoma in three, and Cushing's disease in three. Median follow-up was 15.6 years (range 6.3-29.5 years). Only two patients have had failure: one at 8.6 years and the other at 20.7 years following treatment. All four patients with visual field (VF) defects at diagnosis underwent S + R, with only one developing recurrent disease. The remaining seven patients, who did not have VF defects, received RT only, and there has been one failure in this group. None have suffered long-term visual complications. All have been able to continue school and/or work. Three of eight females have borne children. Hypopituitarism requiring medication occurred in all who received S + R and in four of seven who received RT only.

  10. A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation

    SciTech Connect

    Wong, Rebecca K.S.; Letourneau, Daniel; Varma, Anita; Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine; Martin, Melanie; Bezjak, Andrea; Panzarella, Tony; Gospodarowicz, Mary; Jaffray, David A.

    2012-11-01

    Purpose: To develop a cone-beam computed tomography (CT)-enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry ({<=}2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT-enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT-enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% {+-} 11% and 97% {+-} 4%, respectively. The oncologist's decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT-generated treatment plan delivering at least 90% of the prescribed dose to 100% {+-} 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT-generated treatment plan delivered at least 90% and at least 95% of dose to 98% {+-} 2% and 97% {+-} 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 {+-} 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT-enabled process. Conclusions: The cone-beam CT

  11. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy.

    PubMed

    Kundrát, Pavel

    2007-12-07

    A semi-analytical model of light ions' Bragg peaks is presented and used in conjunction with a detailed probabilistic radiobiological module to predict the biological effectiveness of light ion irradiation for hadrontherapy applications. The physical Bragg peak model is based on energy-loss calculations with the SRIM code and phenomenological formulae for the energy-loss straggling. Effects of nuclear reactions are accounted for on the level of reducing the number of primary particles only. Reaction products are not followed at all and their contribution to dose deposition is neglected. Beam widening due to multiple scattering and calculations of spread-out Bragg peaks are briefly discussed. With this simple physical model, integral depth-dose distributions are calculated for protons, carbon, oxygen and neon ions. A good agreement with published experimental data is observed for protons and lower energy ions (with ranges in water up to approximately 15 cm), while less satisfactory results are obtained for higher energy ions due to the increased role of nuclear reaction products, neglected in this model. A detailed probabilistic radiobiological module is used to complement the simple physical model and to estimate biological effectiveness along the penetration depth of Bragg peak irradiation. Excellent agreement is found between model predictions and experimental data for carbon beams, indicating potential applications of the present scheme in treatment planning in light ion hadrontherapy. Due to the semi-analytical character of the model, leading to high computational speed, applications are foreseen in particular in the fully biological optimization of multiple irradiation fields and intensity-modulated beams.

  12. [Radiotherapy of breast cancer].

    PubMed

    Hennequin, C; Barillot, I; Azria, D; Belkacémi, Y; Bollet, M; Chauvet, B; Cowen, D; Cutuli, B; Fourquet, A; Hannoun-Lévi, J M; Leblanc, M; Mahé, M A

    2016-09-01

    In breast cancer, radiotherapy is an essential component of the treatment. After conservative surgery for an infiltrating carcinoma, radiotherapy must be systematically performed, regardless of the characteristics of the disease, because it decreases the rate of local recurrence and by this way, specific mortality. Partial breast irradiation could not be proposed routinely but only in very selected and informed patients. For ductal carcinoma in situ, adjuvant radiotherapy must be also systematically performed after lumpectomy. After mastectomy, chest wall irradiation is required for pT3-T4 tumours and if there is an axillary nodal involvement, whatever the number of involved lymph nodes. After neo-adjuvant chemotherapy and mastectomy, in case of pN0 disease, chest wall irradiation is recommended if there is a clinically or radiologically T3-T4 or node positive disease before chemotherapy. Axillary irradiation is recommended only if there is no axillary surgical dissection and a positive sentinel lymph node. Supra and infra-clavicular irradiation is advised in case of positive axillary nodes. Internal mammary irradiation must be discussed case by case, according to the benefit/risk ratio (cardiac toxicity). Dose to the chest wall or the breast must be between 45-50Gy with a conventional fractionation. A boost dose over the tumour bed is required if the patient is younger than 60 years old. Hypofractionation (42.5 Gy in 16 fractions, or 41.6 Gy en 13 or 40 Gy en 15) is possible after tumorectomy and if a nodal irradiation is not mandatory. Delineation of the breast, the chest wall and the nodal areas are based on clinical and radiological evaluations. 3D-conformal irradiation is the recommended technique, intensity-modulated radiotherapy must be proposed only in case of specific clinical situations. Respiratory gating could be useful to decrease the cardiac dose. Concomitant administration of chemotherapy in unadvised, but hormonal treatment could be start with

  13. SU-E-T-765: Treatment Planning Comparison of SFUD Proton and 4Ï€ Radiotherapy for Prostate Cases

    SciTech Connect

    Tran, A; Woods, K; Yu, V; Nguyen, D; Sheng, K; Zhang, J

    2015-06-15

    Purpose: Single-Field Uniform Dose (SFUD) proton scanning beams and non-coplanar 4π intensity-modulated radiation therapy (IMRT) represent the most advanced treatment methods based on heavy ion and X-rays, respectively. Here we compare their performance for prostate treatment. Methods: Five prostate patients were planned using 4π radiotherapy and SFUD to an initial dose of 54Gy to a planning target volume (PTV) that encompassed the prostate and seminal vesicles, then a boost prescription dose of 25.2Gy to the prostate for a total dose of 79.2 Gy. 4π plans were created by inversely selecting and optimizing 30 beams from 1162 candidate non-coplanar beams using a greedy column generation algorithm. The SFUD plans utilized two coplanar, parallel-opposing lateral scanning beams. The SFUD plan PTV was modified to account for range uncertainties while keeping an evaluation PTV identical to that of the X-ray plans for comparison. PTV doses, bladder and rectum dose volumes (V40, V45, V60, V70, V75.6, and V80), R50, and PTV homogeneity index (D95/D5) were evaluated. Results: Compared to SFUD, 4π resulted in 6.8% lower high dose spillage as indicated by R50. Bladder and rectum mean doses were 38.3% and 28.2% lower for SFUD, respectively. However, bladder and rectum volumes receiving >70Gy were 13.1% and 12% greater using proton SFUD. Due to the parallel-opposing beam arrangement, SFUD resulted in greater femoral head (87.8%) and penile bulb doses (43.7%). 4π PTV doses were slightly more homogeneous (HI 0.99 vs. 0.98) than the SFUD dose. Conclusion: Proton is physically advantageous to reduce the irradiated normal volume and mean doses to the rectum and bladder but it is also limited in the beam orientations and entrance dose, which resulted in greater doses to the femoral heads and penile bulb, and larger volumes of rectum and bladder exposed to high dose due to the required robust PTV definition. This project is supported by Varian Medical Systems.

  14. Dosimetric comparison of different multileaf collimator leaves in treatment planning of intensity-modulated radiotherapy for cervical cancer

    SciTech Connect

    Wang, Shichao; Ai, Ping; Xie, Li; Xu, Qingfeng; Bai, Sen; Lu, You; Li, Ping; Chen, Nianyong

    2013-01-01

    To study the effect of multileaf collimator (MLC) leaf widths (standard MLC [sMLC] width of 10 mm and micro-MLC [mMLC] width of 4 mm) on intensity-modulated radiotherapy (IMRT) for cervical cancer. Between January 2010 and August 2010, a retrospective analysis was conducted on 12 patients with cervical cancer. The treatment plans for all patients were generated with the same machine setup parameters and optimization methods in a treatment planning system (TPS) based on 2 commercial Elekta MLC devices. The dose distribution for the planning tumor volume (PTV), the dose sparing for organs at risk (OARs), the monitor units (MUs), and the number of IMRT segments were evaluated. For the delivery efficiency, the MUs were significantly higher in the sMLC-IMRT plan than in the mMLC-IMRT plan (802 ± 56.9 vs 702 ± 56.7; p < 0.05). The number of segments in the plans were 58.75 ± 1.8 and 59 ± 1.04 (p > 0.05). For the planning quality, the conformity index (CI) between the 2 paired IMRT plans with the mMLC and the sMLC did not differ significantly (average: 0.817 ± 0.024 vs 0.810 ± 0.028; p > 0.05). The differences of the homogeneity index (HI) between the 2 paired plans were statistically significant (average: 1.122 ± 0.010 vs 1.132 ± 0.014; p < 0.01). For OARs, the rectum, bladder, small intestine, and bony pelvis were evaluated in terms of V{sub 10}, V{sub 20}, V{sub 30}, and V{sub 40}, percentage of contoured OAR volumes receiving 10, 20, 30, and 40 Gy, respectively, and the mean dose (D{sub mean}) received. The IMRT plans with the mMLC protected the OARs better than the plans with the sMLC. There were significant differences (p < 0.05) in evaluated parameters between the 2 paired IMRT plans, except for V{sub 30} and V{sub 40} of the rectum and V{sub 10}, V{sub 20}, V{sub 40}, and D{sub mean} of the bladder. IMRT plans with the mMLC showed advantages over the plans with the sMLC in dose homogeneity for targets, dose sparing of OARs, and fewer MUs in cervical cancer.

  15. Phase I Clinical Trial Assessing Temozolomide and Tamoxifen With Concomitant Radiotherapy for Treatment of High-Grade Glioma

    SciTech Connect

    Patel, Shilpen; DiBiase, Steven; Meisenberg, Barry; Flannery, Todd; Patel, Ashish; Dhople, Anil; Cheston, Sally; Amin, Pradip

    2012-02-01

    Purpose: The new standard treatment of glioblastoma multiforme is concurrent radiotherapy (RT) and temozolomide. The proliferation of high-grade gliomas might be partly dependent on protein kinase C-mediated pathways. Tamoxifen has been shown in vitro to inhibit protein kinase C through estrogen receptor-independent antineoplastic effects. This Phase I trial was designed to determine the maximal tolerated dose (MTD) of tamoxifen when given with temozolomide and concurrent RT to patients with high-grade gliomas. Methods and Materials: A total of 17 consecutive patients in four cohorts with World Health Organization Grade 3 (n = 2) and 4 (n = 15) gliomas were given tamoxifen twice daily during 6 weeks of concurrent RT and temozolomide. Eligibility included histologic diagnosis, age >18 years old, Karnofsky performance status {>=}60, and no previous brain RT or chemotherapy. The starting dose was 50 mg/m{sup 2} divided twice daily. If no dose-limiting toxicities (DLTs) occurred in 3 patients, the dose was escalated in 25-mg/m{sup 2} increments until the MTD was reached. When {>=}2 patients within a cohort experienced a DLT, the MTD had been exceeded. Temozolomide was given with RT at 75 mg/m{sup 2}. A dose of 60 Gy in 2 Gy/d fractions to a partial brain field was delivered. Results: A total of 6 patients in Cohort 4 had received tamoxifen at 125 mg/m{sup 2}. One patient was excluded, and the fourth patient developed Grade 4 thrombocytopenia (DLT). Thus, 3 more patients needed to be enrolled. A deep venous thrombosis (DLT) occurred in the sixth patient. Thus, the MTD was 100 mg/m{sup 2}. Conclusions: The MTD of tamoxifen was 100 mg/m{sup 2} when given concurrently with temozolomide 75 mg/m{sup 2} and RT. Tamoxifen might have a role in the initial treatment of high-grade gliomas and should be studied in future Phase II trials building on the newly established platform of concurrent chemoradiotherapy.

  16. [Radiotherapy for Graves' ophthalmopathy].

    PubMed

    Kuhnt, T; Müller, A C; Janich, M; Gerlach, R; Hädecke, J; Duncker, G I W; Dunst, J

    2004-11-01

    Graves' ophthalmopathy (GO) is the most frequent extrathyroidal manifestation of Graves' disease, an autoimmune disorder of the thyroid, whereas the precise pathogenesis still remains unclear. In Hashimoto's thyroiditis the occurrence of proptosis is an extremely rare event. The therapy for middle and severe courses of GO shows in partly disappointing results, although several therapy modalities are possible (glucocorticoid therapy, radiotherapy, antithyroid drug treatment, surgery). All these therapies lead in only 40 - 70 % to an improvement of the pathogenic symptoms. An intensive interdisciplinary cooperation is necessary to satisfy the requirements for the treatment of Graves' ophthalmopathy. As a consequence of the very different results of the few of clinical studies that were accomplished with reference to this topic, treatment by radiotherapy in the management of the disease is presently controversially discussed. In the German-speaking countries the radiotherapy is, however, firmly established as a therapy option in the treatment of the moderate disease classes (class 2-5 according to NO SPECS), especially if diplopia is present. This article describes the sequences, dosages and fractionation schemes as well as the risks and side effects of the radiotherapy. Altogether, radiotherapy is assessed as an effective and sure method. The administration of glucocorticoids can take place before the beginning of or during the radiotherapy. For the success of treatment the correct selection of patients who may possibly profit from a radiotherapy is absolutely essential. By realising that GO proceeds normally over a period of 2-5 years, which is followed by a period of fibrotic alteration, the application of the radiotherapy in the early, active phase is indispensable. A precise explanation for the effects of radiotherapy in treatment of the GO does not exist at present. The determination of the most effective irradiation doses was made from retrospectively evaluated

  17. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    PubMed

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature.

  18. [Diagnosis and treatment in the emergency room of acute asthma in childhood].

    PubMed

    Aldana Vergara, Ruth Saraí; Olivar Lòpez, Victor; Sienra Monge, Juan José Luis; Lezana Fernández, José Luis; Zepeda Ortega, Benjamin

    2009-01-01

    Acute asthma is characterized by acute air way obstruction episodes presented as short breath, increased coughing, wheezing and difficult breathing, reversible with bronchodilator. It constitutes one of the most frequent causes of pediatric ER visits whose diagnosis and treatment is not always adequate. It is necessary to carry out a complete medical history searching for the number of previous attacks, risk factors, associated illnesses, triggers, prior hospitalizations, preventive and maintenance treatment used, along with a complete physical examination. During the management of moderate-severe attacks frequent systematic assessments are required to ensure treatment response. In children above 5 years old, monitoring of expiratory peak flow (EPF) during mild-moderate attacks is recommended. In general, a national consensus to classify and treat acute asthma in emergency services does not exist for which the need to develop a clinical practice guide of diagnosis and management arises.

  19. Bone Health and Pelvic Radiotherapy.

    PubMed

    Higham, C E; Faithfull, S

    2015-11-01

    Survivors who have received pelvic radiotherapy make up many of the long-term cancer population, with therapies for gynaecological, bowel, bladder and prostate malignancies. Individuals who receive radiotherapy to the pelvis as part of their cancer treatment are at risk of insufficiency fractures. Symptoms of insufficiency fractures include pelvic and back pain and immobility, which can affect substantially quality of life. This constellation of symptoms can occur within 2 months of radiotherapy up to 63 months post-treatment, with a median incidence of 6-20 months. As a condition it is under reported and evidence is poor as to the contributing risk factors, causation and best management to improve the patient's bone health and mobility. As radiotherapy advances, chronic symptoms, such as insufficiency fractures, as a consequence of treatment need to be better understood and reviewed. This overview explores the current evidence for the effect of radiotherapy on bone health and insufficiency fractures and identifies what we know and where gaps in our knowledge lie. The overview concludes with the need to take seriously complaints of pelvic pain from patients after pelvic radiotherapy and to investigate and manage these symptoms more effectively. There is a clear need for definitive research in this field to provide the evidence-based guidance much needed in practice.

  20. Imaging in radiotherapy.

    PubMed

    Van den Berge, D L; De Ridder, M; Storme, G A

    2000-10-01

    Radiotherapy, more then any other treatment modality, relies heavily and often exclusively on medical imaging to determine the extent of disease and the spatial relation between target region and neighbouring healthy tissues. Radically new approaches to radiation delivery are inspired on CT scanning and treat patients in a slice-by-slice fashion using intensity modulated megavoltage fan beams. For quality assurance of complex 3-D dose distributions, MR based 3-D verificative dosimetry on irradiated phantoms has been described. As treatment delivery becomes increasingly refined, the need for accurate target definition increases as well and sophisticated imaging tools like image fusion and 3-D reconstruction are routinely used for treatment planning. While in the past patients were positioned on the treatment machines based exclusively on surface topography and the well-known skin marks, such approach is no longer sufficient for high-accuracy radiotherapy and special imaging tools like on-line portal imaging are used to verify and correct target positioning. Much of these applications rely on digital image processing, transmission and storage, and the development of standards, like DICOM and PACS have greatly contributed to these applications. Digital imaging plays an increasing role in many areas in radiotherapy and has been fundamental in new developments that have demonstrated impact on patient care.

  1. Anthracycline and concurrent radiotherapy as adjuvant treatment of operable breast cancer: a retrospective cohort study in a single institution

    PubMed Central

    2010-01-01

    Background Concurrent chemoradiotherapy (CCRT) after breast surgery was investigated by few authors and remains controversial, because of concerns of toxicity with taxanes/anthracyclines and radiation. This treatment is not standard and is more commonly used for locally advanced breast cancer. The aim of our study was to evaluate the efficacy and safety of the concomitant use of anthracycline with radiotherapy (RT). Findings Four hundred women having operable breast cancer, treated by adjuvant chemotherapy (CT) and RT in concomitant way between January 2001 and December 2003, were included in this retrospective cohort study. The study compares 2 adjuvant treatments using CCRT, the first with anthracycline (group A) and the second with CMF (group B). The CT treatment was repeated every 21 days for 6 courses and the total delivered dose of RT was 50 Gy, divided as 2 Gy daily fractions. Locoregional recurrence free (LRFS), event free (EFS), and overall survivals (OS) were estimated by the Kaplan-Meier method. The log-rank test was used to compare survival events. Multivariate Cox-regression was used to evaluate the relationship between patient characteristics, treatment and survival. In the 2 groups (A+B) (n = 400; 249 in group A and 151 in group B), the median follow-up period was 74.5 months. At 5 years, the isolated LRFS was significantly higher in group A compared to group B (98.7% vs 95.3%; hazard ratio [HR] = 0.258; 95% CI, 0.067 to 0.997; log-rank P = .034). In addition, the use of anthracycline regimens was associated with a higher rate of 5 years EFS (80.4% vs 75.1%; HR = 0.665; 95% CI, 0.455 to 1.016; log-rank P = .057). The 5 years OS was 83.2% and 79.2% in the anthracycline and CMF groups, respectively (HR = 0.708; 95% CI, 0.455 to 1.128; log-rank P = .143). Multivariate analysis confirmed the positive effect of anthracycline regimens on LRFS (HR = 0.347; 95% CI, 0.114 to 1.053; log-rank P = .062), EFS (HR = 0.539; 95% CI, 0.344 to 0.846; P = 0.012), and

  2. Radiotherapy for bone pain.

    PubMed Central

    Needham, P R; Mithal, N P; Hoskin, P J

    1994-01-01

    Painful bone metastases are a common problem for cancer patients. Although current evidence supports the use of a single fraction of radiotherapy as the treatment of choice, many radiotherapists, for a variety of reasons, continue to use fractionated regimens. Over one six month period 105 patients received external beam irradiation for painful bone metastases at the Royal London Hospital (RLH). Thirty-one per cent of the patients were aged 70 or over. The treatment of 97 of these patients was assessed. They had a total of 280 sites treated over the course of their disease. Fifty-nine per cent of sites treated received a fractionated course of radiotherapy. Site significantly influenced fractionation. Overall response rates of 82% were achieved. Fractionation did not appear to influence this. Ten patients received large field irradiation. Fifteen patients had five or more sites irradiated, of whom only one received hemibody irradiation. PMID:7523672

  3. [Task sharing with radiotherapy technicians in image-guided radiotherapy].

    PubMed

    Diaz, O; Lorchel, F; Revault, C; Mornex, F

    2013-10-01

    The development of accelerators with on-board imaging systems now allows better target volumes reset at the time of irradiation (image-guided radiotherapy [IGRT]). However, these technological advances in the control of repositioning led to a multiplication of tasks for each actor in radiotherapy and increase the time available for the treatment, whether for radiotherapy technicians or radiation oncologists. As there is currently no explicit regulatory framework governing the use of IGRT, some institutional experiments show that a transfer is possible between radiation oncologists and radiotherapy technicians for on-line verification of image positioning. Initial training for every technical and drafting procedures within institutions will improve audit quality by reducing interindividual variability.

  4. Successful treatment of a 67-year-old woman with urethral adenocarcinoma with the use of external beam radiotherapy and image guided adaptive interstitial brachytherapy

    PubMed Central

    Mujkanovic, Jasmin; Tanderup, Kari; Agerbæk, Mads; Bisgaard, Ulla; Høyer, Søren; Lindegaard, Jacob Christian

    2016-01-01

    Primary urethral cancer (PUC) is a very rare disease. This case report illustrates a successful treatment approach of a 67-year-old woman with a urethral adenocarcinoma selected for an organ preserving treatment with external beam radiotherapy (EBRT) and interstitial brachytherapy (BT) boost, using the GEC-ESTRO target concept originally designed for locally advanced cervical cancer (LACC). Treatment included EBRT with 45 Gy in 25 fractions followed by image guided adaptive interstitial BT (IGABT) with a pulsed-dose-rate (PDR) BT boost with 30 Gy in 50 hourly pulses. The D90 for CTVHR was 79.1 Gy in EQD23. At 24 months follow-up, the patient was recurrence free and without treatment related side effects. PMID:27895686

  5. [Use of laser for the prevention and treatment of oral mucositis induced by radiotherapy and chemotherapy for head and neck cancer].

    PubMed

    Muñoz-Corcuera, Marta; González-Nieto, Almudena; López-Pintor Muñoz, Rosa María

    2014-08-19

    One of the complications of radiotherapy and chemotherapy is oral mucositis. Since the low energy laser is one of the most frequently recommended interventions by authors and international societies, the aim of this study is to review the scientific evidence on the use of lasers as a preventive and therapeutic in oral mucositis associated with treatment of cancer. We performed a literature search in PubMed and The Cochrane Collaboration Library, limiting the search to the last 20 years. We finally included 29 articles that contained 30 studies. Low energy laser phototherapy seems a promising intervention in both the prevention and treatment of oral mucositis associated with cancer treatment. Virtually all studies reviewed showed good results with no adverse effects and reductions in both incidence and severity of mucositis in all types of cancer treatments.

  6. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  7. Monte Carlo simulations for the design of the treatment rooms and synchrotron access mazes in the CNAO Hadrontherapy facility.

    PubMed

    Porta, Alessandro; Agosteo, Stefano; Campi, Fabrizio

    2005-01-01

    The Italian National Centre for Hadrontherapy is based on a synchrotron capable of accelerating protons and carbon ions up to 250 MeV and 400 MeV u(-1), respectively. The present work describes some Monte Carlo simulations performed to verify the design of the treatment rooms and synchrotron access mazes. The different shielding efficiency and induced activations of the common concrete and the baryte concrete were analysed. In such a radiation field, i.e. with high-energy neutrons, the baryte concrete gains twice the activation than the common concrete without any relevant dose reduction. Moreover, the simulations have stressed, again, the discrepancies between H*(10) and E in such cases where the neutron radiation field is the dominant component and, particularly, in the medium-high energy range.

  8. Treatment of limited stage follicular lymphoma with Rituximab immunotherapy and involved field radiotherapy in a prospective multicenter Phase II trial-MIR trial

    PubMed Central

    2011-01-01

    Background The optimal treatment of early stage follicular Lymphoma is a matter of debate. Radiation therapy has frequently been applied with a curative approach beside watchful waiting. Involved field, extended field and total nodal radiation techniques are used in various protocols, but the optimal radiation field still has to be defined. Follicular lymphoma is characterized by stable expression of the CD20 antigen on the tumour cells surface. The anti CD20 antibody Rituximab (Mabthera®) has shown to be effective in systemic therapy of FL in primary treatment, relapse and maintenance therapy. Methods/design The MIR (Mabthera® and Involved field Radiation) study is a prospective multicenter trial combining systemic treatment with the anti CD20 antibody Rituximab (Mabthera®) in combination with involved field radiotherapy (30 - 40 Gy). This trial aims at testing the combination's efficacy and safety with an accrual of 85 patients. Primary endpoint of the study is progression free survival. Secondary endpoints are response rate to Rituximab, complete remission rate at week 18, relapse rate, relapse pattern, relapse free survival, overall survival, toxicity and quality of life. Discussion The trial evaluates the efficacy of Rituximab to prevent out-filed recurrences in early stage nodal follicular lymphoma and the safety of the combination of Rituximab and involved field radiotherapy. It also might show additional risk factors for a later recurrence (e.g. remission state after Rituximab only). Trial Registration ClinicalTrials (NCT): NCT00509184 PMID:21352561

  9. Randomized Clinical Trial of Weekly vs. Triweekly Cisplatin-Based Chemotherapy Concurrent With Radiotherapy in the Treatment of Locally Advanced Cervical Cancer

    SciTech Connect

    Ryu, Sang-Young; Lee, Won-Moo; Kim, Kidong; Park, Sang-Il; Kim, Beob-Jong; Kim, Moon-Hong; Choi, Seok-Cheol; Cho, Chul-Koo; Nam, Byung-Ho; Lee, Eui-Don

    2011-11-15

    Purpose: To compare compliance, toxicity, and outcome of weekly and triweekly cisplatin administration concurrent with radiotherapy in locally advanced cervical cancer. Methods and Materials: In this open-label, randomized trial, 104 patients with histologically proven Stage IIB-IVA cervical cancer were randomly assigned by a computer-generated procedure to weekly (weekly cisplatin 40 mg/m{sup 2}, six cycles) and triweekly (cisplatin 75 mg/m{sup 2} every 3 weeks, three cycles) chemotherapy arms during concurrent radiotherapy. The difference of compliance and the toxicity profiles between the two arms were investigated, and the overall survival rate was analyzed after 5 years. Results: All patients tolerated both treatments very well, with a high completion rate of scheduled chemotherapy cycles. There was no statistically significant difference in compliance between the two arms (86.3% in the weekly arm, 92.5% in the triweekly arm, p > 0.05). Grade 3-4 neutropenia was more frequent in the weekly arm (39.2%) than in the triweekly arm (22.6%) (p = 0.03). The overall 5-year survival rate was significantly higher in the triweekly arm (88.7%) than in the weekly arm (66.5%) (hazard ratio 0.375; 95% confidence interval 0.154-0.914; p = 0.03). Conclusions: Triweekly cisplatin 75-mg/m{sup 2} chemotherapy concurrent with radiotherapy is more effective and feasible than the conventional weekly cisplatin 40-mg/m{sup 2} regimen and may be a strong candidate for the optimal cisplatin dose and dosing schedule in the treatment of locally advanced cervical cancer.

  10. WE-F-16A-06: Using 3D Printers to Create Complex Phantoms for Dose Verification, Quality Assurance, and Treatment Planning System Commissioning in Radiotherapy

    SciTech Connect

    Kassaee, A; Ding, X; McDonough, J; Reiche, M; Witztum, A; Teo, B

    2014-06-15

    Purpose: To use 3D printers to design and construct complex geometrical phantoms for commissioning treatment planning systems, dose calculation algorithms, quality assurance (QA), dose delivery, and patient dose verifications. Methods: In radiotherapy, complex geometrical phantoms are often required for dose verification, dose delivery and calculation algorithm validation. Presently, fabrication of customized phantoms is limited due to time, expense and challenges in machining of complex shapes. In this work, we designed and utilized 3D printers to fabricate two phantoms for QA purposes. One phantom includes hills and valleys (HV) for verification of intensity modulated radiotherapy for photons, and protons (IMRT and IMPT). The other phantom includes cylindrical cavities (CC) of various sizes for dose verification of inhomogeneities. We evaluated the HV phantoms for an IMPT beam, and the CC phantom to study various inhomogeneity configurations using photon, electron, and proton beams. Gafcromic ™ films were used to quantify the dose distributions delivered to the phantoms. Results: The HV phantom has dimensions of 12 cm × 12 cm and consists of one row and one column of five peaks with heights ranging from 2 to 5 cm. The CC phantom has a size 10 cm × 14 cm and includes 6 cylindrical cavities with length of 7.2 cm and diameters ranging from 0.6 to 1.2 cm. The IMPT evaluation using the HV phantom shows good agreement as compared to the dose distribution calculated with treatment planning system. The CC phantom also shows reasonable agreements for using different algorithms for each beam modalities. Conclusion: 3D printers with submillimiter resolutions are capable of printing complex phantoms for dose verification and QA in radiotherapy. As printing costs decrease and the technology becomes widely available, phantom design and construction will be readily available to any clinic for testing geometries that were not previously feasible.

  11. Discontinuous finite element space-angle treatment of the first order linear Boltzmann transport equation with magnetic fields: Application to MRI-guided radiotherapy

    SciTech Connect

    St Aubin, J.; Keyvanloo, A.; Fallone, B. G.

    2016-01-15

    Purpose: The advent of magnetic resonance imaging (MRI) guided radiotherapy systems demands the incorporation of the magnetic field into dose calculation algorithms of treatment planning systems. This is due to the fact that the Lorentz force of the magnetic field perturbs the path of the relativistic electrons, hence altering the dose deposited by them. Building on the previous work, the authors have developed a discontinuous finite element space-angle treatment of the linear Boltzmann transport equation to accurately account for the effects of magnetic fields on radiotherapy doses. Methods: The authors present a detailed description of their new formalism and compare its accuracy to GEANT4 Monte Carlo calculations for magnetic fields parallel and perpendicular to the radiation beam at field strengths of 0.5 and 3 T for an inhomogeneous 3D slab geometry phantom comprising water, bone, and air or lung. The accuracy of the authors’ new formalism was determined using a gamma analysis with a 2%/2 mm criterion. Results: Greater than 98.9% of all points analyzed passed the 2%/2 mm gamma criterion for the field strengths and orientations tested. The authors have benchmarked their new formalism against Monte Carlo in a challenging radiation transport problem with a high density material (bone) directly adjacent to a very low density material (dry air at STP) where the effects of the magnetic field dominate collisions. Conclusions: A discontinuous finite element space-angle approach has been proven to be an accurate method for solving the linear Boltzmann transport equation with magnetic fields for cases relevant to MRI guided radiotherapy. The authors have validated the accuracy of this novel technique against GEANT4, even in cases of strong magnetic field strengths and low density air.

  12. Chest Wall Radiotherapy: Middle Ground for Treatment of Patients With One to Three Positive Lymph Nodes After Mastectomy

    SciTech Connect

    MacDonald, Shannon M.; Abi-Raad, Rita F.; Alm El-Din, Mohamed A.; Niemierko, Andrzej; Kobayashi, Wendy; McGrath, John J.; Goldberg, Saveli I.; Powell, Simon; Smith, Barbara; Taghian, Alphonse G.

    2009-12-01

    Purpose: To evaluate the outcomes for patients with Stage II breast cancer and one to three positive lymph nodes after mastectomy who were treated with observation or adjuvant radiotherapy to the chest wall (CW) with or without the regional lymphatics. Methods and Materials: We retrospectively analyzed 238 patients with Stage II breast cancer (one to three positive lymph nodes) treated with mastectomy at the Massachusetts General Hospital between 1990 and 2004. The estimates of locoregional recurrence (LRR), disease-free survival (DFS), and overall survival were analyzed according to the delivery of radiotherapy and multiple prognostic factors. Results: LRR and DFS were significantly improved by postmastectomy radiotherapy (PMRT), with a 5- and 10-year LRR rate without PMRT of 6% and 11%, respectively and, with PMRT, of 0% at both 5 and 10 years (p = .02). The 5- and 10-year DFS rate without PMRT was 85% and 75%, respectively, and, with PMRT, was 93% at both 5 and 10 years (p = .03). A similar benefit was found for patients treated with RT to the CW alone. The LRR, DFS, and overall survival rate for patients treated to the CW only was 0%, 96%, and 95% at 10 years, respectively. Conclusion: Our data suggest that adjuvant PMRT to the CW alone provides excellent disease control for patients with breast cancer <5 cm with one to three positive lymph nodes.

  13. Serum squamous cell carcinoma antigen in the monitoring of radiotherapy treatment response in carcinoma of the cervix

    SciTech Connect

    Ngan, H.Y.; Chan, S.Y.; Wong, L.C.; Choy, D.T.; Ma, H.K. )

    1990-05-01

    In this study, squamous cell carcinoma antigen (SCC) was detected in 96 of 157 patients with squamous cell carcinoma of the cervix and the percentage of patients with raised SCC levels increased with the stage of disease (P less than 0.01). The use of serial SCC assays and cervical biopsy histology during the course of radiotherapy to predict tumor response to irradiation was assessed. In patients who were given external irradiation before intracavitary radium, a high SCC level or the presence of viable tumor cells in the biopsy was found to be of no predictive value. However, at completion of radiotherapy, i.e., after intracavitary radium application, patients with persistently high SCC levels had a significantly higher incidence of residual tumor than patients whose SCC levels returned to normal (P less than 0.01). In 60% of patients with a persistently high SCC level, viable tumor was found in the cervical biopsy at the end of radiotherapy. On the other hand, only 5.4% of patients whose SCC level returned to normal had residual tumor.

  14. WE-EF-BRD-01: Past, Present and Future: MRI-Guided Radiotherapy From 2005 to 2025

    SciTech Connect

    Lagendijk, J.

    2015-06-15

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapy from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.

  15. Patterns of Radiotherapy Practice for Patients With Cervical Cancer (1999-2001): Patterns of Care Study in Japan

    SciTech Connect

    Toita, Takafumi Kodaira, Takeshi; Shinoda, Atsunori; Uno, Takashi; Akino, Yuichi; Mitsumori, Michihide; Teshima, Teruki

    2008-03-01

    Purpose: To describe the patterns of definitive radiotherapy practice for patients with uterine cervical cancer from 1999 to 2001 in Japan. Methods and Materials: The Japanese Patterns of Care Study (JPCS) working group conducted a third extramural audit survey of 68 institutions and collected specific information on 324 cervical cancer patients treated with definitive radiotherapy. Results: Almost all patients (96%) were treated with whole pelvic radiotherapy using opposing anteroposterior fields (87%). A midline block was used in 70% of the patients. Intracavitary brachytherapy (ICBT) was applied in 82% of cases. Most patients (89%) were treated with high-dose rate (HDR) ICBT. Calculation of doses to organs at risk (ICRU 38) was performed for rectum in 25% of cases and for bladder in 18% of cases. Only 3% of patients were given intravenous conscious sedation during ICBT applicator insertions. The median total biologically effective dose at point A (EBRT+ICBT) was 74 Gy{sub 10} in cases treated with HDR-ICBT. There was no significant difference in total biologically effective dose between stages. The median overall treatment time was 47 days. Concurrent chemoradiation was applied in 17% of patients. Conclusions: This study describes the general patterns of radiotherapy practice for uterine cervical cancer in Japan. Although methods of external radiotherapy seemed to be appropriate, there was room for improvement in ICBT practice, such as pretreatment. A substantial difference in total radiotherapy dose between Japan and the United States was observed.

  16. A qualitative study of cancer survivors' responses to information on the long-term and late effects of pelvic radiotherapy 1-11 years post treatment.

    PubMed

    Boulton, M; Adams, E; Horne, A; Durrant, L; Rose, P; Watson, E

    2015-09-01

    As more patients survive cancer for longer term, the long-term and late effects of treatments become increasingly important issues for cancer survivors and providing information to enable survivors to recognise and manage them becomes an increasingly pressing challenge for health care professionals. The aim of this study was to explore the experiences of cancer survivors regarding information given on potential long-term and late effects of pelvic radiotherapy. Semi-structured interviews were conducted with 28 cancer survivors who had had radiotherapy to the pelvic area for a range of cancers 1-11 years previously. Participants were recruited using maximum variation sampling from a larger questionnaire survey of patients treated at one hospital. Interviews were recorded, transcribed and analysed using Framework. Participants recognised the value of information to reassure and to inform action but also its potentially undesirable effects to frighten or raise anxieties about future problems and its inherent limitations in meeting their wider needs. They identified the timing, amount of information and context in which it was given as of particular importance. Information based on personal experience was also valued. These findings highlight the importance of appropriate, individualised information during treatment, at hospital discharge and subsequently in primary care.

  17. Feasibility study of the proton yield from the reaction D(3He,p)4 He as a possible tool for radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Uzunov, N. M.; Liguori, N.; Fontana, C. L.; Baneva, Y.; Atroshchenko, K.; Bello, M.; Moschini, G.; Rosato, A.; Rigato, V.; Doyle, B.; Rossi, P.

    2012-12-01

    Recent achievements in proton and carbon ions therapy have shown the importance of the hadron therapy methods. Aiming at radiotherapy applications such as dermatological and intra-operative procedures, where a short range treatment is needed, we have studied the use of nuclear reactions induced by low energy ions from small accelerators. A very suitable reaction is D(3He,p)4He, using 3He+ ions with energies of about 800 keV. The resulting protons have energies above 17 MeV and could deliver significant radiation dose depending on the accelerator 3He+ beam current and the irradiation time. The deuterium containing target was prepared by reactive magnetron sputtering of titanium in Ar and Ar + D2 radiofrequency plasma on a substrate of Silicon. The Ti-Dx stoichiometry and deuterium content was determined by Ion Beam Analysis. The accelerated 3He+ beam was provided by the 2.5MV Van de Graaff accelerator at the National Laboratories of Legnaro, INFN, Italy. Proton yield as a function of the beam current at different forward scattering angles has been studied for the energies of the incoming 3He+ in the 700keV - 800keV energy interval. The irradiated volume and the radiation dose in biological tissues as a function of the proton energy and proton yield has been estimated. Possible applications in small animal treatment studies as well as potential clinical radiotherapy applications are discussed.

  18. Treatment of advanced stage ovarian carcinoma with a combination of chemotherapy, radiotherapy, and radiosensitizer: report of a pilot study from the National Cancer Institute

    SciTech Connect

    Lichter, A.S.; Ozols, R.F.; Myers, C.C.; Ostechega, Y.; Young, R.C.

    1987-08-01

    Twenty-eight patients with Stage III or IV ovarian carcinoma were treated with combined chemotherapy-radiotherapy employing a unique protocol. Four cycles of cyclophosphamide and hexamethylmelamine alternated with four cycles of concurrent cisplatin, whole abdominal radiotherapy, and intraperitoneal misonidazole. The entire treatment program lasted six months. Clinical complete responses were seen in 50% of the patients with an overall response rate of 61%. Pathologic complete response (PCR) confirmed at second look surgery occurred in 18% of the group (5 patients). Median survival of the entire group was 15.2 months with all PCR's alive NED. This outcome was no different than our previous experience with combination chemotherapy alone. Toxicities seen included leukopenia, thrombocytopenia, nausea, vomiting, and weight loss. However, these side effects were manageable. Two non-tumor deaths occurred. This study demonstrates the feasibility of combining drug and radiation therapy concurrently in the treatment of ovarian cancer; further research is needed to explore different sequencing and dose levels that could improve the outcome.

  19. The Use of Biodegradable Stents in Malignant Oesophageal Strictures for the Treatment of Dysphagia Before Neoadjuvant Treatment or Radical Radiotherapy: A Feasibility Study

    SciTech Connect

    Krokidis, Miltiadis Burke, Chris; Spiliopoulos, Stavros; Gkoutzios, Panos; Hynes, Orla; Ahmed, Irfan; Dourado, Renato; Sabharwal, Tarun; Mason, Robert; Adam, Andreas

    2013-08-01

    PurposeTo evaluate the clinical results of the use of biodegradable oesophageal stents in malignant strictures.MethodsEleven patients were included in this prospective analysis in which a woven polydioxanone biodegradable oesophageal stent was used. The inclusion criterion was that the patient underwent neoadjuvant treatment or radical radiotherapy after the stent insertion. Primary end points were dysphagia score at discharge, stent patency, and complication rate. Secondary end points were overall survival and surgical outcome of surgery.ResultsThere was a 100 % procedure technical success rate. Early complications occurred in three patients resulting in failure to restore oral nutrition. In the remaining eight patients, dysphagia was significantly improved at discharge. Mean stent patency rate in this group was 71.5 days. Stent dysfunction occurred in five of eight patients (62.5 %); in two of five patients this was due to local inflammatory reaction, and in three of five patients it was due to tumour growth after a mean time of 97.8 days, and a new metallic stent was consequently placed in four of five patients. One patient was successfully treated with esophagectomy. At the end of follow-up (mean time 102.1 days), three of eight stents were patent. The overall patient survival rate was 81.8 %.ConclusionAlthough short-term dysphagia scores improved, biodegradable stents do not appear to offer a clear beneficial effect in most cases of malignant strictures, particularly due to a local inflammatory reaction that may be induced. Technical improvement of the device and delineation of the patient group that would benefit from its use is necessary if further studies are to be conducted in the future.

  20. Case report of a near medical event in stereotactic radiotherapy due to improper units of measure from a treatment planning system

    SciTech Connect

    Gladstone, D. J.; Li, S.; Jarvis, L. A.; Hartford, A. C.

    2011-07-15

    Purpose: The authors hereby notify the Radiation Oncology community of a potentially lethal error due to improper implementation of linear units of measure in a treatment planning system. The authors report an incident in which a patient was nearly mistreated during a stereotactic radiotherapy procedure due to inappropriate reporting of stereotactic coordinates by the radiation therapy treatment planning system in units of centimeter rather than in millimeter. The authors suggest a method to detect such errors during treatment planning so they are caught and corrected prior to the patient positioning for treatment on the treatment machine. Methods: Using pretreatment imaging, the authors found that stereotactic coordinates are reported with improper linear units by a treatment planning system. The authors have implemented a redundant, independent method of stereotactic coordinate calculation. Results: Implementation of a double check of stereotactic coordinates via redundant, independent calculation is simple and accurate. Use of this technique will avoid any future error in stereotactic treatment coordinates due to improper linear units, transcription, or other similar errors. Conclusions: The authors recommend an independent double check of stereotactic treatment coordinates during the treatment planning process in order to avoid potential mistreatment of patients.

  1. Randomized comparison of misonidazole sensitized radiotherapy plus BCNU and radiotherapy plus BCNU for treatment of malignant glioma after surgery; preliminary results of an RTOG study

    SciTech Connect

    Nelson, D.F.; Schoenfeld, D.; Weinstein, A.S.; Nelson, J.S.; Wasserman, T.; Goodman, R.L.; Carabell, S.

    1983-08-01

    A randomized prospective was performed to evaluate misonidazole radiosensitized radiation therapy in the treatment of malignant glioma. The control arm, Group A, consisted of conventional radiation therapy (6000 cGy/6 to 7 weeks) to the whole brain plus BCNU (80 mg/m/sup 3/ on day 3, 4, 5, and then repeated q 8 weeks for 2 years). The BCNU schedule was identical in both arms. In the experimental arm, Group B, misonidazole 2.5 gm/m/sup 2/ was given once a week for six weeks, to a total dose of 15 gm/m/sup 2/. It was given orally four hours prior to 400 cGy on Mondays. On Tuesdays, Thursdays and Fridays, 150 cGy was delivered to a total of 5100 cGy/6 weeks. An additional 900 cGy/5F/1 week was given without misonidazole. Patients were stratified according to the prognostic factors of age, performance status, and histology. There is no significant difference in the survival of the two groups. The median survival for Group A was 12.6, and for Group B, 10.7 months. Misonidazole toxicity included an 11% peripheral neuropathy and a 3% central nervous system toxicity. BCNU toxicity included severe hematologic toxicity in 25%, including one death, and significant pulmonary toxicity in 6 out of 55 patients who received a minimum total dose of 960 mg/m/sup 2/ of BCNU.

  2. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  3. [Radiotherapy during pregnancy].

    PubMed

    Mazeron, R; Barillot, I; Mornex, F; Giraud, P

    2016-09-01

    The diagnostic of cancer during pregnancy is a rare and delicate situation. As the developments of the embryo and the human fetus are extremely sensitive to ionizing radiations, the treatment of these tumors should be discussed. The studies - preclinical and clinical - based mostly on exposure accidents show that subdiaphragmatic treatments are possible during pregnancy. When radiotherapy is used, phantom estimations of the dose to the fetus, confirmed by in vivo measurements are required. Irradiation and imaging techniques should be arranged to decrease as much as possible the dose delivered to the fetus and hold below the threshold of 0.1Gy.

  4. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy.

    PubMed

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-04-13

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.

  5. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy

    PubMed Central

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-01-01

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation. PMID:27089342

  6. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    SciTech Connect

    Walker, Amy Metcalfe, Peter; Liney, Gary; Holloway, Lois; Dowling, Jason; Rivest-Henault, David

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through

  7. Local image descriptor-based searching framework of usable similar cases in a radiation treatment planning database for stereotactic body radiotherapy

    NASA Astrophysics Data System (ADS)

    Nonaka, Ayumi; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Soufi, Mazen; Magome, Taiki; Honda, Hiroshi; Hirata, Hideki

    2014-03-01

    Radiation treatment planning (RTP) of the stereotactic body radiotherapy (SBRT) was more complex compared with conventional radiotherapy because of using a number of beam directions. We reported that similar planning cases could be helpful for determination of beam directions for treatment planners, who have less experiences of SBRT. The aim of this study was to develop a framework of searching for usable similar cases to an unplanned case in a RTP database based on a local image descriptor. This proposed framework consists of two steps searching and rearrangement. In the first step, the RTP database was searched for 10 cases most similar to object cases based on the shape similarity of two-dimensional lung region at the isocenter plane. In the second step, the 5 most similar cases were selected by using geometric features related to the location, size and shape of the planning target volume, lung and spinal cord. In the third step, the selected 5 cases were rearranged by use of the Euclidean distance of a local image descriptor, which is a similarity index based on the magnitudes and orientations of image gradients within a region of interest around an isocenter. It was assumed that the local image descriptor represents the information around lung tumors related to treatment planning. The cases, which were selected as cases most similar to test cases by the proposed method, were more resemble in terms of the tumor location than those selected by a conventional method. For evaluation of the proposed method, we applied a similar-cases-based beam arrangement method developed in the previous study to the similar cases selected by the proposed method based on a linear registration. The proposed method has the potential to suggest the superior beam-arrangements from the treatment point of view.

  8. Decreasing Temporal Lobe Dose With Five-Field Intensity-Modulated Radiotherapy for Treatment of Pituitary Macroadenomas

    SciTech Connect

    Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda; DeWyngaert, J. Keith; Narayana, Ashwatha; Formenti, Silvia C.; Shah, Jinesh N.

    2010-10-01

    Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV) = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.

  9. A New Brain Positron Emission Tomography Scanner With Semiconductor Detectors for Target Volume Delineation and Radiotherapy Treatment Planning in Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Katoh, Norio; Yasuda, Koichi; Shiga, Tohru; Hasegawa, Masakazu; Onimaru, Rikiya; Shimizu, Shinichi; Bengua, Gerard; Ishikawa, Masayori; Tamaki, Nagara; Shirato, Hiroki

    2012-03-15

    Purpose: We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET{sub CONV}WB) versus the new brain (BR) PET system using semiconductor detectors (PET{sub NEW}BR). Methods and Materials: Twelve patients with NPC were enrolled in this study. [{sup 18}F]Fluorodeoxyglucose-PET images were acquired using both the PET{sub NEW}BR and the PET{sub CONV}WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET{sub CONV}WB and PET{sub NEW}BR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET{sub CONV}WB (GTV{sub CONV}) images or PET{sub NEW}BR (GTV{sub NEW}) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. Results: The average absolute volume ({+-}standard deviation [SD]) of GTV{sub NEW} was 15.7 ml ({+-}9.9) ml, and that of GTV{sub CONV} was 34.0 ({+-}20.5) ml. The average GTV{sub NEW} was significantly smaller than that of GTV{sub CONV} (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN{sub NEW}) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Conclusion: Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy

  10. Patterns of Failure and Treatment-Related Toxicity in Advanced Cervical Cancer Patients Treated Using Extended Field Radiotherapy With Curative Intent

    SciTech Connect

    Rajasooriyar, Chrishanthi; Van Dyk, Sylvia; Bernshaw, David; Kondalsamy-Chennakesavan, Srinivas; Barkati, Maroie; Narayan, Kailash

    2011-06-01

    Purpose: The purpose of this study was to evaluate the patterns of failure and overall survival (OS) and disease-free survival (DFS) rates in cervical cancer patients who had metastatic disease in common iliac or para-aortic lymph nodes and were treated with curative intent, using extended field radiotherapy (EFRT). Methods and Materials: This was a retrospective study involving 39 patients treated from January 1996 to June 2007, using EFRT with concurrent chemotherapy and intracavitary brachytherapy. EFRT consisted of 45 Gy in 1.8-Gy fractions. Radiation to involved nodes was boosted to a total dose of 50.4 to 54 Gy. Primary tumor radiation was boosted to a dose of 80 Gy using brachytherapy. Results: Overall, 30 patients (77%) have relapsed. The 5-year OS rate was 26% (95% confidence interval [CI], 11-44). The 5-year DFS rate was 19.4% (95% CI, 8-35). Only 3 patients (7.5%) experienced treatment failure exclusively within the treatment field, and 2 patients underwent salvage treatment. Grade 3 to 4 acute bone marrow and gastrointestinal toxicities were observed in 10 (26%) and 7 (18%) patients, respectively. Conclusions: Concurrent chemotherapy and EFRT treatment was well tolerated. Most patients showed failure at multiple sites and outside the treatment field. Only 3/39 patients had failures exclusively within the treatment field, and 2 underwent salvage treatment.

  11. Assessment of Long-Term Rectal Function in Patients Who Received Pelvic Radiotherapy: A Pooled North Central Cancer Treatment Group Trial Analysis, N09C1

    PubMed Central

    Brown, Lindsay C.; Atherton, Pamela J.; Neben-Wittich, Michelle A.; Wender, Donald B.; Behrens, Robert J.; Kozelsky, Timothy F.; Loprinzi, Charles L.; Haddock, Michael G.; Martenson, James A.

    2013-01-01

    Purpose Pelvic radiotherapy (PRT) is known to adversely affect bowel function (BF) and patient well-being. This study characterized long-term BF and evaluated quality of life (QOL) in patients receiving PRT. Methods Data from 252 patients were compiled from 2 North Central Cancer Treatment Group prospective studies, which included assessment of BF and QOL by the BF questionnaire (BFQ) and Uniscale QOL at baseline and 12 and 24 months after completion of radiotherapy. BFQ scores (sum of symptoms), Uniscale results, adverse-event incidence, and baseline demographic data were compared via t test, χ2, Fisher exact, Wilcoxon, and correlation methodologies. Results The total BFQ score was higher than baseline at 12 and 24 months (P<.001). More patients had 5 or more symptoms at 12 months (13%) and 24 months (10%) than at baseline (2%). Symptoms occurring in greater than 20% of patients at 12 and 24 months were clustering, stool-gas confusion, and urgency. Factors associated with worse BF were female sex, rectal or gynecologic primary tumors, prior anterior resection of the rectum, and 5-fluorouracil chemotherapy. Patients experiencing grade 2 or higher acute toxicity had worse 24-month BF (P values, <.001-.02). Uniscale QOL was not significantly different from baseline at 12 or 24 months, despite worse BFQ scores. Conclusions PRT was associated with worse long-term BF. Worse BFQ score was not associated with poorer QOL. Further research to characterize the subset of patients at risk of significant decline in BF is warranted. PMID:23748483

  12. The re-construction of women's sexual lives after pelvic radiotherapy: a critique of social constructionist and biomedical perspectives on the study of female sexuality after cancer treatment.

    PubMed

    White, I D; Faithfull, S; Allan, H

    2013-01-01

    Pelvic radiotherapy creates physical effects and psychological responses that negatively affect the sexual health of women and couples, yet these sexual consequences are not frequently researched or clinically assessed. This focused ethnographic study explored factors that influence the clinical assessment of treatment-induced female sexual difficulties after pelvic radiotherapy within routine medical follow-up. Participant observation of follow-up clinics (n = 69) and in-depth interviews with 24 women, 5 partners and 20 health professionals were undertaken at two cancer centres in the South East of England from 2005 to 2006. Thematic analysis of interview transcripts resulted in five emergent themes, two of which are explored in detail within this paper. A social constructionist approach to human sexuality was used to explore representations of female sexuality in oncology follow-up constructed by clinicians, women and their partners. Yet neither social constructionist nor biomedical (the predominant model in medical follow-up) perspectives on human sexuality provided an adequate interpretation of these study findings. This paper argues that the comprehensive study and practice of sexual rehabilitation in oncology requires a synthesis of both biomedical and social constructionist perspectives in order to capture the complex, subjective and embodied nature of the female sexual response in both health and illness.

  13. Radiotherapy DICOM packet sniffing.

    PubMed

    Ackerly, T; Gesoand, M; Smith, R

    2008-09-01

    The Digital Imaging and Communications in Medicine (DICOM) standard is meant to allow communication of medical images between equipment provided by different vendors, but when two applications do not interact correctly in a multi-vendor environment it is often first necessary to demonstrate non-compliance of either the sender or the receiver before a resolution to the problem can be progressed. Sometimes the only way to do this is to monitor the network communication between the two applications to find out which one is not complying with the DICOM standard. Packet sniffing is a technique of network traffic analysis by passive observation of all information transiting a point on the network, regardless of the specified sender or receiver. DICOM packet sniffing traps and interprets the network communication between two DICOM applications to determine which is non compliant. This is illustrated with reference to three examples, a radiotherapy planning system unable to receive CT data from a particular CT scanner, a radiotherapy simulator unable to print correctly on a DICOM printer, and a PACS unable to respond when queried about what images it has in its archive by a radiotherapy treatment planning system. Additionally in this work it has been proven that it is feasible to extract DICOM images from the intercepted network data. This process can be applied to determine the cause of a DICOM image being rendered differently by the sender and the receiver.

  14. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may