Decide, design, and dewater de waste: A blueprint from Fitzpatrick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert, D.E.
1994-04-01
Using a different process to clean concentrated waste tanks at the James A. FitzPatrick nuclear power plant in New York saved nearly half million dollars. The plan essentially allowed processing concentrator bottoms as waste sludge (solidification versus dewatering) that could still meet burial ground requirements. The process reduced the volume from 802.2 to 55 cubic feet. This resin throwaway system eliminated chemicals in the radwaste systems and was designed to ease pressure on the pradwaste processing system, reduce waste and improve plant chemistry. This article discusses general aspects of the process.
NASA Astrophysics Data System (ADS)
Saleh, H. M.; Eskander, S. B.
2012-11-01
Immobilization process of radioactive wastes is a compromise between economic and reliability factors. It involves the use of inert and cheap matrices to fix the wastes in homogenous monolithic solid forms. The characteristics of the resulting waste form were studied in various disposal options before coming to the final conclusion concerning the solidification process. A proposed mortar composite is formed from a mixture of Portland cement and sand in the weight ratio of 0.33 which by slurry of degraded spinney waste fibers at the ratio of 0.7 relative to the Portland cement. The composite was prepared at the laboratory ambient conditions (25 ± 5 °C). The temperature changes accompanying the hydration process were followed up to 96 h. At the end of 28 days, curing period, the performance of the obtained composite was evaluated under immersion circumstances imitating a flooding scenario that could happen at a disposal site. Compressive strength, porosity and mass changes were investigated under complete static immersion conditions in three different leachants, namely acetic acid, groundwater and seawater for 48 weeks. X-ray and scanning electron microscopy were used to follow and evaluate the changes that may occur for the proposed composite under flooding conditions. Based on the experimental data reached, it could be concluded that the prepared mortar composite can be nominated as a matrix for solidification/stabilization of some radwaste categories, even under the aggressive attacks of various immersion media.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0237] Cost-Benefit Analysis for Radwaste Systems for Light... (RG) 1.110, ``Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors... components for light water nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2013-0237 when...
Liquid radwaste in-leakage reduction at TVA's Browns Ferry nuclear plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A.C.; Roccasano, J.J.
1987-01-01
Early in 1985, Tennessee Valley Authority's (TVA's) Browns Ferry Nuclear Plant (BFNP) decided to initiate a liquid radwaste in-leakage reduction project as part of their chemistry improvement program. The purpose of this project was to reduce the overall volume of water processed by the radwaste system at BFNP by restricting uncontrolled in-leakage through the floor drain system. Impell Corporation was contracted to perform the project, which consisted of several tasks, each design to provide data for the reduction of in-leakage or to reduce the in-leakage directly. The program was begun in March 1985. Buy July of that same year, liquidmore » input to radwaste through the floor drain system had been reduced by --30%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batiy, V.G.; Stojanov, A.I.; Schmieman, E.
2007-07-01
Methodological approach of optimization of schemes of solid radwaste management of the Object Shelter (Shelter) and ChNPP industrial site during transformation to the ecologically safe system was developed. On the basis of the conducted models researches the ALARA-analysis was carried out for the choice of optimum variant of schemes and technologies of solid radwaste management. The criteria of choice of optimum schemes, which are directed on optimization of doses and financial expenses, minimization of amount of the formed radwaste etc, were developed for realization of this ALARA-analysis. (authors)
Radwaste desk reference - Volume 3, Part 2: Liquid waste management. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deltete, D.; Fisher, S.; Kelly, J.J.
1994-05-01
EPRI began, in late in 1987, to produce a Radwaste Desk Reference that would allow each of the member utilities access to the available information and expertise on radwaste management. EPRI considers this important because radwaste management involves a wide variety of scientific and engineering disciplines. These include chemical and mechanical engineering, chemistry, and health physics. Radwaste management also plays a role in implementing a wide variety of regulatory requirements. These include plant-specific technical specifications, NRC standards for protection against radiation, DOT transportation regulations and major environmental legislation such as the Resource Conservation and Recovery Act. EPRI chose a questionmore » and answer format because it could be easily accessed by radwaste professionals with a variety of interests. The questions were generated at two meetings of utility radwaste professionals and EPRI contractors. Volume 1, which is already in publication, addresses dry active waste generation, processing and measurement. Volume 2 addresses low level waste storage, transportation and disposal. This volume, Volume 3, is being issued in two parts. Part 1 concentrates on the processing of liquid radioactive waste, whereas Part 2, included here, addresses liquid waste management. It includes extensive information and operating practices related to liquid waste generation and control, liquid waste processing systems at existing U.S. nuclear plants, processes for managing wet wastes (handling, dewatering, solidifying, processing, and packaging), and liquid waste measurement and analysis.« less
Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.
Bergelson, B R; Gerasimov, A S; Tikhomirov, G V
2005-01-01
Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.
Preliminary Comparison of Radioactive Waste Disposal Cost for Fusion and Fission Reactors
NASA Astrophysics Data System (ADS)
Seki, Yasushi; Aoki, Isao; Yamano, Naoki; Tabara, Takashi
1997-09-01
The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a fission reactor has been evaluated and compared. Possible radwaste disposal scenario of fusion radwaste in Japan is considered. The exposure doses were evaluated for the skyshine of gamma-ray during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical light water fission reactor was evaluated using the same methodology as for the fusion reactors. It is found that radwaste from the fusion reactors using F82H and SiC/SiC composites without impurities could be disposed by the shallow land disposal presently applied to the low level waste in Japan. The disposal cost of radwaste from five fusion power reactors and a typical light water reactor were roughly evaluated and compared.
Radwaste desk reference - Volume 3, Part 1: Processing liquid waste. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deltete, D.; Fisher, S.; Kelly, J.J.
1994-05-01
EPRI began, late in 1987, to produce a Radwaste Desk Reference that would allow each of the member utilities access to the available information and expertise on radwaste management. EPRI considers this important because radwaste management involves a wide variety of scientific and engineering disciplines. These include chemical and mechanical engineering, chemistry, and health physics. Radwaste management also plays a role in implementing a wide variety of regulatory requirements. These include plant-specific technical specifications, NRC standards for protection against radiation, DOE transportation regulations and major environmental legislation such as the Resource Conservation and Recovery Act. EPRI chose a question andmore » answer format because it could be easily accessed by radwaste professionals with a variety of interests. The questions were generated at two meetings of utility radwaste professionals and EPRI contractors. The names of the participants and their affiliation appear in the acknowledgments. The questions were organized using the matrix which appears in the introduction and below. During the writing phase, some questions were combined and new questions added. To aid the reader, each question was numbered and tied to individual Section Contents. An extensive index provides additional reader assistance. EPRI chose authors who are acknowledged experts in their fields and good communicators. Each author focused her or his energies on specific areas of radwaste management activities, thereby contributing to one or more volumes of the Radwaste Desk Reference. Volume 1, which is already in publication, addresses dry active waste generation, processing and measurement. Volume 2 addresses low level waste storage, transportation and disposal. This volume, Volume 3, is being issued in two parts. Part 1 concentrates on the processing of liquid radioactive waste, whereas Part 2 addresses liquid waste management.« less
Removal of dissolved actinides from alkaline solutions by the method of appearing reagents
Krot, Nikolai N.; Charushnikova, Iraida A.
1997-01-01
A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.
Radioactive waste management in the Federal Republic of Germany: Industrial practices and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabener, K.H.
In the Federal Republic of Germany (FRG), the production and use of nuclear-generated electricity expanded steadily despite the fact that opposition from the environmentalists led to the impression of an upcoming moratorium for nuclear energy. With this increase in capacity--by the year 1990, nearly 25 000 MW will be on the line--there will be an increase in the volume of low-level (non-heat-generating) radwaste originating from nuclear power plants. Radwaste management has been influenced to a considerable extent by the requirements of the final repository. Following a period of trial storage in the Asse repository, preparations are now being made formore » storage in the Konrad ore mine. It is intended to begin storage in 1991. Requirements for the packages specify containers with a volume from 3.9 to 10.9 m/sup 3/ or cast iron safety drums. These drums are suitable for radioactive materials in powder form (resins, dried concentrates) without the need for embedding materials. Storage in standard 55-gal drums is no longer permitted. The costs for final storage will be very high so that volume reduction is of prime importance. Kraftwerk Union (KWU) as a supplier of nuclear power plants (NPPs) examined the radwaste market and decided to combine delivery of radwaste treatment systems to NPPs with service jobs including radwaste handling and conditioning in its own service and maintenance plant at Karlstein.« less
Integrated software system for low level waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worku, G.
1995-12-31
In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal undermore » the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications.« less
Upgrading of Sergiev Posad department of Moscow NPO Radon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debieve, Pierre; Delecaut, Gregory; Vanleeuw, Daniel
Available in abstract form only. Full text of publication follows: BELGATOM and IRE Consortium has been awarded by the European Commission end of 2005 to conduct a project entitled 'Upgrading of Sergiev Posad Department of Moscow NPO Radon and the assessment of the radiological impact in the area nearby'. The main aims to achieve in the frame of this Europe-aid Project are: - Improvement of the performance and the safety level of the present radwaste management system, taking into account the additional waste expected from the Kurchatov Institute rehabilitation and from the forecast decommissioning of Research Reactors on the territorymore » of Moscow. - Basic design and assistance for the procurement of upgrading equipment related to: - radwaste sorting and pretreatment - replacement of the hydraulic system of the existing super-compactor - characterisation system for radwaste 'Support for preparing the PSAR and PEIAR for new licensing' Assessment of the radiological impact in an area of 50 km radius around Sergiev Posad Department. - The initial duration of this Project is 3 years, starting beginning of 2006. This paper describes the difficulties encountered to start and implement the Project and its status at the half of the planned time schedule. (authors)« less
Low-level radwaste storage facility at Hope Creek and Salem Generating Stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyen, L.C.; Lee, K.; Bravo, R.
Following the January 1, 1993, closure of the radwaste disposal facilities at Beatty, Nevada, and Richland, Washington (to waste generators outside the compact), only Barnwell, South Carolina, is open to waste generators in most states. Barnwell is scheduled to stay open to waste generators outside the Southeast Compact until June 30, 1994. Continued delays in opening regional radwaste disposal facilities have forced most nuclear utilities to consider on-site storage of low-level radwaste. Public Service Electric and Gas Company (PSE G) considered several different radwaste storage options before selecting the design based on the steel-frame and metal-siding building design described inmore » the Electric Power Research Institute's (EPRI's) TR-100298 Vol. 2, Project 3800 report. The storage facility will accommodate waste generated by Salem units 1 and 2 and Hope Creek unit 1 for a 5-yr period and will be located within their common protected area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azar, Miguel; Gardner, Donald A.; Taylor, Edward R.
Exelon Nuclear (Exelon) designed and constructed an Interim Radwaste Storage Facility (IRSF) in the mid-1980's at LaSalle County Nuclear Station (LaSalle). The facility was designed to store low-level radioactive waste (LLRW) on an interim basis, i.e., up to five years. The primary reason for the IRSF was to offset lack of disposal in case existing disposal facilities, such as the Southeast Compact's Barnwell Disposal Facility in Barnwell, South Carolina, ceased accepting radioactive waste from utilities not in the Southeast Compact. Approximately ninety percent of the Radwaste projected to be stored in the LaSalle IRSF in that period of time wasmore » Class A, with the balance being Class B/C waste. On July 1, 2008 the Barnwell Disposal Facility in the Southeast Compact closed its doors to out of- compact Radwaste, which precluded LaSalle from shipping Class B/C Radwaste to an outside disposal facility. Class A waste generated by LaSalle is still able to be disposed at the 'Envirocare of Utah LLRW Disposal Complex' in Clive, Utah. Thus the need for utilizing the LaSalle IRSF for storing Class B/C Radwaste for an extended period, perhaps life-of-plant or more became apparent. Additionally, other Exelon Midwest nuclear stations located in Illinois that did not build an IRSF heretofore also needed extended Radwaste storage. In early 2009, Exelon made a decision to forward Radwaste from the Byron Nuclear Station (Byron), Braidwood Nuclear Station (Braidwood), and Clinton Nuclear Station (Clinton) to LaSalle's IRSF. As only Class B/C Radwaste would need to be forwarded to LaSalle, the original volumetric capacity of the LaSalle IRSF was capable of handling the small number of additional expected shipments annually from the Exelon sister nuclear stations in Illinois. Forwarding Class B/C Radwaste from the Exelon sister nuclear stations in Illinois to LaSalle would require an amendment to the LaSalle Station operating license. Exelon submitted the License Amendment Request (LAR) to NRC on January 6, 2010; NRC approved the LAR on July 21, 2011. A similar decision was made by Exelon in early 2009 to forward Radwaste from Limerick Nuclear Station to its sister station, the Peach Bottom Atomic Power Station; both in Pennsylvania. A LAR submittal to the NRC was also provided and NRC approval was received in 2011. (authors)« less
Functional specifications for a radioactive waste decision support system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westrom, G.B.; Kurrasch, E.R.; Carlton, R.E.
1989-09-01
It is generally recognized that decisions relative to the treatment, handling, transportation and disposal of low-level wastes produced in nuclear power plants involve a complex array of many inter-related elements or considerations. Complex decision processes can be aided through the use of computer-based expert systems which are based on the knowledge of experts and the inferencing of that knowledge to provide advice to an end-user. To determine the feasibility of developing and applying an expert system in nuclear plant low level waste operations, a Functional Specification for a Radwaste Decision Support System (RDSS) was developed. All areas of radwaste management,more » from the point of waste generation to the disposition of the waste in the final disposal location were considered for inclusion within the scope of the RDSS. 27 figs., 8 tabs.« less
4. Contextual view of EPA Farm showing radwaste tank, facing ...
4. Contextual view of EPA Farm showing rad-waste tank, facing south-southeast. - Nevada Test Site, Environmental Protection Agency Farm, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV
On-line remote monitoring of radioactive waste repositories
NASA Astrophysics Data System (ADS)
Calì, Claudio; Cosentino, Luigi; Litrico, Pietro; Pappalardo, Alfio; Scirè, Carlotta; Scirè, Sergio; Vecchio, Gianfranco; Finocchiaro, Paolo; Alfieri, Severino; Mariani, Annamaria
2014-12-01
A low-cost array of modular sensors for online monitoring of radioactive waste was developed at INFN-LNS. We implemented a new kind of gamma counter, based on Silicon PhotoMultipliers and scintillating fibers, that behaves like a cheap scintillating Geiger-Muller counter. It can be placed in shape of a fine grid around each single waste drum in a repository. Front-end electronics and an FPGA-based counting system were developed to handle the field data, also implementing data transmission, a graphical user interface and a data storage system. A test of four sensors in a real radwaste storage site was performed with promising results. Following the tests an agreement was signed between INFN and Sogin for the joint development and installation of a prototype DMNR (Detector Mesh for Nuclear Repository) system inside the Garigliano radwaste repository in Sessa Aurunca (CE, Italy). Such a development is currently under way, with the installation foreseen within 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horak, W.C.; Reisman, A.; Purvis, E.E. III
1997-07-01
The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30more » years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities.« less
1991-05-30
alloys and composites Solidification experiments with Succinonitrile-acetone system Experimerts with Salol I Directional Solidification of Mg-Li alloys ...Directional Solidification of Mg-Li Composites Microstructural Analysis and Modeling Combustion Synthesis Principles ( theory ) Nb-AI alloys made by...Combustion Synthesis Nb-AI - NbB composites made by Combustion Synthesis Directional Solidification of Nb-AI Alloys Directional Solidification of Nb- Al
Directional Solidification and Liquidus Projection of the Sn-Co-Cu System
NASA Astrophysics Data System (ADS)
Chen, Sinn-Wen; Chang, Jui-Shen; Pan, Kevin; Hsu, Chia-Ming; Hsu, Che-Wei
2013-04-01
This study investigates the Sn-Co-Cu ternary system, which is of interest to the electronics industry. Ternary Sn-Co-Cu alloys were prepared, their as-solidified microstructures were examined, and their primary solidification phases were determined. The primary solidification phases observed were Cu, Co, Co3Sn2, CoSn, CoSn2, Cu6Sn5, Co3Sn2, γ, and β phases. Although there are ternary compounds reported in this ternary system, no ternary compound was found as the primary solidification phase. The directional solidification technique was applied when difficulties were encountered using the conventional quenching method to distinguish the primary solidification phases, such as Cu6Sn5, Cu3Sn, and γ phases. Of all the primary solidification phases, the Co3Sn2 and Co phases have the largest compositional regimes in which alloys display them as the primary solidification phases. There are four class II reactions and four class III reactions. The reactions with the highest and lowest reaction temperatures are both class III reactions, and are L + CoSn2 + Cu6Sn5 = CoSn3 at 621.5 K (348.3 °C) and L + Co3Sn2 + CoSn = Cu6Sn5 at 1157.8 K (884.6 °C), respectively.
The Solidification of Multicomponent Alloys
Boettinger, William J.
2017-01-01
Various topics taken from the author’s research portfolio that involve multicomponent alloy solidification are reviewed. Topics include: ternary eutectic solidification and Scheil-Gulliver paths in ternary systems. A case study of the solidification of commercial 2219 aluminum alloy is described. Also described are modifications of the Scheil-Gulliver analysis to treat dendrite tip kinetics and solid diffusion for multicomponent alloys. PMID:28819348
Coupled Growth in Hypermonotectics
NASA Technical Reports Server (NTRS)
Andrews, J. Barry; Coriell, Sam R.
2001-01-01
The overall objective of this project is to obtain a fundamental understanding of the physics controlling solidification processes in immiscible alloy systems. The investigation involves both experimentation and the development of a model describing solidification in monotectic systems. The experimental segment was designed to first demonstrate that it is possible to obtain interface stability and steady state coupled growth in hypermonotectic alloys through microgravity processing. Microgravity results obtained to date have verified this possibility. Future flights will permit experimental determination of the limits of interface stability and the influence of alloy composition and growth rate on microstructure. The objectives of the modeling segment of the investigation include prediction of the limits of interface stability, modeling of convective flow due to residual acceleration, and the influence of surface tension driven flows at the solidification interface. The study of solidification processes in immiscible alloy systems is hindered by the inherent convective flow that occurs on Earth and by the possibility of sedimentation of the higher density immiscible liquid phase. It has been shown that processing using a high thermal gradient and a low growth rate can lead to a stable macroscopically planar growth front even in hypermonotectic alloys. Processing under these growth conditions can avoid constitutional supercooling and prevent the formation of the minor immiscible liquid phase in advance of the solidification front. However, the solute depleted boundary layer that forms in advance of the solidification front is almost always less dense than the liquid away from the solidification front. As a result, convective instability is expected. Ground based testing has indicated that convection is a major problem in these alloy systems and leads to gross compositional variations along the sample and difficulties maintaining interface stability. Sustained low gravity processing conditions are necessary in order to minimize these problems and obtain solidification conditions which approach steady state.
Improved Crystal Quality By Detached Solidification in Microgravity
NASA Technical Reports Server (NTRS)
Regel, Liya L.; Wilcox, William R.; Wang, Yaz-Hen; Wang, Jian-Bin
2003-01-01
Many microgravity directional solidification experiments yielded ingots with portions that grew without contacting the ampoule wall, leading to greatly improved crystallographic perfection. Our long term goals have been: (1) To develop a complete understanding of all of the phenomena of detached solidification.; (2) To make it possible to achieve detached solidification reproducibly; (3) To increase crystallographic perfection through detached solidification. We have three major achievements to report here: (1) We obtained a new material balance solution for the Moving Meniscus Model of detached solidification. This solution greatly clarifies the physics as well as the roles of the parameters in the system; (2) We achieved detached solidification of InSb growing on earth in BN-coated ampoules; (3) We performed an extensive series of experiments on freezing water that showed how to form multiple gas bubbles or tubes on the ampoule wall. However, these did not propagate around the wall and lead to fully detached solidification unless the ampoule wall was extremely rough and non-wetted.
Submergible barge retrievable storage and permanent disposal system for radioactive waste
Goldsberry, Fred L.; Cawley, William E.
1981-01-01
A submergible barge and process for submerging and storing radioactive waste material along a seabed. A submergible barge receives individual packages of radwaste within segregated cells. The cells are formed integrally within the barge, preferably surrounded by reinforced concrete. The cells are individually sealed by a concrete decking and by concrete hatch covers. Seawater may be vented into the cells for cooling, through an integral vent arrangement. The vent ducts may be attached to pumps when the barge is bouyant. The ducts are also arranged to promote passive ventilation of the cells when the barge is submerged. Packages of the radwaste are loaded into individual cells within the barge. The cells are then sealed and the barge is towed to the designated disposal-storage site. There, the individual cells are flooded and the barge will begin descent controlled by a powered submarine control device to the seabed storage site. The submerged barge will rest on the seabed permanently or until recovered by a submarine control device.
NASA Astrophysics Data System (ADS)
Nagarajan, S. G.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.
2018-04-01
Transient simulation has been carried out for analyzing the heat transfer properties of Directional Solidification (DS) furnace. The simulation results revealed that the additional heat exchanger block under the bottom insulation on the DS furnace has enhanced the control of solidification of the silicon melt. Controlled Heat extraction rate during the solidification of silicon melt is requisite for growing good quality ingots which has been achieved by the additional heat exchanger block. As an additional heat exchanger block, the water circulating plate has been placed under the bottom insulation. The heat flux analysis of DS system and the temperature distribution studies of grown ingot confirm that the established additional heat exchanger block on the DS system gives additional benefit to the mc-Si ingot.
Kinetic Phase Diagrams of Ternary Al-Cu-Li System during Rapid Solidification: A Phase-Field Study
Yang, Xiong; Zhang, Lijun; Sobolev, Sergey; Du, Yong
2018-01-01
Kinetic phase diagrams in technical alloys at different solidification velocities during rapid solidification are of great importance for guiding the novel alloy preparation, but are usually absent due to extreme difficulty in performing experimental measurements. In this paper, a phase-field model with finite interface dissipation was employed to construct kinetic phase diagrams in the ternary Al-Cu-Li system for the first time. The time-elimination relaxation scheme was utilized. The solute trapping phenomenon during rapid solidification could be nicely described by the phase-field simulation, and the results obtained from the experiment measurement and/or the theoretical model were also well reproduced. Based on the predicted kinetic phase diagrams, it was found that with the increase of interface moving velocity and/or temperature, the gap between the liquidus and solidus gradually reduces, which illustrates the effect of solute trapping and tendency of diffusionless solidification. PMID:29419753
Tranpsort phenomena in solidification processing of functionally graded materials
NASA Astrophysics Data System (ADS)
Gao, Juwen
A combined numerical and experimental study of the transport phenomena during solidification processing of metal matrix composite functionally graded materials (FGMs) is conducted in this work. A multiphase transport model for the solidification of metal-matrix composite FGMs has been developed that accounts for macroscopic particle segregation due to liquid-particle flow and particle-solid interactions. An experimental study has also been conducted to gain physical insight as well as to validate the model. A novel method to in-situ measure the particle volume fraction using fiber optic probes is developed for transparent analogue solidification systems. The model is first applied to one-dimensional pure matrix FGM solidification under gravity or centrifugal field and is extensively validated against the experimental results. The mechanisms for the formation of particle concentration gradient are identified. Two-dimensional solidification of pure matrix FGM with convection is then studied using the model as well as experiments. The interaction among convection flow, solidification process and the particle transport is demonstrated. The results show the importance of convection in the particle concentration gradient formation. Then, simulations for alloy FGM solidification are carried out for unidirectional solidification as well as two-dimensional solidification with convection. The interplay among heat and species transport, convection and particle motion is investigated. Finally, future theoretical and experimental work is outlined.
Radioactive cobalt removal from Salem liquid radwaste with cobalt selective media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maza R.; Wilson, J.A.; Hetherington, R.
This paper reports results of benchtop tests using ion exchange material to selectively remove radioactive cobalt from high conductivity liquid radwaste at the Salem Nuclear Generating Station. The purpose of this test program is to reduce the number of curies in liquid releases without increasing the solid waste volume. These tests have identified two cobalt selective materials that together remove radioactive cobalt more effectively than the single component currently used. All test materials were preconditioned by conversion to the divalent calcium or sulfate form to simulate chemically exhausted media.
A Robotic arm for optical and gamma radwaste inspection
NASA Astrophysics Data System (ADS)
Russo, L.; Cosentino, L.; Pappalardo, A.; Piscopo, M.; Scirè, C.; Scirè, S.; Vecchio, G.; Muscato, G.; Finocchiaro, P.
2014-12-01
We propose Radibot, a simple and cheap robotic arm for remote inspection, which interacts with the radwaste environment by means of a scintillation gamma detector and a video camera representing its light (< 1 kg) payload. It moves vertically thanks to a crane, while the other three degrees of freedom are obtained by means of revolute joints. A dedicated algorithm allows to automatically choose the best kinematics in order to reach a graphically selected position, while still allowing to fully drive the arm by means of a standard videogame joypad.
Progress in modeling solidification in molten salt coolants
NASA Astrophysics Data System (ADS)
Tano, Mauricio; Rubiolo, Pablo; Doche, Olivier
2017-10-01
Molten salts have been proposed as heat carrier media in the nuclear and concentrating solar power plants. Due to their high melting temperature, solidification of the salts is expected to occur during routine and accidental scenarios. Furthermore, passive safety systems based on the solidification of these salts are being studied. The following article presents new developments in the modeling of eutectic molten salts by means of a multiphase, multicomponent, phase-field model. Besides, an application of this methodology for the eutectic solidification process of the ternary system LiF-KF-NaF is presented. The model predictions are compared with a newly developed semi-analytical solution for directional eutectic solidification at stable growth rate. A good qualitative agreement is obtained between the two approaches. The results obtained with the phase-field model are then used for calculating the homogenized properties of the solid phase distribution. These properties can then be included in a mixture macroscale model, more suitable for industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-04-01
The design calculations for the Waste Isolation Pilot Plant (WIPP) are presented. The following categories are discussed: general nuclear calculations; radwaste calculations; structural calculations; mechanical calculations; civil calculations; electrical calculations; TRU waste surface facility time and motion analysis; shaft sinking procedures; hoist time and motion studies; mining system analysis; mine ventilation calculations; mine structural analysis; and miscellaneous underground calculations.
Microgravity Processing of Oxide Superconductors
NASA Technical Reports Server (NTRS)
Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)
2000-01-01
The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.
The growth of metastable peritectic compounds
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.; Pirich, R. G.
1981-01-01
The influence of gravitationally driven thermosolutal convection on the directional solidification of peritectic alloys is considered as well as the relationships between the solidification processing conditions, and the microstructure, chemistry, and magnetic properties of such alloys. Analysis of directionally solidified Pb-Bi peritectic samples indicates that appreciable macrosegregation occurs due to thermosolutal convection and/or Soret diffusion. A peritectic solidification model which accounts for partial mixing in the liquid ahead of the planar solidification interface and describes macrosegregation has been developed. Two-phase dendritic and banded microstructures were grown in the Pb-Bi peritectic system, refined two-phase microstructures have were observed, and candidate formation mechanisms proposed. Material handling, containment, casting, microstructural and magnetic characterization techniques were developed for the Sm-Co system. Alloys produced with these procedures are homogeneous.
The growth of metastable peritectic compounds
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.
1984-01-01
The influence of gravitationally driven convection on the directional solidification of peritectic alloys was evaluated. The Pb-Bi peritectic was studied as a model solidification system. Analyses of directionally solidified Pb-Bi peritectic samples indicate that appreciable macrosegregation occurs due to thermosolutal convection and/or Soret diffusion. The macrosegregation results in sequantial change of phase and morphology as solidification progresses down the length of the sample. Banding was eliminated when furnace conditions were selected which resulted in a planar solidification interface. The directional solidification that occurs in the vicinity of the Pb-Bi peritectic isothermal was found to be isocompositional and to consist solely of the equilibrium terminal solid solution and peritectic phases on an extremely fine scale. Evidence was found to support the peritectic supercooling mechanism, but not the proposed peritectic superheat mechanism.
Microstructure Formations in the Two-Phase Region of the Binary Peritectic Organic System TRIS-NPG
NASA Technical Reports Server (NTRS)
Mogeritsch, Johann; Ludwig, Andreas
2012-01-01
In order to prepare for an onboard experiment on the International Space Station (ISS), systematic directional solidification experiments with transparent hypoperitectic alloys were carried out at different solidification rates around the critical velocity for morphological stability of both solid phases. The investigations were done in the peritectic region of the binary transparent organic TRIS-NPG system where the formation of layered structures is expected to occur. The transparent appearance of the liquid and solid phase enables real time observations of the dynamic of pattern formation during solidification. The investigations show that frequently occurring nucleation events govern the peritectic solidification morphology which occurs at the limit of morphological stability. As a consequence, banded structures lead to coupled growth even if the lateral growth is much faster compared to the growth in pulling direction.
NASA Astrophysics Data System (ADS)
Bojarevičs, Andris; Kaldre, Imants; Milgrāvis, Mikus; Beinerts, Toms
2018-05-01
Direct chill casting is one of the methods used in industry to obtain good microstructure and properties of aluminium alloys. Nevertheless, for some alloys grain structure is not optimal. In this study, we offer the use of electromagnetic interaction to modify melt convection near the solidification interface. Solidification under various electromagnetic interactions has been widely studied, but usually at low solidification velocity and high thermal gradient. This type of interaction may succeed fragmentation of dendrite arms and transport of solidification nuclei thus leading to improved material structure and properties. Realization of experimental small-scale crystallizer and electromagnetic system has been described in this article.
Enthalpies of a binary alloy during solidification
NASA Technical Reports Server (NTRS)
Poirier, D. R.; Nandapurkar, P.
1988-01-01
The purpose of the paper is to present a method of calculating the enthalpy of a dendritic alloy during solidification. The enthalpies of the dendritic solid and interdendritic liquid of alloys of the Pb-Sn system are evaluated, but the method could be applied to other binaries, as well. The enthalpies are consistent with a recent evaluation of the thermodynamics of Pb-Sn alloys and with the redistribution of solute in the same during dendritic solidification. Because of the heat of mixing in Pb-Sn alloys, the interdendritic liquid of hypoeutectic alloys (Pb-rich) of less than 50 wt pct Sn has enthalpies that increase as temperature decreases during solidification.
Probes and monitors for the study of solidification of molten semiconductors
NASA Technical Reports Server (NTRS)
Sadoway, D. R.
1986-01-01
The purpose is to examine solidification in the LiCl-KCl system to determine if phenomena such as solute rejection can be obseved by laser schlieren imaging. Molten salts have attributes that make them attractive as physical models in solidification studies. With optical techniques of investigation such as schlieren imaging, it is possible to study fluid flow phenomena in molten salts and to watch the trajectory of the solid-liquid interface.
Pattern selection in solidification
NASA Technical Reports Server (NTRS)
Langer, J. S.
1984-01-01
Directional solidification of alloys produces a wide variety of cellular or lamellar structures which, depending upon growth conditions, may be reproducibly regular or may behave chaotically. It is not well understood how these patterns are selected and controlled or even whether there ever exist sharp selection mechanisms. A related phenomenon is the spatial propagation of a pattern into a system which has been caused to become unstable against pattern-forming deformations. This phenomenon has some features in common with the propagation of sidebranching modes in dendritic solidification. In a class of one-dimensional models, the nonlinear system can be shown to select the propagating mode in which the leading edge of the pattern is just marginally stable. This stability principle, when applicable, predicts both the speed of propagation and the geometrical characteristics of the pattern which forms behind the moving front. A boundary-layer model for fully two or three dimensional solidification problems appears to exhibit similar mathematical behavior.
NASA Astrophysics Data System (ADS)
Yildiz, A. K.; Celik, F. A.
2017-04-01
The solidification process of Platinum-Rhodium alloy from liquid phase to solid state is investigated at the nano-scale by using Molecular Dynamics Simulation (MDS) for different atomic concentration ratios of Pt. The critical nucleus radius, the bond order parameter, interfacial free energies and total energy based on nucleation theory of the alloy are examined with respect to the temperature changes. The heat of fusion from high temperatures to low temperatures during solidification of the alloy system is determined from molecular dynamics simulation. The structural development is determined from the radial distribution function. It is observed from the results that the melting point of the alloy system decreases with increasing concentration of Pt and that variation of Pt ratio in the alloy shows a remarkable effect on solidification to understand the cooling process of thermal effects.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Xing, Yuming; Liu, Xin; Rui, Zhoufeng
2018-01-01
The use of thermal energy storage systems can effectively reduce energy consumption and improve the system performance. One of the promising ways for thermal energy storage system is application of phase change materials (PCMs). In this study, a two-dimensional numerical model is presented to investigate the heat transfer enhancement during the melting/solidification process in a triplex tube heat exchanger (TTHX) by using fluent software. The thermal conduction and natural convection are all taken into account in the simulation of the melting/solidification process. As the volume fraction of fin is kept to be a constant, the influence of proposed fin arrangement on temporal profile of liquid fraction over the melting process is studied and reported. By rotating the unit with different angle, the simulation shows that the melting time varies a little, which means that the installation error can be reduced by the selected fin arrangement. The proposed fin arrangement also can effectively reduce time of the solidification of the PCM by investigating the solidification process. To summarize, this work presents a shape optimization for the improvement of the thermal energy storage system by considering both thermal energy charging and discharging process.
Chernobyl NPP: Completion of LRW Treatment Plant and LRW Management on Site - 12568
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Denis; Adamovich, Dmitry; Klimenko, I.
2012-07-01
Since a beginning of ChNPP operation, and after a tragedy in 1986, a few thousands m3 of LRW have been collected in a storage tanks. In 2004 ChNPP started the new project on creation of LRW treatment plant (LRWTP) financed from EBRD fund. But it was stopped in 2008 because of financial and contract problems. In 2010 SIA RADON jointly with Ukrainian partners has won a tender on completion of LRWTP, in particular I and C system. The purpose of LRTP is to process liquid rad-wastes from SSE 'Chernobyl NPP' site and those liquids stored in the LRWS and SLRWSmore » tanks as well as the would-be wastes after ChNPP Power Units 1, 2 and 3 decommissioning. The LRTP design lifetime - 20 years. Currently, the LRTP is getting ready to perform the following activities: 1. retrieval of waste from tanks stored at ChNPP LWS using waste retrieval system with existing equipment involved; 2. transfer of retrieved waste into LRTP reception tanks with partial use of existing transfer pipelines; 3. laboratory chemical and radiochemical analysis of reception tanks contest to define the full spectrum of characteristics before processing, to acknowledge the necessity of preliminary processing and to select end product recipe; 4. preliminary processing of the waste to meet the requirements for further stages of the process; 5. shrinkage (concentrating) of preliminary processed waste; 6. solidification of preliminary processed waste with concrete to make a solid-state (end product) and load of concrete compound into 200-l drums; 7. curing of end product drums in LRTP curing hall; 8. radiologic monitoring of end product drums and their loading into special overpacks; 9. overpack radiological monitoring; 10. send for disposal (ICSRM Lot 3); The current technical decisions allow to control and return to ChNPP of process media and supporting systems outputs until they satisfy the following quality norms: salt content: < 100 g/l; pH: 1 - 11; anionic surface-active agent: < 25 mg/l; oil dissipated in the liquid: < 2 mg/l; overall gamma-activity: < 3,7 x10{sup 5} Bq/l. (authors)« less
Solidification of high temperature molten salts for thermal energy storage systems
NASA Technical Reports Server (NTRS)
Sheffield, J. W.
1981-01-01
The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.
Five-dimensional imaging of freezing emulsions with solute effects.
Dedovets, Dmytro; Monteux, Cécile; Deville, Sylvain
2018-04-20
The interaction of objects with a moving solidification front is a common feature of many industrial and natural processes such as metal processing, the growth of single crystals, the cryopreservation of cells, or the formation of sea ice. Interaction of solidification fronts with objects leads to different outcomes, from total rejection of the objects to their complete engulfment. We imaged the freezing of emulsions in five dimensions (space, time, and solute concentration) with confocal microscopy. We showed that the solute induces long-range interactions that determine the solidification microstructure. The local increase of solute concentration enhances premelting, which controls the engulfment of droplets by the front and the evolution of grain boundaries. Freezing emulsions may be a good analog of many solidification systems where objects interact with a solidification interface. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Technical Reports Server (NTRS)
Koziol, Jurek K.; Sadoway, Donald R.
1987-01-01
It is presently noted that molten salts possess attributes rendering them attractive as physical models of cast metals in solidification studies. Molten alkali halides have an approximately correct Prandtl number for this modeling of metallic melts, and are transparent to visible light. Attention is given to solidification in the LiCl-KCl system, in order to determine whether such phenomena as solute rejection can be observed and characterized through the application of laser schlieren imaging.
Microstructural development during solidification of stainless steel alloys
NASA Astrophysics Data System (ADS)
Elmer, J. W.; Allen, S. M.; Eagar, T. W.
1989-10-01
The microstructures that develop during the solidification of stainless steel alloys are related to the solidification conditions and the specific alloy composition. The solidification conditions are determined by the processing method, i.e., casting, welding, or rapid solidification, and by parametric variations within each of these techniques. One variable that has been used to characterize the effects of different processing conditions is the cooling rate. This factor and the chemical composition of the alloy both influence (1) the primary mode of solidification, (2) solute redistribution and second-phase formation during solidification, and (3) the nucleation and growth behavior of the ferrite-to-austenite phase transformation during cooling. Consequently, the residual ferrite content and the microstructural morphology depend on the cooling rate and are governed by the solidification process. This paper investigates the influence of cooling rate on the microstructure of stainless steel alloys and describes the conditions that lead to the many microstructural morphologies that develop during solidification. Experiments were performed on a series of seven high-purity Fe-Ni-Cr alloys that spanned the line of twofold saturation along the 59 wt pct Fe isopleth of the ternary alloy system. High-speed electron-beam surface-glazing was used to melt and resolidify these alloys at scan speeds up to 5 m/s. The resulting cooling rates were shown to vary from 7°C/s to 7.5×106°C/s, and the resolidified melts were analyzed by optical metallographic methods. Five primary modes of solidification and 12 microstructural morphologies were characterized in the resolidified alloys, and these features appear to be a complete “set” of the possible microstructures for 300-series stainless steel alloys. The results of this study were used to create electron-beam scan speed vs composition diagrams, which can be used to predict the primary mode of solidification and the microstructural morphology for different processing conditions. Furthermore, changes in the primary solidification mode were observed in alloys that lie on the chromium-rich side of the line of twofold saturation when they are cooled at high rates. These changes were explained by the presence of metastable austenite, which grows epitaxially and can dominate the solidification microstructure throughout the resolidified zone at high cooling rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, H.J.; Choi, K.C.; Choi, K.S.
2013-07-01
As a destructive quantification method of {sup 3}H in low and intermediate level radwastes, bomb oxidation, sample oxidation, and wet oxidation methods have been introduced. These methods have some merits and demerits in the radiochemical separation of {sup 3}H radionuclides. That is, since the bomb oxidation and sample oxidation methods are techniques using heating at high temperature, the separation methods of the radionuclides are relatively simple. However, since {sup 3}H radionuclide has a property of being diffused deeply into the inside of metals, {sup 3}H which is distributed on the surface of the metals can only be extracted if themore » methods are applied. As an another separation method, the wet oxidation method makes {sup 3}H oxidized with an acidic solution, and extracted completely to an oxidized HTO compound. However, incomplete oxidized {sup 3}H compounds, which are produced by reactions of acidic solutions and metallic radwastes, can be released into the air. Thus, in this study, a wet oxidation method to extract and quantify the {sup 3}H radionuclide from metallic radwastes was established. In particular, a complete extraction method and complete oxidation method of incomplete chemical compounds of {sup 3}H using a Pt catalyst were studied. The radioactivity of {sup 3}H in metallic radwastes is extracted and measured using a wet oxidation method and liquid scintillation counter. Considering the surface dose rate of the sample, the appropriate size of the sample was determined and weighed, and a mixture of oxidants was added to a 200 ml round flask with 3 tubes. The flask was quickly connected to the distilling apparatus. 20 mL of 16 wt% H{sub 2}SO{sub 4} was given into the 200-ml round flask through a dropping funnel while under stirring and refluxing. After dropping, the temperature of the mixture was raised to 96 deg. C and the sample was leached and oxidized by refluxing for 3 hours. At that time, the incomplete oxidized {sup 3}H compounds were completely oxidized using the Pt catalysts and produced a stable HTO compound. After that, about a 20 ml solution was distilled in the separation apparatus, and the distillate was mixed with an ultimagold LLT as a cocktail solution. The solution in the vial was left standing for at least 24 hours. The radioactivity of {sup 3}H was counted directly using a liquid scintillation analyzer (Packard, 2500 TR/AB, Alpha and Beta Liquid Scintillation Analyzer). (authors)« less
Novel Directional Solidification Processing of Hypermonotectic Alloys
NASA Technical Reports Server (NTRS)
Grugel, Richard N.
1999-01-01
Gravity driven separation precludes uniform microstructural development during controlled directional solidification (DS) processing of hypermonotectic alloys. It is well established that liquid/liquid suspensions, in which the respective components are immiscible and have significant density differences, can be established and maintained by utilizing ultrasound. A historical introduction to this work is presented with the intent of establishing the basis for applying the phenomena to promote microstructural uniformity during controlled directional solidification processing of immiscible mixtures. Experimental work based on transparent organics, as well as salt systems, will be presented in view of the processing parameters.
Real Time Characterization of Solid/Liquid Interfaces During Directional Solidification
NASA Technical Reports Server (NTRS)
Sen, S.; Kaukler, W. K.; Curreri, P. A.; Peters, P.
1997-01-01
A X-Ray Transmission Microscope (XTM) has been developed to observe in real time and in-situ solidification phenomenon at the solid/liquid interface. Recent improvements in the horizontal Bridgman furnace design provides real-time magnification (during solidification) up to 12OX. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 3-6 micrometers. Further, morphological transitions from planar to cellular interfaces have also been imaged. Results from recent XTM studies on Al-Bi monotectic system, Al-Au eutectic system and interaction of insoluble particles with s/I interfaces in composite materials will be presented. An important parameter during directional solidification of molten metal is the interfacial undercooling. This parameter controls the morphology and composition at the s/I interface. Conventional probes such as thermocouples, due to their large bead size, do not have sufficient resolution for measuring undercooling at the s/I interface. Further, the intrusive nature of the thermocouples also distorts the thermal field at the s/I interface. To overcome these inherent problems we have recently developed a compact furnace which utilizes a non-intrusive technique (Seebeck) to measure undercooling at the S/I interface. Recent interfacial undercooling measurements obtained for the Pb-Sn system will be presented. The Seebeck measurement furnace in the future will be integrated with the XTM to provide the most comprehensive tool for real time characterization of s/I interfaces during solidification.
Thermosolutal convection during dendritic solidification
NASA Technical Reports Server (NTRS)
Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.
1989-01-01
This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.
NASA Astrophysics Data System (ADS)
Rahmani, Farzin; Jeon, Jungmin; Jiang, Shan; Nouranian, Sasan
2018-05-01
Molecular dynamics (MD) simulations were performed to investigate the role of core volume fraction and number of fusing nanoparticles (NPs) on the melting and solidification of Cu/Al and Ti/Al bimetallic core/shell NPs during a superfast heating and slow cooling process, roughly mimicking the conditions of selective laser melting (SLM). One recent trend in the SLM process is the rapid prototyping of nanoscopically heterogeneous alloys, wherein the precious core metal maintains its particulate nature in the final manufactured part. With this potential application in focus, the current work reveals the fundamental role of the interface in the two-stage melting of the core/shell alloy NPs. For a two-NP system, the melting zone gets broader as the core volume fraction increases. This effect is more pronounced for the Ti/Al system than the Cu/Al system because of a larger difference between the melting temperatures of the shell and core metals in the former than the latter. In a larger six-NP system (more nanoscopically heterogeneous), the melting and solidification temperatures of the shell Al roughly coincide, irrespective of the heating or cooling rate, implying that in the SLM process, the part manufacturing time can be reduced due to solidification taking place at higher temperatures. The nanostructure evolution during the cooling of six-NP systems is further investigated. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barariu, Gheorghe
2007-07-01
The paper presents the new perspectives on the development of the L/ILW Final Repository Project which will be built near Cernavoda NPP. The Repository is designed to satisfy the main performance objectives in accordance to IAEA recommendation. Starting in October 1996, Romania became a country with an operating nuclear power plant. Reactor 2 reached the criticality on May 6, 2007 and it will be put in commercial operation in September 2007. The Ministry of Economy and Finance has decided to proceed with the commissioning of Units 3 and 4 of Cernavoda NPP till 2014. The Strategy for radioactive waste managementmore » was elaborated by National Agency for Radioactive Waste (ANDRAD), the jurisdictional authority for definitive disposal and the coordination of nuclear spent fuel and radioactive waste management (Order 844/2004) with attributions established by Governmental Decision (GO) 31/2006. The Strategy specifies the commissioning of the Saligny L/IL Radwaste Repository near Cernavoda NPP in 2014. When designing the L/IL Radwaste Repository, the following prerequisites have been taken into account: 1) Cernavoda NPP will be equipped with 4 Candu 6 units. 2) National Legislation in radwaste management will be reviewed and/or completed to harmonize with UE standards 3) The selected site is now in process of confirmation after a comprehensive set of interdisciplinary investigations. (author)« less
An initial study of void formation during solidification of aluminum in normal and reduced-gravity
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis P.; Foerster, George; Gotti, Daniel J.; Neumann, Eric S.; Johnston, J. C.; De Witt, Kenneth J.
1992-01-01
Void formation due to volumetric shrinkage during aluminum solidification was observed in real time using a radiographic viewing system in normal and reduced gravity. An end chill directional solidification furnace with water quench was developed to solidify aluminum samples during the approximately 16 seconds of reduced gravity (+/- 0.02g) achieved by flying an aircraft through a parabolic trajectory. Void formation was recorded for two cases: first a nonwetting system; and second, a wetting system where wetting occurs between the aluminum and crucible lid. The void formation in the nonwetting case is similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case in reduced gravity, surface tension causes two voids to form in the top corners of the crucible, but in normal gravity only one large voids forms across the top.
Schremb, Markus; Campbell, James M; Christenson, Hugo K; Tropea, Cameron
2017-05-16
The thermal influence of a solid wall on the solidification of a sessile supercooled water drop is experimentally investigated. The velocity of the initial ice layer propagating along the solid substrate prior to dendritic solidification is determined from videos captured using a high-speed video system. Experiments are performed for varying substrate materials and liquid supercooling. In contrast to recent studies at moderate supercooling, in the case of metallic substrates only a weak influence of the substrate's thermal properties on the ice layer velocity is observed. Using the analytical solution of the two-phase Stefan problem, a semiempirical model for the ice layer velocity is developed. The experimental data are well described for all supercooling levels in the entire diffusion limited solidification regime. For higher supercooling, the model overestimates the freezing velocity due to kinetic effects during molecular attachment at the solid-liquid interface, which are not accounted for in the model. The experimental findings of the present work offer a new perspective on the design of anti-icing systems.
Solidification and microstructures of binary ice-I/hydrate eutectic aggregates
McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.
2007-01-01
The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.
NASA Astrophysics Data System (ADS)
Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana
2018-03-01
The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.
Browns Ferry Nuclear Plant low-level radwaste storage facility ground-water pathway analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggs, J.M.
1982-10-01
The proposed low-level radwaste storage facility (LLRWSF) at Browns Ferry Nuclear Plant is underlain by soils having low hydraulic conductivity and high sorptive capacity which greatly reduce the risks associated with a potential contaminant excursion. A conservative ground-water pathway accident analysis using flow and solute transport modeling techniques indicates that without interdiction the concentrations of the five radionuclides of concern (Sr-90, Cs-137, Cs-134, Co-60, and Mn-54) would be well below 10 CFR Part 20 criteria at downgradient receptors. These receptors include a possible future private water well located near the eastern site boundary and Wheeler Reservoir. Routine ground-water monitoring ismore » not recommended at the LLRWSF except in the unlikely event of an accident.« less
NASA Astrophysics Data System (ADS)
Zhang, Hai-Tao; Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Liang, Yong-Chao; Peng, Ping
2018-03-01
To deeply understand the effects of high pressure on microstructural evolutions and crystallization mechanisms of liquid metal Ni during solidification process, MD simulation studies have been performed under 7 pressures of 0 ˜ 30 GPa, at cooling rate of 1.0 × 1011 K s-1. Adopting several microstructural analyzing methods, especially the cluster-type index method (CTIM-2) to analyze the local microstructures in the system. It is found that the pressure has important influence on the formation and evolution of microstructures, especially of the main basic clusters in the system. All the simulation systems are directly solidified into crystal structures, and the 1421, 1422, 1441 and 1661 bond-types, as well the FCC (12 0 0 0 12 0), HCP (12 0 0 0 6 6) and BCC (14 6 0 8 0 0) clusters play a key role in the microstructure transitions from liquid to crystal structures. The crystallization temperature T c is enhanced almost linearly with the increase of pressure. Highly interesting, it is found for the first time that there is an important phase transformation point from FCC to BCC structures between 20 ˜ 22.5 GPa during the solidification processes from the same initial liquid system at the same cooling rate. And the effect of increasing pressure is similar to that of decreasing cooling rate for the phase transformation of microstructures during solidification process of liquid metal Ni system, though they have different concrete effecting mechanisms.
NASA Technical Reports Server (NTRS)
Li, C.
1975-01-01
Computer programs are developed and used in the study of the combined effects of evaporation and solidification in space processing. The temperature and solute concentration profiles during directional solidification of binary alloys with surface evaporation were mathematically formulated. Computer results are included along with an econotechnical model of crystal growth. This model allows: prediction of crystal size, quality, and cost; systematic selection of the best growth equipment or alloy system; optimization of growth or material parameters; and a maximization of zero-gravity effects. Segregation in GaAs crystals was examined along with vibration effects on GaAs crystal growth. It was found that a unique segregation pattern and strong convention currents exist in GaAs crystal growth. Some beneficial effects from vibration during GaAs growth were discovered. The implications of the results in space processing are indicated.
Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.
2010-01-01
An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.
Modeling of multiphase flow with solidification and chemical reaction in materials processing
NASA Astrophysics Data System (ADS)
Wei, Jiuan
Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and moving the side insulation layer upward. It is possible to produce high quality crystal with a good combination of heating and cooling. SiC based ceramic materials fabricated by polymer pyrolysis and synthesis becomes a promising candidate for nuclear applications. To obtain high uniformity of microstructure/concentration fuel without crack at high operating temperature, it is important to understand transport phenomena in material processing at different scale levels. In our prior work, a system level model based on reactive porous media theory was developed to account for the pyrolysis process in uranium-ceramic nuclear fabrication In this thesis, a particle level mesoscopic model based on the Smoothed Particle Hydrodynamics (SPH) is developed for modeling the synthesis of filler U3O8 particles and SiC matrix. The system-level model provides the thermal boundary conditions needed in the particle level simulation. The evolution of particle concentration and structure as well as composition of composite produced will be investigated. Since the process temperature and heat flux play the important roles in material quality and uniformity, the effects of heating rate at different directions, filler particle size and distribution on uniformity and microstructure of the final product are investigated. Uncertainty issue is also discussed. For the multiphase flow with directional solidification, a system level based on FVM is established. In this model, melt convection, temperature distribution, phase change and solidification interface can be investigated. For the multiphase flow with chemical reaction, a particle level model based on SPH method is developed to describe the pyrolysis and synthesis process of uranium-ceramic nuclear fuel. Due to its mesh-free nature, SPH can easily handle the problems with multi phases and components, large deformation, chemical reactions and even solidifications. A multi-scale meso-macroscopic approach, which combine a mesoscopic model based on SPH method and macroscopic model based on FVM, FEM and FDM, can be applied to even more complicated system. In the mesoscopic model by SPH method, some fundamental mesoscopic phenomena, such as the microstructure evolution, interface morphology represented by high resolution, particle entrapment in solidification can be studied. In the macroscopic model, the heat transfer, fluid flow, species transport can be modeled, and the simulation results provided the velocity, temperature and species boundary condition necessary for the mesoscopic model. This part falls into the region of future work. (Abstract shortened by UMI.)
Numerical model for dendritic solidification of binary alloys
NASA Technical Reports Server (NTRS)
Felicelli, S. D.; Heinrich, J. C.; Poirier, D. R.
1993-01-01
A finite element model capable of simulating solidification of binary alloys and the formation of freckles is presented. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. Numerical simulations are shown in which an NH4Cl-H2O mixture and a Pb-Sn alloy melt are cooled. The solidification process is followed in time. Instabilities in the process can be clearly observed and the final compositions obtained.
Thermal analysis and microstructural characterization of Mg-Al-Zn system alloys
NASA Astrophysics Data System (ADS)
Król, M.; Tański, T.; Sitek, W.
2015-11-01
The influence of Zn amount and solidification rate on the characteristic temperature of the evaluation of magnesium dendrites during solidification at different cooling rates (0.6-2.5°C) were examined by thermal derivative analysis (TDA). The dendrite coherency point (DCP) is presented with a novel approach based on second derivative cooling curve. Solidification behavior was examined via one thermocouple thermal analysis method. Microstructural assessments were described by optical light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These studies showed that utilization of d2T/dt2 vs. the time curve methodology provides for analysis of the dendrite coherency point
Thermal analysis of HGFQ using FIDAP(trademark): Solidification front motion
NASA Technical Reports Server (NTRS)
Woodbury, Keith A.
1996-01-01
The High Gradient Furnace with Quench (HGFQ) is being designed by NASA/MSFC for flight on the International Space Station. The furnace is being designed specifically for solidification experiments in metal and metallic alloy systems. The HGFQ Product development Team (PDT) has been active since January 1994 and their effort is now in early Phase B. Thermal models have been developed both by NASA and Sverdrup (support contractor) to assist in the HGFQ design effort. Both these models use SINDA as a solution engine, but the NASA model was developed using PATRAN and includes more detail than the Sverdrup model. These models have been used to guide design decisions and have been validated through experimentation on a prototypical 'Breadboard' furnace at MSFC. One facet of the furnace operation of interest to the designers is the sensitivity of the solidification interface location to changes in the furnace setpoint. Specifically of interest is the motion (position and velocity) of the solidification front due to a small perturbation in the furnace temperature. FIDAP(TM) is a commercially available finite element program for analysis of heat transfer and fluid flow processes. Its strength is in solution of the Navier-Stokes equations for incompressible flow, but among its capabilities is the analysis of transient processes involving radiation and solidification. The models presently available from NASA and Sverdrup are steady-state models and are incapable of computing the motion of the solidification front. The objective of this investigation is to use FIDAP(TM) to compute the motion of the solidification interface due to a perturbation in the furnace setpoint.
The modelling of heat, mass and solute transport in solidification systems
NASA Technical Reports Server (NTRS)
Voller, V. R.; Brent, A. D.; Prakash, C.
1989-01-01
The aim of this paper is to explore the range of possible one-phase models of binary alloy solidification. Starting from a general two-phase description, based on the two-fluid model, three limiting cases are identified which result in one-phase models of binary systems. Each of these models can be readily implemented in standard single phase flow numerical codes. Differences between predictions from these models are examined. In particular, the effects of the models on the predicted macro-segregation patterns are evaluated.
Ma, Yue-Qin; Zhang, Zeng-Zhu; Li, Gang; Zhang, Jing; Xiao, Han-Yang; Li, Xian-Fei
2016-03-01
To elucidate the effect of solidification processes on the redispersibility of drug nanocrystals (NC) during freeze-drying, ursodeoxycholic acid (UDCA) nanosuspensions were transformed into UDCA-NC via different solidification process included freezing and lyophilization. The effect of different concentrations of stabilizers and cryoprotectants on redispersibility of UDCA-NC was investigated, respectively. The results showed that the redispersibility of UDCA-NC was RDI-20 °C < RDI-80 °C < RDI-196 °C during freezing, which indicated the redispersibility of UDCA-NC at the conventional temperature was better more than those at moderate and rigorous condition. Compared to the drying strengthen, the employed amount and type of stabilizers more dramatically affected the redispersibility of UDCA-NC during lyophilization. The hydroxypropylmethylcellulose and PVPK30 were effective to protect UDCA-NC from damage during lyophilization, which could homogeneously adsorb into the surface of NC to prevent from agglomerates. The sucrose and glucose achieved excellent performance that protected UDCA-NC from crystal growth during lyophilization, respectively. It was concluded that UDCA-NC was subjected to agglomeration during solidification transformation, and the degree of agglomeration suffered varied with the type and the amounts of stabilizers used, as well as different solidification conditions. The PVPK30-sucrose system was more effective to protect UDCA-NC from the damage during solidification process.
Gravitational Acceleration Effects on Macrosegregation: Experiment and Computational Modeling
NASA Technical Reports Server (NTRS)
Leon-Torres, J.; Curreri, P. A.; Stefanescu, D. M.; Sen, S.
1999-01-01
Experiments were performed under terrestrial gravity (1g) and during parabolic flights (10-2 g) to study the solidification and macrosegregation patterns of Al-Cu alloys. Alloys having 2% and 5% Cu were solidified against a chill at two different cooling rates. Microscopic and Electron Microprobe characterization was used to produce microstructural and macrosegregation maps. In all cases positive segregation occurred next to the chill because shrinkage flow, as expected. This positive segregation was higher in the low-g samples, apparently because of the higher heat transfer coefficient. A 2-D computational model was used to explain the experimental results. The continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the solidification phenomena, for a two-phase system. The model considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The solidification event was divided into two stages. In the first one, the liquid containing freely moving equiaxed grains was described through the relative viscosity concept. In the second stage, when a fixed dendritic network was formed after dendritic coherency, the mushy zone was treated as a porous medium. The macrosegregation maps and the cooling curves obtained during experiments were used for validation of the solidification and segregation model. The model can explain the solidification and macrosegregation patterns and the differences between low- and high-gravity results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, Narendran; Simunovic, Srdjan; Dehoff, Ryan
In addition to design geometry, surface roughness, and solid-state phase transformation, solidification microstructure plays a crucial role in controlling the performance of additively manufactured components. Crystallographic texture, primary dendrite arm spacing (PDAS), and grain size are directly correlated to local solidification conditions. We have developed a new melt-scan strategy for inducing site specific, on-demand control of solidification microstructure. We were able to induce variations in grain size (30 μm–150 μm) and PDAS (4 μm - 10 μm) in Inconel 718 parts produced by the electron beam additive manufacturing system (Arcam®). A conventional raster melt-scan resulted in a grain size ofmore » about 600 μm. The observed variations in grain size with different melt-scan strategies are rationalized using a numerical thermal and solidification model which accounts for the transient curvature of the melt pool and associated thermal gradients and liquid-solid interface velocities. The refinement in grain size at high cooling rates (>104 K/s) is also attributed to the potential heterogeneous nucleation of grains ahead of the epitaxially growing solidification front. The variation in PDAS is rationalized using a coupled numerical-theoretical model as a function of local solidification conditions (thermal gradient and liquid-solid interface velocity) of the melt pool.« less
Solidification Based Grain Refinement in Steels
2009-07-24
pearlite (See Figure 1). No evidence of the as-cast austenite dendrite structure was observed. The gating system for this sample resides at the thermal...possible nucleating compounds. 3) Extend grain refinement theory and solidification knowledge through experimental data. 4) Determine structure ...refine the structure of a casting through heat treatment. The energy required for grain refining via thermomechanical processes or heat treatment
NASA Astrophysics Data System (ADS)
Toropova, L. V.; Alexandrov, D. V.
2018-05-01
The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquids line equation. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.
Thermal control of low-pressure fractionation processes. [in basaltic magma solidification
NASA Technical Reports Server (NTRS)
Usselman, T. M.; Hodge, D. S.
1978-01-01
Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed. In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.
The Power of Materials Science Tools for Gaining Insights into Organic Semiconductors
NASA Astrophysics Data System (ADS)
Treat, Neil D.; Westacott, Paul; Stingelin, Natalie
2015-07-01
The structure of organic semiconductors can be complex because features from the molecular level (such as molecular conformation) to the micrometer scale (such as the volume fraction and composition of phases, phase distribution, and domain size) contribute to the definition of the optoelectronic landscape of the final architectures and, hence, to device performance. As a consequence, a detailed understanding of how to manipulate molecular ordering, e.g., through knowledge of relevant phase transitions, of the solidification process, of relevant solidification mechanisms, and of kinetic factors, is required to induce the desired optoelectronic response. In this review, we discuss relevant structural features of single-component and multicomponent systems; provide a case study of the multifaceted structure that polymer:fullerene systems can adopt; and highlight relevant solidification mechanisms such as nucleation and growth, liquid-liquid phase separation, and spinodal decomposition. In addition, cocrystal formation, solid solutions, and eutectic systems are treated and their relevance within the optoelectronic area emphasized.
Metal Solidification Imaging Process by Magnetic Induction Tomography.
Ma, Lu; Spagnul, Stefano; Soleimani, Manuchehr
2017-11-06
There are growing number of important applications that require a contactless method for monitoring an object surrounded inside a metallic enclosure. Imaging metal solidification is a great example for which there is no real time monitoring technique at present. This paper introduces a technique - magnetic induction tomography - for the real time in-situ imaging of the metal solidification process. Rigorous experimental verifications are presented. Firstly, a single inductive coil is placed on the top of a melting wood alloy to examine the changes of its inductance during solidification process. Secondly, an array of magnetic induction coils are designed to investigate the feasibility of a tomographic approach, i.e., when one coil is driven by an alternating current as a transmitter and a vector of phase changes are measured from the remaining of the coils as receivers. Phase changes are observed when the wood alloy state changes from liquid to solid. Thirdly, a series of static cold phantoms are created to represent various liquid/solid interfaces to verify the system performance. Finally, a powerful temporal reconstruction method is applied to realise real time in-situ visualisation of the solidification and the measurement of solidified shell thickness, a first report of its kind.
NASA Astrophysics Data System (ADS)
Boettinger, W. J.; Newbury, D. E.; Wang, K.; Bendersky, L. A.; Chiu, C.; Kattner, U. R.; Young, K.; Chao, B.
2010-08-01
The solidification microstructures of three nine-element Zr-Ni-based AB2 type C14/C15 Laves hydrogen storage alloys are determined. The selected compositions represent a class of alloys being examined for usage as an MH electrode in nickel metal-hydride batteries that often have their best properties in the cast state. Solidification is accomplished by dendritic growth of hexagonal C14 Laves phase, peritectic solidification of cubic C15 Laves phase, and formation of cubic B2 phase in the interdendritic regions. The B2 phase decomposes in the solid state into a complex multivariate platelike structure containing Zr-Ni-rich intermetallics. The observed sequence C14/C15 upon solidification agrees with predictions using effective compositions and thermodynamic assessments of the ternary systems, Ni-Cr-Zr and Cr-Ti-Zr. Experimentally, the closeness of the compositions of the C14 and C15 phases required the use of compositional mapping with an energy dispersive detector capable of processing a very high X-ray flux to locate regions in the microstructure for quantitative composition measurement and transmission electron microscope examination.
Containerless processing of undercooled melts
NASA Technical Reports Server (NTRS)
Perepezko, J. H.
1993-01-01
The investigation focused on the control of microstructural evolution in Mn-Al, Fe-Ni, Ni-V, and Au-Pb-Sb alloys through the high undercooling levels provided by containerless processing, and provided fundamental new information on the control of nucleation. Solidification analysis was conducted by means of thermal analysis, x-ray diffraction, and metallographic characterization on samples processed in a laboratory scale drop tube system. The Mn-Al alloy system offers a useful model system with the capability of phase separation on an individual particle basis, thus permitting a more complete understanding of the operative kinetics and the key containerless processing variables. This system provided the opportunity of analyzing the nucleation rate as a function of processing conditions and allowed for the quantitative assessment of the relevant processing parameters. These factors are essential in the development of a containerless processing model which has a predictive capability. Similarly, Ni-V is a model system that was used to study duplex partitionless solidification, which is a structure possible only in high under cooling solidification processes. Nucleation kinetics for the competing bcc and fcc phases were studied to determine how this structure can develop and the conditions under which it may occur. The Fe-Ni alloy system was studied to identify microstructural transitions with controlled variations in sample size and composition during containerless solidification. This work was forwarded to develop a microstructure map which delineates regimes of structural evolution and provides a unified analysis of experimental observations. The Au-Pb-Sb system was investigated to characterize the thermodynamic properties of the undercooled liquid phase and to characterize the glass transition under a variety of processing conditions. By analyzing key containerless processing parameters in a ground based drop tube study, a carefully designed flight experiment may be planned to utilize the extended duration microgravity conditions of orbiting spacecraft.
NASA Astrophysics Data System (ADS)
Tsolakoglou, Nikolas P.; Koukou, Maria K.; Vrachopoulos, Michalis Gr.; Tachos, Nikolaos; Lymberis, Kostas; Stathopoulos, Vassilis
2017-11-01
This work investigates melting and solidification processes of four different Phase Change Materials (PCM) used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF). Both charging (melting) and discharging (solidification) processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates). Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.
NASA Technical Reports Server (NTRS)
Wheeler, A. A.; Mcfadden, G. B.; Murray, B. T.; Coriell, S. R.
1991-01-01
The effect of vertical, sinusoidal, time-dependent gravitational acceleration on the onset of solutal convection during directional solidification is analyzed in the limit of large modulation frequency. When the unmodulated state is unstable, the modulation amplitude required to stabilize the system is determined by the method of averaging. When the unmodulated state is stable, resonant modes of instability occur at large modulation amplitude. These are analyzed using matched asymptotic expansions to elucidate the boundary-layer structure for both the Rayleigh-Benard and directional solidification configurations. Based on these analyses, a thorough examination of the dependence of the stability criteria on the unmodulated Rayleigh number, Schmidt number, and distribution coefficient, is carried out.
Microstructural investigation of D2 tool steel during rapid solidification
NASA Astrophysics Data System (ADS)
Delshad Khatibi, Pooya
Solidification is considered as a key processing step in developing the microstructure of most metallic materials. It is, therefore, important that the solidification process can be designed and controlled in such a way so as to obtain the desirable properties in the final product. Rapid solidification refers to the system's high undercooling and high cooling rate, which can yield a microstructure with unique chemical composition and mechanical properties. An area of interest in rapid solidification application is high-chromium, high-carbon tool steels which experience considerable segregation of alloying elements during their solidification in a casting process. In this dissertation, the effect of rapid solidification (undercooling and cooling rate) of D2 tool steel on the microstructure and carbide precipitation during annealing was explored. A methodology is described to estimate the eutectic and primary phase undercooling of solidifying droplets. The estimate of primary phase undercooling was confirmed using an online measurement device that measured the radiation energy of the droplets. The results showed that with increasing primary phase and eutectic undercooling and higher cooling rate, the amount of supersaturation of alloying element in metastable retained austenite phase also increases. In the case of powders, the optimum hardness after heat treatment is achieved at different temperatures for constant periods of time. Higher supersaturation of austenite results in obtaining secondary hardness at higher annealing temperature. D2 steel ingots generated using spray deposition have high eutectic undercooling and, as a result, high supersaturation of alloying elements. This can yield near net shape D2 tool steel components with good mechanical properties (specifically hardness). The data developed in this work would assist in better understanding and development of near net shape D2 steel spray deposit products with good mechanical properties.
NASA Astrophysics Data System (ADS)
Lan, Peng; Tang, Haiyan; Zhang, Jiaquan
2016-06-01
A 3D cellular automaton finite element model with full coupling of heat, flow, and solute transfer incorporating solidification grain nucleation and growth was developed for a multicomponent system. The predicted solidification process, shrinkage porosity, macrosegregation, grain orientation, and microstructure evolution of Fe-22Mn-0.7C twinning-induced plasticity (TWIP) steel match well with the experimental observation and measurement. Based on a new solute microsegregation model using the finite difference method, the thermophysical parameters including solid fraction, thermal conductivity, density, and enthalpy were predicted and compared with the results from thermodynamics and experiment. The effects of flow and solute transfer in the liquid phase on the solidification microstructure of Fe-22Mn-0.7C TWIP steel were compared numerically. Thermal convection decreases the temperature gradient in the liquid steel, leading to the enlargement of the equiaxed zone. Solute enrichment in front of the solid/liquid interface weakens the thermal convection, resulting in a little postponement of columnar-to-equiaxed transition (CET). The CET behavior of Fe-Mn-C TWIP steel during solidification was fully described and mathematically quantized by grain morphology statistics for the first time. A new methodology to figure out the CET location by linear regression of grain mean size with least-squares arithmetic was established, by which a composition design strategy for Fe-Mn-C TWIP steel according to solidification microstructure, matrix compactness, and homogeneity was developed.
Solidification kinetics of a near eutectic Al-Si alloy, unmodified and modified with Sr
NASA Astrophysics Data System (ADS)
Aparicio, R.; Barrera, G.; Trapaga, G.; Ramirez-Argaez, M.; Gonzalez-Rivera, C.
2013-07-01
The purpose of this work was to explore the differences in solidification kinetics between unmodified and Sr modified eutectic Al-Si alloy as revealed by Fourier Thermal Analysis (FTA) and grain-growth kinetics characterization. Thermal analysis were performed in cylindrical stainless steel cups coated with a thin layer of boron nitride, using two type-K thermocouples connected to a data acquisition system. Grain growth kinetics characterization was carried out using solid fraction evolution and grain density data. FTA results for the non modified and modified alloys suggest that there are changes in the solidification rate during eutectic nucleation followed, during growth, by similar solidification rate evolutions, suggesting that this parameter is governed principally by the heat extraction conditions. On the other hand the change of the grain growth parameters estimated for the experimental probes suggest that the presence of Sr may modify the relationship between grain growth rate and undercooling in eutectic Al-Si.
Mathematical Model of Solidification During Electroslag Casting of Pilger Roll
NASA Astrophysics Data System (ADS)
Liu, Fubin; Li, Huabing; Jiang, Zhouhua; Dong, Yanwu; Chen, Xu; Geng, Xin; Zang, Ximin
A mathematical model for describing the interaction of multiple physical fields in slag bath and solidification process in ingot during pilger roll casting with variable cross-section which is produced by the electroslag casting (ESC) process was developed. The commercial software ANSYS was applied to calculate the electromagnetic field, magnetic driven fluid flow, buoyancy-driven flow and heat transfer. The transportation phenomenon in slag bath and solidification characteristic of ingots are analyzed for variable cross-section with variable input power under the conditions of 9Cr3NiMo steel and 70%CaF2 - 30%Al2O3 slag system. The calculated results show that characteristic of current density distribution, velocity patterns and temperature profiles in the slag bath and metal pool profiles in ingot have distinct difference at variable cross-sections due to difference of input power and cooling condition. The pool shape and the local solidification time (LST) during Pilger roll ESC process are analyzed.
The volume change during solidification
NASA Technical Reports Server (NTRS)
Rittich, M.
1985-01-01
The liquid-solid phase transformation of solidifying metallic melts is accompanied by a volume change Delta-Vm. This volume change produces a gravity-independent microscopic flow near the solidification front. In a ground-based laboratory, solidification processes are also affected by convection due to temperature and concentration gradients. A quantitative evaluation of the effects of these flows on the formation of structure requires reproducible values of Delta-Vm. Alloys with Delta-Vm = 0 would be best suited for such an evaluation, while alloys with a constant value for Delta-Vm are still usable. Another requirement is related to a solidus-liquidus interval which is as small as possible. One-phase alloys, which would be particularly well suited, could not be found. For these reasons, alloys which solidify in two phases, as for example eutectics, have been considered, taking into account the Al-Ge system. Attention is given to the volume change at the melting point, the measurement of this change, the volume change at solidification, and applications to terrestrial technology.
NASA Astrophysics Data System (ADS)
Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi
2016-11-01
In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.
Thermosolutal convection and macrosegregation in dendritic alloys
NASA Technical Reports Server (NTRS)
Poirier, David R.; Heinrich, J. C.
1993-01-01
A mathematical model of solidification, that simulates the formation of channel segregates or freckles, is presented. The model simulates the entire solidification process, starting with the initial melt to the solidified cast, and the resulting segregation is predicted. Emphasis is given to the initial transient, when the dendritic zone begins to develop and the conditions for the possible nucleation of channels are established. The mechanisms that lead to the creation and eventual growth or termination of channels are explained in detail and illustrated by several numerical examples. A finite element model is used for the simulations. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. The major task was to develop the solidification model. In addition, other tasks that were performed in conjunction with the modeling of dendritic solidification are briefly described.
Application of Solidification Theory to Rapid Solidification Processing
1984-07-01
solubility; _NiAl -Cr quasibinary alloys ; Rapid solidification ; Solidification theory I’.ASRACT ICfene an roerso aid it 000e..yV SON identify0 by Week...110100a) ~j ~apid solidification allows the production of alloys with new compositions and * uphases and also allows production of improved alloys by...control of microstructure;L and homogeneity. The effect of rapid solidification velocity on the micro- structure of Ag-Cu alloys is comprehensively
300 GPM Solids Removal System A True Replacement for Back Flushable Powdered Filter Systems - 13607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping, Mark R.; Lewis, Mark
2013-07-01
The EnergySolutions Solids Removal System (SRS) utilizes stainless steel cross-flow ultra-filtration (XUF) technology which allows it to reliably remove suspended solids greater than one (1) micron from liquid radwaste streams. The SRS is designed as a pre-treatment step for solids separation prior to processing through other technologies such as Ion Exchange Resin (IER) and/or Reverse Osmosis (RO), etc. Utilizing this pre-treatment approach ensures successful production of reactor grade water while 1) decreasing the amount of radioactive water being discharged to the environment; and 2) decreasing the amount of radioactive waste that must ultimately be disposed of due to the eliminationmore » of spent powdered filter media. (authors)« less
Ultrasound Flow Mapping for the Investigation of Crystal Growth.
Thieme, Norman; Bonisch, Paul; Meier, Dagmar; Nauber, Richard; Buttner, Lars; Dadzis, Kaspars; Patzold, Olf; Sylla, Lamine; Czarske, Jurgen
2017-04-01
A high energy conversion and cost efficiency are keys for the transition to renewable energy sources, e.g., solar cells. The efficiency of multicrystalline solar cells can be improved by enhancing the understanding of its crystallization process, especially the directional solidification. In this paper, a novel measurement system for the characterization of flow phenomena and solidification processes in low-temperature model experiments on the basis of ultrasound (US) Doppler velocimetry is described. It captures turbulent flow phenomena in two planes with a frame rate of 3.5 Hz and tracks the shape of the solid-liquid interface during multihour experiments. Time-resolved flow mapping is performed using four linear US arrays with a total of 168 transducer elements. Long duration measurements are enabled through an online, field-programmable gate array (FPGA)-based signal processing. Nine single US transducers allow for in situ tracking of a solid-liquid interface. Results of flow and solidification experiments in the model experiment are presented and compared with numerical simulation. The potential of the developed US system for measuring turbulent flows and for tracking the solidification front during a directional crystallization process is demonstrated. The results of the model experiments are in good agreement with numerical calculations and can be used for the validation of numerical models, especially the selection of the turbulence model.
Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems
NASA Astrophysics Data System (ADS)
Lin, Po-han; Chen, Sinn-wen; Hwang, Jenn-dong; Chu, Hsu-shen
2016-12-01
This study determines the liquidus projections of both Bi-Se-Ga and Bi-Se-Te ternary systems which are constituent ternary systems of promising Bi-Se-Te-Ga thermoelectric materials. Ternary Bi-Se-Ga and Bi-Se-Te alloys are prepared. Their primary solidification phases are experimentally determined, and thermal analysis experiments are carried out. The liquidus projections are determined based on the ternary experimental results and phase diagrams of constituent binary systems. The Bi-Se-Ga system includes seven primary solidification phases, Bi, Ga, GaSe, Ga2Se3, Se, Bi2Se3, and (Bi2)n(Bi2Se3)m. In the Bi-Se-Te system, there are five primary solidification phases, Bi, (Bi2)n(Bi2Te3)m, Bi2(Se,Te)3, (Se,Te), and (Bi2)n(Bi2Se3)m. Both the (Bi2)n(Bi2Te3)m and (Bi2)n(Bi2Se3)m phases are not a single phase, but a collection of series undetermined phases. Large miscibility gaps are observed in the Bi-Se-Ga system. The temperatures of the invariant reactions, Liquid + Bi + GaSe = Ga and Liquid + Ga2Se3 = Bi + GaSe, are at 495 K (222 °C) and 533 K (260 °C), respectively.
Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part I - Impurity effects and solidifcation mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.
For laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steels, the relationship between solidification cracking susceptibility and chemical composition was examined, and primary solidification mode (PSM) diagrams were developed to predict solidification mode. Sigmajig testing was used with experimental heats of type 21-6-9 to determine the effect of P and S on solidification cracking w hen primary austenite solidification occurred. Phosphorus showed a larger influence on solidification cracking relative to S, and a relationship of (P+0.2S ) was found for total impurity content. PSM diagrams to predict solidification mode were developed by analyzing welds made at three travel speeds for a widemore » range of 21-6-9 alloys and some other similar alloys. The minimum Cr eq/Ni eq required for primary ferrite solidification increased as travel speed increased, with more alloys showing primary austenite solidification at higher travel rates. Furthermore, as travel speed increased from 21 to 85 mm/s, the average solidification rate increased from 6 to 25 mm/s.« less
Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part I - Impurity effects and solidifcation mode
Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...
2016-11-02
For laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steels, the relationship between solidification cracking susceptibility and chemical composition was examined, and primary solidification mode (PSM) diagrams were developed to predict solidification mode. Sigmajig testing was used with experimental heats of type 21-6-9 to determine the effect of P and S on solidification cracking w hen primary austenite solidification occurred. Phosphorus showed a larger influence on solidification cracking relative to S, and a relationship of (P+0.2S ) was found for total impurity content. PSM diagrams to predict solidification mode were developed by analyzing welds made at three travel speeds for a widemore » range of 21-6-9 alloys and some other similar alloys. The minimum Cr eq/Ni eq required for primary ferrite solidification increased as travel speed increased, with more alloys showing primary austenite solidification at higher travel rates. Furthermore, as travel speed increased from 21 to 85 mm/s, the average solidification rate increased from 6 to 25 mm/s.« less
NASA Astrophysics Data System (ADS)
Liu, Feng-xiang; Liu, Rang-su; Hou, Zhao-yang; Liu, Hai-Rong; Tian, Ze-an; Zhou, Li-li
2009-02-01
The rapid solidification processes of Al 50Mg 50 liquid alloy consisting of 50,000 atoms have been simulated by using molecular dynamics method based on the effective pair potential derived from the pseudopotential theory. The formation mechanisms of atomic clusters during the rapid solidification processes have been investigated adopting a new cluster description method—cluster-type index method (CTIM). The simulated partial structure factors are in good agreement with the experimental results. And Al-Mg amorphous structure characterized with Al-centered icosahedral topological short-range order (SRO) is found to form during the rapid solidification processes. The icosahedral cluster plays a key role in the microstructure transition. Besides, it is also found that the size distribution of various clusters in the system presents a magic number sequence of 13, 19, 23, 25, 29, 31, 33, 37, …. The magic clusters are more stable and mainly correspond to the incompact arrangements of linked icosahedra in the form of rings, chains or dendrites. And each magic number point stands correspondingly for one certain combining form of icosahedra. This magic number sequence is different from that generated in the solidification structure of liquid Al and those obtained by methods of gaseous deposition and ionic spray, etc.
Microgravity Processing of Oxide Superconductors
NASA Technical Reports Server (NTRS)
Olive, James R.; Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus
1999-01-01
Considerable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Lizee, Arnaud
1996-01-01
The object of this work, started in March of 1995, is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involves using a combination of 2- and 3-D numerical models, scaling analyses, 1-D models and the results of ground-based and low-gravity experiments. The experiments conducted in the MEPHISTO furnace facility during the USMP-3 spaceflight which took place earlier this year (22 Feb. - 6 Mar. 1996). This experiment represents an unprecedented opportunity to make a quantitative correlation between residual accelerations and the response of an actual experimental solidification system
Phase-field simulation of weld solidification microstructure in an Al Cu alloy
NASA Astrophysics Data System (ADS)
Farzadi, A.; Do-Quang, M.; Serajzadeh, S.; Kokabi, A. H.; Amberg, G.
2008-09-01
Since the mechanical properties and the integrity of the weld metal depend on the solidification behaviour and the resulting microstructural characteristics, understanding weld pool solidification is of importance to engineers and scientists. Thermal and fluid flow conditions affect the weld pool geometry and solidification parameters. During solidification of the weld pool, a columnar grain structure develops in the weld metal. Prediction of the formation of the microstructure during welding may be an important and supporting factor for technology optimization. Nowadays, increasing computing power allows direct simulations of the dendritic and cell morphology of columnar grains in the molten zone for specific temperature conditions. In this study, the solidification microstructures of the weld pool at different locations along the fusion boundary are simulated during gas tungsten arc welding of Al-3wt%Cu alloy using the phase-field model for the directional solidification of dilute binary alloys. A macroscopic heat transfer and fluid flow model was developed to assess the solidification parameters, notably the temperature gradient and solidification growth rate. The effect of the welding speed is investigated. Computer simulations of the solidification conditions and the formation of a cellular morphology during the directional solidification in gas tungsten arc welding are described. Moreover, the simulation results are compared with existing theoretical models and experimental findings.
Microstructural Development during Directional Solidification of Peritectic Alloys
NASA Technical Reports Server (NTRS)
Lograsso, Thomas A.
1996-01-01
A thorough understanding of the microstructures produced through solidification in peritectic systems has yet to be achieved, even though a large number of industrially and scientifically significant materials are in this class. One type of microstructure frequently observed during directional solidification consists of alternating layers of primary solid and peritectic solid oriented perpendicular to the growth direction. This layer formation is usually reported for alloy compositions within the two-phase region of the peritectic isotherm and for temperature gradient and growth rate conditions that result in a planar solid-liquid interface. Layered growth in peritectic alloys has not previously been characterized on a quantitative basis, nor has a mechanism for its formation been verified. The mechanisms that have been proposed for layer formation can be categorized as either extrinsic or intrinsic to the alloy system. The extrinsic mechanisms rely on externally induced perturbations to the system for layer formation, such as temperature oscillations, growth velocity variations, or vibrations. The intrinsic mechanisms approach layer formation as an alternative type of two phase growth that is inherent for certain peritectic systems and solidification conditions. Convective mixing of the liquid is an additional variable which can strongly influence the development and appearance of layers due to the requisite slow growth rate. The first quantitative description of layer formation is a model recently developed by Trivedi based on the intrinsic mechanism of cyclic accumulation and depiction of solute in the liquid ahead of the interface, linked to repeated nucleation events in the absence of convection. The objective of this research is to characterize the layered microstructures developed during ground-based experiments in which external influences have been minimized as much as possible and to compare these results to the current the model. Also, the differences between intrinsic and externally influenced layer formation were explored. The choice of alloy system is critical to a study of the formation of layered microstructures. The ideal system would have a well-characterized phase diagram, equal densities of both elements in the liquid state to minimize compositionally-driven convective flows, a low peritectic temperature to simplify directional solidification and the achievement of a high temperature gradient in the liquid, a broad composition range for the peritectic reaction, and a reasonable hardness at room temperature to facilitate handling and metallographic preparation. The In-Sn system was selected initially due to a very low peritectic temperature and the nearly equal densities of In and Sn in the liquid state. Since the In-rich peritectic reaction had apparently not been utilized previously for solidification research, experiments were conducted to check the phase diagram in the region of interest. The alloys in this system proved to be difficult to handle and prepare in bulk form with the equipment available, so experiments were initiated with the Sn-Cd system. Layered microstructures had been observed previously in Sn-Cd.
The solidification velocity of nickel and titanium alloys
NASA Astrophysics Data System (ADS)
Altgilbers, Alex Sho
2002-09-01
The solidification velocity of several Ni-Ti, Ni-Sn, Ni-Si, Ti-Al and Ti-Ni alloys were measured as a function of undercooling. From these results, a model for alloy solidification was developed that can be used to predict the solidification velocity as a function of undercooling more accurately. During this investigation a phenomenon was observed in the solidification velocity that is a direct result of the addition of the various alloying elements to nickel and titanium. The additions of the alloying elements resulted in an additional solidification velocity plateau at intermediate undercoolings. Past work has shown a solidification velocity plateau at high undercoolings can be attributed to residual oxygen. It is shown that a logistic growth model is a more accurate model for predicting the solidification of alloys. Additionally, a numerical model is developed from simple description of the effect of solute on the solidification velocity, which utilizes a Boltzmann logistic function to predict the plateaus that occur at intermediate undercoolings.
NASA Technical Reports Server (NTRS)
Sen, S.; Kaukler, W. F.; Curreri, P. A.
1999-01-01
Solidification phenomenon which occur at the solid/liquid (s/I) interface play a major role in the determination of structure and hence the technologically important properties of a casting. However, metals being opaque, conclusions related to several important phenomenon such as boundary layer thickness, morphological evolution, and eutectic and cell spacing are deduced from quenching experiments and subsequent post solidification metallographic analysis. Consequently, limited information is obtained about the dynamics of the process. This paper will discuss the recent efforts at the Space Science Laboratory, NASA Marshall Space Flight Center, to view and quantify in-situ and in real time the dynamics of the solidification process and to measure interfacial undercooling. First, a high resolution x-ray transmission microscope (XTM) has been developed to monitor fundamental interfacial phenomena during directional solidification of metals and alloys. The XTM operates in the range of 10-100 KeV and through projection is capable of achieving magnification of up to 16OX. Secondly, an innovative collapsible furnace has been designed to quantify interfacial undercooling by measuring the temperature of a moving s/I interface in reference to a fixed s/l interface. This measurement technique is non-intrusive in nature and is based on the Seebeck principle. In this paper real time results obtained to characterize the dynamics of irregular eutectic spacing will be presented. As an example fiber to lamella or plate transition in the Al-Al2Au eutectic system will be discussed. Further, a resolution limit of 25 micron has permitted viewing in real time morphological instability and cellular growth in Al-Au and Al-Ag systems. Simultaneously, a systematic investigation has been carried out to measure interfacial undercooling for Pb-1 wt.% Sn at and near the marginal stability regime. In conjunction with the XTM observations this study attempts to validate existing relationships between undercooling and growth velocity during plane front growth, marginal stability regime, and stable cellular growth.
Visualization of solidification front phenomena
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Smith, Guy A.
1993-01-01
Directional solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental platform which minimizes variables in solidification experiments. Because of the wide-spread use of this experimental technique in space-based research, it has become apparent that a better understanding of all the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible.
Solidification phenomena of binary organic mixtures
NASA Technical Reports Server (NTRS)
Chang, K.
1982-01-01
The coalescence rates and motion of liquid bubbles in binary organic mixtures were studied. Several factors such as temperature gradient, composition gradient, interfacial tension, and densities of the two phases play important roles in separation of phases of immiscible liquids. An attempt was made to study the effect of initial compositions on separation rates of well-dispersed organic mixtures at different temperatures and, ultimately, on the homogeneity of solidification of the immiscible binary organic liquids. These organic mixtures serve as models for metallic pseudo binary systems under study. Two specific systems were investigated: ethyl salicylate - diethyl glycol and succinonitrile - water.
Particle Engulfment and Pushing by Solidification Interfaces. Part 1; Ground Experiments
NASA Technical Reports Server (NTRS)
Juretzko, Frank R.; Dhindaw, Brij K.; Stefanescu, Doru M.; Sen, subhayu; Curreri, Peter A.
1998-01-01
Directional solidification experiments have been carried out to determine the pushing/engulfment transition for two different metal/particle systems. The systems chosen were aluminum/zirconia particles and zinc/zirconia particles. Pure metals (99.999% Al and 99.95% Zn) and spherical particles (500 microns in diameter) were used. The particles were non-reactive with the matrices within the temperature range of interest. The experiments were conducted such as to insure a planar solid/liquid interface during solidification. Particle location before and after processing was evaluated by X-ray transmission microscopy for the Al/ZrO2 samples. All samples were characterized by optical metallography after processing. A clear methodology for the experiment evaluation was developed to unambiguously interpret the occurrence of the pushing/engulfment transition. It was found that the critical velocity for engulfment ranges from 1.9 to 2.4 micron/s for Al/ZrO2 and from 1.9 to 2.9 microns/s for Zn/ZrO2.
An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons
NASA Astrophysics Data System (ADS)
Laffont, L.; Jday, R.; Lacaze, J.
2018-04-01
Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.
Kang, Minjung; Han, Heung Nam; Kim, Cheolhee
2018-04-23
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.
Kang, Minjung; Han, Heung Nam
2018-01-01
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility. PMID:29690630
Metastable and unstable cellular solidification of colloidal suspensions
NASA Astrophysics Data System (ADS)
Deville, Sylvain; Maire, Eric; Bernard-Granger, Guillaume; Lasalle, Audrey; Bogner, Agnès; Gauthier, Catherine; Leloup, Jérôme; Guizard, Christian
2009-12-01
Colloidal particles are often seen as big atoms that can be directly observed in real space. They are therefore becoming increasingly important as model systems to study processes of interest in condensed-matter physics such as melting, freezing and glass transitions. The solidification of colloidal suspensions has long been a puzzling phenomenon with many unexplained features. Here, we demonstrate and rationalize the existence of instability and metastability domains in cellular solidification of colloidal suspensions, by direct in situ high-resolution X-ray radiography and tomography observations. We explain such interface instabilities by a partial Brownian diffusion of the particles leading to constitutional supercooling situations. Processing under unstable conditions leads to localized and global kinetic instabilities of the solid/liquid interface, affecting the crystal morphology and particle redistribution behaviour.
NASA Astrophysics Data System (ADS)
Sediako, Dimitry G.; Kasprzak, Wojciech
2015-09-01
Understanding of the kinetics of solid-phase evolution in solidification of hypereutectic aluminum alloys is a key to control their as-cast microstructure and resultant mechanical properties, and in turn, to enhance the service characteristics of actual components. This study was performed to evaluate the solidification kinetics for three P-modified hypereutectic Al-19 pct Si alloys: namely, Al-Si binary alloy and with the subsequent addition of 2.8 pct Cu and 2.8 pct Cu + 0.7 pct Mg. Metallurgical evaluation included thermodynamic calculations of the solidification process using the FactSage™ 6.2 software package, as well as experimental thermal analysis, and in situ neutron diffraction. The study revealed kinetics of solid α-Al, solid Si, Al2Cu, and Mg2Si evolution, as well as the individual effects of Cu and Mg alloying additions on the solidification path of the Al-Si system. Various techniques applied in this study resulted in some discrepancies in the results. For example, the FactSage computations, in general, resulted in 281 K to 286 K (8 °C to 13 °C) higher Al-Si eutectic temperatures than the ones recorded in the thermal analysis, which are also ~278 K (~5 °C) higher than those observed in the in situ neutron diffraction. None of the techniques can provide a definite value for the solidus temperature, as this is affected by the chosen calculation path [283 K to 303 K (10 °C to 30 °C) higher for equilibrium solidification vs non-equilibrium] for the FactSage analysis; and further complicated by evolution of secondary Al-Cu and Mg-Si phases that commenced at the end of solidification. An explanation of the discrepancies observed and complications associated with every technique applied is offered in the paper.
A propulsion-mass tensor coupling in relativistic rocket motion
NASA Astrophysics Data System (ADS)
Brito, Hector Hugo
1998-01-01
Following earlier speculations about antigravity machines and works on the relativistic dynamics of constant and variable rest mass point particles, a mass tensor is found in connection with the closed system consisting of the rocket driven spaceship and its propellant mass, provided a ``solidification'' point other than the system center of mass is considered. Therefore, the mass tensor form depends on whether the system is open or closed, and upon where the ``solidification'' point is located. An alternative propulsion principle is subsequently derived from the tensor mass approach. The new principle, the covariant equivalent of Newton's Third Law for the physical interpretation of the relativistic rocket motion, reads: A spaceship undergoes a propulsion effect when the whole system mass 4-ellipsoid warps.
Interface Pattern Selection Criterion for Cellular Structures in Directional Solidification
NASA Technical Reports Server (NTRS)
Trivedi, R.; Tewari, S. N.; Kurtze, D.
1999-01-01
The aim of this investigation is to establish key scientific concepts that govern the selection of cellular and dendritic patterns during the directional solidification of alloys. We shall first address scientific concepts that are crucial in the selection of interface patterns. Next, the results of ground-based experimental studies in the Al-4.0 wt % Cu system will be described. Both experimental studies and theoretical calculations will be presented to establish the need for microgravity experiments.
The influence of gravity level during directional solidification of immiscible alloys
NASA Technical Reports Server (NTRS)
Andrews, J. B.; Schmale, A. L.; Sandlin, A. C.
1992-01-01
During directional solidification of immiscible (hypermonotectic) alloys it is theoretically possible to establish a stable macroscopically-planar solidification front, and thus avoid sedimentation. Unfortunately, convective instabilities often occur which interfere with the directional solidification process. In this paper, stability conditions are discussed and results presented from directional solidification studies carried out aboard NASA's KC-135 zero-g aircraft. Samples were directionally solidified while the effective gravity level was varied from approximately 0.01 g for 25 s to 1.8 g for 45 s. Dramatic variations in microstructure were observed with gravity level during solidification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirinale, Dante G.
Here, we report on the results of a high-energy x-ray diffraction study of Al–Pd–Mn to investigate the solidification products obtained during free-cooling using an electrostatic levitation furnace. The primary solidification product from the melt is i-Al–Pd–Mn which coexists with a significant remaining liquid component. As the sample cools further, we find that the solidification pathway is consistent with the liquidus projection and pseudo-binary cut through the ternary phase diagram reported previously. At ambient temperature we have identified the major phase to be the ξ'-phase orthorhombic approximant, along with minor phases identified as Al and, most likely, the R-phase orthorhombic approximant.more » We have also observed a distinct prepeak in the liquid at high temperature, signifying the presence of extended atomic order. Interestingly, this prepeak was not observed in previous neutron diffraction measurements on the Al–Pd–Mn system. No undercooling was observed preceding the solidification of the i-Al–Pd–Mn phase from the melt which may signal the close similarity of the short-range order in the solid and liquid. However, this can not be clearly determined because of the potential for heterogenous nucleation associated with the presence of an Al2O3 impurity at the surface of the sample.« less
On the Role of Mantle Overturn during Magma Ocean Solidification
NASA Astrophysics Data System (ADS)
Boukaré, C. E.; Parmentier, E.; Parman, S. W.
2017-12-01
Solidification of potential global magma ocean(s) (MO) early in the history of terrestrial planets may play a key role in the evolution of planetary interiors by setting initial conditions for their long-term evolution. Constraining this initial structure of solid mantles is thus crucial but remains poorly understood. MO fractional crystallization has been proposed to generate gravitationally unstable Fe-Mg chemical stratification capable of driving solid-state mantle overturn. Fractional solidification and overturn hypothesis, while only an ideal limiting case, can explain important geochemical features of both the Moon and Mars. Current overturn models consider generally post-MO overturn where the cumulate pile remains immobile until the end of MO solidification. However, if the cumulate pile overturns during MO solidification, the general picture of early planet evolution might differ significantly from the static crystallization models. We show that the timing of mantle overturn can be characterized with a dimensionless number measuring the ratio of the MO solidification time and the purely compositional overturn timescale. Syn-solidification overturn occurs if this dimensionless parameter, Rc, exceeds a critical value. Rc is mostly affected by the competition between the MO solidification time and mantle viscosity. Overturn that occurs during solidification can result in smaller scales of mantle chemical heterogeneity that could persist for long times thus influencing the whole evolution of a planetary body. We will discuss the effects of compaction/percolation on mantle viscosity. If partially molten cumulate do not have time to compact during MO solidification, viscosity of cumulates would be significantly lower as the interstitcial melt fraction would be large. Both solid mantle remelting during syn-solidification overturn and porous convection of melt retained with the cumulates are expected to reduce the degree of fractional crystallization. Syn-solidification overturn of a sluggish mantle can thus be an alternative to solid-state post-MO solidification overturn.
Modelling directional solidification
NASA Technical Reports Server (NTRS)
Wilcox, William R.
1991-01-01
The long range goal of this program is to develop an improved understanding of phenomena of importance to directional solidification and to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.
Relationships Between Solidification Parameters in A319 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Vandersluis, E.; Ravindran, C.
2018-03-01
The design of high-performance materials depends on a comprehensive understanding of the alloy-specific relationships between solidification and properties. However, the inconsistent use of a particular solidification parameter for presenting materials characterization in the literature impedes inter-study comparability and the interpretation of findings. Therefore, there is a need for accurate expressions relating the solidification parameters for each alloy. In this study, A319 aluminum alloy castings were produced in a permanent mold with various preheating temperatures in order to control metal cooling. Analysis of the cooling curve for each casting enabled the identification of its liquidus, Al-Si eutectic, and solidus temperatures and times. These values led to the calculation of the primary solidification rate, total solidification rate, primary solidification time, and local solidification time for each casting, which were related to each other as well as to the average casting SDAS and material hardness. Expressions for each of their correlations have been presented with high coefficients of determination, which will aid in microstructural prediction and casting design.
Industrial Complex for Solid Radwaste Management at Chernobyle Nuclear Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahner, S.; Fomin, V. V.
2002-02-26
In the framework of the preparation for the decommissioning of the Chernobyl Nuclear Power Plant (ChNPP) an Industrial Complex for Solid Radwaste Management (ICSRM) will be built under the EC TACIS Program in the vicinity of ChNPP. The paper will present the proposed concepts and their integration into existing buildings and installations. Further, the paper will consider the safety cases, as well as the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper will provide information on the statusmore » of the interim design and the effects of value engineering on the output of basic design phase. The paper therefor summarizes the design results of the involved design engineers of the Design and Process Providers BNFL (LOT 1), RWE NUKEM GmbH (LOT 2 and General) and INITEC (LOT 3).« less
Modeling of Detached Solidification
NASA Technical Reports Server (NTRS)
Regel, Liya L.; Wilcox, William R.; Popov, Dmitri
1997-01-01
Our long term goal is to develop techniques to achieve detached solidification reliably and reproducibly, in order to produce crystals with fewer defects. To achieve this goal it is necessary to understand thoroughly the physics of detached solidification. It was the primary objective of the current project to make progress toward this complete understanding. 'Me products of this grant are attached. These include 4 papers and a preliminary survey of the observations of detached solidification in space. We have successfully modeled steady state detached solidification, examined the stability of detachment, and determined the influence of buoyancy-driven convection under different conditions. Directional solidification in microgravity has often led to ingots that grew with little or no contact with the ampoule wall. When this occurred, crystallographic perfection was usually greatly improved -- often by several orders of magnitude. Indeed, under the Soviet microgravity program the major objective was to achieve detached solidification with its resulting improvement in perfection and properties. Unfortunately, until recently the true mechanisms underlying detached solidification were unknown. As a consequence, flight experiments yielded erratic results. Within the past three years, we have developed a new theoretical model that explains many of the flight results. This model gives rise to predictions of the conditions required to yield detached solidification.
Welding Behavior of Free Machining Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.
2000-07-24
The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metalmore » at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.« less
The cement solidification systems at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veazey, G.W.
1990-01-01
There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cementmore » type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.« less
Modelling Directional Solidification
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.; Zhou, Jian; Yuan, Weijun
1992-01-01
The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.
Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.
In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less
Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams
Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...
2016-11-02
In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less
Solidification studies of monotectic systems
NASA Technical Reports Server (NTRS)
Chang, K.
1982-01-01
Described is an attempt to determine critical wetting temperatures in monotectic systems and to investigate the wetting phase on container walls and the phase preferential wetting of a monotectic solid.
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.
1983-01-01
An ADSS-P directional solidification furnace was reconfigured for operation on the KC-135 low-g aircraft. The system offers many advantages over quench ingot methods for study of the effects of sedimentation and convection on alloy formation. The directional sodification furnace system was first flown during the September 1982 series of flights. The microstructure of the hypereutectic cast iron sample solidified on one of these flights suggests a low-g effect on graphite morphology. Further experiments are needed to ascertain that this effect is due to low-gravity and to deduce which of the possible mechanisms is responsible for it.
Solidification Sequence of Spray-Formed Steels
NASA Astrophysics Data System (ADS)
Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro
2016-02-01
Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.
NASA Astrophysics Data System (ADS)
Liang, Yong-Chao; Liu, Rang-Su; Xie, Quan; Tian, Ze-An; Mo, Yun-Fei; Zhang, Hai-Tao; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Peng, Ping
2017-02-01
To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 107 atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes.
Densities of Pb-Sn alloys during solidification
NASA Technical Reports Server (NTRS)
Poirier, D. R.
1988-01-01
Data for the densities and expansion coefficients of solid and liquid alloys of the Pb-Sn system are consolidated in this paper. More importantly, the data are analyzed with the purpose of expressing either the density of the solid or of the liquid as a function of its composition and temperature. In particular, the densities of the solid and of the liquid during dendritic solidification are derived. Finally, the solutal and thermal coefficients of volume expansion for the liquid are given as functions of temperature and composition.
Gravitational effects on the development of weld-pool and solidification microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boatner, L.A.; David, S.A.; Workman, G.
1994-09-01
This research effort has as its objective the development of a quantitative understanding of the effects of both low- and high-g environments on the solidification microstructures and morphologies that are produced in alloy single crystals during a variety of melting and solidification processes. The overall goal of the effort is to delineate the nature of the roles played by natural convection, surface-tension-driven convection, and mass transport effects due to interactions associated with various heating methods that are used to form melt pools in practical, commercially important alloy systems. The experimental and theoretical investigations comprising this effort encompass the study ofmore » configurations in which stationary heat sources are employed as well as melt pools formed by moving heat sources like those frequently used in fusion-welding processes.« less
NASA Technical Reports Server (NTRS)
Mccay, M. H.
1988-01-01
The Casting and Solidification Technology (CAST) experiment will study the phenomena that occur during directional solidification of an alloy, e.g., constitutional supercooling, freckling, and dendrite coarsening. The reduced gravity environment of space will permit the individual phenomena to be examined with minimum complication from buoyancy driven flows.
Simulation Computation of 430 Ferritic Stainless Steel Solidification
NASA Astrophysics Data System (ADS)
Pang, Ruipeng; Li, Changrong; Wang, Fuming; Hu, Lifu
The solidification structure of 430 ferritic stainless steel has been calculated in the solidification process by using 3D-CAFE model under the condition of water cooling. The calculated results consistent with those obtained from experiment. Under watercooling condition, the solidification structure consists of chilled layer, columnar grain zone, transition zone and equiaxed grain zone.
NASA Technical Reports Server (NTRS)
Henkel, Daniel P.
1992-01-01
Physical phenomena associated with the solidification of an aluminum lithium alloy was characterized using acoustic emission (AE) techniques. It is shown that repeatable patterns of AE activity may be correlated to microstructural changes that occur during solidification. The influence of the experimental system on generated signals was examined in the time and frequency domains. The analysis was used to show how an AE signal from solidifying aluminum is changed by each component in the detection system to produce a complex waveform. Conventional AE analysis has shown that a period of high AE activity occurs in pure aluminum, an Al-Cu alloy, and the Al-Li alloy, as the last fraction of solid forms. A model attributes this to the internal stresses of grain boundary formation. An additional period of activity occurs as the last fraction of solid forms, but only in the two alloys. A model attributes this to the formation of interdendritic porosity which was not present in the pure aluminum. The AE waveforms were dominated by resonant effects of the waveguide and the transducer.
Rossetti, V Alunno; Di Palma, L; Medici, F
2002-01-01
Results are presented of experiments performed to optimize the solidification/stabilization system for metallic elements in aqueous solution. This system involves mixing cement and a solution of metallic elements in a conventional mixer: the paste thus obtained is transferred drop by drop into a recipient filled with an aqueous solution of NaOH at 20% by weight, in which it solidifies immediately. The separate use of chloride solutions of Li+, Cr3+, Pb2+ and Zn2+ makes it possible to obtain granules displaying various levels of compressive strength. Three different inertization matrices were used in the experiments, the first consisting solely of Portland cement, the second of Portland cement and a superplasticizer additive, and the third of Portland cement partially replaced with silica-fume and superplasticizer. The results of the tests performed showed a very low level of leaching into the alkaline solidification solution for Cr3+, the quantity leached being under 2% as against higher levels for the other metallic elements. For all the considered elements, the best results were obtained by using silica-fume in the inertization matrix.
NASA Astrophysics Data System (ADS)
Branagan, D. J.; McCallum, R. W.
In order to evaluate the effects of additions on the solidification behavior of Nd 2Fe 14B, a stoichiometric alloy was modified with elemental additions of Ti or C and a compound addition of Ti with C. For each alloy, a series of wheel speed runs was undertaken, from which the optimum wheel speeds and optimum energy products were determined. On the BHmax versus wheel speed plots, regions were identified in order to analyze the changes with cooling rates leading to phase formation brought about by the alloy modifications. The compilation of the regional data of the modified alloys showed their effects on altering the cooling rate dependence of phase formation. It was found that the regions of properitectic iron formation, glass formation, and the optimum cooling rate can be changed by more than a factor of two through appropriate alloying additions. The effects of the alloy modifications can be visualized in a convenient fashion through the use of a model continuous cooling transformation (CCT) diagram which represents phase formation during the solidification process under continuous cooling conditions for a wide range of cooling rates from rapid solidification to equilibrium cooling.
Wang, Yeqing; Gao, Jianrong; Kolbe, Matthias; ...
2017-09-18
Metastable solidification of undercooled Co 60Si 40 melts was investigated by microstructural studies and in-situ high-energy X-ray diffraction. Five solidification paths were identified. Three of them were observed at low undercoolings, which show uncoupled and coupled growth of stable β-Co 2Si and CoSi compounds. The other paths were observed at high undercoolings, which show peritectic and primary crystallization of a metastable Co 5Si 3 compound. The β-Co 2Si and Co 5Si 3 compounds crystallize into a hexagonal crystal structure and experience solid-state decomposition. Microstructure formation depends on solidification path. The coupled and uncoupled growth of the stable compounds produces amore » regular lamellar eutectic structure and an anomalous eutectic structure, respectively. The crystallization and solid-state decomposition of the metastable Co 5Si 3 compound brings about a fine-grained two-phase mixture, which represents another type of anomalous eutectic structure. Here, the results provide proof of two rare mechanisms of anomalous eutectic formation and shed light onto metastable phase relations in the undercooled region of the Co-Si system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yeqing; Gao, Jianrong; Kolbe, Matthias
Metastable solidification of undercooled Co 60Si 40 melts was investigated by microstructural studies and in-situ high-energy X-ray diffraction. Five solidification paths were identified. Three of them were observed at low undercoolings, which show uncoupled and coupled growth of stable β-Co 2Si and CoSi compounds. The other paths were observed at high undercoolings, which show peritectic and primary crystallization of a metastable Co 5Si 3 compound. The β-Co 2Si and Co 5Si 3 compounds crystallize into a hexagonal crystal structure and experience solid-state decomposition. Microstructure formation depends on solidification path. The coupled and uncoupled growth of the stable compounds produces amore » regular lamellar eutectic structure and an anomalous eutectic structure, respectively. The crystallization and solid-state decomposition of the metastable Co 5Si 3 compound brings about a fine-grained two-phase mixture, which represents another type of anomalous eutectic structure. Here, the results provide proof of two rare mechanisms of anomalous eutectic formation and shed light onto metastable phase relations in the undercooled region of the Co-Si system.« less
Noise and Dynamical Pattern Selection in Solidification
NASA Technical Reports Server (NTRS)
Kurtze, Douglas A.
1997-01-01
The overall goal of this project was to understand in more detail how a pattern-forming system can adjust its spacing. "Pattern-forming systems," in this context, are nonequilibrium contina whose state is determined by experimentally adjustable control parameter. Below some critical value of the control system then has available to it a range of linearly stable, spatially periodic steady states, each characterized by a spacing which can lie anywhere within some band of values. These systems like directional solidification, where the solidification front is planar when the ratio of growth velocity to thermal gradient is below its critical value, but takes on a cellular shape above critical. They also include systems without interfaces, such as Benard convection, where it is the fluid velocity field which changes from zero to something spatially periodic as the control parameter is increased through its critical value. The basic question to be addressed was that of how the system chooses one of its myriad possible spacings when the control parameter is above critical, and in particular the role of noise in the selection process. Previous work on explosive crystallization had suggested that one spacing in the range should be preferred, in the sense that weak noise should eventually drive the system to that spacing. That work had also suggested a heuristic argument for identifying the preferred spacing. The project had three main objectives: to understand in more detail how a pattern-forming system can adjust its spacing; to investigate how noise drives a system to its preferred spacing; and to extend the heuristic argument for a preferred spacing in explosive crystallization to other pattern-forming systems.
Advances in multi-scale modeling of solidification and casting processes
NASA Astrophysics Data System (ADS)
Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang
2011-04-01
The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.
Low gravity containerless processing of immiscible gold rhodium alloys
NASA Technical Reports Server (NTRS)
Andrews, J. Barry
1986-01-01
Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedementation of the more dense of the immiscible liquid phases. However, under low-g conditions it should be possible to form a dispersion of the two immiscible liquids and maintain this dispersed structure during solidification. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the Marshall Space Flight Center 105 meter drop tube in order to investigate the influence of low gravity, containerless solidification on their microstructure. Hypermonotectic alloys composed of 65 atomic % rhodium exhibited a tendency for the gold rich liquid to wet the outer surface of the containerless processed samples. This tendency led to extensive segregation in several cases. However, well dispersed microstructures consisting of 2 to 3 micron diameter rhodium-rich spheres in a gold-rich matrix were produced in 23.4 atomic % rhodium alloys. This is one of the best dispersions obtained in research on immiscible alloy-systems to data.
Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack
2017-12-01
To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.
NASA Technical Reports Server (NTRS)
Wang, J. C.
1982-01-01
Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.
Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria
NASA Astrophysics Data System (ADS)
Stein, Frank; Philips, Noah
2018-03-01
High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).
Solidification/Stabilization Resource Guide
This Solidification/Stabilization Resource Guide is intended to inform site cleanup managers of recently-published materials such as field reports and guidance documents that address issues relevant to solidification/stabilization technologies.
X-ray imaging and controlled solidification of Al-Cu alloys toward microstructures by design
Clarke, Amy J.; Tourret, Damien; Imhoff, Seth D.; ...
2015-01-30
X-ray imaging, which permits the microscopic visualization of metal alloy solidification dynamics, can be coupled with controlled solidification to create microstructures by design. In this study, this x-ray image shows a process-derived composite microstructure being made from a eutectic Al-17.1 at.%Cu alloy by successive solidification and remelting steps.
Parabolic aircraft solidification experiments
NASA Technical Reports Server (NTRS)
Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan
1996-01-01
A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.
Solidification kinetics of a Cu-Zr alloy: ground-based and microgravity experiments
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Hanke, R.; Paul, P.; Koch, S.; Rettenmayr, M.; Gegner, J.; Herlach, D. M.; Dreier, W.; Kharanzhevski, E. V.
2017-04-01
Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-European Space Agency and DLR-German Aerospace Center) are critically discussed regarding solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The samples are investigated during solidification using a containerless technique in the Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based and microgravity experimental investigations [2], the kinetics of primary dendritic solidification is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on board of the International Space Station) and Electrostatic Levitator on Ground are employed. The solidification kinetics is determined using a high-speed camera and applying two evaluation methods: “Frame by Frame” (FFM) and “First Frame - Last Frame” (FLM). In the theoretical interpretation of the solidification experiments, special attention is given to the behavior of the cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite growth.
Cellular solidification in a monotectic system
NASA Technical Reports Server (NTRS)
Kaukler, W. F.; Curreri, P. A.
1987-01-01
Succinonitrile-glycerol, SN-G, transparent organic monotectic alloy is studied with particular attention to cellular growth. The phase diagram is determined, near the monotectic composition, with greater accuracy than previous studies. A solidification interface stability diagram is determined for planar growth. The planar-to-cellular transition is compared to predictions from the Burton, Primm, Schlichter theory. A new technique to determine the solute segregation by Fourier transform infrared spectroscopy is developed. Proposed models that involve the cellular interface for alignment of monotectic second-phase spheres or rods are compared with observations.
The mathematical modeling of rapid solidification processing. Ph.D. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Gutierrez-Miravete, E.
1986-01-01
The detailed formulation of and the results obtained from a continuum mechanics-based mathematical model of the planar flow melt spinning (PFMS) rapid solidification system are presented and discussed. The numerical algorithm proposed is capable of computing the cooling and freezing rates as well as the fluid flow and capillary phenomena which take place inside the molten puddle formed in the PFMS process. The FORTRAN listings of some of the most useful computer programs and a collection of appendices describing the basic equations used for the modeling are included.
2011-05-01
Mn, Fe, Co, Ni and Cu. Since metallic alloys for high temperature load bearing structures and thermal protection systems remain in high demand for aer...condition. These results indicate that the BCC crystal structure formed in both alloys during solidification is stable upon heating at least up to 1400 C... solidification (Fig. 5b). Higher magnification images reveal a dendritic structure in both alloys (Fig. 5c and d). Uneven Z contrast inside the grains indicates
Study of Solidification Cracking in a Transformation-Induced Plasticity-Aided Steel
NASA Astrophysics Data System (ADS)
Agarwal, G.; Kumar, A.; Gao, H.; Amirthalingam, M.; Moon, S. C.; Dippenaar, R. J.; Richardson, I. M.; Hermans, M. J. M.
2018-04-01
In situ high-temperature laser scanning confocal microscopy is applied to study solidification cracking in a TRIP steel. Solidification cracking was observed in the interdendritic region during the last stage of solidification. Atom probe tomography revealed notable enrichment of phosphorus in the last remaining liquid. Phase field simulations also confirm phosphorus enrichment leading to severe undercooling of more than 160 K in the interdendritic region. In the presence of tensile stress, an opening at the interdendritic region is difficult to fill with the remaining liquid due to low permeability and high viscosity, resulting in solidification cracking.
NASA Technical Reports Server (NTRS)
Maples, A. L.
1980-01-01
The operation of solidification model 1 is described. Model 1 calculates the macrosegregation in a rectangular ingot of a binary alloy as a result of horizontal axisymmetric bidirectional solidification. The calculation is restricted to steady-state solidification; there is no variation in final local average composition in the direction of isotherm movement. The physics of the model are given.
NASA Astrophysics Data System (ADS)
Balout, Bahaa
Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles on the outer/inner casting surface and across the section varies whether the viscosity of the liquid metal used and the centrifugal radius are considered constant or variable during the modeling. Modeling the particles' segregation while discretizing, in time, the particles' velocities gives more consistent results compared to those obtained experimentally. Key-words: centrifugal casting, composite, macrosegregation, solidification.
DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION PROCESS, Hazcon, Inc.
The solidification/stabilization technology mixes hazardous wastes, cement, water and an additive called Chloranan. Chloranan, a nontoxic chemical, encapsulates organic molecules, rendering them ineffective in retarding or inhibiting solidification. This treatment technol...
Immiscible phase incorporation during directional solidification of hypermonotectics
NASA Technical Reports Server (NTRS)
Andrews, J. Barry; Merrick, Roger A.
1993-01-01
Solidification processes in immiscible samples were investigated by directly observing the events taking place at the solid-liquid interface during directional solidification. Visualization of these events was made possible through the use of a transparent metal analog system and a temperature gradient stage assembly fitted to an optical microscope. The immiscible transparent analog system utilized was the succinonitrile-glycerol system. This system has been shown to exhibit the same morphological transitions as observed in metallic alloys of monotectic composition. Both monotectic and hypermonotectic composition samples were directionally solidified in order to gain an improved understanding of the manner in which the excess hypermonotectic liquid is incorporated into the solidifying structure. The processing conditions utilized prevented sedimentation of the excess hypermonotectic liquid by directionally solidifying the samples in very thin (13 microns), horizontally oriented cells. High thermal gradient to growth rate ratios (G/R) were used in an effort to prevent constitutional supercooling and the subsequent formation of L(sub 2) droplets in advance of the solidification front during the growth of fibrous composite structures. Results demonstrated that hypermonotectic composites could be produced in samples up to two weight percent off of the monotectic composition by using a G/R ratio greater than or equal to 4.6 x 10(exp 4) C(s)/mm(sup 2) to avoid constitutional supercooling. For hypermonotectic samples processed with G/R ratios below 4.6 x 10(exp 4) C(s)/mm(sup 2), constitutional supercooling occurred and resulted in slight interfacial instability. For these samples, two methods of incorporation of the hypermonotectic liquid were observed and are reported. The correlation between the phase spacing, lambda, and the growth rate, R, was examined and was found to obey a relationship generally associated with a diffusion controlled coupled growth process. For samples with compositions ranging from the monotectic composition up to 2 percent off of the monotectic composition, data indicated that the square of the phase spacing (lambda) varied linearly with the inverse of the growth rate (R).
NASA Astrophysics Data System (ADS)
Wang, Nan; Smith, Nathan; Provatas, Nikolas
2017-09-01
We study late-stage solidification and the associated formation of defects in alloy materials using a novel model based on the phase-field-crystal technique. It is shown that our model successfully captures several important physical phenomena that occur in the late stages of solidification, including solidification shrinkage, liquid cavitation and microsegregation, all in a single framework. By examining the interplay of solidification shrinkage and solute segregation, this model reveals that the formation of gas pore defects at the late stage of solidification can lead to nucleation of second phase solid particles due to solute enrichment in the eutectic liquid driven by gas-phase nucleation and growth. We also predict a modification of the Gulliver-Scheil equation in the presence of gas pockets in confined liquid pools.
Core solidification and dynamo evolution in a mantle-stripped planetesimal
NASA Astrophysics Data System (ADS)
Scheinberg, A.; Elkins-Tanton, L. T.; Schubert, G.; Bercovici, D.
2016-01-01
The physical processes active during the crystallization of a low-pressure, low-gravity planetesimal core are poorly understood but have implications for asteroidal magnetic fields and large-scale asteroidal structure. We consider a core with only a thin silicate shell, which could be analogous to some M-type asteroids including Psyche, and use a parameterized thermal model to predict a solidification timeline and the resulting chemical profile upon complete solidification. We then explore the potential strength and longevity of a dynamo in the planetesimal's early history. We find that cumulate inner core solidification would be capable of sustaining a dynamo during solidification, but less power would be available for a dynamo in an inward dendritic solidification scenario. We also model and suggest limits on crystal settling and compaction of a possible cumulate inner core.
Size-dependent microstructures in rapidly solidified uranium-niobium powder particles
McKeown, Joseph T.; Hsiung, Luke L.; Park, Jong M.; ...
2016-06-14
The microstructures of rapidly solidified U-6wt%Nb powder particles synthesized by centrifugal atomization were characterized using scanning electron microscopy and transmission electron microscopy. Observed variations in microstructure are related to particle sizes. All of the powder particles exhibited a two-zone microstructure. The formation of this two-zone microstructure is described by a transition from solidification controlled by internal heat flow and high solidification rate during recalescence (micro-segregation-free or partitionless growth) to solidification controlled by external heat flow with slower solidification rates (dendritic growth with solute redistribution). The extent of partitionless solidification increased with decreasing particle size due to larger undercoolings in smallermore » particles prior to solidification. The metastable phases that formed are related to variations in Nb concentration across the particles. Lastly, the microstructures of the powders were heavily twinned.« less
Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels
NASA Astrophysics Data System (ADS)
Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko
2010-01-01
The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.
Rapid Solidification in Bulk Ti-Nb Alloys by Single-Track Laser Melting
NASA Astrophysics Data System (ADS)
Roehling, John D.; Perron, Aurélien; Fattebert, Jean-Luc; Haxhimali, Tomorr; Guss, Gabe; Li, Tian T.; Bober, David; Stokes, Adam W.; Clarke, Amy J.; Turchi, Patrice E. A.; Matthews, Manyalibo J.; McKeown, Joseph T.
2018-05-01
Single-track laser melting experiments were performed on bulk Ti-Nb alloys to explore process parameters and the resultant macroscopic structure and microstructure. The microstructures in Ti-20Nb and Ti-50Nb (at.%) alloys exhibited cellular growth during rapid solidification, with average cell size of approximately 0.5 µm. Solidification velocities during cellular growth were calculated from images of melt tracks. Measurements of the composition in the cellular and intercellular regions revealed nonequilibrium partitioning and its dependence on velocity during rapid solidification. Experimental results were used to benchmark a phase-field model to describe rapid solidification under conditions relevant to additive manufacturing.
NASA Astrophysics Data System (ADS)
Wu, Yongquan; Shen, Tong; Lu, Xionggang
2013-03-01
A structural evolution during solidification and melting processes of nanoparticle Fe9577 was investigated from MD simulations. A perfect lamellar structure, consisting alternately of fcc and hcp layers, was obtained from solidification process. A structural heredity of early embryo is proposed to explain the structural preference of solidification. Defects were found inside the solid core and play the same role as surface premelting on melting. hcp was found more stable than fcc in high temperature. The difference between melting and solidification points can be deduced coming fully from the overcoming of thermodynamic energy barrier, instead of kinetic delay of structural relaxation.
The Solidification Velocity of Undercooled Nickel and Titanium Alloys with Dilute Solute
NASA Technical Reports Server (NTRS)
Algoso, Paul R.; Altgilbers, A. S.; Hofmeister, William H.; Bayuzick, Robert J.
2003-01-01
The study of solidification velocity is important for two reasons. First, understanding the manner in which the degree of undercooling of the liquid and solidification velocity affect the microstructure of the solid is fundamental. Second, there is disagreement between theoretical predictions of the relationship between undercooling and solidification velocity and experimental results. Thus, the objective of this research is to accurately and systematically quantify the solidification velocity as a function of undercooling for dilute nickel-and titanium-based alloys. The alloys chosen for study cover a wide range of equilibrium partition coefficients, and the results are compared to current theory.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C.
2001-01-01
As shown in space flight experiments, g-jitter is a critical issue affecting solidification processing of materials in microgravity. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. Analytical solutions and 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without the presence of an applied magnetic field have been developed and extensive analyses were carried out. A physical model was also constructed and PIV measurements compared reasonably well with predictions from numerical models. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow oscillates at approximately the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes developing numerical models for solidification phenomena with the presence of both g-jitter and magnetic fields and developing a ground-based physical model to verify numerical predictions.
NASA Astrophysics Data System (ADS)
Hope, Adam T.
Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while Hf-bearing compositions had gamma/Ni7Hf2 as the final eutectic to solidify. This study found that the extra Cr in the current generation alloys promotes the gamma/Laves phase eutectic, which expands the solidification temperature range and promotes solidification cracking. Both Ta-bearing and Hf-bearing eutectics were found to solidify at higher temperatures than Nb-bearing eutectics, leading to narrower solidification temperature ranges. Weldability testing on the optimized Ta-bearing compositions revealed good resistance to both DDC and solidification cracking. Unexpectedly, the optimized Hf-bearing compositions were quite susceptible to solidification cracking. This led to an investigation on the possible wetting effect of eutectics on solidification cracking susceptibly, and a theory on how wetting affects the solidification crack susceptibility and the volume fraction of eutectic needed for crack healing has been proposed. Alloys with eutectics that easily wet the grain boundaries have increased solidification crack susceptibility at low volume fraction eutectics, but as the fraction eutectic is increased, experience crack healing at relatively lower fraction eutectics than alloys with eutectics that don't wet as easily. Hf rich eutectics were found to wet grain boundaries significantly more than Nb rich eutectics. Additions of Mo were also found to increase the wetting of eutectics in Nb-bearing alloys.
Effect of Solutes on Grain Refinement of As-Cast Fe-4Si Alloy
NASA Astrophysics Data System (ADS)
Li, Ming; Li, Jian-Min; Zheng, Qing; Wang, Geoff; Zhang, Ming-Xing
2018-06-01
Grain size is one of the key microstructural factors that control the mechanical properties of steels. The present work aims to extend the theories of grain refinement which were established for cast light alloys to steel systems. Using a designed Fe-4 wt pct Si alloy (all-ferrite structure during whole solidification process), the solute effect on grain refinement/grain coarsening in ferritic systems was comprehensively investigated. Experimental results showed that boron (B), which is associated with the highest Q value (growth restriction factor) in ferrite, significantly refined the as-cast structure of the Fe-4 wt pct Si alloy. Cu and Mo with low Q values had no effect on grain refinement. However, although Y and Zr have relatively high Q values, addition of these two solutes led to grain coarsening in the Fe-4Si alloy. Understanding the results in regards to the growth restriction factor and the driving force for the solidification led to the conclusion that in addition to the grain growth restriction effect, the changes of thermodynamic driving force for solidification due to the solute addition also played a key role in grain refinement in ferritic alloys.
Effect of Solutes on Grain Refinement of As-Cast Fe-4Si Alloy
NASA Astrophysics Data System (ADS)
Li, Ming; Li, Jian-Min; Zheng, Qing; Wang, Geoff; Zhang, Ming-Xing
2018-03-01
Grain size is one of the key microstructural factors that control the mechanical properties of steels. The present work aims to extend the theories of grain refinement which were established for cast light alloys to steel systems. Using a designed Fe-4 wt pct Si alloy (all-ferrite structure during whole solidification process), the solute effect on grain refinement/grain coarsening in ferritic systems was comprehensively investigated. Experimental results showed that boron (B), which is associated with the highest Q value (growth restriction factor) in ferrite, significantly refined the as-cast structure of the Fe-4 wt pct Si alloy. Cu and Mo with low Q values had no effect on grain refinement. However, although Y and Zr have relatively high Q values, addition of these two solutes led to grain coarsening in the Fe-4Si alloy. Understanding the results in regards to the growth restriction factor and the driving force for the solidification led to the conclusion that in addition to the grain growth restriction effect, the changes of thermodynamic driving force for solidification due to the solute addition also played a key role in grain refinement in ferritic alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeve, Kathlene N.; Holaday, John R.; Choquette, Stephanie M.
New electronics applications demanding enhanced performance and higher operating temperatures have led to continued research in the field of Pb-free solder designs and interconnect solutions. In this paper, recent advances in the microstructural design of Pb-free solders and interconnect systems were discussed by highlighting two topics: increasing β-Sn nucleation in Sn-based solders, and isothermally solidified interconnects using transient liquid phases. Issues in β-Sn nucleation in Sn-based solders were summarized in the context of Swenson’s 2007 review of the topic. Recent advancements in the areas of alloy composition manipulation, nucleating heterogeneities, and rapid solidification were discussed, and a proposal based onmore » a multi-faceted solidification approach involving the promotion of constitutional undercooling and nucleating heterogeneities was outlined for future research. The second half of the paper analyzed two different approaches to liquid phase diffusion bonding as a replacement for high-Pb solders, one based on the application of the pseudo-binary Cu-Ni-Sn ternary system, and the other on a proposed thermodynamic framework for identifying potential ternary alloys for liquid phase diffusion bonding. Furthermore, all of the concepts reviewed relied upon the fundamentals of thermodynamics, kinetics, and solidification, to which Jack Smith substantially contributed during his scientific career.« less
Space Processing Applications Rocket (SPAR) project, SPAR 9
NASA Technical Reports Server (NTRS)
Poorman, R. (Compiler)
1984-01-01
SPAR 9 (R-17) payload configuration, rocket performance, payload support, science payload instrumentation, and payload recovery are discussed. Directional solidification of magnetic composites, directional solidification of immiscible aluminum-indium alloys, and comparative alloy solidification experiments are reported.
Modelling direction solidification
NASA Technical Reports Server (NTRS)
Wilcox, W. R.
1986-01-01
The overall objective of this program is to develop an improved understanding of some phenomena of importance to directional solidification. The aim of this research is also to help predict differences in behavior between solidification on Earth and solidification in space. In this report, the validity of the Burton-Primslichter equation is explored. The influence of operating variables on grain and twin generation and propagation in single crystals of In sub (x) Ga sub (1-x) Sb is also investigated.
2005-02-16
alloy is also given. The solidification mode of martensitic samples has been omitted and replaced with ’M’. Mo Ni +Cr Cr Ni ... alloys composed predominately of austenite. The four solidification modes present in the remaining 64 alloys , in order of increasing Cr/ Ni content, were...result in Fe- Ni -Cr-Mo alloys from the arc-melt condition. Solidification Solidification Primar- Secondar- Final microstrncture Mode
Application of Solidification Theory to Rapid Solidification Processing
1983-08-01
1879 (1982). E 7] W. J. Boettinger, R. J. Schaefer, F. Biancaniello, and D. Shechtman, Met. Trans. A ., to be published. E 8] W. J. Bettinger , S. R...solidification velocity which produce a special "banded" microstructure in Ag-Cu alloys. Related lower bound to theoretical limits on solidification...partitionless rapid solidifi- cation of NiAl-Cr quasibinary eutectic alloy rather than a disordered structure incorporating Ni and Al into Cr randomly
Melt Flow Control in the Directional Solidification of Binary Alloys
NASA Technical Reports Server (NTRS)
Zabaras, Nicholas
2003-01-01
Our main project objectives are to develop computational techniques based on inverse problem theory that can be used to design directional solidification processes that lead to desired temperature gradient and growth conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays a significant role in the selection of the form and scale of the obtained solidification microstructures. Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of an externally applied magnetic field are the main design variables. We will highlight computational design models for sharp front solidification models and briefly discuss work in progress toward the development of design techniques for multi-phase volume-averaging based solidification models.
Nanoparticle-induced unusual melting and solidification behaviours of metals
Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun
2017-01-01
Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage. PMID:28098147
NASA Astrophysics Data System (ADS)
Teng, Yao; Shi, Tao; Zhu, Yuping; Li, Zongbin; Deng, Tao; Bai, Guonan
2016-03-01
A polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloy produced by directional solidification is the subject of this research paper. The compressive stress-strain curves of the material for different cutting angles to the solidification direction are tested. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress are analyzed experimentally. The results show that mechanical behaviors in the loading-unloading cycle of the material present nonlinear and anisotropic characteristics, which are all closely related to the material's orientation to the solidification direction. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress achieve maximum values in the solidification direction. A 50° orientation to the solidification direction is the cut-off direction of the mechanical properties, where the martensite Young's modulus and reorientation start critical stress reach minimum values. The present study is expected to provide sound guidance for practical applications.
Scheil-Gulliver Constituent Diagrams
NASA Astrophysics Data System (ADS)
Pelton, Arthur D.; Eriksson, Gunnar; Bale, Christopher W.
2017-06-01
During solidification of alloys, conditions often approach those of Scheil-Gulliver cooling in which it is assumed that solid phases, once precipitated, remain unchanged. That is, they no longer react with the liquid or with each other. In the case of equilibrium solidification, equilibrium phase diagrams provide a valuable means of visualizing the effects of composition changes upon the final microstructure. In the present study, we propose for the first time the concept of Scheil-Gulliver constituent diagrams which play the same role as that in the case of Scheil-Gulliver cooling. It is shown how these diagrams can be calculated and plotted by the currently available thermodynamic database computing systems that combine Gibbs energy minimization software with large databases of optimized thermodynamic properties of solutions and compounds. Examples calculated using the FactSage system are presented for the Al-Li and Al-Mg-Zn systems, and for the Au-Bi-Sb-Pb system and its binary and ternary subsystems.
NASA Astrophysics Data System (ADS)
Dolz, M. I.; Fasano, Y.; Cejas Bolecek, N. R.; Pastoriza, H.; Mosser, V.; Li, M.; Konczykowski, M.
2015-09-01
We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi2 Sr2 CaCu2 O8 vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.
Dolz, M I; Fasano, Y; Cejas Bolecek, N R; Pastoriza, H; Mosser, V; Li, M; Konczykowski, M
2015-09-25
We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi_{2}Sr_{2}CaCu_{2}O_{8} vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.
Premature melt solidification during mold filling and its influence on the as-cast structure
NASA Astrophysics Data System (ADS)
Wu, M.; Ahmadein, M.; Ludwig, A.
2018-03-01
Premature melt solidification is the solidification of a melt during mold filling. In this study, a numerical model is used to analyze the influence of the pouring process on the premature solidification. The numerical model considers three phases, namely, air, melt, and equiaxed crystals. The crystals are assumed to have originated from the heterogeneous nucleation in the undercooled melt resulting from the first contact of the melt with the cold mold during pouring. The transport of the crystals by the melt flow, in accordance with the socalled "big bang" theory, is considered. The crystals are assumed globular in morphology and capable of growing according to the local constitutional undercooling. These crystals can also be remelted by mixing with the superheated melt. As the modeling results, the evolutionary trends of the number density of the crystals and the volume fraction of the solid crystals in the melt during pouring are presented. The calculated number density of the crystals and the volume fraction of the solid crystals in the melt at the end of pouring are used as the initial conditions for the subsequent solidification simulation of the evolution of the as-cast structure. A five-phase volume-average model for mixed columnar-equiaxed solidification is used for the solidification simulation. An improved agreement between the simulation and experimental results is achieved by considering the effect of premature melt solidification during mold filling. Finally, the influences of pouring parameters, namely, pouring temperature, initial mold temperature, and pouring rate, on the premature melt solidification are discussed.
Convection and Solidification with Applications to Crystal Growth
NASA Technical Reports Server (NTRS)
DeVahl Davis, Graham
1994-01-01
An outline is given of research on the directional solidification of a liquid, and of the effects of natural convection thereon. Three problems which have been studied are described. Finally, current work on solidification in microgravity conditions is discussed.
Investigation of the Relationship between Undercooling and Solidification Velocity
NASA Technical Reports Server (NTRS)
Bayuzick, Robert J.; Hofmeister, William H.
2004-01-01
This work was aimed at reconciling the differences between experimental measurements of the theoretical predictions of the solidification velocity as a function of undercooling. The theory proposed by Boettinger, Coriell and Trivedi (the BCT theory) has been one of the most widely used models for describing the nature of the solidification of undercooled metals and alloys. However, for undercoolings greater than about 5% of the absolute melting temperature, there is considerable discrepancy between theory and experiment. At these large undercoolings, experimental results exhibit a much lessened dependency of solidification velocity on undercooling than is predicted by theory. Furthermore, unpredicted plateaus in the solidification velocity as a function of undercooling are observed.
NASA Technical Reports Server (NTRS)
Maples, A. L.
1981-01-01
The operation of solidification Model 2 is described and documentation of the software associated with the model is provided. Model 2 calculates the macrosegregation in a rectangular ingot of a binary alloy as a result of unsteady horizontal axisymmetric bidirectional solidification. The solidification program allows interactive modification of calculation parameters as well as selection of graphical and tabular output. In batch mode, parameter values are input in card image form and output consists of printed tables of solidification functions. The operational aspects of Model 2 that differ substantially from Model 1 are described. The global flow diagrams and data structures of Model 2 are included. The primary program documentation is the code itself.
Modeling of Microstructure Evolution During Alloy Solidification
NASA Astrophysics Data System (ADS)
Zhu, Mingfang; Pan, Shiyan; Sun, Dongke
In recent years, considerable advances have been achieved in the numerical modeling of microstructure evolution during solidification. This paper presents the models based on the cellular automaton (CA) technique and lattice Boltzmann method (LBM), which can reproduce a wide variety of solidification microstructure features observed experimentally with an acceptable computational efficiency. The capabilities of the models are addressed by presenting representative examples encompassing a broad variety of issues, such as the evolution of dendritic structure and microsegregation in two and three dimensions, dendritic growth in the presence of convection, divorced eutectic solidification of spheroidal graphite irons, and gas porosity formation. The simulations offer insights into the underlying physics of microstructure formation during alloy solidification.
An advanced material science payload for GAS
NASA Technical Reports Server (NTRS)
Joensson, R.; Wallin, S.; Loeth, K.
1986-01-01
The aim of the experiment is to study solidification of different compositions of lead-tin. The weight of the material is quite high: 8 kilograms. Nearly 10% of the payload is sample weight. The dendritic growth and the effect of the absence of natural convection are of particular interest. The results from the flight processed samples will be compared with results from Earth processed samples in order to investigate the influence of the natural convection on the solidification process. The power systems, heat storage and rejection, and mechanical support are discussed in relationship to the scientific requirements.
Effect of solidification rate on microstructure evolution in dual phase microalloyed steel
Kostryzhev, A. G.; Slater, C. D.; Marenych, O. O.; Davis, C. L.
2016-01-01
In steels the dependence of ambient temperature microstructure and mechanical properties on solidification rate is not well reported. In this work we investigate the microstructure and hardness evolution for a low C low Mn NbTi-microalloyed steel solidified in the cooling rate range of 1–50 Cs−1. The maximum strength was obtained at the intermediate solidification rate of 30 Cs−1. This result has been correlated to the microstructure variation with solidification rate. PMID:27759109
1981-10-07
primary solidification phase in the alloy in this condition was identified by CBED as Mg 2 Si , which formed dendrites within the matrix. Each... solidification below the extended c-liquidus. Evolution of Microstructure in Melt-spun Mg- Si Alloys -, The microstructurcs observed in the alloys can...solidificaion pr(es .. in the cellular (dendritic) regime. Solidification of the 5.0 wt.% Si alloy occurs in the coupled eutectic region, and the 8.0 wt.% Si
Rapid solidification of levitation melted Ni-Sn alloy droplets with high undercooling
NASA Technical Reports Server (NTRS)
Shiohara, Yuh; Flemings, Merton C.; Wu, Yanzhong; Piccone, Thomas J.
1985-01-01
Experimental results obtained by high-speed optical temperature sensing for the rapid solidification of highly undercooled, levitation-melted Ni-Sn alloy droplets are presented. These data suggest a solidification model proceeding according to overlapping steps: (1) dendritic growth within the bulk undercooled melt, (2) continued recalescence as supersaturation of the interdendritic liquid dissipates, (3) fine-scale remelting within the dendrites, (4) ripening of the fine structure, and (5) solidification of remaining liquid at the end of recalescence.
Fundamentals of rapid solidification processing
NASA Technical Reports Server (NTRS)
Flemings, Merton C.; Shiohara, Yuh
1985-01-01
An attempt is made to illustrate the continuous change that occurs in the solidification behavior of undercooled melts, as cooling rates increase from 0.0001 K/sec to about 1000 K/sec. At the higher cooling rates, more significant changes occur as the dendrite tip temperature begins to drop from the equilibrium liquidus. Discontinuous solidification behavior changes will occur if absolute stability is reached, or a metastable phase forms, or solidification proceeds to a glass rather than to a crystalline solid, or if there is significant undercooling prior to nucleation.
NASA Astrophysics Data System (ADS)
Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.
2013-03-01
Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.
Purification of silicon for photovoltaic applications
NASA Astrophysics Data System (ADS)
Delannoy, Yves
2012-12-01
Solar grade silicon, as a starting material for crystallization to produce solar cells, is discussed here in terms of impurities whose maximum content is estimated from recent literature and conferences. A review of the production routes for each category of solar-grade silicon (undoped, compensated or heavily compensated) is proposed with emphasis on the metallurgical route. Some recent results are proposed concerning segregation, showing that directional solidification systems can be used for solidification even at high solidification rate (15 cm/h). Results on inductive plasma purification, where boron is evacuated as HBO in a gas phase blown from an inductive plasma torch, are shown to apply as well to arc plasmas and purification by moist gas. Special attention is paid to the history of impurities in the purification processes, showing that impure auxiliary phases (silicon tetrachloride, slag, aluminum, etc.) often need their own purification process to enable their recycling, which has to be considered to evaluate the cost (financial, energetic and environmental) of the purification route.
Solidification and crystal growth of solid solution semiconducting alloys
NASA Technical Reports Server (NTRS)
Lehoczky, S. L.; Szofran, F. R.
1984-01-01
Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.
The growth of metastable peritectic compounds
NASA Technical Reports Server (NTRS)
Pirich, R. G.
1984-01-01
The effects of directional solidification processing on the microstructural, compositional, and magnetic properties of high-melting-temperature, commercially important alloys which form from the liquid state via peritectic or eutectic type reactions were determined. Emphasis was placed on ferromagnetic compounds of the commercially important Co-Sm and Al-Mn systems. The primary dendrite spacing for eutectic Sm2Co17/Co scaled with negative square root of V and varied from approximately 50 microns for V 20 cm/h to hundreds of microns for V 10 cm/h. Since the crystal growth mechanism was dendritic rather than cooperative, the assoicated permanent magnet properties were rather poor. Magnetization as a function of sample orientation indicates that the easy axis of magnetization was primarily along the direction of solidification for the eutectic Sm2Co17/Co and peritectic SmCo5/Sm2Co17 compositions. For the Al-Mn case, magnetization and microstructural characterization suggest isotropic, polycrystalling growth for all solidification velocities studied.
Optimal design of solidification processes
NASA Technical Reports Server (NTRS)
Dantzig, Jonathan A.; Tortorelli, Daniel A.
1991-01-01
An optimal design algorithm is presented for the analysis of general solidification processes, and is demonstrated for the growth of GaAs crystals in a Bridgman furnace. The system is optimal in the sense that the prespecified temperature distribution in the solidifying materials is obtained to maximize product quality. The optimization uses traditional numerical programming techniques which require the evaluation of cost and constraint functions and their sensitivities. The finite element method is incorporated to analyze the crystal solidification problem, evaluate the cost and constraint functions, and compute the sensitivities. These techniques are demonstrated in the crystal growth application by determining an optimal furnace wall temperature distribution to obtain the desired temperature profile in the crystal, and hence to maximize the crystal's quality. Several numerical optimization algorithms are studied to determine the proper convergence criteria, effective 1-D search strategies, appropriate forms of the cost and constraint functions, etc. In particular, we incorporate the conjugate gradient and quasi-Newton methods for unconstrained problems. The efficiency and effectiveness of each algorithm is presented in the example problem.
Heat exchanger bypass system for an absorption refrigeration system
Reimann, Robert C.
1984-01-01
A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.
NASA Technical Reports Server (NTRS)
Gandin, Charles-Andre; Ratke, Lorenz
2008-01-01
The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.
NASA Astrophysics Data System (ADS)
Hutter, Jeffrey Lee
When a material freezes, the form it takes depends on the solidification conditions. For instance, as the undercooling is increased, one typically sees solidification into less-ordered forms. The resulting growth modes appear to be generic, with qualitative similarities between systems whose microscopic details are quite dissimilar. I have used both optical and atomic-force microscopy to study the transitions between different growth morphologies during the solidification of a particular liquid crystal, 10 OCB. We have observed six different solidification modes, each with a distinct micro and meso structure. The front-velocity-vs.-undercooling curve has a discontinuity in its slope and, in some cases, in the curve itself at mode transitions, suggesting that these transitions are analogous to phase transitions. Such transitions have been seen in other systems, but no general rule has been found that can predict which morphology will be selected. We show that, contrary to intuition and widespread speculation, the fastest-growing mode is not always the one selected. One of the growth modes exhibited by 10 OCB is known as banded spherulitic growth. Spherulites have been seen in a wide variety of materials including minerals, pure elements, polymers, biomolecules, and metal alloys. However, despite a century of study, there is no generally accepted theory of spherulitic growth. In particular, the cause of the concentric banding seen in many spherulites remains a mystery. Our studies of banded spherulites in 10 OCB using both optical and atomic-force microscopy show that the bands are associated with a density modulation and thus are not merely the result of a birefringent effect, as is commonly believed. As the atomic-force microscope (AFM) is a relatively new tool, some time was spent studying its capabilities. We found that because the AFM resolution is largely determined by attractive forces between the tip of the probe and the sample, resolution can be improved by imaging in a suitable liquid medium. We also developed a simple method for calibrating AFM cantilevers--a crucial step in using the AFM to obtain quantitative force data. This work is presented in an appendix.
Solidification/Stabilization (S/S) is a widely used treatment technology to prevent migration and exposure of contaminants from a contaminated media (i.e., soil, sludge and sediment). Solidification refers to a process that binds a contaminated media with a reagent changing its ...
Center for low-gravity fluid mechanics and transport phenomena
NASA Technical Reports Server (NTRS)
Kassoy, D. R.; Sani, R. L.
1991-01-01
Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.
Fluid flow in solidifying monotectic alloys
NASA Technical Reports Server (NTRS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-01-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
Numerical modeling of an alloy droplet deposition with non-equilibrium solidification
NASA Astrophysics Data System (ADS)
Ramanuj, Vimal
Droplet deposition is a process of extensive relevance to the microfabrication industry. Various bonding and film deposition methods utilize single or multiple droplet impingements on a substrate with subsequent splat formation through simultaneous spreading and solidification. Splat morphology and solidification characteristics play vital roles in determining the final outcome. Experimental methods have limited reach in studying such phenomena owing to the extremely small time and length scales involved. Fundamental understanding of the governing principles of fluid flow, heat transfer and phase change provide effective means of studying such processes through computational techniques. The present study aims at numerically modeling and analyzing the phenomenon of splat formation and phase change in an alloy droplet deposition process. Phase change in alloys occurs non-isothermally and its formulation poses mathematical challenges. A highly non-linear flow field in conjunction with multiple interfaces and convection-diffusion governed phase transition are some of the highlighting features involved in the numerical formulation. Moreover, the non-equilibrium solidification behavior in eutectic systems is of prime concern. The peculiar phenomenon requires special treatments in terms of modeling solid phase species diffusion, liquid phase enrichment during solute partitioning and isothermal eutectic transformation. The flow field is solved using a two-step projection algorithm coupled with enhanced interface modeling schemes. The free surface tracking and reconstruction is achieved through two approaches: VOF-PLIC and CLSVOF to achieve optimum interface accuracy with minimal computational resources. The energy equation is written in terms of enthalpy with an additional source term to account for the phase change. The solidification phenomenon is modeled using a coupled temperature-solute scheme that reflects the microscopic effects arising due to dendritic growth taking place in rapidly solidifying domains. Solid phase diffusion theories proposed in the literature are incorporated in the solute conservation equation through a back diffusion parameter till the eutectic composition; beyond which a special treatment is proposed. A simplified homogeneous mushy region model has also been outline. Both models are employed to reproduce analytical results under limiting conditions and also experimentally verified. The primary objective of the present work is to examine the splat morphology, solidification behavior and microstructural characteristics under varying operational parameters. A simplified homogeneous mushy region model is first applied to study the role of convection in an SS304 droplet deposition with substrate remelting. The results are compared with experimental findings reported in the literature and a good agreement is observed. Furthermore, a hypoeutectic Sn-Pb alloy droplet deposition is studied using a comprehensive coupled temperature solute model that accounts for the non-equilibrium solidification occurring in eutectic type of alloys. Particular focus is laid on the limitations of a homogeneous mushy region assumption, role of species composition in governing solidification, estimation of the microstructural properties and eutectic formation.
NASA Astrophysics Data System (ADS)
Svetlov, I. L.; Neiman, A. V.
2017-03-01
The effect of the temperature gradient and the crystal growth rate on the structure formation in nickel and niobium superalloys is studied under the conditions of the flat, cellular, dendritic, or dendritic-cellular configuration of a solidification front during directional solidification.
NASA Technical Reports Server (NTRS)
Maples, A. L.
1980-01-01
The software developed for the solidification model is presented. A link between the calculations and the FORTRAN code is provided, primarily in the form of global flow diagrams and data structures. A complete listing of the solidification code is given.
This article discusses the use of solidification/stabilization (S/S) to treat soils contaminated with organic and inorganic chemicals at wood preserving sites. Solidification is defined for this article as making a material into a free standing solid. Stabilization is defined as ...
Numerical simulation of freckle formation in directional solidification of binary alloys
NASA Technical Reports Server (NTRS)
Felicelli, Sergio D.; Heinrich, Juan C.; Poirier, David R.
1992-01-01
A mathematical model of solidification is presented which simulates the formation of segregation models known as 'freckles' during directional solidification of binary alloys. The growth of the two-phase or dendritic zone is calculated by solving the coupled equations of momentum, energy, and solute transport, as well as maintaining the thermodynamic constraints dictated by the phase diagram of the alloy. Calculations for lead-tin alloys show that the thermosolutal convection in the dendritic zone during solidification can produce heavily localized inhomogeneities in the composition of the final alloy.
Microsegregation during directional solidification
NASA Technical Reports Server (NTRS)
Coriell, S. R.; Mcfadden, G. B.
1984-01-01
During the directional solidification of alloys, solute inhomogeneities transverse to the growth direction arise due to morphological instabilities (leading to cellular or dendritic growth) and/or due to convection in the melt. In the absence of convection, the conditions for the onset of morphological instability are given by the linear stability analysis of Mullins and Sekerka. For ordinary solidification rates, the predictions of linear stability analysis are similar to the constitutional supercooling criterion. However, at very rapid solidification rates, linear stability analysis predicts a vast increase in stabilization in comparison to constitutional supercooling.
Evolution of solidification texture during additive manufacturing.
Wei, H L; Mazumder, J; DebRoy, T
2015-11-10
Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, John W.; Tourret, Damien; Gibbs, Paul J.
2015-09-25
Dendrite fragmentation is an important phenomenon in microstructural development during solidification. For instance, it plays a key role in initiating the columnar-to-equiaxed transition (CET). Here, we use x-ray radiography to study dendrite fragmentation rate in a Sn-39.5 wt.% Bi alloy during directional solidification. Experiments were performed in which solidification was parallel and anti-parallel to gravity, leading to significantly different fragmentation rates. We quantify the distribution of fragmentation rate as a function of distance from the solidification front, time in the mushy zone, and volume fraction of solid. While the observed fragmentation rate can be high, there is no evidence ofmore » a CET, illustrating that it requires more than just fragmentation to occur.« less
Scaling Analysis of Alloy Solidification and Fluid Flow in a Rectangular Cavity
NASA Astrophysics Data System (ADS)
Plotkowski, A.; Fezi, K.; Krane, M. J. M.
A scaling analysis was performed to predict trends in alloy solidification in a side-cooled rectangular cavity. The governing equations for energy and momentum were scaled in order to determine the dependence of various aspects of solidification on the process parameters for a uniform initial temperature and an isothermal boundary condition. This work improved on previous analyses by adding considerations for the cooling bulk fluid flow. The analysis predicted the time required to extinguish the superheat, the maximum local solidification time, and the total solidification time. The results were compared to a numerical simulation for a Al-4.5 wt.% Cu alloy with various initial and boundary conditions. Good agreement was found between the simulation results and the trends predicted by the scaling analysis.
Efficient estimation of diffusion during dendritic solidification
NASA Technical Reports Server (NTRS)
Yeum, K. S.; Poirier, D. R.; Laxmanan, V.
1989-01-01
A very efficient finite difference method has been developed to estimate the solute redistribution during solidification with diffusion in the solid. This method is validated by comparing the computed results with the results of an analytical solution derived by Kobayashi (1988) for the assumptions of a constant diffusion coefficient, a constant equilibrium partition ratio, and a parabolic rate of the advancement of the solid/liquid interface. The flexibility of the method is demonstrated by applying it to the dendritic solidification of a Pb-15 wt pct Sn alloy, for which the equilibrium partition ratio and diffusion coefficient vary substantially during solidification. The fraction eutectic at the end of solidification is also obtained by estimating the fraction solid, in greater resolution, where the concentration of solute in the interdendritic liquid reaches the eutectic composition of the alloy.
Gibbs, John W.; Tourret, Damien; Gibbs, Paul J.; ...
2015-09-25
Dendrite fragmentation is an important phenomenon in microstructural development during solidification. For instance, it plays a key role in initiating the columnar-to-equiaxed transition (CET). In this paper, we use x-ray radiography to study dendrite fragmentation rate in a Sn-39.5 wt.% Bi alloy during directional solidification. Experiments were performed in which solidification was parallel and anti-parallel to gravity, leading to significantly different fragmentation rates. We quantify the distribution of fragmentation rate as a function of distance from the solidification front, time in the mushy zone, and volume fraction of solid. Finally, while the observed fragmentation rate can be high, there ismore » no evidence of a CET, illustrating that it requires more than just fragmentation to occur.« less
Multiscale X-ray and Proton Imaging of Bismuth-Tin Solidification
NASA Astrophysics Data System (ADS)
Gibbs, P. J.; Imhoff, S. D.; Morris, C. L.; Merrill, F. E.; Wilde, C. H.; Nedrow, P.; Mariam, F. G.; Fezzaa, K.; Lee, W.-K.; Clarke, A. J.
2014-08-01
The formation of structural patterns during metallic solidification is complex and multiscale in nature, ranging from the nanometer scale, where solid-liquid interface properties are important, to the macroscale, where casting mold filling and intended heat transfer are crucial. X-ray and proton imaging can directly interrogate structure, solute, and fluid flow development in metals from the microscale to the macroscale. X-rays permit high spatio-temporal resolution imaging of microscopic solidification dynamics in thin metal sections. Similarly, high-energy protons permit imaging of mesoscopic and macroscopic solidification dynamics in large sample volumes. In this article, we highlight multiscale x-ray and proton imaging of bismuth-tin alloy solidification to illustrate dynamic measurement of crystal growth rates and solute segregation profiles that can be that can be acquired using these techniques.
NASA Astrophysics Data System (ADS)
Shukla, Rajesh Kumar; Patel, Virendra; Kumar, Arvind
2018-02-01
The coating deposit on the substrate in thermal spray coating process develops by solidification of individual molten particle which impacts, flattens and solidifies on the surface of the substrate. Droplet flattening and solidification typically involves rapid cooling. In this paper, a model for non-equilibrium rapid solidification of a molten droplet spreading onto a substrate is presented. Transient flow during droplet impact and its subsequent spreading is considered using the volume of fluid surface tracking method which was fully coupled with the rapid solidification model. The rapid solidification model includes undercooling, nucleation, interface tracking, non-equilibrium solidification kinetics and combined heat transfer and fluid flow as required to treat a non-stagnant splat formed from droplet flattening. The model is validated with the literature results on stagnant splats. Subsequently, using the model the characteristics of the rapidly solidifying interface for non-stagnant splat, such as interface velocity and interface temperature, are described and the effect of undercooling and interfacial heat transfer coefficient are highlighted. In contrast to the stagnant splat, the non-stagnant splat considered in this study displays interesting features in the rapidly solidifying interface. These are attributed to droplet thinning and droplet recoiling that occur during the droplet spreading process.
Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.
Osmanlioglu, Ahmet Erdal
2014-05-01
In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.
Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy
NASA Astrophysics Data System (ADS)
Wang, Changshuai; Su, Haijun; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang
2017-09-01
Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy, considered as boiler and turbine materials in 700 °C advanced ultra-supercritical coal-fired power plants, have been investigated by differential thermal analysis and directional solidification quenching technique. Results reveal that P decreases the solidus temperature, but only has negligible influence on liquidus temperature. After P was added, the solidification sequence has no apparent change, but the width of the mushy zone increases and dendritic structures become coarser. Moreover, P increases the amount and changes the morphology of MC carbide. Energy-dispersive spectroscopy analysis reveals that P has obvious influence on the segregation behavior of the constitute elements with equilibrium partition coefficients (ki) far away from unity, whereas has negligible effect on the constituent elements with ki close to unity and has more influence on the final stage of solidification than at early stage. The distribution profiles reveal that P atoms pile up ahead of the solid/liquid (S/L) interface and strongly segregate to the interdendritic liquid region. The influence of P on solidification characteristics and segregation behavior of Ni-Fe-Cr-based alloy could be attributed to the accumulation of P ahead of the S/L interface during solidification.
Timing of mantle overturn during magma ocean solidification
NASA Astrophysics Data System (ADS)
Boukaré, C.-E.; Parmentier, E. M.; Parman, S. W.
2018-06-01
Solidification of magma oceans (MOs) formed early in the evolution of planetary bodies sets the initial condition for their evolution on much longer time scales. Ideal fractional crystallization would generate an unstable chemical stratification that subsequently overturns to form a stably stratified mantle. The simplest model of overturn assumes that cumulates remain immobile until the end of MO solidification. However, overturning of cumulates and thermal convection during solidification may act to reduce this stratification and introduce chemical heterogeneity on scales smaller than the MO thickness. We explore overturning of cumulates before the end of MO crystallization and the possible consequences for mantle structure and composition. In this model, increasingly dense iron-rich layers, crystallized from the overlying residual liquid MO, are deposited on a thickening cumulate layer. Overturn during solidification occurs if the dimensionless parameter, Rc, measuring the ratio of the MO time of crystallization τMO to the timescale associated with compositional overturn τov = μ / ΔρgH exceeds a threshold value. If overturn did not occur until after solidification, this implies that the viscosity of the solidified mantle must have been sufficiently high (possibly requiring efficient melt extraction from the cumulate) for a given rate of solidification. For the lunar MO, possible implications for the generation of the Mg-suites and mare basalt are suggested.
The effects of solidification on sill propagation dynamics and morphology
NASA Astrophysics Data System (ADS)
Chanceaux, L.; Menand, T.
2016-05-01
Sills are an integral part of the formation and development of larger plutons and magma reservoirs. Thus sills are essential for both the transport and the storage of magma in the Earth's crust. However, although cooling and solidification are central to magmatism, their effects on sills have been so far poorly studied. Here, the effects of solidification on sill propagation dynamics and morphology are studied by means of analogue laboratory experiments. Hot fluid vegetable oil (magma analogue), that solidifies during its propagation, is injected as a sill in a colder layered gelatine solid (elastic host rock analogue). The injection flux and temperature are maintained constant during an experiment and systematically varied between each experiment, in order to vary and quantify the amount of solidification between each experiments. The oil is injected directly at the interface between the two gelatine layers. When solidification effects are small (high injection temperatures and fluxes), the propagation is continuous and the sill has a regular and smooth surface. Inversely, when solidification effects are important (low injection temperatures and fluxes), sill propagation is discontinuous and occurs by steps of surface-area creation interspersed with periods of momentary arrest. The morphology of these sills displays folds, ropy structures on their surface, and lobes with imprints of the leading fronts that correspond to each step of area creation. These experiments show that for a given, constant injected volume, as solidification effects increase, the area of the sills decreases, their thickness increases, and the number of propagation steps increases. These results have various geological and geophysical implications. The morphology of sills, such as lobate structures (interpretation of 3D seismic studies in sedimentary basin) and ropy flow structures (field observations) can be related to solidification during emplacement. Moreover, a non-continuous morphology as observed in the field does not necessarily involve multiple injections, but could instead reflect a continuous, yet complex morphology induced by solidification effects during emplacement. Also, a discontinuous sill propagation induced by solidification effects should be associated with bursts of seismic activity. Finally, our study shows that once a sill has initiated, the dimensionless flux influences the sill thermal state, and in turn its propagation, and final extent and thickness. In restricting the lateral extent of sills, magma cooling and solidification are likely to impact directly the size of plutons constructed by amalgamated sills.
Halo Formation During Solidification of Refractory Metal Aluminide Ternary Systems
NASA Astrophysics Data System (ADS)
D'Souza, N.; Feitosa, L. M.; West, G. D.; Dong, H. B.
2018-02-01
The evolution of eutectic morphologies following primary solidification has been studied in the refractory metal aluminide (Ta-Al-Fe, Nb-Al-Co, and Nb-Al-Fe) ternary systems. The undercooling accompanying solid growth, as related to the extended solute solubility in the primary and secondary phases can be used to account for the evolution of phase morphologies during ternary eutectic solidification. For small undercooling, the conditions of interfacial equilibrium remain valid, while in the case of significant undercooling when nucleation constraints occur, there is a departure from equilibrium leading to unexpected phases. In Ta-Al-Fe, an extended solubility of Fe in σ was observed, which was consistent with the formation of a halo of μ phase on primary σ. In Nb-Al-Co, a halo of C14 is formed on primary CoAl, but very limited vice versa. However, in the absence of a solidus projection it was not possible to definitively determine the extended solute solubility in the primary phase. In Nb-Al-Fe when nucleation constraints arise, the inability to initiate coupled growth of NbAl3 + C14 leads to the occurrence of a two-phase halo of C14 + Nb2Al, indicating a large undercooling and departure from equilibrium.
Advances in Pb-free solder microstructure control and interconnect design
Reeve, Kathlene N.; Holaday, John R.; Choquette, Stephanie M.; ...
2016-06-09
New electronics applications demanding enhanced performance and higher operating temperatures have led to continued research in the field of Pb-free solder designs and interconnect solutions. In this paper, recent advances in the microstructural design of Pb-free solders and interconnect systems were discussed by highlighting two topics: increasing β-Sn nucleation in Sn-based solders, and isothermally solidified interconnects using transient liquid phases. Issues in β-Sn nucleation in Sn-based solders were summarized in the context of Swenson’s 2007 review of the topic. Recent advancements in the areas of alloy composition manipulation, nucleating heterogeneities, and rapid solidification were discussed, and a proposal based onmore » a multi-faceted solidification approach involving the promotion of constitutional undercooling and nucleating heterogeneities was outlined for future research. The second half of the paper analyzed two different approaches to liquid phase diffusion bonding as a replacement for high-Pb solders, one based on the application of the pseudo-binary Cu-Ni-Sn ternary system, and the other on a proposed thermodynamic framework for identifying potential ternary alloys for liquid phase diffusion bonding. Furthermore, all of the concepts reviewed relied upon the fundamentals of thermodynamics, kinetics, and solidification, to which Jack Smith substantially contributed during his scientific career.« less
NASA Technical Reports Server (NTRS)
Lauer, M.; Poirier, D. R.; Ghods, M.; Tewari, S. N.; Grugel, R. N.
2017-01-01
Simulations of the directional solidification of two hypoeutectic alloys (Al-7Si alloy and Al-19Cu) and resulting macrosegregation patterns are presented. The casting geometries include abrupt changes in cross-section from a larger width of 9.5 mm to a narrower 3.2 mm width then through an expansion back to a width of 9.5 mm. The alloys were chosen as model alloys because they have similar solidification shrinkages, but the effect of Cu on changing the density of the liquid alloy is about an order of magnitude greater than that of Si. The simulations compare well with experimental castings that were directionally solidified in a graphite mold in a Bridgman furnace. In addition to the simulations of the directional solidification in graphite molds, some simulations were effected for solidification in an alumina mold. This study showed that the mold must be included in numerical simulations of directional solidification because of its effect on the temperature field and solidification. For the model alloys used for the study, the simulations clearly show the interaction of the convection field with the solidifying alloys to produce a macrosegregation pattern known as "steepling" in sections with a uniform width. Details of the complex convection- and segregation-patterns at both the contraction and expansion of the cross-sectional area are revealed by the computer simulations. The convection and solidification through the expansions suggest a possible mechanism for the formation of stray grains. The computer simulations and the experimental castings have been part of on-going ground-based research with the goal of providing necessary background for eventual experiments aboard the ISS. For casting practitioners, the results of the simulations demonstrate that computer simulations should be applied to reveal interactions between alloy solidification properties, solidification conditions, and mold geometries on macrosegregation. The simulations also presents the possibility of engineering the mold-material to avoid, or mitigate, the effects of thermosolutal convection and macrosegregation by selecting a mold material with suitable thermal properties, especially its thermal conductivity.
NASA Astrophysics Data System (ADS)
Yoshimoto, Yuuki; Li, Jinwang; Shimoda, Tatsuya
2018-04-01
A gel state exists in the solution-solid conversion process. We found that solidification can be promoted by irradiating the gel with ultraviolet (UV) light. In this study, a patterning method without using a vacuum system or employing photoresist materials has been proposed wherein solidification was applied to a gel by UV irradiation. Indium oxide gel, indium gallium oxide gel, lanthanum zirconium oxide gel, and lanthanum ruthenium oxide gels were successfully patterned by using our technique. Moreover, an oxide thin-film transistor was fabricated by our novel patterning method and was successfully operated.
In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83 B17 During Solidification
NASA Astrophysics Data System (ADS)
Quirinale, D. G.; Messina, D.; Rustan, G. E.; Kreyssig, A.; Prozorov, R.; Goldman, A. I.
2017-11-01
In situ measurements of structure, density, and magnetization on samples of Fe83 B17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe23 B6 /fcc Fe coherently grown structures and primitive tetragonal Fe3 B metastable phase in addition to characterizing the equilibrium Fe2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.
Heat of mixing and morphological stability
NASA Technical Reports Server (NTRS)
Nandapurkar, P.; Poirier, D. R.
1988-01-01
A mathematical model, which incorporates heat of mixing in the energy balance, has been developed to analyze the morphological stability of a planar solid-liquid interface during the directional solidification of a binary alloy. It is observed that the stability behavior is almost that predicted by the analysis of Mullins and Sekerka (1963) at low growth velocities, while deviations in the critical concentration of about 20-25 percent are observed under rapid solidification conditions for certain systems. The calculations indicate that a positive heat of mixing makes the planar interface more unstable, whereas a negative heat of mixing makes it more stable, in terms of the critical concentration.
El-Hachemi, Zoubir; Arteaga, Oriol; Canillas, Adolf; Crusats, Joaquim; Sorrenti, Alessandro; Veintemillas-Verdaguer, Sabino; Ribo, Josep M
2013-07-01
Experimental results show that benzil (1,2-diphenyl-1,2-ethanedione), an achiral compound that crystallizes as a racemic conglomerate, yields by solidification polycrystalline scalemic mixtures of high enantiomeric excesses. These results are related to those previously reported in this type of compounds on deracemizations of racemic mixtures of crystal enantiomorphs obtained by wet grinding. However, the present results strongly suggest that these experiments cannot be explained without taking into account chiral recognition interactions at the level of precritical clusters. The conditions that would define a general thermodynamic scenario for such deracemizations are discussed. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zareie Rajani, H. R.; Phillion, A. B.
2015-06-01
A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld.
Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain
2017-06-13
The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.
Derivation of the Korean radwaste scaling factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwang Yong Jee; Hong Joo Ahn; Se Chul Sohn
2007-07-01
The concentrations of several radionuclides in low and intermediate level radioactive waste (LILW) drums have to be determined before shipping to disposal facilities. A notice, by the Ministry of Science and Technology (MOST) of the Korean Government, related to the disposal of LILW drums came into effect at the beginning of 2005, with regards to a radionuclide regulation inside a waste drum. MOST allows for an indirect radionuclide assay using a scaling factor to measure the inventories due to the difficulty of nondestructively measuring the essential {alpha} and {beta}-emitting nuclides inside a drum. That is, a scaling factor calculated throughmore » a correlation of the {alpha} or {beta}-emitting nuclide (DTM, Difficult-To-Measure) with a {gamma}-emitting nuclide (ETM, Easy-To-Measure) which has systematically similar properties with DTM nuclides. In this study, radioactive wastes, such as spent resin and dry active waste which were generated at different sites of a PWR and a site of a PHWR type Korean NPP, were partially sampled and analyzed for regulated radionuclides by using radiochemical methods. According to a reactor type and a waste form, the analysis results of each radionuclide were classified. Korean radwaste scaling factor was derived from database of radionuclide concentrations. (authors)« less
Powder-Metallurgy Process And Product
NASA Technical Reports Server (NTRS)
Paris, Henry G.
1988-01-01
Rapid-solidification processing yields alloys with improved properties. Study undertaken to extend favorable property combinations of I/M 2XXX alloys through recently developed technique of rapid-solidification processing using powder metallurgy(P/M). Rapid-solidification processing involves impingement of molten metal stream onto rapidly-spinning chill block or through gas medium using gas atomization technique.
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The paper is an overview of the status and science for the LODESTARS (Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification) research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures.
Evolution of solidification texture during additive manufacturing
Wei, H. L.; Mazumder, J.; DebRoy, T.
2015-01-01
Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components. PMID:26553246
Evolution of solidification texture during additive manufacturing
Wei, H. L.; Mazumder, J.; DebRoy, T.
2015-11-10
Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Furthermore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numericalmore » modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.« less
NASA Astrophysics Data System (ADS)
Zou, Jin; Zhai, Qi-Jie; Liu, Fang-Yu; Liu, Ke-Ming; Lu, De-Ping
2018-05-01
A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.
Evolution of Secondary Phases Formed upon Solidification of a Ni-Based Alloy
NASA Astrophysics Data System (ADS)
Zuo, Qiang; Liu, Feng; Wang, Lei; Chen, Changfeng
2013-07-01
The solidification of UNS N08028 alloy subjected to different cooling rates was studied, where primary austenite dendrites occur predominantly and different amounts of sigma phase form in the interdendritic regions. The solidification path and elemental segregation upon solidification were simulated using the CALPHAD method, where THERMO-CALC software packages and two classical segregation models were employed to predict the real process. It is thus revealed that the interdendritic sigma phase is formed via eutectic reaction at the last stage of solidification. On this basis, an analytical model was developed to predict the evolution of nonequilibrium eutectic phase, while the isolated morphology of sigma phase can be described using divorced eutectic theory. Size, fraction, and morphology of the sigma phase were quantitatively studied by a series of experiments; the results are in good agreement with the model prediction.
Modelling Equilibrium and Fractional Crystallization in the System MgO-FeO-CaO-Al2O3-SiO2
NASA Technical Reports Server (NTRS)
Herbert, F.
1985-01-01
A mathematical modelling technique for use in petrogenesis calculations in the system MgO-FeO-CaO-Al2O3-SiO2 is reported. Semiempirical phase boundary and elemental distribution information was combined with mass balance to compute approximate equilibrium crystallization paths for arbitrary system compositions. The calculation is applicable to a range of system compositions and fractionation calculations are possible. The goal of the calculation is the computation of the composition and quantity of each phase present as a function of the degree of solidification. The degree of solidification is parameterized by the heat released by the solidifying phases. The mathematical requirement for the solution of this problem is: (1) An equation constraining the composition of the magma for each solid phase in equilibrium with the liquidus phase, and (2) an equation for each solid phase and each component giving the distribution of that element between that phase and the magma.
1991-09-01
The Advanced Automated Directional Solidification Furnace (AADSF) flew during the USMP-2 mission. During USMP-2, the AADSF was used to study the growth of mercury cadmium telluride crystals in microgravity by directional solidification, a process commonly used on earth to process metals and grow crystals. The furnace is tubular and has three independently controlled temperature zones. The sample travels from the hot zone of the furnace (1600 degrees F) where the material solidifies as it cools. The solidification region, known as the solid/liquid interface, moves from one end of the sample to the other at a controlled rate, thus the term directional solidification.
Solidification rate influence on orientation and mechanical properties of MAR-M-246+Hf
NASA Technical Reports Server (NTRS)
Hamilton, D.
1983-01-01
The influence of solidification rates on the orientation and mechanical properties of MAR-M-246+Hf was studied. The preferred orientation was found to be (001) for single crystals, with all samples with 45 degrees of (001). Tensile tests were performed at room temperature. The anisotropy of directionally solidified MAR-M-246+Hf was demonstrated by gage section deformation. Dendrite arm spacing and crystal growth were found to depend on solidification rates and source material conditions. The greatest strength occurred at lower solidification rates. Some single crystals were grown by control of growth rates without seeding.
Modelling directional solidification
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.
1994-01-01
This grant, NAG8-831, was a continuation of a previous grant, NAG8-541. The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis in the recently completed grant was on determining the influence of perturbations on directional solidification of InSb and InSb-GaSb alloys. In particular, the objective was to determine the influence of spin-up/spin-down (ACRT), electric current pulses and vibrations on compositional homogeneity and grain size.
Portable Positron Measurement System (PPMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akers, Doug
Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.
Portable Positron Measurement System (PPMS)
None
2017-12-09
Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.
Layeni, Olawanle P; Akinola, Adegbola P; Johnson, Jesse V
2016-01-01
Two distinct and novel formalisms for deriving exact closed solutions of a class of variable-coefficient differential-difference equations arising from a plate solidification problem are introduced. Thereupon, exact closed traveling wave and similarity solutions to the plate solidification problem are obtained for some special cases of time-varying plate surface temperature.
Nature of solidification of nanoconfined organic liquid layers.
Lang, X Y; Zhu, Y F; Jiang, Q
2007-01-30
A simple model is established for solidification of a nanoconfined liquid under nonequilibrium conditions. In terms of this model, the nature of solidification is the conjunct finite size and interface effects, which is directly related to the cooling rate or the relaxation time of the undercooled liquid. The model predictions are consistent with available experimental results.
Solidification effects on sill formation: An experimental approach
NASA Astrophysics Data System (ADS)
Chanceaux, L.; Menand, T.
2014-10-01
Sills represent a major mechanism for constructing continental Earth's crust because these intrusions can amalgamate and form magma reservoirs and plutons. As a result, numerous field, laboratory and numerical studies have investigated the conditions that lead to sill emplacement. However, all previous studies have neglected the potential effect magma solidification could have on sill formation. The effects of solidification on the formation of sills are studied and quantified with scaled analogue laboratory experiments. The experiments presented here involved the injection of hot vegetable oil (a magma analogue) which solidified during its propagation as a dyke in a colder and layered solid of gelatine (a host rock analogue). The gelatine solid had two layers of different stiffness, to create a priori favourable conditions to form sills. Several behaviours were observed depending on the injection temperature and the injection rate: no intrusions (extreme solidification effects), dykes stopping at the interface (high solidification effects), sills (moderate solidification effects), and dykes passing through the interface (low solidification effects). All these results can be explained quantitatively as a function of a dimensionless temperature θ, which describes the experimental thermal conditions, and a dimensionless flux ϕ, which describes their dynamical conditions. The experiments reveal that sills can only form within a restricted domain of the (θ , ϕ) parameter space. These experiments demonstrate that contrary to isothermal experiments where cooling could not affect sill formation, the presence of an interface that would be a priori mechanically favourable is not a sufficient condition for sill formation; solidification effects restrict sill formation. The results are consistent with field observations and provide a means to explain why some dykes form sills when others do not under seemingly similar geological conditions.
The Effect of Bi Contamination on the Solidification Behavior of Sn-Pb Solders
NASA Astrophysics Data System (ADS)
Moon, Kil-Won; Kattner, Ursula R.; Handwerker, Carol A.
2007-06-01
This paper presents experimental results and theoretical calculations that evaluate the effects of Bi contamination on the solidification behavior of Sn-Pb alloys. The pasty (mushy) range, the type of solidification path, and the microstructure of the solidified alloys are described. The experimental results are obtained from thermal analysis and metallography, and the solidification calculations are performed using the lever rule and Scheil assumptions. The experimental results show that the solidification behavior of the contaminated solder at cooling rates of 5°C/min and 23°C/min is closer to the predictions of the lever rule calculations than those of the Scheil calculations. Although the freezing range of Bi-contaminated Sn-Pb solders is increased, formation of a ternary eutectic reaction at 95°C is not observed for contamination levels below the Bi mass fraction of 6%.
Thermomechanical Simulation of the Splashing of Ceramic Droplets on a Rigid Substrate
NASA Astrophysics Data System (ADS)
Bertagnolli, Mauro; Marchese, Maurizio; Jacucci, Gianni; St. Doltsinis, Ioannis; Noelting, Swen
1997-05-01
Finite element simulation techniques have been applied to the spreading process of single ceramic liquid droplets impacting on a flat cold surface under plasma-spraying conditions. The goal of the present investigation is to predict the geometrical form of the splat as a function of technological process parameters, such as initial temperature and velocity, and to follow the thermal field developing in the droplet up to solidification. A non-linear finite element programming system has been utilized in order to model the complex physical phenomena involved in the present impact process. The Lagrangean description of the motion of the viscous melt in the drops, as constrained by surface tension and the developing contact with the target, has been coupled to an analysis of transient thermal phenomena accounting also for the solidification of the material. The present study refers to a parameter spectrum as from experimental data of technological relevance. The significance of process parameters for the most pronounced physical phenomena is discussed as are also the consequences of modelling. We consider the issue of solidification as well and touch on the effect of partially unmelted material.
NASA Technical Reports Server (NTRS)
Regnault, W. F.; Yoo, K. C.; Soltani, P. K.; Johnson, S. M.
1984-01-01
Silicon ingot growth technologies like the Ubiquitous Crystallization Process (UCP) are solidified within a shaping crucible. The rate at which heat can be lost from this crucible minus the rate at which heat is input from an external source determines the rate at which crystallization will occur. Occasionally, when the process parameters for solidification are exceeded, the normally large multi-centimeter grain size material assocated with the UCP will break down into regions containing extremely small, millimeter or less, grain size material. Accompanying this breakdown in grain growth is the development of so called sinuous grain boundaries. The breakdown in grain growth which results in this type of small grain structure with sinuous boundaries is usually associated with the rapid crystallization that would accompany a system failure. This suggests that there are limits to the growth velocity that one can obtain and still expect to produce material that would possess good photovoltaic properties. It is the purpose to determine the causes behind the breakdown of this material and what parameters will determine the best rates of solidification.
Development of an Optimization Methodology for the Aluminum Alloy Wheel Casting Process
NASA Astrophysics Data System (ADS)
Duan, Jianglan; Reilly, Carl; Maijer, Daan M.; Cockcroft, Steve L.; Phillion, Andre B.
2015-08-01
An optimization methodology has been developed for the aluminum alloy wheel casting process. The methodology is focused on improving the timing of cooling processes in a die to achieve improved casting quality. This methodology utilizes (1) a casting process model, which was developed within the commercial finite element package, ABAQUS™—ABAQUS is a trademark of Dassault Systèms; (2) a Python-based results extraction procedure; and (3) a numerical optimization module from the open-source Python library, Scipy. To achieve optimal casting quality, a set of constraints have been defined to ensure directional solidification, and an objective function, based on the solidification cooling rates, has been defined to either maximize, or target a specific, cooling rate. The methodology has been applied to a series of casting and die geometries with different cooling system configurations, including a 2-D axisymmetric wheel and die assembly generated from a full-scale prototype wheel. The results show that, with properly defined constraint and objective functions, solidification conditions can be improved and optimal cooling conditions can be achieved leading to process productivity and product quality improvements.
Computational modelling for the embolization of brain arteriovenous malformations.
Orlowski, Piotr; Summers, Paul; Noble, J Alison; Byrne, James; Ventikos, Yiannis
2012-09-01
Treatment of arteriovenous malformations (AVMs) of the brain often requires the injection of a liquid embolic material to reduce blood flow through the malformation. The type of the liquid and the location of injection have to be carefully planned in a pre-operative manner. We introduce a new model of the interaction of liquid embolic materials with blood for the simulation of their propagation and solidification in the AVM. Solidification is mimicked by an increase of the material's viscosity. Propagation is modelled by using the concept of two-fluids modelling and that of scalar transport. The method is tested on digital phantoms and on one anatomically derived patient AVM case. Simulations showed that intuitive behaviour of the two-fluid system can be confirmed and that two types of glue propagation through the malformation can be reproduced. Distinction between the two types of propagation could be used to identify fistulous and plexiform compartments composing the AVM and to characterize the solidification of the embolic material in them. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
1992-03-12
The Advanced Automated Directional Solidification Furnace (AADSF) with the Experimental Apparatus Container (EAC) removed flew during the USMP-2 mission. During USMP-2, the AADSF was used to study the growth of mercury cadmium telluride crystals in microgravity by directional solidification, a process commonly used on earth to process metals and grow crystals. The furnace is tubular and has three independently controlled temperature zones . The sample travels from the hot zone of the furnace (1600 degrees F) where the material solidifies as it cools. The solidification region, known as the solid/liquid interface, moves from one end of the sample to the other at a controlled rate, thus the term directional solidification.
MPS solidification model. Analysis and calculation of macrosegregation in a casting ingot
NASA Technical Reports Server (NTRS)
Poirier, D. R.; Maples, A. L.
1985-01-01
Work performed on several existing solidification models for which computer codes and documentation were developed is presented. The models describe the solidification of alloys in which there is a time varying zone of coexisting solid and liquid phases; i.e., the S/L zone. The primary purpose of the models is to calculate macrosegregation in a casting or ingot which results from flow of interdendritic liquid in this S/L zone during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, is modeled as flow through a porous medium. In Model 1, the steady state model, the heat flow characteristics are those of steady state solidification; i.e., the S/L zone is of constant width and it moves at a constant velocity relative to the mold. In Model 2, the unsteady state model, the width and rate of movement of the S/L zone are allowed to vary with time as it moves through the ingot. Each of these models exists in two versions. Models 1 and 2 are applicable to binary alloys; models 1M and 2M are applicable to multicomponent alloys.
NASA Astrophysics Data System (ADS)
Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang
2017-03-01
In order to comply with more stringent environmental and fuel consumption regulations, novel Nb-bearing austenitic heat-resistant cast steels that withstand exhaust temperatures as high as 1,323 K (1,050 °C) is urgently demanded from automotive industries. In the current research, the solidification behavior of these alloys with variations of N/C ratio is investigated. Directional solidification methods were carried out to examine the microstructural development in mushy zones. Computational thermodynamic calculations under partial equilibrium conditions were performed to predict the solidification sequence of different phases. Microstructural characterization of the mushy zones indicates that N/C ratio significantly influenced the stability of γ-austenite and the precipitation temperature of NbC/Nb(C,N), thereby altering the solidification path, as well as the morphology and distribution of NbC/Nb(C,N) and γ-ferrite. The solidification sequence of different phases predicted by thermodynamic software agreed well with the experimental results, except the specific precipitation temperatures. The generated data and fundamental understanding will be helpful for the application of computational thermodynamic methods to predict the as-cast microstructure of Nb-bearing austenitic heat-resistant steels.
NASA Technical Reports Server (NTRS)
Maples, A. L.; Poirier, D. R.
1980-01-01
The physical and numerical formulation of a model for the horizontal solidification of a binary alloy is described. It can be applied in an ingot. The major purpose of the model is to calculate macrosegregation in a casting ingot which results from flow of interdendritic liquid during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, was modeled as flow through a porous medium. The symbols used are defined. The physical formulation of the problem leading to a set of equations which can be used to obtain: (1) the pressure field; (2) the velocity field: (3) mass flow and (4) solute flow in the solid plus liquid zone during solidification is presented. With these established, the model calculates macrosegregation after solidification is complete. The numerical techniques used to obtain solution on a computational grid are presented. Results, evaluation of the results, and recommendations for future development of the model are given. The macrosegregation and flow field predictions for tin-lead, aluminum-copper, and tin-bismuth alloys are included as well as comparisons of some of the predictions with published predictions or with empirical data.
Transmutation of actinides in power reactors.
Bergelson, B R; Gerasimov, A S; Tikhomirov, G V
2005-01-01
Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.E.D. Morgan; R.M. Housley; J.B. Davis
A very import, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. THe use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements )e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations.
Three-dimensional control of crystal growth using magnetic fields
NASA Astrophysics Data System (ADS)
Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo
1993-07-01
Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.
Crystallization dynamics in glass-forming systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullinan, Timothy Edward
Crystallization under far-from-equilibrium conditions is investigated for two different scenarios: crystallization of the metallic glass alloy Cu 50Zr 50 and solidification of a transparent organic compound, o-terphenyl. For Cu 50Zr 50, crystallization kinetics are quanti ed through a new procedure that directly fits thermal analysis data to the commonly utilized JMAK model. The phase evolution during crystallization is quantified through in-situ measurements (HEXRD, DSC) and ex-situ microstructural analysis (TEM, HRTEM). The influence of chemical partitioning, diffusion, and crystallographic orientation on this sequence are examined. For o-terphenyl, the relationship between crystal growth velocity and interface undercooling is systematically studied via directionalmore » solidification.« less
Adaptive-Grid Methods for Phase Field Models of Microstructure Development
NASA Technical Reports Server (NTRS)
Provatas, Nikolas; Goldenfeld, Nigel; Dantzig, Jonathan A.
1999-01-01
In this work the authors show how the phase field model can be solved in a computationally efficient manner that opens a new large-scale simulational window on solidification physics. Our method uses a finite element, adaptive-grid formulation, and exploits the fact that the phase and temperature fields vary significantly only near the interface. We illustrate how our method allows efficient simulation of phase-field models in very large systems, and verify the predictions of solvability theory at intermediate undercooling. We then present new results at low undercoolings that suggest that solvability theory may not give the correct tip speed in that regime. We model solidification using the phase-field model used by Karma and Rappel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirinale, D. G.; Messina, D.; Rustan, G. E.
In situ measurements of structure, density, and magnetization on samples of Fe 83 B 17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe 23 B 6 / fcc Fe coherently grown structures and primitive tetragonal Fe 3 B metastable phase in addition to characterizing the equilibrium Fe 2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperaturemore » metastable structures.« less
Self Assembled Structures by Directional Solidification of Eutectics
NASA Technical Reports Server (NTRS)
Dynys, Frederick W.; Sayir, Ali
2004-01-01
Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.
Microstructural properties and evolution of nanoclusters in liquid Si during a rapid cooling process
NASA Astrophysics Data System (ADS)
Gao, T.; Hu, X.; Li, Y.; Tian, Z.; Xie, Q.; Chen, Q.; Liang, Y.; Luo, X.; Ren, L.; Luo, J.
2017-11-01
The formation of amorphous structures in Si during the rapid quenching process was studied based on molecular dynamics simulation by using the Stillinger-Weber potential. The evolution characteristics of nanoclusters during the solidification were analyzed by several structural analysis methods. The amorphous Si has been formed with many tetrahedral clusters and few nanoclusters. During the solidification, tetrahedral polyhedrons affect the local structures by their different positions and connection modes. The main kinds of polyhedrons randomly linked with one another to form an amorphous network structures in the system. The structural evolution of crystal nanocluster demonstrates that the nanocluster has difficulty to growth because of the high cooling rate of 1012 K/s.
Minimizing Segregation during the Controlled Directional Solidification of Dendric Alloys
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Fedoseyev, Alex; Kim, Shin-Woo
2003-01-01
Gravity-driven convection induced in the liquid by density gradients of temperature or composition disrupts uniform dendritic growth during controlled directional solidification and promotes severe macrosegregation. The solute-rich region about the dendrite tip appears to play a pivotal role in channel initiation. Allen and Hunt referred to this region as an "initial transient" or dynamic region constituting steep concentration gradients. Experimental investigation also point to the role the tip region plays in developing microstructure. Hellawell and co-workers showed that flow-through dendritic channels could be effectively disrupted, and segregation minimized, during the gradient freezing of bulk castings by rotating the melt through a slight angle with respect to Earth's gravity vector. Adapting this principle to controlled directional solidification, it has been shown" that segregation in dendritic alloys can be minimized, and properties improved, by processing the sample near horizontal in conjunction with a slow axial rotation of the crucible. It is postulated that the observed microstructural uniformity arises by maintaining the developing solute field about the dendrite tip. Solute rejected during vertical directional solidification will rise or sink parallel to the primary dendrite arms during axial rotation setting the stage for accumulation, instabilities, and segregation. In contrast, during horizontal growth, the rejected solute will sink or rise perpendicular to the primary dendrite. Now, in the presence of a slight axial rotation, solute that was initially sinking (or rising) will find itself above (or below) its parent dendrite, i.e., still about the tip region. The following is intended to experimentally demonstrate the viability of this concept in coordination with a model that gives predictive insight regarding solute distribution about growing dendrites. Alloys based on the lead-tin eutectic system were used in this study. The system is well characterized, the constituent metals are available in a very pure form, and the thermophysical properties are well known. During solidification of hypoeutectic alloys, e.g., 55 wt pct Pb, the primary dendrites reject the less dense tin, and for the hypereutectic alloys, e.g., 75 wt pct Sn, the primary dendrites reject denser lead. Alloys were prepared by melting appropriate amounts of lead and tin in a glass crucible after which the homogeneous liquid was sucked directly into 5-mm i.d. glass tubes. The sample tube, containing approximately 30 cm of alloy, was then mechanically driven into the directional solidification furnace assembly and positioned such that approx. 20 cm of the sample was remelted. Subsequently, directional solidification was initiated by withdrawing the sample through a water-cooled jacket at a constant growth velocity of 2 ,microns/s. After 5 to 6 cm of growth, the sample was quickly removed from the furnace and quenched in a water bath to preserve the solid-liquid interface. Samples were directionally solidified vertically upward, nearly horizontally, and some in conjunction with an applied axial rotation of the crucible. Temperature gradients at the solid-liquid interface were measured with an in-siru K-type thermocouple. Solidified samples were cut perpendicular and parallel to the growth direction and conventionally prepared for microscopic examination.
Steady-state and dynamic models for particle engulfment during solidification
NASA Astrophysics Data System (ADS)
Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.
2016-06-01
Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.
Directional Solidification and Characterization of Hg(0.89) Mn(0.11)Te
NASA Technical Reports Server (NTRS)
Price, M. W.; Scripa, R. N.; Lehoczky. S. L.; Szofran, F. R.; Su, C.-H.
1998-01-01
Two boules of Hg(0.89)Mn(0.11)Te(MMT) were solidified using the vertical Bridgman-Stockbarger method. Translation rates of 0.09 and 0. 18 microns/s were used. The influence of growth rate on axial compositional homogeneity in the MMT boules was evaluated experimentally by conducting precision density measurements on radial slices taken from each boule. In addition, Plane Front Solidification theory and segregation coefficient (k) data for the Hg(1-x)Mn(x)Te system were used to fit theoretical composition profiles to the measured MMT axial composition profiles. The strong correlation between the measured and calculated MMT axial composition profiles indicates diffusion dominated axial solute redistribution in the boules under the applied growth conditions. The analysis of the MMT axial composition profiles by Plane Front Solidification theory allowed the calculation of the effective diffusion coefficient (D(eff) = 3.5 x l0(exp -5) sq cm/s). The k-values for the Hg(1-x)Mn(x)Te system and the D(sub eff) - value were then used to verify that both boules were solidified under conditions which did not exceed the Constitutional Supercooling Criteria under ideal conditions. Finally, a preliminary examination of the radial compositional variation in each MMT was made using Fourier Transform Infra-Red Spectroscopy (FTIR). The radial homogeneity in the MMT boules was found to be comparable for both translation rates.
Developments in metallic materials for aerospace applications
NASA Astrophysics Data System (ADS)
Wadsworth, J.; Froes, F. H.
1989-05-01
High-performance aerospace systems are creating a demand for new materials, not only for airframe and engine applications, but for missile and space systems as well. Recently, advances have been made in metallic materials systems based on magnesium, aluminum, titanium and niobium using a variety of processing methods, including ingot casting, powder metallurgy, rapid solidification and composite technology.
Application of Solidification Theory to Rapid Solidification Processing
1982-09-01
period were achieved in the following areas : Extended Solid Solubilities -- for Produetion of Alloys with New Compositions and Phases o At high growth... Areas where significant improvements In alloy properties can be produced by rapid solidification will be emphasized. Technical Problem and General...focussed on the science underlying areas where Improved materials can be obtained in order to provide such prediction and control. This work is both
Solidification of basaltic magma during flow in a dike.
Delaney, P.T.; Pollard, D.D.
1982-01-01
A model for time-dependent unsteady heat transfer from magma flowing in a dyke is developed. The ratio of solidification T to magma T is the most important parameter. Observations of volcanic fissure eruptions and study of dykes near Ship Rock, New Mexico, show that the low T at dyke margins and the rapidly advancing solidification front predicted by the model are qualitatively correct.-M.S.
NASA Astrophysics Data System (ADS)
Murphy, A. G.; Mathiesen, R. H.; Houltz, Y.; Li, J.; Lockowandt, C.; Henriksson, K.; Melville, N.; Browne, D. J.
2016-11-01
For the first time, isothermal equiaxed solidification of a metallic alloy has been observed in situ in space, providing unique benchmark experimental data. The experiment was completed on board the MASER 13 sounding rocket, launched in December 2015, using a newly developed isothermal solidification furnace. A grain-refined Al-20 wt%Cu sample was fully melted and solidified during 360 s of microgravity and the solidification sequence was recorded using time-resolved X-radiography. Equiaxed nucleation, dendritic growth, solutal impingement, and eutectic transformation were thus observed in a gravity-free environment. Equiaxed nucleation was promoted through application of a controlled cooling rate of -0.05 K/s producing a 1D grain density of 6.5 mm-1, uniformly distributed throughout the field of view (FOV). Primary growth slowed to a visually imperceptible level at an estimated undercooling of 7 K, after which the cooling rate was increased to -1.0 K/s for the remainder of solidification and eutectic transformation, ensuring the sample was fully solidified inside the microgravity time window. The eutectic transformation commenced at the centre of the FOV proceeding radially outwards covering the entire FOV in 3 s Microgravity-based solidification is compared to an identical pre-flight ground-based experiment using the same sample and experiment timeline. The ground experiment was designed to minimise gravity effects, by choice of a horizontal orientation for the sample, so that any differences would be subtle. The first equiaxed nucleation occurred at an apparent undercooling of 0.6 K less than the equivalent event during microgravity. During primary equiaxed solidification, as expected, no buoyant grain motion was observed during microgravity, compared to modest grain rotation and reorientation observed during terrestrial-based solidification. However, when the cooling rate was increased from -0.05 K/s to -1.0 K/s during the latter stages of solidification, in both 1g and micro-g environments, some grain movement was apparent due to liquid feeding and mechanical impingement of neighbouring grains.
Multiple sensor multifrequency eddy current monitor for solidification and growth
NASA Technical Reports Server (NTRS)
Wallace, John
1990-01-01
A compact cylindrical multisensor eddy current measuring system with integral furnace was develop to monitor II-VI crystal growth to provide interfacial information, solutal segregation, and conductivities of the growth materials. The use of an array of sensors surrounding the furnace element allows one to monitor the volume of interest. Coupling these data with inverse multifrequency analysis allows radial conductivity profiles to be generated at each sensor position. These outputs were incorporated to control the processes within the melt volume. The standard eddy current system functions with materials whose electric conductivities are as low as 2E2 Mhos/m. A need was seen to extend the measurement range to poorly conducting media so the unit was modified to allow measurement of materials conductivities 4 order of magnitude lower and bulk dielectric properties. Typically these included submicron thick films and semiinsulating GaAs. This system was used to monitor complex heat transfer in grey bodies as well as semiconductor and metallic solidification.
LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS
Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...
Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity
NASA Technical Reports Server (NTRS)
Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.
2002-01-01
Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.
Improved Crystal Quality by Detached Solidification in Microgravity
NASA Technical Reports Server (NTRS)
Regel, Liya L.; Wilcox, William R.
1999-01-01
Directional solidification in microgravity has often led to ingots that grew with little or no contact with the ampoule wall. When this occurred, crystallographic perfection was usually greatly improved -- often by several orders of magnitude. Unfortunately, until recently the true mechanisms underlying detached solidification were unknown. As a consequence, flight experiments yielded erratic results. Within the past four years, we have developed a new theoretical model that explains many of the flight results. This model gives rise to predictions of the conditions required to yield detached solidification, both in microgravity and on earth. A discussion of models of detachment, the meniscus models and results of theoretical modeling, and future plans are presented.
Modelling directional solidification
NASA Technical Reports Server (NTRS)
Wilcox, William R.
1987-01-01
An improved understanding of the phenomena of importance to directional solidification is attempted to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis is now on experimentally determining the influence of convection and freezing rate fluctuations on compositional homogeneity and crystalline perfection. A correlation is sought between heater temperature profiles, buoyancy-driven convection, and doping inhomogeneities using naphthalene doped with anthracene. The influence of spin-up/spin-down is determined on compositional homogeneity and microstructure of indium gallium antimonide. The effect is determined of imposed melting - freezing cycles on indium gallium antimonide. The mechanism behind the increase of grain size caused by using spin-up/spin-down in directional solidification of mercury cadimum telluride is sought.
Cooling and solidification of liquid-metal drops in a gaseous atmosphere
NASA Technical Reports Server (NTRS)
Mccoy, J. K.; Markworth, A. J.; Collings, E. W.; Brodkey, R. S.
1992-01-01
The free fall of a liquid-metal drop, heat transfer from the drop to its environment, and solidification of the drop are described for both gaseous and vacuum atmospheres. A simple model, in which the drop is assumed to fall rectilinearly, with behavior like that of a rigid particle, is developed to describe cooling behavior. Recalescence of supercooled drops is assumed to occur instantaneously when a specified temperature is passed. The effects of solidification and experimental parameters on drop cooling are calculated and discussed. Major results include temperature as a function of time, and of drag, time to complete solidification, and drag as a function of the fraction of the drop solidified.
NASA Astrophysics Data System (ADS)
Lambrakos, S. G.
2017-08-01
An inverse thermal analysis of Alloy 690 laser and hybrid laser-GMA welds is presented that uses numerical-analytical basis functions and boundary constraints based on measured solidification cross sections. In particular, the inverse analysis procedure uses three-dimensional constraint conditions such that two-dimensional projections of calculated solidification boundaries are constrained to map within experimentally measured solidification cross sections. Temperature histories calculated by this analysis are input data for computational procedures that predict solid-state phase transformations and mechanical response. These temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes.
Anomalous eutectic formation in the solidification of undercooled Co-Sn alloys
NASA Astrophysics Data System (ADS)
Liu, L.; Wei, X. X.; Huang, Q. S.; Li, J. F.; Cheng, X. H.; Zhou, Y. H.
2012-11-01
Three Co-Sn alloys with compositions around the eutectic point were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification structure. It is revealed that the primary phase during rapid solidification changes complexly with the increasing undercooling in the off-eutectic alloys, while coupled eutectic growth takes place at all undercoolings in the eutectic alloy. Two types of anomalous eutectics form in the alloys: one evolving from coupled eutectics and the other from single phase dendrites or seaweeds. The crystallographic orientation of eutectic phases in the anomalous eutectic is dependent on which type their precursors belong to.
Defect, Kinetics and Heat Transfer of CDTE Bridgman Growth without Wall Contact
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.; Zhang, H.
2003-01-01
A detached growth mechanism has been proposed, which is similar to that proposed by Duffar et al. and used to study the current detached growth system. From numerical results, we can conclude that detached growth will more likely appear if the growth and wetting angles are large and meniscus is flat. Detached thickness is dependent on growth angle, wetting angle, and gap width and shape of the fins. The model can also explain why the detached growth will not happen for metals in which the growth angle is almost zero. Since the growth angle of CdZnTe cannot be changed, to promote detached growth, the number density of the fins should be low and the wetting angle should be high. Also, a much smaller gap width of the fins should be used in the ground experiment and the detached gap width is much smaller. The shape of the fins has minor influence on detached growth. An integrated numerical model for detached solidification has been developed combining a global heat transfer sub-model and a wall contact sub-model. The global heat transfer sub-model accounts for heat and mass transfer in the multiphase system, convection in the melt, macro-segregation, and interface dynamics. The location and dynamics of the solidification interface are accurately tracked by a multizone adaptive grid generation scheme. The wall contact sub-model accounts for the meniscus dynamics at the three-phase boundary. Simulations have been performed for crystal growth in a conventional ampoule and a designed ampoule to understand the benefits of detached solidification and its impacts on crystalline structural quality, e.g., stoichiometry, macro-segregation, and stress. From simulation results, both the Grashof and Marangoni numbers will have significant effects on the shape of growth front, Zn concentration distribution, and radial segregation. The integrated model can be used in designing apparatus and determining the optimal geometry for detached solidification in space and on the ground.
NASA Technical Reports Server (NTRS)
Reinhart, G.; NguyenThi, H.; Bogno, A.; Billia, B.; Houltz, Y.; Loth, K.; Voss, D.; Verga, A.; dePascale, F.; Mathiesen, R. H.;
2012-01-01
The European Space Agency (ESA) - Microgravity Application Promotion (MAP) programme entitled XRMON (In situ X-Ray MONitoring of advanced metallurgical processes under microgravity and terrestrial conditions) aims to develop and perform in situ X-ray radiography observations of metallurgical processes in microgravity and terrestrial environments. The use of X-ray imaging methods makes it possible to study alloy solidification processes with spatio-temporal resolutions at the scales of relevance for microstructure formation. XRMON has been selected for MASER 12 sounding rocket experiment, scheduled in autumn 2011. Although the microgravity duration is typically six minutes, this short time is sufficient to investigate a solidification experiment with X-ray radiography. This communication will report on the preliminary results obtained with the experimental set-up developed by SSC (Swedish Space Corporation). Presented results dealing with directional solidification of Al-Cu confirm the great interest of performing in situ characterization to analyse dynamical phenomena during solidification processes.
NASA Astrophysics Data System (ADS)
Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan
2016-07-01
In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.
NASA Astrophysics Data System (ADS)
McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.
2016-03-01
Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.
McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; ...
2016-01-27
In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, andmore » presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.« less
The study of flow pattern and phase-change problem in die casting process
NASA Technical Reports Server (NTRS)
Wang, T. S.; Wei, H.; Chen, Y. S.; Shang, H. M.
1996-01-01
The flow pattern and solidification phenomena in die casting process have been investigated in the first phase study. The flow pattern in filling process is predicted by using a VOF (volume of fluid) method. A good agreement with experimental observation is obtained for filling the water into a die cavity with different gate geometry and with an obstacle in the cavity. An enthalpy method has been applied to solve the solidification problem. By treating the latent heat implicitly into the enthalpy instead of explicitly into the source term, the CPU time can be reduced at least 20 times. The effect of material properties on solidification fronts is tested. It concludes that the dependence of properties on temperature is significant. The influence of the natural convection over the diffusion has also been studied. The result shows that the liquid metal solidification phenomena is diffusion dominant, and the natural convection can affect the shape of the interface. In the second phase study, the filling and solidification processes will be considered simultaneously.
NASA Technical Reports Server (NTRS)
Ghods, Masoud; Lauer, Mark; Tewari, Surendra; Poirier, David; Grugel, Richard
2016-01-01
Cylindrical Al-7 wt% Silicon, Al-19 wt% Copper and Lead-6 wt% Antimony alloy samples were directionally solidified (DS) with liquid above, solid below, and gravity pointing down, in graphite crucibles having an abrupt cross-sectional increase. These alloys have similar solidification shrinkage but are expected to have different degrees of thermosolutal convection during solidification. Microstructures in the DS samples in the vicinity of the section change have been studied in order to examine the effect of convection associated with the combined influence of thermosolutal effects and solidification shrinkage. Extensive radial and axial macrosegregation associated with cross-section change is observed. It also appears that steepling and local primary alpha-phase remelting resulting from convection are responsible for stray grain formation at the reentrant corners. Preliminary results from a numerical model, which includes solidification shrinkage and thermosolutal convection in the mushy zone, indicate that these regions are prone to solutal remelting of dendrites.
SolTrack: an automatic video processing software for in situ interface tracking.
Griesser, S; Pierer, R; Reid, M; Dippenaar, R
2012-10-01
High-Resolution in situ observation of solidification experiments has become a powerful technique to improve the fundamental understanding of solidification processes of metals and alloys. In the present study, high-temperature laser-scanning confocal microscopy (HTLSCM) was utilized to observe and capture in situ solidification and phase transformations of alloys for subsequent post processing and analysis. Until now, this analysis has been very time consuming as frame-by-frame manual evaluation of propagating interfaces was used to determine the interface velocities. SolTrack has been developed using the commercial software package MATLAB and is designed to automatically detect, locate and track propagating interfaces during solidification and phase transformations as well as to calculate interfacial velocities. Different solidification phenomena have been recorded to demonstrate a wider spectrum of applications of this software. A validation, through comparison with manual evaluation, is included where the accuracy is shown to be very high. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.
Solid-liquid and liquid-solid transitions in metal nanoparticles.
Hou, M
2017-02-22
The melting and solidification temperatures of nanosystems may differ by several hundred Kelvin. To understand the origin of this difference, transitions in small metallic nanoparticles on the atomic scale were analyzed using molecular dynamics (MD). Palladium was used as a case study, which was then extended to a range of other elemental metals. It was argued that in realistic environments, such as gases at low pressure (of the order of 1 mbar), heat transfers allow the microcanonical thermal equilibrium evolution of the nanoparticles between successive collisions with gas atoms. This is shown to have no significant influence on the mechanism of melting, whereas in an isolated nanoparticle, solidification triggers a huge and rapid increase in temperature. A simple relationship between the melting and solidification temperatures was found, indicating that the magnitude of the latent heat of melting governs undercooling. Whereas melting occurs via heterogeneous nucleation, solidification displays characteristics of spinodal decomposition. Consistently, the melting temperature scales with the surface-to-volume ratio, whereas the solidification temperature displays no significant dependence on the particle size.
NASA Astrophysics Data System (ADS)
Nguyen Thi, H.; Jamgotchian, H.; Gastaldi, J.; Härtwig, J.; Schenk, T.; Klein, H.; Billia, B.; Baruchel, J.; Dabo, Y.
2003-05-01
During directional solidification of a binary alloy, the solid-liquid interface exhibits a variety of patterns that are due to the Mullins-Sekerka instability and governed by the growth conditions. It is well known that properties of the grown material are largely controlled by the microstructures left in the solid during processing. Thus, a precise mastering of the solidification is essential to tailor products in a reproducible fashion to a specified quality. One major difficulty for this study is the real-time and in situ observation of the interface, especially for metallic alloys. A possibility is to use an intense and coherent third generation x-ray beam. By combining different x-ray imaging techniques (absorption/phase contrast radiography and diffraction topography), we have studied the directional melting and solidification of aluminium-based alloys. The preliminary results show the great potential of these techniques for the study of the coupling between stress effects and microstructure formation in solidification processing.
Time-Resolved Records of Magnetic Activity on the Pallasite Parent Body and Psyche
NASA Astrophysics Data System (ADS)
Bryson, J. F. J.; Nichols, C. I. O.; Herrero-Albillos, J.; Kronast, F.; Kasama, T.; Alimadadi, H.; van der Laan, G.; Nimmo, F.; Harrison, R. J.
2014-12-01
Although many small bodies apparently generated dynamo fields in the early solar system, the nature and temporal evolution of these fields has remained enigmatic. Time-resolved records of the Earth's planetary field have been essential in understanding the dynamic history of our planet, and equivalent information from asteroids could provide a unique insight into the development of the solar system. Here we present time-resolved records of magnetic activity on the main-group pallasite parent body and (16) Psyche, obtained using newly-developed nanomagnetic imaging techniques. For the pallasite parent body, the inferred field direction remained relatively constant and the intensity was initially stable at ~100 μT before it decreased in two discrete steps down to 0 μT. We interpret this behaviour as due to vigorous dynamo activity driven by compositional convection in the core, ultimately transitioning from a dipolar to multipolar field as the inner core grew from the bottom-up. For Psyche (measured from IVA iron meteorites), the inferred field direction reversed, while the intensity remained stable at >50 μT. Psyche cooled rapidly as an unmantled core, although the resulting thermal convection alone cannot explain these observations. Instead, this behaviour required top-down core solidification, and is attributed either to compositional convection (if the core also solidified from the bottom-up) or convection generated directly by top-down solidification (e.g. Fe-snow). The mechanism governing convection in small body cores is an open question (due partly to uncertainties in the direction of core solidification), and these observations suggest that unconventional (i.e. not thermal) mechanisms acted in the early solar system. These mechanisms are very efficient at generating convection, implying a long-lasting and widespread epoch of dynamo activity among small bodies in the early solar system.
Segregation effects during solidification in weightless melts
NASA Technical Reports Server (NTRS)
Li, C.; Gershinsky, M.
1974-01-01
The generalized problem of determining the temperature and solute concentration profiles during directional solidification of binary alloys with surface evaporation was mathematically formulated. Realistic initial and boundary conditions were defined, and a computer program was developed and checked out. The programs computes the positions of two moving boundaries, evaporation and solidification, and their velocities. Temperature and solute concentration profiles in the semiinfinite material body at selected instances of time are also computed.
Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials.
Jin, Yifei; Compaan, Ashley; Chai, Wenxuan; Huang, Yong
2017-06-14
Additive manufacturing (AM) enables the freeform fabrication of complex structures from various build materials. The objective of this study is to develop a novel Laponite nanoclay-enabled "printing-then-solidification" additive manufacturing approach to extrude complex three-dimensional (3D) structures made of various liquid build materials. Laponite, a member of the smectite mineral family, is investigated to serve as a yield-stress support bath material for the extrusion printing of liquid build materials. Using the printing-then-solidification approach, the printed structure remains liquid and retains its shape with the help of the Laponite support bath. Then the completed liquid structures are solidified in situ by applying suitable cross-linking mechanisms. Finally, the solidified structures are harvested from the Laponite nanoclay support bath for any further processing as needed. Due to its chemical and physical stability, liquid build materials with different solidification/curing/gelation mechanisms can be fabricated in the Laponite bath using the printing-then-solidification approach. The feasibility of the proposed Laponite-enabled printing-then-solidification approach is demonstrated by fabricating several complicated structures made of various liquid build materials, including alginate with ionic cross-linking, gelatin with thermal cross-linking, and SU-8 with photo-cross-linking. During gelatin structure printing, living cells are included and the postfabrication cell viability is above 90%.
NASA Astrophysics Data System (ADS)
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; Fattebert, Jean-Luc; McKeown, Joseph T.
2018-01-01
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu-Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid-liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu-Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying from ˜0.1 to ˜0.6 m s-1. After an ‘incubation’ time, the velocity of the planar solid-liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Finally, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid-liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu–Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid–liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu–Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying frommore » ~0.1 to ~0.6 m s –1. After an 'incubation' time, the velocity of the planar solid–liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Lastly, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid–liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).« less
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; ...
2017-12-05
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu–Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid–liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu–Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying frommore » ~0.1 to ~0.6 m s –1. After an 'incubation' time, the velocity of the planar solid–liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Lastly, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid–liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).« less
NASA Astrophysics Data System (ADS)
Kadoi, Kota; Shinozaki, Kenji
2017-12-01
The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (Δ T) calculated by solidification simulation based on Scheil model. Δ T increased with increasing content of alloying elements such as niobium. The distribution of Δ T was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in Δ T and the segregation behavior of niobium with the chemical composition.
NASA Astrophysics Data System (ADS)
Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang
2018-03-01
The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.
Containerless solidification of BiFeO3 oxide under microgravity
NASA Astrophysics Data System (ADS)
Yu, Jianding; Arai, Yasutomo; Koshikawa, Naokiyo; Ishikawa, Takehito; Yoda, Shinichi
1999-07-01
Containerless solidification of BiFeO3 oxide has been carried out under microgravity with Electrostatic Levitation Furnace (ELF) aboard on the sounding rocket (TR-IA). It is a first containerless experiment using ELF under microgravity for studying the solidification of oxide insulator material. Spherical BiFeO3 sample with diameter of 5mm was heated by two lasers in oxygen and nitrogen mixing atmosphere, and the sample position by electrostatic force under pinpoint model and free drift model. In order to compare the solidification behavior in microgravity with on ground, solidification experiments of BiFeO3 in crucible and drop tube were carried out. In crucible experiment, it was very difficult to get single BiFeO3 phase, because segregation of Fe2O3 occured very fast and easily. In drop tube experiment, fine homogeneous BiFeO3 microstructure was obtained in a droplet about 300 μm. It implies that containerless processing can promote the phase selection in solidification. In microgravity experiment, because the heating temperature was lower than that of estimated, the sample was heated into Fe2O3+liquid phase region. Fe2O3 single crystal grew on the surface of the spherical sample, whose sample was clearly different from that observed in ground experiments.
Fundamental Studies of Solidification in Microgravity Using Real-Time X-Ray Microscopy
NASA Technical Reports Server (NTRS)
Curreri, Peter A.; Kaukler, William; Sen, Subhayu; Bhat, Biliyar N.
1999-01-01
This research applies a state of the art X-ray Transmission Microscope, XTM, to image (with resolutions up to 3 micrometers) the solidification of metallic or semiconductor alloys in real-time. We have successfully imaged in real-time: interfacial morphologies, phase growth, coalescence, incorporation of phases into the growing interface, and the solute boundary layer in the liquid at the solid-liquid interface. We have also measured true local growth rates and can evaluate segregation structures in the solid; a form of in-situ metallography. During this study, the growth of secondary phase fibers and lamellae from eutectic and monotectic alloys have been imaged during solidification, in real-time, for the first time in bulk metal alloys. Current high resolution X-ray sources and high contrast X-ray detectors have advanced to allow systematic study of solidification dynamics and the resulting microstructure. We have employed a state-of-the-art sub-micron source with acceleration voltages of 10-100 kV to image solidification of metals. One useful strength of the XTM stems from the manner an image is formed. The radiographic image is a shadow formed by x-ray photons that are not absorbed as they pass through the specimen. Composition gradients within the specimen cause variations in absorption of the flux such that the final image represents a spatial integral of composition (or thickness). The ability to image these features in real-time enables more fundamental and detailed understanding of solidification dynamics than has previously been possible. Hence, application of this technique towards microgravity experiments will allow rigorous testing of critical solidification models.
Recent Improvement Of The Institutional Radioactive Waste Management System In Slovenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sueiae, S.; Fabjan, M.; Hrastar, U.
2008-07-01
The task of managing institutional radioactive waste was assigned to the Slovenian National Agency for Radwaste Management by the Governmental Decree of May 1999. This task ranges from the collection of waste at users' premises to the storage in the Central Storage Facility in (CSF) and afterwards to the planned Low and Intermediate Level Waste (LILW) repository. By this Decree ARAO also became the operator of the CSF. The CSF has been in operation since 1986. Recent improvements of the institutional radioactive waste management system in Slovenia are presented in this paper. ARAO has been working on the reestablishment ofmore » institutional radioactive waste management since 1999. The Agency has managed to prepare the most important documents and carry out the basic activities required by the legislation to assure a safe and environmentally acceptable management of the institutional radioactive waste. With the aim to achieve a better organized operational system, ARAO took the advantage of the European Union Transition Facility (EU TF) financing support and applied for the project named 'Improvement of the management of institutional radioactive waste in Slovenia via the design and implementation of an Information Business System'. Through a public invitation for tenders one of the Slovenian largest software company gained the contract. Two international radwaste experts from Belgium were part of their project team. The optimization of the operational system has been carried out in 2007. The project was executed in ten months and it was divided into two phases. The first phase of the project was related with the detection of weaknesses and implementation of the necessary improvements in the current ARAO operational system. With the evaluation of the existing system, possible improvements were identified. In the second phase of the project the software system Information Business System (IBS) was developed and implemented by the group of IT experts. As a software development life-cycle methodology the Waterfall methodology was used. The reason for choosing this methodology lied in its simple approach: analyze the problem, design the solution, implement the code, test the code, integrate and deploy. ARAO's institutional radioactive waste management process was improved in the way that it is more efficient, better organized, allowing traceability and availability of all documents and operational procedures within the field of institutional radioactive waste. The tailored made IBS system links all activities of the institutional radioactive waste management process: collection, transportation, takeover, acceptance, storing, treatment, radiation protection, etc. into one management system. All existing and newly designed evidences, operational procedures and other documents can be searched and viewed via secured Internet access from different locations. (authors)« less
A laboratory model for solidification of Earth's core
NASA Astrophysics Data System (ADS)
Bergman, Michael I.; Macleod-Silberstein, Marget; Haskel, Michael; Chandler, Benjamin; Akpan, Nsikan
2005-11-01
To better understand the influence of rotating convection in the outer core on the solidification of the inner core we have constructed a laboratory model for solidification of Earth's core. The model consists of a 15 cm radius hemispherical acrylic tank concentric with a 5 cm radius hemispherical aluminum heat exchanger that serves as the incipient inner core onto which we freeze ice from salt water. Long exposure photographs of neutrally buoyant particles in illuminated planes suggest reduction of flow parallel to the rotation axis. Thermistors in the tank near the heat exchanger show that in experiments with rotation the temperature near the pole is lower than near the equator, unlike for control experiments without rotation or with a polymer that increases the fluid viscosity. The photographs and thermistors suggest that our observation that ice grows faster near the pole than near the equator for experiments with rotation is a result of colder water not readily convecting away from the pole. Because of the reversal of the thermal gradient, we expect faster equatorial solidification in the Earth's core. Such anisotropy in solidification has been suggested as a cause of inner core elastic (and attenuation) anisotropy, though the plausibility of this suggestion will depend on the core Nusselt number and the slope of the liquidus, and the effects of post-solidification deformation. Previous experiments on hexagonal close-packed alloys such as sea ice and zinc-tin have shown that fluid flow in the melt can result in a solidification texture transverse to the solidification direction, with the texture depending on the nature of the flow. A comparison of the visualized flow and the texture of columnar ice crystals in thin sections from these experiments confirms flow-induced transverse textures. This suggests that the convective pattern at the base of the outer core is recorded in the texture of the inner core, and that outer core convection might contribute to the complexity in the seismically inferred pattern of anisotropy in the Earth's inner core.
PREFACE: Third International Conference on Advances in Solidification Processes (ICASP - 3)
NASA Astrophysics Data System (ADS)
Zimmermann, Gerhard; Ratke, Lorenz
2012-01-01
The 3rd International Conference on Advances in Solidification Processes was held in the Rolduc Abbey in the Netherlands a few kilometres away from Aachen. Around 200 scientists from 24 countries come in for the four day meeting. They found a stimulating but also relaxing environment and atmosphere, with beautiful weather and the medieval abbey inviting for walks, discussions, sitting outside and drinking a beer or wine. The contributions given at the conference reflected recent advances in various topics of solidification processes, ranging from fundamental aspects to applied casting technologies. In 20 oral sessions and a large poster session innovative results of segregation phenomena, microstructure evolution, nucleation and growth, phase formation, polyphase solidification, rapid solidification and welding, casting technology, thermophysics of molten alloys, solidification with forced melt flow and growth of single crystals and superalloys together with innovative diagnostic techniques were presented. Thereby, findings from experiments as well as from numerical modeling on different lengths scales were jointly discussed and contribute to new insight in solidification behaviour. The papers presented in this open access proceedings cover about half the oral and poster presentations given. They were carefully reviewed as in classical peer reviewed journals by two independent referees and most of them were revised and thus improved according to the reviewers comments. We think that this collection of papers presented at ICASP-3 gives an impression of the excellent contributions made. The papers embrace both the basic and applied aspects of solidification. We especially wish to express our appreciation for the team around Georg Schmitz and Margret Nienhaus organising this event and giving us their valued advice and support at every stage in preparing the conference. We also thank Lokasenna Lektorat for taking the task of checking all language-associated issues and fixing the papers according to the templates given by IOP Conference Series. We also wish to express our gratitude to the IOP Conference Series publishers, who were always helpful and patient with us. Conference photograph
NASA Astrophysics Data System (ADS)
Nguyen-Thi, H.; Reinhart, G.; Salloum Abou Jaoude, G.; Mathiesen, R. H.; Zimmermann, G.; Houltz, Y.; Voss, D.; Verga, A.; Browne, D. J.; Murphy, A. G.
2013-07-01
As most of the phenomena involved during the growth of metallic alloys from the melt are dynamic, in situ and time-resolved X-ray imaging should be retained as the method of choice for investigating the solidification front evolution. On Earth, the gravity force is the major source of various disturbing effects (natural convection, buoyancy/sedimentation, and hydrostatic pressure) which can significantly modify or mask certain physical mechanisms. Therefore solidification under microgravity is an efficient way to eliminate such perturbations to provide unique benchmark data for the validation of models and numerical simulations. Up to now, in situ observation during microgravity solidification experiments were limited to the investigations on transparent organic alloys, using optical methods. On the other hand, in situ observation on metallic alloys generally required synchrotron facilities. This paper reports on a novel facility we have designed and developed to investigate directional solidification on metallic alloys in microgravity conditions with in situ X-ray radiography observation. The facility consists of a Bridgman furnace and an X-ray radiography device specifically devoted to the study of Al-based alloys. An unprecedented experiment was recently performed on board a sounding rocket, with a 6 min period of microgravity. Radiographs were successfully recorded during the entire experiment including the melting and solidification phases of the sample, with a Field-of-View of about 5 mm×5 mm, a spatial resolution of about 4 µm and a frequency of 2 frames per second. Some preliminary results are presented on the solidification of the Al-20 wt% Cu sample, which validate the apparatus and confirm the potential of in situ X-ray characterization for the investigation of dynamical phenomena in materials processing, and particularly for the studying of metallic alloys solidification.
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Danilov, D. A.
2004-05-01
The interface stability against small perturbations of the planar solid-liquid interface is considered analytically in linear approximation. Following the analytical procedure of Trivedi and Kurz [
Growth of Solid Solution Single Crystals
NASA Technical Reports Server (NTRS)
Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.
2001-01-01
The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.
NASA Astrophysics Data System (ADS)
Ares, A. E.; Gassa, L. M.; Gueijman, S. F.; Schvezov, C. E.
2008-04-01
The columnar to equiaxed transition (CET) has been examined for many years and the significance of CET has been treated in several articles. Experimental observations in different alloy systems have shown that the position of the transition is dependent on parameters like cooling rate, velocity of the liquidus and solidus fronts, local solidification time, temperature gradients and recalescence. The dendritic structure in alloys results in microsegregation of solute species which affects significantly the mechanical properties of the material. The main parameters characterizing the microstructure and the length range of microsegregation is the spacing which is classified as primary, secondary and tertiary. Properties like mechanical resistance and ductility are influenced by the dimensions and continuity of the primary branches, while the secondary and tertiary branches permit the isolation of interdendritic phases which can deteriorate the mechanical behavior of the material. Since the morphology and dimensions of the dendritic structure is related to the solidification parameters mentioned above, for each type of alloy it is essential to correlate dimensions and solidification conditions in order to control the structure. The objective of the present research consists on studying the influence of solidification thermal parameters with the type of structure (columnar, equiaxial or with the CET); and with grain size and dendritic spacing (primary and secondary) in Zn-Al (ZA) alloys (Zn—4 wt%Al, Zn—16 wt%Al and Zn—27 wt%Al, weight percent). Also, correlate the thermal parameters, type of structure, grain size and dendritic spacing with the corrosion resistance of these alloys.
Materials for the Study of Interesting Phenomena of Solidification on Earth and in Orbit (MEPHISTO)
NASA Technical Reports Server (NTRS)
1987-01-01
The MEPHISTO experiment is a cooperative American and French investigation of the fundamentals of crystal growth. MEPHISTO is a French-designed and built materials processing furnace. MEPHISTO experiments study solidation (also called freezing) during the growth cycle of liquid materials used for semiconductor crystals. Solidification is the process where materials change from liquid (melt) to solid. An example of the solidification process is water changing into ice.
Rapid solidification of metallic particulates
NASA Technical Reports Server (NTRS)
Grant, N. J.
1982-01-01
In order to maximize the heat transfer coefficient the most important variable in rapid solidification is the powder particle size. The finer the particle size, the higher the solidification rate. Efforts to decrease the particle size diameter offer the greatest payoff in attained quench rate. The velocity of the liquid droplet in the atmosphere is the second most important variable. Unfortunately the choices of gas atmospheres are sharply limited both because of conductivity and cost. Nitrogen and argon stand out as the preferred gases, nitrogen where reactions are unimportant and argon where reaction with nitrogen may be important. In gas atomization, helium offers up to an order of magnitude increase in solidification rate over argon and nitrogen. By contrast, atomization in vacuum drops the quench rate several orders of magnitude.
NASA Astrophysics Data System (ADS)
Bai, Xiaolong; Ban, Boyuan; Li, Jingwei; Peng, Zhijian; Chen, Jian
2018-03-01
Distribution behavior of B and P during directional solidification of Al-20Si, Al-30Si and Al-40Si alloys has been investigated. Macrostructure of the Al-Si alloy ingots and concentration profile of elements B and P reveal that the elements segregate to eutectic Al-Si melt during growth of primary Si flakes, and P gradually segregates to the top of the ingots during directional solidification. An apparent segregation coefficient, ka, is introduced to describe the segregation behavior of B and P between the primary Si and the Al-Si melt and compared with thermodynamic theoretical equilibrium coefficients. The apparent segregation coefficients of B and P decrease with increase of solidification temperature.
HLRW management during MR reactor decommissioning in NRC 'Kurchatov Institute'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesnokov, Alexander; Ivanov, Oleg; Kolyadin, Vyacheslav
2013-07-01
A program of decommissioning of MR research reactor in the Kurchatov institute started in 2008. The decommissioning work presumed a preliminary stage, which included: removal of spent fuel from near reactor storage; removal of spent fuel assemble of metal liquid loop channel from a core; identification, sorting and disposal of radioactive objects from gateway of the reactor; identification, sorting and disposal of radioactive objects from cells of HLRW storage of the Kurchatov institute for radwaste creating form the decommissioning of MR. All these works were performed by a remote controlled means with use of a remote identification methods of highmore » radioactive objects. A distribution of activity along high radiated objects was measured by a collimated radiometer installed on the robot Brokk-90, a gamma image of the object was registered by gamma-visor. Spectrum of gamma radiation was measured by a gamma locator and semiconductor detector system. For identification of a presence of uranium isotopes in the HLRW a technique, based on the registration of characteristic radiation of U, was developed. For fragmentation of high radiated objects was used a cold cutting technique and dust suppression system was applied for reduction of volume activity of aerosols in air. The management of HLRW was performed by remote controlled robots Brokk-180 and Brokk-330. They executed sorting, cutting and parking of high radiated part of contaminated equipment. The use of these techniques allowed to reduce individual and collective doses of personal performed the decommissioning. The average individual dose of the personnel was 1,9 mSv/year in 2011, and the collective dose is estimated by 0,0605 man x Sv/year. Use of the remote control machines enables reducing the number of working personal (20 men) and doses. X-ray spectrometric methods enable determination of a presence of the U in high radiated objects and special cans and separation of them for further spent fuel inspection. The sorting of radwaste enabled shipping of the LLRW and ILRW to special repositories and keeping of the HLRW for decay in the Kurchatov institute repository. (authors)« less
1994-07-10
TEMPUS, an electromagnetic levitation facility that allows containerless processing of metallic samples in microgravity, first flew on the IML-2 Spacelab mission. The principle of electromagnetic levitation is used commonly in ground-based experiments to melt and then cool metallic melts below their freezing points without solidification occurring. The TEMPUS operation is controlled by its own microprocessor system; although commands may be sent remotely from the ground and real time adjustments may be made by the crew. Two video cameras, a two-color pyrometer for measuring sample temperatures, and a fast infrared detector for monitoring solidification spikes, will be mounted to the process chamber to facilitate observation and analysis. In addition, a dedicated high-resolution video camera can be attached to the TEMPUS to measure the sample volume precisely.
Undercooling, Liquid Separation and Solidification of Cu-Co Alloys
NASA Technical Reports Server (NTRS)
Robinson, M. B.; Li, D.; Rathz, J.; Williams, G.
1998-01-01
Large undercooling can induce not only various solidification pathways, but also a precursor reaction, or liquid separation. This paper deals with the latter effect of undercooling using examples of the Cu-Co system which has a flattened liquidus. Bulk Cu-Co alloys (about 7mm diameter) at compositions ranging from 10 to 90 wt pct Co were highly undercooled using a fluxing technique. Except for Cu-90 wt pct Co, liquid separation was directly observed as undercooling exceeded a critical value depending on the composition. It was also confirmed by a microstructural transition from dendrites to droplets above the critical undercooling. Finally, theoretical calculations regarding the metastable miscibility boundary and maximum droplet radius were made to analyze the experimental results.
Formation of metallic and metallic-glass hollow spheres and their solidification characteristics
NASA Technical Reports Server (NTRS)
Lee, M. C.
1985-01-01
Various metals and metallic glass systems have bene processed into hollow spheres with sizes ranging from 3 mm to 440 microns in diameter. The technique for the formation of the large hollow spheres, in general, is based on the fluid-dynamic instability of a hollow annular jet. A refined technique has also been developed for microshell formation, in which discrete bubbles are injected into the stream of the molten material and individually 'flushed' out at a frequency related to the Rayleigh jet instability. The surfaces of those spheres of all sizes exhibit a range of contrasting solidification behaviors and characteristics. Metal shells of varying materials, sizes, aspect ratios, sphericity and concentricity have many useful and novel applications.
NASA Astrophysics Data System (ADS)
Meier, D.; Lukin, G.; Thieme, N.; Bönisch, P.; Dadzis, K.; Büttner, L.; Pätzold, O.; Czarske, J.; Stelter, M.
2017-03-01
This paper describes novel equipment for model experiments designed for detailed studies on electromagnetically driven flows as well as solidification and melting processes with low-melting metals in a square-based container. Such model experiments are relevant for a validation of numerical flow simulation, in particular in the field of directional solidification of multi-crystalline photovoltaic silicon ingots. The equipment includes two square-shaped electromagnetic coils and a melt container with a base of 220×220 mm2 and thermostat-controlled heat exchangers at top and bottom. A system for dual-plane, spatial- and time-resolved flow measurements as well as for in-situ tracking of the solid-liquid interface is developed on the basis of the ultrasound Doppler velocimetry. The parameters of the model experiment are chosen to meet the scaling laws for a transfer of experimental results to real silicon growth processes. The eutectic GaInSn alloy and elemental gallium with melting points of 10.5 °C and 29.8 °C, respectively, are used as model substances. Results of experiments for testing the equipment are presented and discussed.
Nucleation rates of Sn in undercooled Sn-Ag-Cu flip-chip solder joints
NASA Astrophysics Data System (ADS)
Arfaei, B.; Benedict, M.; Cotts, E. J.
2013-11-01
The nucleation of Sn from the melt in commercial SnAgCu flip chip solder joints was monitored at a number of different temperatures. Nucleation rates were estimated from measurements of nucleation times for 440 solder balls after one reflow and were found to be well epitomized by the expression I = 2 × 109 exp[(-1.6 × 105)/(T × (ΔT)2)] m-3 s-1, as per classical nucleation theory. After an additional reflow, the nucleation rates of the same 440 samples were observed to increase to I = 2 × 109 exp[(-8.9 × 104)/(T × (ΔT)2)] m-3 s-1. Thus it was shown that the expressions of classical nucleation theory well characterize nucleation kinetics for this system. These changes in nucleation kinetics were correlated with continued dissolution of Al and Ni in to the SnAgCu melt. Such increases in nucleation rates meant increases in the average solidification temperatures of the solder balls after reflow. Variations in the Sn grain morphology of the solder joints were correlated with these changes in solidification temperature, with larger Sn grains (beach ball Sn grain morphology) observed at higher solidification temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, J.; Mazumder, J.
1996-12-31
Networking three fields of welding--thermal, microstructure, and stress--was attempted and produced a reliable model using a numerical method with the finite element analysis technique. Model prediction was compared with experimental data in order to validate the model. The effects of welding process parameters on these welding fields were analyzed and reported. The effort to correlate the residual stress and solidification was initiated, with some valuable results. The solidification process was simulated using the formulation based on the Hunt-Trivedi model. Based on the temperature history, solidification speed and primary dendrite arm spacing were predicted at given nodes of interest. Results showmore » that the variation during solidification is usually within an order of magnitude. The temperature gradient was generally in the range of 10{sup 4}--10{sup 5} K/m for the given welding conditions (welding power = 6 kW and welding speed = 3.3867 to 7.62 mm/sec), while solidification speed appeared to slow down from an order of 10{sup {minus}1} to 10{sup {minus}2} m/sec during solidification. SEM images revealed that the primary dendrite arm spacing (PDAS) fell in the range of 10{sup 1}--10{sup 2} {micro}m. For grain growth at the heat affected zone (HAZ), Ashby`s model was employed. The prediction was in agreement with experimental results. For the residual stress calculation, the same mesh generation used in the heat transfer analysis was applied to make the simulation consistent. The analysis consisted of a transient heat analysis followed by a thermal stress analysis. An experimentally measured strain history was compared with the simulated result. The relationship between microstructure and the stress/strain field of welding was also obtained. 64 refs., 18 figs., 9 tabs.« less
Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification
NASA Technical Reports Server (NTRS)
Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.
1999-01-01
Solidification experiments, especially microgravity solidification experiments are often hampered by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there are currently no effective means of preventing their formation or eliminating their adverse effects, particularly, during low-g experiments. Marangoni Convection caused by these voids can drastically change the transport processes in the melt and, therefore, introduce enormous difficulties in interpreting the results of the space investigations. Recent microgravity experiments by Matthiesen, Andrews, and Fripp are all good examples of how the presence of voids and bubbles affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. In this work we examine mixing caused by Marangoni convection generated by voids and bubbles in the melt during both 1-g and low-g solidification experiments. The objective of the research is to perform a detailed and comprehensive combined numerical-experimental study of Marangoni convection caused by voids during the solidification process and to show how it can affect segregation and growth conditions by modifying the flow, temperature, and species concentration fields in the melt. While Marangoni convection generated by bubbles and voids in the melt can lead to rapid mixing that would negate the benefits of microgravity processing, it could be exploited in some terrestrial processing to ensure effective communication between a melt/solid interface and a gas phase stoichiometry control zone. Thus we hope that this study will not only aid us in interpreting the results of microgravity solidification experiments hampered by voids and bubbles but to guide us in devising possible means of minimizing the adverse effects of Marangoni convection in future space experiments or of exploiting its beneficial mixing features in ground-based solidification.
Solute redistribution in dendritic solidification with diffusion in the solid
NASA Technical Reports Server (NTRS)
Ganesan, S.; Poirier, D. R.
1989-01-01
An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.
NASA Astrophysics Data System (ADS)
Ojha, Akash; Samantaray, Mihir; Nath Thatoi, Dhirendra; Sahoo, Seshadev
2018-03-01
Direct Metal Laser Sintering (DMLS) process is a laser based additive manufacturing process, which built complex structures from powder materials. Using high intensity laser beam, the process melts and fuse the powder particles makes dense structures. In this process, the laser beam in terms of heat flux strikes the powder bed and instantaneously melts and joins the powder particles. The partial solidification and temperature distribution on the powder bed endows a high cooling rate and rapid solidification which affects the microstructure of the build part. During the interaction of the laser beam with the powder bed, multiple modes of heat transfer takes place in this process, that make the process very complex. In the present research, a comprehensive heat transfer and solidification model of AlSi10Mg in direct metal laser sintering process has been developed on ANSYS 17.1.0 platform. The model helps to understand the flow phenomena, temperature distribution and densification mechanism on the powder bed. The numerical model takes into account the flow, heat transfer and solidification phenomena. Simulations were carried out for sintering of AlSi10Mg powders in the powder bed having dimension 3 mm × 1 mm × 0.08 mm. The solidification phenomena are incorporated by using enthalpy-porosity approach. The simulation results give the fundamental understanding of the densification of powder particles in DMLS process.
Development and Processing of Nickel Aluminide-Carbide Alloys
NASA Technical Reports Server (NTRS)
Newport, Timothy Scott
1996-01-01
With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system: arc-melting, slow cooling, and containerless directional solidification. Arc-melting provided a wide range of compositions in an economical and simple fashion. The slow cooled ingots provided larger ingots and slower cooling rates than arc-melting. Directional solidification was used to produce in-situ composites consisting of NiAl reinforced with molybdenum carbides.
SOLIDIFICATION/STABILIZATION CASE STUDIES AT USEPA SUPERFUND SITES
Oral presentation dicumenting several completed Superfund remediations using solidification/stabilization, both in situ and ex-situ, to treat soils containing metals and organics.
65 slide presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, A.; Chadwick, T.; Makhlouf, M.
This paper deals with the effects of various solidification variables such as cooling rate, temperature gradient, solidification rate, etc. on the microstructure and shrinkage defects in aluminum alloy (A356) castings. The effects are first predicted using commercial solidification modeling softwares and then verified experimentally. For this work, the authors are considering a rectangular bar cast in a sand mold. Simulation is performed using SIMULOR, a finite volume based casting simulation program. Microstructural variables such as dendritic arm spacing (DAS) and defects (percentage porosity) are calculated from the temperature fields, cooling rate, solidification time, etc. predicted by the computer softwares. Themore » same variables are then calculated experimentally in the foundry. The test piece is cast in a resin (Sodium Silicate) bonded sand mold and the DAS and porosity variables are calculated using Scanning Electron Microscopy and Image Analysis. The predictions from the software are compared with the experimental results. The results are presented and critically analyzed to determine the quality of the predicted results. The usefulness of the commercial solidification modeling softwares as a tool for the foundry are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, J.C.; Shin, W.K.; Choi, C.Y.
Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach providedmore » in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available.« less
NASA Astrophysics Data System (ADS)
Stan, S.; Chisamera, M.; Riposan, I.; Neacsu, L.; Cojocaru, A. M.; Stan, I.
2017-06-01
With the more widespread adoption of thermal analysis testing, thermal analysis data have become an indicator of cast iron quality. The cooling curve and its first derivative display patterns that can be used to predict the characteristics of a cast iron. An experimental device was developed with a technique to simultaneously evaluate cooling curves and expansion or contraction of cast metals during solidification. Its application is illustrated with results on shrinkage tendency of ductile iron treated with FeSiMgRECa master alloy and inoculated with FeSi based alloys, as affected by mould rigidity (green sand and resin sand moulds). Undercooling at the end of solidification relative to the metastable (carbidic) equilibrium temperature and the expansion within the solidification sequence appear to have a strong influence on the susceptibility to macro - and micro - shrinkage in ductile iron castings. Green sand moulds, as less rigid moulds, encourage the formation of contraction defects, not only because of high initial expansion values, but also because of a higher cooling rate during solidification, and consequently, increased undercooling below the metastable equilibrium temperature up to the end of solidification.
Overview of the Tusas Code for Simulation of Dendritic Solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trainer, Amelia J.; Newman, Christopher Kyle; Francois, Marianne M.
2016-01-07
The aim of this project is to conduct a parametric investigation into the modeling of two dimensional dendrite solidification, using the phase field model. Specifically, we use the Tusas code, which is for coupled heat and phase-field simulation of dendritic solidification. Dendritic solidification, which may occur in the presence of an unstable solidification interface, results in treelike microstructures that often grow perpendicular to the rest of the growth front. The interface may become unstable if the enthalpy of the solid material is less than that of the liquid material, or if the solute is less soluble in solid than itmore » is in liquid, potentially causing a partition [1]. A key motivation behind this research is that a broadened understanding of phase-field formulation and microstructural developments can be utilized for macroscopic simulations of phase change. This may be directly implemented as a part of the Telluride project at Los Alamos National Laboratory (LANL), through which a computational additive manufacturing simulation tool is being developed, ultimately to become part of the Advanced Simulation and Computing Program within the U.S. Department of Energy [2].« less
Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study
NASA Astrophysics Data System (ADS)
Wang, Lei; Wei, Yanhong
2018-02-01
A phase field model is developed to predict curved dendrite growth in the gas tungsten arc (GTA) welding pool of an Al-Cu alloy. The equations of temperature gradient, pulling velocity and dendrite growth orientation are proposed to consider the transient solidification process during welding. Solidification microstructures and solute diffusion along the fusion boundary in the welding pool are predicted by using the phase field model coupled with transient solidification conditions. Predicted primary dendrites are curved and point toward the welding direction. Welding experiments are carried out to observe solidification microstructures of the weld. Comparisons of simulation results with experimental measurements are conducted. Predicted dendritic morphology, dendrite growth orientation, primary dendrite arm spacing and initial cell spacing give a good agreement with experimental measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, S. L., E-mail: sobolev@icp.ac.ru
An analytical model has been developed to describe the influence of solute trapping during rapid alloy solidification on the components of the Gibbs free energy change at the phase interface with emphasis on the solute drag energy. For relatively low interface velocity V < V{sub D}, where V{sub D} is the characteristic diffusion velocity, all the components, namely mixing part, local nonequilibrium part, and solute drag, significantly depend on solute diffusion and partitioning. When V ≥ V{sub D}, the local nonequilibrium effects lead to a sharp transition to diffusionless solidification. The transition is accompanied by complete solute trapping and vanishingmore » solute drag energy, i.e. partitionless and “dragless” solidification.« less
NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Craven, Paul D.
2014-01-01
Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.
Cast B2-phase iron-aluminum alloys with improved fluidity
Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.
2002-01-01
Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.
Solidification/Stabilization Use at Superfund Sites
To provide interested stakeholders such as project managers, technology service providers, consulting engineers, site owners, and the general public with the most recent information about solidification/stabilization applications at Superfund sites...
Some Pecularities of Solidification of the Almandine Impact Melt
NASA Astrophysics Data System (ADS)
Feldman, V. I.; Kozlov, E. A.; Zhugin, Yu. N.
1996-03-01
SOME PECULIARITIES OF SOLIDIFICATION OF THE ALMANDINE IMPACT MELT. Feldman V.I. Moscow State University, Geological Faculty, Department of Petrology, 119899, Moscow, Russia. Kozlov E.A., Zhugin Yu.N. Russian Federal nuclear Center - Research Institute of Technical Physics, P.O.Box 245, 456770, Snezhinsk, Russia. The aim of these investigations is a description of the experiments and the first results of a loading of the garnet sand by spherical converging shock waves. These experiments show that impact liquid have by solidification three stage of liquid immiscibility.
An approximate formula for recalescence in binary eutectic alloys
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.
1993-01-01
In alloys, solidification takes place along various paths which may be ascertained via phase diagrams; while there would be no single formula applicable to all alloys, an approximate formula for a specific solidification path would be useful in estimating the fraction of the solid formed during recalescence. A formulation is here presented of recalescence in binary eutectic alloys. This formula is applied to Ag-Cu alloys which are of interest in containerless solidification, due to their formation of supersaturated solutions.
B Removal by Zr Addition in Electromagnetic Solidification Refinement of Si with Si-Al Melt
NASA Astrophysics Data System (ADS)
Lei, Yun; Ma, Wenhui; Sun, Luen; Dai, Yongnian; Morita, Kazuki
2016-02-01
This study investigated a new process of enhancing B removal by adding small amounts of Zr in the electromagnetic solidification refinement of Si with Si-Al melt. B in Si was removed by as much as 97.2 pct by adding less than 1057 ppma Zr, and the added Zr was removed by as much as 99.7 pct. In addition, Zr is more effective in enhancing B removal than Ti in the same electromagnetic solidification refining process.
Absence of solute drag in solidification
NASA Astrophysics Data System (ADS)
Kittl, J. A.; Aziz, M. J.; Brunco, D. P.; Thompson, M. O.
1994-05-01
The interface response functions for alloy solidification were measured in the nondegenerate regime of partial solute trapping. We used a new technique to measure temperatures and velocities simultaneously during rapid solidification of Si-As alloys induced by pulsed laser melting. In addition, partition coefficients were determined using Rutherford backscattering. The results are in good agreement with predictions of the Continuous Growth Model without solute drag of M. J. Aziz and T. Kaplan [Acta Metall. 36, 1335 (1988)] and are inconsistent with all solute drag models.
Transport processes in directional solidification and their effects on microstructure development
NASA Astrophysics Data System (ADS)
Mazumder, Prantik
The processing of materials with unique electronic, mechanical, optical and thermal properties plays a crucial role in modern technology. The quality of these materials depend strongly on the microstructures and the solute/dopant fields in the solid product, that are strongly influenced by the intricate coupling of heat and mass transfer and melt flow in the growth systems. An integrated research program is developed that include precisely characterized experiments and detailed physical and numerical modeling of the complex transport and dynamical processes. Direct numerical simulation of the solidification process is carried out that takes into account the unsteady thermo-solutal convection in the vertical Bridgman crystal growth system, and accurately models the thermal interaction between the furnace and the ampoule by appropriately using experimentally measured thermal profiles. The flow instabilities and transitions and the nonlinear evolution following the transitions are investigated by time series and flow pattern analysis. A range of complex dynamical behavior is predicted with increasing thermal Rayleigh number. The route to chaos appears as: steady convection --> transient mono-periodic --> transient bi-periodic --> transient quasiperiodic --> transient intermittent oscillation- relaxation --> stable intermittent oscillation-relaxation attractor. The spatio-temporal dynamics of the melt flow is found to be directly related to the spatial patterns observed experimentally in the solidified crystals. The application of the model to two phase Sn-Cd peritectic alloys showed that a new class of tree-like oscillating microstructure develops in the solid phase due to unsteady thermo-solutal convection in the liquid melt. These oscillating layered structures can give the illusion of band structures on a plane of polish. The model is applied to single phase solidification in the Al-Cu and Pb-Sn systems to characterize the effect of convection on the macroscopic shape and disorder in the primary arm spacing of the cellular/dendritic freezing front. The apparently puzzling experimental observation of higher disorder in the weakly convective Al-Cu system than that in the highly convective Pb-Sn system is explained by the numerical calculations.
Use of rotation to suppress thermosolutal convection in directionally solidified binary alloys
NASA Technical Reports Server (NTRS)
Pearlstein, Arne J.
1994-01-01
Effects of rotation on onset of convection during plane-front directional solidification of Pb-Sn and the pseudobinary system mercury cadmium telluride (Hg(1-x)Cd(x)Te), and on dendritic solidification of Pb-Sn have been studied by means of linear stability analysis. Incorporating Coriolis and centrifugal accelerations into the momentum equation of Coriell et al., we find that under realistic processing conditions, a large degree of stabilization can be achieved using modest rotation rates for both Pb-Sn and mercury cadmium telluride. At a growth velocity of 5 micron/sec and nominal liquid-side temperature gradient of 200 K/cm in Pb-Sn, rotation at 500 rpm results in a hundredfold increase in the critical Sn concentration. Large increases in the maximum allowable growth velocity at fixed melt composition are also attainable with modest rotation rates. The effect is amplified under conditions of reduced gravitational acceleration. For Hg(1-x)Cd(x)Te, we have also studied the nonrotating case. The key differences are due to the existence of a composition range for Hg(1-x)Cd(x)Te in which the melt density has a local maximum as a function of temperature. When the melt solidifies by cooling from below, the liquid density may initially increase with distance above the interface, before ultimately decreasing as the melt temperature increases above the value at which the local density maximum occurs. In contrast to the Pb-Sn case where density depends monotonically on temperature and composition, for Hg(1-x)Cd(x)Te there exists a critical value of the growth velocity above which plane-front solidification is unstable for all bulk CdTe mole fractions. Again, rotation leads to significant inhibition of onset. We identify the predicted stabilization with the Taylor-Proudman mechanism by which rotation inhibits thermal convection in a single-component fluid heated from below. In a binary liquid undergoing solidification, rotation inhibits the onset of buoyancy-driven convection, and has no effect on the short-wavelength morphological instability. At large growth velocities, the plane-front interface between liquid and solid becomes unstable with respect to a morphological instability and solidification occurs dendritically, with a mushy zone of dendrites and interdendritic fluid separating the solid from the melt. For the Pb-Sn system, rotation substantially suppresses the onset of convection in the mushy zone and in the overlying liquid, holding open the promise that rotation can suppress freckling and other macrosegregation defects.
Fundamentals of Alloy Solidification Applied to Industrial Processes
NASA Technical Reports Server (NTRS)
1984-01-01
Solidification processes and phenomena, segregation, porosity, gravity effects, fluid flow, undercooling, as well as processing of materials in the microgravity environment of space, now available on space shuttle flights were discussed.
A Citizen's Guide to Solidification and Stabilization
This guide describes how solidification and stabilization refer to a group of cleanup methods that prevent or slow the release of harmful chemicals from wastes, such as contaminated soil, sediment, and sludge.
Noncontact temperature measurement: Requirements and applications for metals and alloys research
NASA Technical Reports Server (NTRS)
Perepezko, J. H.
1988-01-01
Temperature measurement is an essential capability for almost all areas of metals and alloys research. In the microgravity environment many of the science priorities that have been identified for metals and alloys also require noncontact temperature measurement capability. For example, in order to exploit the full potential of containerless processing, it is critical to have available a suitable noncontact temperature measurement system. This system is needed to track continuously the thermal history, including melt undercooling and rapid recalescence, of relatively small metal spheres during free-fall motion in drop tube systems. During containerless processing with levitation-based equipment, accurate noncontact temperature measurement is required to monitor one or more quasi-static samples with sufficient spatial and thermal resolution to follow the progress of solidification fronts originating in undercooled melts. In crystal growth, thermal migration, coarsening and other experiments high resolution thermal maps would be a valuable asset in the understanding and modeling of solidification processes, fluid flows and microstructure development. The science and applications requirements place several constraints on the spatial resolution, response time and accuracy of suitable instrumentation.
NASA Technical Reports Server (NTRS)
Seidel, A.; Soellner, W.; Stenzel, C.
2012-01-01
Electromagnetic levitation under microgravity provides unique opportunities for the investigation of liquid metals, alloys and semiconductors, both above and below their melting temperatures, with minimized disturbances of the sample under investigation. The opportunity to perform such experiments will soon be available on the ISS with the EML payload which is currently being integrated. With its high-performance diagnostics systems EML allows to measure various physical properties such as heat capacity, enthalpy of fusion, viscosity, surface tension, thermal expansion coefficient, and electrical conductivity. In studies of nucleation and solidification phenomena the nucleation kinetics, phase selection, and solidification velocity can be determined. Advanced measurement capabilities currently being studied include the measurement and control of the residual oxygen content of the process atmosphere and a complementary inductive technique to measure thermophysical properties.
NASA Technical Reports Server (NTRS)
Kattamis, T. Z.
1984-01-01
Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.
Solidification of eutectic system alloys in space (M-19)
NASA Technical Reports Server (NTRS)
Ohno, Atsumi
1993-01-01
It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are cast by the Ohno Continuous Casting Process and they show the unidirectionally solidified structure. Each flight and ground sample was made of these same rods. The dimensions of all samples are 4.5 mm in diameter and 23.5 mm in length. Each sample is put in a graphite capsule and then vacuum sealed in a double silica ampoule. Then the ampoule is put in the tantalum cartridge and sealed by electron beam welding. For onbard experiments, a Continuous Heating Furnance (CHF) will be used for melting and solidifying samples under microgravity conditions. Six flight samples will be used. Four samples are hypo-eutectic and two are hyper-eutectic alloys. The surface of the two hypo-eutectic alloy samples are covered with aluminum oxide film to prevent Marangoni convection expected under microgravity conditions. Each sample will be heated to 700 C and held at that temperature for 5 min. After that the samples will be allowed to cool to 500 C in the furnace and they will be taken out of the furnace for He gas cooling. The heating and cooling diagrams for the flight experiments are shown. After collecting the flight samples, the solidified structures of the samples will be examined and the mechanisms of eutectic solidification under microgravity conditions will be determined. It is likely that successful flight experiment results will lead to production of high quality eutectic alloys and eutectic composite materials in space.
Stability of Detached Solidification
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.; Croell, A.
2009-01-01
Bridgman crystal growth can be conducted in the so-called "detached" solidification regime, where the growing crystal is detached from the crucible wall. A small gap between the growing crystal and the crucible wall, of the order of 100 micrometers or less, can be maintained during the process. A meniscus is formed at the bottom of the melt between the crystal and crucible wall. Under proper conditions, growth can proceed without collapsing the meniscus. The meniscus shape plays a key role in stabilizing the process. Thermal and other process parameters can also affect the geometrical steady-state stability conditions of solidification. The dynamic stability theory of the shaped crystal growth process has been developed by Tatarchenko. It consists of finding a simplified autonomous set of differential equations for the radius, height, and possibly other process parameters. The problem then reduces to analyzing a system of first order linear differential equations for stability. Here we apply a modified version of this theory for a particular case of detached solidification. Approximate analytical formulas as well as accurate numerical values for the capillary stability coefficients are presented. They display an unexpected singularity as a function of pressure differential. A novel approach to study the thermal field effects on the crystal shape stability has been proposed. In essence, it rectifies the unphysical assumption of the model that utilizes a perturbation of the crystal radius along the axis as being instantaneous. It consists of introducing time delay effects into the mathematical description and leads, in general, to stability over a broader parameter range. We believe that this novel treatment can be advantageously implemented in stability analyses of other crystal growth techniques such as Czochralski and float zone methods.
Spatial considerations during cryopreservation of a large volume sample.
Kilbride, Peter; Lamb, Stephen; Milne, Stuart; Gibbons, Stephanie; Erro, Eloy; Bundy, James; Selden, Clare; Fuller, Barry; Morris, John
2016-08-01
There have been relatively few studies on the implications of the physical conditions experienced by cells during large volume (litres) cryopreservation - most studies have focused on the problem of cryopreservation of smaller volumes, typically up to 2 ml. This study explores the effects of ice growth by progressive solidification, generally seen during larger scale cryopreservation, on encapsulated liver hepatocyte spheroids, and it develops a method to reliably sample different regions across the frozen cores of samples experiencing progressive solidification. These issues are examined in the context of a Bioartificial Liver Device which requires cryopreservation of a 2 L volume in a strict cylindrical geometry for optimal clinical delivery. Progressive solidification cannot be avoided in this arrangement. In such a system optimal cryoprotectant concentrations and cooling rates are known. However, applying these parameters to a large volume is challenging due to the thermal mass and subsequent thermal lag. The specific impact of this to the cryopreservation outcome is required. Under conditions of progressive solidification, the spatial location of Encapsulated Liver Spheroids had a strong impact on post-thaw recovery. Cells in areas first and last to solidify demonstrated significantly impaired post-thaw function, whereas areas solidifying through the majority of the process exhibited higher post-thaw outcome. It was also found that samples where the ice thawed more rapidly had greater post-thaw viability 24 h post-thaw (75.7 ± 3.9% and 62.0 ± 7.2% respectively). These findings have implications for the cryopreservation of large volumes with a rigid shape and for the cryopreservation of a Bioartificial Liver Device. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mandal, Nibir; Sarkar, Shamik; Baruah, Amiya; Dutta, Urmi
2018-04-01
Using an enthalpy based thermo-mechanical model we provide a theoretical evaluation of melt production beneath mid-ocean ridges (MORs), and demonstrate how the melts subsequently develop their pathways to sustain the major ridge processes. Our model employs a Darcy idealization of the two-phase (solid-melt) system, accounting enthalpy (ΔH) as a function of temperature dependent liquid fraction (ϕ). Random thermal perturbations imposed in this model set in local convection that drive melts to flow through porosity controlled pathways with a typical mushroom-like 3D structure. We present across- and along-MOR axis model profiles to show the mode of occurrence of melt-rich zones within mushy regions, connected to deeper sources by single or multiple feeders. The upwelling of melts experiences two synchronous processes: 1) solidification-accretion, and 2) eruption, retaining a large melt fraction in the framework of mantle dynamics. Using a bifurcation analysis we determine the threshold condition for melt eruption, and estimate the potential volumes of eruptible melts (∼3.7 × 106 m3/yr) and sub-crustal solidified masses (∼1-8.8 × 106 m3/yr) on an axis length of 500 km. The solidification process far dominates over the eruption process in the initial phase, but declines rapidly on a time scale (t) of 1 Myr. Consequently, the eruption rate takes over the solidification rate, but attains nearly a steady value as t > 1.5 Myr. We finally present a melt budget, where a maximum of ∼5% of the total upwelling melt volume is available for eruption, whereas ∼19% for deeper level solidification; the rest continue to participate in the sub-crustal processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.Y.; Lang, T.C.; Wei, H.J.
2007-07-01
The Fuel Cycle and Materials Administration (FCMA) in Taiwan announced a Supplementary Regulation for Classification of Low Radioactive Wastes, as well as the Regulation for Disposing of Low Radioactive Wastes and its Facility Safety Management in July 17, 1997, and September 10, 2003, respectively. The latter regulation states that in the future, before delivering low-level radioactive waste to a final land disposal site, each waste drum must specify the nuclide activity and be classified as class A, B, C or greater than C. The nuclide activity data for approximately 100,000 drums of low-level radwaste at the Lan-Yu temporary storage sitemore » accumulated in 1982-1995, therefore, must be established according to the above regulations. The original waste database at the Lan-Yu site indicates that the data were absent for about 9% and 72% of Co-60 and Cs-137 key nuclide activities, respectively. One of the principal tasks in this project was to perform whole drum gamma radioactivity analysis and contact dose rate counting to establish the relationship of dose-to-curie (D-to-C) of specific waste stream to derive gamma radioactivity of counting drums for 2 trenches repackaged at the Lan-Yu site. Utilizing regression function of Microsoft Excel and collected gamma data, a dose-to-curie relationship for the whole-drum radwaste is estimated in this study. Based on the relationship between radioactivity of various nuclides and the surface dose rate, an empirical function of the dose rate (Dose) associated with product of nuclide activity (Curie) and energy (Energy), CE is set up. Statistical data demonstrated that 838 whole drums were counted employing D-to-C approach to classify other 3,279 drums, and only the contact dose rate was detected for roughly 75% of the drums to estimate gamma radioactivity of whole drums, which can save considerable cost, time, and manpower. The 4,508 drums were classified as A and 7 drums as C after repackaging was complete. The estimation of D-to-C relationship was near 80% in those sorted drums. This methodology can provide a simple, easy and cost-effective way for inferring gamma nuclide activity. (authors)« less
Segregation and convection in dendritic alloys
NASA Technical Reports Server (NTRS)
Poirier, D. R.
1990-01-01
Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.
Positive segregation as a function of buoyancy force during steel ingot solidification.
Radovic, Zarko; Jaukovic, Nada; Lalovic, Milisav; Tadic, Nebojsa
2008-12-01
We analyze theoretically and experimentally solute redistribution in the dendritic solidification process and positive segregation during solidification of steel ingots. Positive segregation is mainly caused by liquid flow in the mushy zone. Changes in the liquid steel velocity are caused by the temperature gradient and by the increase in the solid fraction during solidification. The effects of buoyancy and of the change in the solid fraction on segregation intensity are analyzed. The relationships between the density change, liquid fraction and the steel composition are considered. Such elements as W, Ni, Mo and Cr decrease the effect of the density variations, i.e. they show smaller tendency to segregate. Based on the modeling and experimental results, coefficients are provided controlling the effects of chemical composition, secondary dendrite arm spacing and the solid fraction.
Improvements to quality of needle coke by controlled carbonized conditions
NASA Astrophysics Data System (ADS)
Liu, Dong; Lou, Bin; Yu, Ran; Chen, Qingtai; Li, Zhiheng; Zhang, Yadong
2018-06-01
In this study, the selected aromatic-rich fraction derived from hydrocracking tail oil was carbonized and further improvement in the quality of resultant coke was achieved by promoting temperature at the solidification stage. In comparison with conventional process carried out isothermally and isobarically, the coupling analysis between formation and subsequent uni-axial orientation of mesophase textures during the controlled process was systematically discussed on the basis of the mutual relevance among mesophase texture evolution, gas evolution rate and solidification rate of intermediates. The results show that on the premise that formation of bulk mesophase, appropriate rate of gas evolution at a right time of solidification contributes to fine produces fine fibrous mesophase aligned uni-axially and less pores. Moreover, the intermediates with solidification index of 2˜6 are suitable for deformation induced by gas evolution.
Solidification Dynamics of Spherical Drops in a Free Fall Environment
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Brush, Lucien N.
2006-01-01
Silver drops (99.9%, 4, 5, 7, and 9 mm diameter) were levitated, melted, and released to fall through Marshall Space Flight Center's 105 meter drop tube in helium - 6% hydrogen and pure argon atmospheres. By varying a drop s initial superheat the extent of solidification prior to impact ranged from complete to none during the approx. 4.6s of free fall time. Comparison of the experimental observations is made with numerical solutions to a model of the heat transfer and solidification kinetics associated with cooling of the drop during free fall, particularly with regard to the fraction of liquid transformed. Analysis reveals the relative importance ,of the initial parameters affecting the cooling and solidification rates within the drop. A discussion of the conditions under which the actual observations deviate from the assumptions used in the model is presented.
Solidification Dynamics of Metal Drops in a Free Fall Environment
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Brush, L. N.; Curreri, Peter A. (Technical Monitor)
2001-01-01
Comparison of experimental observations were made with numerical solutions to a model of the heat transfer and solidification kinetics associated with the cooling of a molten drop during free fall, particularly with regard to the fraction of liquid transformed. Experimentally, silver drops (99.9%, 4-9 mm diameter) were levitated, melted, and released to fall through Marshall Space Flight Center's 105m drop tube in helium - 6% hydrogen and argon atmospheres. By systematically varying the drops initial superheat the extent of solidification prior to impact ranged from complete to none during the approximately 4.6s of free fall time. Analysis reveals the relative importance of the initial parameters affecting the cooling and solidification rates within the drop. A discussion of the conditions under which the actual observations deviate from the assumptions used in the model is presented.
Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study
NASA Astrophysics Data System (ADS)
Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling
2018-02-01
A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.
Development of cement solidification process for sodium borate waste generated from PWR plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirofumi Okabe; Tatsuaki Sato; Yuichi Shoji
2013-07-01
A cement solidification process for treating sodium borate waste produced in pressurized water reactor (PWR) plants was studied. To obtain high volume reduction and high mechanical strength of the waste, simulated concentrated borate liquid waste with a sodium / boron (Na/B) mole ratio of 0.27 was dehydrated and powdered by using a wiped film evaporator. To investigate the effect of the Na/B mole ratio on the solidification process, a sodium tetraborate decahydrate reagent with a Na/B mole ratio of 0.5 was also used. Ordinary portland cement (OPC) and some additives were used for the solidification. Solidified cement prepared from powderedmore » waste with a Na/B mole ratio 0.24 and having a high silica sand content (silica sand/cement>2) showed to improved uniaxial compressive strength. (authors)« less
Sill and Laccolith growth by Inflation and Propagation--just not necessarily at the same time
NASA Astrophysics Data System (ADS)
Currier, R. M.; Marsh, B. D.
2013-12-01
Sill and laccolith growth is achieved by two key mechanisms, inflation (vertical growth) and propagation (radial growth). Of the myriad of models proposed for magmatic intrusion, all are variations on the same theme--some combination of inflation and propagation. Because of the inherent observational limitations in studying actual high-level crustal magma emplacement, there remains a poor consensus on any preferred model. To gain insight we have performed a series of simple experiments using layered gelatin as a viscoelastic crustal analog, and molten wax as magma analog. Wax is injected from the base of the gelatin mold, begins ascent as a dike, and is captured by the overlying, more rigid, layer of gelatin. The use of a solidifying magma analog separates these experiments from other gelatin-based studies. When water is used, a common choice for magma analog, the intrusion propagates in an extremely smooth manner. However, at the tip of any magma filled crack, where thickness is at a minimum, propagation and solidification are in fierce competition. The introduction of solidification reveals that emplacement actually occurs as a series of ensuing pulses--at times propagating and inflating concurrently, and at other times growth is achieved solely through propagation, or solely inflation. Unlike models without solidification, here no single combination of propagation and inflation accounts for growth, but rather, the different styles of emplacement reflect the relative competitiveness of propagation and solidification at that time and location. When propagation is fast relative to solidification, growth is smooth, and propagation and inflation occur simultaneously. When solidification dominates, propagation ceases, and growth by inflation becomes the chief emplacement mechanism. Nevertheless, regardless of the strong effect of solidification, building backpressure and the associated crack stresses can disrupt the chill zone at the sill edge, and bring on rapid propagation of magma in conjunction with overall sill deflation. Because the competitiveness of solidification increases with decreasing propagation velocity, and because propagation velocity of a growing magma body must necessarily decrease with time, these mechanisms are a fundamental feature of any magma body that grows for any extended period. Generally, larger flux rates correlate to larger radii and thinner sills. For classical laccolith formation, flux rate must be slow enough for solidification to curtail propagation at an early stage, effectively limiting radial growth and promoting further growth solely via inflation. The effects of this overall process occurs on multiple scales, and the history of the chilled margins can be clearly seen with a series of essentially ';chatter rinds' marking the staccato process of emplacement.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C., III
1999-01-01
As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.
NASA Technical Reports Server (NTRS)
Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.
1990-01-01
Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or silicon-carbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which consideres process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.
NASA Astrophysics Data System (ADS)
Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.
1990-01-01
Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or siliconcarbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which considers process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.
NASA Astrophysics Data System (ADS)
Hermann, R.; Löser, W.; Lindenkreuz, H. G.; Yang-Bitterlich, W.; Mickel, Ch.; Diefenbach, A.; Schneider, S.; Dreier, W.
2007-12-01
Soft magnetic Fe-Co alloys display primary fcc phase solidification for>19,5 at% Co in conventional near-equilibrium solidification processes. Undercooled Fe-Co melt drops within the composition range of 30 to 50 at% Co have been investigated with the electromagnetic levitation technique. The solidification kinetics was measured in situ using a high-resolution Siphotodiode. Melt drops were undercooled up to 263 K below the liquidus temperature and subsequently quenched onto a chill substrate in order to characterize the solidification sequence and microstructure. The transition from stable fcc phase to metastable bcc primary phase solidification has been observed after reaching a critical undercooling level. The critical undercooling increases with rising Co content. The growth velocity drops obviously after transition to metastable bcc phase formation. Parabolic flight experiments were performed in order to study the phase selection under reduced gravity conditions. Under microgravity conditions, a much smaller critical undercooling and an increased life time of the metastable bcc phase were obtained. This result was validated with TEM investigations. The appearance of Fe-O particles gives an indirect hint for an intermediate fcc phase formation from the metastable bcc phase at elevated temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milyutin, V.V.; Gelis, V.M.; Penzin, R.A.
1995-12-31
In this paper the results obtained in field tests of decontaminating radioactive natural and industrial solutions of different chemical and radionuclide composition from cesium and strontium radionuclides are reported. Decontamination of industrial reservoir water at the Production Association Mayak (Chelyabinsk Region, Russia) was performed using CMP synthetic zeolite. Efficient decontamination of the feed water is achieved after preliminary precipitation of hardness salts in the form of carbonates. Decontamination of water from the pool for spent fuel element storage from {sup 137}Cs was conducted using NGA ferricyanide sorbent. Decontamination factors with respect to {sup 137}Cs of 400 have been reached, themore » installation throughput being 100,000 by (bed volumes). Decontamination of liquid radwaste at Murmansk Shipping Co was conducted with CFB, CMP synthetic zeolites and NGA ferricyanide sorbent as well. Decontamination of D and D solutions and wastes of the special laundry resulted in decontamination factors within the range of 20--400, 10--100, and 10--30 with respect to {sup 137}Cs, {sup 90}Sr, and total {beta}-activity, respectively. Installation throughput of 3,000--5,000 bv for zeolites and 8,000--10,000 bv for ferrocyanide sorbents has been reached. Results obtained prove the high efficiency of sorption technique for decontaminating solutions from cesium and strontium radionuclides.« less
Radiation, radionuclides and bacteria: An in-perspective review.
Shukla, Arpit; Parmar, Paritosh; Saraf, Meenu
2017-12-01
There has been a significant surge in consumption of radionuclides for various academic and commercial purposes. Correspondingly, there has been a considerable amount of generation of radioactive waste. Bacteria and archaea, being earliest inhabitants on earth serve as model microorganisms on earth. These microbes have consistently proven their mettle by surviving extreme environments, even extreme ionizing radiations. Their ability to accept and undergo stable genetic mutations have led to development of recombinant mutants that are been exploited for remediation of various pollutants such as; heavy metals, hydrocarbons and even radioactive waste (radwaste). Thus, microbes have repeatedly presented themselves to be prime candidates suitable for remediation of radwaste. It is interesting to study the behind-the-scenes interactions these microbes possess when observed in presence of radionuclides. The emphasis is on the indigenous bacteria isolated from radionuclide containing environments as well as the five fundamental interaction mechanisms that have been studied extensively, namely; bioaccumulation, biotransformation, biosorption, biosolubilisation and bioprecipitation. Application of microbes exhibiting such mechanisms in remediation of radioactive waste depends largely on the individual capability of the species. Challenges pertaining to its potential bioremediation activity is also been briefly discussed. This review provides an insight into the various mechanisms bacteria uses to tolerate, survive and carry out processes that could potentially lead the eco-friendly approach for removal of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.
ENGINEERING BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANICS AND INORGANICS
Solidification refers to techniques that encapsulate hazardous waste into a solid material of high structural integrity. Encapsulation involves either fine waste particles (microencapsulation) or a large block or container of wastes (macroencapsulation). Stabilization refe...
Microstructure of ceramics fabricated by unidirectional solidification
NASA Technical Reports Server (NTRS)
Kokubo, T.
1984-01-01
The unidirectional solidification methods are zone melting, crystal pulling, Bridgemen, and slow cooling. In order to obtain excellent properties (such as transparency), pores, voids and cracks must be avoided, and elimination of such defects is described.
Optimum Water Chemistry in radiation field buildup control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chien, C.
1995-03-01
Nuclear utilities continue to face the challenGE of reducing exposure of plant maintenance personnel. GE Nuclear Energy has developed the concept of Optimum Water Chemistry (OWC) to reduce the radiation field buildup and minimize the radioactive waste production. It is believed that reduction of radioactive sources and improvement of the water chemistry quality should significantly reduce both the radiation exposure and radwaste production. The most important source of radioactivity is cobalt and replacement of cobalt containing alloy in the core region as well as in the entire primary system is considered the first priority to achieve the goal of lowmore » exposure and minimized waste production. A plant specific computerized cobalt transport model has been developed to evaluate various options in a BWR system under specific conditions. Reduction of iron input and maintaining low ionic impurities in the coolant have been identified as two major tasks for operators. Addition of depleted zinc is a proven technique to reduce Co-60 in reactor water and on out-of-core piping surfaces. The effect of HWC on Co-60 transport in the primary system will also be discussed.« less
Incorporating interfacial phenomena in solidification models
NASA Technical Reports Server (NTRS)
Beckermann, Christoph; Wang, Chao Yang
1994-01-01
A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.
Copper-silicon-magnesium alloys for latent heat storage
Gibbs, P. J.; Withey, E. A.; Coker, E. N.; ...
2016-06-21
The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.
Three-dimensional phase-field simulations of directional solidification
NASA Astrophysics Data System (ADS)
Plapp, Mathis
2007-05-01
The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.
NASA Technical Reports Server (NTRS)
Brown, R. A.
1986-01-01
This research program focuses on analysis of the transport mechanisms in solidification processes, especially one of interest to the Microgravity Sciences and Applications Program of NASA. Research during the last year has focused on analysis of the dynamics of the floating zone process for growth of small-scale crystals, on studies of the effect of applied magnetic fields on convection and solute segregation in directional solidification, and on the dynamics of microscopic cell formation in two-dimensional solidification of binary alloys. Significant findings are given.
Acoustic emission from a solidifying aluminum-lithium alloy
NASA Technical Reports Server (NTRS)
Henkel, D. P.; Wood, J. D.
1992-01-01
Physical phenomena associated with the solidification of an AA2090 Al-Li alloy have been characterized by AE methods. Repeatable patterns of AE activity as a function of solidification time are recorded and explained for ultrahigh-purity (UHP) aluminum and an Al-4.7 wt pct Cu binary alloy, in addition to the AA2090 Al-Li alloy, by the complementary utilization of thermal, AE, and metallographic methods. One result shows that the solidification of UHP aluminum produces one discrete period of high AE activity as the last 10 percent of solid forms.
Paria, S.; Sarhan, A. A. D.; Goodarzi, M. S.; Baradaran, S.; Rahmanian, B.; Yarmand, H.; Alavi, M. A.; Kazi, S. N.; Metselaar, H. S. C.
2015-01-01
An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises. PMID:25879052
Paria, S; Sarhan, A A D; Goodarzi, M S; Baradaran, S; Rahmanian, B; Yarmand, H; Alavi, M A; Kazi, S N; Metselaar, H S C
2015-01-01
An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.
Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean
NASA Astrophysics Data System (ADS)
Lin, Yanhao; Tronche, Elodie J.; Steenstra, Edgar S.; van Westrenen, Wim
2017-01-01
The Moon is thought to have been covered initially by a deep magma ocean, its gradual solidification leading to the formation of the plagioclase-rich highland crust. We performed a high-pressure, high-temperature experimental study of lunar mineralogical and geochemical evolution during magma ocean solidification that yields constraints on the presence of water in the earliest lunar interior. In the experiments, a deep layer containing both olivine and pyroxene is formed in the first ~50% of crystallization, β-quartz forms towards the end of crystallization, and the last per cent of magma remaining is extremely iron rich. In dry experiments, plagioclase appears after 68 vol.% solidification and yields a floatation crust with a thickness of ~68 km, far above the observed average of 34-43 km based on lunar gravity. The volume of plagioclase formed during crystallization is significantly less in water-bearing experiments. Using the relationship between magma water content and the resulting crustal thickness in the experiments, and considering uncertainties in initial lunar magma ocean depth, we estimate that the Moon may have contained at least 270 to 1,650 ppm water at the time of magma ocean crystallization, suggesting the Earth-Moon system was water-rich from the start.
Novel casting processes for single-crystal turbine blades of superalloys
NASA Astrophysics Data System (ADS)
Ma, Dexin
2018-03-01
This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from superalloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thinshell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimensional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.
An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells.
Wang, Chuo-Li; Teo, Ka Yaw; Han, Bumsoo
2008-08-01
One of the major challenges in cryosurgery is to minimize incomplete cryodestruction near the edge of the iceball. In the present study, the feasibility and effectiveness of an amino acidic adjuvant, glycine was investigated to enhance the cryodestruction of MCF-7 human breast cancer cell at mild freezing/thawing conditions via eutectic solidification. The effects of glycine addition on the phase change characteristics of NaCl-water binary mixture were investigated with a differential scanning calorimeter and cryo-macro/microscope. The results confirmed that a NaCl-glycine-water mixture has two distinct eutectic phase change events - binary eutectic solidification of water-glycine, and ternary eutectic solidification of NaCl-glycine-water. In addition, its effects on the cryoinjury of MCF-7 cells were investigated by assessing the post-thaw cellular viability after a single freezing/thawing cycle with various eutectic solidification conditions due to different glycine concentrations, end temperatures and hold times. The viability of MCF-7 cells in isotonic saline supplemented with 10% or 20% glycine without freezing/thawing remained higher than 90% (n=9), indicating no apparent toxicity was induced by the addition of glycine. With 10% glycine supplement, the viability of the cells frozen to -8.5 degrees C decreased from 85.9+/-1.8% to 38.5+/-1.0% on the occurrence of binary eutectic solidification of glycine-water (n=3 for each group). With 20% glycine supplement, the viability of the cells frozen to -8.5 degrees C showed similar trends to those with 10% supplement. However, as the end temperature was lowered to -15 degrees C, the viability drastically decreased from 62.5+/-2.0% to 3.6+/-0.7% (n=3 for each group). The influences of eutectic kinetics such as nucleation temperature, hold time and method were less significant. These results imply that the binary eutectic solidification of water-glycine can augment the cryoinjury of MCF-7 cells, and the extent of the eutectic solidification is significant.
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
1999-01-01
This is a survey of the published works of Prof. Bingbo Wei of the Department of Applied Physics at Northwestern Polytechnical University, Xian P.R. China. Transformations among solid - liquid - and vapor are fundamental to the foundations of life and culture on Earth. The development and understanding of materials has lead the evolution and advancement of the human race since antiquity. Materials and fluids research is continuing today, with us standing on the shoulders of those that have gone before us. Technological and scientific breakthroughs continue due to studies of greater and greater complexity, that include for example, research done at high pressures, in high magnetic fields, at temperatures near absolute zero, and in the low gravity environment of low Earth orbit. Of particular technological importance is the liquid to solid transformation of metals and alloys. Solidification processing is generally the most important factor in the final properties of objects made of metal; and undercooling is the fundamental driving force for all solidification. The interest and resources dedicated to the study of solidification and undercooling are great and World wide. For many years B. Wei and his coworkers have been studying undercooling and rapid solidification and have amassed a significant body of published research in this important field, contributing to the leading edge of the state-of-the-art. It is the goal of this memorandum to provide a review of the research of B. Wei et al.; publications in Chinese are included in the reference list but are not discussed. The bulk of Wei's work has been in the area of undercooling and rapid solidification [1-11, 13-16, 24-36] with papers dating back to 1989, the same year he earned his Ph.D. Below, discussions of Wei's undercooling and rapid solidification research have been grouped together mostly on the basis of alloy type, such as eutectic, intermetallic, or monotectic.
APPLICATIONS ANALYSIS REPORT: CHEMFIX TECHNOLOGIES, INC. - SOLIDIFICATION/STABILIZATION PROCESS
In support of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Program, this report evaluates the Chemfix Technologies, Inc. (Chemfix), solidification/stabilization technology for on-site treatment of hazardous waste. The Chemfix ...
DEMONSTRATION BULLETIN - SOLIDIFICATION/ STABILIZATION PROCESS, SOLIDTECH, INC.
The Soliditech solidification/stabilization technology mixes hazardous waste materials in soils or sludges with pozzolanic material (cement, fly ash, or kiln dust), a proprietary additive called Urrichem, other proprietary additives, and water. The process is designed to aid ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Sazzad Hossain; Mian, Ahsan, E-mail: ahsan.mian@wright.edu; Srinivasan, Raghavan
In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materialsmore » can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.« less
Thermo-Electric-Magnetic Hydrodynamics in Solidification: In Situ Observations and Theory
NASA Astrophysics Data System (ADS)
Fautrelle, Y.; Wang, J.; Salloum-Abou-Jaoude, G.; Abou-Khalil, L.; Reinhart, G.; Li, X.; Ren, Z. M.; Nguyen-Thi, H.
2018-02-01
Solidification of liquid metals contains all the ingredients for the development of the thermo-electric (TE) effect, namely liquid-solid interface and temperature gradients. The combination of TE currents with a superimposed magnetic field gives rise to thermo-electromagnetic (TEM) volume forces acting on both liquid and solid. This results in the generation of fluid flows, which considerably modifies the morphology of the solidification front as well as that of the mushy zone. TEM forces also act on the solid and cause both fragmentation of dendrite branches and a movement of equiaxed grains in suspension. These phenomena have already been unveiled by post-mortem analysis of samples, but they can be analyzed in more detail by using x-ray in situ and real-time observations. Here, we present conclusive evidence of all the aforementioned effects thanks to in situ observations of Al-Cu alloy solidification under static magnetic field.
NASA Astrophysics Data System (ADS)
Yang, Xi; Ma, Wenhui; Lv, Guoqiang; Zhang, Mingyu
2018-01-01
The shape of solid-liquid interface during the directional solidification process, which is difficult to be observed and measured in actual processes, controls the grain orientation and grain size of polysilicon ingot. We carried out numerical calculations of the directional solidification progress of polycrystalline silicon and invested the means to deal with the latent heat of solidification in numerical simulation. The distributions of the temperature field of the melt for the crystallization progress as well as the transformation of the solid-liquid interface were obtained. The simulation results are consistent with the experimental outcomes. The results show that the curvature of solid-liquid interface is small and stability, larger grain sized columnar crystal can be grown in the laboratory-scale furnace at a solidification rate of 10 μm•s-1. It shall provide important theoretical basis for metallurgical process and polysilicon production technology.
NASA Technical Reports Server (NTRS)
Zhang, Yiqiang; Alexander, J. I. D.; Ouazzani, J.
1994-01-01
Free and moving boundary problems require the simultaneous solution of unknown field variables and the boundaries of the domains on which these variables are defined. There are many technologically important processes that lead to moving boundary problems associated with fluid surfaces and solid-fluid boundaries. These include crystal growth, metal alloy and glass solidification, melting and name propagation. The directional solidification of semi-conductor crystals by the Bridgman-Stockbarger method is a typical example of such a complex process. A numerical model of this growth method must solve the appropriate heat, mass and momentum transfer equations and determine the location of the melt-solid interface. In this work, a Chebyshev pseudospectra collocation method is adapted to the problem of directional solidification. Implementation involves a solution algorithm that combines domain decomposition, finite-difference preconditioned conjugate minimum residual method and a Picard type iterative scheme.
Dendritic growth of undercooled nickel-tin. I, II
NASA Technical Reports Server (NTRS)
Wu, Y.; Piccone, T. J.; Shiohara, Y.; Flemings, M. C.
1987-01-01
A comparison is made between high speed cinematography and optical temperature measurements of the solidification of an undercooled Ni-25 wt pct Sn alloy. The first part of this study notes that solidification during the recalescence period at all undercoolings studied occurred in the form of a dendritelike front moving across the sample surface, and that the growth velocities observed agree with calculation results for the dendrite growth model of Lipton et al. (1986); it is concluded that the coarse structure observed comprises an array of much finer, solute-controlled dendrites. In the second part, attention is given to the solidification of levitated metal samples within a transparent glass medium for the cases of two undercooled Ni-Sn alloys, one of which is eutectic and another hypoeutectic. The data obtained suggest a solidification model involving dendrites of very fine structure growing into the melt at temperatures near the bulk undercooling temperature.
Effects of Space Environment on Flow and Concentration During Directional Solidification
NASA Technical Reports Server (NTRS)
Benjapiyaporn, C.; Timchenko, V.; Leonardi, E.; deVahlDavis, G.; deGroh, H. C., III
2000-01-01
A study of directional solidification of a weak binary alloy (specifically, Bi - 1 at% Sn) based on the fixed grid single domain approach is being undertaken. The enthalpy method is used to solve for the temperature field over the computational domain including both the solid and liquid phases; latent heat evolution is treated with the aid of an effective specific heat coefficient. A source term accounting for the release of solute into the liquid during solidification has been incorporated into the solute transport equation. The vorticity-stream function formulation is used to describe thermosolutal convection in the liquid region. In this paper we numerically investigate the effects of g-jitter on directional solidification. A background gravity of 1 micro-g has been assumed, and new results for the effects of periodic disturbances over a range of amplitudes and frequencies on solute field and segregation have been presented.
NASA Astrophysics Data System (ADS)
Yan, N.; Hong, Z. Y.; Geng, D. L.; Wei, B.
2015-07-01
The containerless rapid solidification of liquid ternary Al-5 %Cu-65 %Sn immiscible alloy was accomplished at both ultrasonic levitation and free fall conditions. A maximum undercooling of 185 K (0.22 T L) was obtained for the ultrasonically levitated alloy melt at a cooling rate of about 122 K s-1. Meanwhile, the cooling rate of alloy droplets in drop tube varied from 102 to 104 K s-1. The macrosegregation was effectively suppressed through the complex melt flow under ultrasonic levitation condition. In contrast, macrosegregation became conspicuous and core-shell structures with different layers were formed during free fall. The microstructure formation mechanisms during rapid solidification at containerless states were investigated in comparison with the conventional static solidification process. It was found that the liquid phase separation and structural growth kinetics may be modulated by controlling both alloy undercooling and cooling rate.
ISS-Experiments of Columnar-to-Equiaxed Transition in Solidification Processing
NASA Technical Reports Server (NTRS)
Sturz, Laszlo; Zimmermann, Gerhard; Gandin, Charles, Andre; Billia, Bernard; Magelinck, Nathalie; Nguyen-Thi, Henry; Browne, David John; Mirihanage, Wajira U.; Voss, Daniela; Beckermann, Christoph;
2012-01-01
The main topic of the research project CETSOL in the framework of the Microgravity Application Promotion (MAP) programme of the European Space Agency (ESA) is the investigation of the transition from columnar to equiaxed grain growth during solidification. Microgravity environment allows for suppression of buoyancy-driven melt flow and for growth of equiaxed grains free of sedimentation and buoyancy effects. This contribution will present first experimental results obtained in microgravity using hypo-eutectic AlSi alloys in the Materials Science Laboratory (MSL) on-board the International Space Station (ISS). The analysis of the experiments confirms the existence of a columnar to equiaxed transition, especially in the refined alloy. Temperature evolution and grain structure analysis provide critical values for the position, the temperature gradient and the solidification velocity at the columnar to equiaxed transition. These data will be used to improve modeling of solidification microstructures and grain structure on different lengths scales.
Solidification Dynamics of Silver Drops in a Free Fall Environment
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Brush, Lucien N.
1999-01-01
Silver drops (99.9%, 4, 5, 7, and 9 mm diameter) were levitated, melted, and released to fall through Marshall Space Flight Center's 105m drop tube in helium - 6% hydrogen and pure argon atmospheres. By systematically varying the initial superheat condition of the drop the extent of solidification prior to impact ranged from complete to none during the approximately 4.6s of free fall time. Comparison of the experimental observations is made with numerical solutions to a model of the heat transfer and solidification kinetics associated with cooling of the drop during free fall, particularly with regard to the fraction of liquid transformed. Analysis reveals the relative importance of the initial parameters affecting the cooling and solidification rates within the drop. A discussion of the conditions under which the actual observations deviate from the assumptions used in the model is presented.
Cauchy integral method for two-dimensional solidification interface shapes
NASA Astrophysics Data System (ADS)
Siegel, R.; Sosoka, D. J.
1982-07-01
A method is developed to determine the shape of steady state solidification interfaces formed when liquid above its freezing point circulates over a cold surface. The solidification interface, which is at uniform temperature, will form in a shape such that the non-uniform energy convected to it is locally balanced by conduction into the solid. The interface shape is of interest relative to the crystal structure formed during solidification; regulating the crystal structure has application in casting naturally strengthened metallic composites. The results also pertain to phase-change energy storage devices, where the solidified configuration and overall heat transfer are needed. The analysis uses a conformal mapping technique to relate the desired interface coordinates to the components of the temperature gradient at the interface. These components are unknown because the interface shape is unknown. A Cauchy integral formulation provides a second relation involving the components, and a simultaneous solution yields the interface shape.
Microstructure and property of directionally solidified Ni-Si hypereutectic alloy
NASA Astrophysics Data System (ADS)
Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi
2016-03-01
This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.
Why solidification has an S-shaped history
Bejan, A.; Lorente, S.; Yilbas, B. S.; Sahin, A. Z.
2013-01-01
Here we show theoretically that the history of solid growth during “rapid” solidification must be S-shaped, in accord with the constructal law of design in nature. In the beginning the rate of solidification increases and after reaching a maximum it decreases monotonically as the volume of solid tends toward a plateau. The S-history is a consequence of four configurations for the flow of heat from the solidification front to the subcooled surroundings, in this chronological order: solid spheres centered at nucleation sites, needles that invade longitudinally, radial growth by conduction, and finally radial lateral conduction to interstices that are warming up. The solid volume (Bs) vs time (t) is an S-curve because it is a power law of type Bs ~ tn where the exponent n first increases and then decreases in time (n = 3/2, 2, 1, …). The initial portion of the S curve is not an exponential.
NASA Astrophysics Data System (ADS)
Rahimi, R.; Biermann, H.; Volkova, O.; Mola, J.
2018-06-01
The origin of subgrain formation during conventional casting and solidification of stainless steels was studied using two austenitic stainless steels with 0 and 4 mass-% Al. Whereas the Al-free alloy showed no subgrain formation, the Al-added alloy developed a high density of subgrains separated by low-angle grain boundaries. The occurrence of subgrains in the Al-added alloy was justified by its ferritic mode of solidification as predicted by thermodynamic calculations and confirmed by dynamic scanning calorimetry measurements. The subgrains might be a consequence of the plastic deformation of soft primary ferrite dendrites by the fluid flow and their subsequent inheritance by the austenite. Alternatively, they might have been induced during the austenite formation from delta ferrite, most likely via a peritectic reaction. The absence of subgrains in the Al-free alloy was justified by its austenitic mode of solidification.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.
1972-01-01
Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.
Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection
NASA Technical Reports Server (NTRS)
Karma, Alain; Trivedi, Rohit
1999-01-01
Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth competition of these two phases leads to a rich variety of microstructures that depend sensitively upon the relative importance of nucleation, diffusion, and convection.
Mechanism of Macrosegregation Formation in Continuous Casting Slab: A Numerical Simulation Study
NASA Astrophysics Data System (ADS)
Jiang, Dongbin; Wang, Weiling; Luo, Sen; Ji, Cheng; Zhu, Miaoyong
2017-12-01
Solidified shell bulging is supposed to be the main reason for slab center segregation, while the influence of thermal shrinkage rarely has been considered. In this article, a thermal shrinkage model coupled with the multiphase solidification model is developed to investigate the effect of the thermal shrinkage, solidification shrinkage, grain sedimentation, and thermal flow on solute transport in the continuous casting slab. In this model, the initial equiaxed grains contract freely with the temperature decrease, while the coherent equiaxed grains and columnar phase move directionally toward the slab surface. The results demonstrate that the center positive segregation accompanied by negative segregation in the periphery zone is mainly caused by thermal shrinkage. During the solidification process, liquid phase first transports toward the slab surface to compensate for thermal shrinkage, which is similar to the case considering solidification shrinkage, and then it moves opposite to the slab center near the solidification end. It is attributed to the sharp decrease of center temperature and the intensive contract of solid phase, which cause the enriched liquid to be squeezed out. With the effect of grain sedimentation and thermal flow, the negative segregation at the external arc side (zone A1) and the positive segregation near the columnar-to-equiaxed transition at the inner arc side (position B1) come into being. Besides, it is found that the grain sedimentation and thermal flow only influence solute transport before equiaxed grains impinge with each other, while the solidification and thermal shrinkage still affect solute redistribution in the later stage.
Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification
NASA Astrophysics Data System (ADS)
Zhang, Jie; Yuan, Chao; Wang, Jun-Qiao; Liang, Er-Jun; Chao, Ming-Ju
2013-08-01
Materials La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general dependence of the Co content and the total conductivities of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S·cm-1 at 600, 700, and 800 °C, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxygen partial pressure are also measured. It is shown that the samples with the Co content values <= 8.5 mol% each exhibit basically ionic conduction while those for Co content values >= 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 × 105 Pa) to 0.98 atm. The improved ionic conductivity of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.
Technology Demonstration Summary, Chemfix Solidification/Stabilization Process, Clackamas, Oregon
ChemfIx's* patented stabilization/solidification technology was demonstrated at the Portable Equipment Salvage Company (PESC) site in Clackamas, Oregon, as part of the Superfund Innovative Technology Evaluation (SITE) program. The Chemfix process is designed to solidify and sta...
Modeling transport phenomena and uncertainty quantification in solidification processes
NASA Astrophysics Data System (ADS)
Fezi, Kyle S.
Direct chill (DC) casting is the primary processing route for wrought aluminum alloys. This semicontinuous process consists of primary cooling as the metal is pulled through a water cooled mold followed by secondary cooling with a water jet spray and free falling water. To gain insight into this complex solidification process, a fully transient model of DC casting was developed to predict the transport phenomena of aluminum alloys for various conditions. This model is capable of solving mixture mass, momentum, energy, and species conservation equations during multicomponent solidification. Various DC casting process parameters were examined for their effect on transport phenomena predictions in an alloy of commercial interest (aluminum alloy 7050). The practice of placing a wiper to divert cooling water from the ingot surface was studied and the results showed that placement closer to the mold causes remelting at the surface and increases susceptibility to bleed outs. Numerical models of metal alloy solidification, like the one previously mentioned, are used to gain insight into physical phenomena that cannot be observed experimentally. However, uncertainty in model inputs cause uncertainty in results and those insights. The analysis of model assumptions and probable input variability on the level of uncertainty in model predictions has not been calculated in solidification modeling as yet. As a step towards understanding the effect of uncertain inputs on solidification modeling, uncertainty quantification (UQ) and sensitivity analysis were first performed on a transient solidification model of a simple binary alloy (Al-4.5wt.%Cu) in a rectangular cavity with both columnar and equiaxed solid growth models. This analysis was followed by quantifying the uncertainty in predictions from the recently developed transient DC casting model. The PRISM Uncertainty Quantification (PUQ) framework quantified the uncertainty and sensitivity in macrosegregation, solidification time, and sump profile predictions. Uncertain model inputs of interest included the secondary dendrite arm spacing, equiaxed particle size, equiaxed packing fraction, heat transfer coefficient, and material properties. The most influential input parameters for predicting the macrosegregation level were the dendrite arm spacing, which also strongly depended on the choice of mushy zone permeability model, and the equiaxed packing fraction. Additionally, the degree of uncertainty required to produce accurate predictions depended on the output of interest from the model.
Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth
NASA Astrophysics Data System (ADS)
Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.
2004-09-01
Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.
Multilayer hexagonal silicon forming in slit nanopore
He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying
2015-01-01
The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties. PMID:26435518
Convective instabilities in a ternary alloy mushy layer
NASA Astrophysics Data System (ADS)
Anderson, Daniel; Guba, Peter
2014-11-01
We investigate a mathematical model of convection, thermal and solutal diffusion in a primary mushy layer during the solidification of a ternary alloy. In particular, we explore the influence of phase-change effects, such as solute rejection, latent heat and background solidification, in a linear stability analysis of a non-convecting base state solution. We identify how different rates of diffusion (e.g. double diffusion) as well as how different rates of solute rejection (double solute rejection) play a role in this system. Novel modes of instability that can be present under statically stable conditions are identified. Parcel arguments are proposed to explain the physical mechanisms that give rise to the instabilities. This work was supported in part by the U.S. National Science Foundation, DMS-1107848 (D.M.A.) and by the Slovak Scientific Grant Agency, VEGA 1/0711/12 (P.G.).
NASA Astrophysics Data System (ADS)
Bellmann, M. P.; Meese, E. A.
2011-10-01
We have performed axisymmetric, transient simulations of the vertical Bridgman growth of multi-crystalline (mc) silicon to study the effect of the steady crucible rotation on the melt flow and impurity segregation. A solute transport model has been applied to predict the final segregation pattern of impurities in a circular ingot. Imposing rotation rates of 1-5 rpm on the system makes radial segregation much worse compared to the non-rotating case. Low rotation rates at 1-2 rpm increase radial segregation in the first half period of solidification, whereas at rotation rates above the effect is insignificantly small. Contrary behavior was observed for the second half period of solidification. Here radial segregation is increased at high rotation rates from 3 to 5 rpm with small impact at 1-2 rpm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pombet, Denis; Desnoyers, Yvon; Charters, Grant
2013-07-01
The TruPro{sup R} process enables to collect a significant number of samples to characterize radiological materials. This innovative and alternative technique is experimented for the ANDRA quality-control inspection of cemented packages. It proves to be quicker and more prolific than the current methodology. Using classical statistics and geo-statistics approaches, the physical and radiological characteristics of two hulls containing immobilized wastes (sludges or concentrates) in a hydraulic binder are assessed in this paper. The waste homogeneity is also evaluated in comparison to ANDRA criterion. Sensibility to sample size (support effect), presence of extreme values, acceptable deviation rate and minimum number ofmore » data are discussed. The final objectives are to check the homogeneity of the two characterized radwaste packages and also to validate and reinforce this alternative characterization methodology. (authors)« less
Automated directional solidification system for space processing
NASA Technical Reports Server (NTRS)
Mccreight, L. R. (Compiler)
1981-01-01
The system is to be used under low gravity conditions aboard a sounding rocket. Two complete flight qualified units, each of which includes four individually controllable furnaces capable of operation to as high as 1600 C, were developed with operating and control panels, associated cables, tools, and some spare supplies. Drawings, operating manuals, a user's computer program and reports and papers describing the work and equipment are presented.
The major objective of the Soliditech, Inc., SITE demonstration was to develop reliable performance and cost information about the Soliditech solidification, stabilization technology. The Soliditech process mixes hazardous waste materials with Portland cement or pozzolanic m...
This Applications Analysis Report evaluates the Soliditech, Inc., solidification/ stabilization process for the on-site treatment of waste materials. The Soliditech process mixes and chemically treats waste material with Urrichem (a proprietary reagent), additives, pozzolanic mat...
STABILIZATION/SOLIDIFICATION OF CERCLA AND RCRA WASTES
This Handbook provides U.S. EPA regional staff responsible for reviewing CERCLA remedial action plans and RCRA permit applications with a tool for interpreting information on stabilization/solidification treatment. As a practical day-to-day reference guide, it will also provide t...
LOW COST SOLIDIFICATION/STABILIZATION TREATMENT FOR SOILS CONTAMINATED WITH DIOXIN, PCP AND CREOSOTE
The USEPA's NRMRL conducted successful treatability tests of innovative solidification/stabilization (S/S) formulations to treat soils contaminated with dioxins, pentachlorophenol (PCP), and creosote from four wood preserving sites. Formulations developed during these studies wer...
The USEPA's National Risk Management Research Laboratory condcuted successful treatability tests of innovative solidification/stablization (S/S) formulations to treat soils contaminated with dioxins, pentachlorophenol (PCP), and creosote from four wood preserving sites. For one o...
SOLIDIFICATION/STABILIZATION: IS IT ALWAYS APPROPRIATE?
The findings of recent research and evaluation efforts are assessed to determine whether solidification/stabilization (S/S) has been properly and appropriately applied for different types of hazardous wastes. Results from these studies are mixed and, as a result, the need for pro...
SUMMARY OF SOLIDIFICATION/STABILIZATION SITE DEMONSTRATIONS AT UNCONTROLLED HAZARDOUS WASTE SITES
Four large-scale solidification/stabilization demonstrations have occurred under EPA's SITE program. In general, physical testing results have been acceptable. Reduction in metal leachability, as determined by the TCLP test, has been observed. Reduction in organic leachability ha...
SURVEY OF SOLIDIFICATION/STABILIZATION TECHNOLOGY FOR HAZARDOUS INDUSTRIAL WASTES
Stabilization/solidification or fixation is a process for treating industrial solid wastes (primarily sludges) that contain hazardous constituents to prevent dissolution and loss of toxic materials into the environment. Most of these treatment processes are designed to produce a ...
1997-09-15
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). A technician is working on the Advanced Automated Directional Solidification Furnace (AADSF), which will be used by researchers to study the solidification of semiconductor materials in microgravity. Scientists will be able to better understand how microgravity influences the solidification process of these materials and develop better methods for controlling that process during future Space flights and Earth-based production. All STS-87 experiments are scheduled for launch on Nov. 19 from KSC
An Overview of the MSFC Electrostatic Levitation Facility
NASA Technical Reports Server (NTRS)
Rogers, J. R.; Robinson, M. B.; Hyers, R. W.; Savage, L.; Rathz, T.
2000-01-01
Electrostatic levitation (ESL) provides a means to study molten materials in a contamination-free environment, including no contact with a container. Many phenomena important to materials science can be studied in the ESL. Solidification of metals, alloys and undercooled materials represent an important topic for research in the ESL. Recent studies of metals and alloys during solidification in the ESL are reported. Measurements include time, temperature and transformation of metallic glass-forming alloys, solidification velocities, and microstructure. This multimedia report includes a video clip showing processing in the ESL, with descriptions of the different segments in the text.
Coupled Heat Transfer and Fluid Dynamics Modeling of InSb Solidification
NASA Astrophysics Data System (ADS)
Barvinschi, Paul; Barvinschi, Floricica
2011-10-01
A method for the directional solidification of melted InSb in a silica ampoule is presented and solved with COMSOL Multiphysics. The configuration and initial boundary settings of the model resemble those used in a de-wetting vertical Bridgman configuration [1]. A slightly modified version of the method presented by Voller and Prakash [2] is used to account for solidification of the liquid phase, including convection and conduction heat transfer with mushy region phase change. Axial-symmetric numerical simulations of temperature and velocity fields, under normal gravity, are carried out using different thermal conditions.
Interferometric measurements of a dendritic growth front solutal diffusion layer
NASA Technical Reports Server (NTRS)
Hopkins, John A.; Mccay, T. D.; Mccay, Mary H.
1991-01-01
An experimental study was undertaken to measure solutal distributions in the diffusion layer produced during the vertical directional solidification (VDS) of an ammonium chloride - water (NH4Cl-H2O) solution. Interferometry was used to obtain concentration measurements in the 1-2 millimeter region defining the diffusion layer. These measurements were fitted to an exponential form to extract the characteristic diffusion parameter for various times after the start of solidification. The diffusion parameters are within the limits predicted by steady state theory and suggest that the effective solutal diffusivity is increasing as solidification progresses.
Solidification processing of intermetallic Nb-Al alloys
NASA Technical Reports Server (NTRS)
Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.
1992-01-01
Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.
2007-07-01
A π =Π )( lslpsp γγγγ +−=Δ A = Hamaker constant ~ Δγ Δγ > 0 repulsive Δγ < 0 attractive VSparticle solid liquid d Previous work on thermal effects of...Solidification velocity = 500 microns/sec, Rp = 1 micron, Hamaker = -8E-19 J, kp/kl = 1.0 (planar), no premelting Vs Vt Vp Velocity vs. t and d vs. t plots...premelting Solidification velocity = 500 microns/sec, Rp = 1 micron, Hamaker = -8E-19 J, kp/kl = 1.0 (planar), premelting kp/kl ≥ 1.0 ALWAYS ENGULFS
Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba
2013-01-01
A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.
Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy
NASA Technical Reports Server (NTRS)
Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)
2001-01-01
The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.
The Solidification Behavior of AA2618 Aluminum Alloy and the Influence of Cooling Rate
Liu, Yulin; Liu, Ming; Luo, Lei; Wang, Jijie; Liu, Chunzhong
2014-01-01
In AA2618 aluminum alloy, the iron- and nickel-rich intermetallics formed during solidification are of great effect on the mechanical properties of the alloy at both room temperature and elevated temperatures. However, the solidification behavior of the alloy and the formation mechanism of the intermetallics during solidification of the alloy are not clear. This research fills the gap and contributes to understanding the intermetallic of the alloy. The results showed that cooling rate was of great influence on the formation of the intermetallics. Under the condition of slow cooling, the as-cast microstructures of the alloy were complex with many coarse eutectic compounds including Al9FeNi, Al7(CuNi)5, Si, Al2Cu and Al2CuMg. The phase Al9FeNi was the dominant intermetallic compound, which precipitated at the earlier stage of the solidification by eutectic reaction L → α-Al + Al9FeNi. Increasing the cooling rate would suppress the formation of the coarse eutectic intermetallics. Under the condition of near-rapid cooling, the as-cast microstructures of the alloy consisted of metastable intermetallics Al9FeNi and Al2Cu; the equilibrium eutectic compounds were suppressed. This research concluded that intermetallics could be refined to a great extent by near-rapid cooling. PMID:28788281
Preparation of silicon target material by adding Al-B master alloy in directional solidification
NASA Astrophysics Data System (ADS)
Li, Pengting; Wang, Kai; Ren, Shiqiang; Jiang, Dachuan; Tan, Yi
2017-03-01
The silicon target material was prepared by adding Al-6B master alloy in directional solidification. The microstructure was characterized and the resistivity was studied in this work. The results showed that the purity of the silicon target material was more than 99.999% (5N). The resistivity was ranges from 0.002 to 0.030 Ω·cm along the ingot height. It was revealed that the particles of AlB2 in Al-6B master alloy would react spontaneously and generate clusters of [B] and [Al] in molten silicon at 1723 K. After directional solidification, the content of B and Al were increasing gradually with the increase of solidified fraction. The measured values of B were in good agreement with the curve of the Scheil equation below 80% of the ingot height. The mean concentration of B was about 17.20 ppmw and the mean concentration of Al was about 8.07 ppmw after directional solidification. The measured values of Al were fitting well with the curve of values which the effective segregation coefficient was 0.00378. It was observed that B co-doped Al in directional solidification polysilicon could regulate resistivity mutually. This work provides the theoretical basis and technical support for industrial production of the silicon target material.
NASA Astrophysics Data System (ADS)
Yu, Jianding; Koshikawa, Naokiyo; Arai, Yasutomo; Yoda, Shinichi; Saitou, Hirofumi
2001-11-01
Containerless solidification of BiFeO 3 has been carried out in microgravity with an electrostatic levitation furnace (ELF) on board a sounding rocket (TR-IA). This was the first time the ELF was used in microgravity to study the solidification behavior of oxide insulator material. A spherical BiFeO 3 specimen with a diameter of 5 mm was laser heated and solidified in an oxygen and nitrogen mixture atmosphere. The microstructure resulting from solidification in the ELF was compared with that obtained from solidification in a 10 m drop tube and in crucibles. In the crucible experiments, the segregation of the primary Fe 2O 3 phase could not be suppressed, even if the cooling speed increased to 5000 K/s. However it did suppress in a 0.3 mm diameter droplet solidified in the drop tube experiment. This suggests that containerless processing effectively promoted the undercooling of the BiFeO 3 phase. In the microgravity experiment, although a homogeneous BiFeO 3 phase was not observed in the 5 mm spherical specimen, an anomalous fine cellular microstructure appeared due to high undercooling. In addition, the phase transitions of BiFeO 3 were measured by DTA from room temperature to 1523 K and its liquidus temperature was estimated to be 1423 K.
Elimination of Hot Tears in Steel Castings by Means of Solidification Pattern Optimization
NASA Astrophysics Data System (ADS)
Kotas, Petr; Tutum, Cem Celal; Thorborg, Jesper; Hattel, Jesper Henri
2012-06-01
A methodology of how to exploit the Niyama criterion for the elimination of various defects such as centerline porosity, macrosegregation, and hot tearing in steel castings is presented. The tendency of forming centerline porosity is governed by the temperature distribution close to the end of the solidification interval, specifically by thermal gradients and cooling rates. The physics behind macrosegregation and hot tears indicate that these two defects also are dependent heavily on thermal gradients and pressure drop in the mushy zone. The objective of this work is to show that by optimizing the solidification pattern, i.e., establishing directional and progressive solidification with the help of the Niyama criterion, macrosegregation and hot tearing issues can be both minimized or eliminated entirely. An original casting layout was simulated using a transient three-dimensional (3-D) thermal fluid model incorporated in a commercial simulation software package to determine potential flaws and inadequacies. Based on the initial casting process assessment, multiobjective optimization of the solidification pattern of the considered steel part followed. That is, the multiobjective optimization problem of choosing the proper riser and chill designs has been investigated using genetic algorithms while simultaneously considering their impact on centerline porosity, the macrosegregation pattern, and primarily on hot tear formation.
Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osoba, L.O.; Ding, R.G.; Ojo, O.A., E-mail: ojo@cc.umanitoba.ca
Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with themore » formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.« less
This project involved the evaluation of solidification/stabilization technology as a BDAT for contaminated soil. Three binding agents were used on four different synthetically contaminated soils. Performance evaluation data included unconfined compressive strength (UCS) and the T...
An investigation of the elevated temperature cracking susceptibility of alloy C-22 weld-metal
NASA Astrophysics Data System (ADS)
Gallagher, Morgan Leo
Alloy C-22 is one of the most corrosion resistant Ni-Cr-Mo alloys available today, and is particularly versatile. As a result, Alloy C-22 is being considered for use in the construction of storage canisters for permanent disposal of radioactive waste in the Yucca Mountain Project. However, in such a critical application, weld related defects (such as these two forms of cracking) are simply unacceptable. Solidification cracking occurs when weld shrinkage strains are applied to liquid films that result from microsegregation during solidification. Many nickel-base alloys are susceptible to solidification cracking since they solidify as austenite and many of their alloying additions partition during solidification and form low melting eutectic constituents. The transvarestraint test was used to quantify the susceptibility of Alloy C-22 to solidification cracking. The solidification cracking temperature range (SCTR) was found to be approximately 50°C (90°F); this SCTR predicts that Alloy-C-22 will have only slightly higher susceptibility than known crack-resistant alloys, such as duplex stainless-steel 2205 and austenitic stainless-steel Type 304 (FN6). Ductility-dip cracking (DDC) is a solid-state cracking phenomenon that occurs below the effective solidus temperature in highly restrained austenitic alloys. Although this type of cracking is relatively uncommon, it can be costly in critical applications where there is a low tolerance for defects. This investigation used two separate tests to quantify the susceptibility of the alloy to DDC: the hot-ductility test and the strain-to-fracture (STF) test. The hot-ductility test revealed that Alloy C-22 weld-metal exhibits an intermediate temperature ductility-dip, with ductility recovery at the upper end of the testing temperature range. The ductility minimum in the hot-ductility tests occurred around 950°C (1742°F) in both the on-heating and on-cooling tests. The strain-to-fracture test also revealed Alloy C-22 to be susceptible to ductility-dip cracking. Alloy C-22 displayed a low threshold strain necessary to initiate cracking, a wide temperature range over which cracking occurred, and no recovery of ductility at the upper end of the testing temperature range. The recovery of ductility at the upper end of the testing temperature range in the hotductility test, and the absence of this recovery in the STF test, is explained by the recrystallization behavior of the metal. Alloy C-22 has a low stacking-fault-energy, as compared to other DDC susceptible nickel-base alloys, and accordingly requires higher levels of deformation before recrystallization begins. With the relatively low strains experienced by the samples in the STF test (less than ten-percent), cracking will occur before enough strain is accumulated to cause recrystallization. In the hot-ductility test, where the sample is pulled to failure, sufficient strain (forty-percent or greater) is applied such that recrystallization occurs. This recrystallization is responsible for the recovery of ductility at the high end of the testing temperature range in the hot-ductility test. The low threshold strain that is observed in the STF test is in part explained by the behavior of the metal during the thermal cycle of the test. Experimental observations indicate that tortuous (wavy) solidification grain boundaries (SGB) migrate, or straighten, during the temperature upslope and hold period of the STF test. This migration of the grain boundaries reduces the mechanical locking effect that tortuous grain boundaries provide, allowing cracking to occur at lower applied strains. Button-melting experiments were conducted to examine the effect of compositional variation on both solidification cracking and ductility-dip cracking susceptibility of the alloy. Molybdenum, tungsten, and iron were selected for variation, as previous research has shown these three elements to be significantly enriched or depleted in the terminal solidification products of Alloy C-22 weld-metal. The solidification temperature range and volume fraction of secondary phases were used as indicators of the susceptibility of the experimental alloys to solidification cracking and ductility-dip cracking, respectively. Previous research on nickel-base alloys has demonstrated that the solidification temperature range of an alloy is directly proportional to the susceptibility of the alloy to solidification cracking. Experiments conducted within this investigation indicate that increasing the volume fraction of secondary phases in Alloy C-22 acts to increase the elevated temperature cracking-resistance and ductility of the alloy. The solidification temperature ranges of the Alloy C-22 variants examined within the button-melting experiments did not significantly widen or narrow with increases in composition. These same compositional variations demonstrated that increasing amounts of molybdenum, tungsten, and iron increased the volume fraction of secondary phases, with each element having relatively the same potency. Based on the button melting experiments and thermodynamic simulations, it is expected that Alloy C-22 will have good resistance to weld solidification cracking over its entire composition range. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeling, Rebecca A., E-mail: wheeling.8@osu.edu; Lippold, John C., E-mail: lippold.1@osu.edu
2016-05-15
Additions of niobium (Nb) and molybdenum (Mo) were made to an Alloy 690 base alloy in order to investigate the formation of a eutectic constituent at the end of solidification and to evaluate the effect of the eutectic liquid on backfilling (or healing) of solidification cracks. Solidification cracking was induced using the cast pin tear test (CPTT) and regions of backfilling were located and characterized via optical and electron microscopy. Computational predictions of fraction eutectic and composition of the eutectic constituent were compared to experimental findings and were found to correlate well in both cases. The extent of crack backfillingmore » increased significantly with increasing Nb content, but the addition of Mo did not seem to influence the amount of eutectic constituent or the degree of backfilling. SEM/EDS analysis confirmed that the eutectic composition is constant and that increasing Nb above 4 wt% has little effect on expanding the solidification temperature range, but has a beneficial effect on mitigating solidification cracking by a crack healing effect. - Highlights: • Increasing fraction eutectic as a function of Nb, as predicted by ThermoCalc™, is consistent with image analysis results. • Nb, unlike Mo, had a significant effect on the fraction eutectic formed. • Both influence the composition of the eutectic. • Thermocalc™ predictions regarding Nb content in eutectic are consistent with EDS results, but are high for the Mo content. • Increased levels of niobium resulted in a higher degree of crack backfilling and leads to a lower cracking susceptibility. • Mo may influence the eutectic liquid along solidification grain boundaries, improving backfill and thus cracking resistance.« less
NASA Technical Reports Server (NTRS)
Flemings, Merton C.; Matson, Douglas M.; Hyers, Robert W.; Rogers, Jan R.
2003-01-01
During rapid solidification, a molten sample is cooled below its equilibrium solidification temperature to form a metastable liquid. Once nucleation is initiated, growth of the solid phase proceeds and can be seen as a sudden rise in temperature. The heat of fusion is rejected ahead of the growing dendrites into the undercooled liquid in a process known as recalescence. Fe-Cr-Ni alloys may form several equilibrium phases and the hypoeutectic alloys, with compositions near the commercially important 316 stainless steel alloy, are observed to solidify by way of a two-step process known as double recalescence. During double recalescence, the first temperature rise is associated with formation of the metastable ferritic solid phase with subsequent conversion to the stable austenitic phase during the second temperature rise. Selection of which phase grows into the undercooled melt during primary solidification may be accomplished by choice of the appropriate nucleation trigger material or by control of the processing parameters during rapid solidification. Due to the highly reactive nature of the molten sample material and in order to avoid contamination of the undercooled melt, a containerless electromagnetic levitation (EML) processing technique is used. In ground-based EML, the same forces that support the weight of the sample against gravity also drive convection in the liquid sample. However, in microgravity, the force required to position the sample is greatly reduced, so convection may be controlled over a wide range of internal flows. Space Shuttle experiments have shown that the double recalescence behavior of Fe-Cr-Ni alloys changes between ground and space EML experiments. This program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures.
NASA Astrophysics Data System (ADS)
Stefan-Kharicha, Mihaela; Kharicha, Abdellah; Wu, Menghuai; Ludwig, Andreas
2018-02-01
The influence of the melt flow on the solidification structure is bilateral. The flow plays an important role in the solidification pattern, via the heat transfer, grain distribution, and segregations. On the other hand, the crystal structure, columnar or equiaxed, impacts the flow, via the thermosolutal convection, the drag force applied by the crystals on the melt flow, etc. As the aim of this research was to further explore the solidification-flow interaction, experiments were conducted in a cast cell (95 * 95 * 30 mm3), in which an ammonium chloride-water solution (between 27 and 31 wt pct NH4Cl) was observed as it solidified. The kinetic energy (KE) of the flow and the average flow velocity were calculated throughout the process. Measurements of the volume extension of the mush in the cell and the velocity of the solid front were also taken during the solidification experiment. During the mainly columnar experiments (8 cm liquid height) the flow KE continuously decreased over time. However, during the later series of experiments at higher liquid height (9.5 cm), the flow KE evolution presented a strong peak shortly after the start of solidification. This increase in the total flow KE correlated with the presence of falling equiaxed crystals. Generally, a clear correlation between the strength of the flow and the occurrence of equiaxed crystals was evident. The analysis of the results strongly suggests a fragmentation origin of equiaxed crystals appearing in the melt. The transition from purely columnar growth to a strongly equiaxed rain (CET) was found to be triggered by (a) the magnitude of the coupling between the flow intensity driven by the equiaxed crystals, and (b) the release and transport of the fragments by the same flow recirculating within the mushy zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zeen; Hu, Rui; Zhang, Tiebang, E-mail: tiebang
The microstructure and solidification behavior of high Nb containing TiAl alloys with the composition of Ti-46Al-8Nb-xC (x = 0.1, 0.7, 1.4, 2.5 at.%) prepared by arc-melting method have been investigated in this work. The results give evidence that the addition of carbon changes the solidification behavior from solidification via the β phase to the peritectic solidification. And carbon in solid solution enriches in the α{sub 2} phase and increases the microhardness. As the carbon content increases to 1.4 at.%, plate-shape morphology carbides Ti{sub 2}AlC (H phase) precipitate from the TiAl matrix which leads to the refinement microstructure. By aging atmore » 1173 K for 24 h after quenching treatment, fine needle-like and granular shape Ti{sub 3}AlC (P phase) carbides are observed in the matrix of Ti-46Al-8Nb-2.5C alloy, which distribute along the lamellar structure or around the plate-shape Ti{sub 2}AlC. Transmission electron microscope observation shows that the Ti{sub 3}AlC carbides precipitate at dislocations. The phase transformation in-situ observations indicate that the Ti{sub 2}AlC carbides partly precipitate during the solid state phase transformation process. - Highlights: •Carbon changes the solidification behavior from β phase to peritectic solidification. •Dislocations in solution treated γ phase act as nucleation sites of Ti{sub 3}AlC precipitations. •Ti{sub 3}AlC precipitates as fine needle-like or granular shape in the solution treated matrix. •Ti{sub 2}AlC carbides precipitate during the solid state phase transformation process.« less
NASA Astrophysics Data System (ADS)
Wang, Chenlei
The direct conversion of solar radiation to electricity by photovoltaics has a number of significant advantages as an electricity generator. That is, solar photovoltaic conversion systems tap an inexhaustible resource which is free of charge and available anywhere in the world. Roofing tile photovoltaic generation, for example, saves excess thermal heat and preserves the local heat balance. This means that a considerable reduction of thermal pollution in densely populated city areas can be attained. A semiconductor can only convert photons with the energy of the band gap with good efficiency. It is known that silicon is not at the maximum efficiency but relatively close to it. There are several main parts for the photovoltaic materials, which include, single- and poly-crystalline silicon, ribbon silicon, crystalline thin-film silicon, amorphous silicon, copper indium diselenide and related compounds, cadmium telluride, et al. In this dissertation, we focus on melt growth of the single- and poly-crystalline silicon manufactured by Czochralski (Cz) crystal growth process, and ribbon silicon produced by the edge-defined film-fed growth (EFG) process. These two methods are the most commonly used techniques for growing photovoltaic semiconductors. For each crystal growth process, we introduce the growth mechanism, growth system design, general application, and progress in the numerical simulation. Simulation results are shown for both Czochralski and EFG systems including temperature distribution of the growth system, velocity field inside the silicon melt and electromagnetic field for the EFG growth system. Magnetic field is applied on Cz system to reduce the melt convection inside crucible and this has been simulated in our numerical model. Parametric studies are performed through numerical and analytical models to investigate the relationship between heater power levels and solidification interface movement and shape. An inverse problem control scheme is developed to control the solidification interface of Cz system by adjusting heater powers. For the EFG system, parametric studies are performed to discuss the effect of several growth parameters including window opening size, argon gas flow rate and growth thermal environment on the temperature distribution, silicon tube thickness and pulling rate. Two local models are developed and integrated with the global model to investigate the detailed transport phenomena in a small region around the solidification interface including silicon crystal, silicon melt, free surface, liquid-solid interface and graphite die design. Different convection forms are taken into consideration.
Effect of stress nonhomogeneity on the shear melting of a thin boundary lubrication layer.
Lyashenko, Iakov A; Filippov, Alexander E; Popov, Mikhail; Popov, Valentin L
2016-11-01
We consider the dynamical properties of boundary lubrication in contact between two atomically smooth solid surfaces separated by an ultrathin layer of lubricant. In contrast to previous works on this topic, we explicitly consider the heterogeneity of tangential stresses, which arises in a contact of elastic bodies that are moved tangentially relative to each other. To describe phase transitions between structural states of the lubricant we use an approach based on the field theory of phase transitions. It is assumed that the lubricant layer, when stressed, can undergo a shear-melting transition of first or second order. While solutions for the homogeneous system can be easily obtained analytically, the kinetics of the phase transitions in the spatially heterogeneous system can only be studied numerically. In our numerical experiments melting of the lubricant layer starts from the outer boundary of contact and propagates to its center. The melting wave is followed by a wave of solidification. This process repeats itself periodically, following the stick-slip pattern that is characteristic of such systems. Depending on the thermodynamic and kinetic parameters of the model, different modes of sliding with almost complete or only partial intermediate solidification are possible.
NASA Technical Reports Server (NTRS)
1996-01-01
On this first day of the STS-75 mission, the flight crew, Cmdr. Andrew Allen, Pilot Scott Horowitz, Payload Cmdr. Franklin Chang-Diaz, Payload Specialist Umberto Guidoni (Italy), and Mission Specialists Jeffrey Hoffman, Maurizio Cheli (ESA) and Claude Nicollier (ESA), were shown performing pre-launch and launching activities. This international space mission's primary objective is the deployment of the Tethered Satellite System Reflight (TSS-1R) to a 12 mile length from the shuttle, a variety of experiments, and the satellite retrieval. These experiments include: Research on Orbital Plasma Electrodynamics (ROPE); TSS Deployer Core Equipment and Satellite Core Equipment (DCORE/SCORE); Research on Electrodynamic Tether Effects (RETE); Magnetic Field Experiments for TSS Missions (TEMAG); Shuttle Electrodynamic Tether Systems (SETS); Shuttle Potential and Return Electron Experiment (SPREE); Tether Optical Phenomena Experiment (TOP); and Observations at the Earth's Surface of Electromagnetic Emissions by TSS (OESSE). The mission's secondary objectives were those experiments found in the United States Microgravity Payload-3 (USMP-3), which include: Advanced Automated Directional Solidification Furnace (AADSF); Material pour l'Etude des Phenomenes Interessant la Solidification sur Terre et en Orbite (MEPHISTO); Space Acceleration Measurement System (SAMS); Orbital Acceleration Research Experiment (OARE); Critical Fluid Scattering Experiment (ZENO); and Isothermal Dendritic Growth Experiment (IDGE).
A demonstration of the GHEMFIX solidification/stabilization process was conducted under the United States Environmental Protection Agency`s (EPA) Superfund Innovative Technology Evaluation (SITE) program. The demonstration was conducted in March 1989, at the Portable Equipment Sa...
This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...
This report evaluates the performance of solidification as a method for treating solids from Superfund sites. Tests were conducted on four different artificially contaminated soils which are representative of soils found at the sites. Contaminated soils were solidified us...
This Technolgy Evaluation Report evaluates the solidification/stabilization process of Silicate Technology Corporation (STC) for the on-site treatment of contaminated soil The STC immobilization technology uses a proprietary product (FMS Silicate) to chemically stabilize and ...
AN EVALUATION OF FACTORS AFFECTING THE SOLIDIFICATION/STABILIZATION OF HEAVY METAL SLUDGE
Solidification/stabilization (SIS) of hazardous waste involves mixing the waste with a binder material to enhance the physical properties of the waste and to immobilize contaminants that may be detrimental to the environment. Many hazardous wastes contain materials that are know...
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The paper is an overview of the status and science for the LODESTARS research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures
Hazcon Solidification Process, Douglassville, Pa.: Applications Analysis Report
This document is an evaluation of the HAZCON solidification technology and its applicability as an on-site treatment method for waste site cleanup. A Demonstration was held at the Douglassville, Pennsylvania Superfund site in the fall of 1987. Operational data and sampling and an...
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; Noebe, Ronald D.
1989-01-01
Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.
Transient Effects in Planar Solidification of Dilute Binary Alloys
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Volz, Martin P.
2008-01-01
The initial transient during planar solidification of dilute binary alloys is studied in the framework of the boundary integral method that leads to the non-linear Volterra integral governing equation. An analytical solution of this equation is obtained for the case of a constant growth rate which constitutes the well-known Tiller's formula for the solute transient. The more physically relevant, constant ramping down temperature case has been studied both numerically and analytically. In particular, an asymptotic analytical solution is obtained for the initial transient behavior. A numerical technique to solve the non-linear Volterra equation is developed and the solution is obtained for a family of the governing parameters. For the rapid solidification condition, growth rate spikes have been observed even for the infinite kinetics model. When recirculating fluid flow is included into the analysis, the spike feature is dramatically diminished. Finally, we have investigated planar solidification with a fluctuating temperature field as a possible mechanism for frequently observed solute trapping bands.
Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition
NASA Astrophysics Data System (ADS)
Ahmad, R.; Asmael, M. B. A.; Shahizan, N. R.; Gandouz, S.
2017-01-01
The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA‒CCTA). The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, Δ t s, and low solidification temperature, Δ T S, whereas 0.1wt% Ce resulted in a fast solidification time, Δ t a-Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index ( Q) and ultimate tensile strength of (UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.
Research on metal solidification in zero-g state
NASA Technical Reports Server (NTRS)
Papazian, J. M.; Larson, D. J., Jr.
1975-01-01
The containerless solidification of several pure metals and metallic alloys was studied in a low gravity environment. The tests were performed in the MSFC 4.2 s drop tower using a rapid wire melting apparatus designed and built for this purpose. Pure iron and nickel, and alloys of iron-nickel, iron-carbon, nickel-aluminum and tungsten-rhenium were all melted and solidified at a gravity level of approximately 100.000/-4 g. Interpretation of the results has led to an appreciation of the factors controlling the successful execution of this drop test experiment and to a delineation of the limits of applicability of the apparatus. Preliminary metallurgical evaluations are presented of the overall shapes, lattice parameters, surface microstructure,, cross-sectional microstructures, solidification and transformation sequences, evaporative segregation, and localized solute redistribution observed in the low-gravity specimens. The effects of low gravity on metallic solidification are discussed with particular emphasis on observations of spontaneous undercooling and evaporative segregation in uncontained melts.
Resistivity Distribution of Multicrystalline Silicon Ingot Grown by Directional Solidification
NASA Astrophysics Data System (ADS)
Sun, S. H.; Tan, Y.; Dong, W.; Zhang, H. X.; Zhang, J. S.
2012-06-01
The effects of impurities on the resistivity distribution and polarity of multicrystalline silicon ingot prepared by directional solidification were investigated in this article. The shape of the equivalence line of the resistivity in the vertical and cross sections was determined by the solid-liquid interface. Along the solidification height of silicon ingot, the conductive type changed from p-type in the lower part of the silicon ingot to n-type in the upper part of the silicon ingot. The resistivity in the vertical section of the silicon ingot initially increased along the height of the solidified part, and reached its maximum at the polarity transition position, then decreased rapidly along the height of solidified part and approached zero on the top of the ingot because of the accumulation of impurities. The variation of resistivity in the vertical section of the ingot has been proven to be deeply relevant to the distribution of Al, B, and P in the growth direction of solidification.
GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy
NASA Astrophysics Data System (ADS)
Yamanaka, Akinori; Aoki, Takayuki; Ogawa, Satoi; Takaki, Tomohiro
2011-03-01
The phase-field simulation for dendritic solidification of a binary alloy has been accelerated by using a graphic processing unit (GPU). To perform the phase-field simulation of the alloy solidification on GPU, a program code was developed with computer unified device architecture (CUDA). In this paper, the implementation technique of the phase-field model on GPU is presented. Also, we evaluated the acceleration performance of the three-dimensional solidification simulation by using a single NVIDIA TESLA C1060 GPU and the developed program code. The results showed that the GPU calculation for 5763 computational grids achieved the performance of 170 GFLOPS by utilizing the shared memory as a software-managed cache. Furthermore, it can be demonstrated that the computation with the GPU is 100 times faster than that with a single CPU core. From the obtained results, we confirmed the feasibility of realizing a real-time full three-dimensional phase-field simulation of microstructure evolution on a personal desktop computer.
Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.
1995-01-01
Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.
SPAR X Technical Report for Experiment 76-22 Directional Solidification of Magnetic Composites
NASA Technical Reports Server (NTRS)
Bethin, J.
1984-01-01
The effects of gravity on Bridgman-Stockbarger directional solidification of off-eutectic Bi/MnBi were studied in reduced gravity aboard the SPAR X flight and compared to normal-gravity investigations and previous eutectic Bi/MnBi SPAR flight experiments. The directional solidification of off-eutectic Bi/MnBi results in either a dendritic structure connected with local cooperative growth or a coupled low volume fraction faceted/non faceted aligned rod eutectic whose Mn macrosegregation, MnBi rod size, interrod spacing, and thermal and magnetic properties are sensitive functions of the solidification processing conditions. Two hypoeutectic and two hypereutectic samples were solidified during 605 sec of furnace travel, with an initial 265 sec low-gravity interval. Comparison Earth-gravity samples were solidified in the same furance assembly under identical processing conditions. Macrosegregation in the low-g samples was consistent with a metastable increase in Mn solubility in the Bi matrix, in partial agreement with previous Bi/MnBi SPAR findings of MnBi volume reduction.
Modeling and Validation of a Three-Stage Solidification Model for Sprays
NASA Astrophysics Data System (ADS)
Tanner, Franz X.; Feigl, Kathleen; Windhab, Erich J.
2010-09-01
A three-stage freezing model and its validation are presented. In the first stage, the cooling of the droplet down to the freezing temperature is described as a convective heat transfer process in turbulent flow. In the second stage, when the droplet has reached the freezing temperature, the solidification process is initiated via nucleation and crystal growth. The latent heat release is related to the amount of heat convected away from the droplet and the rate of solidification is expressed with a freezing progress variable. After completion of the solidification process, in stage three, the cooling of the solidified droplet (particle) is described again by a convective heat transfer process until the particle approaches the temperature of the gaseous environment. The model has been validated by experimental data of a single cocoa butter droplet suspended in air. The subsequent spray validations have been performed with data obtained from a cocoa butter melt in an experimental spray tower using the open-source computational fluid dynamics code KIVA-3.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Anilkumar, A. V.; Lee, C. P.
2004-01-01
Detailed studies on the controlled melting and subsequent re-solidification of succinonitrile were conducted in the microgravity environment aboard the International Space Station (ISS) using the PFMI apparatus (Pore Formation and Mobility Investigation) located in the ISS glovebox facility (GBX). Samples were initially prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) under 450 millibar of nitrogen. During Space processing, experimental parameters like temperature gradient and translation speed, for melting and solidification, were remotely monitored and controlled from the ground Telescience Center (TSC) at the Marshall Space Flight Center. Real time visualization during controlled melting revealed bubbles of different sizes initiating at the solid/liquid interface, and traveling up the temperature gradient ahead of them. Subsequent controlled re-solidification of the SCN revealed the details of porosity formation and evolution. A preliminary analysis of the melt back and re- solidification and its implications to future microgravity materials processing is presented and discussed.
NASA Astrophysics Data System (ADS)
Phinichka, Natthapong
In strip casting the cast surface forms during the initial stage of solidification and the phenomenon that occurs during the first 50 milliseconds of contact time between the liquid steel and the mold define the cast surface and its quality. However the exact mechanism of the initial solidification and the process variables that affect initial solidification phenomena during that time are not well understood. The primary goal of this work is to develop a fundamental understanding of factors controlling strip casting. The purpose of the experimental study is to better understand the role of processing parameters on initial solidification phenomena, heat transfer rate and the formation of the cast steel surface. An investigation was made to evaluate the heat transfer rate of different kinds of steels. The experimental apparatus was designed for millisecond resolution of heat transfer behavior. A novel approach of simultaneous in-situ observation and measurement of rapid heat transfer was developed and enabled a coupling between the interfacial heat transfer rate and droplet solidification rate. The solidification rate was estimated from the varying position of the solidification front as captured by a CCD camera. The effects of experimental parameters such as melt superheat, sulfur content and oxide accumulation at the interface on measured heat flux were studied. It was found that the heat flux increased slightly when the percent of sulfur and increased significantly when superheat increased. The oxide accumulation at the interface was found to be manganese and silicon based oxide. When the liquid steel droplets were ejected onto the copper substrate repeatedly, without cleaning the substrate surface between the ejections, a large increase in the interfacial heat flux was observed. The results of the film study indicated that a liquid oxide film existed at the interface. The surface roughness measurement of the solidified specimen decreased with repeated experimentation and better contact between the droplet and the mold was found to be the cause of the improved heat transfer rate.
Overview of the Westinghouse Small Modular Reactor building layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronje, J. M.; Van Wyk, J. J.; Memmott, M. J.
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of themore » plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)« less
Space Processing Applications Rocket project, SPAR 1
NASA Technical Reports Server (NTRS)
Reeves, F. (Compiler); Chassay, R. (Compiler)
1976-01-01
The experiment objectives, design/operational concepts, and final results of each of nine scientific experiments conducted during the first Space Processing Applications Rocket (SPAR) flight are summarized. The nine individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: solidification of Pb-Sb eutectic, feasibility of producing closed-cell metal foams, characterization of rocket vibration environment by measurement of mixing of two liquids, uniform dispersions of crystallization processing, direct observation of solidification as a function of gravity levels, casting thoria dispersion-strengthened interfaces, contained polycrystalline solidification, and preparation of a special alloy for manufacturing of magnetic hard superconductor under zero-g environment.
Low-gravity processing of superconducting compounds
NASA Technical Reports Server (NTRS)
Otto, G. H.
1976-01-01
Low gravity conditions can be sustained on earth for several seconds in an evacuated drop tube. Because radiation cooling is most effective at high temperatures, the refractive metals and alloys are prime candidates for free fall solidification. The results of initial experiments on droplet formation, droplet release, critical size and evaporation losses are given. The time required for free fall solidification of different size droplets is calculated. The materials studied were copper, niobium and vanadium, and a niobium-tin alloys. Improvements in purity, composition, homogeneity and stoichiometry are expected during free fall solidification of niobium based alloys which should become evident in an increase in the superconducting transition temperature.
A molecular dynamics study of cooling rate during solidification of metal nanoparticles
NASA Astrophysics Data System (ADS)
Shibuta, Yasushi; Suzuki, Toshio
2011-01-01
The effect of the cooling rate on the solidification behavior of metal nanoparticles is investigated by molecular dynamics simulation. The structure of molybdenum nanoparticles varies with the cooling rate. That is, single-crystalline, polycrystalline then glassy nanoparticles are obtained as the cooling rate is increased from 2.0 × 10 10 to 1.0 × 10 13 K/s. The solidification point decreases with increasing cooling rate then drops rapidly at a cooling rate on the order of 10 12 K/s. These results are summarized in a continuous cooling transformation (CCT) diagram, in which regions corresponding the liquid, single-crystalline, polycrystalline and glassy structures appear.
Modelling directional solidification
NASA Technical Reports Server (NTRS)
Wilcox, William R.
1990-01-01
The long range goal is to develop an improved understanding of phenomena of importance to directional solidification, to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis during the period of this grant was on experimentally determining the influence of convection and freezing rate fluctuations on compositional homogeneity and crystalline perfection in the vertical Bridgman-Stockbarger technique. Heater temperature profiles, buoyancy-driven convection, and doping inhomogeneties were correlated using naphthalene doped with azulene. In addition the influence of spin-up/spin-down on compositional homogeneity and microstructure of indium gallium antimonide and the effect of imposed melting-freezing cycles on indium gallium antimonide are discussed.
On the role of convective motion during dendrite growth: Experiments under variable gravity, revised
NASA Technical Reports Server (NTRS)
Hallett, J.; Cho, N.; Harrison, K.; Lord, A.; Wedum, E.; Purcell, R.; Saunders, C. P. R.
1987-01-01
Experiments show the effect of self induced convection on individual dendrite growth in uniformly supercooled samples and solidification of the resulting mush under conditions of high and low g. Convection is visualized by a Schlieren optical system or a Mach Zender interferometer. For ice crystals growing from the vapor in air, a slight reduction in linear growth rate occur under low g. For ice crystals growing from NaCl solution, dendrite tip velocities are unchanged, but subsequent mush solidification is enhanced through drainage channels under higher g. By contrast, sodium sulfate decahydrate dendrites growing from solution produce convective plumes which lead to higher tip growth rate only as the crystal growth direction approaches that of gravity. Convective plumes are laminar for small crystals under conditions of these experiments; the rise velocity of such plumes is greater than individual vortex rings under identical conditions. Convection effects are only present in solution under a critical supercooling less than about 5 C for sodium sulfate and 2 C for ice in NaCl since at higher supercooling the crystallization velocity, proportional to the square of the supercooling, exceeds the convective velocity, proportional to the square root of the supercooling. The role of convective velocity in bulk solidification is to give a large scale flow which under extreme cases may lead to extensive secondary crystal production, which alters the resulting crystal texture of the completely solidified melt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felicelli, S.D.; Poirier, D.R.; Heinrich, J.C.
The formation of macrosegregation defects known as freckles was simulated using a three-dimensional finite element model that calculates the thermosolutal convection and macrosegregation during the dendritic solidification of multicomponent alloys. A recently introduced algorithm was used to calculate the complicated solidification path of alloys of many components, which can accommodate liquidus temperatures that are general functions of liquid concentrations. The calculations are started from an all-liquid state, and the growth of the mushy zone is followed in time. Simulations are started from an all-liquid state, and the growth of the mushy zone is followed in time. Simulations of a Ni-Al-Ta-Wmore » alloy were performed on a rectangular cylinder until complete solidification. The results reveal details of the formation of freckles not previously observed in two-dimensional simulations. Liquid plumes in the form of chimney convection emanate from channels within the mushy zone, with similar qualitative features previously observed in transparent systems. Associated with the formation of channels, there is a complex three-dimensional flow produced by the interaction of the different solutal buoyancies of the alloy solutes. Regions of enhanced solid growth develop around the channel mouths, which are visualized as volcanoes on top of the mushy zone. The prediction of volcanoes differs from previous calculations with multicomponent alloys in two dimensions, in which the volcanoes were not nearly as apparent. These and other features of freckle formation phenomena are illustrated.« less
NASA Astrophysics Data System (ADS)
Belov, Nikolay A.; Naumova, Evgeniya A.; Akopyan, Torgom K.; Doroshenko, Vitaliy V.
2018-05-01
The phase composition of aluminum alloys in the Al-Ca-Fe-Si system, including the distribution of phases in the solid state and solidification reactions, has been studied. It is shown that the addition of iron and silicon to Al-Ca alloys leads to the formation of ternary Al2CaSi2 and Al10CaFe2 compounds. The equilibrium between these compounds implies the occurrence of the quaternary L → Al + Al4Ca + Al2CaSi2 + Al10CaFe2 eutectic reaction. The alloys near this eutectic have the best structure, which is typical of aluminum matrix composites. It is shown that Al-Ca alloys can have high manufacturability during both shape casting and rolling. This is due to the combination of a narrow temperature range of solidification and a favorable morphology for the eutectic, which has a fine structure. The combination of the mechanical and physical properties of the Al-Ca eutectic-based alloys significantly exceed those of branded alloys based on aluminum-silicon eutectics.
Fully-Implicit Orthogonal Reconstructed Discontinuous Galerkin for Fluid Dynamics with Phase Change
Nourgaliev, R.; Luo, H.; Weston, B.; ...
2015-11-11
A new reconstructed Discontinuous Galerkin (rDG) method, based on orthogonal basis/test functions, is developed for fluid flows on unstructured meshes. Orthogonality of basis functions is essential for enabling robust and efficient fully-implicit Newton-Krylov based time integration. The method is designed for generic partial differential equations, including transient, hyperbolic, parabolic or elliptic operators, which are attributed to many multiphysics problems. We demonstrate the method’s capabilities for solving compressible fluid-solid systems (in the low Mach number limit), with phase change (melting/solidification), as motivated by applications in Additive Manufacturing (AM). We focus on the method’s accuracy (in both space and time), as wellmore » as robustness and solvability of the system of linear equations involved in the linearization steps of Newton-based methods. The performance of the developed method is investigated for highly-stiff problems with melting/solidification, emphasizing the advantages from tight coupling of mass, momentum and energy conservation equations, as well as orthogonality of basis functions, which leads to better conditioning of the underlying (approximate) Jacobian matrices, and rapid convergence of the Krylov-based linear solver.« less
The CHEMFIX solidification/stabilization process was evaluated in the U.S. Environment Protection Agency's SITE program. Waste from an uncontrolled hazardous waste site was treated by the CHEMFIX process and subjected to a variety of physical and chemical test methods. Physical t...
The CHEMFIX solidification/stabilization process was evaluated in the U.S. Environmental Protection Agency's SITE program. Waste from an uncontrolled hazardous waste site was treated by the CHEMFIX process and subjected to a variety of physical and chemical test methods. Physical...
The major objective of the HAZCON Solidification SITE Program Demonstration Test was to develop reliable performance and cost information. The demonstration occurred at a 50-acre site of a former oil reprocessing plant at Douglassville, PA containing a wide range of organic...
NASA Astrophysics Data System (ADS)
Le Bars, Michael; Worster, M. Grae
2006-07-01
A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481-501] for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid [G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids 3 (1983) 249-264; D.A. Mayne, A.S. Usmani, M. Crapper, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000) 598-615; D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution, Numer. Heat Transf. 40 (2001) 199-228], in a porous medium with a constant porosity [G. Lauriat, V. Prasad, Non-darcian effects on natural convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 32 (1989) 2135-2148; P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967] and in a mixed liquid-porous medium with a spatially variable porosity [P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967; N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes, Int. J. Numer. Meth. Eng. 60 (2004) 1103-1138]. Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are presented, based on the similarity solutions in corner-flow geometries recently obtained by Le Bars and Worster [M. Le Bars, M.G. Worster, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech. (in press)]. Good agreement is found for all tests, hence validating our physical and numerical methods. More generally, the computations presented here could now be considered as standard and reliable analytical benchmarks for numerical simulations, specifically and independently testing the different processes underlying binary alloy solidification.
NASA Technical Reports Server (NTRS)
Macpherson, Glenn J.; Davis, Andrew M.
1993-01-01
A Type B Ca-, Al-rich 6-m-diam inclusion (CAI) found in the Vigarano C3V chondrite was inspected using optical and scanning electron microscopies and ion microprobe analyses. It was found that the primary constituents of the CAI inclusion are (in percent), melilite (52), fassaite, (20), anorthite (18), spinel (10), and trace Fe-Ni metal. It is noted that, while many of the properties of the inclusion indicate solidification from a melt droplet, the Al-26/Mg-26 isotopic systematics and some textural relationships are incompatible with single-stage closed system crystallization of a homogeneous molten droplet, indicating that the history of this inclusion must have been more complex than melt solidification alone. Moreover, there was unusually high content of Na in melilite, suggesting that the droplet did not form by melting of pristine high-temperature nebular condensates.
NASA Technical Reports Server (NTRS)
Kaukler, William F.
1988-01-01
The purpose of this work was to resolve a scientific controversy in the understanding of how second phase particles become aligned during unidirectional growth of a monotectic alloy. A second aspect was to make the first systematic observations of the solidification behavior of a monotectic alloy during cellular growth in-situ. This research provides the first systematic transparent model study of cellular solidification. An interface stability diagram was developed for the planar to cellular transition of the succinonitrile glycerol (SNG) system. A method was developed utilizing Fourier Transform Infrared Spectroscopy which allows quantitative compositional analysis of directionally solidified SNG along the growth axis. To determine the influence of cellular growth front on alignment for directionally solidified monotectic alloys, the planar and cellular growth morphology was observed in-situ for SNG between 8 and 17 percent glycerol and for a range of over two orders of magnitude G/R.
NASA Technical Reports Server (NTRS)
Anderson, T. J.; Narayanan, R.
1987-01-01
Directional solidification of the pseudobinary compound semiconductor material Pb sub 1-x Sn sub x Te by the Bridgman crystal growth process will be studied. Natural convection in the molten sample will be visualized with a novel electrochemical cell technique that employs the solid electrolyte material yttria-stabilized zirconia. Mass transfer by both diffusion and convection will be measured by detecting the motion of oxygen tracer in the liquid. Additional applications for electrochemical cells in semiconductor crystal growth are suggested. Unsteady convection in the melt will also be detected by the appearance of temperature oscillations. The purpose of this study is to experimentally characterize the overstable conditions for a Pb sub 1-x Sn sub x Te melt in the vertical Bridgman crystal growth technique and use a linear analysis to predict the onset of convection for this system.
Metastable phase formation in the Au-Si system via ultrafast nanocalorimetry
NASA Astrophysics Data System (ADS)
Zhang, M.; Wen, J. G.; Efremov, M. Y.; Olson, E. A.; Zhang, Z. S.; Hu, L.; de la Rama, L. P.; Kummamuru, R.; Kavanagh, K. L.; Ma, Z.; Allen, L. H.
2012-05-01
We have investigated the stability and solidification of nanometer size Au-Si droplets using an ultrafast heating/cooling nanocalorimetry and in situ growth techniques. The liquid can be supercooled to very low temperatures for both Au-rich (ΔT ˜ 95 K) and Si-rich (ΔT ˜ 220 K) samples. Solidification of a unique metastable phase δ1 is observed with a composition of 74 ± 4 at. % Au and a b-centered orthorhombic structure (a = 0.92, b = 0.72, and c = 1.35 nm; body-center in the a-c plane), which grows heteroepitaxially to Aus. Its melting temperature Tm is 305 ± 5 °C. There is competition during formation between the eutectic and δ1 phases but δ1 is the only metastable alloy observed. For small size droplets, both the δ1 and eutectic phases show considerable depression of the melting point (size-dependent melting).
Compact seaweed growth of peritectic phase on confined, flat properitectic dendrites
NASA Astrophysics Data System (ADS)
Ludwig, A.; Mogeritsch, J.
2016-12-01
Peritectic alloys form a variety of different solidification morphologies at low growth rates. An alloy with a concentration that corresponds to the hyper-peritectic limit should show a cellular/dendritic solidification of the peritectic phase for growth velocities above the corresponding constitutional undercooling limit. However, due to nucleation retardation of the peritectic phase we observed growth of properitectic dendrites before cellular growth of the peritectic could established. The transition happened via an overgrowth of dendrites with a thin layer of peritectic phase. The observations were made using a transparent, metal-like solidifying peritectic system that was solidified directionally in thin samples. In the gap between the flat dendrites and the tubing walls, the peritectic phase grew with a compact seaweed morphology, whereas in the interdendritic spacing it formed small-curved bumps. At same distance behind the tip region, more and more polycrystalline-like objects appeared at the elongated traces of the compact seaweed morphology.
Liquidus Temperatures and Solidification Behavior in the Copper-Niobium System
NASA Technical Reports Server (NTRS)
Li, D.; Robinson, M. B.; Rathz, T. J.; Williams, G.
1998-01-01
The copper-niobium phase diagram has been under active debate; thus, a corroboratory experimental study is needed. In this investigation, the melts of Cu-Nb alloys at compositions ranging from 5 lo 86 wt% Nb were processed in different environments and solidified at relatively low rates of 50-75 C/s to determine liquidus temperatures and to study solidification behavior. For all samples processed under very clean conditions, only Nb dendrites in a Cu matrix were observed; while in the presents of oxygen impurities, the alloys containing 5-35 wt% Nb exhibited microstructure of Nb-rich spheroids and Nb dendrites in the Cu matrix. The results obtained from clean conditions are in fair agreement with the Cu-Nb phase diagram having an S-shaped, near-horizontal appearances of the liquidus. The formation of Nb-rich droplets at slow cooling rates is discussed in terms of a stable liquid miscibility gap induced by oxygen.
Containerless processing of Nb-Ge alloys in a long drop tube
NASA Technical Reports Server (NTRS)
Bayuzick, R. J.
1982-01-01
The thirty-two meter drop tube at the Marshall Space Flight Center was used to study the effect of zero gravity containerless processing on the structure and properties of materials. The concept involves the suppression of heterogeneous nucleation of solid in liquid and, therefore, solidification accompanied by large degrees of undercooling. Under these conditions metastable phases can be formed or, at the very least, unique nonequilibrium microstructures (containing equilibrium phases) with unique properties can be produced. The drop tube solidification was applied to niobium base alloys with emphasis on the Nb-Ge binary system in an effort to produce metastable phases with high superconducting transition temperatures in bulk specimens. In the past, only lower Ge alloys (Nb-13 a/o, Nb-18 a/o, and Nb-22 a/o) could be undercooled. Higher Ge alloys (e.g., Nb-25 a/o Ge and Nb-27 a/o Ge) can now be undercooled on a routine basis.
An inverse model for a free-boundary problem with a contact line: Steady case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, Oleg; Protas, Bartosz
2009-07-20
This paper reformulates the two-phase solidification problem (i.e., the Stefan problem) as an inverse problem in which a cost functional is minimized with respect to the position of the interface and subject to PDE constraints. An advantage of this formulation is that it allows for a thermodynamically consistent treatment of the interface conditions in the presence of a contact point involving a third phase. It is argued that such an approach in fact represents a closure model for the original system and some of its key properties are investigated. We describe an efficient iterative solution method for the Stefan problemmore » formulated in this way which uses shape differentiation and adjoint equations to determine the gradient of the cost functional. Performance of the proposed approach is illustrated with sample computations concerning 2D steady solidification phenomena.« less
1997-09-15
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). The large white vertical cylinder in the center of the photo is the Advanced Automated Directional Solidification Furnace (AADSF) and the horizontal tube to the left of it is MEPHISTO, a French acronym for a cooperative American-French investigation of the fundamentals of crystal growth. Seen at right behind the AADSF in the circular white cover is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment. Under the multi-layer insulation with the American flag and mission logo is the Space Acceleration Measurement System, or SAMS, which measures the microgravity conditions in which the experiments are conducted. All of these experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC
1997-09-15
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). The large white vertical cylinder in the middle of the photo is the Advanced Automated Directional Solidification Furnace (AADSF) and the horizontal tube to its left is MEPHISTO, the French acronym for a cooperative American-French investigation of the fundamentals of crystal growth. Seen to the right of the AADSF is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment. Under the multi-layer insulation with the American flag and mission logo is the Space Acceleration Measurement System, or SAMS, which measures the microgravity conditions in which the experiments are conducted. All of these experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC
Indium antimonide crystal growth experiment M562. [Skylab weightless conditions
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Witt, A. F.
1974-01-01
It was established that ideal diffusion controlled steady state conditions, never accomplished on earth, were achieved during the growth of Te-doped InSb crystals in Skylab. Surface tension effects led to nonwetting conditions under which free surface solidification took place in confined geometry. It was further found that, under forced contact conditions, surface tension effects led to the formation of surface ridges (not previously observed on earth) which isolated the growth system from its container. In addition, it was possible, for the first time, to identify unambiguously: the origin of segregation discontinuities associated with facet growth, the mode of nucleation and propagation of rotational twin boundaries, and the specific effect of mechanical-shock perturbations on segregation. The results obtained prove the advantageous conditions provided by outer space. Thus, fundamental data on solidification thought to be unattainable because of gravity-induced interference on earth are now within reach.
NASA Astrophysics Data System (ADS)
Okita, Shin; Verestek, Wolfgang; Sakane, Shinji; Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi
2017-09-01
Continuous processes of homogeneous nucleation, solidification and grain growth are spontaneously achieved from an undercooled iron melt without any phenomenological parameter in the molecular dynamics (MD) simulation with 12 million atoms. The nucleation rate at the critical temperature is directly estimated from the atomistic configuration by cluster analysis to be of the order of 1034 m-3 s-1. Moreover, time evolution of grain size distribution during grain growth is obtained by the combination of Voronoi and cluster analyses. The grain growth exponent is estimated to be around 0.3 from the geometric average of the grain size distribution. Comprehensive understanding of kinetic properties during continuous processes is achieved in the large-scale MD simulation by utilizing the high parallel efficiency of a graphics processing unit (GPU), which is shedding light on the fundamental aspects of production processes of materials from the atomistic viewpoint.
Dendritic growth and structure of undercooled nickel base alloys
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Shiohara, Y.
1988-01-01
The principal objectives of this overall investigation are to: study means for obtaining high undercooling in levitation melted droplets, and study structures produced upon the solidification of these undercooled specimens. Thermal measurements are made of the undercooling, and of the rapid recalescence, to develop an understanding of the solidification mechanism. Comparison of results is made with the modeling studies. Characterization and metallographic work is done to gain an understanding of the relationship between rapid solidification variables and the structures so produced. In ground based work to date, solidification of undercooled Ni-25 wt percent Sn alloy was observed by high-speed cinematography and the results compared with optical temperature measurements. Also in ground based work, high-speed optical temperature measurements were made of the solidification behavior of levitated metal samples within a transparent glass medium. Two undercooled Ni-Sn alloys were examined. Measurements were carried out on samples at undercoolings up to 330 K. Microstructures of samples produced in ground based work were determined by optical metallography and by SEM, and microsegregation by electron microprobe measurements. A series of flight tests were planned to conduct experiments similar to the ground based experiments. The Space Shuttle Columbia carried an alloy undercooled experiment in the STS 61-C mission in January 1986. A sample of Ni-32.5 wt percent Sn eutectic was melted and solidified under microgravity conditions.
Solidification as low cost technology prior to land filling of industrial hazardous waste sludge.
El-Sebaie, O; Ahmed, M; Ramadan, M
2000-01-01
The aim of this study is to stabilize and solidify two different treated industrial hazardous waste sludges, which were selected from factories situated close to Alexandria. They were selected to ensure their safe transportation and landfill disposal by reducing their potential leaching of hazardous elements, which represent significant threat to the environment, especially the quality of underground water. The selected waste sludges have been characterized. Ordinary Portland Cement (OPC), Cement Kiln Dust (CKD) from Alexandria Portland Cement Company, and Calcium Sulphate as a by-product from the dye industry were used as potential solidification additives to treat the selected treated waste sludges from tanning and dyes industry. Waste sludges as well as the solidified wastes have been leach-tested, using the General Acid Neutralization Capacity (GANC) procedure. Concentration of concerning metals in the leachates was determined to assess changes in the mobility of major contaminants. The treated tannery waste sludge has an acid neutralization capacity much higher than that of the treated dyes waste sludge. Experiment results demonstrated the industrial waste sludge solidification mix designs, and presented the reduction of contaminant leaching from two types of waste sludges. The main advantages of solidification are that it is simple and low cost processing which includes readily available low cost solidification additives that will convert industrial hazardous waste sludges into inert materials.
NASA Astrophysics Data System (ADS)
Amekura, H.; Tanaka, M.; Katsuya, Y.; Yoshikawa, H.; Ohnuma, M.; Matsushita, Y.; Kobayashi, K.; Kishimoto, N.
2010-11-01
Melting-solidification transition of Zn nanoparticles (NPs) with the mean diameter of 11.5 nm, embedded in silica glass, was investigated by glancing incident x-ray diffraction (GIXRD) at high temperatures using synchrotron radiation (SR). With increasing temperature, 101Zn diffraction peak gradually decreases up to ˜360 °C and then steeply decreases. This is due to the melting of Zn NPs, which completes around 420 °C. With decreasing temperature, the solidification of the NPs begins around ˜310 °C. The temperature hysteresis with a width of ˜110 °C was observed. With temperature, the diffraction angle shows a shift without hysteresis, which is ascribed to thermal expansion of Zn NP lattice. Thermal expansion coefficient of Zn NPs was determined as 24.4×10-6 K-1 along the ⟨101⟩ direction. Optical absorption spectroscopy shows a broad ultraviolet (UV) peak which was observed at even higher temperatures than the melting temperature but shifts to the low-energy side with the melting. The energy shift in the UV peak also shows the temperature hysteresis which resembles with the melting-solidification hysteresis recorded by SR-GIXRD. The melting-solidification transition is also detectable by the optical absorption spectroscopy in the UV-visible-near-infrared region.
NASA Astrophysics Data System (ADS)
Mitter, Thomas; Grün, Hubert; Roither, Jürgen; Betz, Andreas; Bozorgi, Salar; Reitinger, Bernhard; Burgholzer, Peter
2014-05-01
In the continuous casting process the avoidance and rapid detection of occurring solidification cracks in the slab is a crucial issue, in particular for the maintenance of a high quality level in further production processes. Due to the elevated temperatures of the slab surface a remote sensing non-destructive tool for quality inspection is required, which is also applicable for the harsh industrial environment. In this work the application of laser ultrasound (LUS) technique during the continuous casting process in industrial environment is shown. The proof of principle of the detection of the centered solidification cracks is shown by pulse-echo measurements with laser ultrasonic equipment for inline quality inspection. Preliminary examinations in the lab of different casted samples have shown the distinguishability of slabs with and without any solidification cracks. Furthermore the damping of the bulk wave has been used for the prediction of the dimension of the crack. With an adapted "synthetic aperture focusing technique" (SAFT) algorithm the image reconstruction of multiple measurements at different positions around the circumference has provided enough information for the estimation of the localization and extension of the centered solidification cracks. Subsequent first measurements using this laser ultrasonic setup during the continuous casting of aluminum were carried out and showed the proof of principle in an industrial environment with elevated temperatures, dust, cooling water and vibrations.
Pressurized metallurgy for high performance special steels and alloys
NASA Astrophysics Data System (ADS)
Jiang, Z. H.; Zhu, H. C.; Li, H. B.; Li, Y.; Liu, F. B.
2016-07-01
The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.
Numerical Optimization of the Thermal Field in Bridgman Detached Growth
NASA Technical Reports Server (NTRS)
Stelian, C.; Volz, M. P.; Derby, J. J.
2009-01-01
The global modeling of the thermal field in two vertical Bridgman-like crystal growth configurations, has been performed to get optimal thermal conditions for a successful detached growth of Ge and CdTe crystals. These computations are performed using the CrysMAS code and expand upon our previous analysis [1] that propose a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. The analysis of the vertical Bridgman configuration with two heaters, used by Palosz et al. for the detached growth of Ge, shows, consistent with their results, that the large wetting angle of germanium on boron nitride surfaces was an important factor to promote a successful detached growth. Our computations predict that by initiating growth much higher into the hot zone of the furnace, the thermal conditions will be favorable for continued detachment even for systems that did not exhibit high contact angles. The computations performed for a vertical gradient freeze configuration with three heaters representative of that used for the detached growth of CdTe, show favorable thermal conditions for dewetting during the entirely growth run described. Improved thermal conditions are also predicted for coated silica crucibles when the solid-liquid interface advances higher into the hot zone during the solidification process. The second set of experiments on CdTe growth described elsewhere has shown the reattachment of the crystal to the crucible after few centimeters of dewetted growth. The thermal modeling of this configuration shows a second solidification front appearing at the top of the sample and approaching the middle line across the third heater. In these conditions, the crystal grows detached from the bottom, but will be attached to the crucible in the upper part because of the solidification without gap in this region. The solidification with two interfaces can be avoided when the top of the sample is positioned below the middle position of the third furnace.
This paper presents an EPA evaluation of the first field demonstration of an in situ stabilization/solidification process for contaminated soil under the EPA Superfund Innovative Technology Evaluation (SITE) program. Demonstration of this process was a joint effort of two vendors...
Solidification/stabilization (S/S) technology processes are currently being utilized in the United States to treat inorganic and organic hazardous waste and radioactive waste. These wastes are generated from operating industry or have resulted from the uncontrolled management of ...
An evaluation was performed of the International Waste Technologies (IWT) HWT-20 additive and the Geo-Con, Inc. deep-soil-mixing equipment for an in situ stabilization/solidification process and its applicability as an on-site treatment method for waste site cleanup. The analysis...
Real-Time X-Ray Microscopy of Al-Cu Eutectic Solidification
NASA Technical Reports Server (NTRS)
Kaukler, William F.; Curreri, Peter A.; Sen, Subhayu
1998-01-01
Recent improvements in the resolution of the X-ray Transmission Microscope (XTM) for Solidification Studies provide microstructure feature detectability down to 5 micrometers during solidification. This presentation will show the recent results from observations made in real-time of the solid-liquid interfacial morphologies of the Al-CuAI2 eutectic alloy. Lamellar dimensions and spacings, transitions of morphology caused by growth rate changes, and eutectic grain structures are open to measurements. A unique vantage point viewing the face of the interface isotherm is possible for the first time with the XTM due to its infinite depth of field. A video of the solid-liquid interfaces seen in-situ and in real-time will be shown.
Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys
NASA Technical Reports Server (NTRS)
Fecht, H. J.
1991-01-01
During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PB-Sn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibra, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the 'step rule' resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.
2013-01-01
Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.
Electromagnetic containerless undercooling facility and experiments for the Shuttle
NASA Technical Reports Server (NTRS)
Frost, R. T.; Flemings, M. C.; Szekely, J.; El-Kaddah, N.; Shiohara, Y.
1984-01-01
An electromagnetic furnace is being prepared for flights aboard the Space Shuttle. This apparatus is capable of melting metals and alloys up to 1400 C melting point by induction heating with subsequent solidification of the freely levitated melt without contact with any container. The solidification can be carried out with greatly reduced fields resulting in minimal heating and stirring of the free melt. Sequential specimens can be processed during flight. Several experiments are planned for a series of flights, beginning in 1985 with an undercooling experiment of NiSn alloys. These will be interspersed with detailed studies of fluid flow caused by low and high field levels in order to quantify the corresponding effect upon the solidification process.
Technicians monitor USMP-4 experiments being prepared for flight on STS-87 in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Technicians are monitoring experiments on the United States Microgravity Payload-4 (USMP-4) in preparation for its scheduled launch aboard STS-87 on Nov. 19 from Kennedy Space Center (KSC). USMP-4 experiments are prepared in the Space Station Processing Facility at KSC. The large white vertical cylinder in the center of the photo is the Advanced Automated Directional Solidification Furnace (AADSF), which is a sophisticated materials science facility used for studying a common method of processing semiconductor crystals called directional solidification. The white horizontal tube to the right is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment.
Two-Step Vapor/Liquid/Solid Purification
NASA Technical Reports Server (NTRS)
Holland, L. R.
1986-01-01
Vertical distillation system combines in single operation advantages of multiple zone refining with those of distillation. Developed specifically to load Bridgman-Stockbarger (vertical-solidification) growth ampoules with ultrapure tellurium and cadmium, system, with suitable modifications, serves as material refiner. In first phase of purification process, ampoule heated to drive off absorbed volatiles. Second phase, evaporator heated to drive off volatiles in charge. Third phase, slowly descending heater causes distillation from evaporator to growing crystal in ampoule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shea, M.
1995-09-01
The proper isolation of radioactive waste is one of today`s most pressing environmental issues. Research is being carried out by many countries around the world in order to answer critical and perplexing questions regarding the safe disposal of radioactive waste. Natural analogue studies are an increasingly important facet of this international research effort. The Pocos de Caldas Project represents a major effort of the international technical and scientific community towards addressing one of modern civilization`s most critical environmental issues - radioactive waste isolation.
Review of neutron-based technologies for the inspection of cargo containers
NASA Astrophysics Data System (ADS)
Khan, Siraj M.
1994-10-01
Three techniques (API, PFNA and PFTNA) are described and compared in this brief review of neutron based technologies for the detection of contraband in cargo containers. It appears that the role that these techniques can play in the detection of contraband in Customs, airline security and physical security applications remains to be demonstrated. However, their utilization in the fields of non-proliferation, arms control and disarmament, radwaste remediation and pollution control seems more straight forward since the issues of thruput and radiation safety are not so critical.
Thermal Modeling of Bridgman Crystal Growth
NASA Technical Reports Server (NTRS)
Cothran, E.
1983-01-01
Heat Flow modeled for moving or stationary rod shaped sample inside directional-solidification furnace. Program effectively models one-dimensional heat flow in translating or motionless rod-shaped sample inside of directionalsolidification furnace in which adiabatic zone separates hot zone and cold zone. Applicable to systems for which Biot numbers in hot and cold zones are less than unity.
Activities of the Center for the Space Processing of Engineering Materials
NASA Technical Reports Server (NTRS)
1986-01-01
Topics addressed include: containerless processing and purification; directional and rapid solidification; high temperature alloys; oxidation resistant niobium alloys; metallic bonding; effects of solidification mode on structure-property relationships; and dispersion strengthened metal alloys. Each of the projects is reported by company association and follow according to alphabetical order of the company names.
Experimental Study of Sudden Solidification of Supercooled Water
ERIC Educational Resources Information Center
Bochnícek, Zdenek
2014-01-01
The two independent methods of measurement of the mass of ice created at sudden solidification of supercooled water are described. One is based on the calorimetric measurement of heat that is necessary for melting the ice and the second interprets the volume change that accompanies the water freezing. Experimental results are compared with the…
The South 8th Street site contained a 2.5 acre oily sludge pit with very low pH waste produced by oil recycling activities. This sludge was treated using in-situ solidification/stabilization technology applied by deep soil mixing augers. The problems encountered, solutions develo...
Impact of Metal Droplets: A Numerical Approach to Solidification
NASA Astrophysics Data System (ADS)
Koldeweij, Robin; Mandamparambil, Rajesh; Lohse, Detlef
2016-11-01
Layer-wise deposition of material to produce complex products is a subject of increasing technological relevance. Subsequent deposition of droplets is one of the possible 3d printing technologies to accomplish this. The shape of the solidified droplet is crucial for product quality. We employ the volume-of-fluid method (in the form of the open-source code Gerris) to study liquid metal (in particular tin) droplet impact. Heat transfer has been implemented based on the enthalpy approach for the liquid-solid phase. Solidification is modeled by adding a sink term to the momentum equations, reducing Navier-Stokes to Darcy's law for high solid fraction. Good agreement is found when validating the results against experimental data. We then map out a phase diagram in which we distinguish between solidification behavior based on Weber and Stefan number. In an intermediate impact regime impact, solidification due to a retracting phase occurs. In this regime the maximum spreading diameter almost exclusively depends on Weber number. Droplet shape oscillations lead to a broad variation of the morphology of the solidified droplet and determine the final droplet height. TNO.
NASA Astrophysics Data System (ADS)
Yang, Luyan; Li, Shuangming; Fan, Kai; Li, Yang; Zhong, Hong; Fu, Hengzhi
2018-06-01
Feathery crystals are an ensemble of twinned dendrites, and are characterized by a unique twin boundary (TB) structure in the solidification pattern of aluminum alloys. In this work, the high-density twinned dendrites of Al-4.5 wt% Cu alloys, produced during the Bridgman solidification, have been studied using electron backscattered diffraction (EBSD) and high-resolution transmission electron microscopy (HRTEM). The experimental results showed that, after systematically decreasing the growth rate from 3000 μm/s to 1 μm/s, the TBs remained stable, while the solute field around the TBs changed significantly. According to the HRTEM results, successive stacking faults were occurred near the TBs at 1 μm/s, while slight distortion was observed around the TBs at 3000 μm/s. The composition analysis revealed an obvious solute enrichment near the TBs. Furthermore, the solute gradient profile within the TBs became smoother with the decrease in the growth speed. This is due to the more sufficient solid-state back diffusion occurring perpendicular to the twin plane after the solidification.
NASA Astrophysics Data System (ADS)
Ai, Cheng; Zhou, Jian; Zhang, Heng; Zhao, Xinbao; Pei, Yanling; Li, Shusuo; Gong, Shengkai
2016-01-01
The non-equilibrium solidification behaviors of five Ni-Al-Ta ternary model single crystal alloys with different Al contents were investigated by experimental analysis and theoretical calculation (by JMatPro) in this study. These model alloys respectively represented the γ' phase with various volume fractions (100%, 75%, 50%, 25% and 0%) at 900 °C. It was found that with decreasing Al content, liquidus temperature of experimental alloys first decreased and then increased. Meanwhile, the solidification range showed a continued downward trend. In addition, with decreasing Al content, the primary phases of non-equilibrium solidified model alloys gradually transformed from γ' phase to γ phase, and the area fraction of which first decreased and then increased. Moreover, the interdendritic/intercellular precipitation of model alloys changed from β phase (for 100% γ') to (γ+γ')Eutectic (for 75% γ'), (γ+γ')Eutectic+γ' (for 50% γ' and 25% γ') and none interdendritic precipitation (for 0% γ'), and the last stage non-equilibrium solidification sequence of model alloys was determined by the nominal Al content and different microsegregation behaviors of Al element.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1997-01-01
Melt convection, along with species diffusion and segregation on the solidification interface are the primary factors responsible for species redistribution during HgCdTe crystal growth from the melt. As no direct information about convection velocity is available, numerical modeling is a logical approach to estimate convection. Furthermore influence of microgravity level, double-diffusion and material properties should be taken into account. In the present study, HgCdTe is considered as a binary alloy with melting temperature available from a phase diagram. The numerical model of convection and solidification of binary alloy is based on the general equations of heat and mass transfer in two-dimensional region. Mathematical modeling of binary alloy solidification is still a challenging numericial problem. A Rigorous mathematical approach to this problem is available only when convection is not considered at all. The proposed numerical model was developed using the finite element code FIDAP. In the present study, the numerical model is used to consider thermal, solutal convection and a double diffusion source of mass transport.
NASA Astrophysics Data System (ADS)
Çadırlı, Emin
2013-05-01
Al(100-x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.
A Three-Stage Mechanistic Model for Solidification Cracking During Welding of Steel
NASA Astrophysics Data System (ADS)
Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J.; Rack, A.; Cocks, A. C. F.
2018-03-01
A three-stage mechanistic model for solidification cracking during TIG welding of steel is proposed from in situ synchrotron X-ray imaging of solidification cracking and subsequent analysis of fracture surfaces. Stage 1—Nucleation of inter-granular hot cracks: cracks nucleate inter-granularly in sub-surface where maximum volumetric strain is localized and volume fraction of liquid is less than 0.1; the crack nuclei occur at solute-enriched liquid pockets which remain trapped in increasingly impermeable semi-solid skeleton. Stage 2—Coalescence of cracks via inter-granular fracture: as the applied strain increases, cracks coalesce through inter-granular fracture; the coalescence path is preferential to the direction of the heat source and propagates through the grain boundaries to solidifying dendrites. Stage 3—Propagation through inter-dendritic hot tearing: inter-dendritic hot tearing occurs along the boundaries between solidifying columnar dendrites with higher liquid fraction. It is recommended that future solidification cracking criterion shall be based on the application of multiphase mechanics and fracture mechanics to the failure of semi-solid materials.
NASA Astrophysics Data System (ADS)
Nguyen, Thi Hoai Thu; Chen, Jyh-Chen; Hu, Chieh; Chen, Chun-Hung; Huang, Yen-Hao; Lin, Huang-Wei; Yu, Andy; Hsu, Bruce
2017-06-01
In this study, a global transient numerical simulation of silicon growth from the beginning of the solidification process until the end of the cooling process is carried out modeling the growth of an 800 kg ingot in an industrial seeded directional solidification furnace. The standard furnace is modified by the addition of insulating blocks in the hot zone. The simulation results show that there is a significant decrease in the thermal stress and dislocation density in the modified model as compared to the standard one (a maximal decrease of 23% and 75% along the center line of ingot for thermal stress and dislocation density, respectively). This modification reduces the heating power consumption for solidification of the silicon melt by about 17% and shortens the growth time by about 2.5 h. Moreover, it is found that adjusting the operating conditions of modified model to obtain the lower growth rate during the early stages of the solidification process can lower dislocation density and total heater power.
NASA Astrophysics Data System (ADS)
Tadesse, Abel; Fredriksson, Hasse
2018-06-01
The graphite nodule count and size distributions for boiling water reactor (BWR) and pressurized water reactor (PWR) inserts were investigated by taking samples at heights of 2160 and 1150 mm, respectively. In each cross section, two locations were taken into consideration for both the microstructural and solidification modeling. The numerical solidification modeling was performed in a two-dimensional model by considering the nucleation and growth in eutectic ductile cast iron. The microstructural results reveal that the nodule size and count distribution along the cross sections are different in each location for both inserts. Finer graphite nodules appear in the thinner sections and close to the mold walls. The coarser nodules are distributed mostly in the last solidified location. The simulation result indicates that the finer nodules are related to a higher cooling rate and a lower degree of microsegregation, whereas the coarser nodules are related to a lower cooling rate and a higher degree of microsegregation. The solidification time interval and the last solidifying locations in the BWR and PWR are also different.
Numerical study of coupled turbulent flow and solidification for steel slab casters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aboutalebi, M.R.; Hasan, M.; Guthrie, R.I.L.
1995-09-01
A two-dimensional numerical modeling study was undertaken to account for coupled turbulent flow and heat transfer with solidification in the mold and submold regions of a steel slab coaster. Liquid steel is introduced into a water-cooled mold through a bifurcated submerged entry nozzle. Turbulence phenomena in the melt pool of the caster were accounted for, using a modified version of the low-Reynolds-number {kappa}-{epsilon} turbulence model of Launder and Sharma. The mushy region solidification, in the presence of turbulence, was taken into account by modifying the standard enthalpy-porosity technique, which is presently popular for modeling solidification problems. Thermocapillary and buoyancy effectsmore » have been considered in this model to evaluate the influences of the liquid surface tension gradient at the meniscus surface, and natural convection on flow patterns in the liquid pool. Parametric studies were carried out to evaluate the effects of typical variables, such as inlet superheat and casting speed, on the fluid flow and heat transfer results. The numerical predictions were compared with available experimental data.« less
Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites
NASA Astrophysics Data System (ADS)
Kao, A.; Gao, J.; Pericleous, K.
2018-01-01
In the undercooled solidification of pure metals, the dendrite tip velocity has been shown experimentally to have a strong dependence on the intensity of an external magnetic field, exhibiting several maxima and minima. In the experiments conducted in China, the undercooled solidification dynamics of pure Ni was studied using the glass fluxing method. Visual recordings of the progress of solidification are compared at different static fields up to 6 T. The introduction of microscopic convective transport through thermoelectric magnetohydrodynamics is a promising explanation for the observed changes of tip velocities. To address this problem, a purpose-built numerical code was used to solve the coupled equations representing the magnetohydrodynamic, thermal and solidification mechanisms. The underlying phenomena can be attributed to two competing flow fields, which were generated by orthogonal components of the magnetic field, parallel and transverse to the direction of growth. Their effects are either intensified or damped out with increasing magnetic field intensity, leading to the observed behaviour of the tip velocity. The results obtained reflect well the experimental findings. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Gajski, Goran; Oreščanin, Višnja; Garaj-Vrhovac, Vera
2011-07-01
Present study aimed to establish the chemical composition of sewage sludge leachate before/after calcium oxide-based solidification using energy dispersive X-ray fluorescence (EDXRF). The other aim was to determine leachate effects on human lymphocyte and DNA integrity in vitro using a battery of bioassays (DNA diffusion assay, micronucleus test and comet assay) to determine effects of those complex mixtures of elements on cell and DNA integrity. EDXRF showed that nickel concentration in the leachate of untreated sludge was 18.5 times higher than the upper permissible limit for inert waste landfills. Other elements were kept below the permissible values. After sludge solidification, leachate concentrations of Cr, Mn, Fe, Ni, Cu, Zn, and Pb dropped 1.6, 2.7, 37, 5.9, 3.2, 7.8, and 2.6 times, respectively. Untreated sludge leachate was cytogenotoxic to lymphocytes, and may lead to adverse effects on the exposed human populations, but calcium oxide-based solidification reduced these effects in significant manner. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abe, Hiroshi; Watanabe, Yutaka
2008-06-01
Thermal aging embrittlement of light water reactor (LWR) components made of stainless steel cast has been recognized as a potential degradation issue, and careful attention has been paid to it. Although welds of austenitic stainless steels have γ-δ duplex microstructure, which is similar to that of the stainless steel cast, examination of the thermal aging characteristics of the stainless steel welds is very limited. In this investigation, two types of type 316L stainless steel weld metal with different solidification modes were prepared using two kinds of filler metals having tailored Ni equivalent and Cr equivalent. Differences between the two weld metals in the morphology of microstructure, in the composition of δ-ferrite, and in hardening behaviors with isothermal aging at 335 °C have been investigated. The hardness of the ferrite phase has increased with aging time, while the hardness of austenite phase has stayed the same. The mottled aspect has been observed in δ-ferrite of aged samples by transmission electron microscopy (TEM) observation. These characteristics suggest that spinodal decomposition has occurred in δ-ferrite by aging at 335 °C. The age-hardening rate of δ-ferrite was faster for the primary austenite solidification mode (AF mode) sample than the primary ferrite solidification mode (FA mode) sample in the initial stage of the aging up to 2000 hours. It has been suggested that the solidification mode can affect the kinetics of spinodal decomposition.
NASA Astrophysics Data System (ADS)
Nguyen, Thi-Thuy-My; Gandin, Charles-André; Combeau, Hervé; Založnik, Miha; Bellet, Michel
2018-02-01
The transport of solid crystals in the liquid pool during solidification of large ingots is known to have a significant effect on their final grain structure and macrosegregation. Numerical modeling of the associated physics is challenging since complex and strong interactions between heat and mass transfer at the microscopic and macroscopic scales must be taken into account. The paper presents a finite element multi-scale solidification model coupling nucleation, growth, and solute diffusion at the microscopic scale, represented by a single unique grain, while also including transport of the liquid and solid phases at the macroscopic scale of the ingots. The numerical resolution is based on a splitting method which sequentially describes the evolution and interaction of quantities into a transport and a growth stage. This splitting method reduces the non-linear complexity of the set of equations and is, for the first time, implemented using the finite element method. This is possible due to the introduction of an artificial diffusion in all conservation equations solved by the finite element method. Simulations with and without grain transport are compared to demonstrate the impact of solid phase transport on the solidification process as well as the formation of macrosegregation in a binary alloy (Sn-5 wt pct Pb). The model is also applied to the solidification of the binary alloy Fe-0.36 wt pct C in a domain representative of a 3.3-ton steel ingot.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Kaukler, William
1999-01-01
Experimental data on Al-0.8Au horizontal solidification of a 1 mm thick specimen in a BN crucible shows the effect of growth rate on the solidification interface shape. For translation rates below 0.5 micron/s the interface maintains a plain and flat shape. When the translation rate is 3 to 5 micron/s or more, the interface appearance changes to two planar zones, with the zone closer to the bottom having higher inclination. The interface shapes were measured by first quenching in place during growth. X-ray microscopy shows the interface shape within the quenched sample by viewing through the side of the specimen. In order to provide theoretical explanation of the phenomena, numerical modeling was undertaken using finite element code FIDAP. Double diffusion convection in Al-0.8Au melt and crystal-melt interface curvature during directional solidification was analyzed numerically. Actual thermophysical properties of Al-0.8Au including the binary Al-Au phase diagram were used. Although convection in the sample is weak, for the slower translation rate convection and diffusion is sufficient for the redistribution of initial compositional stratification caused by gravity. When translation rate is raised, neither convection nor diffusion can provide proper mixing so that solidification temperatures differ significantly near the bottom within the bulk of the sample. As a result, the solid-liquid interface appears to have two planar zones with different inclination.
Recovery and safer disposal of phosphate coating sludge by solidification/stabilization.
Ucaroglu, Selnur; Talinli, Ilhan
2012-08-30
Solidification/stabilization (S/S) of automotive phosphate coating sludge (PS) containing potentially toxic heavy metals was studied. The hazardous characteristics of this waste were assessed according to both Turkish and U.S. Environmental Protection Agency (EPA) regulations for hazardous solid waste. Unconfined compressive strength (UCS) and leaching behavior tests of the solidified/stabilized product were performed. Solidification studies were conducted using Portland cement (PC) as the binder. UCS was found to decrease with increasing waste content. It was found that recovery of the waste for construction applications was possible when the waste content of the mortar was 20% and below, but solidification for safe disposal was achieved only when higher waste concentrations were added. Cu, Cr, Ni, Pb and Zn were found to be significantly immobilized by the solidification/stabilization process. Ni and Zn, which were present at particularly high concentrations (2.281 and 135.318 g/kg respectively) in the PS, had highest the retention levels (94.87% and 98.74%, respectively) in the PC mortars. The organic contaminants and heavy metals present in PS were determined to be immobilized by the S/S process in accordance with the BS 6920 standard. Thus, the potential for hazardous PS waste to adversely impact human health and the environment was effectively eliminated by the S/S procedure. We conclude that S/S-treated PS is safe for disposal in landfills, while recovery of S/S-treated PS constituents remains possible. Copyright © 2012 Elsevier Ltd. All rights reserved.
Thermal evolution of plutons: a parameterized approach.
Spera, F
1980-01-18
A conservation-of-energy equation has been derived for the spatially averaged magma temperature in a spherical pluton undergoing simultaneous crystallization and both internal (magma) and external (hydrothermal fluid) thermal convection. The model accounts for the dependence of magma viscosity on crystallinity, temperature, and bulk composition; it includes latent heat effects and the effects of different initial water concentrations in the melt and quantitatively considers the role that large volumes of circulatory hydrothermal fluids play in dissipating heat. The nonlinear ordinary differential equation describing these processes has been solved for a variety of magma compositions, initial termperatures, initial crystallinities, volume ratios of hydrothermal fluid to magma, and pluton sizes. These calculations are graphically summarized in plots of the average magma temperature versus time after emplacement. Solidification times, defined as the time necessary for magma to cool from the initial emplacement temperature to the solidus temperature vary as R(1,3), where R is the pluton radius. The solidification time of a pluton with a radius of 1 kilometer is 5 x 10(4) years; for an otherwise identical pluton with a radius of 10 kilometers, the solidification time is approximately 10(6) years. The water content has a marked effect on the solidification time. A granodiorite pluton with a radius of 5 kilometers and either 0.5 or 4 percent (by weight) water cools in 3.3 x 10(5) or 5 x 10(4) years, respectively. Convection solidification times are usually but not always less than conduction cooling times.