Testing of wide-gap welds at eastern mega site.
DOT National Transportation Integrated Search
2013-08-01
In 2005, Transportation Technology Center, Inc. (TTCI) and Norfolk Southern Railway (NS) began a test of wide-gap welds (WGWs) at the eastern mega site near Bluefield, WV. : WGWs enable the repair of weld or railhead defects with a single weld instea...
77 FR 64249 - Track Safety Standards; Improving Rail Integrity
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... specific problems. This is a result of high traffic volumes that load the rail and accelerate defect growth... influenced by tonnage. Rapid growth rates can also be associated with rail where high-tensile residual stresses are present in the railhead and in CWR in lower temperature ranges where the rail is in high...
The Coast Artillery Journal. Volume 82, Number 6, November-December 1939
1939-12-01
trailers in the quartermaster battalion, and no other rations need normally be carried. No gas and oil beyond that in vehicle tanks and in containers on...vehicles need be normally carried in the division. A gas-and- oil service must be provided at the railhead for refilling. When it is desired to move...battalion of the new division is organized to meet these many demands, and certain headquarters, motor maintenance, gasoline and oil sup- ply, labor, and
Increasing coupling properties of locomotive by magnetizing contact area of wheel with rail
NASA Astrophysics Data System (ADS)
Antipin, D. Ya; Vorobyov, V. I.; Korchagin, V. O.; Kobishchanov, V. V.; Shorokhov, S. G.
2017-10-01
The authors of the paper consider a section of the magnetic circuit, which includes a band of a wheel pair, a railhead and an air gap between them. The parameters of the magnetic field and magnetic resistance between the wheel and the rail are obtained. Attention is paid to the decrease in the magnetic permeability of saturated steel regions and to the change in the magnetic susceptibility of the contact regions at high temperatures in the contact spot. The epicenters of the magnetic field concentration at different modes of magnetization are determined taking into account the change in the wheel position relative to the rail.
Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.
2010-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.
Wheel/rail noise generated by a high-speed train investigated with a line array of microphones
NASA Astrophysics Data System (ADS)
Barsikow, B.; King, W. F.; Pfizenmaier, E.
1987-10-01
Radiated noise generated by a high-speed electric train travelling at speeds up to 250 km/h has been measured with a line array of microphones mounted along the wayside in two different orientations. The test train comprised a 103 electric locomotive, four Intercity coaches, and a dynamo coach. Some of the wheels were fitted with experimental wheel-noise absorbers. By using the directional capabilities of the array, the locations of the dominant sources of wheel/rail radiated noise were identified on the wheels. For conventional wheels, these sources lie near or on the rim at an average height of about 0·2 m above the railhead. The effect of wheel-noise absorbers and freshly turned treads on radiated noise were also investigated.
Vertical Dynamic Interaction Between Train and Track Influence of Wheel and Track Imperfections
NASA Astrophysics Data System (ADS)
Nielsen, J. C. O.; Igeland, A.
1995-11-01
The vertical dynamic behaviour is investigated for a railway bogie moving on a rail which is discretely supported, via railpads, by sleepers resting on an elastic foundation. The transient interaction problem is numerically solved by use of an extended state-spacer vector approach in conjunction with a complex modal superposition for the track. Application examples are given in which the influences of three types of practically important imperfections in the compound vehicle/track system are investigated. The first is a sinusoidal corrugation of the railhead and the second a skid flat on the wheel tread (a wheelflat). The third imperfection is a case where a single sleeper has lost its support due to erosion of the ballast. Physical explanations of the calculated interaction behaviour are given.
High-speed trains subject to abrupt braking
NASA Astrophysics Data System (ADS)
Tran, Minh Thi; Ang, Kok Keng; Luong, Van Hai; Dai, Jian
2016-12-01
The dynamic response of high-speed train subject to braking is investigated using the moving element method. Possible sliding of wheels over the rails is accounted for. The train is modelled as a 15-DOF system comprising of a car body, two bogies and four wheels interconnected by spring-damping units. The rail is modelled as a Euler-Bernoulli beam resting on a two-parameter elastic damped foundation. The interaction between the moving train and track-foundation is accounted for through the normal and tangential wheel-rail contact forces. The effects of braking torque, wheel-rail contact condition, initial train speed and severity of railhead roughness on the dynamic response of the high-speed train are investigated. For a given initial train speed and track irregularity, the study revealed that there is an optimal braking torque that would result in the smallest braking distance with no occurrence of wheel sliding, representing a good compromise between train instability and safety.
Simulations of roughness initiation and growth on railway rails
NASA Astrophysics Data System (ADS)
Sheng, X.; Thompson, D. J.; Jones, C. J. C.; Xie, G.; Iwnicki, S. D.; Allen, P.; Hsu, S. S.
2006-06-01
A model for the prediction of the initiation and growth of roughness on the rail is presented. The vertical interaction between a train and the track is calculated as a time history for single or multiple wheels moving on periodically supported rails, using a wavenumber-based approach. This vertical dynamic wheel/rail force arises from the varying stiffness due to discrete supports (i.e. parametric excitation) and the roughness excitation on the railhead. The tangential contact problem between the wheel and rail is modelled using an unsteady two-dimensional approach and also using the three-dimensional contact model, FASTSIM. This enables the slip and stick regions in the contact patch to be identified from the input geometry and creepage between the wheel and rail. The long-term wear growth is then predicted by applying repeated passages of the vehicle wheelsets, as part of an iterative solution.
The motionally induced back-emf in railguns
NASA Astrophysics Data System (ADS)
Graneau, Peter; Thompson, Donald S.; Morrill, Susan L.
1990-04-01
Relative motion between armature and rails in the railgun produces induced emf's. The Lorentz force formula correctly predicts the emf present in the armature but it fails to acknowledge the induction of further emf's in the rails which are proportional to the relative velocity. It is easy to confirm the existence of the additional rail emf's behind and ahead of the armature, by voltage measurements across the muzzle and the breech of the railgun. Neumann's forgotten law of induction, which was first proposed in 1845, correctly accounts for the magnitude and position of all motionally induced emf components in the railgun circuit. The velocity dependent back-emf's in the rails coincide with the Ampere recoil forces in the railheads just behind the armature. Electric power extended in overcoming these back-emf's, and associated with the recoil forces, seem to store elastic strain energy in the rails.
2007-11-27
KENNEDY SPACE CENTER, FLA. -- Workers oversee the placement of a solid rocket booster segment onto a railroad car at the railroad yard at NASA's Kennedy Space Center. The spent segment is part of the booster used to launch space shuttle Discovery in October. The segment will be placed on the car and covered for the long trip back to Utah. After a mission, the spent boosters are recovered, cleaned, disassembled, refurbished and reused after each launch. After hydrolasing the interior of each segment, they are placed on flatbed trucks. The individual booster segments are transferred to a railhead located at the railroad yard at NASA's Kennedy Space Center. The long train of segments is part of the twin solid rocket boosters used to launch space shuttle Discovery in October. The NASA Railroad locomotive backs up the rail cars and the segment is lowered onto the car. The covered segments are moved to Titusville for interchange with Florida East Coast Railway to begin the trip back to Utah. Photo credit: NASA/Amanda Diller
Risk assessment of flange climb derailment of a rail vehicle
NASA Astrophysics Data System (ADS)
Vlakhova, A. V.
2015-01-01
We study the wheel flange climb onto the railhead, which is one of the most dangerous regimes of motion and can lead to derailment. The tangential components of the wheel-rail interaction forces are described by the creep model with small slips taken into account. We pass to the limit of infinite rigidity of the interacting bodies (zero slip velocities). It is shown that, in the actual service conditions of rail vehicle motion, neglecting the wheel-rail slip is not justified; namely, the limit model is determined by the primary Dirac constraints, i.e., finite relations between coordinates and momenta arising owing to the system Lagrangian degeneration. The obtained nonclassical model allows one to study the efficiency of some railway motion safety criteria and analytically estimate derailment conditions, which depend on the flange shape, the track curvature radius, the height of the vehicle center of mass, the wheel-rail interaction forces, the coefficients of friction of the interacting surfaces, and the external perturbation forces and moments.
NASA Astrophysics Data System (ADS)
Giannakos, Konstantinos
2016-02-01
The motion of a railway vehicle on the rail running table, that is the area of the rail-head where the wheel is rolling, is a forced oscillation with a forcing excitation (track defects), and damping expressed by a random function. In the case of the Non-Suspended Masses the forces resulting from the excitation of short wavelength are large and have great effect on the rolling of the wheel. The track, is simulated as an elastic means with damping. In this paper the second order differential equation is presented for the case of a railway vehicle rolling on a railway track and its solution is presented for the Non-Suspended Masses of the vehicle. Furthermore the influence of the depth of the defect is examined and a sensitivity analysis of the influence of the Non-Suspended Masses and the track defects on the Acting loads is performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaleghi Hamedani, Hamid; Lau, Anthony K.; DeBruyn, Jake
The overall goal of this research is to investigate the logistics of agricultural biomass in Ontario, Canada using the Integrated Biomass Supply Analysis and Logistics Model (IBSAL). The supply of corn stover to the Ontario Power Generation (OPG) power plant in Lambton is simulated. This coal-fired power plant is currently not operating and there are no active plans by OPG to fuel it with biomass. Rather, this scenario is considered only to demonstrate the application of the IBSAL Model to this type of scenario. Here, five scenarios of delivering corn stover to the Lambton Generating Station (GS) power plant inmore » Lambton Ontario are modeled: (1) truck transport from field edge to OPG (base scenario); (2) farm to central storage located on the highway, then truck transport bales to OPG; (3) direct truck transport from farm (no-stacking) to OPG; (4) farm to a loading port on Lake Huron and from there on a barge to OPG; and (5) farm to a railhead and then to OPG by rail.« less
Khaleghi Hamedani, Hamid; Lau, Anthony K.; DeBruyn, Jake; ...
2016-05-10
The overall goal of this research is to investigate the logistics of agricultural biomass in Ontario, Canada using the Integrated Biomass Supply Analysis and Logistics Model (IBSAL). The supply of corn stover to the Ontario Power Generation (OPG) power plant in Lambton is simulated. This coal-fired power plant is currently not operating and there are no active plans by OPG to fuel it with biomass. Rather, this scenario is considered only to demonstrate the application of the IBSAL Model to this type of scenario. Here, five scenarios of delivering corn stover to the Lambton Generating Station (GS) power plant inmore » Lambton Ontario are modeled: (1) truck transport from field edge to OPG (base scenario); (2) farm to central storage located on the highway, then truck transport bales to OPG; (3) direct truck transport from farm (no-stacking) to OPG; (4) farm to a loading port on Lake Huron and from there on a barge to OPG; and (5) farm to a railhead and then to OPG by rail.« less
Numerical prediction of rail roughness growth on tangent railway tracks
NASA Astrophysics Data System (ADS)
Nielsen, J. C. O.
2003-10-01
Growth of railhead roughness (irregularities, waviness) is predicted through numerical simulation of dynamic train-track interaction on tangent track. The hypothesis is that wear is caused by longitudinal slip due to driven wheelsets, and that wear is proportional to the longitudinal frictional power in the contact patch. Emanating from an initial roughness spectrum corresponding to a new or a recent ground rail, an initial roughness profile is determined. Wheel-rail contact forces, creepages and wear for one wheelset passage are calculated in relation to location along a discretely supported track model. The calculated wear is scaled by a chosen number of wheelset passages, and is then added to the initial roughness profile. Field observations of rail corrugation on a Dutch track are used to validate the simulation model. Results from the simulations predict a large roughness growth rate for wavelengths around 30-40 mm. The large growth in this wavelength interval is explained by a low track receptance near the sleepers around the pinned-pinned resonance frequency, in combination with a large number of driven passenger wheelset passages at uniform speed. The agreement between simulations and field measurements is good with respect to dominating roughness wavelength and annual wear rate. Remedies for reducing roughness growth are discussed.
Application of MetaRail railway noise measurement methodology: comparison of three track systems
NASA Astrophysics Data System (ADS)
Kalivoda, M.; Kudrna, M.; Presle, G.
2003-10-01
Within the fourth RTD Framework Programme, the European Union has supported a research project dealing with the improvement of railway noise (emission) measurement methodologies. This project was called MetaRail and proposed a number of procedures and methods to decrease systematic measurement errors and to increase reproducibility. In 1999 the Austrian Federal Railways installed 1000 m of test track to explore the long-term behaviour of three different ballast track systems. This test included track stability, rail forces and ballast forces, as well as vibration transmission and noise emission. The noise study was carried out using the experience and methods developed within MetaRail. This includes rail roughness measurements as well as measurements of vertical railhead, sleeper and ballast vibration in parallel with the noise emission measurement with a single microphone at a distance of 7.5 m from the track. Using a test train with block- and disc-braked vehicles helped to control operational conditions and indicated the influence of different wheel roughness. It has been shown that the parallel recording of several vibration signals together with the noise signal makes it possible to evaluate the contributions of car body, sleeper, track and wheel sources to the overall noise emission. It must be stressed that this method is not focused as is a microphone-array. However, this methodology is far easier to apply and thus cheaper. Within this study, noise emission was allocated to the different elements to answer questions such as whether the sleeper eigenfrequency is transmitted into the rail.
Model Validation of an RSRM Transporter Through Full-scale Operational and Modal Testing
NASA Technical Reports Server (NTRS)
Brillhart, Ralph; Davis, Joshua; Allred, Bradley
2009-01-01
The Reusable Solid Rocket Motor (RSRM) segments, which are part of the current Space Shuttle system and will provide the first stage of the Ares launch vehicle, must be transported from their manufacturing facility in Promontory, Utah, to a railhead in Corinne, Utah. This approximately 25-mile trip on secondary paved roads is accomplished using a special transporter system which lifts and conveys each individual segment. ATK Launch Systems (ATK) has recently obtained a new set of these transporters from Scheuerle, a company in Germany. The transporter is a 96-wheel, dual tractor vehicle that supports the payload via a hydraulic suspension. Since this system is a different design than was previously used, computer modeling with validation via test is required to ensure that the environment to which the segment is exposed is not too severe for this space-critical hardware. Accurate prediction of the loads imparted to the rocket motor is essential in order to prevent damage to the segment. To develop and validate a finite element model capable of such accurate predictions, ATA Engineering, Inc., teamed with ATK to perform a modal survey of the transport system, including a forward RSRM segment. A set of electrodynamic shakers was placed around the transporter at locations capable of exciting the transporter vehicle dynamics. Forces from the shakers with varying phase combinations were applied using sinusoidal sweep excitation. The relative phase of the shaker forcing functions was adjusted to match the shape characteristics of each of several target modes, thereby customizing each sweep run for exciting a particular mode. The resulting frequency response functions (FRF) from this series of sine sweeps allowed identification of all target modes and other higher-order modes, allowing good comparison to the finite element model. Furthermore, the survey-derived modal frequencies were correlated with peak frequencies observed during road-going operating tests. This correlation enabled verification of the most significant modes contributing to real-world loading of the motor segment under transport. After traditional model updating, dynamic simulation of the transportation environment was compared to the measured operating data to provided further validation of the analysis model. KEYWORDS Validation, correlation, modal test, rocket motor, transporter
Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing
NASA Technical Reports Server (NTRS)
Tuma, M. L.; Chenevert, D. J.
2010-01-01
Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was upgraded. Two new cranes will help move test articles at the test stand and at the Redstone Arsenal railhead where first stage segments will be received in 2011. The Hydrodynamic Support systems (HDSs) used for Saturn and Shuttle have been disassembled and evaluated for use during IVGVT. Analyses indicate that the 45-year-old HDSs can be refurbished to support the Ares I IVGVT. An alternate concept for a pneumatic suspension system is also being explored. A decision on which suspension system configuration to use for IVGVT will be made in 2010. In the next three years, the team will complete the updates to TS 4550, upgrade the test and data collection equipment, and finalize the configurations of the test articles to be used in the IVGVT. With NASA's GVT capabilities reestablished, the FITO team will be well positioned to perform similar work on Ares V, the largest exploration launch vehicle NASA has ever built. The GVT effort continues NASA's 50-year commitment to using testing and data analysis for safer, more reliable launch vehicles.
The Geologic Story of the Uinta Mountains
Hansen, Wallace R.
1969-01-01
The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory than scientific; his second, more scientific trip was made 2 years later. Powell revisited the Uinta Mountains in 1874 and 1875 to complete the studies begun 6 years earlier. His classic 'Report on the Geology of the Eastern Portion of the Uinta Mountains and a Region of Country Adjacent Thereto' was published in 1876. King's survey?officially 'The United States Geological Exploration of the Fortieth Parallel'?is better known simply as the '40th Parallel Survey.' King began working eastward from California in 1867. The Uinta Mountains region, however, was mapped by S. F. Emmons, under the supervision of King, in the summers of 1869 and 1871. Emmons' work was monumental, and although he emphasized in his letter of transmittal to King the exploratory nature of the work?as the formal title of the report indicates?his maps, descriptions, and conclusions reflect a comprehensive understanding of the country and its rocks. The 40th Parallel report contains the best, most complete early descriptions of the Uinta Mountains. It, indeed, is a treasurechest of information and a landmark contribution to the emerging science of geology. Hayden visited the Uinta Mountains in 1870, descending the valley of Henrys Fork to Flaming Gorge in the fall after having earlier examined the higher part of the range to the west. Most of Hayden's observations were cursory, and he repeatedly expressed regret at having insufficient time for more detailed studies. In reference to the area between Clay Basin and Browns Park, he remarked (Hayden, 1871, p. 67) somewhat dryly that 'the geology of this portion of the Uinta range is very complicated and interesting. To have solved the problem to my entire satisfaction would have required a week or two.' Eighty-odd years later I spent several months there?looking at the same rocks. Powell was perhaps more creative?more intuitive?than either King or Hayden, and his breadth of interest in the fields of geology, physiography, ethnology, an