Sample records for rain forest stream

  1. Phosphorus loading to tropical rain forest streams after clear-felling and burning in Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Malmer, Anders

    1996-07-01

    Most estimates of P export from natural or disturbed humid tropical ecosystems by streams have been based only on export of dissolved P, even though P often is limiting and can be expected to be strongly associated to particles. Therefore loss of ignition (LOI) and particulate P (Ppart) analyses were made on organic and inorganic detritus resulting from surface erosion and on stream-suspended sediments in an undisturbed rain forest (control), as well as during and after conversion of rain forest into forest plantation. Control forest surface erosion and stream sediments consisted mainly of organics, and dissolved P (Pdiss) dominated over Ppart in stream water. The same relation was found after conversion, with a maximum mean Pdiss/Ppart ratio of up to 10 after burning, compared with 2-2.5 for control forests. This larger difference was assumed to depend on PO4 dissolved from ashes to larger concentrations than could be adsorbed during the short time (<1 hour) to reach peak flow during rainstorms.

  2. Life on the edge: carbon fluxes from wetland to ocean along Alaska's coastal temperate rain forest

    Treesearch

    Rhonda Mazza; Richard Edwards; David D' Amore

    2010-01-01

    Acre for acre, streams of the coastal temperate rain forest along the Gulf of Alaska export 36 times as much dissolved organic carbon as the world average. Rain and snow are the great connectors, tightly linking aquatic and terrestrial systems of this region. The freshwater that flushes over and through the forest floor leaches carbon...

  3. Acid Rain Effects on Adirondack Streams - Results from the 2003-05 Western Adirondack Stream Survey (the WASS Project)

    USGS Publications Warehouse

    Lawrence, Gregory B.; Roy, Karen M.; Baldigo, Barry P.; Simonin, Howard A.; Passy, Sophia I.; Bode, Robert W.; Capone, Susan B.

    2009-01-01

    Traditionally lakes have been the focus of acid rain assessments in the Adirondack region of New York. However, there is a growing recognition of the importance of streams as environmental indicators. Streams, like lakes, also provide important aquatic habitat, but streams more closely reflect acid rain effects on soils and forests and are more prone to acidification than lakes. Therefore, a large-scale assessment of streams was undertaken in the drainage basins of the Oswegatchie and Black Rivers; an area of 4,585 km2 in the western Adirondack region where acid rain levels tend to be highest in New York State.

  4. The Role of Fog in Ecosystem Hydrology: Initial Results from Investigations Using Stable Isotopes of Water in Hawaiian Cloud Forests

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Gingerich, S. B.; Giambelluca, T. W.; Nullet, M. A.; Loope, L. L.

    2002-05-01

    The role of fog drip in cloud forest ecosystems is being investigated at two sites, one each on the windward and leeward sides of East Maui, Hawaii. The study involves using the different isotopic signatures of fog (cloud water) and rain to trace fog through the forest water cycle, as well as comparing relative amounts of fog, rain, and throughfall. At each site, volume of rain, fog plus rain, and throughfall is recorded hourly. Stable isotope samples of rain, fog, soil water, stream water, and tree sap are collected monthly, and each site has a visibility sensor and weather station. The windward site, at 1950 m altitude, is enveloped by orographic clouds under trade wind conditions almost every day. This site is near the upper boundary of extensive forested mountain slopes that are a major watershed for the island. Volume data suggest that fog drip (compared to rain as measured by a standard gage) contributes substantially to the forest water budget on the windward side. Tree sap deuterium composition was consistently similar to fog composition for samples analyzed thus far, while soil water was isotopically lighter, possibly reflecting a mixture of fog with rain or shallow groundwater. The leeward site, at 1220 m, is often in a cloud bank under trade wind conditions. During the summer the major source of precipitation is cloud water; rainfall generally occurs during winter storms. Scattered cloud forest remnants persist at this site despite degradation of extensive native forest by ungulate browsing, plant invasion, and fire. Here, fog drip was a smaller proportion of the total precipitation than at the windward site, but exceeded rainfall for some precipitation events. Unlike the windward site, tree sap and soil water had similar isotopic composition. The information gained from this study underscores the importance of trees and shrubs in extracting cloud water that contributes to soil moisture, groundwater recharge, and stream flow in watersheds.

  5. Non-indigenous bamboo along headwater streams of the Luquillo Mountains, Puerto Rico: leaf fall, aquatic leaf decay and patterns of invasion

    Treesearch

    PAUL J. O' CONNOR; ALAN P. COVICH; F. N. SCATENA; LLOYD L. LOOPE

    2000-01-01

    The introduction of bamboo to montane rain forests of the Luquillo Mountains, Puerto Rico in the 1930s and 1940s has led to present-day bamboo monocultures in numerous riparian areas. When a non-native species invades a riparian ecosystem, in-stream detritivores can be affected. Bamboo dynamics expected to in¯uence stream communities in the Luquillo Experimental Forest...

  6. Structures linking physical and biological processes in headwater streams of the Maybeso watershed, Southeast Alaska

    Treesearch

    Mason D. Bryant; Takashi Gomi; Jack J. Piccolo

    2007-01-01

    We focus on headwater streams originating in the mountainous terrain of northern temperate rain forests. These streams rapidly descend from gradients greater than 20% to less than 5% in U-shaped glacial valleys. We use a set of studies on headwater streams in southeast Alaska to define headwater stream catchments, link physical and biological processes, and describe...

  7. An improved method of chemical analysis for low levels of nitrogen in forest streams or in rainwater.

    Treesearch

    Elly E. Holcombe; Duane G. Moore; Richard L. Fredriksen

    1986-01-01

    A modification of the macro-Kjeldahl method that provides increased sensitivity was developed for determining very low levels of nitrogen in forest streams and in rain-water. The method is suitable as a routine laboratory procedure. Analytical range of the method is 0.02 to 1.5 mg/L with high recovery and excellent precision and ac-curacy. The range can be increased to...

  8. Ge/Si Ratios Record the Impact of Forest Conversion to Cropland on Soil Chemical Weathering Processes and Solutes Export to Rivers

    NASA Astrophysics Data System (ADS)

    Ameijeiras-Marino, Y.; Opfergelt, S.; Derry, L. A.; Robinet, J.; Delmelle, P.

    2016-12-01

    Soil weathering processes influence solute fluxes to rivers, playing a major role in global biogeochemical cycles. Land use change such as forest conversion to cropland enhances soil erosion, which mobilizes solutes and exposes new mineral surfaces to weathering processes, changing soil weathering degree. However, the impact of forest conversion to cropland on soil weathering degree and solute fluxes exported from soils to rivers remain poorly quantified. This study assesses the soil weathering degree and uses a geochemical tracer of weathering, Ge/Si ratio, to provide new insights on the impact of soil weathering processes under anthropogenic forcing on the transfer of solutes to rivers. A subtropical site was studied in Rio Grande do Sul (Brazil). This area is characterized by mean annual rainfall of 1800 mm, with strong rain events mobilizing high sediment load. A forested catchment is considered as the reference and compared to a catchment cultivated for the past 100 years (similar lithology and climate). Bedrock, soil, soil pore water and stream water (during base flow and rain events) samples were analysed for their chemical and mineralogical compositions and Ge/Si ratios (combined isotope dilution, HR-ICP-MS and hydride generation). Chemical and mineralogical analyses highlight that forest conversion to cropland decreases the soil weathering degree on steep slopes. Ge/Si ratios (μmol/mol) are comparable in bulk soils between the forested (2.33 ± 0.50) and the cultivated catchment (2.61 ± 0.62), but differ in soil pore waters between forest (0.47 ± 0.16) and culture (0.73 ± 0.15) indicating differences on soil weathering processes. The response of Ge/Si ratios in stream waters to a rain event differs between forest and culture, highlighting a larger contribution from soil pore waters to stream waters under culture. Altogether, our data support that land use history has an impact on the present day soil weathering processes and on the solute export to rivers.

  9. This photograph shows a stream in the La Selva region of the Costa Rican rain forest, taken during NASA's AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-04

    This photograph shows a stream in the La Selva region of the Costa Rican rain forest, taken during NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.

  10. Hydrologic and forest management controls on DOC dynamics in the small watersheds of the H.J. Andrews Experimental Forest, OR

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Jones, J. A.

    2016-12-01

    Dissolved organic carbon (DOC) export from hillslopes to streams is an important component of the carbon cycle of a catchment and may be a critical source of energy for the aquatic food web in receiving waters. Using a long-term record of DOC and other dissolved nutrients and elements from paired watersheds from the H.J. Andrews Experimental Forest in Oregon, we explored hydrologic, climatic, and land-use controls on seasonal and inter-annual patterns of DOC flux in a seasonally dry ecosystem. Seasonal patterns of DOC flux demonstrated source limitations to DOC export, with DOC concentrations highest immediately following the first rains after a dry summer, and lowest after winter rains. In contrast, more geochemically-controlled elements showed simple dilution-concentration patterns with no seasonal hysteresis. Inter-annual patterns of DOC flux, however, did not provide evidence of source limitation, with DOC flux within a watershed tightly correlated to total discharge but not temperature. Among watersheds, forest harvest, even over 50 years ago, significantly reduced DOC flux but not fluxes of other elements including N; this response was linked to the loading of coarse woody debris to the forest floor. Chemical fingerprinting of DOC revealed that old-growth watersheds had higher fluxes of DOC characteristic of forest floor organic materials, likely delivered to streams through more surficial preferential flow pathways not subject to microbial alteration, respiration, or sorption losses. Taken together these results suggest that the biogeochemical composition of forested streams reflects both current hydrologic patterns and also processes that occurred many decades ago within the catchment.

  11. Use of an Upland Pine Forest by the Star-Nosed Mole, Condylura Cristata

    Treesearch

    Timothy S. McCay; Mark J. Komoraoski; William M. Ford

    1999-01-01

    The star-nosed mole (Condylura cristata) is a semi-aquatic insectivore, commonly found near marshy areas and streams. We report two captures of star-nosed moles from a xeric, upland pine forest more than 500 m from the nearest persistent source of water. Both captures occurred during rainy nights, suggesting that star-nosed moles use rain events as...

  12. Erosion on very stony forest soil during phenomenal rain in Webster County, West Virginia

    Treesearch

    J. H. Patric; W. E., Jr. Kidd

    1982-01-01

    On July 15 and 16, 1979, at least 6 inches of rain fell in central West Virginia during 3 hours, a storm of return period longer than 1,000 years. More than 6 miles of logging roads were examined for evidences of soil erosion and sediment delivery to streams. Erosion was negligible on very stony soils where (a) logging roads were litter covered, (b) road grades were...

  13. Water flow pathway and the organic carbon discharge during rain storm events in a coniferous forested head watershed, Tokyo, central Japan

    NASA Astrophysics Data System (ADS)

    Moriizumi, Mihoko; Terajima, Tomomi

    2010-05-01

    The current intense discussion of the green house effect, that has been one of the main focuses on the carbon cycle in environmental systems of the earth, seems to be weakened the importance related to the effect of carbonic materials on substance movement in the aquatic environments; though it has just begun to be referred recently. Because dissolved organic carbon (DOC) in stream flows believes to play a main role of the carbon cycle in the fresh water environment, seasonal changes in DOC discharge were investigated in catchments with various scale and land use, especially in forested catchments which are one of the important sources of DOC. In order to understand the fundamental characteristics of the discharge of dissolved organic materials, stream flows, DOC, and fulvic acid like materials (FA) included in stream flows were measured in a coniferous forested head watershed. The watershed is located at the southeast edge of the Kanto mountain and is 40 km west of Tokyo with the elevation from 720 to 820 m and mean slope gradient of 38 degrees. Geology of the watershed is underlain by the sequence of mud and sand stones in Jurassic and the soil in the watershed is Cambisol (Inceptisols). The watershed composes of a dense cypress and cedar forest of 45 years old with poor understory vegetation. Observations were carried out for 6 rain storms of which the total precipitations ranged between 16.2 and 117.4 mm. The magnitude of the storms was classified into small, middle, and big events on the basis of the total precipitation of around 20, 40, and more than 70 mm. Stream flows were collected during the storm events by 1 hour interval and were passed through the 0.45 μm filters, and then the DOC concentrations in the flows were measured with a total organic carbon analyzer. The relative concentrations of fulvic acid (FA) in the flows were monitored with three dimensional excitations emission matrix fluorescence spectroscopy, because fulvic acid shows distinctive fluorescence peaks at around the excitation wave length of 340 nm and emission wave length of 440 nm. The timing of the peaks in DOC and FA occurred simultaneously or within 30 minutes prior to those in the stream flows. The relationship between DOC and stream flow showed linear correlations with various gradients in each event. However, the relationship between FA and stream flow showed the linear correlations only for the small and middle events and clockwise hysteresis relations occurred in the big storm events. The relationship between DOC and FA showed the linear correlations both for the extracted water of the shallow soil and for stream base flow composed mostly of groundwater discharge. However, the relationship in the storm flow closely distributed at that in the extracted water of the shallow soil. This thing reveals that DOC and FA were mainly flashed out from the shallow soil during the rain storm events. The quick rising and recession of the fulvic acid was likely provided by quick rain water discharge through the surface or near surface of the slope. However, the overland flow were rare in the watershed during the rain storms. This indicates that the rapid shallow subsurface flow, passed mainly through preferential flow pathways at the slope surface within the loose litter and root-permeated zone, was the main cause of the difference in discharge regimes between DOC and FA. The shallow subsurface flow may have flushed the FA in the near-surface of the soil, and then the relatively predominant discharge of DOC must have been caused during the big rain storm event.

  14. Importance of terrestrial arthropods as subsidies in lowland Neotropical rain forest stream ecosystems

    USGS Publications Warehouse

    Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.

    2013-01-01

    The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.

  15. The natural flow regime of Hawaíi streams

    NASA Astrophysics Data System (ADS)

    Tsang, Y. P.; Strauch, A. M.; Clilverd, H. M.

    2016-12-01

    Freshwater is a critical, but limited natural resource on tropical islands; sustaining agriculture, industry, hydropower, urban development, and domestic water supply. The hydrology of Hawaíi islands is largely influenced by the health of mountain forests, which capture and absorb rain and fog drip, recharging aquifers and sustaining stream flow. Forests in Hawaíi are being degraded through the replacement of native vegetation with introduced species or conversion to another land use. Streams in the tropics frequently experience flash flooding due to extreme rainfall-runoff events and low flows due to seasonal drought. These patterns drive habitat availability for freshwater fauna, as well as sediment and nutrient export to near-shore ecosystems. Flow regimes can be used to characterize the frequency and magnitude of extreme high and low flows and are influenced by watershed climate, geology, land cover and soil composition. We examined the effect of climate extremes on stream flow from Hawaiian forests using historical flow data to characterize the spatial and temporal patterns in surface water resources. By defining flow regimes from forests we can improve our understanding of climate extremes on water resource availability across tropical island landscapes.

  16. Concentration-discharge relationships in headwater streams of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Hunsaker, Carolyn T.; Johnson, Dale W.

    2017-09-01

    We examined stream water concentration-discharge relationships for eight small, forest watersheds ranging in elevation from 1485 to 2465 m in the southern Sierra Nevada. These headwater streams revealed nearly chemostatic behavior by current definitions for K+, Ca2+, Mg2+, Na+, Cl-, and SO42- in most cases but not for NH4+, NO3-, or ortho-P. The latter ions were somewhat enriched during high flows. All ions studied showed a dilution process at lower flows (<50 L s-1) with the concentration-discharge relationship being more chemostatic at higher flows. While previous studies in the Sierra Nevada have reported peak concentrations of NH4+, NO3-, and SO42- during snowmelt, the headwater systems of the Kings River Experimental Watersheds experience peak concentrations of these ions during the fall rains after the dry summer. These forested watersheds span the rain-snow transition zone, are 49-228 ha in size, and have soils derived from granite. A statistically significant relationship between soils and stream water concentrations for ortho-P, Ca2+, and Na+ strongly suggests that soil chemistry has a major influence on stream water chemistry. Factors controlling stream water NH4+, NO3-, and SO42- concentrations are less clear, but one possible source of spikes in these ions during storm events is input from O-horizon runoff where high concentrations were measured. Overall, stream water concentration-discharge relationships for these Sierran watersheds are similar to those found in other watershed systems (nearly chemostatic); however, the dominant processes controlling these relationships are probably localized because of different watershed characteristics like soil chemistry, vegetation cover, hydrologic flow paths, and weather patterns.

  17. Short-Term Exposure to Warm Microhabitats Could Explain Amphibian Persistence with Batrachochytrium dendrobatidis

    PubMed Central

    Daskin, Joshua H.; Alford, Ross A.; Puschendorf, Robert

    2011-01-01

    Environmental conditions can alter the outcomes of symbiotic interactions. Many amphibian species have declined due to chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), but many others persist despite high Bd infection prevalence. This indicates that Bd's virulence is lower, or it may even be a commensal, in some hosts. In the Australian Wet Tropics, chytridiomycosis extirpated Litoria nannotis from high-elevation rain forests in the early 1990 s. Although the species is recolonizing many sites, no population has fully recovered. Litoria lorica disappeared from all known sites in the early 1990 s and was thought globally extinct, but a new population was discovered in 2008, in an upland dry forest habitat it shares with L. nannotis. All frogs of both species observed during three population censuses were apparently healthy, but most carried Bd. Frogs perch on sun-warmed rocks in dry forest streams, possibly keeping Bd infections below the lethal threshold attained in cooler rain forests. We tested whether short-term elevated temperatures can hamper Bd growth in vitro over one generation (four days). Simulating the temperatures available to frogs on strongly and moderately warmed rocks in dry forests, by incubating cultures at 33°C for one hour daily, reduced Bd growth below that of Bd held at 15°C constantly (representing rain forest habitats). Even small decreases in the exponential growth rate of Bd on hosts may contribute to the survival of frogs in dry forests. PMID:22028834

  18. Short-term exposure to warm microhabitats could explain amphibian persistence with Batrachochytrium dendrobatidis.

    PubMed

    Daskin, Joshua H; Alford, Ross A; Puschendorf, Robert

    2011-01-01

    Environmental conditions can alter the outcomes of symbiotic interactions. Many amphibian species have declined due to chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), but many others persist despite high Bd infection prevalence. This indicates that Bd's virulence is lower, or it may even be a commensal, in some hosts. In the Australian Wet Tropics, chytridiomycosis extirpated Litoria nannotis from high-elevation rain forests in the early 1990 s. Although the species is recolonizing many sites, no population has fully recovered. Litoria lorica disappeared from all known sites in the early 1990 s and was thought globally extinct, but a new population was discovered in 2008, in an upland dry forest habitat it shares with L. nannotis. All frogs of both species observed during three population censuses were apparently healthy, but most carried Bd. Frogs perch on sun-warmed rocks in dry forest streams, possibly keeping Bd infections below the lethal threshold attained in cooler rain forests. We tested whether short-term elevated temperatures can hamper Bd growth in vitro over one generation (four days). Simulating the temperatures available to frogs on strongly and moderately warmed rocks in dry forests, by incubating cultures at 33°C for one hour daily, reduced Bd growth below that of Bd held at 15°C constantly (representing rain forest habitats). Even small decreases in the exponential growth rate of Bd on hosts may contribute to the survival of frogs in dry forests.

  19. Modelling hydrological conditions in the maritime forest region of south-western Nova Scotia

    NASA Astrophysics Data System (ADS)

    Yanni, Shelagh; Keys, Kevin; Meng, Fan-Rui; Yin, Xiwei; Clair, Tom; Arp, Paul A.

    2000-02-01

    Hydrological processes and conditions were quantified for the Mersey River Basin (two basins: one exiting below Mill Falls, and one exiting below George Lake), the Roger's Brook Basin, Moosepit Brook, and for other selected locations at and near Kejimkujik National Park in Nova Scotia, Canada, from 1967 to 1990. Addressed variables included precipitation (rain, snow, fog), air temperature, stream discharge, snowpack accumulations, throughfall, soil and subsoil moisture, soil temperature and soil frost, at a monthly resolution. It was found that monthly per hectare stream discharge was essentially independent of catchment area from <20 km2 to more than 1000 km2. The forest hydrology model ForHyM2 was used to simulate monthly rates of stream discharge, throughfall and snowpack water equivalents for mature forest conditions. These simulations were in good agreement with the historical records once the contributions of fog and mist to the area-wide water budget were taken into account, each on a monthly basis. The resulting simulations establish a hydrologically consistent, continuous, comprehensive and partially verified record for basin-wide outcomes for all major hydrological processes and conditions, be these related to stream discharge, soil moisture, soil temperature, snowpack accumulations, soil frost, throughfall, interception and soil percolation.

  20. Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years

    PubMed Central

    Tng, David Y P; Murphy, Brett P; Weber, Ellen; Sanders, Gregor; Williamson, Grant J; Kemp, Jeanette; Bowman, David M J S

    2012-01-01

    Tropical rain forest expansion and savanna woody vegetation thickening appear to be a global trend, but there remains uncertainty about whether there is a common set of global drivers. Using geographic information techniques, we analyzed aerial photography of five areas in the humid tropics of northeastern Queensland, Australia, taken in the 1950s and 2008, to determine if changes in rain forest extent match those reported for the Australian monsoon tropics using similar techniques. Mapping of the 1950s aerial photography showed that of the combined study area (64,430 ha), 63% was classified as eucalypt forests/woodland and 37% as rain forest. Our mapping revealed that although most boundaries remained stable, there was a net increase of 732 ha of the original rain forest area over the study period, and negligible conversion of rain forest to eucalypt forest/woodland. Statistical modeling, controlling for spatial autocorrelation, indicated distance from preexisting rain forest as the strongest determinant of rain forest expansion. Margin extension had a mean rate across the five sites of 0.6 m per decade. Expansion was greater in tall open forest types but also occurred in shorter, more flammable woodland vegetation types. No correlations were detected with other local variables (aspect, elevation, geology, topography, drainage). Using a geographically weighted mean rate of rain forest margin extension across the whole region, we predict that over 25% of tall open forest (a forest type of high conservation significance) would still remain after 2000 years of rain forest expansion. This slow replacement is due to the convoluted nature of the rain forest boundary and the irregular shape of the tall open forest patches. Our analyses point to the increased concentration of atmospheric CO2 as the most likely global driver of indiscriminate rain forest expansion occurring in northeastern Australia, by increasing tree growth and thereby overriding the effects of fire disturbance. PMID:22408724

  1. Multiple antibiotic resistant Escherichia coli from a tropical rain forest stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco, C.E.; Alvarez, H.J.; Ortiz, N.

    1988-12-31

    High densities of fecal coliforms were obtained from a pristine site and sewage contaminated site in a tropical rain forest watershed in Puerto Rico. Confirmation of fecal coliform isolates as Escherichia coli was significantly lower than for temperate waters. Antibiotic resistance and multiple antibiotic resistance were common for isolates at both sites; however, the site receiving sewage effluent had a greater proportion of multiple antibiotic resistant isolates. R. plasmids were recovered from 4 MAR isolates, 2 from each site. All recovered plasmids were approximately 1 kilobase. The recovered plasmid were also capable of transforming E. coli HB101 in vitro. Themore » high concentrations of enterobacteriaceae, small R-plasmid size, R-plasmid transformability, and long term survival of fecal origin bacteria in tropical freshwater environments give increasing importance to adequate sewage treatment, and better indicator monitoring methods for tropical areas.« less

  2. Life in Tropical Rain Forests.

    ERIC Educational Resources Information Center

    NatureScope, 1989

    1989-01-01

    Discusses the diversity of rain forest life, the adaptations of rain forest plants and animals, and ways these organisms interact. Includes activities on canopy critters with a copyable sheet, rain forest revue, design a plant, and jungle sleuths. (RT)

  3. Lessons from the Rain Forest.

    ERIC Educational Resources Information Center

    Phillips, Shelley

    2002-01-01

    Presents a first-grade art project after students learned about the rain forest and heard the story, "The Great Kapok Tree: A Tale of the Amazon Rain Forest" (Lynn Cherry). Explains that the students created pictures of the rain forest. (CMK)

  4. Nitrate reduction in sediments of lowland tropical streams draining swamp forest in Costa Rica: An ecosystem perspective

    USGS Publications Warehouse

    Duff, J.H.; Pringle, C.M.; Triska, F.J.

    1996-01-01

    Nitrate reduction and denitrification were measured in swamp forest streams draining lowland rain forest on Costa Rica's Atlantic slope foothills using the C2H2-block assay and sediment-water nutrient fluxes. Denitrification assays using the C2H2-block technique indicated that the full suite of denitrifying enzymes were present in the sediment but that only a small fraction of the functional activity could be expressed without adding NO3/-. Under optimal conditions, denitrification enzyme activity averaged 15 nmoles cm-3 sediment h-1. Areal NO3/- reduction rates measured from NO3/- loss in the overlying water of sediment- water flux chambers ranged from 65 to 470 umoles m-2 h-1. Oxygen loss rates accompanying NO3/-depletion averaged 750 umoles m-2 h-1. Corrected for denitrification of NO3/- oxidized from NH4/+ in the sediment, gross NO3/- reduction rates increase by 130 umoles m-2 h-1, indicating nitrification may be the predominant source of NO3/- for NO3/- reduction in swamp forest stream sediments. Under field conditions approximately 80% of the increase in inorganic N mass along a 1250-m reach of the Salto River was in the form of NO3/- with the balance NH4/+. Scrutiny of potential inorganic N sources suggested that mineralized N released from the streambed was a major source of the inorganic N increase. Despite significant NO3/- reduction potential, swamp forest stream sediments appear to be a source of inorganic N to downstream communities.

  5. This photograph shows a stream in the La Selva region of the Costa Rican rain forest, taken during NASA's AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-05

    This photograph shows a stream in the La Selva region of the Costa Rican rain forest, taken during NASA's AirSAR 2004 campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. The radar, developed by NASA's Jet Propulsion Laboratory, can penetrate clouds and also collect data at night. Its high-resolution sensors operate at multiple wavelengths and modes, allowing AirSAR to see beneath treetops, through thin sand, and dry snow pack. AirSAR's 2004 campaign is a collaboration of many U.S. and Central American institutions and scientists, including NASA; the National Science Foundation; the Smithsonian Institution; National Geographic; Conservation International; the Organization of Tropical Studies; the Central American Commission for Environment and Development; and the Inter-American Development Bank.

  6. Phosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil

    PubMed Central

    Tng, David Y. P.; Janos, David P.; Jordan, Gregory J.; Weber, Ellen; Bowman, David M. J. S.

    2014-01-01

    Although rain forest is characterized as pyrophobic, pyrophilic giant eucalypts grow as rain forest emergents in both temperate and tropical Australia. In temperate Australia, such eucalypts depend on extensive, infrequent fires to produce conditions suitable for seedling growth. Little is known, however, about constraints on seedlings of tropical giant eucalypts. We tested whether seedlings of Eucalyptus grandis experience edaphic constraints similar to their temperate counterparts. We hypothesized that phosphorous addition would alleviate edaphic constraints. We grew seedlings in a factorial experiment combining fumigation (to simulate nutrient release and soil pasteurization by fire), soil type (E. grandis forest versus rain forest soil) and phosphorus addition as factors. We found that phosphorus was the principal factor limiting E. grandis seedling survival and growth in rain forest soil, and that fumigation enhanced survival of seedlings in both E. grandis forest and rain forest soil. We conclude that similar to edaphic constraints on temperate giant eucalypts, mineral nutrient and biotic attributes of a tropical rain forest soil may hamper E. grandis seedling establishment. In rain forest soil, E. grandis seedlings benefited from conditions akin to a fire-generated ashbed (i.e., an “ashbed effect”). PMID:25339968

  7. Create a Rain Forest in the Gym.

    ERIC Educational Resources Information Center

    Kane, Karen

    1995-01-01

    Describes a creative interdisciplinary program for K-3 students that involves setting up a rain forest in the gymnasium to teach students gymnastic skills in the context of the Amazon rain forest. The paper describes how to set up the rain forest and teach a variety of classes. Rainforest resources are included. (SM)

  8. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA)

    USGS Publications Warehouse

    Beier, Colin M.; Caputo, Jesse; Lawrence, Gregory B.; Sullivan, Timothy J.

    2017-01-01

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global ‘hot-spot’ of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils – an estimated loss of ∼ $10,000 ha−1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact – relative to the effects of surficial geology and till depth – on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8–5.5, but are costly and limited in scope. Although any estimates of the monetary ‘damages’ of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition.

  9. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA).

    PubMed

    Beier, Colin M; Caputo, Jesse; Lawrence, Gregory B; Sullivan, Timothy J

    2017-04-15

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global 'hot-spot' of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils - an estimated loss of ∼ $10,000 ha -1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact - relative to the effects of surficial geology and till depth - on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8-5.5, but are costly and limited in scope. Although any estimates of the monetary 'damages' of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Effects of mountain pine beetle-killed forests on source water contributions to streamflow in headwater streams of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wehner, Christine E.; Stednick, John D.

    2017-09-01

    Natural or human-influenced disturbances are important to the health and diversity of forests, which in turn, are important to the water quantity and quality exported from a catchment. However, human-induced disturbances (prescribed fire and harvesting) have been decreasing, and natural disturbances (fires and insects) have been increasing in frequency and severity. One such natural disturbance is the mountain pine beetle (MPB), ( Dendroctonus ponderosae) an endemic species. A recent epidemic resulted in the mortality of millions of hectares of lodgepole pine ( Pinus contorta) forests in Colorado, USA. Beetle-induced tree mortality brings about changes to the hydrologic cycle, including decreased transpiration and interception with the loss of canopy cover. This study examined the effect of the mountain pine beetle kill on source water contributions to streamflow in snowmeltdominated headwater catchments using stable isotopes (2H and 18O) as tracers. Study catchments with varying level of beetle-killed forest area (6% to 97%) were sampled for groundwater, surface water, and precipitation. Streams were sampled to assess whether beetle-killed forests have altered source water contributions to streamflow. Groundwater contributions increased with increasing beetle-killed forest area ( p = 0.008). Both rain and snow contributions were negatively correlated with beetle-killed forest area ( p = 0.035 and p = 0.011, respectively). As the beetle-killed forest area increases, so does fractional groundwater contribution to streamflow.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomew, M. J.

    To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).

  12. 78 FR 29112 - Hiawatha East Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... Forest, 820 Rains Drive, Gladstone, Michigan 49837. Please call ahead at (906) 428-5829 to facilitate..., USDA Forest Service, Hiawatha National Forest, 820 Rains Drive, Gladstone, Michigan 49837; (906) 428... oral comments must be sent to Hiawatha National Forest; Attn: RAC Coordinator; 820 Rains Drive...

  13. Signs of lateral transport of CO2 and CH4 in freshwater systems in boreal zone

    NASA Astrophysics Data System (ADS)

    Ojala, A.; Pumpanen, J. S.

    2013-12-01

    The numerous waterbodies and their riparian zones in the boreal zone are important to lateral carbon transport of terrestrial origin. These freshwater systems are also significant for carbon cycling on the landscape level. However, the lateral signals of carbon gases can be difficult to detect and thus, we used here different approaches to verify the phenomenon. We installed continuous measurement systems with CO2 probes in the riparian zone soil matrix around a small pristine headwater lake, in the lake, and in the outflowing stream and followed up the seasonal variation in CO2 concentration and in rain event-driven changes. We also used the probes in a second-order stream discharging a catchment of managed forest. The conventional weekly sampling protocol on water column CO2 and CH4 concentrations as well as gas fluxes was applied in three lakes surrounded by managed forests and some crop land but having different size and water quality. In two of the lakes most drastic changes in gas fluxes occurred not in spring but during or just after the summer rains when the clear water lake changed from a small carbon sink to carbon source and in the humic lake almost half of the CO2 and CH4 fluxes occurred during or just after the rainy period. Gas concentrations in the water columns revealed that the high surface water concentrations resulting in peak fluxes were not due to transport from hypolimnia rich in gases, but were due to soil processes and export from the flooded catchments. In the third lake, seasonal peak fluxes took place just after ice out, but again this was not a result of carbon gases accumulated under the ice, but gases originated from the surrounding catchment. In this lake, ca. 30 % of the annual CO2 flux occurred in May and 13 % of CH4 was emitted during one single week in May. In general, CH4 appeared as a good tracer for lateral transport. In the soil-lake-stream continuum, seasonal variation in CO2 was greatest and concentrations highest deep in the soil and in the lake itself, but also in the stream, especially further down from the lake. In the stream, the influence of the riparian zone superseded that of the lake at less than 150 m distance, which resulted in wider variation and higher concentrations of CO2. After a spell of heavy rain, the CO2 concentration in the soil increased and supposedly, a considerable amount of CO2 of terrestrial origin entered the lake annually. However, since the rain event was combined with exceptionally high winds mixing the water column, the riparian CO2 load was diluted and could not be properly tracked down. The second-order stream draining a small lake had an unresponsive catchment with high base flow contribution and the low flow was important for the total annual CO2 export. In general, CO2 export was controlled by runoff. There was no concentration-discharge relationship which was different from four other catchments in Canada, UK and Sweden. The only exception was snowmelt event in spring when CO2 concentrations were high. This high concentration could be tracked down in the downstream lake. The studies thus revealed the importance of hydrological events such as high spring discharge after snowmelt and extreme rain events in summer for lateral carbon gas transport.

  14. Regulation of the dissolved phosphate concentration of a mountainous stream, Kitakyushu, southwestern Japan.

    PubMed

    Koga, Masaaki; Yoshimura, Kazuhisa

    2012-07-01

    The phosphate concentration in mountainous stream water can be a measure of the forest condition, because its concentration will be low when the biomass in the forest is increasing and vice versa when the forest is declining. To investigate the seasonal change in the dissolved phosphate concentration of the mountainous stream water of the Yamakami River, Kitakyushu, from June 2009 to August 2010, and the regulation mechanism of the phosphate concentration, solid-phase spectrophotometry, which can be applicable to natural water without any pretreatment procedures, was employed for the determination of phosphate at μg P L(-1) levels in natural water. The phosphate concentrations in the mountainous stream waters at 6 sites ranged from 2.2 to 13 μg P L(-1), and those from the catchment area of the steady state forest were 5.3 ± 1.6 (±1 SD) μg P L(-1). Changes in the concentration were fairly small even during a storm runoff. The average phosphate concentration of rain was 2.8 ± 0.7 μg P L(-1), about half of the concentration in the stream water. The rate of runoff in forest areas is generally considered to be about 50% of the total precipitation. For a forest under a climax condition, the phosphate concentration is estimated to be regulated by the fallout and evapotranspiration (α = 0.05). At one of the sites, an upstream tributary, where a fairly big landslide occurred before July in 2009, the phosphate concentration was the highest, suggesting that the biomass may still be decreasing. For all of the six sites examined, a characteristic seasonal change in phosphate concentration was observed, reflecting the local budget between the biological decomposition of plant matter and the consumption by the biomass. The increase in the phosphate concentration during late spring and early summer may result from the extensive decomposition of plant litter mainly supplied in autumn and of plant matter relating to spring blooming such as fallen flowers, pollen and immature fruits. The proposed method using the phosphate concentration in surface stream waters without the period of the seasonal change mentioned above is expected to be very helpful in diagnosing the condition of forests.

  15. Rain Forests: Do They Hold Up the Sky?

    ERIC Educational Resources Information Center

    Shaw, Donna Gail; Dybdahl, Claudia S.

    1992-01-01

    This paper uses the topic of rain forests to demonstrate how a meaningful and relevant Science, Technology, and Society program can be designed for intermediate-level students. Students create and immerse themselves in a tropical rain forest, explore the forest ecosystem and peoples, and consider solutions to the problem of deforestation. (JDD)

  16. Manganese biogeochemistry in a small Adirondack forested lake watershed

    USGS Publications Warehouse

    Shanley, James B.

    1986-01-01

    In September and October 1981, manganese (Mn) concentrations and pH were intensively monitored in a small forested lake watershed in the west-central Adirondack Mountains, New York, during two large acidic storms (each ∼5 cm rainfall, pH 4.61 and 4.15). The data were evaluated to identify biogeochemical pathways of Mn and to assess how these pathways are altered by acidic atmospheric inputs. Concentrations of Mn averaged 1.1 μg/L in precipitation and increased to 107 μg/L in canopy throughfall, the enrichment reflecting active biological cycling of Mn. Rain pH and throughfall Mn were negatively correlated, suggesting that foliar leaching of Mn was enhanced by rainfall acidity. The pulselike input of Mn to the forest floor in the high initial concentrations in throughfall (∼1000 μg/L) did not affect Mn concentrations in soil water (< 20 μg/L) or groundwater (usually < 40 μg/L), which varied little with time. In the inlet stream, Mn concentrations remained constant at 48 μg/L as discharge varied from 1.1 to 96 L/s. Manganese was retained in the vegetative cycle and regulated in the stream by adsorption in the soil organic horizon. The higher Mn levels in the stream may be linked to its high acidity (pH 4.2–4.3). Mixing of Mn-rich stream water with neutral lake water (pH 7.0) caused precipitation of Mn and deposition in lake sediment.

  17. Sediment source apportionment in Laurel Hill Creek, PA, using Bayesian chemical mass balance and isotope fingerprinting

    USGS Publications Warehouse

    Stewart, Heather; Massoudieh, Arash; Gellis, Allen C.

    2015-01-01

    A Bayesian chemical mass balance (CMB) approach was used to assess the contribution of potential sources for fluvial samples from Laurel Hill Creek in southwest Pennsylvania. The Bayesian approach provides joint probability density functions of the sources' contributions considering the uncertainties due to source and fluvial sample heterogeneity and measurement error. Both elemental profiles of sources and fluvial samples and 13C and 15N isotopes were used for source apportionment. The sources considered include stream bank erosion, forest, roads and agriculture (pasture and cropland). Agriculture was found to have the largest contribution, followed by stream bank erosion. Also, road erosion was found to have a significant contribution in three of the samples collected during lower-intensity rain events. The source apportionment was performed with and without isotopes. The results were largely consistent; however, the use of isotopes was found to slightly increase the uncertainty in most of the cases. The correlation analysis between the contributions of sources shows strong correlations between stream bank and agriculture, whereas roads and forest seem to be less correlated to other sources. Thus, the method was better able to estimate road and forest contributions independently. The hypothesis that the contributions of sources are not seasonally changing was tested by assuming that all ten fluvial samples had the same source contributions. This hypothesis was rejected, demonstrating a significant seasonal variation in the sources of sediments in the stream.

  18. Isotopic signals of summer denitrification in a northern hardwood forested catchment.

    PubMed

    Wexler, Sarah K; Goodale, Christine L; McGuire, Kevin J; Bailey, Scott W; Groffman, Peter M

    2014-11-18

    Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide isotopic evidence (δ(15)NNO3 and δ(18)ONO3) from shallow groundwater at the Hubbard Brook Experimental Forest indicating extensive denitrification during midsummer, when transient, perched patches of saturation developed in hillslopes, with poor hydrological connectivity to the stream, while streamwater showed no isotopic evidence of denitrification. During small rain events, precipitation directly contributed up to 34% of streamwater nitrate, which was otherwise produced by nitrification. Together, these measurements reveal the importance of denitrification in hydrologically disconnected patches of shallow groundwater during midsummer as largely overlooked control points for nitrogen loss from temperate forest catchments.

  19. Isotopic signals of summer denitrification in a northern hardwood forested catchment

    PubMed Central

    Wexler, Sarah K.; Goodale, Christine L.; Bailey, Scott W.; Groffman, Peter M.

    2014-01-01

    Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide isotopic evidence (δ15NNO3 and δ18ONO3) from shallow groundwater at the Hubbard Brook Experimental Forest indicating extensive denitrification during midsummer, when transient, perched patches of saturation developed in hillslopes, with poor hydrological connectivity to the stream, while streamwater showed no isotopic evidence of denitrification. During small rain events, precipitation directly contributed up to 34% of streamwater nitrate, which was otherwise produced by nitrification. Together, these measurements reveal the importance of denitrification in hydrologically disconnected patches of shallow groundwater during midsummer as largely overlooked control points for nitrogen loss from temperate forest catchments. PMID:25368188

  20. Persistent episodic acidification of streams linked to acid rain effects on soil

    USGS Publications Warehouse

    Lawrence, G.B.

    2002-01-01

    Episodic acidification of streams, identified in the late 1980s as one of the most significant environmental problems caused by acidic deposition, had not been evaluated since the early 1990s despite decreasing levels of acidic deposition over the past decade. This analysis indicates that episodic acidification of streams in upland regions in the northeastern United States persists, and is likely to be much more widespread than chronic acidification. Depletion of exchangeable Ca in the mineral soil has decreased the neutralization capacity of soils and increased the role of the surface organic horizon in the neutralization of acidic soil water during episodes. Increased accumulation of N and S in the forest floor from decades of acidic deposition will delay the recovery of soil base status, and therefore, the elimination of acidic episodes, which is anticipated from decreasing emissions.

  1. An overview of a 5-year research program on acid deposition in China

    NASA Astrophysics Data System (ADS)

    Wang, T.; He, K.; Xu, X.; Zhang, P.; Bai, Y.; Wang, Z.; Zhang, X.; Duan, L.; Li, W.; Chai, F.

    2011-12-01

    Despite concerted research and regulative control of sulfur dioxide in China, acid rain remained a serious environmental issue, due to a sharp increase in the combustion of fossil fuel in the 2000s. In 2005, the Ministry of Science and Technology of China funded a five-year comprehensive research program on acid deposition. This talk will give an overview of the activities and the key findings from this study, covering emission, atmospheric processes, and deposition, effects on soil and stream waters, and impact on typical trees/plants in China. The main results include (1) China still experiences acidic rainfalls in southern and eastern regions, although the situation has stabilized after 2006 due to stringent control of SO2 by the Chinese Government; (2) Sulfate is the dominant acidic compound, but the contribution of nitrate has increased; (3) cloud-water composition in eastern China is strongly influenced by anthropogenic emissions; (4) the persistent fall of acid rain in the 30 years has lead to acidification of some streams/rivers and soils in southern China; (5) the studied plants have shown varying response to acid rain; (6) some new insights have been obtained on atmospheric chemistry, atmospheric transport, soil chemistry, and ecological impacts, some of which will be discussed in this talk. Compared to the situation in North America and Europe, China's acid deposition is still serious, and continued control of sulfur and nitrogen emission is required. There is an urgent need to establish a long-term observation network/program to monitor the impact of acid deposition on soil, streams/rivers/lakes, and forests.

  2. Explosive radiation of Malpighiales supports a mid-cretaceous origin of modern tropical rain forests.

    PubMed

    Davis, Charles C; Webb, Campbell O; Wurdack, Kenneth J; Jaramillo, Carlos A; Donoghue, Michael J

    2005-03-01

    Fossil data have been interpreted as indicating that Late Cretaceous tropical forests were open and dry adapted and that modern closed-canopy rain forest did not originate until after the Cretaceous-Tertiary (K/T) boundary. However, some mid-Cretaceous leaf floras have been interpreted as rain forest. Molecular divergence-time estimates within the clade Malpighiales, which constitute a large percentage of species in the shaded, shrub, and small tree layer in tropical rain forests worldwide, provide new tests of these hypotheses. We estimate that all 28 major lineages (i.e., traditionally recognized families) within this clade originated in tropical rain forest well before the Tertiary, mostly during the Albian and Cenomanian (112-94 Ma). Their rapid rise in the mid-Cretaceous may have resulted from the origin of adaptations to survive and reproduce under a closed forest canopy. This pattern may also be paralleled by other similarly diverse lineages and supports fossil indications that closed-canopy tropical rain forests existed well before the K/T boundary. This case illustrates that dated phylogenies can provide an important new source of evidence bearing on the timing of major environmental changes, which may be especially useful when fossil evidence is limited or controversial.

  3. Amazon rain-forest fires.

    PubMed

    Sanford, R L; Saldarriaga, J; Clark, K E; Uhl, C; Herrera, R

    1985-01-04

    Charcoal is common in the soils of mature rain forests within 75 kilometers of San Carlos de Rio Negro in the north central Amazon Basin. Carbon-14 dates of soil charcoal from this region indicate that numerous fires have occurred since the mid-Holocene epoch. Charcoal is most common in tierra firme forest Oxisols and Ultisols and less common in caatinga and igapo forest soils. Climatic changes or human activities, or both, have caused rain-forest fires.

  4. Environmental Education about the Rain Forest.

    ERIC Educational Resources Information Center

    Berkmuller, Klaus

    Designed to help in the development of an educational program about the value of rain forests, this handbook presents a condensation of issues, facts, and concepts. The handbook is divided into three parts. Part one introduces the rain forest ecosystem and provides conceptual background material needed in the determination of problems, the…

  5. Does proximity to a mature forest contribute to the seed rain and recovery of an abandoned agriculture area in a semiarid climate?

    PubMed

    Souza, J T; Ferraz, E M N; Albuquerque, U P; Araújo, E L

    2014-07-01

    Proximity to forests contributes to the recolonisation of anthropogenic-disturbed areas through seed input. We evaluated the role of proximity to a mature forest in the recolonisation of an agricultural area that has been abandoned for 18 years and is currently a young forest. Seed rain was monitored at fixed distances from the mature forest. The type of surface recolonisation (germination versus resprouting) and the reproductive season were measured in both forests. The majority of plants recolonising the young forest originated from seed germination. Proximity to the mature forest contributed to the seed rain in the young forest; however, 18 years has not provided sufficient time for the recolonisation of 80 species present in the mature forest. Some species shared between forests differed in their fruiting season and seed dispersal. The seed rain had a total species richness of 56, a total density of 2270 seeds·m(-2)·year(−1) and predominance of self- and wind dispersal. A significant reduction in seed rain with increasing distance from the mature forest was observed. The young forest contained 35 species not observed in the mature forest, and the floristic similarity between the two forests was 0.5, indicating that the two forests are floristically distinct. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Use of stable isotopes of carbon, nitrogen, and sulfer to identify sources of nitrogen in surface waters in the Lower Susquehanna River basin, Pennsylvania

    USGS Publications Warehouse

    Cravotta, C.A.

    1995-01-01

    Stable isotopes of carbon (C), nitrogen (N), and sulfur (S) in nitrogen sources and nearby samples of topsoil, subsoil, runoff water, and stream water were measured to evaluate the feasibility of using isotopic data to identify nitrogen sources in stream water from forested, agricultural, or suburban land-use areas. Chemical and isotopic compositions were measured for six N-source types consisting of rain water, forest-leaf litter, synthetic fertilizer, farm-animal manure, municipal-sewage effluent and sludge, and septic-tank effluent and sludge. Compositions of topsoil, subsoil, runoff water, and stream water were measured to evaluate changes in compositions of transported N-containing materials near the N source. Animal manure, human waste (sewage plus septic), and forest-leaf litter can be distinguished on the basis of C; however, most N-sources can not be distinguished on the basis of N and S, owing to wide ranges of compositions and overlap among different N-source types. Although values of N for soil and runoff-water samples are qualitatively similar to those of the applied N source, values of C and S for runoff-water and stream-water samples appear to reflect the compositions of relatively large reservoirs of the elements in soil organic matter and minerals, respectively, and not the composition of the applied N source. Because of incomplete chemical transfor- mations, the ratio of organic carbon to total nitrogen for particulates in runoff or stream waters generally is lower than that for associated, nearby soils, and isotopic compositions commonly differ between particulate and dissolved fractions in the water.

  7. Effect of simulated acid rain on the litter decomposition of Quercus acutissima and Pinus massoniana in forest soil microcosms and the relationship with soil enzyme activities.

    PubMed

    Wang, Congyan; Guo, Peng; Han, Guomin; Feng, Xiaoguang; Zhang, Peng; Tian, Xingjun

    2010-06-01

    With the continuing increase in human activities, ecologists are increasingly interested in understanding the effects of acid rain on litter decomposition. Two dominant litters were chosen from Zijin Mountain in China: Quercus acutissima from a broad-leaved forest and Pinus massoniana from a coniferous forest. The litters were incubated in microcosms and treated with simulated acid rain (gradient pH levels). During a six-month incubation, changes in chemical composition (i.e., lignin, total carbohydrate, and nitrogen), litter mass losses, soil pH values, and activities of degradative enzymes were determined. Results showed that litter mass losses were depressed after exposure to acid rain and the effects of acid rain on the litter decomposition rates of needles were higher than on those of leaves. Results also revealed that simulated acid rain restrained the activities of cellulase, invertase, nitrate reductase, acid phosphatase, alkaline phosphatase, polyphenol oxidase, and urease, while it enhanced the activities of catalase in most cases during the six-month decomposition process. Catalase and polyphenol oxidase were primarily responsible for litter decomposition in the broad-leaved forest, while invertase, nitrate reductase, and urease were primarily responsible for litter decomposition in the coniferous forest. The results suggest acid rain-restrained litter decomposition may be due to the depressed enzymatic activities. According to the results of this study, soil carbon in subtropical forests would accumulate as a long-term consequence of continued acid rain. This may presumably alter the balance of ecosystem carbon flux, nutrient cycling, and humus formation, which may, in turn, have multiple effects on forest ecosystems. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Quantifying nutrient sources in an upland catchment using multiple chemical and isotopic tracers

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.; Kendall, C.; Aiken, G. R.

    2006-12-01

    To explore processes that control the temporal variation of nutrients in surface waters, we measured multiple environmental tracers at the Sleepers River Research Watershed, an upland catchment in northeastern Vermont, USA. Using a set of high-frequency stream water samples, we quantified the variation of nutrients over a range of stream flow conditions with chemical and isotopic tracers of water, nitrate, and dissolved organic carbon (DOC). Stream water concentrations of nitrogen (predominantly in the forms of nitrate and dissolved organic nitrogen) and DOC reflected mixing of water contributed from distinct sources in the forested landscape. Water isotopic signatures and end-member mixing analysis revealed when solutes entered the stream from these sources and that the sources were linked to the stream by preferential shallow subsurface and overland flow paths. Results from the tracers indicated that freshly-leached, terrestrial organic matter was the overwhelming source of high DOC concentrations in stream water. In contrast, in this region where atmospheric nitrogen deposition is chronically elevated, the highest concentrations of stream nitrate were attributable to atmospheric sources that were transported via melting snow and rain fall. These findings are consistent with a conceptual model of the landscape in which coupled hydrological and biogeochemical processes interact to control stream solute variability over time.

  9. Natural and near natural tropical forest values

    Treesearch

    Daniel H. Henning

    2011-01-01

    This paper identifies and describes some of the values associated with tropical rain forests in their natural and near-natural conditions. Tropical rain forests are moist forests in the humid tropics where temperature and rainfall are high and the dry season is short. These closed (non-logged) and broad-leaved forests are a global resource. Located almost entirely in...

  10. Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms.

    PubMed

    Janos, David P; Scott, John; Aristizábal, Catalina; Bowman, David M J S

    2013-01-01

    Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM) networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta) host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments) separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks-previously unrecognized as contributors to the ashbed effect-probably help to maintain the rain forest-savanna boundary.

  11. [Dynamics of Quercus variabilis seed rain and soil seed bank in different habitats on the north slope of Qinling Mountains].

    PubMed

    Wu, Min; Zhang, Wen-Hui; Zhou, Jian-Yun; Ma, Chuang; Ma, Li-Wei

    2011-11-01

    In order to explore the dynamics of Quercus variabilis seed rain and soil seed bank in different habitats on the north slope of Qinling Mountains, three kinds of micro-habitats (understory, forest gap, and forest edge) were selected, with the seed rain quantity and quality of Q. variabilis, seed amount and viability in soil seed bank, as well as the seedling development of Q. variabilis studied. The seed rain of Q. variabilis started from mid August, reached the peak in mid September-early October, and ended at the beginning of November, and there existed differences in the dissemination process, occurrence time, and composition of the seed rain among the three micro-habitats. The seed rain had the maximum intensity (39.55 +/- 5.56 seeds x m(-2)) in understory, the seeds had the earliest landing time, the longest lasting duration, and the highest viability in forest gap, and the mature seeds had the largest proportion in forest edge, accounting for 58.7% of the total. From the ending time of seed rain to next August, the total reserve of soil seed bank was the largest in understory and the smallest in forest edge. In the three habitats, the amount of mature and immature seeds, that of seeds eaten by animals, and the seed viability in soil seed bank all decreased with time. In contrast, the number of moldy seeds increased. The seeds were mainly concentrated in litter layer, a few of them were in 0-2 cm soil layer, and few were in 2-5 cm soil layer. The density of the seedlings varied with habitats, being the largest in forest gap, followed by in forest edge, and the least in understory, which suggested that forest gap was more suitable for the seed germination and seedling growth of Q. variabilis, and thus, appropriate thinning should be taken to increase forest gap to provide favorable conditions for the natural regeneration of Q. variabilis forest.

  12. Forest structure and composition in the lower montane rain forest of the Luquillo Mountains, Puerto Rico

    Treesearch

    Peter L. Weaver

    2010-01-01

    Six groups of three plots stratified by aspect and topography and varying in elevation were used to sample forest structure and tree species composition within the lower montane rain forest (tabonuco forest) of the Luquillo Experimental Forest (LEF) in Puerto Rico. Stem density, tree height, and total above ground biomass varied by site. Significant differences in...

  13. People & Tropical Rain Forests.

    ERIC Educational Resources Information Center

    NatureScope, 1989

    1989-01-01

    Discusses ways people who live in rain forests make a living and some of the products that enrich our lives. Provides activities covering forest people, tropical treats, jungle in the pantry, treetop explorers, and three copyable pages to accompany activities. (Author/RT)

  14. Ecohydrology of Lodgepole Pine Forests: Connecting Transpiration to Subsurface Flow Paths and Storage within a Subalpine Catchment

    NASA Astrophysics Data System (ADS)

    Byers, A.; Harpold, A. A.; Barnard, H. R.

    2011-12-01

    The hydrologic cycle plays a central role in regulating ecosystem structure and function. Linked studies of both subsurface and aboveground processes are needed to improve understanding of ecosystem changes that could result from climate change and disturbance in Colorado's subalpine forests. Here, we present data from plots dominated by lodgepole pine (Pinus contorta) at the Niwot Ridge LTER site on the Colorado Front Range that improves the process-level understanding of the source and fate of water between subsurface storage and plant uptake. This study utilized event-based sampling during the 2011 growing season to investigate a paradox between water sources and rooting depth in lodgepole pine. Findings from Niwot Ridge have shown that lodgepole, typically believed to be a shallow-rooted species, appear to be strongly dependent on water from snowmelt for the entire growing season. These results suggested that conifer species were accessing water from deeper in the soil than summer monsoon rain typically penetrated. In our study, the relationship between precipitation event size and depth of infiltration on a seasonal and event basis, the effective rooting depth of lodgepole pine, and hysteretic responses of transpiration to soil moisture over a growing season were examined using measurements of tree physiological processes (sap flux and water stress) and hydrological parameters (precipitation, soil moisture) as well as stable water isotope composition of xylem water, mobile and immobile soil water, snow, precipitation, and stream water. Analysis of data shows that soil moisture in deep layers (60 and 70 cm) responds to large summer rain events of 0.7 mm and greater, and that lodgepole sap flux increases by 15-30% within 24 hours of monsoon events and decreases over 72 hours or until subsequent rain. Water isotope analysis will further elucidate the source and event response of these trees. This research helps us understand whether processes known to occur in Mediterranean climate regimes, such as the "two water worlds" theory that tightly bound water in soil is available to trees but is separate from mobile water that drains to streams, also applies to continental mountainous climates. Furthermore, understanding the mediation of hydrologic processes by trees like lodgepole pine will improve modeling of hydrological and ecological processes and knowledge of forest susceptibility to climate change and other disturbance impacts.

  15. Rain Forest Murals

    ERIC Educational Resources Information Center

    Kleiner, Cheryl

    2010-01-01

    The rain forest murals in the author's school began as a request from her principal to have students decorate the cafeteria with their own paintings. She decided to brainstorm ideas with her eighth-grade students. Taking into consideration the architectural space and the environmental concerns they wanted to convey, students chose the rain forest…

  16. Stable-isotope and solute-chemistry approaches to flow characterization in a forested tropical watershed, Luquillo Mountains, Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Shanley, James B.; Murphy, Sheila F.; Willenbring, Jane K; Occhi, Marcie; González, Grizelle

    2015-01-01

    The prospect of changing climate has led to uncertainty about the resilience of forested mountain watersheds in the tropics. In watersheds where frequent, high rainfall provides ample runoff, we often lack understanding of how the system will respond under conditions of decreased rainfall or drought. Factors that govern water supply, such as recharge rates and groundwater storage capacity, may be poorly quantified. This paper describes 8-year data sets of water stable isotope composition (δ2H and δ18O) of precipitation (4 sites) and a stream (1 site), and four contemporaneous stream sample sets of solute chemistry and isotopes, used to investigate watershed response to precipitation inputs in the 1780-ha Río Mameyes basin in the Luquillo Mountains of northeastern Puerto Rico. Extreme δ2H and δ18O values from low-pressure storm systems and the deuterium excess (d-excess) were useful tracers of watershed response in this tropical system. A hydrograph separation experiment performed in June 2011 yielded different but complementary information from stable isotope and solute chemistry data. The hydrograph separation results indicated that 36% of the storm rain that reached the soil surface left the watershed in a very short time as runoff. Weathering-derived solutes indicated near-stream groundwater was displaced into the stream at the beginning of the event, followed by significant dilution. The more biologically active solutes exhibited a net flushing behavior. The d-excess analysis suggested that streamflow typically has a recent rainfall component (∼25%) with transit time less than the sampling resolution of 7 days, and a more well-mixed groundwater component (∼75%). The contemporaneous stream sample sets showed an overall increase in dissolved solute concentrations with decreasing elevation that may be related to groundwater inputs, different geology, and slope position. A considerable amount of water from rain events runs off as quickflow and bypasses subsurface watershed flowpaths, and better understanding of shallow hillslope and deeper groundwater processes in the watershed will require sub-weekly data and detailed transit time modeling. A combined isotopic and solute chemistry approach can guide further studies to a more comprehensive model of the hydrology, and inform decisions for managing water supply with future changes in climate and land use.

  17. Arbuscular-Mycorrhizal Networks Inhibit Eucalyptus tetrodonta Seedlings in Rain Forest Soil Microcosms

    PubMed Central

    Janos, David P.; Scott, John; Aristizábal, Catalina; Bowman, David M. J. S.

    2013-01-01

    Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM) networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta) host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments) separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks–previously unrecognized as contributors to the ashbed effect–probably help to maintain the rain forest–savanna boundary. PMID:23460899

  18. Reliability of the Forest Service type rain gage

    Treesearch

    G. L. Hayes

    1942-01-01

    The Forest Service type rain-gage was originated by W. B. Osborne of the Portland, Oreg., office of the U. S. Forest Service to meet a need for reliable rainfall measurements at low cost. Many hundreds of them, over 700 on the national forests of northern Idaho and western Montana alone, are now being used during the summer months as aids to forest-fire control...

  19. Seed rain and seed bank of third- and fifth-order streams on the western slope of the Cascade Range.

    Treesearch

    Janice M. Harmon; Jerry F. Franklin

    1991-01-01

    We compared the composition and density of the on-site vegetation, seed bank, and seed rain of three geomorphic and successional surfaces along third- and fifth-order streams on the western slope of the central Cascade Range in Oregon.The on-site vegetation generally was dominated by tree species, the seed bank by herb species, and the seed rain by tree and...

  20. 77 FR 47814 - Florida National Forests Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... CONTACT: Denise Rains, Public Affairs Officer, National Forests in Florida, 850-523-8568, email [email protected] agenda. Written comments and requests for time for oral comments must be sent to Denise Rains, U.S... , or via facsimile to 850-523-8505, Attention: Denise Rains. A summary of the meeting will be posted at...

  1. Variability within the 10-Year Pollen Rain of a Seasonal Neotropical Forest and Its Implications for Paleoenvironmental and Phenological Research

    PubMed Central

    Haselhorst, Derek S.; Moreno, J. Enrique; Punyasena, Surangi W.

    2013-01-01

    Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1–3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen traps, therefore, also represent an underutilized means of monitoring the pollen productivity and reproductive behavior of moist tropical forests. PMID:23320089

  2. Variability within the 10-year pollen rain of a seasonal neotropical forest and its implications for paleoenvironmental and phenological research.

    PubMed

    Haselhorst, Derek S; Moreno, J Enrique; Punyasena, Surangi W

    2013-01-01

    Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1-3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen traps, therefore, also represent an underutilized means of monitoring the pollen productivity and reproductive behavior of moist tropical forests.

  3. Soil-calcium depletion linked to acid rain and forest growth in the eastern United States

    USGS Publications Warehouse

    Lawrence, Gregory B.; Huntington, T.G.

    1999-01-01

    Since the discovery of acid rain in the 1970's, scientists have been concerned that deposition of acids could cause depletion of calcium in forest soils. Research in the 1980's showed that the amount of calcium in forest soils is controlled by several factors that are difficult to measure. Further research in the 1990's, including several studies by the U.S. Geological Survey, has shown that (1) calcium in forest soils has decreased at locations in the northeastern and southeastern U.S., and (2) acid rain and forest growth (uptake of calcium from the soil by roots) are both factors contributing to calcium depletion.

  4. Interpreting the Hydrology of a Desert Mountain Stream to a General Public: Using Multimedia to Enhance Informal Experiential Education

    NASA Astrophysics Data System (ADS)

    Woodard, G. C.; Carpenter, K. D.

    2002-12-01

    Sabino Canyon near Tucson, Arizona draws over 1 million visits per year. The centerpiece of the canyon is Sabino Creek, an ephemeral stream fed by seasonal snowmelt and monsoon rains. Frequently asked questions by canyon visitors include: How can a stream flow in the desert environment? Why are the surrounding mountaintops so much cooler and wetter? How can the stream flow without recent rain or snowmelt? Where does the water go? The NSF STC for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has partnered with the USGS and the USDA Forest Service to develop static displays and a touch-screen electronic kiosk for the Sabino Canyon Visitors Center that explain what streamflow is, where the waters of Sabino Creek originate, where they go, what conditions produce flash flooding, and the hydrology of sky island environments. The kiosk, and an associated Web site, also give current weather and streamflow conditions at various points in the canyon, plus typical and extreme conditions for the current date. Designing displays that attract and inform a diverse mix of visitors with varying levels of interest, reading levels, and attention spans is a major challenge. We have integrated static displays featuring light boxes with a touch-screen kiosk featuring graphics, animation, video, sound effects, and voice-overs. Optional sub-titles are in five languages. The goal is to attract visitors to the display and then meet their various interests and information needs. Hydrology is a foreign subject to the great majority of people, and opportunities to informally educate them are relatively scarce. This presentation will show how current multimedia technology can be combined with proven methods of informal experiential education to communicate some basic hydrologic principles.

  5. The influence of Critical Zone structure on runoff paths, seasonal water storage, and ecosystem composition

    NASA Astrophysics Data System (ADS)

    Hahm, W. J.; Dietrich, W. E.; Rempe, D.; Dralle, D.; Dawson, T. E.; Lovill, S.; Bryk, A.

    2017-12-01

    Understanding how subsurface water storage mediates water availability to ecosystems is crucial for elucidating linkages between water, energy, and carbon cycles from local to global scales. Earth's Critical Zone (the CZ, which extends from the top of the vegetation canopy downward to fresh bedrock) includes fractured and weathered rock layers that store and release water, thereby contributing to ecosystem water supplies, and yet are not typically represented in land-atmosphere models. To investigate CZ structural controls on water storage dynamics, we intensively studied field sites in a Mediterranean climate where winter rains arrive months before peak solar energy availability, resulting in strong summertime ecosystem reliance on stored subsurface water. Intra-hillslope and catchment-wide observations of CZ water storage capacity across a lithologic boundary in the Franciscan Formation of the Northern California Coast Ranges reveal large differences in the thickness of the CZ and water storage capacity that result in a stark contrast in plant community composition and stream behavior. Where the CZ is thick, rock moisture storage supports forest transpiration and slow groundwater release sustains baseflow and salmon populations. Where the CZ is thin, limited water storage is used by an oak savanna ecosystem, and streams run dry in summer due to negligible hillslope drainage. At both sites, wet season precipitation replenishes the dynamic storage deficit generated during the summer dry season, with excess winter rains exiting the watersheds via storm runoff as perched groundwater fracture flow at the thick-CZ site and saturation overland flow at the thin-CZ site. Annual replenishment of subsurface water storage even in severe drought years may lead to ecosystem resilience to climatic perturbations: during the 2011-2015 drought there was not widespread forest die-off in the study area.

  6. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years

    USGS Publications Warehouse

    Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.

    2009-01-01

    The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central M??xico and lowland Colombia remain unchanged in their biome assignments, although the affinities that these sites have to different biomes do change between 18 000±1000 14C yr BP and present. The " unresponsive" nature of these sites results from their location and the impact of local edaphic influence.

  7. Promoting nitrate removal in rain gardens | Science Inventory ...

    EPA Pesticide Factsheets

    Rain gardens are vegetated surface depressions, often located at low points in landscapes, designed to receive stormwater runoff from roads, roofs, and parking lots. The gardens’ sandy soils allow stormwater to drain quickly to the native soils below and eventually to groundwater. The rain garden vegetation and soils remove pollutants and nutrients from stormwater runoff through biological and physical processes such as plant uptake and sorption to soil particles. In comparison with stormwater release to receiving waters through conventional storm drain systems, infiltrating stormwater through rain gardens reduces peak flows and loadings of both pollutants and nutrients. This reduction improves the physical and biological integrity of receiving streams by reducing stream bank erosion and negative effects on stream communities. While local governments and individual homeowners are building these systems, relatively few scientific studies have documented the ability of rain gardens to remove pollutants and nutrients. This U.S. EPA long-term research project investigates: 1) the performance of rain gardens in removing pollutants, and 2) whether currently-accepted design standards can be adjusted to improve nitrate removal capabilities. Typical rain garden designs provide large removals of pollutants of concern, including heavy metals, phosphorus, total nitrogen, and ammonium. The gardens have been less successful in removing nitrate, an importan

  8. Seed dispersal limitations shift over time in tropical forest restoration.

    PubMed

    Reid, J Leighton; Holl, Karen D; Zahawi, Rakan A

    2015-06-01

    Past studies have shown that tropical forest regeneration on degraded farmlands is initially limited by lack of seed dispersal, but few studies have tracked changes in abundance and composition of seed rain past the first few years after land abandonment. We measured seed rain for 12 months in 10 6-9-year-old restoration sites and five mature, reference forests in southern Costa Rica in order to learn (1) if seed rain limitation persists past the first few years of regeneration; (2) how restoration treatments influence seed community structure and composition; and (3) whether seed rain limitation is contingent on landscape context. Each restoration site contained three 0.25-ha treatment plots: (1) a naturally regenerating control, (2) tree islands, and (3) a mixed-species tree plantation. Sites spanned a deforestation gradient with 9-89% forest area within 500 m around the treatment plots. Contrary to previous studies, we found that tree seeds were abundant and ubiquitous across all treatment plots (585.1 ± 142.0 seeds · m(-2) · yr(-1) [mean ± SE]), indicating that lack of seed rain ceased to limit forest regeneration within the first decade of recovery. Pioneer trees and shrubs comprised the vast majority of seeds, but compositional differences between restoration sites and reference forests were driven by rarer, large-seeded species. Large, animal-dispersed tree seeds were more abundant in tree islands (4.6 ± 2.9 seeds · m(-2) · yr(-1)) and plantations (5.8 ± 3.0 seeds · m(-2) · yr(-1)) than control plots (0.2 ± 0.1 seeds · m(-2) · yr(-1)), contributing to greater tree species richness in actively restored plots. Planted tree species accounted for < 1% of seeds. We found little evidence for landscape forest cover effects on seed rain, consistent with previous studies. We conclude that seed rain limitation shifted from an initial, complete lack of tree seeds to a specific limitation on large-seeded, mature forest species over the first decade. Although total seed abundance was equal among restoration treatments, tree plantations and tree islands continued to diversify seed rain communities compared to naturally regenerating controls. Compositional differences between regenerating plots and mature forests suggest that large-seeded tree species are appropriate candidates for enrichment planting.

  9. Changes in habitat use at rainforest edges through succession: A case study of understory birds in the Brazilian Amazon

    Treesearch

    Luke L. Powell; Gustavo Zurita; Jared D.  Wolfe; Erik I.  Johnson; Philip C  Stouffer

    2015-01-01

    Primary tropical rain forests are being rapidly perforated with new edges via roads, logging, and pastures, and vast areas of secondary forest accumulate following abandonment of agricultural lands. To determine how insectivorous Amazonian understory birds respond to edges between primary rain forest and three age classes of secondary forest, we radio-tracked two...

  10. Model gives a 3-month warning of Amazonian forest fires

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The widespread drought suffered by the Amazon rain forest in the summer of 2005 was heralded at the time as the drought of the century. Because of the dehydrated conditions, supplemented by slash and burn agricultural practices, the drought led to widespread forest fires throughout the western Amazon, a portion of the rain forest usually too lush to support spreading wildfires. Only 5 years later, the 2005 season was outdone by even more widespread drought, with fires decimating more than 3000 square kilometers of western Amazonian rain forest. Blame for the wildfires has been consistently laid on deforestation and agricultural practices, but a convincing climatological explanation exists as well. (Geophysical Research Letters, doi:10.1029/2011GL047392, 2011)

  11. Analysis of normalized radar cross section (sigma-O) signature of Amazon rain forest using SEASAT scatterometer data

    NASA Technical Reports Server (NTRS)

    Bracalente, E. M.; Sweet, J. L.

    1984-01-01

    The normalized radar cross section (NRCS) signature of the Amazon rain forest was SEASAT scatterometer data. Statistics of the measured (NRCS) values were determined from multiple orbit passes for three local time periods. Plots of mean normalized radar cross section, dB against incidence angle as a function of beam and polarization show that less than 0.3 dB relative bias exists between all beams over a range of incidence angle from 30 deg to 53 deg. The backscattered measurements analyzed show the Amazon rain forest to be relatively homogeneous, azimuthally isotropic and insensitive to polarization. The return from the rain forest target appears relatively consistent and stable, except for the small diurnal variation (0.75 dB) that occurs at sunrise. Because of the relative stability of the rain forest target and the scatterometer instrument, the response of versus incidence angle was able to detect errors in the estimated yaw altitude angle. Also, small instrument gain biases in some of the processing channels were detected. This led to the development of an improved NRCS algorithm, which uses a more accurate method for estimating the system noise power.

  12. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest

    Treesearch

    Xiaojun Du; Qinfeng Guo; Xianming Gao; Keping Na

    2007-01-01

    Understanding the seed rain and seed loss dynamics in the natural condition has important significance for revealing the natural regeneration mechanisms.We conducted a 3-year field observation on seed rain, seed loss and natural regeneration of Castanopsis fargesii Franch., a dominant tree species in evergreen broad-leaved forests in Dujiangyan,...

  13. Seed invasion filters and forest fire severity

    Treesearch

    Tom R. Cottrell; Paul F. Hessburg; Jonathan A. Betz

    2008-01-01

    Forest seed dispersal is altered after fire. Using seed traps, we studied impacts of fire severity on timing of seed dispersal, total seed rain, and seed rain richness in patches of high and low severity fire and unburned Douglas-fir (Pseudotsuga menziesii) forests in the Fischer and Tyee fire complexes in the eastern Washington Cascades. Unburned...

  14. Tree ring-based chronology of hydro-geomorphic processes as a fundament for identification of hydro-meteorological triggers in the Hrubý Jeseník Mountains (Central Europe).

    PubMed

    Tichavský, Radek; Šilhán, Karel; Tolasz, Radim

    2017-02-01

    Hydro-geomorphic processes have significantly influenced the recent development of valley floors, river banks and depositional forms in mountain environments, have caused considerable damage to manmade developments and have disrupted forest management. Trees growing along streams are affected by the transported debris mass and provide valuable records of debris flow/flood histories in their tree-ring series. Dendrogeomorphic approaches are currently the most accurate methods for creating a chronology of the debris flow/flood events in forested catchments without any field-monitoring or a stream-gauging station. Comprehensive studies focusing on the detailed chronology of hydro-geomorphic events and analysis of meteorological triggers and weather circulation patterns are still lacking for the studied area. We provide a spatio-temporal reconstruction of hydro-geomorphic events in four catchments of the Hrubý Jeseník Mountains, Czech Republic, with an analysis of their triggering factors using meteorological data from four nearby rain gauges. Increment cores from 794 coniferous trees (Picea abies [L.] Karst.) allowed the identification of 40 hydro-geomorphic events during the period of 1889-2013. Most of the events can be explained by extreme daily rainfalls (≥50mm) occurring in at least one rain gauge. However, in several cases, there was no record of extreme precipitation at rain gauges during the debris flow/flood event year, suggesting extremely localised rainstorms at the mountain summits. We concluded that the localisation, intensity and duration of rainstorms; antecedent moisture conditions; and amount of available sediments all influenced the initiation, spatial distribution and characteristics of hydro-geomorphic events. The most frequent synoptic situations responsible for the extreme rainfalls (1946-2015) were related to the meridional atmospheric circulation pattern. Our results enhance current knowledge of the occurrences and triggers of debris flows/floods in the Central European mountains in transition between temperate oceanic and continental climatic conditions and may prompt further research of these phenomena in the Eastern Sudetes in general. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Chemical and isotopic evolution of a layered eastern U.S. snowpack and its relation to stream-water composition

    USGS Publications Warehouse

    Shanley, J.B.; Kendall, C.; Albert, M.R.; Hardy, J.P.

    1995-01-01

    The chemical, isotopic, and morphologic evolution of a layered snowpack was investigated during the winter of 1993-94 at Sleepers River Research Watershed in Danville, Vermont. The snowpack was monitored at two small basins: a forested basin at 525 m elevation, and an agricultural basin at 292 m elevation. At each site, the snowpack morphology was characterized and individual layers were sampled seven times during the season. Nitrate and 8d18O profiles in the snowpack remained relatively stable until peak accumulation in mid-March, except near the snow surface, where rain-on-snow events caused water and nitrate movement down to impeding ice layers. Subsequently, water and nitrate moved more readily through the ripening snowpack. As the snowpack evolved, combined processes of preferential ion elution, isotopic fractionation, and infiltration of isotopically heavy rainfall caused the pack to become depleted in solutes and isotopically enriched. The release of nitrate and isotopically depleted water was reflected in patterns of nitrate concentrations and ??18O of meltwater and stream water. Results supported data from the previous year which suggested that streamflow in the forested basin during snowmelt was dominated by groundwater discharge.

  16. [Dynamics of Amomum villosum growth and its fruit yield cultivated under tropical forests].

    PubMed

    Zheng, Zheng; Gan, Jianmin; Feng, Zhili; Meng, Ying

    2004-01-01

    Investigations on the dynamics of Amomum villosum growth and its fruit yield cultivated under tropical ravine rainforest and secondary forest at different elevations in Xishuangbanna showed that the yield of A. villosum was influenced by the site age, sun light level of understorey, and water stress in dry season. The fruit yield and mature plant density decreased with increasing age of the A. villosum site. The fruit yield increased with sun light level when the light level in understorey was under 35% of full sun light (P < 0.05). The fruit yield at the lower site by stream was significantly higher than that at upper site (P < 0.05). The yield difference between ravine rainforest and secondary forest was not significant. Planned cultivation of A. villosum in the secondary forest of the shifting cultivation land by ravine from 800-1000 m elevation instead of customary cultivation in the ravine rainforest, could not only resolve the problem of the effect of light deficiency in understorey and water stress in the dry season on A. villosum fruit yield, but also be useful to protect the tropical ravine rain forest.

  17. Thermal ecology of montane Atelopus (Anura: Bufonidae): A study of intrageneric diversity.

    PubMed

    Rueda Solano, Luis Alberto; Navas, Carlos A; Carvajalino-Fernández, Juan Manuel; Amézquita, Adolfo

    2016-05-01

    Harlequin frogs (Bufonidae: Atelopus) are among the most threatened frog genus in the world and reach very high elevations in the tropical Andes and the Sierra Nevada de Santa Marta (SNSM). Learning about their thermal ecology is essential to infer sensitivity to environmental changes, particularly climate warming. We report on the activity temperature and thermoregulatory behavior of three high-elevation species of harlequin frogs, Atelopus nahumae, Atelopus laetissimus and Atelopus carrikeri. The first two mentioned live in streams in Andean rain forests, whereas A. carrikeri inhabits paramo streams in the SNSM. We studied the thermal ecology of these species in tree localities differing in altitude, and focused on activity body, operative, substrate and air temperature. A main trend was lower body temperature as elevation increased, so that differences among species were largely explained by differences in substrate temperature. However, this temperature variation was much lower in forest species than paramo species. The Atelopus species included in this work proved to be thermoconformers, a trend that not extended to all congenerics at high elevation. This diversity in thermal ecology poses important questions when discussing the impact of climate warming for high-elevation harlequin frogs. For example, forest species show narrow thermal ranges and, if highly specialized, may be more susceptible to temperature change. Paramo species such as A. carrikeri, in contrast, may be more resilient to temperature change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Response of soil respiration to acid rain in forests of different maturity in southern China.

    PubMed

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  19. Response of Soil Respiration to Acid Rain in Forests of Different Maturity in Southern China

    PubMed Central

    Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types. PMID:23626790

  20. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago

    USGS Publications Warehouse

    Marchant, R.; Cleef, A.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.; Duivenvoorden, J.; Flenley, J.; De Oliveira, P.; Van Gee, B.; Graf, K.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.; Horn, S.; Kuhry, P.; Ledru, M.-P.; Mayle, F.; Leyden, B.; Lozano-Garcia, S.; Melief, A.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G.; Salgado-Labouriau, M.; Schabitz, F.; Schreve-Brinkman, E. J.; Wille, M.

    2009-01-01

    The biomisation method is used to reconstruct Latin American vegetation at 6000??500 and 18 000??1000 radiocarbon years before present ( 14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000??500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000??500 14C yr BP reconstruction are comparatively small; change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America show a change in biome assignment, but to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000??1000 14C yr BP 61 samples from 34 sites record vegetation reflecting a generally cool and dry environment. Cool grass/shrubland is prevalent in southeast Brazil whereas Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central Mexico and lowland Colombia remain unchanged in the biome assignments of warm mixed forest and tropical dry forest respectively, although the affinities that these sites have to different biomes do change between 18000??1000 14C yr BP and present. The "unresponsive" nature of these sites results from their location and the impact of local edaphic influence. ?? Author(s) 2009.

  1. Acid rain impacts on calcium nutrition and forest health

    Treesearch

    Donald H. DeHayes; Paul G. Schaberg; Gary J. Hawley; G. Richard Strimbeck

    1999-01-01

    Forest ecosystems throughout the world are exposed to acid rain, a complex solution consisting largely of H+, SO42-, NH4+, and NO3- pollutant ions derived from sulfur and nitrogen oxides. Although the public in...

  2. Descriptions and biological notes on three unusual mantellid tadpoles (Amphibia: Anura: Mantellidae) from southeastern Madagascar

    USGS Publications Warehouse

    Altig, R.; McDiarmid, R.W.

    2006-01-01

    The morphologies of three unusual tadpoles from slow-flowing, sandy-bottomed, rain forest streams in southeastern Madagascar are described. The large oral apparatus of the tadpole of Boophis picturatus Glaw, Vences, Andreone, and Vallan, 2001 lacks all keratinized structures and has an elaborately-folded lower labium with five, radially oriented, flattopped ridges. The tadpole of Mantidactylus guttulatus (Boulenger, 1881) lacks all keratinized mouthparts and has three immense papillae where the upper jaw normally occurs. The tadpole of Mantidactylus lugubris (Dumeril, 1853) has an ornate oral apparatus involving greatly hypertrophied derivatives of jaw serrations and unique structures on the lower labium that resemble labial teeth.

  3. Nitrate dynamics within a stream-lake network through time and space

    NASA Astrophysics Data System (ADS)

    Loken, L. C.; Crawford, J. T.; Childress, E. S.; Casson, N. J.; Stanley, E. H.

    2014-12-01

    Nitrate dynamics in streams are governed by biology, hydrology, and geomorphology, and the ability to parse these drivers apart has improved with the development of accurate high-frequency sensors. By combining a stationary Eulerian and a quasi-Lagrangian sensor platform, we investigated the timing of nitrate flushing and identified locations of elevated biogeochemical cycling along a stream-lake network in Northern Wisconsin, USA. Two years of continuous oxygen, carbon dioxide, and discharge measurements were used to compute gross primary production (GPP) and ecosystem respiration (ER) downstream of a wetland reach of Allequash Creek. Metabolic rates and flow patterns were compared with nitrate concentrations measured every 30 minutes using an optical sensor. Additionally, we floated a sensor array from the headwater spring ponds through a heterogeneous stream reach consisting of wetlands, beaver ponds, forested segments, and two lakes. Two distinct temporal patterns of stream nitrate concentrations were observed. During high flow events such as spring snowmelt and summer rain events, nitrate concentrations increased from ~5 μM (baseflow) to 12 μM, suggesting flushing from catchment sources. During baseflow conditions, nitrate followed a diel cycle with a 0.3-1.0 μM daytime draw down. Daily nitrate reduction was positively correlated with GPP calculated from oxygen and carbon dioxide records. Lastly, spatial analyses revealed lowest nitrate concentrations in the wetland reach, approximately 2-3 μM lower than the upstream spring ponds, and downstream lakes and forested reaches. This snapshot implies greater nitrate removal potential in the wetland reach likely driven by denitrification in organic rich sediments and macrophyte uptake in the open canopy stream segment. Taken together the temporal and spatial results show the dynamics of hydrology, geomorphology, and biology to influence nitrate delivery and variability in ecosystem processing through a stream-lake system. Future ecosystem studies could benefit by including multiple reference frameworks to better assess processes not captured by a single station approach.

  4. EFFECT OF SIMULATED SULFURIC ACID RAIN ON THE CHEMISTRY OF A SULFATE-ADSORBING FOREST SOIL

    EPA Science Inventory

    Simulated H2SO4 rain (pH 3.0, 3.5, 4.0) or control rain (pH 5.6) was applied for 3.5 yr to large lysimeter boxes containing a sulfate-adsorbing forest soil and either red alder (Alnus rubra) or sugar maple (Acer saccharum) seedlings. After removal of the plants and the litter lay...

  5. Understanding the role of fog in forest hydrology: Stable isotopes as tools for determining input and partitioning of cloud water in montane forests

    USGS Publications Warehouse

    Scholl, M.; Eugster, W.; Burkard, R.

    2011-01-01

    Understanding the hydrology of tropical montane cloud forests (TMCF) has become essential as deforestation of mountain areas proceeds at an increased rate worldwide. Passive and active cloud-water collectors, throughfall and stemflow collectors, visibility or droplet size measurements, and micrometeorological sensors are typically used to measure the fog water inputs to ecosystems. In addition, stable isotopes may be used as a natural tracer for fog and rain. Previous studies have shown that the isotopic signature of fog tends to be more enriched in the heavier isotopes 2H and 18O than that of rain, due to differences in condensation temperature and history. Differences between fog and rain isotopes are largest when rain is from synoptic-scale storms, and fog or orographic cloud water is generated locally. Smaller isotopic differences have been observed between rain and fog on mountains with orographic clouds, but only a few studies have been conducted. Quantifying fog deposition using isotope methods is more difficult in forests receiving mixed precipitation, because of limitations in the ability of sampling equipment to separate fog from rain, and because fog and rain may, under some conditions, have similar isotopic composition. This article describes the various types of fog most relevant to montane cloud forests and the importance of fog water deposition in the hydrologic budget. A brief overview of isotope hydrology provides the background needed to understand isotope applications in cloud forests. A summary of previous work explains isotopic differences between rain and fog in different environments, and how monitoring the isotopic signature of surface water, soil water and tree xylem water can yield estimates of the contribution of fog water to streamflow, groundwater recharge and transpiration. Next, instrumentation to measure fog and rain, and methods to determine isotopic concentrations in plant and soil water are discussed. The article concludes with the identification of some of the more pressing research questions in this field and offers various suggestions for future research. ?? 2010 This article is a US Government work and is in the public domain in the USA.

  6. Tangled trends for temperate rain forests as temperatures tick up

    Treesearch

    Noreen Parks; Tara Barrett

    2013-01-01

    Climate change is altering growing conditions in the temperate rain forest region that extends from northern California to the Gulf of Alaska. Longer, warmer growing seasons are generally increasing the overall potential for forest growth in the region. However, species differ in their ability to adapt to changing conditions. For example, researchers with Pacific...

  7. Nitrogen biogeochemistry in urban wetlands and bioretention systems: The evolving roles of urban stormwater management practices (Invited)

    NASA Astrophysics Data System (ADS)

    Stander, E. K.; Borst, M.; Ehrenfeld, J. G.; O'Connor, T. P.; Rowe, A. A.

    2009-12-01

    Traditional stormwater management practices, designed and constructed to rapidly and efficiently route runoff away from established infrastructure, have resulted in the disruption of natural drainage patterns in urban landscapes. The modified in-stream flow incises urban streams and reduces regional groundwater recharge, thus altering hydrologic patterns and regimes in urban wetlands and riparian zones. Water table dynamics and in situ nitrogen cycling processes were quantified in 14 palustrine, forested wetlands and correlated with watershed-scale land cover metrics in urban northern New Jersey. Variability in nitrogen cycling process rates was, in some cases, explained by altered hydrological regimes. However, land cover and hydrologic characteristics did not always exhibit the predicted effects, as demonstrated by dry and/or flashy water tables in less developed watersheds and denitrification rates that did not always reflect hydrological conditions. Inorganic nitrogen inputs and outputs were characterized in throughfall and soil leachate in nine of the 14 wetlands. Atmospheric nitrogen deposition rates were higher in wetlands located in more impervious and densely populated urban sub-watersheds, but nitrate losses through leaching were generally low and did not correlate with landscape-level descriptors of urban intensity. Two wetlands did display net loss of nitrate, and the results of dual isotope analysis suggested the direct pass-through of atmospheric nitrate on four sampling dates in two sites; these findings point to decreased nitrate retention capacity in some urban wetlands. New stormwater management practices designed to mimic natural drainage patterns are currently being developed and implemented in existing urban watersheds and new developments. These practices, which include rain gardens, pervious pavement, and green roofs, are intended to reduce peak flows to urban streams and, in many cases, also provide water quality functions. Rain gardens in particular have a documented ability to remove heavy metals and phosphorus from urban stormwater runoff, but their coarse-textured, low organic matter content soils are less able to remove nitrate through denitrification. Research at the US Environmental Protection Agency explores the use of media carbon amendments and deep zones of saturation to facilitate denitrification by providing labile carbon and anoxic conditions in experimental rain garden mesocosms. Initial results highlight the importance of conducting bench-scale testing of bioretention media before installation in full-scale, working rain gardens, particularly when media characteristics have been modified to promote stressor removal. If these low impact development practices can increase groundwater recharge and reduce stream incision, natural hydrologic regimes may be restored to urban wetlands and riparian zones.

  8. Differences in seed rain composition in small and large fragments in the northeast Brazilian Atlantic Forest.

    PubMed

    Knörr, U C; Gottsberger, G

    2012-09-01

    Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8-388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1-year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal-dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small-sized seeds (<0.3 cm) and less large-seeded species (>1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small-sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large-seeded tree species may facilitate the maintenance of species diversity. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Effect of aluminium on dissolved organic matter mineralization in an allophanic and kaolinitic temperate rain forest soil

    NASA Astrophysics Data System (ADS)

    Merino, Carolina; Matus, Francisco; Fontaine, Sebastien

    2016-04-01

    Aluminium (Al) and it influence on the mineralization of dissolved organic matter (DOM) and thus on carbon (C) sequestration in forest soils is poorly understood. We hypothesized that an addition of Al to the soil solution beyond a molar Al:C ratio of 0.1, induces precipitation of the organic matter which leads to an excess Al in the soil solution causing an inhibitory effect for growing microorganisms. We investigated the effect of Al concentrations for the potential of C biodegradation at different Al:C ratios from DOM and Ah mineral soil horizons from two temperate rain forest soils from southern Chile. Dissolved organic matter and surface mineral horizons were incubated with initial molar Al:C ratio from 0.08 to 1.38 found under at field conditions. Mineralization was quantified by measurement of C-CO2 evolved during 15 days. Increasing the initial Al:C ratio > 0.12, led to a considerable reduction in mineralization (up to 70%). For Al:C ratio < 0.12, the mineralization rates from DOM and mineral soils were unaffected. Consequently, there would be a considerable reduction in the biodegradation of DOM and thus an increased in the C sequestration in mineral soils with molar Al:C ratio > 0.12. The observed DOM losses in the stream water of pristine southern forests can be explained by increasing the bioavailability of organic C for Al:C ratio < 0.12. Aluminium concentration had a marked effect at the spectral ART-FTIR bands assigned to cellulose-like and aromatic compounds in Ah mineral soil, diminishing the mineralization. The present results were also confirmed by the Al fluorescence using a confocal microscopy.

  10. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years

    USGS Publications Warehouse

    Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.-P.; Mayle, F.E.; Leyden, B.W.; Lozano-Garcia, S.; Melief, A.B.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G. B.; Salgado-Labouriau, M. L.; Schasignbitz, F.; Schreve-Brinkman, E. J.; Wille, M.

    2009-01-01

    The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation.

    At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded.

    At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central M??xico and lowland Colombia remain unchanged in their biome assignments, although the affinities that these sites have to different biomes do change between 18 000±1000 14C yr BP and present. The " unresponsive" nature of these sites results from their location and the impact of local edaphic influence.

  11. Modelling the influence of elevation and snow regime on winter stream temperature in the rain-on-snow zone

    NASA Astrophysics Data System (ADS)

    Leach, J.; Moore, D.

    2015-12-01

    Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.

  12. Growth and yield model application in tropical rain forest management

    Treesearch

    James Atta-Boateng; John W., Jr. Moser

    2000-01-01

    Analytical tools are needed to evaluate the impact of management policies on the sustainable use of rain forest. Optimal decisions concerning the level of management inputs require accurate predictions of output at all relevant input levels. Using growth data from 40 l-hectare permanent plots obtained from the semi-deciduous forest of Ghana, a system of 77 differential...

  13. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Treesearch

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  14. Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments

    Treesearch

    Patrick Meir; Tana Wood; David R. Galbraith; Paulo M. Brando; Antonio C.I. Da Costa; Lucy Rowland; Leandro V. Ferreira

    2015-01-01

    Many tropical rain forest regions are at risk of increased future drought. The net effects of drought on forest ecosystem functioning will be substantial if important ecological thresholds are passed. However, understanding and predicting these effects is challenging using observational studies alone. Field-based rainfall exclusion (canopy throughfall exclusion; TFE)...

  15. Speciation and equilibrium relations of soluble aluminum in a headwater stream at base flow and during rain events

    USGS Publications Warehouse

    Burns, Douglas A.

    1989-01-01

    In a small watershed in the Shenandoah National Park, Virginia, the short-term dynamics of soluble aluminum in stream water sampled during rain events differed significantly from stream water sampled during base flow conditions. Three fractions of dissolved aluminum were measured. The inorganic monomeric fraction made up approximately two thirds of the total reactive aluminum at base flow, followed by the acid-soluble and organic monomeric fractions, respectively. Equilibrium modeling showed that hydroxide complexes were the most abundant form of inorganic monomeric aluminum followed by fluoride, free aluminum ion, and sulfate. The activity of inorganic monomeric aluminum at base flow appears to be in equilibrium with an Al(OH)3 phase with solubility intermediate between microcrystalline gibbsite and natural gibbsite. During two rain events, the concentration of all three aluminum fractions increased significantly. Available chemical evidence indicates that acidic soil water was the primary source of dissolved aluminum. As flow increased, the Al(OH)3 saturation index in the stream water increased significantly. The primary cause of the transient increase in the Al(OH)3 saturation index appears to have been the neutralization of excess H+ added by soil water through reaction with stream water HCO3− at a more rapid rate than excess inorganic monomeric aluminum could be removed from solution by hydroxide mineral precipitation. A soil water/stream water mixing model was developed based on measured changes of stream water alkalinity, silica concentration, and charge imbalance during the rain events. Model results indicate that a small amount of soil water (3–11%) was present in the stream at peak stage.

  16. Calculation of Individual Tree Water Use in a Bornean Tropical Rain Forest Using Individual-Based Dynamic Vegetation Model SEIB-DGVM

    NASA Astrophysics Data System (ADS)

    Nakai, T.; Kumagai, T.; Saito, T.; Matsumoto, K.; Kume, T.; Nakagawa, M.; Sato, H.

    2015-12-01

    Bornean tropical rain forests are among the moistest biomes of the world with abundant rainfall throughout the year, and considered to be vulnerable to a change in the rainfall regime; e.g., high tree mortality was reported in such forests induced by a severe drought associated with the ENSO event in 1997-1998. In order to assess the effect (risk) of future climate change on eco-hydrology in such tropical rain forests, it is important to understand the water use of trees individually, because the vulnerability or mortality of trees against climate change can depend on the size of trees. Therefore, we refined the Spatially Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM) so that the transpiration and its control by stomata are calculated for each individual tree. By using this model, we simulated the transpiration of each tree and its DBH-size dependency, and successfully reproduced the measured data of sap flow of trees and eddy covariance flux data obtained in a Bornean lowland tropical rain forest in Lambir Hills National Park, Sarawak, Malaysia.

  17. Water's Journey from Rain to Stream in perspective

    NASA Astrophysics Data System (ADS)

    Rodhe, Allan; Grip, Harald

    2015-04-01

    The International Hydrological Decade (IHD) 1965-1974, sponsored by UNESCO, initiated a research effort for coordinating the fragmented branches of hydrology and for understanding and quantifying the hydrologic cycle on various scales, from continents to small catchments. One important part of the Swedish IHD-program was to quantify the terms of the water budget, including detailed data on soil water and groundwater storage dynamics, of several medium sized to small. As an outcome of these studies and subsequent process oriented studies, a new view of the runoff process in forested till soils was developed in the 1970's, stressing the dominating role of groundwater in delivering water to the streams and the usefulness of subdividing catchments into recharge and discharge areas for groundwater for understanding the flowpaths of water. This view contrasted with the general view among the public, and also among professionals within the field and in text books, according to which overland flow is the main process for runoff. With this latter view it would, for instance, not be possible to understand stream water chemistry, which had become an important question in a time of growing environmental concern. In order to decrease the time lag between research results and practice, the Swedish Natural Science Research Council initiated a text book project for presenting the recent results of hydrologic research on stream flow generation applied to Swedish conditions, and in 1985 our book "Water's Journey from Rain to Stream" was published. Founded on the basic principles for water storage and flow in soils, the book gives a general picture of the water flow through the forested till landscape, with separate chapters for recharge and discharge areas. Chemical processes along the flowpaths of water are treated and the book concludes with a few applications to current issues. The book is written in Swedish and the target audience is those working professionally with water and university students. Guiding pedagogic ideas for the book were to present scientific findings on a strict physical basis, with few equations but with much emphasis on explanatory and attractive illustrations. What have we learnt during the 30 years that have passed since the book was published? Does the book's general picture of the water flow through the landscape agree with recent scientific findings? Main breakthroughs in the understanding of the flow processes based on field studies with advanced measurement techniques, tracer studies, remote sensing and flow and transport modelling will be commented.

  18. First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity

    Treesearch

    David B. Clark; Paulo C. Olivas; Steven F. Oberbauer; Deborah A. Clark; Michael G. Ryan

    2008-01-01

    Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m2) across 500 ha of old growth in...

  19. Soluble reactive phosphorus (SRP) transport and retention in tropical, rain forest streams draining a volcanic landscape in Costa Rica: In situ SRP amendment to streams and laboratory studies

    USGS Publications Warehouse

    Triska, F.; Pringle, C.M.; Duff, J.H.; Avanzino, R.J.; Zellweger, G.

    2006-01-01

    Soluble reactive phosphorus (SRP) transport/retention was determined in two rain forest streams (Salto, Pantano) draining La Selva Biological Station, Costa Rica. There, SRP levels can be naturally high due to groundwater enriched by geothermal activity within the surfically dormant volcanic landscape, and subsequently discharged at ambient temperature. Combined field and laboratory approaches simulated high but natural geothermal SRP input with the objective of estimating the magnitude of amended SRP retention within high and low SRP settings and determining the underlying mechanisms of SRP retention. First, we examined short-term SRP retention/transport using combined SRP-conservative tracer additions at high natural in situ concentrations. Second, we attempted to observe a DIN response during SRP amendment as an indicator of biological uptake. Third, we determined SRP release/retention using laboratory sediment assays under control and biologically inhibited conditions. Short-term in situ tracer-SRP additions indicated retention in both naturally high and low SRP reaches. Retention of added SRP mass in Upper Salto (low SRP) was 17% (7.5 mg-P m-2 h-1), and 20% (10.9 mg-P m-2 h -1) in Lower Salto (high SRP). No DIN response in either nitrate or ammonium was observed. Laboratory assays using fresh Lower Salto sediments indicated SRP release (15.4 ?? 5.9 ??g-P g dry wt.-1 h -1), when incubated in filter sterilized Salto water at ambient P concentration, but retention when incubated in filter sterilized river water amended to 2.0 mg SRP l-1 (233.2 ?? 5.8 ??g-P g dry wt. -1 h-1). SRP uptake/release was similar in both control- and biocide-treated sediments indicating predominantly abiotic retention. High SRP retention even under biologically saturated conditions, absence of a DIN response to amendment, patterns of desorption following amendment, and similar patterns of retention and release under control and biologically inhibited conditions all indicated predominantly abiotic P flux. ?? 2006 Springer Science+Business Media, Inc.

  20. Seasonal rhythms of seed rain and seedling emergence in two tropical rain forests in southern Brazil.

    PubMed

    Marques, M C M; Oliveira, P E A M

    2008-09-01

    Seasonal tropical forests show rhythms in reproductive activities due to water stress during dry seasons. If both seed dispersal and seed germination occur in the best environmental conditions, mortality will be minimised and forest regeneration will occur. To evaluate whether non-seasonal forests also show rhythms, for 2 years we studied the seed rain and seedling emergence in two sandy coastal forests (flooded and unflooded) in southern Brazil. In each forest, one 100 x 30-m grid was marked and inside it 30 stations comprising two seed traps (0.5 x 0.5 m each) and one plot (2 x 2 m) were established for monthly monitoring of seed rain and a seedling emergence study, respectively. Despite differences in soil moisture and incident light on the understorey, flooded and unflooded forests had similar dispersal and germination patterns. Seed rain was seasonal and bimodal (peaks at the end of the wetter season and in the less wet season) and seedling emergence was seasonal and unimodal (peaking in the wetter season). Approximately 57% of the total species number had seedling emergence 4 or more months after dispersal. Therefore, both seed dormancy and the timing of seed dispersal drive the rhythm of seedling emergence in these forests. The peak in germination occurs in the wetter season, when soil fertility is higher and other phenological events also occur. The strong seasonality in these plant communities, even in this weakly seasonal climate, suggests that factors such as daylength, plant sensitivity to small changes in the environment (e.g. water and nutrient availability) or phylogenetic constraints cause seasonal rhythms in the plants.

  1. Holocene History of the Chocó Rain Forest from Laguna Piusbi, Southern Pacific Lowlands of Colombia

    NASA Astrophysics Data System (ADS)

    Behling, Hermann; Hooghiemstra, Henry; Negret, Alvaro José

    1998-11-01

    A high-resolution pollen record from a 5-m-long sediment core from the closed-lake basin Laguna Piusbi in the southern Colombian Pacific lowlands of Chocó, dated by 11 AMS 14C dates that range from ca. 7670 to 220 14C yr B.P., represents the first Holocene record from the Chocó rain forest area. The interval between 7600 and 6100 14C yr B.P. (500-265 cm), composed of sandy clays that accumulated during the initial phase of lake formation, is almost barren of pollen. Fungal spores and the presence of herbs and disturbance taxa suggest the basin was at least temporarily inundated and the vegetation was open. The closed lake basin might have formed during an earthquake, probably about 4400 14C yr B.P. From the interval of about 6000 14C yr B.P. onwards, 200 different pollen and spore types were identified in the core, illustrating a diverse floristic composition of the local rain forest. Main taxa are Moraceae/Urticaceae, Cecropia,Melastomataceae/Combretaceae, Acalypha, Alchornea,Fabaceae, Mimosa, Piper, Protium, Sloanea, Euterpe/Geonoma, Socratea,and Wettinia.Little change took place during that time interval. Compared to the pollen records from the rain forests of the Colombian Amazon basin and adjacent savannas, the Chocó rain forest ecosystem has been very stable during the late Holocene. Paleoindians probably lived there at least since 3460 14C yr B.P. Evidence of agricultural activity, shown by cultivation of Zea maissurrounding the lake, spans the last 1710 yr. Past and present very moist climate and little human influence are important factors in maintaining the stable ecosystem and high biodiversity of the Chocó rain forest.

  2. Threshold Responses to Soil Moisture Deficit by Trees and Soil in Tropical Rain Forests: Insights from Field Experiments

    PubMed Central

    Meir, Patrick; Wood, Tana E.; Galbraith, David R.; Brando, Paulo M.; Da Costa, Antonio C. L.; Rowland, Lucy; Ferreira, Leandro V.

    2015-01-01

    Many tropical rain forest regions are at risk of increased future drought. The net effects of drought on forest ecosystem functioning will be substantial if important ecological thresholds are passed. However, understanding and predicting these effects is challenging using observational studies alone. Field-based rainfall exclusion (canopy throughfall exclusion; TFE) experiments can offer mechanistic insight into the response to extended or severe drought and can be used to help improve model-based simulations, which are currently inadequate. Only eight TFE experiments have been reported for tropical rain forests. We examine them, synthesizing key results and focusing on two processes that have shown threshold behavior in response to drought: (1) tree mortality and (2) the efflux of carbon dioxdie from soil, soil respiration. We show that: (a) where tested using large-scale field experiments, tropical rain forest tree mortality is resistant to long-term soil moisture deficit up to a threshold of 50% of the water that is extractable by vegetation from the soil, but high mortality occurs beyond this value, with evidence from one site of increased autotrophic respiration, and (b) soil respiration reaches its peak value in response to soil moisture at significantly higher soil moisture content for clay-rich soils than for clay-poor soils. This first synthesis of tropical TFE experiments offers the hypothesis that low soil moisture–related thresholds for key stress responses in soil and vegetation may prove to be widely applicable across tropical rain forests despite the diversity of these forests. PMID:26955085

  3. Natural Experiment Demonstrates That Bird Loss Leads to Cessation of Dispersal of Native Seeds from Intact to Degraded Forests

    PubMed Central

    HilleRisLambers, Janneke; Tewksbury, Joshua J.; Rogers, Haldre S.

    2013-01-01

    In healthy forests, vertebrate frugivores move seeds from intact to degraded forests, aiding in the passive regeneration of degraded forests. Yet vertebrate frugivores are declining around the world, and little is known about the impact of this loss on regeneration of degraded areas. Here, we use a unique natural experiment to assess how complete vertebrate frugivore loss affects native seed rain in degraded forest. All native vertebrate frugivores (which were primarily avian frugivores) have been functionally extirpated from the island of Guam by the invasive brown tree snake (Boiga irregularis), whereas the nearby island of Saipan has a relatively intact vertebrate frugivore community. We captured seed rain along transects extending from intact into degraded forest and compared the species richness, density and condition of the seed rain from native bird-dispersed tree species between the two islands. Considering seeds from native bird-dispersed species, approximately 1.66 seeds landed per 26 days in each square meter of degraded forest on Saipan, whereas zero seeds landed per 26 days per square meter in degraded forest on Guam. Additionally, on Saipan, 69% of native bird-dispersed seeds in intact forest and 77% of seeds in degraded forest lacked fleshy fruit pulp, suggesting ingestion by birds, compared to 0% of all seeds on Guam. Our results show an absence of seed rain in degraded forests on Guam, correlated with the absence of birds, whereas on Saipan, frugivorous birds regularly disperse seeds into degraded forests, providing a mechanism for re-colonization by native plants. These results suggest that loss of frugivores will slow regeneration of degraded forests on Guam. PMID:23741503

  4. Natural experiment demonstrates that bird loss leads to cessation of dispersal of native seeds from intact to degraded forests.

    PubMed

    Caves, Eleanor M; Jennings, Summer B; Hillerislambers, Janneke; Tewksbury, Joshua J; Rogers, Haldre S

    2013-01-01

    In healthy forests, vertebrate frugivores move seeds from intact to degraded forests, aiding in the passive regeneration of degraded forests. Yet vertebrate frugivores are declining around the world, and little is known about the impact of this loss on regeneration of degraded areas. Here, we use a unique natural experiment to assess how complete vertebrate frugivore loss affects native seed rain in degraded forest. All native vertebrate frugivores (which were primarily avian frugivores) have been functionally extirpated from the island of Guam by the invasive brown tree snake (Boiga irregularis), whereas the nearby island of Saipan has a relatively intact vertebrate frugivore community. We captured seed rain along transects extending from intact into degraded forest and compared the species richness, density and condition of the seed rain from native bird-dispersed tree species between the two islands. Considering seeds from native bird-dispersed species, approximately 1.66 seeds landed per 26 days in each square meter of degraded forest on Saipan, whereas zero seeds landed per 26 days per square meter in degraded forest on Guam. Additionally, on Saipan, 69% of native bird-dispersed seeds in intact forest and 77% of seeds in degraded forest lacked fleshy fruit pulp, suggesting ingestion by birds, compared to 0% of all seeds on Guam. Our results show an absence of seed rain in degraded forests on Guam, correlated with the absence of birds, whereas on Saipan, frugivorous birds regularly disperse seeds into degraded forests, providing a mechanism for re-colonization by native plants. These results suggest that loss of frugivores will slow regeneration of degraded forests on Guam.

  5. Diurnal raptors in the fragmented rain forest of the Sierra Imataca, Venezuela

    USGS Publications Warehouse

    Alvarez, E.; Ellis, D.H.; Smith, D.G.; LaRue, C.T.; Bird, David M.; Varland, Daniel E.; Negro, Juan Jose

    1996-01-01

    The rain forest of the Sierra Imataca in eastern Venezuela has been subjected to extensive deforestation for pastures and agricultural settlements. In the last decade the opening of access roads combined with intensified logging and mining activities have fragmented a significant portion of the remaining forest. We noted local distribution and habitat use for 42 species of diurnal raptors observed in affected areas in this region. We observed some raptors considered as forest interior species and other open country species foraging and roosting in man-made openings inside the forest.

  6. Functional and environmental determinants of bark thickness in fire-free temperate rain forest communities.

    PubMed

    Richardson, Sarah J; Laughlin, Daniel C; Lawes, Michael J; Holdaway, Robert J; Wilmshurst, Janet M; Wright, Monique; Curran, Timothy J; Bellingham, Peter J; McGlone, Matt S

    2015-10-01

    In fire-prone ecosystems, variation in bark thickness among species and communities has been explained by fire frequency; thick bark is necessary to protect cambium from lethal temperatures. Elsewhere this investment is deemed unnecessary, and thin bark is thought to prevail. However, in rain forest ecosystems where fire is rare, bark thickness varies widely among species and communities, and the causes of this variation remain enigmatic. We tested for functional explanations of bark thickness variation in temperate rain forest species and communities. We measured bark thickness in 82 tree species throughout New Zealand temperate rain forests that historically have experienced little fire and applied two complementary analyses. First, we examined correlations between bark traits and leaf habit, and leaf and stem traits. Second, we calculated community-weighted mean (CWM) bark thickness for 272 plots distributed throughout New Zealand to identify the environments in which thicker-barked communities occur. Conifers had higher size-independent bark thickness than evergreen angiosperms. Species with thicker bark or higher bark allocation coefficients were not associated with "slow economic" plant traits. Across 272 forest plots, communities with thicker bark occurred on infertile soils, and communities with thicker bark and higher bark allocation coefficients occurred in cooler, drier climates. In non-fire-prone temperate rain forest ecosystems, investment in bark is driven by soil resources, cool minimum temperatures, and seasonal moisture stress. The role of these factors in fire-prone ecosystems warrants testing. © 2015 Botanical Society of America.

  7. Information for space radar designers: Required dynamic range vs resolution and antenna calibration using the Amazon rain forest

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Frost, V. S.

    1985-01-01

    Calibration of the vertical pattern of the antennas for the SEASAT scatterometer was accomplished using the nearly-uniform radar return from the Amazon rain forest. A similar calibration will be attempted for the SIR-B antenna. Thick calibration is important to establish the radiometric calibration across the swath of the SIR-B, and the developed methodology will provide an important tool in the evaluation of future spaceborne imaging radars. This calibration was made by the very-wide-beam SEASAT scatterometer antennas because at 14.65 GHz the scattering coefficient of the rain forest is almost independent of angle of incidence. It is expected that the variation in scattering coefficient for the rain forest across the relatively narrow vertical beam of the SIR-B will be very small; even at L band the forest should be essentially impenetrable for radar signals, the volume scatter from the treetops will predominate as at higher frequencies. The basic research elements include: (1) examination of SIR-B images over the rain forest to establish the variability of the scattering coefficient at finer resolutions than that of the SEASAT scatterometer; (2) analysis of the variability of SIR-B data detected prior to processing for either azimuth compression or; possibly, range compression so that averages over relatively large footprints can be used; (3) processing of data of the form of (2) using algorithms that can recover the vertical pattern of the antenna.

  8. Holocene rain-forest wilderness: a neotropical perspective on humans as an exotic, invasive species

    Treesearch

    Robert L. Sanford; Sally P. Horn

    2000-01-01

    Large areas of lowland tropical rain-forests in the neotropics have been burned over the past 6,000 years, mostly by pre-Colombian agriculturists. This paper presents additional evidence of fires and other human impacts in neotropical forests, and considers the opportunities and limitations of different approaches to determining past land-use “signatures.” Knowledge of...

  9. Long-term changes in structure and composition following hurricanes in a primary lower montane rain forest in Puerto Rico

    Treesearch

    P.L. Weaver

    2013-01-01

    Ridges within the lower montane rain forests (sensu Beard) of the Caribbean Basin are dominated by Dacryodes excelsa, a tree species known as tabonuco in Puerto Rico and gommier in the Lesser Antilles. Periodially, hurricanes traverse the islands causing changes in structure, species composition, and dynamics of forests. The chronology of post-hurricane vegetation...

  10. Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape

    Treesearch

    Paulo C. Olivas; Steven F. Oberbauer; David B. Clark; Deborah A. Clark; Michael G. Ryan; Joseph J. O' Brien; Harlyn Ordonez

    2013-01-01

    Many functional properties of forests depend on the leaf area; however, measuring leaf area is not trivial in tall evergreen vegetation. As a result, leaf area is generally estimated indirectly by light absorption methods. These indirect methods are widely used, but have never been calibrated against direct measurements in tropical rain forests, either at point or...

  11. Precipitation nutrients in the open and under two forests in Minnesota

    Treesearch

    Elon S. Verry; D.R. Timmons

    1977-01-01

    Concentrations of N, P, K, Ca, Mg, and Na were measured in rain and snow in the open, and in throughfall and stemflow under black spruce and aspen forests in north-central Minnesota. Concentrations of total P in rain and black spruce throughfall were inversely related to storm size. Annual precipitation nutrient inputs to the forest floor were calculated for each site...

  12. Reduced availability of large seeds constrains Atlantic forest regeneration

    NASA Astrophysics Data System (ADS)

    Costa, Janaina B. P.; Melo, Felipe P. L.; Santos, Bráulio A.; Tabarelli, Marcelo

    2012-02-01

    Secondary forests are expanding in defaunated fragmented tropical landscapes, but their resilience potential remains poorly understood. In this study we used a chronosequence of advancing (19-62-yr old) Atlantic forest regeneration following slash-and-burn agriculture to infer successional shifts in seed rain in terms of seed density, species richness, taxonomic and functional composition, and local spatial distribution. After monitoring seed rain during 12 months in 60 1-m2 seed traps, we recorded over 400,000 seeds belonging to 180 morphospecies. From early to late-successional stage, seed rain decreased in density, increased in per capita species richness, gradually changed in species composition, and became less aggregated spatially. Regardless the age of forest stand, vertebrate-dispersed seeds accounted for 67-75% of all species recorded. Large-seeded species typical of old-growth forests, on the other hand, accounted for only 5-8% of the species recorded in the seed rain, a proportion around five times smaller than that reported for the old-growth forests of the same study site (31%). Our results suggest that the secondary forests considered, which are embedded in one of the largest (3500 ha) and best preserved remnant of the severely fragmented Atlantic forest of Northeast Brazil, may fail attaining older successional stages due to the reduced availability of large-seeded late-successional species. This regeneration constraint may be even stronger in smaller, more isolated forest remnants of the region, potentially reducing their ability to provide ecosystem services.

  13. Mammals of the Braulio Carrillo- La Selva Complex, Costa Rica

    USGS Publications Warehouse

    Timm, Robert M.; Wilson, Don E.; Clauson, Barbara L.; LaVal, Richard K.; Vaughan, Christopher S.

    1989-01-01

    Costa Rica's La Selva-Braulio Carrillo complex encompasses a 60-km protected corridor of Caribbean rain and cloud forest extending from 30 m at the La Selva Biological Station to 2,906 m at the top of Volcán Barva. The 52,000-ha complex covers four life zones and two transitional zones, including tropical wet forest, tropical wet forest cool-transition, tropical premontane wet-transition rain forest, tropical premontane rain forest, lower montane rain forest, and montane rain forest. Located in the northeastern part of the country, the area is representative of Central American Caribbean slope forests that extend from Mexico to Panama. The extensive elevational gradient of the complex provides protected habitat for a variety of altitudinal migrants. With support from the National Geographic Society and Rice Foundation, the Organization for Tropical Studies organized a biological survey of the complex in early 1986. The mammal team worked at six sites along the elevational transect established by the expedition: 300 m, 700 m, 1,000 m, 1,500 m, 2,050 m, and 2,600 m. We supplemented our collecting records with unpublished records made available by colleagues, records in the published literature, and specimens in museum collections. In addition, observations recorded by a variety of observers at the La Selva Biological Station are summarized. The mammal fauna of the complex comprises 142 species including 79 bats, 23 rodents, 15 carnivores, 7 marsupials, 6 edentates, 4 artiodactyls, 3 primates, 2 rabbits, 2 shrews, and 1 perissodactyl. At least 10 additional species are likely to occur there. The only species of mammal likely to have been extirpated from the area is the giant anteater. Recognizing the importance of the area to wildlife and to mankind in general, the government of Costa Rica added 13,500 ha to the complex on 13 April 1986. This area, previously known as the “Zona Protectora,” provided the mid-elevational link between the lowlands of the La Selva Biological Station and the montane forests of Braulio Carrillo National Park. Unfortunately, destruction of the rain forests surrounding the complex will soon render it an isolated island of protected forest. Thus, the area will become increasingly valuable as a refuge for many species with home ranges that require extensive tracts of undisturbed habitat.

  14. Projected increases in the annual flood pulse of the western Amazon

    NASA Astrophysics Data System (ADS)

    Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Veliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William

    2016-04-01

    The impact of a changing climate on the Amazon basin is a subject of intensive research due to its rich biodiversity and the significant role of rain forest in carbon cycling. Climate change has also direct hydrological impact, and there have been increasing efforts to understand such dynamics at continental and subregional scales such as the scale of the western Amazon. New projections from the Coupled Model Inter- comparison Project Phase 5 (CMIP5) ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the river. Using extremes value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 years. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100- year return floods). These findings are in agreement with previously projected increases in high extremes under the Special Report on Emissions Scenarios (SRES) climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amid a growing literature that more strongly emphasises future droughts and their impact on the viability of the rain forest system over the greater Amazonia.

  15. Ouragans et diversité biologique dans les forêts tropicales. L'exemple de la Guadeloupe

    NASA Astrophysics Data System (ADS)

    Imbert, Daniel; Roustéau, Alain; Labbé, Patrick

    1998-06-01

    In this work, we consider the role played by hurricanes in the maintenance of high biodiversity, ,and we look at how biodiversity may influence the response of tropical forest ecosystems to hurricane disturbances. After hurricane Hugo struck Guadeloupe in 1989, we started a comparative study on the resistance and the resilience of the rain forest, the semi-deciduous forest and the mangrove forest. It appeared that the resistance of these forests was positively linked to their diversity, which was assessed both through flora richness and structure complexity (resultin from the variety of life forms). Examples of species specific resistance or vulnerability occur in the three forests; however, the higher the ecosystem diversity, the fewer and the weaker they are. Abundant species tend to be less vulnerable than others — at least in the rain forest and in the semi-deciduous forest. Forest recovery operates mainly through pre-existing individuals (surviving trees, coppicing stumps, saplings or seedlings). Pioneer species may slightly and temporarily benefit from large openings, especially in the rain forest. Strong recurrence of hurricanes may lead to the extinction of some rare, vulnerable, short-range disseminating, non pioneer species.

  16. Molpa: A newly recorded genus (Orthoptera: Tettigoniidae: Phaneropterinae) from China.

    PubMed

    Wu, Chao; Yang, Zhen; Liu, Chun-Xiang; Zong, Cheng

    2017-12-20

    The genus Molpa Walker was previously considered to be disjunctly distributed in broad-leaf rain forests in India and Malaysia. Here we report one new species Molpa dulongensis sp. nov. from subtropic broad-leaf rain forests in southwestern Yunnan Province in China. This is a part of the Indo-Burma biodiversity hotspot area. So we can infer that Molpa is continuously distributed in broad-leaf rain forests found in Oriental Region. Redescription of the genus Molpa and description of the new species Molpa dulongensis sp. nov. are provided. The types are deposited in Insect Collection of Institute of Zoology, Chinese Academy of Sciences, Beijing, China (IZCAS).

  17. An evaluation of the effects of acid rain on low conductivity headwater streams in Pennsylvania

    USGS Publications Warehouse

    Ritter, John R.; Brown, Ann E.

    1981-01-01

    Analyses of water collected at 32 sites on headwater streams in Pennsylvania during low-flow conditions in 1970-80 were compared to pre-1971 data to evaluate whether acid rain had changed the chemistry of the streams in the previous decade. Most pH, alkalinity, and sulfate values of the samples collected in 1970-80 fell within the ranges of values for samples collected before 1971. The limited data indicate, however, that pH may have increased and alkalinity and sulfate may have decreased with time.

  18. When does seed limitation matter for scaling up reforestation from patches to landscapes?

    PubMed

    Caughlin, T Trevor; Elliott, Stephen; Lichstein, Jeremy W

    2016-12-01

    Restoring forest to hundreds of millions of hectares of degraded land has become a centerpiece of international plans to sequester carbon and conserve biodiversity. Forest landscape restoration will require scaling up ecological knowledge of secondary succession from small-scale field studies to predict forest recovery rates in heterogeneous landscapes. However, ecological field studies reveal widely divergent times to forest recovery, in part due to landscape features that are difficult to replicate in empirical studies. Seed rain can determine reforestation rate and depends on landscape features that are beyond the scale of most field studies. We develop mathematical models to quantify how landscape configuration affects seed rain and forest regrowth in degraded patches. The models show how landscape features can alter the successional trajectories of otherwise identical patches, thus providing insight into why some empirical studies reveal a strong effect of seed rain on secondary succession, while others do not. We show that seed rain will strongly limit reforestation rate when patches are near a threshold for arrested succession, when positive feedbacks between tree canopy cover and seed rain occur during early succession, and when directed dispersal leads to between-patch interactions. In contrast, seed rain has weak effects on reforestation rate over a wide range of conditions, including when landscape-scale seed availability is either very high or very low. Our modeling framework incorporates growth and survival parameters that are commonly estimated in field studies of reforestation. We demonstrate how mathematical models can inform forest landscape restoration by allowing land managers to predict where natural regeneration will be sufficient to restore tree cover. Translating quantitative forecasts into spatially targeted interventions for forest landscape restoration could support target goals of restoring millions of hectares of degraded land and help mitigate global climate change. © 2016 by the Ecological Society of America.

  19. The Role of Ecologists in Designing Rain Gardens: Enhancing Nitrate removal Performance

    EPA Science Inventory

    Rain gardens are vegetated surface depressions designed to receive stormwater runoff from roads, roofs, and parking lots. Stormwater infiltration through rain gardens’ sandy soils is intended to have both water quantity and quality benefits, through stream peak flow reduction and...

  20. The role of ecologists in designing rain gardens: Enhancing nitrate removal performance

    EPA Science Inventory

    Rain gardens are vegetated surface depressions designed to receive stormwater runoff from roads, roofs, and parking lots. Stormwater infiltration through rain gardens’ sandy soils is intended to have both water quantity and quality benefits, through stream peak flow reduction an...

  1. Rain Forests: Tropical Treasures.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1989-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Rain Forests: Tropical Treasures." Contents are organized into the…

  2. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Climate, rain shadow, and human-use influences on fire regimes in the eastern Sierra Nevada, California, USA

    Treesearch

    M.P. North; K.M. van de Water; S.L. Stephens; B.M. Collins

    2009-01-01

    There have been few fire history studies of eastern Sierra Nevada forests in California, USA, where a steep elevation gradient, rain shadow conditions, and forest stand isolation may produce different fire regimes than those found on the range’s western slope. We investigated historic fire regimes and potential climate influences on four forest types ranging in...

  4. Daytime turbulent exchange between the Amazon forest and the atmosphere

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio O.; Deabreusa, Leonardo D.

    1989-01-01

    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.

  5. Daytime turbulent exchange between the Amazon forest and the atmosphere

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio

    1990-01-01

    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.

  6. Acid Rain: An Educational Opportunity?

    ERIC Educational Resources Information Center

    Marion, James I.

    1984-01-01

    Deals with how educators can handle the subject of acid rain; illustrates suggestions with experiences of grade nine students visiting Frost Valley Environmental Education Center (Oliverea, New York) to learn scientific concepts through observation of outdoor phenomena, including a stream; and discusses acid rain, pH levels, and pollution control…

  7. Agaricales Fungi from atlantic rain forest fragments in Minas Gerais, Brazil

    PubMed Central

    Rosa, Luiz Henrique; Capelari, Marina

    2009-01-01

    Two Atlantic Rain Forest fragments in Minas Gerais state were studied to access their Agaricales fungal richness. A total of 187 specimens were collected and 109 species, 39 genera, and eight families were identified. Thirty-three species were cited for the first time in Brazil. PMID:24031432

  8. Why Save a Can?

    ERIC Educational Resources Information Center

    Gutierrez, Melida; Johnson, Cheryl

    2009-01-01

    This activity ties together the recycling of aluminum and the protection of rain forests. Students use critical thinking to study the effects of open pit mining of bauxite in rain forests and then draw their own conclusions about how to minimize the impact of bauxite mining and boost recycling efforts within their communities. Drawing conclusions…

  9. The Importance of the Nothofagus Forest on Snowmelt Process linked to floods in Mountain Basins of Tierra del Fuego, Argentina as Input for Land Use Policies.

    NASA Astrophysics Data System (ADS)

    Iturraspe, R. J.; Urciuolo, A. B.; Lofiego, R.

    2007-05-01

    The conception and application of policies and best practices for the appropriate land use from the view point of extreme floods attenuation, must be based on scientist acknowledge of the basin response, reaching each one of the hydrological cycle's components. That condition is necessary as a start point for an integrated intersectoral management of water and forest resources at the basin scale, especially when forest logging or forest urbanization appear as land use alternatives with socioeconomic importance, confronting the natural roll of the forest in the basin. Within this framework, this article analyzes the forest importance on the seasonal snow-pack and snow-melting process in the mountain basin environment of Tierra del Fuego Island, Argentina, where a mixed rain-snow hydrological regimen and a canopy of native Nothofagus forest are basic features considered. Extreme floods events are related to heavy rain and snow-melting combination. In theory, the worst scenario is the exceptional rain occurrence at the moment of the maximum snow storage, air temperature higher than 0ºC in the whole basin, and previous wet conditions. On this scenario we analyze aspects that indicate forest influences on the snow pack distribution and evolution which are favorable to the attenuation of the intensity of melting process which are induced by rain and temperate air mass. Results were obtained in the context of the EPIC FORCE (EU) Project.

  10. Reconstructed high-resolution scatterometer data: a comparison with AVHRR vegetation index images for regional-scale monitoring of tropical rain forests

    NASA Astrophysics Data System (ADS)

    Hardin, Perry J.; Long, David G.

    1993-08-01

    There is considerable interest in utilizing microwave and visible spectrum imagery for the assessment of tropical rain forests. Because rain forest spans large sub-continental areas, medium resolution (1 - 16 km) imagery will play an important role in providing a global perspective of any forest removal or change. Since 1978, AVHRR imagery from NOAA polar orbiters has provided coverage of tropical regions at this desirable resolution, but much of the imagery is plagued with heavy cloud cover typical of equatorial regions. In contrast, no historical source of active microwave imagery at native 1 - 16 km resolution exists for all the global rain forest regions. In this paper, the authors compare the utility of Seasat scatterometer (SASS) ku-band microwave data to early-date AVHRR vegetation index products for discrimination of tropical vegetation formations. When considered separately, both the AVHRR imagery and the SASS imagery could be used to distinguish between broad categories of equatorial land cover, but the AVHRR imagery was slightly superior. When combined, the two data sets provided discrimination capability superior than could be obtained by using either set alone.

  11. Biomass and carbon dynamics of a tropical mountain rain forest in China.

    PubMed

    Chen, DeXiang; Li, YiDe; Liu, HePing; Xu, Han; Xiao, WenFa; Luo, TuShou; Zhou, Zhang; Lin, MingXian

    2010-07-01

    Biometric inventories for 25 years, from 1983 to 2005, indicated that the Jianfengling tropical mountain rain forest in Hainan, China, was either a source or a modest sink of carbon. Overall, this forest was a small carbon sink with an accumulation rate of (0.56+/-0.22) Mg C ha(-1)yr(-1), integrated from the long-term measurement data of two plots (P9201 and P8302). These findings were similar to those for African and American rain forests ((0.62+/-0.23) Mg C ha(-1)yr(-1)). The carbon density varied between (201.43+/-29.38) Mg C ha(-1) and (229.16+/-39.2) Mg C ha(-1), and averaged (214.17+/-32.42) Mg C ha(-1) for plot P9201. Plot P8302, however, varied between (223.95+/-45.92) Mg C ha(-1) and (254.85+/-48.86) Mg C ha(-1), and averaged (243.35+/-47.64) Mg C ha(-1). Quadratic relationships were found between the strength of carbon sequestration and heavy rainstorms and dry months. Precipitation and evapotranspiration are two major factors controlling carbon sequestration in the tropical mountain rain forest.

  12. Stream chemistry and groundwater-surface water interactions in Piedmont headwater streams (Charlotte, NC) prior to whole-watershed restoration

    NASA Astrophysics Data System (ADS)

    Vinson, D. S.; Allison, N.; Haydin, D.; Kiker, T.; Starnes, C.; Wickliff, E.; McMillan, S.; Clinton, S. M.

    2017-12-01

    While restoration is an established practice in urban streams, pre/post restoration hyporheic function and its potential role in nutrient processing is less well studied and understood. Here we report results from a pre-restoration sampling period in the 6.5 km2 headwaters of the Reedy Creek (RC) watershed, an urban forest stream in Charlotte, NC at the divide between the Catawba and Pee Dee river systems. Whole-watershed restoration of this deeply incised stream is scheduled to begin in fall 2017. To characterize the pre-restoration baseline condition, nutrients, DOC, temperature, and other biogeochemical parameters were analyzed quarterly from RC and 11 tributaries since 2014 and weekly since mid-2016. Riparian groundwater from 10 shallow wells has been analyzed quarterly since 2014. Nutrient concentrations vary among land uses. For example, median stream nitrate concentrations range from <0.1 mg/L as N in the undeveloped tributary to 2.5 mg/L as N in an agriculture-influenced tributary, and 0.2 mg/L as N at the RC outlet. As with nutrients, major ions, specific UV absorbance, and alkalinity vary among tributary watershed land uses. Riparian well and stream levels collected every 15 min since 2013 at 5 cross-sections indicate prevailing hydraulic gradients from the wells to the channel. At all 5 cross-sections, high stream flow events coincide with high groundwater levels, possibly indicating direct recharge to the aquifer by rain events, rather than large-scale recharge by the stream itself. Vertical hydraulic gradient measurements, slug tests, and radon-222 measurements were made at 25-75 cm deep sub-streambed piezometers. Radon-222 activities of piezometers (29-707 pCi/L; median=120 pCi/L, n=7) cover a larger range than either well water (170-647 pCi/L; median 268 pCi/L; n=7) or stream water (12-37 pCi/L, median 25 pCi/L; n=5), consistent with limited hyporheic mixing. Streambed hydraulic conductivity is requisite for significant exchange (e.g. low-K clay-rich saprolite to high-K sand and gravel are found in short stream reaches). Limited shallow downwelling may occur where the vertical hydraulic gradient and bed particle size are suitable. These results will be utilized to understand the pre- and post- restoration function of forested headwater systems in urban watersheds.

  13. Spatial and Temporal Patterns of Dissolved Organic Matter Characteristics in the Upper Willamette River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Lee, B. S.; Lajtha, K.

    2014-12-01

    Dissolved organic matter (DOM) leaching through soil affects soil carbon sequestration and the carbon metabolism of receiving water bodies. Improving our understanding of the sources and fate of DOM at varying spatial and temporal patterns is crucial for land management decisions. However, little is known about how DOM sources change with land use types and seasonal flow patterns. In the Willamette River Basin (WRB), which is home to Oregon's major cities including Portland and Salem, forested headwaters transition to agricultural and urban land. The climate of WRB has a distinctive seasonal pattern with dry warm summers and wet winters driven by winter precipitation and snowmelt runoff between November and March. This study examined DOM fluorescence characteristic in stream water from 21 locations collected monthly and 16 locations collected seasonally to identify the sources and fate of DOM in the upper WRB in contrasting land uses. DOC and dissolved organic nitrogen concentrations increased as the flow rate increased during winter precipitation at all sites. This indicates that increased flow rate increased the connectivity between land and nearby water bodies. DOM fluorescent properties varied among land use types. During the first precipitation event after a long dry summer, a microbial DOM signature in agricultural areas increased along with nitrate concentrations. This may be because accumulated nutrients on land during the dry season flowed to nearby streams during the first rain event and promoted microbial growth in the streams. During the month of the highest flow rate in 2014, sampling sites near forest showed evidence of a greater terrestrial DOM signature compared to its signature during the dry season. This indicates fluorescent DOM characteristics in streams vary as the flow connectivity changes even within the same land type.

  14. Riparian forest as a management tool for moderating future thermal conditions of lowland temperate streams

    NASA Astrophysics Data System (ADS)

    Kristensen, P. B.; Kristensen, E. A.; Riis, T.; Baisner, A. J.; Larsen, S. E.; Verdonschot, P. F. M.; Baattrup-Pedersen, A.

    2013-05-01

    Predictions of the future climate infer that stream water temperatures may increase in temperate lowland areas and that streams without riparian forest will be particularly prone to elevated stream water temperature. Planting of riparian forest is a potential mitigation measure to reduce water temperatures for the benefit of stream organisms. However, no studies have yet determined the length of a forested reach required to obtain a significant temperature decrease. To investigate this we measured the temperature in five small Danish lowland streams from June 2010 to July 2011, all showing a sharp transition between an upstream open reach and a downstream forested reach. In all stream reaches we also measured canopy cover and a range of physical variables characterizing the streams reaches. This allowed us to analyse differences in mean daily temperature and amplitude per month among forested and open sections as well as to study annual temperature regimes and the influence of physical conditions on temperature changes. Stream water temperature in the open reaches was affected by heating, and in July we observed an increase in temperature over the entire length of the investigated reaches, reaching temperatures higher than the incipient lethal limit for brown trout. Along the forest reaches a significant decrease in July temperatures was recorded immediately (100 m) when the stream moved into the forested area. In three of our study streams the temperature continued to decrease the longer the stream entered into the forested reach, and the temperature decline did not reach a plateau. The temperature increases along the open reaches were accompanied by stronger daily temperature variation; however, when the streams entered into the forest, the range in daily variation decreased. Multiple regression analysis of the combined effects on stream water temperature of canopy cover, Width/Depth ratio, discharge, current velocity and water temperature revealed that canopy cover and Width/Depth were the two variables responsible for the reduced temperature observed when the streams enter the forest. In consequence, we conclude that even relatively short stretches (100-500 m) of forest alongside streams may combat the negative effects of heating of stream water and that forest planting can be a useful mitigation measure.

  15. Forest and community structure of tropical sub-montane rain forests on the island of Dominica, Lesser Antilles

    Treesearch

    S.J. DeWalt; K. Ickes; A. James

    2016-01-01

    To examine short- and long-term changes in hurricane-prone sub-montane rain forests on Dominica in the Lesser Antilles of the eastern Caribbean, we established 17 permanent, 0.25-ha vegetation plots clustered in 3 regions of the island—northeast, northwest, and southwest. We counted all trees ≥10 cm diameter almost 30 years after Hurricane David caused substantial tree...

  16. Links to Literature--Huge Trees, Small Drawings: Ideas of Relative Sizes.

    ERIC Educational Resources Information Center

    Burton, Gail

    1996-01-01

    Discusses a unit integrating science, mathematics, and environmental education centered around "The Great Kapok Tree," by Lynne Cherry (1990). Ratios are used to make scale drawings of trees in a rain forest. Other activities include a terrarium and problem-solving activities based on eating habits of rain forest animals. (KMC)

  17. Effects of Debris Flows on Stream Ecosystems of the Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; Delafuente, J. A.; Resh, V. H.

    2006-12-01

    We examined the long-term effects of debris flows on channel characteristics and aquatic food webs in steep (0.04-0.06 slope), small (4-6 m wide) streams. A large rain-on-snow storm event in January 1997 resulted in numerous landslides and debris flows throughout many basins in the Klamath Mountains of northern California. Debris floods resulted in extensive impacts throughout entire drainage networks, including mobilization of valley floor deposits and removal of vegetation. Comparing 5 streams scoured by debris flows in 1997 and 5 streams that had not been scoured as recently, we determined that debris-flows decreased channel complexity by reducing alluvial step frequency and large woody debris volumes. Unscoured streams had more diverse riparian vegetation, whereas scoured streams were dominated by dense, even-aged stands of white alder (Alnus rhombiflia). Benthic invertebrate shredders, especially nemourid and peltoperlid stoneflies, were more abundant and diverse in unscoured streams, reflecting the more diverse allochthonous resources. Debris flows resulted in increased variability in canopy cover, depending on degree of alder recolonization. Periphyton biomass was higher in unscoured streams, but primary production was greater in the recently scoured streams, suggesting that invertebrate grazers kept algal assemblages in an early successional state. Glossosomatid caddisflies were predominant scrapers in scoured streams; heptageniid mayflies were abundant in unscoured streams. Rainbow trout (Oncorhynchus mykiss) were of similar abundance in scoured and unscoured streams, but scoured streams were dominated by young-of-the-year fish while older juveniles were more abundant in unscoured streams. Differences in the presence of cold-water (Doroneuria) versus warm-water (Calineuria) perlid stoneflies suggest that debris flows have altered stream temperatures. Debris flows have long-lasting impacts on stream communities, primarily through the cascading effects of removal of riparian vegetation. Because debris flow frequency increases following road construction and timber harvest, the long-term biological effects of debris flows on stream ecosystems, including anadromous fish populations, needs to be considered in forest management decisions.

  18. Tropical secondary forest management influences frugivorous bat composition, abundance and fruit consumption in Chiapas, Mexico.

    PubMed

    Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H') was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests' structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.

  19. A long pollen record from lowland Amazonia: Forest and cooling in glacial times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colinvaux, P.A.; Moreno, J.E.; Bush, M.B.

    A continuous pollen history of more than 40,000 years was obtained from a lake in the lowland Amazon rain forest. Pollen spectra demonstrate that tropical rain forest occupied the region continuously and that savannas or grasslands were not present during the last glacial maximum. The data suggest that the western Amazon forest was not fragmented into refugia in glacial times and that the lowlands were not a source of dust. Glacial age forests were comparable to modern forests but also included species now restricted to higher evaluations by temperature, suggesting a cooling of the order of 5{degrees} to 6{degrees}C. 23more » refs., 22 tabs.« less

  20. Tropical Secondary Forest Management Influences Frugivorous Bat Composition, Abundance and Fruit Consumption in Chiapas, Mexico

    PubMed Central

    Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats. PMID:24147029

  1. Influence of eastern hemlock (Tsuga canadensis) forests on aquatic invertebrate assemblages in headwater streams

    USGS Publications Warehouse

    Snyder, C.D.; Young, J.A.; Lemarie, D.P.; Smith, D.R.

    2002-01-01

    We conducted a comparative study in the Delaware Water Gap National Recreation Area to determine the potential long-term impacts of hemlock forest decline on stream benthic macroinvertebrate assemblages. Hemlock forests throughout eastern North America have been declining because of the hemlock woolly adelgid, an exotic insect pest. We found aquatic invertebrate community structure to be strongly correlated with forest composition. Streams draining hemlock forests supported significantly more total taxa than streams draining mixed hardwood forests, and over 8% of the taxa were strongly associated with hemlock. In addition, invertebrate taxa were more evenly distributed (i.e., higher Simpson's evenness values) in hemlock-drained streams. In contrast, the number of rare species and total densities were significantly lower in streams draining hemlock, suggesting that diversity differences observed between forest types were not related to stochastic factors associated with sampling and that streams draining mixed hardwood forests may be more productive. Analysis of stream habitat data indicated that streams draining hemlock forests had more stable thermal and hydrologic regimes. Our findings suggest that hemlock decline may result in long-term changes in headwater ecosystems leading to reductions in both within-stream (i.e., alpha) and park-wide (i.e., gamma) benthic community diversity.

  2. Effects of riparian buffer width on wood loading in headwater streams after repeated forest thinning

    Treesearch

    Julia I. Burton; Deanna H. Olson; Klaus J. Puettmann

    2016-01-01

    Forested riparian buffer zones are used in conjunction with upland forest management, in part, to provide for the recruitment for large wood to streams. Small headwater streams account for the majority of stream networks in many forested regions. Yet, our understanding of how riparian buffer width influences wood dynamics in headwater streams is relatively less...

  3. How does tree age influence damage and recovery in forests impacted by freezing rain and snow?

    PubMed

    Zhu, LiRong; Zhou, Ting; Chen, BaoMing; Peng, ShaoLin

    2015-05-01

    The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved-in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age (estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted (the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns (DBH > 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied with tree shape, forest type, and damage type. Understanding this dependency will guide restoration after freezing rain and snow disturbances.

  4. Amazon Rain Forest Classification Using J-ERS-1 SAR Data

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Kramer, C.; Alves, M.; Chapman, B.

    1994-01-01

    The Amazon rain forest is a region of the earth that is undergoing rapid change. Man-made disturbance, such as clear cutting for agriculture or mining, is altering the rain forest ecosystem. For many parts of the rain forest, seasonal changes from the wet to the dry season are also significant. Changes in the seasonal cycle of flooding and draining can cause significant alterations in the forest ecosystem.Because much of the Amazon basin is regularly covered by thick clouds, optical and infrared coverage from the LANDSAT and SPOT satellites is sporadic. Imaging radar offers a much better potential for regular monitoring of changes in this region. In particular, the J-ERS-1 satellite carries an L-band HH SAR system, which via an on-board tape recorder, can collect data from almost anywhere on the globe at any time of year.In this paper, we show how J-ERS-1 radar images can be used to accurately classify different forest types (i.e., forest, hill forest, flooded forest), disturbed areas such as clear cuts and urban areas, and river courses in the Amazon basin. J-ERS-1 data has also shown significant differences between the dry and wet season, indicating a strong potential for monitoring seasonal change. The algorithm used to classify J-ERS-1 data is a standard maximum-likelihood classifier, using the radar image local mean and standard deviation of texture as input. Rivers and clear cuts are detected using edge detection and region-growing algorithms. Since this classifier is intended to operate successfully on data taken over the entire Amazon, several options are available to enable the user to modify the algorithm to suit a particular image.

  5. Comparative effects of simulated acid rain of different ratios of SO42- to NO3- on fine root in subtropical plantation of China.

    PubMed

    Liu, Xin; Zhao, Wenrui; Meng, Miaojing; Fu, Zhiyuan; Xu, Linhao; Zha, Yan; Yue, Jianmin; Zhang, Shuifeng; Zhang, Jinchi

    2018-03-15

    The influence of acid rain on forest trees includes direct effects on foliage as well as indirect soil-mediated effects that cause a reduction in fine-root growth. In addition, the concentration of NO 3 - in acid rain increases with the rapidly growing of nitrogen deposition. In this study, we investigated the impact of simulated acid rain with different SO 4 2- /NO 3 - (S/N) ratios, which were 5:1 (S), 1:1 (SN) and 1:5 (N), on fine-root growth from March 2015 to February 2016. Results showed that fine roots were more sensitive to the effects of acid rain than soils in the short-term. Both soil pH and fine root biomass (FRB) significantly decreased as acid rain pH decreased, and also decreased with the percentage of NO 3 - increased in acid rain. Acid rain pH significantly influenced soil total carbon and available potassium in summer. Higher acidity level (pH=2.5), especially of the N treatments, had the strongest inhibitory impact on soil microbial activity after summer. The structural equation modelling results showed that acid rain S/N ratio and pH had stronger direct effects on FRB than indirect effects via changed soil and fine root properties. Fine-root element contents and antioxidant enzymes activities were significantly affected by acid rain S/N ratio and pH during most seasons. Fine-root Al ion content, Ca/Al, Mg/Al ratios and catalase activity were used as better indicators than soil parameters for evaluating the effects of different acid rain S/N ratios and pH on forests. Our results suggest that the ratio of SO 4 2- to NO 3 - in acid rain is an important factor which could affect fine-root growth in subtropical forests of China. Copyright © 2017. Published by Elsevier B.V.

  6. Land-use systems and resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico.

    PubMed

    García-Romero, Arturo; Oropeza-Orozco, Oralia; Galicia-Sarmiento, Leopoldo

    2004-12-01

    Land-cover types were analyzed for 1970, 1990 and 2000 as the bases for determining land-use systems and their influence on the resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico. Deforestation (DR) and mean annual transformation rates were calculated from land-cover change data; thus, the classification of land-use change processes was determined according to their impact on resilience: a) Modification, including land-cover conservation and intensification, and b) Conversion, including disturbance and regeneration processes. Regeneration processes, from secondary vegetation under extensive use, cultivated vegetation under intensive use, and cultivated or induced vegetation under extensive use to mature or secondary vegetation, have high resilience capacity. In contrast, cattle-raising is characterized by rapid expansion, long-lasting change, and intense damages; thus, recent disturbance processes, which include the conversion to cattle-raising, provoke the downfall of the traditional agricultural system, and nullify the capacity of resilience of tropical rain forest. The land-use cover change processes reveal a) the existence of four land-use systems (forestry, extensive agriculture, extensive cattle-raising, and intensive uses) and b) a trend towards the replacement of agricultural and forestry systems by extensive cattle-raising, which was consolidated during 1990-2000 (DR of evergreen tropical rain forest = 4.6%). Only the forestry system, which is not subject to deforestation, but is affected by factors such as selective timber, extraction, firewood collection, grazing, or human-induced fire, is considered to have high resilience (2 years), compared to agriculture (2-10 years) or cattle-raising (nonresilient). It is concluded that the analysis of land-use systems is essential for understanding the implications of land-use cover dynamics on forest recovery and land degradation in tropical rain forests.

  7. Pennsylvanian tropical rain forests responded to glacial-interglacial rhythms

    NASA Astrophysics Data System (ADS)

    Falcon-Lang, Howard J.

    2004-08-01

    Pennsylvanian tropical rain forests flourished during an icehouse climate mode. Although it is well established that Milankovitch-band glacial-interglacial rhythms caused marked synchronous changes in Pennsylvanian tropical climate and sea level, little is known of vegetation response to orbital forcing. This knowledge gap has now been addressed through sequence- stratigraphic analysis of megafloral and palynofloral assemblages within the Westphalian D Cantabrian Sydney Mines Formation of eastern Canada. This succession was deposited in a low- accommodation setting where sequences can be attributed confidently to glacio-eustasy. Results show that long-lived, low-diversity peat mires dominated by lycopsids were initiated during deglaciation events, but were mostly drowned by rising sea level at maximum interglacial conditions. Only upland coniferopsid forests survived flooding without significant disturbance. Mid- to late interglacial phases witnessed delta-plain progradation and establishment of high-diversity, mineral-substrate rain forests containing lycopsids, sphenopsids, pteridosperms, cordaites, and tree ferns. Renewed glaciation resulted in sea-level fall, paleovalley incision, and the onset of climatic aridity. Glacial vegetation was dominated by cordaites, pteridosperms, and tree ferns; hydrophilic lycopsids and sphenopsids survived in paleovalley refugia. Findings clearly demonstrate the dynamic nature of Pennsylvanian tropical ecosystems and are timely given current debates about the impact of Quaternary glacial-interglacial rhythms on the biogeography of tropical rain forest.

  8. Correlates of microhabitat use and density of Clethrionomys gapperi and Peromyscus keeni in temperate rain forests of Southeast Alaska.

    Treesearch

    Winston P. Smith; Scott M. Gende; Jeffrey V. Nichols

    2005-01-01

    We studied red-backed vole Clethrionomys gapperi and Keen' s mouse Peromyscus keeni populations in the Alexander Archipelago to test predictions regarding habitat relations in temperate rain forest of southeastern Alaska during August - September 1998 and 2000 and April - May 1999 and 2000. We measured 26 vegetative and...

  9. Herbicides for site preparation...broadcast spray by mist blower tested against understory in Hawaii rain forest

    Treesearch

    Stanley B. Carpenter

    1966-01-01

    Two studies started in 1964 tested control of dense understory vegetation in Hawaii rain forests with herbicides applied by a large turbine blower spraying from widely spaced bulldozer lines. Brushkiller and Tordon 101 were effective on shrubs. Results on treefern were poor, but encouraging enough to merit additional study.

  10. Environmental and biotic controls over aboveground biomass throughout a tropical rainforest

    Treesearch

    G.P. Asner; R.F. Hughes; T.A. Varga; D.E. Knapp; T. Kennedy-Bowdoin

    2009-01-01

    The environmental and biotic factors affecting spatial variation in canopy three-dimensional (3-D) structure and aboveground tree biomass (AGB) are poorly understood in tropical rain forests. We combined field measurements and airborne light detection and ranging (lidar) to quantify 3-D structure and AGB across a 5,016 ha rain forest reserve on the...

  11. Mature and old-growth riparian forests: structure, dynamics, and effects on Adirondack stream habitats.

    PubMed

    Keeton, William S; Kraft, Clifford E; Warren, Dana R

    2007-04-01

    Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in-stream habitat features that have not been widely recognized in eastern North America, representing a potential benefit from late-successional riparian forest management and conservation. Riparian management practices (including buffer delineation and restorative silvicultural approaches) that emphasize development and maintenance of late-successional characteristics are recommended where the associated in-stream effects are desired.

  12. Himalayas as seen from STS-66 shuttle Atlantis

    NASA Image and Video Library

    1994-11-14

    View is southeastward across China (Tibet), half of Nepal and India. The partly frozen lake near the center of the frame is Pei-Ku T'so ("Bos-tie Lake"). The central Himalaya stretches from Mount Everest on the left past Annapurna on the right. Large tributaries converge to form the Ganges River, flowing through the lowland basin south of the Himalaya. This photograph illustrates the rain shadow effect of the Himalaya Chain; wet, warm air from the Indian Ocean is driven against the mountains, lifted, and drained of water that forms ice caps, the abundant rivers, and forests of the foothills. In contrast the high plateau of Tibet is arid, composed largely of topographically-closed basins because stream flow is inadequate to form integrated drainage networks.

  13. Study of morphometry to debit drainage basin (DAS) arau Padang city

    NASA Astrophysics Data System (ADS)

    Utama, Lusi; Amrizal, Berd, Isril; Zuherna

    2017-11-01

    High intensity rain that happened in Padang city cause the happening of floods at DAS Arau. Floods that happened in Padang besides caused high rain intensity, require to be by research about morphometry that is cause parameter the happening of floods. Morphometry drainage basin physical network (DAS) quantitatively related to DAS geomorphology that is related to form of DAS, river network, closeness of stream, ramp, usage of farm, high and gradient steepness of river. Form DAS will influence rain concentration to outlet. Make an index to closeness of stream depict closeness of river stream at one particular DAS. Speed of river stream influenced by storey, level steepness of river. Steepness storey, level is comparison of difference height of river downstream and upstream. Ever greater of steepness of river stream, excelsior speed of river stream that way on the contrary. High to lower speed of river stream influence occurrence of floods, more than anything else if when influenced by debit big. Usage of farm in glove its link to process of infiltration where if geology type which is impermeable, be difficult the happening of infiltration, this matter will enlarge value of run off. Research by descriptive qualitative that is about characteristic of DAS. Method the used is method survey with data collecting, in the form of rainfall data of year 2005 until year 2015 and Image of DEM IFSAR with resolution 5 meter, analyzed use Software ARGIS. Result of research got by DAS reside in at condition of floods gristle.

  14. Searching for signatures across microbial communities: Metagenomic analysis of soil samples from mangrove and other ecosystems.

    PubMed

    Imchen, Madangchanok; Kumavath, Ranjith; Barh, Debmalya; Azevedo, Vasco; Ghosh, Preetam; Viana, Marcus; Wattam, Alice R

    2017-08-18

    In this study, we categorize the microbial community in mangrove sediment samples from four different locations within a vast mangrove system in Kerala, India. We compared this data to other samples taken from the other known mangrove data, a tropical rainforest, and ocean sediment. An examination of the microbial communities from a large mangrove forest that stretches across southwestern India showed strong similarities across the higher taxonomic levels. When ocean sediment and a single isolate from a tropical rain forest were included in the analysis, a strong pattern emerged with Bacteria from the phylum Proteobacteria being the prominent taxon among the forest samples. The ocean samples were predominantly Archaea, with Euryarchaeota as the dominant phylum. Principal component and functional analyses grouped the samples isolated from forests, including those from disparate mangrove forests and the tropical rain forest, from the ocean. Our findings show similar patterns in samples were isolated from forests, and these were distinct from the ocean sediment isolates. The taxonomic structure was maintained to the level of class, and functional analysis of the genes present also displayed these similarities. Our report for the first time shows the richness of microbial diversity in the Kerala coast and its differences with tropical rain forest and ocean microbiome.

  15. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo.

    PubMed

    Luke, Sarah H; Barclay, Holly; Bidin, Kawi; Chey, Vun Khen; Ewers, Robert M; Foster, William A; Nainar, Anand; Pfeifer, Marion; Reynolds, Glen; Turner, Edgar C; Walsh, Rory P D; Aldridge, David C

    2017-06-01

    Freshwaters provide valuable habitat and important ecosystem services but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian-scale disturbance. We studied 16 streams in Sabah, Borneo, including old-growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment and compared it with stream environmental conditions including water quality, structural complexity, and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter, and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment-scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate-N levels compared to streams with the lowest catchment-scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest-like stream conditions. In addition, logged forest streams still showed signs of disturbance 10-15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems but logging practices and catchment-scale forest management also need to be considered.

  16. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-Derived Dissolved Organic Matter in an Epiphyte-Laden Oak-Cedar Forest

    NASA Astrophysics Data System (ADS)

    Van Stan, John T.; Wagner, Sasha; Guillemette, François; Whitetree, Ansley; Lewis, Julius; Silva, Leticia; Stubbins, Aron

    2017-11-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched in dissolved organic carbon (DOC) compared to rainfall, and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with fluorescent DOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g C m-2 yr-1) were similar to other yields from discrete down-gradient fluxes (litter leachates, soil leachates, and stream discharge) along the rainfall-to-discharge flow path.

  17. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  18. The northern flying squirrel as an indicator species of temperate rain forest: test of an hypothesis.

    Treesearch

    Winston P. Smith; Scott M. Gende; Jeffrey V. Nichols

    2005-01-01

    Management indicator species (MIS) often are selected because their life history and demographics are thought to reflect a suite of ecosystem conditions that are too difficult or costly to measure directly. The northern flying squirrel (Glaucomys sabrinus) has been proposed as an MIS of temperate rain forest of southeastern Alaska based on previous...

  19. The effects of acid rain on nitrogen fixation in Western Washington coniferous forests

    Treesearch

    Robert Denison; Bruce Caldwell; Bernard Bormann; Lindell Eldred; Cynthia Swanberg; Steven Anderson

    1976-01-01

    We investigated both the current status of nitrogen fixation in Western Washington forests, and the potential effects of acid rain on this vital process. Even the low concentrations of sulfur dioxide presently found in the Northwest are thought to have an adverse effect on nitrogen fixation by limiting the distribution of the epiphytic nitrogen-fixing lichen, ...

  20. Physical hydrology and the effects of forest harvesting in the Pacific Northwest: a review.

    Treesearch

    R. Dan Moore; S.M. Wondzell

    2005-01-01

    The Pacific Northwest encompasses a range of hydrologic regimes that can be broadly characterized as either coastal (where rain and rain on snow are dominant) or interior (where snowmelt is dominant). Forest harvesting generally increases the fraction of precipitation that is available to become streamflow, increases rates of snowmelt, and modifies the runoff pathways...

  1. Rain Forest Tourism - Estimating the Benefits of Tourism Development in a New National Park in Madagascar

    Treesearch

    D. Evan Mercer; R. Kramer; N. Sharma

    1995-01-01

    Travel cost and contingent valuation methods are applied to the problem of estimating the potential consumer surplus available to international nature tourists from a rain forest conservation project in Madagascar. Data are derived from surveys of nature tourists in Madagascar and international, nature tourism professionals in the U.S. and Europe. Typical trip travel...

  2. Los Arboles Hablan: A Spanish Language Curriculum Unit Based on the Study of Latin American Rain Forests.

    ERIC Educational Resources Information Center

    Zuman, John P.

    "Los Arboles Hablan," a video-based curriculum that promotes the learning of Spanish as a second language through study of the Latin American rain forests is described. The 12-session unit was designed for use at the middle school level and integrates science, social science, and environmental education with content focusing on the…

  3. Water, water everywhere: subtle shifts in soil saturation drive ecological function in coastal rain forests

    Treesearch

    Marie Oliver; David D' Amore

    2015-01-01

    New research reveals how topography, soil temperature, and subtle shifts in soil drainage are key drivers in ecosystem function in the coastal temperate rain forests of southeast Alaska and British Columbia. These studies, by Dave D'Amore and his colleagues, provide a better understanding of the influence of soil hydrology on dissolved organic carbon export and...

  4. Postfire seed rain of black spruce, a semiserotinous conifer, in forests of interior Alaska

    Treesearch

    Jill Johnstone; Leslie Boby; Emily Tissier; Michelle Mack; Dave Verbyla; Xanthe. Walker

    2009-01-01

    The availability of viable seed can act as an important constraint on plant regeneration following disturbance. This study presents data on seed quantity and quality for black spruce (Picea mariana (Mill.) B.S.P.), a semiserotinous conifer that dominates large areas of North American boreal forest. We sampled seed rain and viability for 2 years...

  5. Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry.

    PubMed

    Klein, Alexandra-Maria; Steffan-Dewenter, Ingolf; Tscharntke, Teja

    2006-03-01

    1. Human alteration of natural ecosystems to agroecosystems continues to accelerate in tropical countries. The resulting world-wide decline of rain forest causes a mosaic landscape, comprising simple and complex agroecosystems and patchily distributed rain forest fragments of different quality. Landscape context and agricultural management can be expected to affect both species diversity and ecosystem services by trophic interactions. 2. In Central Sulawesi, Indonesia, 24 agroforestry systems, differing in the distance to the nearest natural forest (0-1415 m), light intensity (37.5-899.6 W/m(-2)) and number of vascular plant species (7-40 species) were studied. Ten standardized trap nests for bees and wasps, made from reed and knotweed internodes, were exposed in each study site. Occupied nests were collected every month, over a period totalling 15 months. 3. A total of 13,617 brood cells were reared to produce adults of 14 trap-nesting species and 25 natural enemy species, which were mostly parasitoids. The total number of species was affected negatively by increasing distance from forest and increased with light intensity of agroforestry systems. The parasitoids in particular appeared to benefit from nearby forests. Over a 500-m distance, the number of parasitoid species decreased from eight to five, and parasitism rates from 12% to 4%. 4. The results show that diversity and parasitism, as a higher trophic interaction and ecosystem service, are enhanced by (i) improved connectivity of agroecosystems with natural habitats such as agroforestry adjacent to rain forest and (ii) management practices to increase light availability in agroforestry, which also enhances richness of flowering plants in the understorey.

  6. Degradation of Root Community Traits as Indicator for Transformation of Tropical Lowland Rain Forests into Oil Palm and Rubber Plantations

    PubMed Central

    Edy, Nur; Meyer, Marike; Corre, Marife D.; Polle, Andrea

    2015-01-01

    Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis) plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis) agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization). Traits were measured as root community-weighed traits (RCWTs) in lowland rain forests, in rubber agro-forests mixed with rain forest trees, in rubber and oil palm plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra). We hypothesized that RCWTs vary with land use system indicating increasing transformation intensity and loss of ecosystem functions. The main factors found to be related to increasing transformation intensity were declining root vitality and root sulfur, nitrogen, carbon, manganese concentrations and increasing root aluminium and iron concentrations as well as increasing spore densities of arbuscular mycorrhizas. Mycorrhizal abundance was high for arbuscular and low for ectomycorrhizas and unrelated to changes in RCWTs. The decline in RCWTs showed significant correlations with soil nitrogen, soil pH and litter carbon. Thus, our study uncovered a relationship between deteriorating root community traits and loss of ecosystem functionality and showed that increasing transformation intensity resulted in decreasing root nutrition and health. Based on these results we suggest that land management that improves root vitality may enhance the ecological functions of intense tropical production systems. PMID:26366576

  7. Degradation of Root Community Traits as Indicator for Transformation of Tropical Lowland Rain Forests into Oil Palm and Rubber Plantations.

    PubMed

    Sahner, Josephine; Budi, Sri Wilarso; Barus, Henry; Edy, Nur; Meyer, Marike; Corre, Marife D; Polle, Andrea

    2015-01-01

    Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis) plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis) agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization). Traits were measured as root community-weighed traits (RCWTs) in lowland rain forests, in rubber agro-forests mixed with rain forest trees, in rubber and oil palm plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra). We hypothesized that RCWTs vary with land use system indicating increasing transformation intensity and loss of ecosystem functions. The main factors found to be related to increasing transformation intensity were declining root vitality and root sulfur, nitrogen, carbon, manganese concentrations and increasing root aluminium and iron concentrations as well as increasing spore densities of arbuscular mycorrhizas. Mycorrhizal abundance was high for arbuscular and low for ectomycorrhizas and unrelated to changes in RCWTs. The decline in RCWTs showed significant correlations with soil nitrogen, soil pH and litter carbon. Thus, our study uncovered a relationship between deteriorating root community traits and loss of ecosystem functionality and showed that increasing transformation intensity resulted in decreasing root nutrition and health. Based on these results we suggest that land management that improves root vitality may enhance the ecological functions of intense tropical production systems.

  8. [Relationships between soil moisture and needle-fall in Masson pine forests in acid rain region of Chongqing, Southwest China].

    PubMed

    Wang, Yi-Hao; Wang, Yan-Hui; Li, Zhen-Hua; Yu, Peng-Tao; Xiong, Wei; Hao, Jia; Duan, Jian

    2012-10-01

    From March 2009 to November 2011, an investigation was conducted on the spatiotemporal variation of soil moisture and its effects on the needle-fall in Masson pine (Pinus massoniana) forests in acid rain region of Chongqing, Southeast China, with the corresponding soil moisture thresholds determined. No matter the annual precipitation was abundant, normal or less than average, the seasonal variation of soil moisture in the forests could be obviously divided into four periods, i.e., sufficient (before May), descending (from June to July), drought (from August to September), and recovering (from October to November). With increasing soil depth, the soil moisture content increased after an initial decrease, but the difference of the soil moisture content among different soil layers decreased with decreasing annual precipitation. The amount of monthly needle-fall in the forests in growth season was significantly correlated with the water storage in root zone (0-60 cm soil layer), especially in the main root zone (20-50 cm soil layer). Soil field capacity (or capillary porosity) and 82% of field capacity (or 80% of capillary porosity) were the main soil moisture thresholds affecting the litter-fall. It was suggested that in acid rain region, Masson pine forest was easily to suffer from water deficit stress, especially in dry-summer period. The water deficit stress, together with already existed acid rain stress, would further threaten the health of the Masson forest.

  9. Use of multiple correspondence analysis (MCA) to identify interactive meteorological conditions affecting relative throughfall

    NASA Astrophysics Data System (ADS)

    Van Stan, John T.; Gay, Trent E.; Lewis, Elliott S.

    2016-02-01

    Forest canopies alter rainfall reaching the surface by redistributing it as throughfall. Throughfall supplies water and nutrients to a variety of ecohydrological components (soil microbial communities, stream water discharge/chemistry, and stormflow pathways) and is controlled by canopy structural interactions with meteorological conditions across temporal scales. This work introduces and applies multiple correspondence analyses (MCAs) to a range of meteorological thresholds (median intensity, median absolute deviation (MAD) of intensity, median wind-driven droplet inclination angle, and MAD of wind speed) for an example throughfall problem: identification of interacting storm conditions corresponding to temporal concentration in relative throughfall beyond the median observation (⩾73% of rain). MCA results from the example show that equalling or exceeding rain intensity thresholds (median and MAD) corresponded with temporal concentration of relative throughfall across all storms. Under these intensity conditions, two wind mechanisms produced significant correspondences: (1) high, steady wind-driven droplet inclination angles increased surface wetting; and (2) sporadic winds shook entrained droplets from surfaces. A discussion is provided showing that these example MCA findings agree well with previous work relying on more historically common methods (e.g., multiple regression and analytical models). Meteorological threshold correspondences to temporal concentration of relative throughfall at our site may be a function of heavy Tillandsia usneoides coverage. Applications of MCA within other forests may provide useful insights to how temporal throughfall dynamics are affected for drainage pathways dependent on different structures (leaves, twigs, branches, etc.).

  10. Methods for measuring bird-mediated seed rain: Insights from a Hawaiian mesic forest

    USGS Publications Warehouse

    Rose, Eli; Stewart, Meredith; Brinkman, Andrew; Paxton, Eben H.; Yelenik, Stephanie G.

    2017-01-01

    Amount and diversity of bird-dispersed seed rain play important roles in determining forest composition, yet neither is easy to quantify. The complex ecological processes that influence seed movement make the best approach highly context specific. Although recent advances in seed rain theory emphasize quantifying source-specific seed shadows, many ecological questions can be addressed u sing a less mechanistic approach that requires fewer assumptions. Using seed rain rates from 0.38 m2 hoop traps sampled twice monthly over the course of a year, we show that number of traps required to identify changes in seed rain varies across seed species and forest type. Detecting a 50% increase in amount of seed rain required from 65 to >300 traps, while detecting a 200% increase generally required ≤⃒50 traps. Trap size and ecological context dictate the number of seeds found in each trap, but the coefficient of variation (CV) across traps in a given ecological context can help inform future studies about number of traps needed to detect change. To better understand factors influencing variation around estimates of seed rain, we simulated both clustered and evenly distributed patterns of fecal deposition using three different levels of seed aggregation (number of seeds in each fecal deposit). When patterns of fecal deposition were clustered, rather than evenly dispersed across the study area, they required >1.5 times the number of traps to identify a 100% increase in seed rain. Similarly, we found that low seed aggregation required >1.5 times the number of traps to detect a 100% change than when aggregation was medium or high. At low aggregations, fewer seed rain traps contained seeds (low, 33 ± 5%; medium, 23 ± 4%; high, 24 ± 5%), resulting in more variation across traps than medium and high aggregations. We also illustrate the importance of training observers to discern between morphologically similar seeds from different species and provide resources to help identify bird-dispersed seeds commonly found within midelevation mesic Hawaiian forests.

  11. Short-term impacts of Hurricanes Irma and Maria on tropical stream chemistry as measured by in-situ sensors

    NASA Astrophysics Data System (ADS)

    McDowell, W. H.; Potter, J.; López-Lloreda, C.

    2017-12-01

    High intensity hurricanes have been shown to alter topical forest productivity and stream chemistry for years to decades in the montane rain forest of Puerto Rico, but much less is known about the immediate ecosystem response to these extreme events. Here we report the short-term impacts of Hurricanes Irma and Maria on the chemistry of Quebrada Sonadora immediately before and after the storms. We place the results from our 15-minute sensor record in the context of long-term weekly sampling that spans 34 years and includes two earlier major hurricanes (Hugo and Geoges). As expected, turbidity during Maria was the highest in our sensor record (> 1000 NTU). Contrary to our expectations, we found that solute-flow behavior changed with the advent of the storms. Specific conductance showed a dilution response to flow before the storms, but then changed to an enrichment response during and after Maria. This switch in system behavior is likely due to the deposition of marine aerosols during the hurricane. Nitrate concentrations showed very little response to discharge prior to the recent hurricanes, but large increase in concentration occurred at high flow both during and after the hurricanes. Baseflow nitrate concentrations decreased immediately after Irma to below the long-term background concentrations, which we attribute to the immobilization of N on organic debris choking the stream channel. Within three weeks of Hurricane Maria, baseflow nitrate concentrations began to rise. This is likely due to mineralization of N from decomposing canopy vegetation on the forest floor, and reduced N uptake by hurricane-damaged vegetation. The high frequency sensors are providing new insights into the response of this ecosystem in the days and weeks following two major disturbance events. The flipping of nitrate response to storms, from source limited to transport limited, suggests that these two severe hurricanes have fundamentally altered the nitrogen cycle at the site in ways that would not be evident without sensors.

  12. Isotopic signals of denitrification in a northern hardwood forested catchment

    NASA Astrophysics Data System (ADS)

    Wexler, Sarah; Goodale, Christine

    2013-04-01

    Water samples from streams, groundwater and precipitation were collected during summer from the hydrologic reference watershed (W3) at Hubbard Brook Experimental Forest in the White Mountains, New Hampshire, and analysed for d15N-NO3 and d18O-NO3. Despite very low nitrate concentrations (<0.5 to 8.8 uM NO3-) dual-isotopic signals of sources and processes were clearly distinguishable. The isotopic composition of nitrate from shallow groundwater showed evidence of dual isotopic fractionation in line with denitrification, with a positive relationship between nitrogen and oxygen isotopic composition, a regression line slope of 0.76 (r2 = 0.68), and an empirical isotope enrichment factor of ɛP-S 15N-NO3 -12.7%. The isotopic composition of riparian groundwater nitrate from time-series samples showed variation in processes over a small spatial scale. The expected isotopic composition of nitrate sources in the watershed was used to distinguish nitrate in rain and nitrate from nitrification of both rainfall ammonium and ammonium from mineralised soil organic nitrogen. Evidence of oxygen exchange with water during nitrification was seen in the isotopic composition of stream and shallow groundwater nitrate. The isotopic composition of streamwater nitrate following a period of storms indicated that 25% of nitrate in the streamwater was of atmospheric origin. This suggests rapid infiltration of rainfall via vertical bypass flow to the saturated zone, enabling transport of atmospheric nitrate to the stream channels. Across the Hubbard Brook basin, the isotopic composition of nitrate from paired samples from watersheds 4-7 indicated a switch between a nitrification and assimilation dominated system, to a system influenced by rainfall nitrogen inputs and denitrification. The dual isotope approach has revealed evidence of denitrification of nitrate from different sources at low concentrations at Hubbard Brook during summer. This isotopic evidence deepens our understanding of the significance and spatial variability of denitrification in environments with low levels of nitrate, represented by this northern hardwood forested catchment.

  13. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhl, C.; Kauffman, J.B.

    1990-04-01

    In the state of Para, Brazil, in the eastern Amazon, the authors studied the potential for sustained fire events within four dominant vegetation cover types (undisturbed rain forest, selectively logged forest, second-growth forest, and open pasture), by measuring fuel availability, microclimate, and rates of fuel moisture loss. They also estimated the potential tree mortality that might result from a wide-scale Amazon forest fire by measuring the thermal properties of bark for all trees in a 5-ha stand of mature forest, followed by measurements of heat flux through bark during simulated fires. In pastures the average midday temperature was almost 10{degree}Cmore » greater and the average midday relative humidity was 30% lower than in primary forest. The most five-prone ecosystem was the open pasture followed by selectively logged forest, second growth forest, and undisturbed rain forest in which sustained combustion was not possible even after prolonged rainless periods. Even though the autogenic factors in primary forest of the eastern Amazon create a microclimate that virtually eliminates the probability of fire, they are currently a common event in disturbed areas of Amazonia. As many as 8 {times} 10{sup 6} ha burned in the Amazon Basin of Brazil in 1987 alone. In terms of current land-use patterns, altered microclimates, and fuel mass, there are also striking similarities between the eastern Amazon and East Kalimantan, Indonesia (the site of recent rain forest wildfires that burned 3.5 {times} 10{sup 6} ha).« less

  14. Using Economic Incentives to Manage Stormwater Runoff in ...

    EPA Pesticide Factsheets

    Communities nationwide are facing increased responsibility for controlling stormwater runoff, and, subsequently, rising costs of stormwater management. In this report we describe and test a methodology that can be used by communities to focus limited budgets on the most efficient and ecologically-effective installation of stormwater management practices. The overall project has two primary objectives: (1) to test the use of an auction to cost-effectively allocate stormwater management practices among landowners, and (2) to determine the effectiveness of the resulting implementation in terms of hydrological, water quality, and ecological measures. Here, we describe the theories, methods, and criteria used to distribute rain gardens and rain barrels to homeowners in a small, midwestern watershed. The first round of the reverse auction in 2007 resulted in 50 rain gardens and 100 rain barrels installed at 67 of the approximately 350 residential properties in the experimental watershed. In 2008, the auction was repeated and we accepted bids for an additional 35 rain gardens and 74 rain barrels. Stormwater management practices were distributed relatively evenly throughout the watershed and are expected to result in significant improvements in stream quality. We describe our monitoring approach, including 1) parcel-scale hydrology and water quality monitoring of selected rain gardens, and 2) stream monitoring following before-after-control-impact approach for as

  15. Long-Term Trends in Nutrient Concentrations and Fluxes in Streams Draining to Lake Tahoe, California

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.

    2017-12-01

    Lake Tahoe, situated in the rain shadow of the eastern Sierra Nevada at an elevation of 1,897 meters, has numerous small to medium sized tributaries that are sources of nutrients and fine sediment. The Tahoe watershed is relatively small and the surface area of the lake occupies about 38% of the total watershed area (1,313 km2). Each stream contributing water to the lake therefore also occupies a small watershed, mostly forested, with typical trees being Jeffrey, Ponderosa, or Sugar Pine and White Fir. Outflow from the lake contributes to downstream uses such as water supply and ecological resources. Only about 6% of the watershed is urbanized or residential land, and wastewater is exported to adjacent basins and not discharged to the lake as part of a plan to maintain water clarity. The lake's exceptional clarity has been diminishing due to phytoplankton and fine sediment, prompting development of management plans to improve water quality. Much of the annual discharge and flux of nutrients to the lake results from snowmelt in the spring and summer months, and climatic changes have begun to shift this melt to earlier time frames. Winter rains on urbanized land also contribute to nutrient loads. To understand the relative importance of land use, climate, and other factors affecting stream concentrations and fluxes, a Weighted Regression on Time Discharge and Season (WRTDS) model documented trends over a time frame of greater than 25 years. Ten streams have records of discharge, nutrient (NO3, NH3, OP, TP, TKN) and sediment data to complete this analysis. Both urbanized and non-urbanized locations generally show NO3 trending down in the 1980s. Some locations show initially decreasing orthophosphate trends, followed by small significant increases in concentration and fluxes starting around 2000 to 2005. Although no wastewater enters the streams, ammonia concentrations mimic those of orthophosphate, with initially negative trends in concentration and flux followed by positive trends after 2005 through 2015. Those trends in ammonia are observed at most sites irrespective of the degree of urbanization and may be related to atmospheric transport of ammonia from outside of the basin. Continued monitoring of these streams is necessary to understand the implications of various management options on the lake.

  16. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo

    PubMed Central

    Barclay, Holly; Bidin, Kawi; Chey, Vun Khen; Ewers, Robert M.; Foster, William A.; Nainar, Anand; Pfeifer, Marion; Reynolds, Glen; Turner, Edgar C.; Walsh, Rory P. D.; Aldridge, David C.

    2017-01-01

    Abstract Freshwaters provide valuable habitat and important ecosystem services but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian‐scale disturbance. We studied 16 streams in Sabah, Borneo, including old‐growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment and compared it with stream environmental conditions including water quality, structural complexity, and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter, and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment‐scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate‐N levels compared to streams with the lowest catchment‐scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest‐like stream conditions. In addition, logged forest streams still showed signs of disturbance 10–15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems but logging practices and catchment‐scale forest management also need to be considered. PMID:28706573

  17. On the patterns and processes of wood in northern California streams

    NASA Astrophysics Data System (ADS)

    Benda, Lee; Bigelow, Paul

    2014-03-01

    Forest management and stream habitat can be improved by clarifying the primary riparian and geomorphic controls on streams. To this end, we evaluated the recruitment, storage, transport, and the function of wood in 95 km of streams (most drainage areas < 30 km2) in northern California, crossing four coastal to inland regions with different histories of forest management (managed, less-managed, unmanaged). The dominant source of variability in stream wood storage and recruitment is driven by local variation in rates of bank erosion, forest mortality, and mass wasting. These processes are controlled by changes in watershed structure, including the location of canyons, floodplains and tributary confluences; types of geology and topography; and forest types and management history. Average wood storage volumes in coastal streams are 5 to 20 times greater than inland sites primarily from higher riparian forest biomass and growth rates (productivity), with some influence by longer residence time of wood in streams and more wood from landsliding and logging sources. Wood recruitment by mortality (windthrow, disease, senescence) was substantial across all sites (mean 50%) followed by bank erosion (43%) and more locally by mass wasting (7%). The distances to sources of stream wood are controlled by recruitment process and tree height. Ninety percent of wood recruitment occurs within 10 to 35 m of channels in managed and less-managed forests and upward of 50 m in unmanaged Sequoia and coast redwood forests. Local landsliding extends the source distance. The recruitment of large wood pieces that create jams (mean diameter 0.7 m) is primarily by bank erosion in managed forests and by mortality in unmanaged forests. Formation of pools by wood is more frequent in streams with low stream power, indicating the further relevance of environmental context and watershed structure. Forest management influences stream wood dynamics, where smaller trees in managed forests often generate shorter distances to sources of stream wood, lower stream wood storage, and smaller diameter stream wood. These findings can be used to improve riparian protection and inform spatially explicit riparian management.

  18. Contribution of atmospheric nitrate to stream-water nitrate in Japanese coniferous forests revealed by the oxygen isotope ratio of nitrate.

    PubMed

    Tobari, Y; Koba, K; Fukushima, K; Tokuchi, N; Ohte, N; Tateno, R; Toyoda, S; Yoshioka, T; Yoshida, N

    2010-05-15

    Evaluation of the openness of the nitrogen (N) cycle in forest ecosystems is important in efforts to improve forest management because the N supply often limits primary production. The use of the oxygen isotope ratio (delta(18)O) of nitrate is a promising approach to determine how effectively atmospheric nitrate can be retained in a forest ecosystem. We investigated the delta(18)O of nitrate in stream water in order to estimate the contribution of atmospheric NO(3) (-) in stream-water NO(3) (-) (f(atm)) from 26 watersheds with different stand ages (1-87 years) in Japan. The stream-water nitrate concentrations were high in young forests whereas, in contrast, old forests discharged low-nitrate stream water. These results implied a low f(atm) and a closed N cycle in older forests. However, the delta(18)O values of nitrate in stream water revealed that f(atm) values were higher in older forests than in younger forests. These results indicated that even in old forests, where the discharged N loss was small, atmospheric nitrate was not retained effectively. The steep slopes of the studied watersheds (>40 degrees ) which hinder the capturing of atmospheric nitrate by plants and microbes might be responsible for the inefficient utilization of atmospheric nitrate. Moreover, the unprocessed fraction of atmospheric nitrate in the stream-water nitrate in the forest (f(unprocessed)) was high in the young forest (78%), although f(unprocessed) was stable and low for other forests (5-13%). This high f(unprocessed) of the young forest indicated that the young forest retained neither atmospheric NO(3) (-) nor soil NO(3) (-) effectively, engendering high stream-water NO(3) (-) concentrations. Copyright (c) 2010 John Wiley & Sons, Ltd.

  19. Long-term stream chemistry monitoring on the fernow experiment forest: implications for sustainable management of hardwood forests

    Treesearch

    Mary Beth Adams; James N. Kochenderfer

    2007-01-01

    Long-term monitoring of stream chemistry of forested watersheds on the Fernow Experimental Forest in West Virginia has been conducted to determine the effects of both human induced and natural disturbances on nutrient cycling and stream chemistry. We compare mean annual stream water pH, and nitrate (NO3), sulfate (SO4), and...

  20. Data set: A modeling dataset that spans the rain - snow transition zone: Johnston Draw catchment, Reynolds Creek Experimental Watershed, Idaho, USA

    USDA-ARS?s Scientific Manuscript database

    Hydrometeorological data from the rain-to-snow transition zone in mountain basins are limited. As the climate warms, the transition from rain to snow in mountain regions is moving to higher elevations, and these changes are altering the timing of water delivery to the downstream streams, lakes and w...

  1. Invasive plants transform the three-dimensional structure of rain forests

    PubMed Central

    Asner, Gregory P.; Hughes, R. Flint; Vitousek, Peter M.; Knapp, David E.; Kennedy-Bowdoin, Ty; Boardman, Joseph; Martin, Roberta E.; Eastwood, Michael; Green, Robert O.

    2008-01-01

    Biological invasions contribute to global environmental change, but the dynamics and consequences of most invasions are difficult to assess at regional scales. We deployed an airborne remote sensing system that mapped the location and impacts of five highly invasive plant species across 221,875 ha of Hawaiian ecosystems, identifying four distinct ways that these species transform the three-dimensional (3D) structure of native rain forests. In lowland to montane forests, three invasive tree species replace native midcanopy and understory plants, whereas one understory invader excludes native species at the ground level. A fifth invasive nitrogen-fixing tree, in combination with a midcanopy alien tree, replaces native plants at all canopy levels in lowland forests. We conclude that this diverse array of alien plant species, each representing a different growth form or functional type, is changing the fundamental 3D structure of native Hawaiian rain forests. Our work also demonstrates how an airborne mapping strategy can identify and track the spread of certain invasive plant species, determine ecological consequences of their proliferation, and provide detailed geographic information to conservation and management efforts. PMID:18316720

  2. Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: occurrence, colonization, and relationships with plant performance.

    PubMed

    Gehring, Catherine A; Connell, Joseph H

    2006-03-01

    The roots of rain forest plants are frequently colonized by arbuscular mycorrhizal fungi (AMF) that can promote plant growth in the nutrient poor soils characteristic of these forests. However, recent studies suggest that both the occurrence of AMF on rain forest plants and the dependence of rain forest plants on AMF can be highly variable. We examined the occurrence and levels of AMF colonization of some common seedling species in a tropical and a subtropical rain forest site in Queensland, Australia. We also used a long-term database to compare the growth and mortality rates of seedling species that rarely formed AMF with those that regularly formed AMF. In both forests, more than one-third of the seedling species rarely formed AMF associations, while 40% of species consistently formed AMF in the tropical site compared to 27% in the subtropical site. Consistent patterns of AMF occurrence were observed among plant families at the two sites. Variation among seedling species in AMF occurrence or colonization was not associated with differences in seed mass among species, variation in seedling size and putative age within a species, or lack of AMF inoculum in the soil. Comparisons of four seedling species growing both in the shaded understory and in small canopy gaps revealed an increase in AMF colonization in two of the four species in gaps, suggesting that light limitation partially explains the low occurrence of AMF. Seedling survival was significantly positively associated with seed biomass but not with AMF colonization. Furthermore, seedling species that regularly formed AMF and those that did not had similar rates of growth and survival, suggesting that mycorrhizal and nonmycorrhizal strategies were equivalent in these forests. Furthermore, the high numbers of seedlings that lacked AMF and the overall low rate of seedling growth (the average seedling required 6 years to double its height) suggest that most seedlings did not receive significant indirect benefits from AMF through connection to canopy trees via a common mycorrhizal network.

  3. Spatial and seasonal variability of forested headwater stream temperatures in western Oregon, USA

    Treesearch

    J. A. Leach; D. H. Olson; P. D. Anderson; B. N. I. Eskelson

    2017-01-01

    Thermal regimes of forested headwater streams control the growth and distribution of various aquatic organisms. In a western Oregon, USA, case study we examined: (1) forested headwater stream temperature variability in space and time; (2) relationships between stream temperature patterns and weather, above-stream canopy cover, and geomorphic attributes; and (3) the...

  4. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Murphy, Sheila F.

    2014-01-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, −0.73 ‰ to tropical storm rain with values as low as −127 ‰, −16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply will be affected if regional atmospheric dynamics change trade- wind orographic rainfall patterns in the Caribbean.

  5. Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, LA Selva, Costa Rica

    Treesearch

    Luitgard Schwendenmann; Edzo Veldkamp; Tania Brenes; Joseph J. O' Brien; Jens Mackensen

    2003-01-01

    Our objectives were to quantify and compare soil CO2, efflux of two doininant soil types in an old-growth neotropical rain forest in the Atlantic zone of Costa Rica, and to evaluate the control of environmental Factors on CO2, release. We measured soil CO2 efflux from eight permanent soil chamhers on...

  6. Bananas and Balsa, Quetzals and Quinine: A Rainforest Unit for Science and Language Arts.

    ERIC Educational Resources Information Center

    Pottle, Jean L.

    The destruction of rain forests and the impact this has on the earth is an important environmental issue. This book was written to help students learn why it is important to protect those areas of the world. In this activity book, students are introduced to a number of inhabitants of the rain forest. They learn about the diversity of plants and…

  7. Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies

    Treesearch

    F. Holwerda; F.N. Scatena; L.A. Bruijnzeel

    2006-01-01

    During a one-year period, the variability of throughfall and the standard errors of the means associated with different gauge arrangements were studied in a lower montane rain forest in Puerto Rico. The following gauge arrangements were used: (1) 60 fixed gauges, (2) 30 fixed gauges, and (3) 30 roving gauges. Stemflow was measured on 22 trees of four different species...

  8. Can salvage logging affect seed dispersal by birds into burned forests?

    NASA Astrophysics Data System (ADS)

    Rost, J.; Pons, P.; Bas, J. M.

    2009-09-01

    The recovery of vegetation in Mediterranean ecosystems after wildfire is mostly a result of direct regeneration, since the same species existing before the fire regenerate on-site by seeding or resprouting. However, the possibility of plant colonization by dispersal of seeds from unburned areas remains poorly studied. We addressed the role of the frugivorous, bird-dependent seed dispersal (seed rain) of fleshy-fruited plants in a burned and managed forest in the second winter after a fire, before on-site fruit production had begun. We also assessed the effect on seed rain of different microhabitats resulting from salvage logging (erosion barriers, standing snags, open areas), as well as the microhabitats of unlogged patches and an unburned control forest, taking account of the importance of perches as seed rain sites. We found considerable seed rain by birds in the burned area. Seeds, mostly from Olive trees Olea europaea and Evergreen pistaches Pistacia lentiscus, belonged to plants fruiting only in surrounding unburned areas. Seed rain was heterogeneous, and depended on microhabitat, with the highest seed density in the unburned control forest but closely followed by the wood piles of erosion barriers. In contrast, very low densities were found under perches of standing snags. Furthermore, frugivorous bird richness seemed to be higher in the erosion barriers than elsewhere. Our results highlight the importance of this specific post-fire management in bird-dependent seed rain and also may suggest a consequent heterogeneous distribution of fleshy-fruited plants in burned and managed areas. However, there needs to be more study of the establishment success of dispersed seeds before an accurate assessment can be made of the role of bird-mediated seed dispersal in post-fire regeneration.

  9. Acetochlor in the hydrologic system in the midwestern United States, 1994

    USGS Publications Warehouse

    Kolpin, D.W.; Nations, B.K.; Goolsby, D.A.; Thurman, E.M.

    1996-01-01

    The herbicide acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)acetamide] was given conditional registration in the United States by the U.S. Environmental Protection Agency in March 1994. This registration provided a rare opportunity to investigate the occurrence of a pesticide during its first season of extensive use in the midwestern United States. Water samples collected and analyzed by the U.S. Geological Survey during 1994 documented the distribution of acetochlor in the hydrologic system; it was detected in 29% of the rain samples from four sites in Iowa, 17% of the stream samples from 51 sites across nine states, and 0% of the groundwater samples from 38 wells across eight states. Acetochlor exhibited concentration increases in rain and streams following its application to corn in the midwestern United States, with 75% of the rainwater and 35% of the stream samples having acetochlor detected during this time period. Acetochlor concentrations in rain decreased as the growing season progressed. Based on the limited data collected for this study, it is anticipated that acetochlor concentrations will have a seasonal pattern in rain and streams similar to those of other acetanilide herbicides examined. Possible explanations for the absence of acetochlor in groundwater for this study include the rapid degradation of acetochlor in the soil zone, insufficient time for this first extensive use of acetochlor to have reached the aquifers sampled, and the possible lack of acetochlor use in the recharge areas for the wells examined.

  10. Biomass burning in the Amazon-fertilizer for the mountaineous rain forest in Ecuador.

    PubMed

    Fabian, Peter; Kohlpaintner, Michael; Rollenbeck, Ruetger

    2005-09-01

    Biomass burning is a source of carbon, sulfur and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very long distances, even traversing oceans. Chemical analyses of rain and fogwater samples collected in the mountaineous rain forest of south Ecuador show frequent episodes of high sulfate and nitrate concentration, from which annual deposition rates are derived comparable to those found in polluted central Europe. As significant anthropogenic sources are lacking at the research site it is suspected that biomass burning upwind in the Amazon basin is the major source of the enhanced sulfate and nitrate imput. Regular rain and fogwater sampling along an altitude profile between 1800 and 3185 m has been carried out in the Podocarpus National Park close to the Rio SanFrancisco (3 degrees 58'S, 79 degrees 5'W) in southern Ecuador. pH values, electrical conductivity and chemical ion composition were measured at the TUM-WZW using standard methods. Results reported cover over one year from March 2002 until May 2003. Annual deposition rates of sulfate were calculated ranging between 4 and 13 kg S/ha year, almost as high as in polluted central Europe. Nitrogen deposition via ammonia (1.5-4.4 kg N/ha year) and nitrate (0.5-0.8 kg N/ha year) was found to be lower but still much higher than to be expected in such pristine natural forest environment. By means of back trajectory analyses it can be shown that most of the enhanced sulfur and nitrogen deposition is most likely due to forest fires far upwind of the ecuadorian sampling site, showing a seasonal variation, with sources predominantly found in the East/North East during January-March (Colombia, Venezuala, Northern Brazil) and East/SouthEast during July-September (Peru, Brazil). Our results show that biomass burning in the Amazon basin is the predominant source of sulfur and nitrogen compounds that fertilize the mountaineous rain forest in south Ecuador. The mountaineous rain forest in south Ecuador has developed on poor and acid soils, with low nutrient availability. The additional ferilization resulting from anthropogenic biomass burning constitutes a significant disturbance of this ecosystem, its functioning and biodiversity. Thus it is planned to employ isotope analyses for quantifying the pathways. of nitrate and sulfate deposition in these natural forests.

  11. Scientific approach as an understanding and applications of hydrological concepts of tropical rainforest

    NASA Astrophysics Data System (ADS)

    Haryanto, Z.; Setyasih, I.

    2018-04-01

    East Kalimantan has a variety of biomes, one of which is tropical rain forests. Tropical rain forests have enormous hydrological potential, so it is necessary to provide understanding to prospective teachers. Hydrology material cannot be separated from the concept of science, for it is needed the right way of learning so students easily understand the material. This research uses descriptive method with research subject is geography education students taking hydrology course at Faculty of Teacher Training and Education, Mulawarman University. The results showed that the students were able to observe, ask question, collect data, give reason, and communicate the hydrological conditions of tropical rain forest biomes, especially related to surface ground water and groundwater conditions. Tropical rainforests are very influenced by the hydrological conditions of the region and the availability of water is affected by the forest area as a catchment area. Therefore, the tropical rainforest must be maintained in condition and its duration, so that there is no water crisis and hydrological related disasters.

  12. Seasonal and spatial variability of nutrients and pesticides in streams of the Willamette Basin, Oregon, 1993-95

    USGS Publications Warehouse

    Rinella, F.A.; Janet, M.L.

    1998-01-01

    From April 1993 to September 1995, the U.S. Geological Survey conducted a study of the occurrence and distribution of nutrients and pesticides in surface water of the Willamette and Sandy River Basins, Oregon, as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. About 260 samples were collected at 51 sites during the study; of these, more than 60 percent of the pesticide samples and more than 70 percent of the nutrient samples were collected at 7 sites in a fixed-station network (primary sites) to characterize seasonal water-quality variability related to a variety of land-use activities. Samples collected at the remain ing 44 sites were used primarily to characterize spatial water- quality variability in agricultural river subbasins located throughout the study area.This report describes concentrations of 4 nutrient species (total nitrogen, filtered nitrite plus nitrate, total phosphorus, and soluble reactive phosphorus) and 86 pesticides and pesticide degradation products in streams, during high- and low-flow conditions, receiving runoff from urban, agricultural, forested, and mixed-use lands. Although most nutrient and pesticide concentrations were relatively low, some concentrations exceeded maximum contaminant levels for drinking water and water-quality criteria for chronic toxicity established for the protection of freshwater aquatic life. The largest number of exceedances generally occurred at sites receiving predominantly agricultural inputs. Total nitrogen, filtered nitrite plus nitrate, total phosphorus, and soluble reactive phosphorus concentrations were detected in 89 to 98 percent of the samples; atrazine, simazine, metolachlor, and desethylatrazine were detected in 72 to 94 percent of the samples. Fifty different pesticides and degradation products was detected during the 2-1/2 year study.Seasonally, peak nutrient and pesticide concentrations at the seven primary sites were observed during winter and spring rains. With the exception of soluble reactive phosphorus, peak nutrient concentrations were recorded at agricultural sites during winter rains, whereas peak pesticide concentrations occurred at agricultural sites during spring rains.Spatially, although nutrients were detected slightly more often in samples from the northern Willamette Basin relative to the southern Willamette Basin, concentration distributions in the two areas were similar. About 75 percent more pesticides were detected in the northern basin; however, two-thirds of the pesticide detections in the southern basin were larger in concentration than for the same pesticides detected in the northern basin.Nutrient and pesticide concentrations were associated with percent of upstream drainage area in forest, urbanization, and agriculture. Nutrient concentrations at forested sites were among the smallest observed at any of the sites sampled. In addition, only one pesticide and one pesticide degradation product were detected at forested sites, at concentrations near the method detection limits. The highest nutrient concentrations were observed at agricultural sites. Further, the largest numbers of different pesticides detected were at agricultural sites, at concentrations generally larger than at most other land-use sites. Three pesticides--dichlobenil, prometon, and tebuthiuron--were detected more frequently at a site receiving predominantly urban inputs.

  13. Variation in streamwater quality in an Urban Headwater Stream in the Southern Appalachians

    Treesearch

    Barton D. Clinton; James M. Vose

    2006-01-01

    We examined the influence of a forested landscape on the quality of water in a stream originating on an urban landscape and flowing through National Forest lands. Sample sites included an urban stream (URB), a site on the same stream but within a National Forest (FOR) and 2 km downstream from the URB site, and a small, undisturbed, forested reference tributary of the...

  14. Contributions of acid rain research to the forest science-policy interface: learning from the national acid precipitation assessment program.

    Treesearch

    Charles E. Peterson; David S. Shriner

    2004-01-01

    During the 1970s, there was growing concern by scientists, policy officials and the general public in the USA over the possible effects of acid rain on human health and the environment (crops, forests, water, etc.). The lack of science-based information needed for policy and regulatory decisions led Congress to create an interagency task force in 1980 called the...

  15. Valuing a Global Environmental Good: U.S. Residents' Willingness to Pay to Protect Tropical Rain Forests

    Treesearch

    Randall A. Kramer; D. Evan Mercer

    1997-01-01

    (CV) is the most common technique for valuing nonmarket environmental resources, rarely has it been applied to global environmental goods. This study uses CV in a national survey to assess the value U.S. residents place on tropical rain forest protection. On average, respondents were willing to make a one-time payment of approximately $21-31 per household to protect an...

  16. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island.

    PubMed

    Trueba, Santiago; Pouteau, Robin; Lens, Frederic; Feild, Taylor S; Isnard, Sandrine; Olson, Mark E; Delzon, Sylvain

    2017-02-01

    Increases in drought-induced tree mortality are being observed in tropical rain forests worldwide and are also likely to affect the geographical distribution of tropical vegetation. However, the mechanisms underlying the drought vulnerability and environmental distribution of tropical species have been little studied. We measured vulnerability to xylem embolism (P 50 ) of 13 woody species endemic to New Caledonia and with different xylem conduit morphologies. We examined the relation between P 50 , along with other leaf and xylem functional traits, and a range of habitat variables. Selected species had P 50 values ranging between -4.03 and -2.00 MPa with most species falling in a narrow range of resistance to embolism above -2.7 MPa. Embolism vulnerability was significantly correlated with elevation, mean annual temperature and percentage of species occurrences located in rain forest habitats. Xylem conduit type did not explain variation in P 50 . Commonly used functional traits such as wood density and leaf traits were not related to embolism vulnerability. Xylem embolism vulnerability stands out among other commonly used functional traits as a major driver of species environmental distribution. Drought-induced xylem embolism vulnerability behaves as a physiological trait closely associated with the habitat occupation of rain forest woody species. © 2016 John Wiley & Sons Ltd.

  17. Modern pollen-rain characteristics of tall terra firme moist evergreen forest, southern Amazonia

    NASA Astrophysics Data System (ADS)

    Gosling, William D.; Mayle, Francis E.; Tate, Nicholas J.; Killeen, Timothy J.

    2005-11-01

    The paucity of modern pollen-rain data from Amazonia constitutes a significant barrier to understanding the Late Quaternary vegetation history of this globally important tropical forest region. Here, we present the first modern pollen-rain data for tall terra firme moist evergreen Amazon forest, collected between 1999 and 2001 from artificial pollen traps within a 500 × 20 m permanent study plot (14°34'50″S, 60°49'48″W) in Noel Kempff Mercado National Park (NE Bolivia). Spearman's rank correlations were performed to assess the extent of spatial and inter-annual variability in the pollen rain, whilst statistically distinctive taxa were identified using Principal Components Analysis (PCA). Comparisons with the floristic and basal area data of the plot (stems ≥10 cm d.b.h.) enabled the degree to which taxa are over/under-represented in the pollen rain to be assessed (using R-rel values). Moraceae/Urticaceae dominates the pollen rain (64% median abundance) and is also an important constituent of the vegetation, accounting for 16% of stems ≥10 cm d.b.h. and ca. 11% of the total basal area. Other important pollen taxa are Arecaceae (cf. Euterpe), Melastomataceae/Combretaceae, Cecropia, Didymopanax, Celtis, and Alchornea. However, 75% of stems and 67% of the total basal area of the plot ≥10 cm d.b.h. belong to species which are unidentified in the pollen rain, the most important of which are Phenakospermum guianensis (a banana-like herb) and the key canopy-emergent trees, Erisma uncinatum and Qualea paraensis.

  18. International Critical Zone Science: Opportunities to Build a Global Understanding of Land-Water Linkages

    NASA Astrophysics Data System (ADS)

    McDowell, W. H.

    2015-12-01

    Critical Zone science examines the structure and properties of the thin veneer that links surface properties to deep geology, at time scales of seconds to millennia. One of the fundamental premises of the US Critical Zone Observatories program is that CZOs should include some measurements made in common at all sites, as these common measurements will enable us to make stronger inferences about how the structure and function of the critical zone interact to drive key processes such as soil formation, stream flow generation, and nutrient export. Recent advances in real-time sensors provide new opportunities to address some fundamental questions about how hillslope soils and streams are linked. Data from the Luquillo Critical Zone Observatory in Puerto Rico, for example, document a previously undescribed transition, or flipping, of stream and soil biogeochemistry in a tropical rain forest. Under typical conditions, soil moisture is high and soil oxygen content is often low, especially at depth. Streams, in contrast, are typically near oxygen saturation. Under severe drought, however, oxygen increases dramatically in soil air and declines to values that are well below saturation in streams. This flipping in redox conditions suggests that despite the strong hydrologic connection between hillslope and stream, gas dynamics and potentially solute dynamics are decoupled along the flow path. The international CZO community has the opportunity to develop a suite of sensor arrays to document soil air, groundwater chemistry, and stream water chemistry. Progress towards realizing the potential of these international networks to develop coherent sensor programs will be addressed based on the current status of sensor deployments in CZO networks in the US, China, and Europe.

  19. Instream wood loads in montane forest streams of the Colorado Front Range, USA

    NASA Astrophysics Data System (ADS)

    Jackson, Karen J.; Wohl, Ellen

    2015-04-01

    Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle infestation, although this may reflect the relatively recent nature (< 10 years) of the infestation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. M. Sexton,; A. M. Sadeghi,; X. Zhang,

    The value of watershed-scale, hydrologic and water quality models to ecosystem management is increasingly evident as more programs adopt these tools to evaluate the effectiveness of different management scenarios and their impact on the environment. Quality of precipitation data is critical for appropriate application of watershed models. In small watersheds, where no dense rain gauge network is available, modelers are faced with a dilemma to choose between different data sets. In this study, we used the German Branch (GB) watershed (~50 km 2), which is included in the USDA Conservation Effects Assessment Project (CEAP), to examine the implications of usingmore » surface rain gauge and next-generation radar (NEXRAD) precipitation data sets on the performance of the Soil and Water Assessment Tool (SWAT). The GB watershed is located in the Coastal Plain of Maryland on the eastern shore of Chesapeake Bay. Stream flow estimation results using surface rain gauge data seem to indicate the importance of using rain gauges within the same direction as the storm pattern with respect to the watershed. In the absence of a spatially representative network of rain gauges within the watershed, NEXRAD data produced good estimates of stream flow at the outlet of the watershed. Three NEXRAD datasets, including (1)*non-corrected (NC), (2) bias-corrected (BC), and (3) inverse distance weighted (IDW) corrected NEXRAD data, were produced. Nash-Sutcliffe efficiency coefficients for daily stream flow simulation using these three NEXRAD data ranged from 0.46 to 0.58 during calibration and from 0.68 to 0.76 during validation. Overall, correcting NEXRAD with rain gauge data is promising to produce better hydrologic modeling results. Given the multiple precipitation datasets and corresponding simulations, we explored the combination of the multiple simulations using Bayesian model averaging.« less

  1. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    EPA Science Inventory

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  2. A Student Guide to Tropical Forest Conservation

    Treesearch

    J. Louise Mastrantonio; John K. Francis

    1997-01-01

    Tropical forests, which circle the globe, are surprisingly diverse, ranging from rain forests to savannas. Tropical forests are disappearing at an alarming rate as they are converted to farmland and other uses. Modern forest management practices can help stem the tide by providing income and valuable products while maintaining forest cover. Puerto Rico has already gone...

  3. Tropical savannas and dry forests.

    PubMed

    Pennington, R Toby; Lehmann, Caroline E R; Rowland, Lucy M

    2018-05-07

    In the tropics, research, conservation and public attention focus on rain forests, but this neglects that half of the global tropics have a seasonally dry climate. These regions are home to dry forests and savannas (Figures 1 and 2), and are the focus of this Primer. The attention given to rain forests is understandable. Their high species diversity, sheer stature and luxuriance thrill biologists today as much as they did the first explorers in the Age of Discovery. Although dry forest and savanna may make less of a first impression, they support a fascinating diversity of plant strategies to cope with stress and disturbance including fire, drought and herbivory. Savannas played a fundamental role in human evolution, and across Africa and India they support iconic megafauna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Rain Check Application: Mobile tool to monitor rainfall in remote parts of Haiti

    NASA Astrophysics Data System (ADS)

    Huang, X.; Baird, J.; Chiu, M. T.; Morelli, R.; de Lanerolle, T. R.; Gourley, J. R.

    2011-12-01

    Rainfall observations performed uniformly and continuously over a period of time are valuable inputs in developing climate models and predicting events such as floods and droughts. Rain-Check is a mobile application developed in Google App Inventor Platform, for android based smart phones, to allow field researchers to monitor various rain gauges distributed though out remote regions of Haiti and send daily readings via SMS messages for further analysis and long term trending. Rainfall rate and quantity interact with many other factors to influence erosion, vegetative cover, groundwater recharge, stream water chemistry and runoff into streams impacting agriculture and livestock. Rainfall observation from various sites is especially significant in Haiti with over 80% of the country is mountainous terrain. Data sets from global models and limited number of ground stations do not capture the fine-scale rainfall patterns necessary to describe local climate. Placement and reading of rain gauges are critical to accurate measurement of rainfall.

  5. 77 FR 48494 - Hiawatha East Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ...: Janel Crooks, RAC Coordinator, USDA, Hiawatha National Forest, 820 Rains Drive, Gladstone, Michigan...; attn RAC; 820 Rains Drive, Gladstone, MI 49837, or by email to [email protected] or via facsimile to...

  6. [Species composition and diversity of soil mesofauna in the 'Holy Hills' fragmentary tropical rain forest of Xishuangbanna, China].

    PubMed

    Yang, X; Sha, L

    2001-04-01

    The species composition and diversity of soil mesofauna were examined in fragmented dry tropical seasonal rainforest of tow 'Holy Hills' of Dai nationality, compared with the continuous moist tropical seasonal rain forest of Nature Reserve in Xishuangbanna area. 5 sample quadrats were selected along the diagonal of 20 m x 20 m sampling plot, and the samples of litterfall and 0-3 cm soil were collected from each 50 cm x 10 cm sample quadrat. Animals in soil sample were collected by using dry-funnel(Tullgren's), were identified to their groups according to the order. The H' index, D.G index and the pattern of relative abundance of species were used to compare the diversity of soil mesofauna. The results showed that the disturbance of vegetation and soil resulted by tropical rainforest fragmentation was the major factor affecting the diversity of soil mesofauna. Because the fragmented forest was intruded by some pioneer tree species and the "dry and warm" effect operated, this forest had more litterfall on the floor and more humus in the soil than the continuous moist rain forest. The soil condition with more soil organic matter, total N and P, higher pH value and lower soil bulk density became more favorable to the soil mesofauna. Therefore, the species richness, abundance and diversity of soil mesofauna in fragmented forests were higher than those in continuous forest, but the similarity of species composition in fragmented forest to the continuous forest was minimal. Soil mesofauna diversity in fragmented forests did not change with decreasing fragmented area, indicating that there was no species-area effect operation in this forest. The pattern of relative abundance of species in these forest soils was logarithmic series distribution.

  7. Headwater streams and forest management: Does ecoregional context influence logging effects on benthic communities?

    Treesearch

    R. Bruce Medhurst; Mark S. Wipfli; Chris Binckley; Karl Polivka; Paul F. Hessburg; R. Brion. Salter

    2010-01-01

    Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that...

  8. Freeze-thaw processes and intense winter rainfall: The one-two punch for high streambank legacy sediment and nutrient loads from Mid-Atlantic watersheds

    NASA Astrophysics Data System (ADS)

    Inamdar, S. P.; Johnson, E. R.; Rowland, R. D.; Walter, R. C.; Merritts, D.

    2017-12-01

    Historic and contemporary anthropogenic soil erosion combined with early-American milldams resulted in large deposits of legacy sediments in the valley bottoms of Piedmont watersheds of the eastern US. Breaching of milldams subsequently yielded highly incised streams with exposed vertical streambanks that are vulnerable to erosion. Streambank erosion is attributed to fluvial scouring, freeze-thaw processes and mass wasting. While streambanks represent a large reservoir of fine sediments and nutrients, there is considerable uncertainty about the contribution of these sources to watershed nonpoint source pollution. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze-thaw events followed by intense winter rainstorms can export unusually high concentrations of suspended sediment and particulate nutrients from watersheds. Data from a 12 ha forested, Piedmont, stream following an intense rain event (54 mm) on February 2016 yielded suspended sediment and particulate nutrient (organic carbon and nitrogen) concentrations and exports that exceeded those from tropical storms Irene, Lee, and Sandy that had much greater rainfall and discharge amounts, but which occurred later in the year. A similar response was also observed with regards to turbidity data for USGS stream monitoring locations at Brandywine Creek (813 km2) and White Clay Creek (153 km2). We hypothesize that much of the sediment export associated with winter storms is likely due to erosion of streambank sediments and was driven by the coupled occurrence of freeze-thaw conditions and intense rainfall events. We propose that freeze-thaw erosion represents an important and underappreciated mechanism in streams that "recharges" the sediment supply, which then is available for flushing by moderate to large storms. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze-thaw cycles coupled with winter rain events could increase erosion and transport of streambank sediments with detrimental consequences for water quality and health of downstream aquatic ecosystems. This study underscores the need to better understand the mechanisms of legacy sediment erosion and transport along with appropriate restoration strategies.

  9. Trace gas and aerosol transports into and out of the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Garstang, Michael; Greco, Steven

    1991-01-01

    Overviews of the wet season Amazon Boundary Layer Experiment (ABLE IIB) are presented which give the context of the wet season experiment and some of the results. Copies of all reprints and manuscripts published or accepted for publication are attached. A complete list of all papers published in the reviewed literature, papers presented as well as published as part of conference preceedings, and articles published in the news media are listed in the appendices. Two scales of interaction of the rain forest were pursued in this work: (1) global interactions; and (2) local and regional interactions. Under the first scale, the role of the rain forest in the global system was the central thrust of the work. Under the second scale, the role of the rain forest on the basin and smaller scales was emphasized. The appendices also provide a summary of future work and a listing of degrees awarded during this report period.

  10. Summary of floods in the United States during 1958

    USGS Publications Warehouse

    Hendricks, E.L.

    1964-01-01

    This report describes the most outstanding floods that occurred in the United States during 1958.A series of storms from January 23 to February 16 brought large amounts of precipitation to northern California and produced damaging floods, particularly in the Lower Sacramento Valley where losses totaled about \\$12 million.Major floods, notable because of the large area affected, occurred on many small streams in central and south Texas, following heavy general rains in late February. Extensive flooding occurred along the Gulf Coastal plain on the lower reaches of the major streams from the Brazos River to the Nueces River. Two lives were lost, and property damage exceeded \\$1 million.Damaging floods of April 1-7 followed one of the wettest winters in California history. Swollen streams overflowed their banks throughout the central part of the State, and discharge peaks on many streams exceeded those .of the floods of December 1955. Most severely flooded was the San Francisco Bay area. Total flood damage was estimated at \\$23 million.The storms and floods of April-May in Louisiana and adjacent States outranked all other floods in the United States during 1958 with respect to intensity of rain over a large area, number of streams having maximum discharge of record, rare occurrence of peaks, and great amount (\\$21 million) of resultant damage.Heavy rains on June 8-15 caused one of the greatest summer floods of record in central Indiana. Peak discharges were high and of rare occurrences. Failure of numerous levees along the Wabash River caused great damage. Crop damage alone was estimated at \\$48 million.Intense rains of July 1-2 caused record-breaking floods in southwestern Iowa. Rapid rises and the great magnitude of the floods on small streams resulted in 18 deaths and many injuries. Six towns and cities along the East Nishnabotna River and its tributaries were particularly hard hit; rural damage was also high. Total damage was estimated at \\$15 million.Heavy rains (as much as 40 inches during the last 2 weeks in September) from the middle of September to the middle of October caused destructive floods along the Rio Grande in Texas and Mexico. Many communities were isolated by the flood waters, and damage to crops was great.In addition to the 7 floods mentioned above, 21 others of lesser magnitude are reported in this annual summary.

  11. Convergent structural responses of tropical forests to diverse disturbance regimes.

    PubMed

    Kellner, James R; Asner, Gregory P

    2009-09-01

    Size frequency distributions of canopy gaps are a hallmark of forest dynamics. But it remains unknown whether legacies of forest disturbance are influencing vertical size structure of landscapes, or space-filling in the canopy volume. We used data from LiDAR remote sensing to quantify distributions of canopy height and sizes of 434,501 canopy gaps in five tropical rain forest landscapes in Costa Rica and Hawaii. The sites represented a wide range of variation in structure and natural disturbance history, from canopy gap dynamics in lowland Costa Rica and Hawaii, to stages and types of stand-level dieback on upland Mauna Kea and Kohala volcanoes. Large differences in vertical canopy structure characterized these five tropical rain forest landscapes, some of which were related to known disturbance events. Although there were quantitative differences in the values of scaling exponents within and among sites, size frequency distributions of canopy gaps followed power laws at all sites and in all canopy height classes. Scaling relationships in gap size at different heights in the canopy were qualitatively similar at all sites, revealing a remarkable similarity despite clearly defined differences in species composition and modes of prevailing disturbance. These findings indicate that power-law gap-size frequency distributions are ubiquitous features of these five tropical rain forest landscapes, and suggest that mechanisms of forest disturbance may be secondary to other processes in determining vertical and horizontal size structure in canopies.

  12. Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method

    NASA Astrophysics Data System (ADS)

    Mochizuki, Tomoki; Tani, Akira; Takahashi, Yoshiyuki; Saigusa, Nobuko; Ueyama, Masahito

    2014-02-01

    Terpenoids emitted from forests contribute to the formation of secondary organic aerosols and affect the carbon budgets of forest ecosystems. To investigate seasonal variation in terpenoid flux involved in the aerosol formation and carbon budget, we measured the terpenoid flux of a Larix kaempferi forest between May 2011 and May 2012 by using a relaxed eddy accumulation method. Isoprene was emitted from a fern plant species Dryopteris crassirhizoma on the forest floor and monoterpenes from the L. kaempferi. α-Pinene was the dominant compound, but seasonal variation of the monoterpene composition was observed. High isoprene and monoterpene fluxes were observed in July and August. The total monoterpene flux was dependent on temperature, but several unusual high positive fluxes were observed after rain fall events. We found a good correlation between total monoterpene flux and volumetric soil water content (r = 0.88), and used this correlation to estimate monoterpene flux after rain events and calculate annual terpenoid emissions. Annual carbon emission in the form of total monoterpenes plus isoprene was determined to be 0.93% of the net ecosystem exchange. If we do not consider the effect of rain fall, carbon emissions may be underestimated by about 50%. Our results suggest that moisture conditions in the forest soil is a key factor controlling the monoterpene emissions from the forest ecosystem.

  13. Scaling Stream Flow Response to Forest Disturbance: the SID Project

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Beall, F. D.; Creed, I. F.; Gordon, A. M.; Mackereth, R.; McLaughlin, J. W.; Sibley, P. K.

    2004-05-01

    We do not have a good understanding of the hydrologic implications of forest harvesting in Ontario, either for current or alternative management approaches. Attempts to address these implications face a three-fold problem: data on hydrologic response to forest disturbance in Ontario are lacking; most studies of these responses have been in regions with forest cover and hydrologic conditions that differ from the Ontario context; and these studies have generally been conducted at relatively small scales (<1 km2). It is generally assumed that hydrologic changes induced by forest disturbance should diminish with increasing scale due to the buffering capacity of large drainage basins. Recent modeling exercises and reanalysis of paired-basin results call this widespread applicability of this assumption into question, with important implications for assessing the cumulative impacts of forest disturbance on basin stream flow. The SID (Scalable Indicators of Disturbance) project combines stream flow monitoring across basin scales with the RHESSys modeling framework to identify forest disturbance impacts on stream flow characteristics in Ontario's major forest ecozones. As a precursor to identifying stream flow response to forest disturbance, we are examining the relative control of basin geology, topography, typology and topology on stream flow characteristics under undisturbed conditions. This will assist in identifying the dominant hydrologic processes controlling basin stream flow that must be incorporated into the RHESSys model framework in order to emulate forest disturbance and its hydrologic impacts. We present preliminary results on stream flow characteristics in a low-relief boreal forest landscape, and explore how the dominant processes influencing these characteristics change with basin scale in this landscape under both reference and disturbance conditions.

  14. Spatial contagiousness of canopy disturbance in tropical rain forest: an individual-tree-based test.

    PubMed

    Jansen, Patrick A; van der Meer, Peter J; Bongers, Frans

    2008-12-01

    Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasing the risk of tree fall around tropical forest gaps are (1) increased tree exposure to wind around gaps, (2) reduced stability of trees alongside gaps due to crown asymmetry, or (3) reduced tree health around gaps due to damage from prior disturbances. One hypothesized consequence of elevated disturbance levels around gaps would be that gap-edge zones offer relatively favorable prospects for seedling recruitment, growth, and survival. We tested whether disturbance levels are indeed elevated around natural canopy gaps in a neotropical rain forest in French Guiana, and more so as gaps are larger. We followed the fate of 5660 trees >10 cm stem diameter over five years across 12 ha of old-growth forest and analyzed the risk and magnitude of canopy disturbance events in relation to tree diameter and the proximity and size of natural canopy gaps. We found that the cumulative incidence of disturbance over the five-year survey was not significantly elevated around preexisting gaps, and only weakly related to gap size. Also, neither the risk nor the magnitude of canopy disturbances increased significantly with the proximity of gaps. Moreover, canopy disturbance risk around gaps was independent of gap size, while the magnitude of disturbance events around gaps was weakly related to gap size. Tree size was the major driver of disturbance risk as well as magnitude. We did find an elevated incidence of disturbance inside preexisting gaps, but this "repeat disturbance" was due to an elevated disturbance risk inside gaps, not around gaps. Overall, we found no strong evidence for canopy dynamics in this rain forest being spatially contagious. Our findings are consistent with the traditional view of tropical rain forests as mosaics of patches with predictable regeneration cycles.

  15. 75 FR 5263 - Endangered and Threatened Wildlife and Plants; Proposed Reclassification of the Okaloosa Darter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... channels of Toms, Turkey, Mill, Swift, East Turkey, and Rocky Creeks. Approximately 90 percent of the 457... the stream channel. The creeks with Okaloosa darters are generally shaded over most of their courses... a stream after a rain) of stream sedimentation. Eglin AFB [[Page 5266

  16. 17. WAIKOLU STREAM CROSSING NO. 2, CONSTRUCTED 19371938, AT THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. WAIKOLU STREAM CROSSING NO. 2, CONSTRUCTED 1937-1938, AT THE MOUTH OF WAIKOLU STREAM ON THE BEACH (80' ALTITUDE). VIEW UPSTREAM INTO WAIKOLU VALLEY. NOTE RAIN-PRODUCING CLOUD COVER GATHERED AT THE HEAD OF THE VALLEY. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  17. Colossal carbon! Disturbance and biomass dynamics in Alaska's national forests

    Treesearch

    John Kirkland; Tara Barrett

    2016-01-01

    The Chugach and Tongass National Forests are changing, possibly in response to global warming. Forested areas within Alaska's temperate rain forests are creeping into areas that were previously too cold or too wet. These forests are also becoming denser. As biomass increases, the amount of carbon stored in the forest also increases. Tara Barrett, a...

  18. An Overview.

    ERIC Educational Resources Information Center

    NatureScope, 1989

    1989-01-01

    Focuses on the characteristics of tropical rain forests, where they grow, and some of the misconceptions about them. Includes six activities on: figuring out forests, jungle journey, tropical trivia trek, forest comparisons, and lost in the jungle. Five copyable sheets are provided. (RT)

  19. Guatemalan forest synthesis after Pleistocene aridity

    PubMed Central

    Leyden, Barbara W.

    1984-01-01

    Sediments from two lakes in the Peten Department, Guatemala, provide palynological evidence from Central America of late Pleistocene aridity and subsequent synthesis of mesic forests. Late Glacial vegetation consisted of marsh, savanna, and juniper scrub. An early Holocene temperate forest preceded a mesic tropical forest with Brosimum (ramon). Thus “primeval” rain forests of Guatemala are no older than 10,000 to 11,000 years and are considerably younger in the Peten due to Mayan disturbances. Among dated Neotropical sites, the Peten has the most mesic vegetation yet shown to have supplanted xeric vegetation present during the Pleistocene. The arid late Glacial-humid early Holocene transition appears to have been pantropical in the lowlands. The Peten was not a Pleistocene refugium for mesophytic taxa, as has been suggested. Thus genesis of extant rain forests in northern Central America and southern Mexico remains unexplained. Images PMID:16593498

  20. [Soil seed bank research in China: present status, progress and challenges].

    PubMed

    Shen, You-Xin; Zhao, Chun-Yan

    2009-02-01

    By searching soil seed bank (SSB) papers from http://www.cqvip.com (1989-2006) and Web of Science (1985-2006), the information on SSB density, species richness, and research methods were summarized according to the 29 classified vegetation types in Vegetation of China. In total, the data of 238 sites with 14 vegetation types were collected. The results showed that the research methods adopted by different researchers and the obtained data of SSB density and species richness varied greatly. In related researches, sampling work was mostly conducted in April and October, sampling plot number ranged from 2 to 480, plot area ranged from 78 cm2 to 10,000 cm2, with 10 cm x 10 cm and 20 cm x 20 cm as most common, and total sampling area ranged from 600 cm2 to 500,000 cm2, with the most being 1,000-10,000 cm2. SSB density varied from 8 ind x m(-2) (desert) to 65,355 ind x m(-2) (tropical rain forest), and species richness varied from 1 (secondary bare alkali-saline patch in temperate) to 74 (tropical seasonal rain forest) per site. SSB density and species richness were higher in tropical rain forest and seasonal rain forest than in temperate coniferous forest, and in manmade forest than in agricultural land or barren land. Grassland, desert, and meadow had smaller species richness. In future, the SSB research should be extended both in scope and in deepness, with the focus on the long term research and strategy research of some important ecosystems, and the research should be incorporated into vegetation regeneration and restoration studies. The related methodological research should be also emphasized in the future.

  1. Overview of Nepal's energy sources and environment

    NASA Astrophysics Data System (ADS)

    Sharma, C. K.

    In the Kathmandu Valley, Nepal faces environmental problems of most industrialized countries whereas it has problems similar to the least developed countries, in the hills. Types and quantity of energy use have a close link with the environmental degradation in Nepal Himalaya. Over dependence on the forest to meet the energy demand in the hills has aggravated the environmental problems. Lack of forest cover on the hills, the intense monsoon rain, the fragile geology and steep terrain are contributing to the acceleration of landslides, soil erosion and temperature rise. The rise of average minimum temperature is causing glaciers to retreat and thereby the development of large bodies of glacial lake. Glacial lake outbursts of 1981 in Kodari and of 1985 in Namche bazar area caused extensive damage on infrastructures down stream. Heavy use of commercial fuel (hydrocarbons) in the bowl shaped Kathmandu valley is causing air and water pollution and an increase in the average minimum temperature. Extensive development of hydropower, biogas plants and massive reforestation on naked hills and efficient use of imported hydrocarbons are the solution to existing energy and environmental problems.

  2. Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia.

    PubMed

    Harris, C S; Tertuliano, M; Rajeev, S; Vellidis, G; Levy, K

    2018-03-01

    To examine Salmonella and Escherichia coli in storm runoff and irrigation ponds used by fresh produce growers, and compare Salmonella serovars with those found in cases of human salmonellosis. We collected water before and after rain events at two irrigation ponds on farms in southern Georgia, USA, and collected storm runoff/storm flow within the contributing watershed of each pond. Salmonella and E. coli concentrations were higher in ponds after rain events by an average of 0·46 (P < 0·01) and 0·61 (P < 0·05) log 10 most probable number (MPN) per 100 ml respectively. Salmonella concentrations in storm runoff from fields and forests were not significantly higher than in ponds before rain events, but concentrations in storm flow from streams and ditches were higher by an average of 1·22 log 10 MPN per 100 ml (P < 0·001). Eighteen Salmonella serovars were identified from 155 serotyped isolates, and eight serovars were shared between storm runoff/storm flow and ponds. Seven of the serovars, including five of the shared serovars, were present in cases of human illness in the study region in the same year. However, several serovars most commonly associated with human illness in the study region (e.g. Javiana, Enteritidis, and Montevideo) were not found in any water samples. Salmonella and E. coli concentrations in irrigation ponds were higher, on average, after rain events, but concentrations of Salmonella were low, and the ponds met FDA water quality standards based on E. coli. Some similarities and notable differences were found between Salmonella serovars in water samples and in cases of human illness. This study directly examined storm runoff/storm flow into irrigation ponds and quantified increases in Salmonella and E. coli following rain events, with potential implications for irrigation pond management as well as human health. © 2018 The Society for Applied Microbiology.

  3. Maybeso Experimental Forest.

    Treesearch

    Valerie Rapp

    2004-01-01

    The Maybeso Experimental Forest is in southeast Alaska within the Tongass National Forest, the largest national forest in the United States and home to the Northern Hemi-sphere's largest temperate rain forest. Located about 42 miles west of Ketchikan, Alaska, it is on Prince of Wales Island, the largest island of the Alexander Archipelago and the third largest...

  4. Caribbean dry forest networking: an opportunity for conservation

    Treesearch

    K. Banda-Rodriguez; J. Weintritt; R.T. Pennington

    2016-01-01

    Seasonally dry tropical forest is the most threatened tropical forest in the world. Though its overall plant species diversity is lower than in neighboring biomes such as rain forest, species endemism can be high, and its conservation has often been neglected. Caribbean dry forests face diverse threats including tourism, agriculture, and climate change. The Latin...

  5. From the Guiana Highlands to the Brazilian Atlantic Rain Forest: four new species of Selaginella (Selaginellaceae – Lycopodiophyta: S. agioneuma, S. magnafornensis, S. ventricosa, and S. zartmanii)

    PubMed Central

    López, Christian A.; Sierra, Adriel M.; Ceballos, Jorge

    2018-01-01

    We describe four new species in the genus Selaginella (i.e., S. agioneuma, S. magnafornensis, S. ventricosa, and S. zartmanii) from Brazil, all presently classified in subg. Stachygynandrum. For each of the new taxa we discuss taxonomic affinities and provide information on habitat, distribution, and conservation status. In addition, line drawings and scanning electron microscope (SEM) images of stems sections, leaves, and spores (when present) are included. Selaginella agioneuma and S. magnafornensis are from the State of Espíritu Santo where they inhabit premontane to montane Atlantic rain forests in the Reserva Biológica Augusto Ruschi and Parque Estadual Forno Grande, respectively. Selaginella ventricosa was collected in upper montane forests at Parque Nacional Serra da Mocidade, State of Roraima and S. zartmanii in premontane Amazon rain forests on upper Rio Negro at Mpio. São Gabriel da Cachoeira, Amazonas State in both Serra Curicuriari and the Morro dos Seis Lagos Biological Reserve. PMID:29770272

  6. Amazon plant diversity revealed by a taxonomically verified species list.

    PubMed

    Cardoso, Domingos; Särkinen, Tiina; Alexander, Sara; Amorim, André M; Bittrich, Volker; Celis, Marcela; Daly, Douglas C; Fiaschi, Pedro; Funk, Vicki A; Giacomin, Leandro L; Goldenberg, Renato; Heiden, Gustavo; Iganci, João; Kelloff, Carol L; Knapp, Sandra; Cavalcante de Lima, Haroldo; Machado, Anderson F P; Dos Santos, Rubens Manoel; Mello-Silva, Renato; Michelangeli, Fabián A; Mitchell, John; Moonlight, Peter; de Moraes, Pedro Luís Rodrigues; Mori, Scott A; Nunes, Teonildes Sacramento; Pennington, Terry D; Pirani, José Rubens; Prance, Ghillean T; de Queiroz, Luciano Paganucci; Rapini, Alessandro; Riina, Ricarda; Rincon, Carlos Alberto Vargas; Roque, Nádia; Shimizu, Gustavo; Sobral, Marcos; Stehmann, João Renato; Stevens, Warren D; Taylor, Charlotte M; Trovó, Marcelo; van den Berg, Cássio; van der Werff, Henk; Viana, Pedro Lage; Zartman, Charles E; Forzza, Rafaela Campostrini

    2017-10-03

    Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests.

  7. Atlantic tropical forest mapping in the northern coastal zone of Sao Paulo State, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simi, R. Jr.; Almeida, S.A.S.; Manso, A.P.

    1997-06-01

    The northern coastal zone of Sao Paulo State includes the cities of Ubatuba, Caraguatatuba, Sao Sebastiao and Ilha Bela. Large development projects, such as road and highway constructions and joint real estate exploration of susceptible coastal ecosystems have threatened the harmony and ecological stability of these ecosystems. Recently, the Atlantic tropical rain forest has been the most destructed ecosystem in the coastal zone in response to real estate investments in urban areas along the main roads. In the northern coastal zone of Sao Paulo State, 80% of the counties are included in the State Park of Serra do Mar. Asmore » tourism is a strong growing economical activity, as well as coastal production, it should be of interest to create a plan for sustainable development. The objective of this study is to map and characterize land use cover changes with emphasis on the Atlantic tropical rain forest degradation using Landsat TM images. Preliminary results for land use cover changes indicate that the Atlantic tropical rain forest was reduced by 6.1 % during the period of July 1992 and October 1995.« less

  8. Amazon plant diversity revealed by a taxonomically verified species list

    PubMed Central

    Cardoso, Domingos; Särkinen, Tiina; Alexander, Sara; Amorim, André M.; Bittrich, Volker; Celis, Marcela; Daly, Douglas C.; Fiaschi, Pedro; Funk, Vicki A.; Giacomin, Leandro L.; Heiden, Gustavo; Iganci, João; Kelloff, Carol L.; Knapp, Sandra; Cavalcante de Lima, Haroldo; Machado, Anderson F. P.; dos Santos, Rubens Manoel; Mello-Silva, Renato; Michelangeli, Fabián A.; Mitchell, John; Moonlight, Peter; de Moraes, Pedro Luís Rodrigues; Mori, Scott A.; Nunes, Teonildes Sacramento; Pennington, Terry D.; Pirani, José Rubens; Prance, Ghillean T.; de Queiroz, Luciano Paganucci; Rapini, Alessandro; Rincon, Carlos Alberto Vargas; Roque, Nádia; Shimizu, Gustavo; Sobral, Marcos; Stehmann, João Renato; Stevens, Warren D.; Taylor, Charlotte M.; Trovó, Marcelo; van den Berg, Cássio; van der Werff, Henk; Viana, Pedro Lage; Zartman, Charles E.; Forzza, Rafaela Campostrini

    2017-01-01

    Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests. PMID:28923966

  9. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    Treesearch

    A. Argerich; S.L. Johnson; S.D. Sebestyen; C.C. Rhoades; E. Greathouse; J.D. Knoepp; M.B. Adams; G.E. Likens; J.L. Campbell; W.H. McDowell; F.N. Scatena; G.G. Ice

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among...

  10. Regulating riparian forests for aquatic productivity in the Pacific Northwest, USA: addressing a paradox.

    PubMed

    Newton, Michael; Ice, George

    2016-01-01

    Forested riparian buffers isolate streams from the influence of harvesting operations that can lead to water temperature increases. Only forest cover between the sun and stream limits stream warming, but that cover also reduces in-stream photosynthesis, aquatic insect production, and fish productivity. Water temperature increases that occur as streams flow through canopy openings decrease rapidly downstream, in as little as 150 m. Limiting management options in riparian forests restricts maintenance and optimization of various buffer contributions to beneficial uses, including forest products, fish, and their food supply. Some riparian disturbance, especially along cold streams, appears to benefit fish productivity. Options for enhancing environmental investments in buffers should include flexibility in application of water quality standards to address the general biological needs of fish and temporary nature of clearing induced warming. Local prescriptions for optimizing riparian buffers and practices that address long-term habitat needs deserve attention. Options and incentives are needed to entice landowners to actively manage for desirable riparian forest conditions.

  11. RIPARIAN FOREST INDICATORS OF POTENTIAL FUTURE STREAM CONDITION

    EPA Science Inventory

    Large wood in streams can play an extraordinarily important role in influencing the physical structure of streams and in providing habitat for aquatic organisms. Since wood is continually lost from streams, predicting the future input of wood to streams from riparian forests is c...

  12. Analysis of Chromobacterium sp. natural isolates from different Brazilian ecosystems

    PubMed Central

    Lima-Bittencourt, Cláudia I; Astolfi-Filho, Spartaco; Chartone-Souza, Edmar; Santos, Fabrício R; Nascimento, Andréa MA

    2007-01-01

    Background Chromobacterium violaceum is a free-living bacterium able to survive under diverse environmental conditions. In this study we evaluate the genetic and physiological diversity of Chromobacterium sp. isolates from three Brazilian ecosystems: Brazilian Savannah (Cerrado), Atlantic Rain Forest and Amazon Rain Forest. We have analyzed the diversity with molecular approaches (16S rRNA gene sequences and amplified ribosomal DNA restriction analysis) and phenotypic surveys of antibiotic resistance and biochemistry profiles. Results In general, the clusters based on physiological profiles included isolates from two or more geographical locations indicating that they are not restricted to a single ecosystem. The isolates from Brazilian Savannah presented greater physiologic diversity and their biochemical profile was the most variable of all groupings. The isolates recovered from Amazon and Atlantic Rain Forests presented the most similar biochemical characteristics to the Chromobacterium violaceum ATCC 12472 strain. Clusters based on biochemical profiles were congruent with clusters obtained by the 16S rRNA gene tree. According to the phylogenetic analyses, isolates from the Amazon Rain Forest and Savannah displayed a closer relationship to the Chromobacterium violaceum ATCC 12472. Furthermore, 16S rRNA gene tree revealed a good correlation between phylogenetic clustering and geographic origin. Conclusion The physiological analyses clearly demonstrate the high biochemical versatility found in the C. violaceum genome and molecular methods allowed to detect the intra and inter-population diversity of isolates from three Brazilian ecosystems. PMID:17584942

  13. Microbial availability and size fractionation of dissolved organic carbon after drought in an intermittent stream: biogeochemical link across the stream-riparian interface.

    PubMed

    Romaní, Anna M; Vázquez, Eusebi; Butturini, Andrea

    2006-10-01

    The evolution of dissolved organic carbon (DOC) molecular-weight fractions, DOC biodegradability (BDOC), DOC origin [fluorescence index (FI)], and enzyme activities between the stream waters (main and ephemeral channel) and ground waters (riparian and hillslope) were analyzed during the transition from drought to precipitation in a forested Mediterranean stream. After the first rains, DOC content in stream water reached its maximum value (10-18 mg L(-1)), being explained by the leaching of deciduous leaves accumulated on the stream bed during drought. During this period, the largest molecules (>10 kDa), were the most biodegradable, as indicated by high BDOC values measured during storm events and high enzymatic activities (especially for leucine-aminopeptidase). DOC >100 kDa was strongly immobilized (78%) at the stream-riparian interface, whereas the smallest molecules (<1 kDa) were highly mobile and accumulated in ground waters, indicating their greater recalcitrance. Differential enzymatic patterns between compartments showed a fast utilization of polysaccharides in the flowing water but a major protein utilization in the ground water. The results of the FI indicated a more terrestrial origin of the larger molecules in the flowing water, also suggesting that transformation of material occurs through the stream-riparian interface. Microbial immobilization and fast utilization of the most biodegradable fraction at the stream-riparian interface is suggested as a relevant DOC retention mechanism just after initial recharging of the ground water compartment. Large and rapid DOC inputs entering the intermittent river system during the transition from drought to precipitation provide available N and C sources for the heterotrophs. Heterotrophs efficiently utilize these resources that were in limited supply during the period of drought. Such changes in C cycling may highlight possible changes in organic matter dynamics under the prediction of extended drying periods in aquatic ecosystems.

  14. Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 – 2013

    PubMed Central

    Ribic, Christine A.; Donner, Deahn M.; Beck, Albert J.; Reinecke, Sue; Eklund, Dan

    2017-01-01

    The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs. PMID:28081271

  15. Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 - 2013.

    PubMed

    Ribic, Christine A; Donner, Deahn M; Beck, Albert J; Rugg, David J; Reinecke, Sue; Eklund, Dan

    2017-01-01

    The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987-2013 (Nicolet, northeast Wisconsin) and 1997-2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.

  16. Beaver colony density trends on the Chequamegon-Nicolet National Forest, 1987 – 2013

    USGS Publications Warehouse

    Ribic, Christine; Donner, Deahn M.; Beck, Albert J.; Rugg, David J.; Reinecke, Sue; Eklund, Dan

    2017-01-01

    The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.

  17. Deconstructing the Effects of Flow on DOC, Nitrate, and Major Ion Interactions Using a High-Frequency Aquatic Sensor Network

    NASA Astrophysics Data System (ADS)

    Koenig, L. E.; Shattuck, M. D.; Snyder, L. E.; Potter, J. D.; McDowell, W. H.

    2017-12-01

    Streams provide a physical linkage between land and downstream river networks, delivering solutes derived from multiple catchment sources. We analyzed high-frequency time series of stream solutes to characterize the timing and magnitude of major ion, nutrient, and organic matter transport over event, seasonal, and annual timescales as well as to assess whether nitrate (NO3-) and dissolved organic carbon (DOC) transport are coupled in catchments, which would be expected if they are subject to similar biogeochemical controls throughout the watershed. Our data set includes in situ observations of NO3-, fluorescent dissolved organic matter (DOC proxy), and specific conductance spanning 2-4 years in 10 streams and rivers across New Hampshire, including observations of nearly 700 individual hydrologic events. We found a positive response of NO3- and DOC to flow in forested streams, but watershed development led to a negative relationship between NO3- and discharge, and thus a decoupling of the overall NO3- and DOC responses to flow. On event and seasonal timescales, NO3- and DOC consistently displayed different behaviors. For example, in several streams, FDOM yield was greatest during summer storms while NO3- yield was greatest during winter storms. Most streams had generalizable storm NO3- and DOC responses, but differences in the timing of NO3- and DOC transport suggest different catchment sources. Further, certain events, including rain-on-snow and summer storms following dry antecedent conditions, yielded disproportionate NO3- responses. High-frequency data allow for increased understanding of the processes controlling solute variability and will help reveal their responses to changing climatic regimes.

  18. Comparing streambed light availability and canopy cover in streams with old-growth versus early-mature riparian forests in western Oregon

    Treesearch

    D.R. Warren; W.S. Keeton; H.A. Bechtold; E.J. Rosi-Marshall

    2013-01-01

    Light availability strongly influences stream primary production, water temperatures and resource availability at the base of stream food webs. In headwater streams, light is regulated primarily by the riparian forest, but few studies have evaluated the influence of riparian forest stand age and associated structural differences on light availability. In this study, we...

  19. Assessment of the risk of invasion of national forest streams in the Pacific Northwest by farmed Atlantic salmon.

    Treesearch

    Peter A. Bisson

    2006-01-01

    This report describes the evidence for invasion of Pacific Northwest streams by Atlantic salmon (Salmo salar) that have escaped from marine salmon farms, and assesses the potential impact of farmed salmon invasion on native fishes inhabiting streams on National Forest System lands. The current risk to streams on National Forest lands in the Pacific Northwest from...

  20. Building a Global Network of Hydro-climatology Sites in Cloud-affected Tropical Montane Forests

    NASA Astrophysics Data System (ADS)

    Moore, G. W.; Asbjornsen, H.; Bruijnzeel, S., Sr.; Berry, Z. C.; Giambelluca, T. W.; Martin, P.; Mulligan, M.

    2015-12-01

    Tropical montane forests are characteristically wet environments with low evapotranspiration and sometimes significant contributions from fog interception. They are often located at headwater catchments critical for water supplies, but ecohydroclimate data in these regions are sparse. Such evidence may be crucial for assessing climate alterations in these sensitive ecosystems. As part of a global effort led by the Tropical Montane Cloud Forest Research Coordination Network (Cloudnet - http://cloudnet.agsci.colostate.edu), we aim to extend the network of tropical montane forest sites and establish robust protocols for measuring key ecohydroclimatic parameters, including fog interception, windblown rain, throughfall, leaf wetness, and micrometeorological conditions. Specific recommendations for standardized protocols include (1) rain and fog collectors uniquely designed to separately quantify fog interception from direct rain inputs, even in windy conditions, (2) trough-style throughfall gages that collect 40 times the area of a typical tipping bucket gage with added features to reduce splash-out, (3) clusters of leaf wetness sensors to differentiate frequency and duration of wetness caused by rain and fog on windward and leeward exposures, and (4) basic micrometeorological sensors for solar radiation, temperature, humidity, and wind. At sites where resources allow for additional measurements, we developed protocols for quantifying soil moisture, soil saturation, and plant water uptake from both roots and leaves (i.e. foliar absorption), since these are also important drivers in these systems. Participating sites will be invited to contribute to a global meta-analysis that will provide new insights into the ecohydrology of cloud-affected tropical montane forests.

  1. Estimation of the rain signal in the presence of large surface clutter

    NASA Technical Reports Server (NTRS)

    Ahamad, Atiq; Moore, Richard K.

    1994-01-01

    The principal limitation for the use of a spaceborne imaging SAR as a rain radar is the surface-clutter problem. Signals may be estimated in the presence of noise by averaging large numbers of independent samples. This method was applied to obtain an estimate of the rain echo by averaging a set of N(sub c) samples of the clutter in a separate measurement and subtracting the clutter estimate from the combined estimate. The number of samples required for successful estimation (within 10-20%) for off-vertical angles of incidence appears to be prohibitively large. However, by appropriately degrading the resolution in both range and azimuth, the required number of samples can be obtained. For vertical incidence, the number of samples required for successful estimation is reasonable. In estimating the clutter it was assumed that the surface echo is the same outside the rain volume as it is within the rain volume. This may be true for the forest echo, but for convective storms over the ocean the surface echo outside the rain volume is very different from that within. It is suggested that the experiment be performed with vertical incidence over forest to overcome this limitation.

  2. The role of urban forest to reduce rain acid in urban industrial areas

    NASA Astrophysics Data System (ADS)

    Slamet, B.; Agustiarni, Y.; Hidayati; Basyuni, M.

    2018-03-01

    Urban forest has many functions mainly on improving the quality of the urban environment. One of the functions is to increase pH and reduce dangerous chemical content. The aim of the research is to find out the role of vegetation density of urban forest around the industrial area in reducing the acid rain. The condition of land cover was classified into four classes which are dense, medium, sparse and open area. The water of the throughfall and stemflow was taken from each type of land cover except in the open area. Parameters measured in this study are water acidity (pH), anion content (SO4 2- and NO3 -), cation content (Ca2+, Mg2+, and NH4 +) and electrical conductivity (EC). The results indicated that urban forest vegetation was able to increase the pH of rain water from 5.42 which is in an open area without vegetation to be 7.13 and 7.32 in dense and moderate vegetation cover by throughfall mechanism, respectively. Rain water acidity also decreased through stemflow mechanism with a pH ranged from 5.92 - 6.43. Urban forest vegetation decreased sulfate content (SO42-) from 528.67 mg/l in open area to 44 - 118 mg/l by throughfall mechanism and ranged from 90 to 366.67 mg/l through stemflow mechanism. Urban forest vegetation significantly decreased the rainwater nitrate content from 27 mg/l to 0.03 - 0.70 mg/l through the mechanism of throughfall and between 1.53 - 8.82 mg/l through the stemflow mechanism. Urban forest vegetation also increased the concentration of cations (NH4+, Ca2+, Mg2+, Na+) compared with open areas. Urban forest vegetation showed increased the electrical conductivity (EC) from 208.12 μmhos/cm to 344.67 - 902.17 μmhos/cm through the through fall mechanism and 937.67 - 1058.70 μmhos/cm through the stemflow mechanism. The study suggested that urban forests play a significant role in reducing rainwater acidity and improving the quality of rainwater that reached the soil surface.

  3. The impacts of selective logging and clear-cutting on woody plant diversity after 40years of natural recovery in a tropical montane rain forest, south China.

    PubMed

    Ding, Yi; Zang, Runguo; Lu, Xinghui; Huang, Jihong

    2017-02-01

    Historically, clear-cutting and selective logging have been the commercial logging practices. However, the effect of these pervasive timber extraction methods on biodiversity in tropical forests is still poorly understood. In this study, we compared abiotic factors, species diversity, community composition, and structure between ca. 40-year-old clear-cut (MCC); ca. 40-year-old selectively logged (MSL); and tropical old growth montane rain forests (MOG) on Hainan Island, China. Results showed that there were a large number of trees with a diameter at breast height (DBH) <30cm in the two logged forests. Additionally, the two logged forests only had 40% of the basal area of the large trees (DBH≥30cm) found in the old growth forest. The species richness and Shannon-Wiener diversity indices generally showed no difference among the three forest types. MCC had 70% of the species richness of the large trees in the MOG, whereas MSL and MOG had similar species richness. High value timber species had similar species richness among the three forest types, but a lower abundance and basal area of large trees in MCC. The species composition was distinct between the three forests. Large trees belonging to the family Fagaceae dominated in the logged forests and played a more important role in the old growth forest. Huge trees (DBH≥70cm) were rare in MCC, but were frequently found in MSL. Most abiotic factors varied inconsistently among the three forest types and few variables related to species diversity, community structure and composition. Our study indicated that MSL had a relatively faster recovery rate than MCC in a tropical montane rain forest after 40years, but both logged forests had a high recovery potential over a long-term. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Applications of a hand-held GPS receiver in South American rain forests

    NASA Technical Reports Server (NTRS)

    Baksh, Michael

    1991-01-01

    A hand-held Global Positioning System receiver was used to determine the precise locations of villages, houses, gardens, and other cultural and environmental features in poorly mapped South American rain forests. The Magellan NAV 1000 unit profides extremely accurate latitude and longitude information, but determination of altitude is problematical. Overall, the receiver effectively allows anthropologists to obtain essential locational data useful for categorizing land uses, mapping tribal boundaries, and other applications in regions where environmental conditions are harsh and/or accessibility is difficult.

  5. Peak discharges in steep mountain catchments in relation to rainfall variability, vegetation cover and geomorphology of the Rift Valley Escarpment of Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebreyohannes, Tesfaalem; Frankl, Amaury; Haile, Mitiku; Abraha, Amanuel; Monsieurs, Elise; Nyssen, Jan

    2015-04-01

    The hydrological characteristics of steep mountain streams are often considered to be mainly influenced by rainfall distribution and topography. In this study, with the objective of analyzing the runoff response of mountain catchments, a total of 340 peak stage discharges were recorded in three rainy seasons (2012-2014) in 11 sloping (27-65%) mountain catchments (0.4 - 25 km²) of the marginal western Rift Valley escarpment of Northern Ethiopia. Daily rainfall data were collected using 7 rain gauges installed at different altitudes (1623 - 2851 m a.s.l) in and nearby the catchments, and used to calculate weighted average daily rain depths over the catchments. Event peak discharges were calculated from daily measurements by 11 crest stage gauges using the Manning's equation. Percentages of land use and cover classes were detected from high resolution (0.6 m) Google Earth imagery (February 1, 2014). Morphometric characteristics of the catchments were computed from ASTER digital elevation model and topographic maps. Correlation analysis between daily rainfall and peak discharge showed direct relationship (R² = 0.5-0.94, P<0.01) in all the catchments. The average specific peak discharge was negatively related to percentage of forest and grass cover (R² = 0.64, P<0.01), time of concentration (R² = 0.31, P<0.01), drainage texture (R² = 0.42, P<0.01), and catchment perimeter (R² = 0.36, P<0.01). The specific peak discharge was positively correlated with average slope gradient of the catchments (R² = 0.34, P<0.01) and with an index representing the spatial distribution of forest and grass cover (R² = 0.43, P<0.01). A stepwise multiple regression analyses showed that 84% (P<0.01) of the variability of the runoff response in the catchments can be predicted by the percentage of forest and grass cover and the relief ratio of the catchments. All in all, this study demonstrates that the magnitude of flash floods in mountain catchments is not only influenced by the morphometric characteristics of the catchments and by rainfall, but more importantly even by vegetation cover (forest and grasses).

  6. Instream wood recruitment, channel complexity, and their relationship to stream ecology in forested headwater streams under alternative stable states

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E.

    2015-12-01

    Human alteration to forests has had lasting effects on stream channels worldwide. Such land use changes affect how wood enters and is stored in streams as individual pieces and as logjams. Changes in wood recruitment affect the complexity and benefits wood can provide to the stream environment, such as zones of flow separation that store fine sediment and organic matter, increased nutrient processing, and greater habitat potential, which can enhance biota and cascade through stream-riparian ecosystems. Previous research in our study area shows that modern headwater streams flowing through old-growth, unmanaged forests have more wood than streams in young, managed forests, but does not explicitly evaluate how wood affects channel complexity or local ecology. 'Managed' refers to forests previously or currently exposed to human alteration. Alteration has long since ceased in some areas, but reduced wood loads in managed streams persist. Our primary objective was to quantify stream complexity metrics, with instream wood as a mediator, on streams across a gradient of management and disturbance histories in order to examine legacy effects of human alteration to forests. Data collected in the Southern Rocky Mountains include 24 2nd to 3rd order subalpine streams categorized into: old-growth unmanaged; younger, naturally disturbed unmanaged; and younger managed. We assessed instream wood loads and logjams and evaluated how they relate to channel complexity using a number of metrics, such as standard deviation of bed and banks, volume of pools, ratios of stream to valley lengths and stream to valley area, and diversity of substrate, gradient, and morphology. Preliminary results show that channel complexity is directly related to instream wood loads and is greatest in streams in old-growth. Related research in the field area indicates that streams with greater wood loads also have increased nutrient processing and greater abundance and diversity of aquatic insect predators.

  7. The biogeographic origin of a radiation of trees in Madagascar: implications for the assembly of a tropical forest biome.

    PubMed

    Federman, Sarah; Dornburg, Alex; Downie, Alexander; Richard, Alison F; Daly, Douglas C; Donoghue, Michael J

    2015-10-05

    Madagascar's rain forests are characterized by extreme and uneven patterns of species richness and endemicity, the biogeographic and evolutionary origins of which are poorly understood. Here we use a time-calibrated phylogeny of a dominant group of trees in Madagascar's eastern rain forests, Canarium, and related Burseraceae (Canarieae), to test biogeographic hypotheses regarding the origin and radiation of the flora of this unique biome. Our findings strongly support the monophyly of Malagasy Canarium, suggesting that this clade represents a previously undocumented in situ radiation. Contrary to expectations of dispersal from Africa during the Oligocene, concurrent with the formation of Madagascar's rain forest biome, our analyses support a late Miocene origin for Malagasy Canarium, probably by long distance dispersal from Southeast Asia. Our study illustrates the importance of considering long distance dispersal as a viable explanation for clades with pantropical distributions diversifying subsequent to the Oligocene, and it highlights the formation of the Indo-Australian Archipelago and associated fast-moving equatorial surface currents, suggesting an under-appreciated evolutionary link among tropical centers of endemism. We postulate that the relatively recent establishment and radiation of Canarium in Madagascar may have been facilitated by the highly stochastic climates associated with these forest ecosystems.

  8. The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability.

    PubMed

    Pennington, R Toby; Lavin, Matt

    2016-04-01

    A fundamental premise of this review is that distinctive phylogenetic and biogeographic patterns in clades endemic to different major biomes illuminate the evolutionary process. In seasonally dry tropical forests (SDTFs), phylogenies are geographically structured and multiple individuals representing single species coalesce. This pattern of monophyletic species, coupled with their old species stem ages, is indicative of maintenance of small effective population sizes over evolutionary timescales, which suggests that SDTF is difficult to immigrate into because of persistent resident lineages adapted to a stable, seasonally dry ecology. By contrast, lack of coalescence in conspecific accessions of abundant and often widespread species is more frequent in rain forests and is likely to reflect large effective population sizes maintained over huge areas by effective seed and pollen flow. Species nonmonophyly, young species stem ages and lack of geographical structure in rain forest phylogenies may reflect more widespread disturbance by drought and landscape evolution causing resident mortality that opens up greater opportunities for immigration and speciation. We recommend full species sampling and inclusion of multiple accessions representing individual species in phylogenies to highlight nonmonophyletic species, which we predict will be frequent in rain forest and savanna, and which represent excellent case studies of incipient speciation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China.

    PubMed

    Lü, Xiao-Tao; Tang, Jian-Wei; Feng, Zhi-Li; Li, Mai-He

    2009-01-01

    Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with > or = 2 cm diameter at breast height (dbh) were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha), 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded) was the most important family in the study forests. The population density, basal area and importance value index (IVI) varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha) accounted for 1.4% of the total community above-ground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales.

  10. Stream corridor management

    Treesearch

    Richard E. Wehnes

    1989-01-01

    The quality of streams and stream habitat for aquatic life and terrestrial animals in the central hardwood forest can be maintained or enhanced through careful protection, management, and re-establishment of streamside forests.

  11. How much of stream and groundwater comes from snow? A stable isotope perspective in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Beria, H.; Schaefli, B.; Ceperley, N. C.; Michelon, A.; Larsen, J.

    2017-12-01

    Precipitation which once fell as snow is predicted to fall more often as liquid rain now that climate is, and continues, warming. Within snow dominated areas, preferential winter groundwater recharge has been observed, however a shorter winter season and smaller snow fraction results in earlier snowmelt and thinner snowpacks. This has the potential to change the supply of snow water sources to both streams and groundwater, which has important implications for flow regimes and water resources. Stable isotopes of water (2H and 18O) allow us to discriminate rain vs snow signatures within water flowing in the stream or the subsurface. Using one year of isotope data collected in a Swiss Alpine catchment (Vallon de Nant, Vaud), we developed novel forward Bayesian mixing models, based on statistical and empirical likelihoods, to quantify source contributions and uncertainty estimates. To account for the spatial heterogeneity in precipitation isotopes, we parameterized the model accounting for elevation effects on isotopes, calculated using the network of GNIP stations in Switzerland. Instead of sampling meltwater, we sampled snowpack throughout the season and across a steep elevation gradient (1241m to 2455m) to infer the snowmelt transformation factor. Due to continuous mixing within the snowpack, the snowmelt water shows much lower variability in its isotopic range which is reflected in the snow transformation factor. Snowmelt yield to groundwater recharge per unit amount of precipitation was found to be greater than rainfall in Vallon de Nant, suggesting strongly preferential winter recharge. Seasonal dynamics of stream responses to rain-on-snow events, fog deposition, snowmelt and summer rain were also explored. Innovative monitoring and sampling with tools such as stable isotopes and forward Bayesian mixing models are key to improved comprehension of global recharge mechanisms.

  12. Interactions among forest age, valley and channel morphology, and log jams regulate animal production in mountain streams

    NASA Astrophysics Data System (ADS)

    Walters, D. M.; Venarsky, M. P.; Hall, R. O., Jr.; Herdrich, A.; Livers, B.; Winkelman, D.; Wohl, E.

    2014-12-01

    Forest age and local valley morphometry strongly influence the form and function of mountain streams in Colorado. Streams in valleys with old growth forest (>350 years) have extensive log jam complexes that create multi-thread channel reaches with extensive pool habitat and large depositional areas. Streams in younger unmanaged forests (e.g., 120 years old) and intensively managed forests have much fewer log jams and lower wood loads. These are single-thread streams dominated by riffles and with little depositional habitat. We hypothesized that log jam streams would retain more organic matter and have higher metabolism, leading to greater production of stream macroinvertebrates and trout. Log jam reaches should also have greater emergence of adult aquatic insects, and consequently have higher densities of riparian spiders taking advantage of these prey. Surficial organic matter was 3-fold higher in old-growth streams, and these streams had much higher ecosystem respiration. Insect production (g m2 y-1) was similar among forest types, but fish density was four times higher in old-growth streams with copious log jams. However, at the valley scale, insect production (g m-1 valley-1) and trout density (number m-1 valley-1) was 2-fold and 10-fold higher, respectively, in old growth streams. This finding is because multi-thread reaches created by log jams have much greater stream area and stream length per meter of valley than single-thread channels. The more limited response of macroinvertebrates may be related to fish predation. Trout in old growth streams had similar growth rates and higher fat content than fish in other streams in spite of occurring at higher densities and higher elevation/colder temperatures. This suggests that the positive fish effect observed in old growth streams is related to greater availability of invertebrate prey, which is consistent with our original hypothesis. Preliminary analyses suggest that spider densities do not respond strongly to differences in stream morphology, but rather to changes in elevation and associated air temperatures. These results demonstrate strong indirect effects of forest age and valley morphometry on organic matter storage and animal secondary production in streams that is mediated by direct effects associated with the presence or absence of logjams.

  13. The characteristics of soil and water loss in Pinus Massoniana forest in Quaternary red soil area of south China

    NASA Astrophysics Data System (ADS)

    Song, Yuejun; Huang, Yanhe; Jie, Yang

    2017-08-01

    The soil and water loss in Pinus massoniana forests is an urgent environmental problem in the red soil region of southern China.Using the method of field monitoring, by analogy and statistical analysis, The characteristics of soil and water loss of Pinus massoniana forests in Quaternary red soil region under 30 rainfall were analyzed,the results show that the relationship models of rainfall,runoff and sediment of pure Pinus massoniana plot were slightly different from the naked control plot,were all the univariate quadratic linear regression models.the contribution of runoff and sediment in different rain types were different, and the water and soil loss in Pinus massoniana forest was most prominent under moderate rain.The merging effect of sparse Pinus massoniana forest on raindrop, aggravated the degree of soil and water loss to some extent.

  14. Evaluation of the use of scientific information in developing the 1997 Forest plan for the Tongass National Forest.

    Treesearch

    Fred H. Everest; Douglas N. Swanston; Charles G. Shaw; Winston P. Smith; Kent R. Julin; Stewart D. Allen

    1997-01-01

    The Tongass National Forest is the largest remaining relatively unaltered coastal temperate rain forest in the world. The Forest consists of 16.9 million acres of land distributed across more that 22,000 islands and a narrow strip of mainland in southeast Alaska. The Forest contains abundant timber, wildlife, fisheries, mineral, and scenic resources. The authors...

  15. Future Roads Near Streams

    EPA Pesticide Factsheets

    Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into the stream, harming both water and habitat quality. This metric measured the length of roads within 30 meters of a stream. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  16. Roads Near Streams

    EPA Pesticide Factsheets

    Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into the stream, harming both water and habitat quality. This metric measured the length of roads within 30 meters of a stream. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  17. Forest biological diversity interactions with resource utilization

    Treesearch

    S.T. Mok

    1992-01-01

    The most important forest resources of the Asia-Pacific region are the highly diverse rain forests. Utilization of the resource is a natural and inevitable consequence of the region's socio-economic development. The sustainable management and development of forest resources in the region can be achieved by implementing conservational forestry, which is based on...

  18. Carbon storage in mountainous headwater streams: The role of old-growth forest and logjams

    NASA Astrophysics Data System (ADS)

    Beckman, Natalie D.; Wohl, Ellen

    2014-03-01

    We measured wood piece characteristics and particulate organic matter (POM) in stored sediments in 30 channel-spanning logjams along headwater streams in the Colorado Front Range, USA. Logjams are on streams flowing through old-growth (>200 years), disturbed (<200 years, natural disturbance), or altered (<200 years, logged) subalpine conifer forest. We examined how channel-spanning logjams influence riverine carbon storage (measured as the total volatile carbon fraction of stored sediment and instream wood). Details of carbon storage associated with logjams reflect age and disturbance history of the adjacent riparian forest. A majority of the carbon within jams is stored as wood. Wood volume is significantly larger in old-growth and disturbed reaches than in altered reaches. Carbon storage also differs in relation to forest characteristics. Sediment from old-growth streams has significantly higher carbon content than altered streams. Volume of carbon stored in jam sediment correlates with jam wood volume in old-growth and disturbed forests, but not in altered forests. Forest stand age and wood volume within a jam explain 43% of the variation of carbon stored in jam sediment. First-order estimates of the amount of carbon stored within a stream reach show an order of magnitude difference between disturbed and altered reaches. Our first-order estimates of reach-scale riverine carbon storage suggest that the carbon per hectare stored in streams is on the same order of magnitude as the carbon stored as dead biomass in terrestrial subalpine forests of the region. Of particular importance, old-growth forest correlates with more carbon storage in rivers.

  19. Restoration of Native Hawaiian Dryland Forest at Auwahi, Maui

    USGS Publications Warehouse

    Medieros, Arthur C.; vonAllmen, Erica

    2006-01-01

    BACKGROUND The powerful volcanoes that formed the high islands of the Hawaiian archipelago block northeasterly tradewinds, creating wet, windward rain forests and much drier, leeward forests. Dryland forests in Hawai'i receive only about 20 inches of rain a year. However, the trees in these forests intercept fog and increase ground moisture levels, thereby enabling these seemingly inhospitable habitats to support a diverse assemblage of plants and animals. Dryland forests of the Hawaiian Islands, like those worldwide, have been heavily impacted by humans both directly and indirectly. Less than 10% of Hawai'i's original dryland forest habitat remains. These forests have been severely impacted by urban development, ranching and agriculture, and invasive species. In particular, browsing animals and alien grasses have caused significant damage. Feral ungulates, including goats, sheep, cattle, and pigs, consume sensitive plants. Alien grasses have become dominant in the understory in many dryland habitats. In addition, these introduced grasses are fire-adapted and have increased the incidence of wildfire in these ecosystems. Native Hawaiian plants did not evolve with frequent fires or mammalian herbivores and typically do not survive well under these pressures.

  20. Off-nadir antenna bias correction using Amazon rain forest sigma deg data. [Brazil

    NASA Technical Reports Server (NTRS)

    Birrer, I. J.; Bracalente, E. M.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K. (Principal Investigator)

    1981-01-01

    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Ocean Satellite System (NOSS). Backscattering observations made by the SEASAT-1 scatterometer system show the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which is insensitive to polarization. The variation with angle of incidence may be adequately modeled as sigma deg (dB) = alpha theta + beta with typical values for the incidence-angle coefficient from 0.07 dB deg to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum likelihood estimation algorithms are presented which permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranbrook, The Earl of.

    After a century of scientific investigation, it is now possible to understand Malaysia's complex ecosystem as an essential prerequisite to the successful management for conservation and long term productivity in the area. Contents: The physical setting: Forest types and forest zonation; The dipterocarps; Forest palms; Forest bamboos; Herbaceous flowering plants; Ferns; Higher fungi; Forest tree biology; Forest management; Mammals; Genetic diversity and evolution; Mammals; Distribution and ecology, Earl of Cranbook, Birds; Termites in rain forests; Forest lepidoptera; Freshwaters; Animal conservation strategies; People of the forest.

  2. Basal area growth for 15 tropical trees species in Puerto Rico. Forest

    Treesearch

    B. R. Parresol

    1995-01-01

    The tabonuco forest of Puerto Rico support a diverse population of tree species valued for timber, fuel, food, wildlife food and cover, and erosion control among other use. tree basal area growth data spanning 39 years are avaible on 15 species from eigth permanent plots in Luquillo Experimental Forest. The complexity of the rain forest challeges current forest...

  3. Global-scale patterns of forest fragmentation

    USGS Publications Warehouse

    Riitters, K.; Wickham, J.; O'Neill, R.; Jones, B.; Smith, E.

    2000-01-01

    We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 ?? 9 pixels, "small" scale) to 59,049 km 2 (243 ?? 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined) from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe - Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types) and Europe - Asia (four types), in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland). The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf. Copyright ?? 2000 by The Resilience Alliance.

  4. The 2008 South China Freeze and its Impact on the Forests

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Ai, C.; Wang, Y.; Li, Z.; Cao, Y.; Wang, X.

    2008-12-01

    An unprecedented calamity caused by snow and freezing rain occurred in South China in 2008. This freeze was closely related to the La Nina phenomenon according to a report from the World Meteorological Organization. The freeze stroke 19 provinces in China, and damaged forests of 19.33 million ha with a standing volume loss of 371 million m3. It is estimated that the direct economic loss in the form of destroyed forests is over $8 billion. The indirect loss in the form of impaired ecological functions, such as water and soil conservation, water resources conservancy, biodiversity and forest carbon pool etc is enormous. The calamity of snow and freezing rain affected the structure and function of forest ecosystems. The snow load and freezing rain caused mechanical damage to the trees, with the species of Pinus massoniana, Cunninghamia lanceolata, Pinus elliottii and Phyllostachys pubescens etc. being the most seriously affected. The cold weather could also cause the physiological hurt to the trees. The change of the biotic components leads to the change of abiotic components in the ecosystems. The sunlight under the canopy was intensified due to the opening up of the canopy. The air temperature in the forest, the nutrient and microorganism in soil, the litterfall dynamic were also affected. The alteration of the forest ecosystem structure brought in the alteration of its functions. The damage of the ecosystem structure weakened the capacity of the water and soil conservation, water resources conservancy and reduced the biodiversity in forest ecosystems. Forest gaps allow more sunlight into the freeze-damaged ecosystem, inducing the invasion of more masculine species. The direction and progress of the community succession was therefore altered. At the same time, the freeze made a great impact on the stability and health of the forest ecosystem, increasing the potential risk of outbreak of forest fire and plant diseases/insect pests. Some suggestions on the rebuilding and recovery of damaged forest were given in this paper.

  5. Large woody debris input and its influence on channel structure in agricultural lands of Southeast Brazil.

    PubMed

    de Paula, Felipe Rossetti; Ferraz, Silvio Frosini de Barros; Gerhard, Pedro; Vettorazzi, Carlos Alberto; Ferreira, Anderson

    2011-10-01

    Riparian forests are important for the structure and functioning of stream ecosystems, providing structural components such as large woody debris (LWD). Changes in these forests will cause modifications in the LWD input to streams, affecting their structure. In order to assess the influence of riparian forests changes in LWD supply, 15 catchments (third and fourth order) with riparian forests at different conservation levels were selected for sampling. In each catchment we quantified the abundance, volume and diameter of LWD in stream channels; the number, area and volume of pools formed by LWD and basal area and tree diameter of riparian forest. We found that riparian forests were at a secondary successional stage with predominantly young trees (diameter at breast height <10 cm) in all studied streams. Results showed that basal area and diameter of riparian forest differed between the stream groups (forested and non-forested), but tree density did not differ between groups. Differences were also observed in LWD abundance, volume, frequency of LWD pools with subunits and area and volume of LWD pools. LWD diameter, LWD that form pools diameter and frequency of LWD pools without subunits did not differ between stream groups. Regression analyses showed that LWD abundance and volume, and frequency of LWD pools (with and without subunits) were positively related with the proportion of riparian forest. LWD diameter was not correlated to riparian tree diameter. The frequency of LWD pools was correlated to the abundance and volume of LWD, but characteristics of these pools (area and volume) were not correlated to the diameter of LWD that formed the pools. These results show that alterations in riparian forest cause modifications in the LWD abundance and volume in the stream channel, affecting mainly the structural complexity of these ecosystems (reduction in the number and structural characteristics of LWD pools). Our results also demonstrate that riparian forest conservation actions must consider not only its extension, but also successional stage to guarantee the quantity and quality of LWD necessary to enable the structuring of stream channels.

  6. Slope failure as an upslope source of stream wood

    Treesearch

    Daniel Miller

    2013-01-01

    Large woody debris is recognized as an important component of stream geomorphology and stream ecosystem function, and forest-land management is recognized as an important control on the quantity (and size and species distributions) of wood available for recruitment to streams. Much of the wood present in streams comes from adjacent forests, and riparian management...

  7. Climate and the weight/height relationship in sub-Saharan Africa.

    PubMed

    Hiernaux, J; Rudan, P; Brambati, A

    1975-01-01

    25 populations of the rain forest and 44 of the open country, all descended from the West-Central African stock which lived in the latter biome, are compared for body weight and height. On a log weight/height diagram, the 69 populations cluster along a straight line which intersects the lines of equal body weight/surface ratio: the shorter the body size, the lower the ratio tends to be. The rain forest populations are concentrated in the lower part of the bivariate distribution. The shortest one, the Mbuti Pygmies, has a very low ratio despite a relatively heavy weight. The shorter stature of the rain forest populations seems to be largely genetic in origin; it probably results from selective pressure exerted by the thermal stres in this hot and wet biome where sweating is of low thermolytic efficiency. The amount of reduction of adult stature depends for a large part on the number of generations spent in the forest by the population. Line A (in figure 1) is similar to a growth trend. The 69 populations differ genetically by the target that growth has to reach on a common log weight/height trend line. They achieve this differentiation through different speeds of growth.

  8. Predicting the vulnerability of streams to episodic acidification and potential effects on aquatic biota in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Rice, Karen C.; Deviney, Frank A.; Hornberger, George M.; Webb, James R.

    2006-01-01

    Acidic deposition is one of the most serious environmental problems affecting Shenandoah National Park in north-central Virginia. The park is the third most contaminated park in the National Park System because of the deposition of acid rain. Acid rain affects headwater streams in the park by temporarily reducing the acid-neutralizing capacity (ANC) of the water, a process termed episodic acidification. In turn, the increase in acidic components in streamwater can have deleterious effects on the aquatic biota.Although acidic deposition to the park is relatively uniform across its land area, the water-quality response of streamwater during rain events varies substantially. This response is a function of the underlying geology and topographic attributes of watersheds.Geologic and topographic data for the park's 231 watersheds are readily available; however, long-term (years and tens of years) measurements of streamwater ANC and accompanying discharge are not and would be prohibitively expensive to collect. Modeled predictions of the vulnerability of the park's streams to episodic acidification are an alternative to long-term water-quality monitoring. These predictions can aid park officials in making management decisions.

  9. Tracing Changes in Carbon Chemistry Caused by an Extreme Mid-Summer Rain Event in a Lake-Stream System in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Miller, M.; McKnight, D.; Alexander, K.

    2006-12-01

    We studied the impact of a sustained high elevation rain event in mid-summer on the biogeochemistry of dissolved organic material (DOM) in an aquatic ecosystem in the Colorado Front Range. In the Green Lakes Valley, an alpine-subalpine catchment, the hydrology is typically defined by two distinct periods: snowmelt and baseflow. Similarly, characterization of DOM by fluorescence spectroscopy and other methods shows that the source and chemical character of the DOM changes with the hydrology. Surface water samples were collected from the outlet of a small alpine lake as well as a stream site downstream of a larger subalpine lake from the initiation of snowmelt through late summer. Beginning on July 7th and ending on July 9th 2006 a continuous low intensity rain event produced approximately 9 cm of precipitation. The rain event increased discharge at the two sites to flow rates that were 2.5 fold greater than those observed during peak snowmelt. The fluorescence characteristics of the DOM as well as the percent fulvic acid contribution to the sample were reset to values similar to those observed during snowmelt at the alpine site but were relatively unaffected at the subalpine site. These results suggest that alpine ecosystems are more sensitive to hydrologic changes than subalpine ecosystems and residence times of the lakes in these systems may play an important role in regulating stream chemistry.

  10. 6.0 Monitoring recovery from calcium depletion and nitrogen saturation

    Treesearch

    Walter C. Shortle; Peter S. Murdoch; Kevin T. Smith; Rakesh Minocha; Gregory B. Lawrence

    2008-01-01

    Atmospheric emissions from industrial processes in the early part of the 20th century resulted in acidic deposition in the Northeastern U.S., a phenomenon known as "acid rain." Acid rain has been implicated in acidification of sensitive waterways, nitrate enrichment of surface waters, and fish population declines in poorly buffered mountain streams (Baldigo...

  11. Humus depths under cut and uncut northern hardwood forests

    Treesearch

    George Hart

    1960-01-01

    Harvesting timber on lands devoted primarily to watershed management may alter, for better or worse, many features of a forested watershed. One such feature is forest humus. The beneficial role of forest humus in watershed management is widely recognized. A protective mantle of humus serves to cushion the impact of rain, to impede surface runoff, to restrict soil...

  12. The forest ecosystems observatory in Guadeloupe (FWI)

    Treesearch

    G. Van Laere; Y. Gall; A. Rousteau

    2016-01-01

    Between 2010 and 2012, Parc National de la Guadeloupe, Office National des Forêts, and Université des Antilles et de la Guyane established 9 permanent 1-ha plots in tropical rain forest of Basse-Terre Island (Guadeloupe). These plots comprise the Guadeloupian Forest Observatory, and are specifically designed for long-term tree growth measurements and forest-dynamics...

  13. Riparian litter inputs to streams in the central Oregon Coast Range

    USGS Publications Warehouse

    Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.

    2013-01-01

    Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves <5 m downslope annually. N concentrations of several litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.

  14. Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon

    NASA Astrophysics Data System (ADS)

    Burbridge, Rachel E.; Mayle, Francis E.; Killeen, Timothy J.

    2004-03-01

    Pollen and charcoal records from two large, shallow lakes reveal that throughout most of the past 50,000 yr Noel Kempff Mercado National Park, in northeastern lowland Bolivia (southwestern Amazon Basin), was predominantly covered by savannas and seasonally dry semideciduous forests. Lowered atmospheric CO 2 concentrations, in combination with a longer dry season, caused expansion of dry forests and savannas during the last glacial period, especially at the last glacial maximum. These ecosystems persisted until the mid-Holocene, although they underwent significant species reassortment. Forest communities containing a mixture of evergreen and semideciduous species began to expand between 6000 and 3000 14C yr B.P. Humid evergreen rain forests expanded to cover most of the area within the past 2000 14C yr B.P., coincident with a reduction in fire frequencies. Comparisons between modern pollen spectra and vegetation reveal that the Moraceae-dominated rain forest pollen spectra likely have a regional source area at least 2-3 km beyond the lake shore, whereas the grass- and sedge-dominated savanna pollen spectra likely have a predominantly local source area. The Holocene vegetation changes are consistent with independent paleoprecipitation records from the Bolivian Altiplano and paleovegetation records from other parts of southwestern Amazonia. The progressive expansion in rain forests through the Holocene can be largely attributed to enhanced convective activity over Amazonia, due to greater seasonality of insolation in the Southern Hemisphere tropics driven by the precession cycle according to the Milankovitch Astronomical Theory.

  15. Ecology: Accumulating Threats to Life.

    ERIC Educational Resources Information Center

    Peterson, Russell W.

    1980-01-01

    This article identifies the cumulative effects of some environmental problems facing mankind and presents possible alternative futures. The author discusses the pervasive infiltration and detrimental effects in the biosphere of polychlorinated biphenyls, the recent increase in acid rain, the loss of tropical rain forest lands, and future energy…

  16. Effects of forest harvesting on large organic debris in coastal streams

    Treesearch

    Christopher G. Surfleet; Robert R. Ziemer

    1996-01-01

    Abstract - Large organic debris (LOD) was inventoried in two coastal streams to assess the impacts of forest harvesting on LOD recruitment in 90-year-old, second-growth redwood and fir stands on the Jackson Demonstration State Forest in northern California. One stream, North Fork of Caspar Creek, drained a 508-ha watershed that had been 60% clear-cut, with riparian...

  17. Export of nutrients and major ionic solutes from a rain forest catchment in the Central Amazon Basin

    NASA Astrophysics Data System (ADS)

    Lesack, Lance F. W.

    1993-03-01

    The relative roles of base flow runoff versus storm flow runoff versus subsurface outflow in controlling total export of solutes from a 23.4-ha catchment of undisturbed rain forest in the central Amazon Basin were evaluated from water and solute flux measurements performed over a 1 year period. Solutes exported via 173 storms during the study were estimated from stream water samples collected during base flow conditions and during eight storms, and by utilizing a hydrograph separation technique in combination with a mixing model to partition storm flow from base flow fluxes. Solutes exported by subsurface outflow were estimated from groundwater samples from three nests of piezometers installed into the streambed, and concurrent measurements of hydraulic conductivity and hydraulic head gradients. Base flow discharge represented 92% of water outflow from the basin and was the dominant pathway of solute export. Although storm flow discharge represented only 5% of total water outflow, storm flow solute fluxes represented up to 25% of the total annual export flux, though for many solutes the portion was less. Subsurface outflow represented only 2.5% of total water outflow, and subsurface solute fluxes never represented more than 5% of the total annual export flux. Measurement errors were relatively high for storm flow and subsurface outflow fluxes, but cumulative measurement errors associated with the total solute fluxes exported from the catchment, in most cases, ranged from only ±7% to 14% because base flow fluxes were measured relatively well. The export fluxes of most solutes are substantially less than previously reported for comparable small catchments in the Amazon basin, and these differences cannot be reconciled by the fact that storm flow and subsurface outflows were not appropriately measured in previous studies.

  18. Invertabrates Associated with Woody Debris in a Southeastern U.S. Forested Floodplain Wetland

    Treesearch

    Amy Braccia; Darold P. Batzer

    2001-01-01

    Woody debris is an ecologically important resource in upland forests and stream ecosystems. Although much is known about invertebrate-woody debris interactions in forests and streams, little information exists for forested wetlands. In this study, invertebrates associated with woody debris in a Southeastern U. S. forested floodplain are described and factors that shape...

  19. Recent findings related to measuring and modeling forest road erosion

    Treesearch

    W. J. Elliot; R. B. Foltz; P. R. Robichaud

    2009-01-01

    Sediment is the greatest pollutant of forest streams. In the absence of wildfire, forest road networks are usually the main source of sediment in forest watersheds. An understanding of forest road erosion processes is important to aid in predicting sediment delivery from roads to streams. The flowpath followed by runoff is the key to understanding road erosion...

  20. Precipitation-snowmelt timing and snowmelt augmentation of large peak flow events, western Cascades, Oregon

    NASA Astrophysics Data System (ADS)

    Jennings, Keith; Jones, Julia A.

    2015-09-01

    This study tested multiple hydrologic mechanisms to explain snowpack dynamics in extreme rain-on-snow floods, which occur widely in the temperate and polar regions. We examined 26, 10 day large storm events over the period 1992-2012 in the H.J. Andrews Experimental Forest in western Oregon, using statistical analyses (regression, ANOVA, and wavelet coherence) of hourly snowmelt lysimeter, air and dewpoint temperature, wind speed, precipitation, and discharge data. All events involved snowpack outflow, but only seven events had continuous net snowpack outflow, including three of the five top-ranked peak discharge events. Peak discharge was not related to precipitation rate, but it was related to the 10 day sum of precipitation and net snowpack outflow, indicating an increased flood response to continuously melting snowpacks. The two largest peak discharge events in the study had significant wavelet coherence at multiple time scales over several days; a distribution of phase differences between precipitation and net snowpack outflow at the 12-32 h time scale with a sharp peak at π/2 radians; and strongly correlated snowpack outflow among lysimeters representing 42% of basin area. The recipe for an extreme rain-on-snow event includes persistent, slow melt within the snowpack, which appears to produce a near-saturated zone within the snowpack throughout the landscape, such that the snowpack may transmit pressure waves of precipitation directly to streams, and this process is synchronized across the landscape. Further work is needed to understand the internal dynamics of a melting snowpack throughout a snow-covered landscape and its contribution to extreme rain-on-snow floods.

  1. Trypanocidal activity of extracts from Brazilian Atlantic Rain Forest plant species.

    PubMed

    Pizzolatti, M G; Koga, A H; Grisard, E C; Steindel, M

    2003-01-01

    The trypanocidal activity of crude hydro alcoholic extracts and several fractions of 13 plants from Brazilian Atlantic Rain Forest were tested in vitro against epimastigote and trypomastigote forms of Trypanosoma cruzi, the etiological agent of Chagas disease. Crude ethanol extracts with promising in vitro activity (DL50 between 5-10 microg/ml) against epimastigotes were fractionated by solvent partition and further tested against bloodstream form of the parasite. Activity against bloodstream parasites was observed in both dichloromethane and hexane fractions of Polygala sabulosa and P. paniculata.

  2. The ecological variations in thermal infrared emissivity of vegetation. [in Texas, Arizona, New Mexico, and Mexico

    NASA Technical Reports Server (NTRS)

    Arp, G. K.; Phinney, D. E. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Through a series of contrasts, the statistical significance of differences in emissivity was determined for vegegation in dry and humid deserts, montane and deciduous rain forests, and the temperate region. No significant differences were found between the two types of desert vegetation or among the types of nondesert vegetation. However, the rain forest vegetation was significantly different from that of the temperate region. On a community-wide level, there is some physiological adaptation in plants to their radiational environment.

  3. Coniferous coverage as well as catchment steepness influences local stream nitrate concentrations within a nitrogen-saturated forest in central Japan.

    PubMed

    Watanabe, Mirai; Miura, Shingo; Hasegawa, Shun; Koshikawa, Masami K; Takamatsu, Takejiro; Kohzu, Ayato; Imai, Akio; Hayashi, Seiji

    2018-04-28

    High concentrations of nitrate have been detected in streams flowing from nitrogen-saturated forests; however, the spatial variations of nitrate leaching within those forests and its causes remain poorly explored. The aim of this study is to evaluate the influences of catchment topography and coniferous coverage on stream nitrate concentrations in a nitrogen-saturated forest. We measured nitrate concentrations in the baseflow of headwater streams at 40 montane forest catchments on Mount Tsukuba in central Japan, at three-month intervals for 1 year, and investigated their relationship with catchment topography and with coniferous coverage. Although stream nitrate concentrations varied from 0.5 to 3.0 mgN L -1 , those in 31 catchments consistently exceeded 1 mgN L -1 , indicating that this forest had experienced nitrogen saturation. A classification and regression tree analysis with multiple environmental factors showed that the mean slope gradient and coniferous coverage were the best and second best, respectively, at explaining inter-catchment variance of stream nitrate concentrations. This analysis suggested that the catchments with steep topography and high coniferous coverage tend to have high nitrate concentrations. Moreover, in the three-year observation period for five adjacent catchments, the two catchments with relatively higher coniferous coverage consistently had higher stream nitrate concentrations. Thus, the spatial variations in stream nitrate concentrations were primarily regulated by catchment steepness and, to a lesser extent, coniferous coverage in this nitrogen-saturated forest. Our results suggest that a decrease in coniferous coverage could potentially contribute to a reduction in nitrate leaching from this nitrogen-saturated forest, and consequently reduce the risk of nitrogen overload for the downstream ecosystems. This information will allow land managers and researchers to develop improved management plans for this and similar forests in Japan and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Spatial and Temporal Patterns of Throughfall Amounts and Solutes in a Tropical Montane Forest - Comparisons with Findings From Lowland Rain Forests

    NASA Astrophysics Data System (ADS)

    Zimmermann, A.

    2007-05-01

    The diverse tree species composition, irregular shaped tree crowns and a multi-layered forest structure affect the redistribution of rainfall in lower montane rain forests. In addition, abundant epiphyte biomass and associated canopy humus influence spatial patterns of throughfall. The spatial variability of throughfall amounts controls spatial patterns of solute concentrations and deposition. Moreover, the living and dead biomass interacts with the rainwater during the passage through the canopy and creates a chemical variability of its own. Since spatial and temporal patterns are intimately linked, the analysis of temporal solute concentration dynamics is an important step to understand the emerging spatial patterns. I hypothesized that: (1) the spatial variability of volumes and chemical composition of throughfall is particularly high compared with other forests because of the high biodiversity and epiphytism, (2) the temporal stability of the spatial pattern is high because of stable structures in the canopy (e.g. large epiphytes) that show only minor changes during the short term observation period, and (3) the element concentrations decrease with increasing rainfall because of exhausting element pools in the canopy. The study area at 1950 m above sea level is located in the south Ecuadorian Andes far away from anthropogenic emission sources and marine influences. Rain and throughfall were collected from August to October 2005 on an event and within-event basis for five precipitation periods and analyzed for pH, K, Na, Ca, Mg, NH4+, Cl-, NO3-, PO43-, TN, TP and TOC. Throughfall amounts and most of the solutes showed a high spatial variability, thereby the variability of H+, K, Ca, Mg, Cl- and NO3- exceeded those from a Brazilian tropical rain forest. The temporal persistence of the spatial patterns was high for throughfall amounts and varied depending on the solute. Highly persistent time stability patterns were detected for K, Mg and TOC concentrations. Time stability patterns of solute deposition were somewhat weaker than for concentrations for most of the solutes. Epiphytes strongly affected time stability patterns in that collectors situated below thick moss mats or arboreal bromeliads were in large part responsible for the extreme persistence with low throughfall amounts and high ion concentrations (H+ showed low concentrations). Rainfall solute concentrations were low compared with a variety of other tropical lowland and montane forest sites and showed a small temporal variability during the study period for both between and within-event dynamics, respectively. Throughfall solute concentrations were more within the range when compared with other sites and showed highly variable within-event dynamics. For most of the solutes, within-event concentrations did not reach low, constant concentrations in later event stages, rather concentrations fluctuated (e.g. Cl-) or increased (e.g. K and TOC). The within-event throughfall solute concentration dynamics in this lower montane rain forest contrast to recent observations from lowland tropical rain forests in Panama and Brazil. The observed within-event patterns are attributed (1) to the influence of epiphytes and associated canopy humus, and (2) to low rainfall intensities.

  5. Linkages between forest soils and water quality and quantity

    Treesearch

    Daniel G. Neary; George G. Ice; C. Rhett Jackson

    2009-01-01

    The most sustainable and best quality fresh water sources in the world originate in forest ecosystems. The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, moderating stream hydrology, and providing diverse aquatic habitat. Forest soils feature litter layers and...

  6. Evaporation from a tropical rain forest, Luquillo Experimental Forest, eastern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Schellekens, J.; Bruijnzeel, L. A.; Scatena, F. N.; Bink, N. J.; Holwerda, F.

    2000-08-01

    Evaporation losses from a watertight 6.34 ha rain forest catchment under wet maritime tropical conditions in the Luquillo Experimental Forest, Puerto Rico, were determined using complementary hydrological and micrometeorological techniques during 1996 and 1997. At 6.6 mm d-1 for 1996 and 6.0 mm d-1 for 1997, the average evapotranspiration (ET) of the forest is exceptionally high. Rainfall interception (Ei), as evaluated from weekly throughfall measurements and an average stemflow fraction of 2.3%, accounted for much (62-74%) of the ET at 4.9 mm d-1 in 1996 and 3.7 mm d-1 in 1997. Average transpiration rates (Et) according to a combination of the temperature fluctuation method and the Penman-Monteith equation were modest at 2.2 mm d-1 and 2.4 mm d-1 in 1996 and 1997, respectively. Both estimates compared reasonably well with the water-budget-based estimates (ET - Ei) of 1.7 mm d-1 and 2.2 mm d-1. Inferred rates of wet canopy evaporation were roughly 4 to 5 times those predicted by the Penman-Monteith equation, with nighttime rates very similar to daytime rates, suggesting radiant energy is not the dominant controlling factor. A combination of advected energy from the nearby Atlantic Ocean, low aerodynamic resistance, plus frequent low-intensity rain is thought to be the most likely explanation of the observed discrepancy between measured and estimated Ei.

  7. Macroinvertebrate assemblage recovery following a catastrophic flood and debris flows in an Appalachian mountain stream

    USGS Publications Warehouse

    Snyder, C.D.; Johnson, Z.B.

    2006-01-01

    In June 1995, heavy rains caused severe flooding and massive debris flows on the Staunton River, a 3rd-order stream in the Blue Ridge Mountains (Virginia, USA). Scouring caused the loss of the riparian zone and repositioned the stream channel of the lower 2.1 km of the stream. Between 1998 and 2001, we conducted seasonal macroinvertebrate surveys at sites on the Staunton River and on White Oak Canyon Run, a reference stream of similar size and geology that was relatively unaffected by the flood. Our study was designed to determine the extent to which flood-induced changes to the stream channel and riparian habitats caused long-term changes to macroinvertebrate community structure and composition. Sites within the impacted zone of the Staunton River supported diverse stable benthic macroinvertebrate assemblages 3 y after the flood despite dramatic and persistent changes in environmental factors known to be important controls on stream ecosystem function. However, significant differences in total macroinvertebrate density and trophic structure could be attributed to the flood. In autumn, densities of most feeding guilds, including shredders, were higher at impacted-zone sites than at all other sites, suggesting higher overall productivity in the impacted zone. Higher shredder density in the impacted zone was surprising in light of expected decreases in leaf-litter inputs because of removal of riparian forests. In contrast, in spring, we observed density differences in only one feeding guild, scrapers, which showed higher densities at impacted-zone sites than at all other sites. This result conformed to a priori expectations that reduced shading in the impacted zone would lead to increased light and higher instream primary production. We attribute the seasonal differences in trophic structure to the effects of increased temperatures on food quality and to the relationship between the timing of our sampling and the emergence patterns of important taxa. ?? 2006 by The North American Benthological Society.

  8. Effects of drainage-basin geomorphology on insectivorous bird abundance in temperate forests.

    PubMed

    Iwata, Tomoya; Urabe, Jotaro; Mitsuhashi, Hiromune

    2010-10-01

    Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage-basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainage-basin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed-scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape-based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation. © 2010 Society for Conservation Biology.

  9. Simulation of water available for runoff in clearcut forest openings during rain-on-snow events in the western Cascade Range of Oregon and Washington

    USGS Publications Warehouse

    van Heeswijk, Marijke; Kimball, J.S.; Marks, Danny

    1996-01-01

    Rain-on-snow events are common on mountain slopes within the transient-snow zone of the Pacific Northwest. These events make more water available for runoff than does precipitation alone by melting the snowpack and by adding a small amount of condensate to the snowpack. In forest openings (such as those resulting from clearcut logging), the amount of snow that accumulates and the turbulent- energy input to the snowpack are greater than below forest stands. Both factors are believed to contribute to a greater amount of water available for runoff during rain-on-snow events in forest openings than forest stands. Because increased water available for runoff may lead to increased downstream flooding and erosion, knowledge of the amount of snowmelt that can occur during rain on snow and the processes that control snowmelt in forest openings is useful when making land-use decisions. Snow accumulation and melt were simulated for clearcut conditions only, using an enery- balance approach that accounts for the most important energy and mass exchanges between a snowpack and its environment. Meteorological measurements provided the input for the simulations. Snow accumulation and melt were not simulated in forest stands because interception of precipitation processes are too complex to simulate with a numerical model without making simplifying assumptions. Such a model, however, would need to be extensively tested against representative observations, which were not available for this study. Snowmelt simulated during three rain-on-snow events (measured in a previous study in a clearcut in the transient-snow zone of the H.J. Andrews Experimental Forest in Oregon) demonstrated that melt generation is most sensitive to turbulent- energy exchanges between the air and the snowpack surface. As a result, the most important climate variable that controls snowmelt is wind speed. Air temperature, however, is a significant variable also. The wind speeds were light, with a maximum of 3.3 meters per second during one event and average wind speeds for all three events ranging from 1.7 to 2.1 meters per second. For observed and estimated conditions, the average simulated snowmelt ranged from 0.2 to 0.8 millimeter liquid water per hour, and turbulent-energy exchange provided 51 percent of the energy that led to snowmelt during the largest of the three rain-on-snow events. When wind speeds were multiplied by a factor of 4, the simulated snowmelt ranged from 1.0 to 2.5 millimeters per hour. Similarly, when wind speeds were multiplied by a factor of 6, the simulated snowmelt ranged from 1.6 to 3.7 millimeters per hour. Turbulent-energy exchange provided a dominant 88 and 92 percent of the energy input to the snowpack during the largest rain-on-snow event when average wind speeds were multiplied by factors of 4 and 6, respectively. During the same event, the contribution to melt by the sum of net solar and net thermal radiation (net all-wave radiation) was roughly equal to the contribution of sensible energy carried by the precipitation itself (advective heat). Estimates of snowmelt resulting from rain on snow for climate conditions other than those observed and estimated in the simulated plot-scale data were expanded by simulating snowmelt for 24-hour presumed rain-on-snow events extracted from the reconstructed, long-term historical climate records for Cedar Lake and Snoqualmie Pass National Weather Service stations in Washington State. The selected events exceeded 75 millimeters of precipitation in 24 hours. When clearcut conditions were assumed to be identical to those at the H.J. Andrews Experimental Forest site and a ripe snowpack that never completely melted was assumed to be available, simulated 24-hour snowmelt ranged from 4.2 to 47.0 millimeters (0.2 to 2.0 millimeters per hour) for low wind speeds (1.5 meters per second) and from 10.3 to 178.8 millimeters (0.4 to 7.5 millimeters per hour) for high wind speeds (8.2 meters per second). The ranges in

  10. PERSISTENT EPISODIC ACIDIFICATION OF STREAMS LINKED TO ACID RAIN EFFECTS ON SOIL

    EPA Science Inventory

    Episodic acidification of streams, identified in the late 1980s as one of the most significant environmental problems caused by acidic deposition, had not been evaluated since the early 1990s despite decreasing levels of acidic deposition over the past decade. This analysis indic...

  11. ESTIMATION OF TOTAL DISSOLVED NITRATE LOAD IN NATURAL STREAM FLOWS USING AN IN-STREAM MONITOR

    EPA Science Inventory

    Estuaries respond rapidly to rain events and the nutrients carried by inflowing rivers such that discrete samples at weekly or monthly intervals are inadequate to catch the maxima and minima in nutrient variability. To acquire data with sufficient sampling frequency to realistica...

  12. Streams in the urban heat island: spatial and temporal variability in temperature

    USGS Publications Warehouse

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization, and stream thermal regimes.

  13. The effects of stream crossings on total suspended sediment in North Carolina Piedmont forests

    Treesearch

    Johnny Boggs; Ge Sun; Steve McNulty

    2017-01-01

    This study determined total suspended sediment (TSS) at six stream crossings that represented a range of site conditions and forest operations in the Piedmont of North Carolina. Two wood and three steel bridgemats and one culvert were installed to cross the streams. The road classes for the crossings included four temporary skid trails and two permanent forest haul...

  14. Initial response of small ground-dwelling mammals to forest alternative buffers along headwater streams in the Washington Coast Range, USA

    Treesearch

    Randall J. Wilk; Martin G. Raphael; Christopher S. Nations; Jeffrey D. Ricklefs

    2010-01-01

    We assessed the short-term effects of alternative designs of forested buffer treatments along headwater streams on small ground-dwelling mammals in managed forests in western Washington, USA. Over three summers (one pretreatment and two posttreatment), we trapped 19 mammalian species along 23 streams in the northern Coast Range. We compared faunal communities in...

  15. Dynamics of wood in stream networks of the western Cascades Range, Oregon

    Treesearch

    Nicole M. Czarnomski; David M. Dreher; Kai U. Snyder; Julia A. Jones; Frederick J. Swanson

    2008-01-01

    We develop and test a conceptual model of wood dynamics in stream networks that considers legacies of forest management practices, floods, and debris flows. We combine an observational study of wood in 25 km of 2nd- through 5th-order streams in a steep, forested watershed of the western Cascade Range of Oregon with whole-network studies of forest cutting, roads, and...

  16. Research gaps related to forest management and stream sediment in the United States.

    PubMed

    Anderson, Christopher J; Lockaby, B Graeme

    2011-02-01

    Water quality from forested landscapes tends to be very high but can deteriorate during and after silvicultural activities. Practices such as forest harvesting, site preparation, road construction/use, and stream crossings have been shown to contribute sediment, nutrients, and other pollutants to adjacent streams. Although advances in forest management accompanied with Best Management Practices (BMPs) have been very effective at reducing water quality impacts from forest operations, projected increases in demand for forest products may result in unintended environmental degradation. Through a review of the pertinent literature, we identified several research gaps related to water yield, aquatic habitat, sediment source and delivery, and BMP effectiveness that should be addressed for streams in the United States to better understand and address the environmental ramifications of current and future levels of timber production. We explored the current understanding of these topics based on relevant literature and the possible implications of increased demand for forest products in the United States.

  17. Influence of woody debris on channel structure in old growth and managed forest streams in central Sweden.

    PubMed

    Dahlström, Niklas; Nilsson, Christer

    2004-03-01

    Anecdotal information suggests that woody debris have had an important channel-forming role in Swedish streams and rivers, but there are few data to support this view. We identified 10 streams within near-natural and 10 streams within managed forest landscapes in central Sweden, and quantified their channel characteristics and content of woody debris. All pieces of woody debris greater than 0.5 m in length and greater than 0.05 m in base diameter were included. The near-natural forests were situated in reserves protected from forest cutting, whereas the managed forests had previously faced intensive logging in the area adjacent to the stream. The two sets of streams did not differ in general abiotic characteristics such as width, slope, or boulder cover, but the number of wood pieces was twice as high and the wood volume almost four times as high in the near-natural streams. This difference resulted in a higher frequency of debris dams in the near-natural streams. Although the total pool area did not differ between the two sets of streams, the wood-formed pools were larger and deeper, and potentially ecologically more important than other pools. In contrast to what has been believed so far, woody debris can be a channel-forming agent also in steeper streams with boulder beds. In a stepwise multiple regression analysis, pool area was positively and most strongly related to the quantity of woody debris, whereas channel gradient and wood volume were negatively related. The frequency of debris dams increased with the number of pieces of woody debris, but was not affected by other variables. The management implications of this study are that the wood quantity in streams in managed forests would need to be increased if management of streams will target more pristine conditions.

  18. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  19. Fallout volume and litter type affect 137Cs concentration difference in litter between forest and stream environments.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N

    2016-11-01

    It is important to understand the changes in the 137 Cs concentration in litter through leaching when considering that 137 Cs is transferred from basal food resources to animals in forested streams. We found that the difference of 137 Cs activity concentration in litter between forest and stream was associated with both litter type and 137 Cs fallout volume around Fukushima, Japan. The 137 Cs activity concentrations in the litter of evergreen conifers tended to be greater than those in the litter of broad-leaved deciduous trees because of the absence of deciduous leaves during the fallout period in March 2011. Moreover, 137 Cs activity concentrations in forest litter were greater with respect to the 137 Cs fallout volume. The 137 Cs activity concentrations in stream litter were much lower than those in forest litter when those in forest litter were higher. The 137 Cs leaching patterns indicated that the differences in 137 Cs activity concentration between forest and stream litter could change with changes in both fallout volume and litter type. Because litter is an important basal food resource in the food webs of both forests and streams, the 137 Cs concentration gradient reflects to possible 137 Cs transfer from lower to higher trophic animals. Our findings will improve our understanding of the spatial heterogeneity and variability of 137 Cs concentrations in animals resident to the contaminated landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Cascading Effects of Canopy Opening and Debris Deposition from a Large-Scale Hurricane Experiment in a Tropical Rain Forest

    Treesearch

    Aaron B. Shiels; Grizelle Gonzalez; D. Jean Lodge; Michael R Willig; Jess K. Zimmerman

    2015-01-01

    Intense hurricanes disturb many tropical forests, but the key mechanisms driving post-hurricane forest changes are not fully understood. In Puerto Rico, we used a replicated factorial experiment to determine the mechanisms of forest change associated with canopy openness and organic matter (debris) addition. Cascading effects from canopy openness accounted for...

  1. Spread of an invasive grass in closed-canopy deciduous forests across local and regional environmental gradients

    Treesearch

    Cynthia D. Huebner

    2010-01-01

    Spread of Microstegium vimineum, an invasive exotic grass, in closed-canopy forests of West Virginia, U.S. was evaluated across a local (roadside to forest interior) and regional (across two geographic provinces) environmental gradient. Seed dispersal distances from roadside populations into forest interiors based on seed rain and soil seed bank data...

  2. [Soil seed bank formation during early revegetation of areas affected by mining in a tropical rain forest of Chocó, Colombia].

    PubMed

    Valois-Cuesta, Hamleth; Martínez-Ruiz, Carolina; Urrutia-Rivas, Yorley

    2017-03-01

    Mining is one of the main economic activities in many tropical regions and is the cause of devastation of large areas of natural tropical forests. The knowledge of the regenerative potential of mining disturbed areas provides valuable information for their ecological restoration. The aim of this study was to evaluate the effect of age of abandonment of mines and their distance from the adjacent forest, on the formation of soil seed bank in abandoned mines in the San Juan, Chocó, Colombia. To do this, we determined the abundance and species composition of the soil seed bank, and the dynamics of seed rain in mines of different cessation period of mining activity (6 and 15 years), and at different distances from the adjacent forest matrix (50 and 100 m). Seed rain was composed by five species of plants with anemocorous dispersion, and was more abundant in the mine of 6 years than in the mine of 15 years. There were no significant differences in the number of seeds collected at 50 m and 100 m from the adjacent forest. The soil seed bank was represented by eight species: two with anemocorous dispersion (common among the seed rain species) and the rest with zoochorous dispersion. The abundance of seeds in the soil did not vary with the age of the mine, but was higher at close distances to the forest edge than far away. During the early revegetation, the formation of the soil seed bank in the mines seems to be related to their proximity to other disturbed areas, rather than their proximity to the adjacent forest or the cessation activity period of mines. Therefore, the establishment of artificial perches or the maintenance of isolated trees in the abandoned mines could favour the arrival of bird-dispersed seeds at mines. However, since the soil seed bank can be significantly affected by the high rainfall in the study area, more studies are needed to evaluate management actions to encourage soil seed bank formation in mines of high-rainfall environments in the Chocó region.

  3. Prevalence of pterygium and cataract in indigenous populations of the Brazilian Amazon rain forest.

    PubMed

    Paula, J S; Thorn, F; Cruz, A A V

    2006-05-01

    To compare the prevalence of pterygium and cataract in four indigenous populations of the Brazilian Amazonian rain forest (Arawak, Tukano, Maku, and Yanomami) with different ethnic and social behaviour backgrounds. A cross-sectional pterygium and cataract survey was performed in 624 adult Indians of the Brazilian rain forest belonging to four different ethnic groups. The Indians were classified according to their social behaviour in two groups: Arawak and Tukano (group 1) and Maku and Yanomami (group 2). Slit-lamp biomicroscopy was employed to examine the entire sample. All subjects were classified as 1 or 0 according to the presence or absence pterygium and cataract. Sex and age were also recorded. chi(2)-tests revealed that the prevalence of pterygium and cataract differed significantly between groups 1 and 2. For pterygia: 36.6% (97/265) and 5.0% (18/359), respectively (chi(2)=101.2, P<0.0001), and for cataracts: 24.5% (65/265) and 13.7% (49/359) respectively (chi(2)=12.09, P=0.0005). Gender was not associated with pterygium (P=0.1326) and cataract (P=0.2263) in both groups. Elderly subjects showed a significantly higher prevalence of cataract (P<0.0001). The prevalence of pterygia did not increase with age (P=0.8079) in both groups. Indians of group 1 have higher prevalence of pterygia and cataract than Indians of group 2. Social behaviour, especially the rate of sun exposure, appears to be the main factor for the different rates of pterygium and cataract displayed by these indigenous people of the Brazilian rain forest.

  4. Evidence of late Palaeocene-early Eocene equatorial rain forest refugia in southern Western Ghats, India.

    PubMed

    Prasad, V; Farooqui, A; Tripathi, S K M; Garg, R; Thakur, B

    2009-11-01

    Equatorial rain forests that maintain a balance between speciation and extinction are hot-spots for studies of biodiversity. Western Ghats in southern India have gained attention due to high tropical biodiversity and endemism in their southern most area. We attempted to track the affinities of the pollen fl ora of the endemic plants of Western Ghat area within the fossil palynoflora of late Palaeocene-early Eocene (approximately 55-50 Ma) sedimentary deposits of western and northeastern Indian region. The study shows striking similarity of extant pollen with twenty eight most common fossil pollen taxa of the early Palaeogene. Widespread occurrences of coal and lignite deposits during early Palaeogene provide evidence of existence of well diversified rain forest community and swampy vegetation in the coastal low lying areas all along the western and northeastern margins of the Indian subcontinent. Prevalence of excessive humid climate during this period has been seen as a result of equatorial positioning of Indian subcontinent, superimposed by a long term global warming phase (PETM and EECO) during the early Palaeogene. The study presents clear evidence that highly diversifi ed equatorial rain forest vegetation once widespread in the Indian subcontinent during early Palaeogene times, are now restricted in a small area as a refugia in the southernmost part of the Western Ghat area. High precipitation and shorter periods of dry months seem to have provided suitable environment to sustain lineages of ancient tropical vegetation in this area of Western Ghats in spite of dramatic climatic changes subsequent to the post India-Asia collision and during the Quaternary and Recent times.

  5. Combining Long-Term Watershed Monitoring at Buck Creek with Spatially Extensive Ecosystem Data to Understand the Processes of Acid Rain Effects and Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.; Ross, D. S.; Sullivan, T. J.; McDonnell, T. C.; Bailey, S. W.; Dukett, J. E.

    2014-12-01

    The Buck Creek Monitoring Watershed, in the western Adirondack Region of New York, has provided long-term data back to 1982 for tracking acid rain effects and recovery, and for supporting fundamental research on environmental change. At Buck Creek, monitoring acidic deposition effects as they worsened, then diminished, has advanced our understanding of key biogeochemical processes such as Al mobilization. Although Al mobilization has been one of the primary adverse effects of acidic deposition, in the recovery phase it is now affecting terrestrial and aquatic ecosystems in new ways that could be both positive and negative, as soils and surface waters respond to further declines in acidic deposition. Using stream Al measurements from Buck Creek over varying seasons and flows, a new index, the base cation surplus (BCS), was developed to account for dissolved organic carbon (DOC) effects on the relationship between ANC and inorganic Al. Mobilization of inorganic Al, the form toxic to biota, occurs below a BCS of zero, regardless of DOC concentrations. Soil and stream data from Adirondack surveys showed that a BCS value of zero corresponds to a soil base saturation value in the B horizon of approximately 12%. Additional Adirondack survey work indicated that, where sugar maple stands grew in soils with base saturation values below 12%, seedling regeneration was nearly zero, suggesting a link between Al mobilization and impairment of tree regeneration. In recovering Adirondack lakes, the BCS was also used to show that increasing trends in DOC were accelerating decreases of inorganic Al beyond what would be expected from the increasing trends of ANC. Similar decreases of inorganic Al in Buck Creek, were coupled with increases in organic Al concentrations, which resulted in no trend in total Al concentrations despite a strong increase in pH. Sampling of Buck Creek soils in 1997, and again in 2009-2010, indicated a substantial decrease in forest floor exchangeable Al, of which approximately 85% was accounted for by stream export through leaching of exchangeable Al from soil to stream. Changes in the chemistry of the upper B horizon also suggest the possibility that recovery from acidification is accelerating podzolization in these soils.

  6. Native plant propagation and habitat restoration at Hakalau Forest National Wildlie Refuge, Hawaii

    Treesearch

    Baron Horiuchi; Jack Jeffrey

    2002-01-01

    Hakalau Forest NWR was established in 1985 under the authority of the Endangered Species Act to preserve and protect five species of endangered forest birds and their rain forest habitat. While most of the 32,730 acre refuge is closed canopy forest, over one hundred years of cattle grazing, logging and burning have convened about 5,000 acres (2,023 ha) of upper...

  7. Management and utilization of forest resources in Papua New Guinea

    Treesearch

    P.B.L. Srivastava

    1992-01-01

    Papua New Guinea, with an area of about 46.7 million ha and population of 3.7 million, is blessed with a large natural forest resource. Over 80 percent of the land is covered with forests of various types, ranging from swamp and lowland rain forests in coastal plains to alpine vegetation and moss forests in the highlands, most of which are owned by the people. About 15...

  8. Canada issues booklet describing acid rain

    NASA Astrophysics Data System (ADS)

    A booklet recently released by Environment Canada describes acid rain in terms easily understood by the general public. Although Acid Rain — The Facts tends somewhat to give the Canadian side of this intercountry controversial subject, it nevertheless presents some very interesting, simple statistics of interest to people in either the U.S. or Canada. Copies of the booklet can be obtained from Inquiry Environment Canada, Ottawa, Ontario K1A OH3, Canada, tel. 613-997-2800.The booklet points out that acid rain is caused by emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx). Once released into the atmosphere, these substances can be carried long distances by prevailing winds and return to Earth as acidic rain, snow, fog, or dust. The main sources of SO2 emissions in North America are coal-fired power generating stations and nonferrous ore smelters. The main sources of NOx emissions are vehicles and fuel combustion. From economical and environmental viewpoints, Canada believes acid rain is one of the most serious problems presently facing the country: increasing the acidity of more than 20% of Canada's 300,000 lakes to the point that aquatic life is depleted and acidity of soil water and shallow groundwater is increasing, causing decline in forest growth and water fowl populations, and eating away at buildings and monuments. Acid rain is endangering fisheries, tourism, agriculture, and forest resources in an area of 2.6 million km2 (one million square miles) of eastern Canada, about 8% of Canada's gross national product.

  9. Sediment loads and erosion in forest headwater streams of the Sierra Nevada, California

    Treesearch

    Carolyn T. Hunsaker; Daniel G. Neary

    2012-01-01

    Defining best management practices for forests requires quantification of the variability of stream sediment loads for managed and unmanaged forest conditions and their associated sediment sources. Although "best management practices" are used, the public has concerns about effects from forest restoration activities and commercial timber harvests. It is...

  10. Geochemistry of the Mattole River in Northern California

    USGS Publications Warehouse

    Kennedy, Vance C.; Malcolm, Ronald L.

    1977-01-01

    The chemical composition of streams can vary greatly with changing discharge during storm runoff. These chemical changes are related to the pathways of various water parcels from the time they fall as rain until they enter the stream, and to the interactions between water and sediment during transport downstream. In order to understand better the chemical variations during storms, an extensive investigation was made of the Mattole River, a chemically clean coastal stream in Mendocino County, California. The Mattole drains a topographically mature basin of 620 sw km which has relief of about 1200 m, a long summer dry season, and mean annual rainfall of about 2300 mm. The stream flow is composed of seasonally varying proportions of four flow components, namely, surface runoff, quick-return flow (rainfall having brief and intimate contact with the soil before entering the surface drainage), delayed-return flow, and base runoff. Each component is identified by its characteristic chemistry and by the time delay between rainfall and entrance into the stream. Information is also presented on rain chemistry, adsorption reactions of suspended sediments in the fresh and brackish environments, and compositional variation of river sediments with particle size. (Woodard-USGS)

  11. Flood of July 1-2, 1987, in north-central Ohio

    USGS Publications Warehouse

    Mayo, R.I.; Mangus, J.P.

    1989-01-01

    During the night of July 1 and early morning of July 2, 1987, an intense summer storm produced flooding on headwater streams of the Scioto, Sandusky, and Mohican River in north-central Ohio. The heaviest flooding and resulting flood damage occurred in a five-county area in the north-central part of the state. From 3 to nearby 6 inches of rain fell in less than 10 hours on rain-saturated soil, and produced flooding that resulted in more than $20 million in damages. Estimated peak discharged for several of the small streams affected ranged from 1 to 2 1/2 times the magnitude of the 50-year flood of these sites.

  12. Tropical Rainforest Education. ERIC Digest.

    ERIC Educational Resources Information Center

    Rillero, Peter

    This digest provides four guideposts for tropical rainforest education: (1) structure; (2) location and climate; (3) importance; and (4) conservation of resources. Research is cited and background information provided about the layers of life and the adaptations of life within the tropical rain forest. Aspects of life within and near rain forests…

  13. Cloud water in windward and leeward mountain forests: The stable isotope signature of orographic cloud water

    USGS Publications Warehouse

    Scholl, M.A.; Giambelluca, T.W.; Gingerich, S.B.; Nullet, M.A.; Loope, L.L.

    2007-01-01

    Cloud water can be a significant hydrologic input to mountain forests. Because it is a precipitation source that is vulnerable to climate change, it is important to quantify amounts of cloud water input at watershed and regional scales. During this study, cloud water and rain samples were collected monthly for 2 years at sites on windward and leeward East Maui. The difference in isotopic composition between volume‐weighted average cloud water and rain samples was 1.4‰ δ18O and 12‰ δ2H for the windward site and 2.8‰ δ18O and 25‰ δ2H for the leeward site, with the cloud water samples enriched in 18O and 2H relative to the rain samples. A summary of previous literature shows that fog and/or cloud water is enriched in 18O and 2H compared to rain at many locations around the world; this study documents cloud water and rain isotopic composition resulting from weather patterns common to montane environments in the trade wind latitudes. An end‐member isotopic composition for cloud water was identified for each site and was used in an isotopic mixing model to estimate the proportion of precipitation input from orographic clouds. Orographic cloud water input was 37% of the total precipitation at the windward site and 46% at the leeward site. This represents an estimate of water input to the forest that could be altered by changes in cloud base altitude resulting from global climate change or deforestation.

  14. Sediment deposition from forest roads at stream crossings as influenced by road characteristics

    Treesearch

    A.J. Lang; W.M. Aust; M.C. Bolding; K.J. McGuire

    2015-01-01

    Recent controversies associated with ditched forest roads and stream crossings in the Pacific Northwest have focused national attention on sediment production and best management practices (BMPs) at stream crossings. Few studies have quantified soil erosion rates at stream crossings as influenced by road characteristics and compared them to modeled rates. Soil erosion...

  15. A Comparison of Vegetation Within and Outside Riparian Areas Bordering Ephemeral Streams in the Ouachita Mountains

    Treesearch

    David K. Radabaugh; Hal O. Liechty; James M. Guldin

    2004-01-01

    Abstract - Ephemeral streams frequently occur in shortleaf pine (Pinus echinata Mill.) hardwood stands that grow on the upper and mid-slopes of the Ouachita Mountains in Arkansas. Stream management zones are established around these ephemeral streams in the Ouachita National Forest to minimize impacts of adjacent forest management...

  16. Particulate organic contributions from forests and streams: debris isn't so bad

    Treesearch

    C. Andrew Dolloff; Jackson R. Webster

    2000-01-01

    It is clear that the input of "debris" from terrestrial plants falling into streams is one of the most significant processes occurring at the interface of terrestrial and stream ecosystems. Organic matter?leaves, twigs, branches, and whole trees?provides energy, nutrients, and structure to streams flowing through forests. A host of vertebrate and invertebrate...

  17. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest.

    PubMed

    Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi

    2006-07-01

    Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.

  18. Analysis on the vegetation phenology of tropical seasonal rain forest in South America

    NASA Astrophysics Data System (ADS)

    Liang, B.; Chen, X.

    2016-12-01

    Using Global Land Surface Satellite (GLASS) LAI data during 1982 to 2003, we analyzed spatial and temporal variations of vegetation phenology in the tropical seasonal rain forest of South America. Several methods were used to fit seasonal LAI curves and extract start (SOS) and end (EOS) of the growing season. The results show that Fourier function can most effectively fit LAI curves, and yearly RMSEs for differences between observed and fitted LAI values are less than 0.01. The SOS ranged from 250 to 350 days of year, and occurred earlier in west than in east. Contrarily, the EOS were between 120 and 180 days of year, and appeared earlier in east than in west. Thus, the growing season was longer in west than in east. With regard to linear trends, SOS shows a significant advancement at 7% of pixels and a significant delay at 13% of pixels, whereas EOS advanced significantly at 16% of pixels and was delayed significantly at 18% of pixels. Preseason precipitation is the main influence factor of SOS and EOS in the tropical seasonal rain forest of South America.

  19. Protecting rain forests and forager's rights using LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Wilkie, David S.

    1991-01-01

    Creating rain forest reserves is vital given the global decline in biodiversity. Yet, the plants and animals that will be protected from untrammeled commercial exploitation within such reserves constitute essential resources for indigenous foragers and farmers. Balancing the needs of local subsistence level populations with the goals of national and international conservation agencies requires a thorough understanding of the mutual impacts that arise from the interaction of park and people. In the Ituri forest of Zaire, LANDSAT TM image analysis and GPS ground truth data were used to locate human settlements so that boundaries of the proposed Okapi Reserve could be chosen to minimize its impact on the subsistence practices of the local foragers and farmers. Using satellite imagery in conjunction with cultural information should help to ensure traditional resource exploitation rights of indigenous peoples whilst simultaneously protecting the largest contiguous area of undisturbed forest.

  20. Can extractive reserves save the rain forest: A ecological and socioeconomic comparison of non-timber forest product extraction systems in Peten, Guatemala, and West Kalimantan, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salafsky, N.; Dugelby, B.L.; Terborgh, J.W.

    1992-04-01

    Extractive reserves in tropical rain forests, in which only non-timber products are harvested, have been heralded by some conservationists as a means of maintaining biodiversity while providing income for local people. The study of extraction systems in Peten, Guatemala, and in West Kalimantan, Indonesia, leads to a more tempered conclusion, for while the Peten program was quite successful, the Kalimantan program was not. The study finds the success of an extractive reserve to be contingent on: (1) ecological conditions, and (2) socioeconomic and political factors. Although the study focuses on market-oriented extractive reserves, many of the issues discussed apply asmore » well to other land uses such as the collection of non-timber forest products for household consumption or small-scale timber extraction.« less

  1. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to quantify the carbon contained in the vegetation, although this calculation contains due to the heterogeneity of the forest landscape structural uncertainties which restrict future applications to spatial averages of about one hectare in size. The uncertainties in AGB for a given canopy height are here 20-40% (95% confidence level) corresponding to a standard deviation of less than ±10%. This uncertainty on the 1 ha-scale is much smaller than in the analysis of 0.04 ha-scale data. At this small scale (0.04 ha) AGB can only be calculated out of canopy height with an uncertainty which is at least of the magnitude of the signal itself due to the natural spatial heterogeneity of these forests.

  2. Leaf breakdown in streams differing in catchment land use

    USGS Publications Warehouse

    Paul, M.J.; Meyer, J.L.; Couch, C.A.

    2006-01-01

    1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

  3. Global Positioning System (GPS) and Geographic Information System (GIS) analysis of mobile harvesting equipment and sediment delivery to streams during forest harvest operations on steep terrain: Experimental design

    Treesearch

    Daniel Bowker; Jeff Stringer; Chris Barton; Songlin Fei

    2011-01-01

    Sediment mobilized by forest harvest machine traffic contributes substantially to the degradation of headwater stream systems. This study monitored forest harvest machine traffic to analyze how it affects sediment delivery to stream channels. Harvest machines were outfitted with global positioning system (GPS) dataloggers, recording machine movements and working status...

  4. Fish assemblage responses to forest cover

    Treesearch

    Chris L. Burcher; Matthew E. McTammany; E. Fred Benfield; Gene S. Helfman

    2008-01-01

    We investigated whether fish assemblage structure in southern Appalachian streams differed with historical and contemporary forest cover. We compared fish assemblages in 2nd?4th order streams draining watersheds that had increased forest cover between 1950 and 1993 (i.e., reforesting watersheds).

  5. How do Humans interact with the Biotic Pump of South America?

    NASA Astrophysics Data System (ADS)

    Sharma, Ajar; Pande, Saket; Renata Cordeiro Ortigara, Angela; Uhlenbrook, Stefan

    2017-04-01

    The negative effects of the deforestation have been both advertised and down played. However, the effects are far more tangible than what they seem to be. It has been shown that the change in forest cover causes the rainfall patterns to change as the forests work as so-called Biotic Pumps. This changes the water availability in the area by modifying the water balance. Local water balances affect the changes that may take longer to be visible on the larger scales. The Amazon rain forest, one of the most bio-diverse areas worldwide, is an essential part of the biosphere of South America. However, there are clear links between deforestation carried out for agricultural purposes, specifically, Soybean and Sugarcane and the variability in global food prices. Here we analyse the anthropogenic actions that may influence the biotic pump. Variables such as volatility in commodity prices, risk taking capacities, land availability, government subsidies are used to drive the decision making of farmers. These variables are embedded in a lumped biotic pump model made for Brazil, utilizing data from different sources including MODIS, Centro de Previsão do Tempo e Estudos Climáticos (CPTEC), European Centre for Medium-Range Weather Forecasts (ECMWF). The biotic pump model essentially transports atmospheric moisture downwind, part of which falls as rain. The atmospheric moisture 'upwind' accounts for evaporation, incorporating land cover changes in response to land use decisions made by farmers and rainfall. The model is run for scenarios to demonstrate how rain downwind is affected by upwind land cover and provides first insights in to how much rain and productivity (agriculture) downwind is caused by the Amazonian rain forest upwind We then discuss the value of environmental conservation based on marginal productivity analysis, i.e., finding harmony between the conservation of rainforest and the economic growth of the country.

  6. Anthropogenic land uses elevate metal levels in stream water in an urbanizing watershed.

    PubMed

    Yu, Shen; Wu, Qian; Li, Qingliang; Gao, Jinbo; Lin, Qiaoying; Ma, Jun; Xu, Qiufang; Wu, Shengchun

    2014-08-01

    Land use/cover change is a dominant factor affecting surface water quality in rapidly developing areas of Asia. In this study we examined relationships between land use and instream metal loadings in a rapidly developing mixed land use watershed in southeastern China. Five developing subwatersheds and one forested reference site (head water) were instrumented with timing- and rainfall-triggered autosampler and instream loadings of anthropogenic metals (Cu, Zn, Pb, Cr, Cd, and Mn) were monitored from March 2012 to December 2013. Farm land and urban land were positively, and forest and green land were negatively associated with metal loadings (except Cr) in stream water. All developing sites had higher loadings than the reference head water site. Assessed by Chinese surface water quality standard (GB3830-2002), instream loadings of Cu and Zn occasionally exceeded the Class I thresholds at monitoring points within farmland dominated subwatersheds while Mn loadings were greater than the limit for drinking water sources at all monitoring points. Farm land use highly and positively contributed to statistical models of instream loadings of Cu, Zn, Cd, and Mn while urban land use was the dominant contributor to models of Pb and Cd loadings. Rainfall played a crucial role in metal loadings in stream water as a direct source (there were significant levels of Cu and Zn in rain water) and as a driver of watershed processes (loadings were higher in wet years and seasons). Urbanization effects on metal loadings in this watershed are likely to change rapidly with development in future years. Further monitoring to characterize these changes is clearly warranted and should help to develop plans to avoid conflicts between economic development and water quality degradation in this watershed and in watersheds throughout rapidly developing areas of Asia. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A New Infrared Desert Dust Index over French Guyana Rain forest: First results

    NASA Astrophysics Data System (ADS)

    Molinie, J.; Barnacin, E.; Henry, J. L.; Gobinddass, M. L.; Panechou-Pulcherie, K.; Feuillard, T.; Nagau, J.

    2017-12-01

    Recently a NASA researcher showed the role of desert dust contribution for the Amazonian rain forest. In another hand, desert dust impact population health when PM 10 level reached values around and upper the PM 10 threshold of the 50 µg m-3, established by the World Health Organization (WHO). Infrared Desert Dust Index (IDDI) developed by Legrand with Meteosat infrared images, allow the following of desert dust plumes over semi-arid land. In French Guiana the WHO threshold is currently overpass in measurements done by ORA air quality network, in the two main towns located close to the coast. For inland population, it is very difficult to have continuous dust measures due to the low infrastructure supplies. We need to develop a tools in order to follow the crossing of desert dust over the French Guyana rain forest, from the coast to inland villages. Following the IDDI concept and comparing with VIIRS AOT EDR result over the same area, a modified IDDI for Amazonian region (IDDI_A) has been proposed to identify the dusty pixels over the forest. Despite of high cloud presence, a good correlation between AOT EDR and IDDI_A was obtained. The IDDI_A calculation has been applied over French Guiana area for different PM 10 level at Cayenne, a town along the coast.

  8. Implementation of a subcanopy solar radiation model on a forested headwater basin in the Southern Appalachians to estimate riparian canopy density and stream insolation for stream temperature models

    NASA Astrophysics Data System (ADS)

    Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.

    2016-12-01

    Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and more solar radiation measurements are needed to fully validate the accuracy of the SSR model in Southern Appalachian forests, but initial results suggest the high resolution, spatially explicit estimates of solar radiation can improve solar radiation parameter estimates in deterministic models of stream temperature in forested landscapes.

  9. Modeling climate change impacts on the forest sector

    Treesearch

    John R. Mills; Ralph Alig; Richard W. Haynes; Darius M. Adams

    2000-01-01

    The forest sector has had a relatively long history of applying sectorial models to estimate the effects of atmospheric issues such as acid rain, climate change, and the forestry impacts of reduced atmospheric ozone. The models of the forest sector vary in scope and complexity but share a number of common features and databases.

  10. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    PubMed

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  11. Multidecadal stability in tropical rain forest structure and dynamics across an old-growth landscape

    PubMed Central

    Clark, Deborah A.; Oberbauer, Steven F.; Kellner, James R.

    2017-01-01

    Have tropical rain forest landscapes changed directionally through recent decades? To answer this question requires tracking forest structure and dynamics through time and across within-forest environmental heterogeneity. While the impacts of major environmental gradients in soil nutrients, climate and topography on lowland tropical rain forest (TRF) structure and function have been extensively analyzed, the effects of the shorter environmental gradients typical of mesoscale TRF landscapes remain poorly understood. To evaluate multi-decadal performance of an old-growth TRF at the La Selva Biological Station, Costa Rica, we established 18 0.5-ha annually-censused forest inventory plots in a stratified-random design across major landscape edaphic gradients. Over the 17-year study period, there were moderate differences in stand dynamics and structure across these gradients but no detectable difference in woody productivity. We found large effects on forest structure and dynamics from the mega-Niño event at the outset of the study, with subdecadal recovery and subsequent stabilization. To extend the timeline to >40 years, we combined our findings with those from earlier studies at this site. While there were annual to multiannual variations in the structure and dynamics, particularly in relation to local disturbances and the mega-Niño event, at the longer temporal scale and broader spatial scale this landscape was remarkably stable. This stability contrasts notably with a current hypothesis of increasing biomass and dynamics of TRF, which we term the Bigger and Faster Hypothesis (B&FHo). We consider possible reasons for the contradiction and conclude that it is currently not possible to independently assess the vast majority of previously published B&FHo evidence due to restricted data access. PMID:28981502

  12. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis

    USGS Publications Warehouse

    Cleveland, Cory C.; Townsend, Alan R.; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M.C.; Chuyong, George; Dobrowski, Solomon Z.; Grierson, Pauline; Harms, Kyle E.; Houlton, Benjamin Z.; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C.; Sierra, Carlos A.; Silver, Whendee L.; Tanner, Edmund V.J.; Wieder, William R.

    2011-01-01

    Tropical rain forests play a dominant role in global biosphere-atmosphere CO2 exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (< 1000 m), a regression tree analysis revealed that foliar and soil-based measurements of phosphorus (P) were the only variables that explained a significant proportion of the variation in ANPP, although the relationships were weak. However, foliar P, foliar nitrogen (N), litter decomposition rate (k), soil N and soil respiration were all directly related with total surface (0–10 cm) soil P concentrations. Our analysis provides some evidence that P availability regulates NPP and other ecosystem processes in lowland tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations – especially in lowland forests – to elucidate the most important nutrient interactions and controls.

  13. Tropical rain forest biogeochemistry in a warmer world: initial results from a novel warming experiment in a Puerto Rico tropical forest

    NASA Astrophysics Data System (ADS)

    Reed, S.; Cavaleri, M. A.; Alonso-Rodríguez, A. M.; Kimball, B. A.; Wood, T. E.

    2016-12-01

    Tropical forests represent one of the planet's most active biogeochemical engines. They account for the dominant proportion of Earth's live terrestrial plant biomass, nearly one-third of all soil carbon, and exchange more CO2 with the atmosphere than any other biome. In the coming decades, the tropics will experience extraordinary changes in temperature, and our understanding of how this warming will affect biogeochemical cycling remains notably poor. Given the large amounts of carbon tropical forests store and cycle, it is no surprise that our limited ability to characterize tropical forest responses to climate change may represent the largest hurdle in accurately predicting Earth's future climate. Here we describe initial results from the world's first tropical forest field warming experiment, where forest understory plants and soils are being warmed 4 °C above ambient temperatures. This Tropical Responses to Altered Climate Experiment (TRACE) was established in a rain forest in Puerto Rico to investigate the effects of increased temperature on key biological processes that control tropical forest carbon cycling, and to establish the steps that need to be taken to resolve the uncertainties surrounding tropical forest responses to warming. In this talk we will describe the experimental design, as well as the wide range of measurements being conducted. We will also present results from the initial phase of warming, including data on how increased temperatures from infrared lamp warming affected soil moisture, soil respiration rates, a suite of carbon pools, soil microbial biomass, nutrient availability, and the exchange of elements between leaf litter and soil. These data represent a first look into tropical rain forest responses to an experimentally-warmed climate in the field, and provide exciting insight into the non-linear ways tropical biogeochemical cycles respond to change. Overall, we strive to improve Earth System Model parameterization of the pools and fluxes of water, carbon, and nutrients in tropical forested ecosystems and the data shown will highlight how these cycles are coupled and independently altered by warming.

  14. Saving streams at their source: managing for amphibian diversity in headwater forests.

    Treesearch

    Jonathan Thompson

    2008-01-01

    Although stream protection has become a central tenet of forest management in the Pacific Northwest, it is often only the larger, fish-bearing streams that are afforded the strongest safeguards. Yet, even without fish, headwater streams and riparian areas are hotspots of biodiversity, and they are the source of much of the water, gravel, and nutrients that subsidize...

  15. Organic debris in small streams, Prince of Wales Island, Southeast Alaska.

    Treesearch

    Frederick J. Swanson; Mason D. Bryant; George W. Lienkaemper; James R. Sedell

    1984-01-01

    Quantities of coarse and fine organic debris in streams flowing through areas clearcut before 1975 are 3 and 6 times greater than quantities in streams sampled in old-growth stands in Tongass National Forest, central Prince of Wales Island, southeast Alaska. The concentration of debris in streams of clearcut Sitka spruce-western hemlock forests in southeast Alaska,...

  16. Assessing the extent of nitrogen saturation in northern West Virginia forested watersheds: a survey of stream nitrate concentrations

    Treesearch

    Karl W. J. Williard; David R. DeWalle; Pamela J. Edwards

    2003-01-01

    Twenty-seven forested watersheds in northern West Virginia were sampled for stream nitrate concentrations during summer 1997 and fall 1998 baseflow periods to determine if Fernow watershed 4, an often-cited and studied nitrogen saturated basin, was anomalous or regionally representative in terms of stream nitrate levels. Baseflow stream NO3-N...

  17. Reach-scale land use drives the stress responses of a resident stream fish.

    PubMed

    Blevins, Zachary W; Wahl, David H; Suski, Cory D

    2014-01-01

    Abstract To date, relatively few studies have tried to determine the practicality of using physiological information to help answer complex ecological questions and assist in conservation actions aimed at improving conditions for fish populations. In this study, the physiological stress responses of fish were evaluated in-stream between agricultural and forested stream reaches to determine whether differences in these responses can be used as tools to evaluate conservation actions. Creek chub Semotilus atromaculatus sampled directly from forested and agricultural stream segments did not show differences in a suite of physiological indicators. When given a thermal challenge in the laboratory, creek chub sampled from cooler forested stream reaches had higher cortisol levels and higher metabolic stress responses to thermal challenge than creek chub collected from warmer and more thermally variable agricultural reaches within the same stream. Despite fish from agricultural and forested stream segments having different primary and secondary stress responses, fish were able to maintain homeostasis of other physiological indicators to thermal challenge. These results demonstrate that local habitat conditions within discrete stream reaches may impact the stress responses of resident fish and provide insight into changes in community structure and the ability of tolerant fish species to persist in agricultural areas.

  18. How much Is enough? Minimal responses of water quality and stream biota to partial retrofit stormwater management in a suburban neighborhood

    USGS Publications Warehouse

    Roy, Allison; Rhea, Lee K.; Mayer, Audrey L.; Shuster, William D.; Beaulieu, Jake J.; Hopton, Matthew E.; Morrison, Matthew A.; St. Amand, Ann

    2014-01-01

    Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km2 Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007–2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems.

  19. How Much Is Enough? Minimal Responses of Water Quality and Stream Biota to Partial Retrofit Stormwater Management in a Suburban Neighborhood

    PubMed Central

    Roy, Allison H.; Rhea, Lee K.; Mayer, Audrey L.; Shuster, William D.; Beaulieu, Jake J.; Hopton, Matthew E.; Morrison, Matthew A.; St. Amand, Ann

    2014-01-01

    Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km2 Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007–2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems. PMID:24465468

  20. How much is enough? Minimal responses of water quality and stream biota to partial retrofit stormwater management in a suburban neighborhood.

    PubMed

    Roy, Allison H; Rhea, Lee K; Mayer, Audrey L; Shuster, William D; Beaulieu, Jake J; Hopton, Matthew E; Morrison, Matthew A; St Amand, Ann

    2014-01-01

    Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km(2) Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007-2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems.

  1. Effects of hurricane disturbance on stream water concentrations and fluxes in eight tropical forest watersheds of the Luquillo Experimental Forest, Puerto Rico.

    Treesearch

    DOUGLAS. A. SCHAEFER; WILLIAM H. McDOWELL; FREDRICK N. SCATENA; CLYDE E. ASBURY

    2000-01-01

    Stream water chemistry responds substantially to watershed disturbances, but hurricane effects have not been extensively investigated in tropical regions. This study presents a long-term (2.5±11 y) weekly record of stream water chemistry on eight forested watersheds (catchment basins) in the Luquillo Mountains of Puerto Rico. This includes a period before and at least...

  2. Assessment of forestry best management practices II: patterns in stream biological endpoints in terms of natural variability and fertilization

    Treesearch

    Camille Flinders; Daniel L. McLaughlin; Larry Korhnak; William J. Arthurs; Joan Ikoma; Matthew J. Cohen; Erik B. Schilling

    2016-01-01

    Watersheds dominated by forest cover typically have high quality water. In managed forests, fertilizers may be periodically applied during the growing period. The Florida Forest Service has developed Best Management Practices (BMPs) for managed forests to minimize the potential impacts of forestry operations, including fertilization, to forest streams and maintain ...

  3. Richness and Abundance of Ichneumonidae in a Fragmented Tropical Rain Forest.

    PubMed

    Ruiz-Guerra, B; Hanson, P; Guevara, R; Dirzo, R

    2013-10-01

    Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September-October) and rainy (March-April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes.

  4. The importance of humans in the dispersal and spread of Phytophthora ramorum at local, landscape, and regional scales

    Treesearch

    J. Hall Cushman; Ross Meentemeyer

    2006-01-01

    Determining how Phytophthora ramorum is dispersed across the landscape is critical for understanding the ecology and epidemiology of this influential pathogen. To date, researchers have shown that abiotic factors – such as rain-splash, wind-blown rain and down-stream transport of inoculum – are critical mechanisms for the dispersal of this pathogen....

  5. PREDICTIONS OF STREAM WOOD RECRUITMENT FROM RIPARIAN FORESTS: EFFECTS OF DATA RESOLUTION

    EPA Science Inventory

    We evaluate whether different levels of detail of riparian forest characterizations result in different predictions of stream wood recruitment from riparian forests in northwestern Oregon. If less detailed information provides the same estimate of this function as more detailed i...

  6. N : P stoichiometry in a forested runoff during storm events: comparisons with regions and vegetation types.

    PubMed

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  7. N : P Stoichiometry in a Forested Runoff during Storm Events: Comparisons with Regions and Vegetation Types

    PubMed Central

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo. PMID:22547978

  8. THE INFLUENCE OF FOREST FRAGMENTATION AND OTHER ENVIRONMENTAL FACTORS ON LAKE SUPERIOR STREAM FISH ASSEMBLAGE

    EPA Science Inventory

    As part of a comparative watershed project investigating land cover/land use disturbance gradients for streams in the western Lake Superior region, we wanted to determine the relative influence of hydrogeomorphic region, forest fragmentation, watershed storage, and in-stream habi...

  9. THE INFLUENCE OF FOREST FRAGMENTATION AND OTHER ENVIRONMENTAL FACTORS ON LAKE SUPERIOR STREAM FISH ASSEMBLAGES

    EPA Science Inventory

    As part of a comparative watershed project investigation land cover/land use disturbance gradients for streams in the western Lake Superior region, we wanted to determine the relative influence of hydrogeomorphic region, forest fragmentation, watershed storage and in-stream habit...

  10. Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities.

    PubMed

    Aoyagi, Ryota; Kitayama, Kanehiro

    2016-07-01

    Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities.

  11. A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies

    Treesearch

    Samuel V. Glass

    2010-01-01

    Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.

  12. Benthic meiofauna responses to five forest harvest methods

    Treesearch

    Freese Smith; Arthur V. Brown; Misty Pope; Jerry L. Michael

    2001-01-01

    Benthic meiofauna were collected from the pools of minute (0 order) streams in the Ouachita National Forest, Arkansas during March 21-23, 1996 to see if benthic communities responded to forest harvest methods in a similar manner as plankton communities collected two years prior. The study streams and their watersheds (2-6 ha) were located in 14-16 ha forest stands that...

  13. Aquatic habitats of Canaan Valley, West Virginia: Diversity and environmental threats

    USGS Publications Warehouse

    Snyder, C.D.; Young, J.A.; Stout, B. M.

    2006-01-01

    We conducted surveys of aquatic habitats during the spring and summer of 1995 in Canaan Valley, WV, to describe the diversity of aquatic habitats in the valley and identify issues that may threaten the viability of aquatic species. We assessed physical habitat and water chemistry of 126 ponds and 82 stream sites, and related habitat characteristics to landscape variables such as geology and terrain. Based on our analyses, we found two issues likely to affect the viability of aquatic populations in the valley. The first issue was acid rain and the extent to which it potentially limits the distribution of aquatic and semi-aquatic species, particularly in headwater portions of the watershed. We estimate that nearly 46%, or 56 kilometers of stream, had pH levels that would not support survival and reproduction of Salvelinuw fontinalis (brook trout), one of the most acid-tolerant fishes in the eastern US. The second issue was the influence of Castor canadensis (beaver) activity. In the Canaan Valley State Park portion of the valley, beaver have transformed 4.7 kilometers of stream (approximately 17% of the total) to pond habitat through their dam building. This has resulted in an increase in pond habitat, a decrease in stream habitat, and a fragmented stream network (i.e., beaver ponds dispersed among stream reaches). In addition, beaver have eliminated an undetermined amount of forested riparian area through their foraging activities. Depending on the perspective, beaver-mediated changes can be viewed as positive or negative. Increases in pond habitat may increase habitat heterogeneity with consequent increases in biological diversity. In contrast, flooding associated with beaver activity may eliminate lowland wetlands and associated species, create barriers to fish dispersal, and possibly contribute to low dissolved oxygen levels in the Blackwater River. We recommend that future management strategies for the wildlife refuge be viewed in the context of these two issues, and that the responses of multiple assemblages be incorporated in the design of refuge management plans.

  14. AN INDICATOR OF POTENTIAL STREAM WOOD CONTRIBUTION FOR RIPARIAN FORESTS

    EPA Science Inventory

    In northwestern Oregon a key function of riparian forests is to provide wood to the stream network. This function is a prominent feature of Federal and State forest practices in the region. Thus, defining indicators which are associated with this function are important for desi...

  15. The Role of Regional Factors in Structuring Ouachita Mountain Stream Assemblages

    Treesearch

    Lance R. Williams; Christopher M. Taylor; Melvin L. Warren; J. Alan Clingenpeel

    2004-01-01

    Abstract - We used Basin Area Stream Survey data from the USDA Forest Service, Ouachita National Forest to evaluate the relationship between regional fish and macroinvertebrate assemblages and environmental variability (both natural and anthropogenic). Data were collected for three years (1990-1992) from six hydrologically variable stream systems in...

  16. The effect of increasing gravel cover on forest roads for reduced sediment delivery to stream crossings

    Treesearch

    Kristopher Brown; Kevin J. McGuire; W. Michael Aust; W. Cully Hession; C. Andrew Dolloff

    2014-01-01

    Direct sediment inputs from forest roads at stream crossings are a major concern for water quality and aquatic habitat. Legacy road–stream crossing approaches, or the section of road leading to the stream, may have poor water and grade control upon reopening, thus increasing the potential for negative impacts to water quality. Rainfall simulation experiments were...

  17. Kriging Direct and Indirect Estimates of Sulfate Deposition: A Comparison

    Treesearch

    Gregory A. Reams; Manuela M.P. Huso; Richard J. Vong; Joseph M. McCollum

    1997-01-01

    Due to logistical and cost constraints, acidic deposition is rarely measured at forest research or sampling locations. A crucial first step to assessing the effects of acid rain on forests is an accurate estimate of acidic deposition at forest sample sites. We examine two methods (direct and indirect) for estimating sulfate deposition at atmospherically unmonitored...

  18. Air Pollution, Acid Rain, and the Future of Forests. Worldwatch Paper 58.

    ERIC Educational Resources Information Center

    Postel, Sandra

    This book traces centuries of human use and abuse of forest ecosystems by discussing past decades of intense burning, grazing, and timber cutting that added to the natural acidification of the soil. Air pollutants and acids generated by industrial activities worldwide are also considered. Many forests in Europe and North America now receive as…

  19. Reduced-impact logging and temporal activity of understorey bats in lowland Amazonia

    Treesearch

    Ivan Castro Arellano; Steven J. Presley; Michael R. Willig; Joseph M. Wunderle; Luiz N. Saldanha

    2009-01-01

    Because global timber demands continue to threaten tropical rain forests, identification of sustainable use forest management protocols that meet human needs while preserving biodiversity is critical. Reduced-impact logging (RIL) protocols are increasingly common in the tropics and may be a viable option for sustainable forest use; however, few studies have documented...

  20. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China

    PubMed Central

    Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007

  1. Chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rain forest: Evidence from carbon, helium, and chlorine

    NASA Astrophysics Data System (ADS)

    Genereux, David P.; Webb, Mathew; Solomon, D. Kip

    2009-08-01

    C, He, and Cl concentrations and isotopes in groundwater and surface water in a lowland Costa Rican rain forest are consistent with the mixing of two distinct groundwaters: (1) high-solute bedrock groundwater representing interbasin groundwater flow (IGF) into the rain forest and (2) low-solute local groundwater recharged in the lowlands. In bedrock groundwater, high δ13C (-4.89‰), low 14C (7.98 pM), high R/RA for He (6.88), and low 36Cl/Cl (17 × 10-15) suggest that elevated tracer concentrations are derived from magmatic outgassing and/or weathering of volcanic rock beneath nearby Volcan Barva. In local groundwater, the magmatic signature is absent, and data suggest atmospheric sources for He and Cl and a biogenic soil gas CO2 source for dissolved inorganic carbon. Dating of 14C suggests that the age of bedrock groundwater is 2400-4000 years (most likely at the lower end of the range). Local groundwater has 14C > 100 pM, indicating the presence of "bomb carbon" and thus ages less than ˜55 years. Overall, data are consistent with a conceptual hydrologic model originally proposed on the basis of water budget and major ion data: (1) large variation in solute concentrations can be explained by mixing of the two distinct groundwaters, (2) bedrock groundwater is much older than local groundwater, (3) elevated solute concentrations in bedrock groundwater are derived from volcanic fluids and/or rock, and (4) local groundwater has not interacted with volcanic rock. Tracers with different capabilities converge on the same hydrologic interpretation. Also, transport of magmatic CO2 into the lowland rain forest via IGF seems to be significant relative to other large ecosystem-level carbon fluxes.

  2. Late Holocene and modern pollen records from three sites in Shannon and Carter Counties, southeast Missouri Ozarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, J.K.

    Palynological investigations of a small sinkhole bog (Buttonbush Bog) and two archaeological sites (Round Spring Shelter, Round Spring Site 23SH19 and Gooseneck Site 23CT54) located in Shannon and Carter counties, Missouri provide a 3,100 year record of vegetational change. Bryophytic polsters and surface samples were also collected in Shannon and Carter counties in the southeast Missouri Ozarks to determine modern pollen rain. A 302-cm core retrieved from Buttonbush Bog has a basal data of 3,130 [+-] 100 yr B.P. and a date of 1,400 [+-] 100 yr B.P. at 52--56 cm. The Buttonbush Bog pollen sequence is divided into threemore » pollen-assemblage zones. The pollen spectra from Buttonbush Bog indicate that pine did not become well established in the southeast Missouri Ozarks until after 3,100 yr B.P. Zone 1 (the oldest) represents a mixed oak forest with minor components of pine and hickory. In Zone 2, pine values increase, indicating a shift to a pine-oak forest. The pollen sequence from Round Spring Shelter is divided into two pollen-assemblage zones. The lower zone (Zone 1) suggests the presence of a pine-oak forest in the vicinity of Round Spring prior to an Ambrosia rise at the top of the sequence in Zone 2. Regional pollen rain and variation in the local pollen rain are reflected by modern pollen spectra extracted from the bryophytic polsters surface samples. In this area the average regional pollen rain is dominated by pine, oak, hickory, and Ambrosia. The data are consistent with the mosaic of pine-oak and oak-hickory-pine forests characteristic of this region.« less

  3. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China.

    PubMed

    Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.

  4. One-year delayed effect of fog on malaria transmission: a time-series analysis in the rain forest area of Mengla County, south-west China

    PubMed Central

    Tian, Linwei; Bi, Yan; Ho, Suzanne C; Liu, Wenjie; Liang, Song; Goggins, William B; Chan, Emily YY; Zhou, Shuisen; Sung, Joseph JY

    2008-01-01

    Background Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Methods Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Results At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Conclusion Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide. PMID:18565224

  5. Throughfall Monitoring Of Old Growth, Second Growth, And Cleared Vegetation Plots On Prince of Wales Island, Alaska

    NASA Astrophysics Data System (ADS)

    Prussian, K. M.

    2006-12-01

    The density of forest canopy affects the amount of rain reaching the forest floor in forested environments of Southeast Alaska. Less throughfall occurs in the second growth sites than in the old growth site and greater throughfall occurs in the clear-cut sites. More specifically, preliminary data show that SG sites received between 38 and 87% of the OG throughfall and the clear-cut sites experienced between 145 and 248% of the OG throughfall. Precipitation gages were used to monitor throughfall in each of the forested vegetation sites on Prince of Wales Island, Alaska, as an indicator of the amount of water reaching the forest floor in these different forest types. Data collected during 2004 and 2005 included 23 storms ranging from 0.2 to 10.6 inches of rain in the clear-cut forest. This monitoring is an effort to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. Site selection focused on similarities in location, elevation, aspect, and accessibility while accounting for the three varying vegetation conditions. Data collected during 2004 and 2005 sampling seasons were in the same sampling plots, while data collected in 2006 is a duplicate set of sites. Twenty-three storms were used to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. The second growth stand was harvested in 1979 and is currently in stem re-initiation phase with thick conifer regeneration. The clear-cut site was harvested in 1999 and contains conifer vegetation, blueberry, and salmonberry vegetation less than five feet in height. Storms were defined as events that were clearly delineated by lack of rainfall for a period of time, or similar antecedent conditions, and totaled at least .2 inches of rain at the CC site. Analysis of a storm event began prior to rainfall (in the CC site) and terminated post throughfall in the SG sites.

  6. Off-nadir antenna bias correction using Amazon rain sigma(0) data

    NASA Technical Reports Server (NTRS)

    Birrer, I. J.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K.

    1982-01-01

    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Oceanic Satellite System (NOSS). Backscattering observations made by the SEASAT Scatterometer System (SASS) showed the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which was insensitive to polarization. The variation with angle of incidence was adequately modeled as scattering coefficient (dB) = a theta b with typical values for the incidence-angle coefficient from 0.07 to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum-likelihood estimation algorithms presented here permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.

  7. Do Riparian Buffers Protect Stream Invertebrate Communities in South American Atlantic Forest Agricultural Areas?

    PubMed

    Hunt, L; Marrochi, N; Bonetto, C; Liess, M; Buss, D F; Vieira da Silva, C; Chiu, M-C; Resh, V H

    2017-12-01

    We investigated the influence and relative importance of insecticides and other agricultural stressors in determining variability in invertebrate communities in small streams in intensive soy-production regions of Brazil and Paraguay. In Paraguay we sampled 17 sites on tributaries of the Pirapó River in the state of Itapúa and in Brazil we sampled 18 sites on tributaries of the San Francisco River in the state of Paraná. The riparian buffer zones generally contained native Atlantic forest remnants and/or introduced tree species at various stages of growth. In Brazil the stream buffer width was negatively correlated with sediment insecticide concentrations and buffer width was found to have moderate importance in mitigating effects on some sensitive taxa such as mayflies. However, in both regions insecticides had low relative importance in explaining variability in invertebrate communities, while various habitat parameters were more important. In Brazil, the percent coverage of soft depositional sediment in streams was the most important agriculture-related explanatory variable, and the overall stream-habitat score was the most important variable in Paraguay streams. Paraguay and Brazil both have laws requiring forested riparian buffers. The ample forested riparian buffer zones typical of streams in these regions are likely to have mitigated the effects of pesticides on stream invertebrate communities. This study provides evidence that riparian buffer regulations in the Atlantic Forest region are protecting stream ecosystems from pesticides and other agricultural stressors. Further studies are needed to determine the minimum buffer widths necessary to achieve optimal protection.

  8. Understory plant development in artificial canopy gaps in an 81-year-old forest stand on Chichagof Island, southeast Alaska

    Treesearch

    Scott Harris; Jeffrey Barnard

    2017-01-01

    This study assesses the understory plant response and associated effects on forage resources available to Sitka black-tailed deer (Odocoileus hemionus sitkensis), to the creation of artificial canopy gaps in a young-growth forest stand in the coastal temperate rain forest of southeast Alaska. The forest stand was approximately 58 years old when gaps were created and...

  9. Global Physiographic and Climatic Maps to Support Revision of Environmental Testing Guidelines

    DTIC Science & Technology

    2009-07-06

    precipitation and boarded by High and Low Relief Mountains or Interior Plains and Plateaus, such as the Amazon River Basin in South America and the Congo...taxonomy system. These form in hot climates with continual moisture availability, typically thought to occur only beneath tropical rainforests , though...Montane Tropical Forest Tropical Degraded Forest Seasonal Tropical Forest Rain Green Tropical Forest Tropical Rainforest FIGURE 6-1 DATE: 6-02

  10. Roosevelt elk selection of temperate rain forest seral stages in western Washington

    USGS Publications Warehouse

    Schroer, Greg L.; Jenkins, Kurt J.; Moorhead, Bruce B.

    1993-01-01

    We studied habitat selection by Roosevelt elk (Cervus elaphus roosevelti) in a temperate rain forest in the lower Queets River Valley of the western Olympic Peninsula, Washington from June 1986-July 1987. Elk annual home ranges included predominantly unlogged forests protected within Olympic National Park and logged, regenerating forests adjacent to the park. Radio-collared elk selected valley floors during all seasons except winter, when elk frequently used an adjoining plateau 60 m above the floodplain. In winder, radio-collared elk selected 6-15 year-old clearcuts, which were available on the plateau. Elk selected mature deciduous forests of the valley floor during spring, summer, and autumn, and generally they selected old-age Sitka spruce forests during autumn and winter. Young clearcuts (1-5 years old) and even-aged, regenerating stands (16-150 years old) generally were avoided during all seasons. Management practices that retain preferred habitat of elk, such as deciduous forests, 6-15 yr-old coniferous stands, and old-age coniferous bottomland forests will benefit elk, particularly on elk ranges managed for short-rotation, even-aged stands. Silvicultural alternatives to typical even-aged stand management, such as uneven-aged management and commercial thinning, should also be considered for improving and maintaining interspersion of forage and cover.

  11. The relationship between land management, fecal indicator bacteria, and the occurrence of Campylobacter and Listeria spp. in water and sediments during synoptic sampling in the S. Fork Broad River Watershed, N.E. Georgia, U.S.A

    NASA Astrophysics Data System (ADS)

    Bradshaw, J. K.; Molina, M.; Sidle, R. C.; Sullivan, K.; Oakley, B.; Berrang, M.; Meinersmann, R.

    2013-12-01

    Fecal indicator bacteria (FIB) and pathogens stored in the bed sediments of streams and rivers may be mobilized into the water column affecting overall water quality. Furthermore, land management may play an important role in the concentrations of FIB and the occurrence of pathogens in stream water and sediments. The purpose of this study was to determine the relationship between FIB and pathogens in stream water and sediment based on three land management-affected categories: agricultural, forest, and waters receiving treated municipal wastewater. Two synoptic sampling events were conducted under baseflow conditions (<0.64 cm of rain within 24h) between October-November, 2012 and May-June, 2013. Counts of the E. coli and E. faecalis and occurrences of the enteric pathogens Campylobacter and Listeria spp. were measured in stream water and sediment samples collected at 15 locations (six agricultural (AG); six forested (FORS); and three receiving discharge from water pollution control plants (WPCP)) in the S. Fork Broad River watershed located in northeast Georgia, USA. Mean E. coli and E. faecalis concentrations were highest in the AG stream water samples (3.08 log MPN 100 mL -1 for E. coli and 3.07 log CFU 100 mL -1 for E. faecalis ) and lowest in the FORS water samples for E. coli (2.37 log MPN 100 mL -1 ) and WPCP water samples for E. faecalis (2.53 log CFU 100 mL -1 ). E. coli concentrations (2.74 log MPN 100 mL -1 ) in the WPCP streams were intermediate. Similar to water samples, E. coli concentrations were highest in the AG sediments (4.31 log MPN g -1 ), intermediate in the WPCP sediments (4.06 log MPN g -1 ), and lowest in the FORS sediments (3.46 log MPN g -1 ). In contrast to E. coli, E. faecalis concentrations were lower (1.10 to 1.31 log CFU g -1 ) and relatively more constant than E. coli in sediments over the three land management categories. Campylobacter was detected in 27% of the water samples and 8% of the sediment samples. The highest occurrence of Campylobacter detection was in the AG streams (15% of the water samples; 5% of the sediment samples). Listeria was detected in 76% of the water samples and 65% of the sediment samples. The FORS and AG streams had the highest occurrence of Listeria in water and sediment (32% and 29% of the water samples, respectively; 24% and 29% of sediment samples, respectively) suggesting Listeria is fairly ubiquitous in these streams. Based on the high concentrations of E. faecalis in water and E. coli in water and sediment, and higher frequency of Campylobacter detection in the AG streams, this study indicates that E. coli and Campylobacter may occur in high concentrations in stream sediments in land management areas where fecal material is deposited directly by livestock into the stream or adjacent land in large doses.

  12. Characterizing the community of Phytophthora species in an Oregon forest stream

    Treesearch

    Philippe Remigi; Wendy Sutton; Paul Reeser; Everett Hansen

    2009-01-01

    Phytophthora species are best known as pathogens of agricultural crops, or invasive pathogens destroying forests. Little is known about indigenous species, especially in wild ecosystems. Previous work showed that Phytophthora species are relatively abundant in natural streams in forests, but the species present are poorly...

  13. 78 FR 58923 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Grotto...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... stream channel, minimal sedimentation, organic input into caves during rain events, and a sufficient prey..., pp. 111-112; Niemiller et al. 2006, p. 43). Prey availability is related to the organic input that is transported with sediment and other organic materials via sinkholes into stream habitats (Burr et al. 2001, p...

  14. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico.

    PubMed

    Ceccon, Eliane; Hernández, Patricia

    2009-01-01

    In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest's capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E) of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE). We found a strong seasonality in seed rain (96% of seeds fell in the dry season) in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard's similarity index between E and WE sites was relatively low (0.57). Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%), followed by anemochory (39%) and zoochory (13%). In relation to seed density, anemochory was the most frequent dispersal mode (88%). Most species in the zone were categorized as small seeds (92%), and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the area; some differences were already perceptible after this lapse. On the other hand, zoochorous species were almost absent from both sites. The re-introduction of climax and animal-dispersed species may be, in addition to perturbation exclusion, a viable strategy to accelerate ecological restoration in this area.

  15. Estimating cumulative effects of clearcutting on stream temperatures

    USGS Publications Warehouse

    Bartholow, J.M.

    2000-01-01

    The Stream Segment Temperature Model was used to estimate cumulative effects of large-scale timber harvest on stream temperature. Literature values were used to create parameters for the model for two hypothetical situations, one forested and the other extensively clearcut. Results compared favorably with field studies of extensive forest canopy removal. The model provided insight into the cumulative effects of clearcutting. Change in stream shading was, as expected, the most influential factor governing increases in maximum daily water temperature, accounting for 40% of the total increase. Altered stream width was found to be more influential than changes to air temperature. Although the net effect from clearcutting was a 4oC warming, increased wind and reduced humidity tended to cool the stream. Temperature increases due to clearcutting persisted 10 km downstream into an unimpacted forest segment of the hypothetical stream, but those increases were moderated by cooler equilibrium conditions downstream. The model revealed that it is a complex set of factors, not single factors such as shade or air temperature, that governs stream temperature dynamics.

  16. Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain research watershed (Georgia, USA)

    USGS Publications Warehouse

    Burns, Douglas A.; McDonnell, Jeffery J.; Hooper, R.P.; Peters, N.E.; Freer, J.E.; Kendall, C.; Beven, K.

    2001-01-01

    The geographic sources and hydrologic flow paths of stormflow in small catchments are not well understood because of limitations in sampling methods and insufficient resolution of potential end members. To address these limitations, an extensive hydrologic dataset was collected at a 10 ha catchment at Panola Mountain research watershed near Atlanta, GA, to quantify the contribution of three geographic sources of stormflow. Samples of stream water, runoff from an outcrop, and hillslope subsurface stormflow were collected during two rainstorms in the winter of 1996, and an end-member mixing analysis model that included five solutes was developed. Runoff from the outcrop, which occupies about one-third of the catchment area, contributed 50-55% of the peak streamflow during the 2 February rainstorm, and 80-85% of the peak streamflow during the 6-7 March rainstorm; it also contributed about 50% to total streamflow during the dry winter conditions that preceded the 6-7 March storm. Riparian groundwater runoff was the largest component of stream runoff (80-100%) early during rising streamflow and throughout stream recession, and contributed about 50% to total stream runoff during the 2 February storm, which was preceded by wet winter conditions. Hillslope runoff contributed 25-30% to peak stream runoff and 15-18% to total stream runoff during both storms. The temporal response of the three runoff components showed general agreement with hydrologic measurements from the catchment during each storm. Estimates of recharge from the outcrop to the riparian aquifer that were independent of model calculations indicated that storage in the riparian aquifer could account for the volume of rain that fell on the outcrop but did not contribute to stream runoff. The results of this study generally indicate that improvements in the ability of mixing models to describe the hydrologic response accurately in forested catchments may depend on better identification, and detailed spatial and temporal characterization of the mobile waters from the principal hydrologic source areas that contribute to stream runoff. Copyright ?? 2001 John Wiley & Sons, Ltd.

  17. Detecting the effects of coal mining, acid rain, and natural gas extraction in Appalachian basin streams in Pennsylvania (USA) through analysis of barium and sulfate concentrations.

    PubMed

    Niu, Xianzeng; Wendt, Anna; Li, Zhenhui; Agarwal, Amal; Xue, Lingzhou; Gonzales, Matthew; Brantley, Susan L

    2018-04-01

    To understand how extraction of different energy sources impacts water resources requires assessment of how water chemistry has changed in comparison with the background values of pristine streams. With such understanding, we can develop better water quality standards and ecological interpretations. However, determination of pristine background chemistry is difficult in areas with heavy human impact. To learn to do this, we compiled a master dataset of sulfate and barium concentrations ([SO 4 ], [Ba]) in Pennsylvania (PA, USA) streams from publically available sources. These elements were chosen because they can represent contamination related to oil/gas and coal, respectively. We applied changepoint analysis (i.e., likelihood ratio test) to identify pristine streams, which we defined as streams with a low variability in concentrations as measured over years. From these pristine streams, we estimated the baseline concentrations for major bedrock types in PA. Overall, we found that 48,471 data values are available for [SO 4 ] from 1904 to 2014 and 3243 data for [Ba] from 1963 to 2014. Statewide [SO 4 ] baseline was estimated to be 15.8 ± 9.6 mg/L, but values range from 12.4 to 26.7 mg/L for different bedrock types. The statewide [Ba] baseline is 27.7 ± 10.6 µg/L and values range from 25.8 to 38.7 µg/L. Results show that most increases in [SO 4 ] from the baseline occurred in areas with intensive coal mining activities, confirming previous studies. Sulfate inputs from acid rain were also documented. Slight increases in [Ba] since 2007 and higher [Ba] in areas with higher densities of gas wells when compared to other areas could document impacts from shale gas development, the prevalence of basin brines, or decreases in acid rain and its coupled effects on [Ba] related to barite solubility. The largest impacts on PA stream [Ba] and [SO 4 ] are related to releases from coal mining or burning rather than oil and gas development.

  18. Effect of Spatio-Temporal Variability of Rainfall on Stream flow Prediction of Birr Watershed

    NASA Astrophysics Data System (ADS)

    Demisse, N. S.; Bitew, M. M.; Gebremichael, M.

    2012-12-01

    The effect of rainfall variability on our ability to forecast flooding events was poorly studied in complex terrain region of Ethiopia. In order to establish relation between rainfall variability and stream flow, we deployed 24 rain gauges across Birr watershed. Birr watershed is a medium size mountainous watershed with an area of 3000 km2 and elevation ranging between 1435 m.a.s.l and 3400 m.a.s.l in the central Ethiopia highlands. One summer monsoon rainfall of 2012 recorded at high temporal scale of 15 minutes interval and stream flow recorded at an hourly interval in three sub-watershed locations representing different scales were used in this study. Based on the data obtained from the rain gauges and stream flow observations, we quantify extent of temporal and spatial variability of rainfall across the watershed using standard statistical measures including mean, standard deviation and coefficient of variation. We also establish rainfall-runoff modeling system using a physically distributed hydrological model: the Soil and Water Assessment Tool (SWAT) and examine the effect of rainfall variability on stream flow prediction. The accuracy of predicted stream flow is measured through direct comparison with observed flooding events. The results demonstrate the significance of relation between stream flow prediction and rainfall variability in the understanding of runoff generation mechanisms at watershed scale, determination of dominant water balance components, and effect of variability on accuracy of flood forecasting activities.

  19. Movement trajectories and habitat partitioning of small mammals in logged and unlogged rain forests on Borneo.

    PubMed

    Wells, Konstans; Pfeiffer, Martin; Lakim, Maklarin B; Kalko, Elisabeth K V

    2006-09-01

    1. Non-volant animals in tropical rain forests differ in their ability to exploit the habitat above the forest floor and also in their response to habitat variability. It is predicted that specific movement trajectories are determined both by intrinsic factors such as ecological specialization, morphology and body size and by structural features of the surrounding habitat such as undergrowth and availability of supportive structures. 2. We applied spool-and-line tracking in order to describe movement trajectories and habitat segregation of eight species of small mammals from an assemblage of Muridae, Tupaiidae and Sciuridae in the rain forest of Borneo where we followed a total of 13,525 m path. We also analysed specific changes in the movement patterns of the small mammals in relation to habitat stratification between logged and unlogged forests. Variables related to climbing activity of the tracked species as well as the supportive structures of the vegetation and undergrowth density were measured along their tracks. 3. Movement patterns of the small mammals differed significantly between species. Most similarities were found in congeneric species that converged strongly in body size and morphology. All species were affected in their movement patterns by the altered forest structure in logged forests with most differences found in Leopoldamys sabanus. However, the large proportions of short step lengths found in all species for both forest types and similar path tortuosity suggest that the main movement strategies of the small mammals were not influenced by logging but comprised generally a response to the heterogeneous habitat as opposed to random movement strategies predicted for homogeneous environments. 4. Overall shifts in microhabitat use showed no coherent trend among species. Multivariate (principal component) analysis revealed contrasting trends for convergent species, in particular for Maxomys rajah and M. surifer as well as for Tupaia longipes and T. tana, suggesting that each species was uniquely affected in its movement trajectories by a multiple set of environmental and intrinsic features.

  20. Biogeochemistry of the Amazon River Basin: the role of aquatic ecosystems in the Amazon functioning

    NASA Astrophysics Data System (ADS)

    Victoria, R. L.; Ballester, V. R.; Krushe, A. V.; Richey, J. E.; Aufdenkampe, A. K.; Kavaguishi, N. L.; Gomes, B. M.; Victoria, D. D.; Montebello, A. A.; Niell, C.; Deegan, L.

    2004-12-01

    In this study we present the results of an integrated analysis of physical and anthropogenic controls of river biogeochemistry in Amazônia. At the meso-scale level, our results show that both soil properties and land use are the main drivers of river biogeochemistry and metabolism, with pasture cover and soil exchange cation capacity explaining 99% (p < 0.01) of the variability observed in surface water ions and nutrients concentrations. In small rivers, forest clearing can increase cations, P and C inputs. P and light are the main PPL limiting factors in forested streams, while in pasture streams N becomes limiting. P export to streams may increase or remain nearly undetectable after forest-to-pasture conversion, depending on soil type. Pasture streams on Oxisols have very low P export, while on Ultisols P export is increased. Conversions of forest to pasture leads to extensive growth of in channel Paspalum resulting in higher DOC concentrations and respiration rates. Pasture streams have higher DOC fluxes when compared to the forest ones. In pasture areas the soil are compacted, there is less infiltration and higher surface run off, leaching soil superficial layers and caring more DOC to the streams. In forest areas infiltration is deeper into the soils and canopy interaction is higher. Mineralogy and soil properties are key factors determining exports of nutrients to streams. Therefore, land use change effects on nutrient export from terrestrial to aquatic ecosystems and the atmosphere must be understood within the context of varying soil properties across the Amazon Basin.

  1. Millennial-Scale ITCZ Variability in the Tropical Atlantic and Dynamics of Amazonian Rain Forest

    NASA Astrophysics Data System (ADS)

    Wang, X.; Auler, A. S.; Edwards, R. L.; Cheng, H.; Shen, C.; Smart, P. L.; Richards, D. A.

    2003-12-01

    Precipitation in the Amazon Basin is largely related to the intertropical convergence zone (ITCZ) in the tropical Atlantic which undergoes a regular seasonal migration. We chose a site south of the present day rainforest in semiarid northeastern Brazil, in order to study the timing of pluvial periods when the southern extend of the ITCZ would have been much further south than today. Shifts in the ITCZ position may have influenced the dynamics of rain forest and species diversity. We collected speleothems from northern Bahia state, located southeast of Amazonia. Age determinations with U-series dating methods show that samples grew rapidly during relatively short intervals (several hundreds of years) of glacial periods in the last 210 kyr. In addition, paleopluvial phases delineated by speleothem growth intervals show millennial-scale variations. Pluvial phases coincide with the timing of weak East Asian summer monsoon intensities (Wang et al., 2001, Science 294: 2345-2348), which have been correlated to the timing of stadials in Greenland ice core records and Heinrich events (Bond and Lotti, 1995, Science 267: 1005-1010). Furthermore, these intervals correspond to the periods of light color reflectance of Cariaco Basin sediments from ODP Hole 1002C (Peterson et al., 2000, Science, 290: 1947-1951), which was suggested to be caused by a southward shift of the northernmost position of the ITCZ and decreased rainfall in this region. Abrupt precipitation changes in northeastern Brazil may be due to the southward displacement of the southernmost position of the ITCZ associated with atmosphere-ocean circulation changes caused by (1) an increase in northern high latitude-tropical temperature gradient (Chiang et al., 2003, Paleoceanography, in press), and/or (2) the bipolar seesaw mechanism (Broecker et al., 1998, Paleoceanography 13: 119-121) during these Heinrich events. Pluvial phases are also coincident with higher insolation at 10° S during austral autumn. This association implies that insolation may contribute to the southward shift of the ITCZ and enhanced precipitation in northeastern Brazil. The mean latitudinal migration of the ITCZ in the tropical Atlantic may force Amazon rain forest dynamics. Fossils and geomorphologic evidence found nearby indicate much wetter climates and possible tropical rainforest expansion to this locality in the past (Auler and Smart, 2001, Quaternary Research 55: 159-167). Furthermore, low δ 13C (around -11‰ ) values in speleothems suggest an extensive C3 forest coverage, different from current drought-resistant caatinga vegetation. During time of high rainfall, northeastern Brazil may act as a migration corridor between two species-rich communities, the Amazon Rain Forest and the Atlantic Rain Forest.

  2. Phytophthora species in forest streams in Oregon and Alaska

    Treesearch

    Paul Reeser; Everett M. Hansen; Wendy Sutton; Philippe Remigi; Gerard Adams

    2010-01-01

    Eighteen Phytophthora species and one species of Halophytophthora were identified in 113 forest streams in Alaska, western Oregon, and southwestern Oregon that were sampled by baiting or filtration of stream water with isolation on selective media. Species were identified by morphology and DNA characterization using single strand conformational polymorphism, COX spacer...

  3. Sediment transport and channel morphology of small, forested streams.

    Treesearch

    Marwan A. Hassan; Michael Church; Thomas E. Lisle; Francesco Brardinoni; Lee Benda; Gordon E. Grant

    2005-01-01

    This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by...

  4. Recommendations for constructing forest stream crossings to control soil losses

    Treesearch

    Pamela J. Edwards; Jingxin Wang; Joshua T. Stedman

    2009-01-01

    Stream water samples were collected once daily and throughout storms from a small forested watershed in north central West Virginia for approximately 8 years. The turbidities of the samples were measured to determine how water quality changed in response to the construction of three associated stream crossings. The influence of the...

  5. Multivariate geomorphic analysis of forest streams: Implications for assessment of land use impacts on channel condition

    Treesearch

    Richard. D. Wood-Smith; John M. Buffington

    1996-01-01

    Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...

  6. Effects of nitrogen on temporal and spatial patterns of nitrate in streams and soil solution of a central hardwood forest

    Treesearch

    Frank S. Gilliam; Mary Beth Adams

    2011-01-01

    This study examined changes in stream and soil water NO3- and their relationship to temporal and spatial patterns of NO3- in soil solution of watersheds at the Fernow Experimental Forest, West Virginia. Following tenfold increases in stream NO3

  7. Hydrology of small forest streams in western Oregon.

    Treesearch

    R. Dennis Harr

    1976-01-01

    The hydrology of small forest streams in western Oregon varies by time and space in terms of both streamflow and channel hydraulics. Overland flow rarely occurs on undisturbed soils. Instead, water is transmitted rapidly through soils to stream channels by displacement of stored soil water. Drainage networks expand and contract according to the interaction between...

  8. Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation.

    PubMed

    Davies, Richard G

    2002-10-01

    Biomass collapse and its associated microclimatic stresses within recently isolated rain forest fragments may negatively affect species diversity of most resident taxa. However, for some decomposer organisms, increased resource availability via accompanying tree die-off may effect positive responses, at least for a time, with implications for rates of nutrient cycling and greenhouse gas release. This study investigates the early effects of forest fragmentation on a Neotropical termite assemblage. Numbers of encounters (surrogate for relative abundance) and species richness of wood and leaf-litter feeders, soil feeders, and the whole assemblage, were studied across true forest islands and mainland sites at a hydroelectric reservoir in French Guiana. Results showed no overall effect of fragmentation on either total termite encounters or species richness. However, numbers of encounters and species richness of wood and leaf-litter feeders showed positive responses to forest fragmentation. By contrast, soil feeders showed a negative response for numbers of encounters and no significant effect for species richness. Environmental data suggest that increased tree die-off, and other edge effects associated with biomass collapse, were underway at the time of sampling. Resulting increase in resource availability may therefore explain the positive influence on wood and leaf-litter feeders. A possible decrease in predation pressure from ants with decrease in island size was not tested for, but was a likely effect of the flooded matrix habitat. Fragmentation effects on soil feeder encounters may be due to the energetic and microclimatic constraints of feeding lower down the humification gradient of termite food substrates, but were not sufficient to affect species richness. The patterns revealed suggest that rates of wood decomposition following tree die-off, and of soil nutrient cycling, under different rain forest fragmentation scenarios, merit further study.

  9. Short dry spells in the wet season increase mortality of tropical pioneer seedlings.

    PubMed

    Engelbrecht, Bettina M J; Dalling, James W; Pearson, Timothy R H; Wolf, Robert L; Gálvez, David A; Koehler, Tobias; Tyree, Melvin T; Kursar, Thomas A

    2006-06-01

    Variation in plant species performance in response to water availability offers a potential axis for temporal and spatial habitat partitioning and may therefore affect community composition in tropical forests. We hypothesized that short dry spells during the wet season are a significant source of mortality for the newly emerging seedlings of pioneer species that recruit in treefall gaps in tropical forests. An analysis of a 49-year rainfall record for three forests across a rainfall gradient in central Panama confirmed that dry spells of > or = 10 days during the wet season occur on average once a year in a deciduous forest, and once every other year in a semi-deciduous moist and an evergreen wet forest. The effect of wet season dry spells on the recruitment of pioneers was investigated by comparing seedling survival in rain-protected dry plots and irrigated control plots in four large artificially created treefall gaps in a semi-deciduous tropical forest. In rain-protected plots surface soil layers dried rapidly, leading to a strong gradient in water potential within the upper 10 cm of soil. Seedling survival for six pioneer species was significantly lower in rain-protected than in irrigated control plots after only 4 days. The strength of the irrigation effect differed among species, and first became apparent 3-10 days after treatments started. Root allocation patterns were significantly, or marginally significantly, different between species and between two groups of larger and smaller seeded species. However, they were not correlated with seedling drought sensitivity, suggesting allocation is not a key trait for drought sensitivity in pioneer seedlings. Our data provide strong evidence that short dry spells in the wet season differentially affect seedling survivorship of pioneer species, and may therefore have important implications to seedling demography and community dynamics.

  10. The impact of land use change on the energy and water fluxes between atmosphere and tropical vegetation in Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Falk, U.; Ibrom, A.; Kreilein, H.; Oltchev, A.; Gravenhorst, G.

    2003-12-01

    The conversion of tropical rain forest to agriculturally used land is a widespread process throughout Indonesia. Besides the effects on the biological diversity and the hydrological functions of a forest, this also has an impact on the turbulent exchange processes between vegetation and atmosphere, the radiative properties of the surface and therefore on atmospheric boundary layer and local climate. Within the framework of the project STORMA "Stability of rain forest margins" (SFB 552, University Goettingen, financed by the German Research Foundation), the energy and water fluxes above one of the major land use types, a Cacao plantation, were investigated using the Eddy-Covariance method. Simultaneously meteorological measurements of the variables wind speed and velocity, temperature, humidity, rainfall, soil heat flux and the components of the radiation budget were performed, in order to complete the energy balance and investigate the dependencies of the turbulent exchange processes on the atmospheric boundary conditions. The measurements are being compared to a SVAT model, providing the heat flux into the vegetation. Energy balance closure is used as a means to check the quality of the measured fluxes. The comparison to measurements above undisturbed rain forest by means of the ratio of sensible to latent heat flux, the Bowen ratio, indicates a significantly different boundary layer regime of the atmosphere above the Cacao.

  11. Wood in New Zealand's Native Forest Streams. Recent Advances

    NASA Astrophysics Data System (ADS)

    Mark, M. A.; Davies-Colley, R.

    2005-05-01

    We conducted a series of research projects to investigate the importance of wood in native forested streams of New Zealand. We examined abundance and geomorphic role of wood in 18 pristine native forest streams (channel width: 3-6 m) throughout New Zealand. Forest type and geographic location had no discernable influence on wood abundance, possibly reflecting the confounding influences of local features (e.g., tree fall regime) and methodology (`snap-shot' survey of a dynamic system). Number (18-66 per 100 m) and dead wood volume (85-470 m3 ha-1) of stream logs were at the high end of the international range. Living trees contributed up to 25% of total wood, and tree ferns were strongly represented (up to 11% of volume). The largest 10% of pieces contributed 75% of the total volume. The importance of the large wood pieces (>10 m3) was explored further with surveys within that watershed containing the site with the greatest wood volume. The largest pieces were rare but seemed relatively uniformly distributed. To explore the biological consequences of stream wood, we studied use of wood-related micro-habitat by the crayfish (Paranephrops planifrons White). Our findings suggest that wood is an important component of New Zealand's forested stream ecosystems.

  12. Production of Alkaline Cellulase by Fungi Isolated from an Undisturbed Rain Forest of Peru

    PubMed Central

    Vega, Karin; Villena, Gretty K.; Sarmiento, Victor H.; Ludeña, Yvette; Vera, Nadia; Gutiérrez-Correa, Marcel

    2012-01-01

    Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an apparent decrease of them indicating that they are true alkaline cellulase producers. Aspergillus sp. LM-HP32, Penicillium sp. LM-HP33, and Penicillium sp. LM-HP37 were the best producers of FP cellulase (>3 U mL−1) with higher specific productivities (>30 U g−1 h−1). Three strains have been found suitable for developing processes for alkaline cellulase production. Soils from Amazonian rain forests are good sources of industrial fungi with particular characteristics. The results of the present study are of commercial and biological interest. Alkaline cellulases may be used in the polishing and washing of denim processing of the textile industry. PMID:23213539

  13. Foreign petroleum companies developing new paradigm for operating in rain forest region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, B.

    1997-04-21

    Multinational petroleum companies working in South America are gradually sculpting a new paradigm of how to operate in a rain forest with utmost regard for its indigenous people and environmental resources. This new paradigm can serve as a litmus test for the future of oil and gas operations in the rain forest--not only for South America, but for other such jungle settings around the world. And the lessons learned here can readily be adopted as standard operating procedures for projects involving other environments and communities, from the natives of arctic deserts to the mean streets of the urban poor. Thismore » is more than a new wrinkle in public relations for an oil and gas company. What`s involved is a need for a company to recognize that it must move beyond compliance on laws and permits and regulations into the next stage: a top-to-bottom commitment to partnership with all the stakeholders in a project, not just the companies themselves and the respective government with ownership of hydrocarbon resources. The paper discusses the changing focus, industry`s traditional responses, new strategy, ARCO`s plan, self-sufficient, and what`s at stake.« less

  14. Influence of understory cover on soil water and evaporation fluxes: a trial

    NASA Astrophysics Data System (ADS)

    Jiménez-Rodríguez, César; Magdalena Warter, Maria; Coenders-Gerrits, Miriam

    2017-04-01

    Within a forest ecosystem the litter layer is an important hydrological component and contributes towards the water and energy exchange between the sub-canopy and the soil. Evaporation within a forest is made up of different fractions coming from the dry soil, vegetation and litter layers. The quantification and partitioning of each fraction remains difficult as there is hard to estimate correctly the amount of water moved by evaporation or percolation at ecosystem level. With the aim to determine the influence of forest understory on the evaporation fluxes, four ground cover types were selected from the Speulderbos forest in the Netherlands. The mosses species of "Thamariskmoss" (Thuidium thamariscinum), "Rough Stalked Feathermoss" (Brachythecium rutabulum), and "Haircapmoss" (Polytrichum commune) were compared with a litter layer made up of Douglas-Fir needles (Pseudotsuga menziesii). Four PVC basins with 40cm x 60cm were filled with forest soil and sheltered with the selected ground covers. Each box was equipped with a soil moisture sensor, and a set Temperature and Relative Humidity sensors to determine the VPD during the study period. The study period lasts 4 weeks, while the percolation rates were measured in a daily basis. The rainfall events were simulated in the lab, applying the same rain event to each box at the same time. A total amount of 43.12 mm of rain were added to the boxes during the 4 weeks of the experiment, and distributed in 11 rain events which differ in amount and timing between events. The percolation in all the boxes was more than the 50% of the rain events due to the sandy condition of the soil, while the evaporation rates were affected not only by the room atmospheric conditions, but for the cover type present in each box. Except for the Polytrichum moss, a moss known for its water conducting abilities, all cover types showed a decline before and increase after a rain event. This species showed a steady increase in soil water content over the sampling period due to keeping the water longer in the surface. The evaporation was driven partly by the temperature in the room, while the structural characteristics of the mosses allow the differences in evaporation rates showed along the study period.

  15. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  16. Tree seed rain and seed removal, but not the seed bank, impede forest recovery in bracken (Pteridium aquilinum (L.) Kuhn)-dominated clearings in the African highlands.

    PubMed

    Ssali, Fredrick; Moe, Stein R; Sheil, Douglas

    2018-04-01

    Considerable areas dominated by bracken Pteridium aquilinum (L.) Kuhn occur worldwide and are associated with arrested forest recovery. How forest recovery is impeded in these areas remains poorly understood, especially in the African highlands. The component processes that can lead to recruitment limitation-including low seed arrival, availability and persistence-are important determinants of plant communities and offer a potential explanation for bracken persistence. We investigated key processes that can contribute to recruitment limitation in bracken-dominated clearings in the Bwindi Impenetrable National Park, Uganda. We examined if differences in seed rain (dispersal limitation), soil seed bank, or seed removal (seed viability and persistence) can, individually or in combination, explain the differences in tree regeneration found between bracken-dominated areas and the neighboring forest. These processes were assessed along ten 50-m transects crossing the forest-bracken boundary. When compared to the neighboring forest, bracken clearings had fewer seedlings (bracken 11,557 ± 5482 vs. forest 34,515 ± 6066 seedlings/ha), lower seed rain (949 ± 582 vs. 1605 ± 335 tree seeds m -2  year -1 ), comparable but sparse soil seed bank (304 ± 236 vs. 264 ± 99 viable tree seeds/m 2 ), higher seed removal (70.1% ± 2.4% vs. 40.6% ± 2.4% over a 3-day interval), and markedly higher rodent densities (25.7 ± 5.4 vs. 5.0 ± 1.6 rodents per 100 trapping sessions). Camera traps revealed that rodents were the dominant animals visiting the seeds in our seed removal study. Synthesis : Recruitment limitation contributes to both the slow recovery of forest in bracken-dominated areas, and to the composition of the tree species that occur. Low seed arrival and low persistence of unburied seeds can both explain the reduced density of seedlings found in bracken versus neighboring forest. Seed removal, likely due to rodents, in particular appears sufficient to constrain forest recovery and impacts some species more severely than others.

  17. Continuous proxy measurements reveal large mercury fluxes from glacial and forested watersheds in Alaska.

    PubMed

    Vermilyea, Andrew W; Nagorski, Sonia A; Lamborg, Carl H; Hood, Eran W; Scott, Durelle; Swarr, Gretchen J

    2017-12-01

    In this study, a stream from a glacially dominated watershed and one from a wetland, temperate forest dominated watershed in southeast Alaska were continuously monitored for turbidity and fluorescence from dissolved organic matter (FDOM) while grab samples for unfiltered (UTHg), particulate (PTHg), and filtered mercury (FTHg) where taken over three 4-day periods (May snowmelt, July glacial melt, and September rainy season) during 2010. Strong correlations were found between FDOM and UTHg concentrations in the wetland, temperate forest watershed (r 2 =0.81), while turbidity and UTHg were highly correlated in the glacially dominated watershed (r 2 =0.82). Both of these parameters (FDOM and turbidity) showed stronger correlations than concentration-discharge relationships for UTHg (r 2 =0.55 for glacial stream, r 2 =0.38 for wetland/forest stream), thus allowing for a more precise determination of temporal variability in UTHg concentrations and fluxes. The association of mercury with particles and dissolved organic matter (DOM) appears to depend on the watershed characteristics, such as physical weathering and biogeochemical processes regulating mercury transport. Thus employing watershed-specific proxies for UTHg (such as FDOM and turbidity) can be effective for quantifying mercury export from watersheds with variable landcover. The UTHg concentration in the forest/wetland stream was consistently higher than in the glacial stream, in which most of the mercury was associated with particles; however, due to the high specific discharge from the glacial stream during the melt season, the watershed area normalized flux of mercury from the glacial stream was 3-6 times greater than the wetland/forest stream for the three sampling campaigns. The annual specific flux for the glacial watershed was 19.9gUTHgkm -2 y -1 , which is higher than any non-mining impacted stream measured to date. This finding indicates that glacial watersheds of southeast Alaska may be important conduits of total mercury to the Gulf of Alaska. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Soil-water relations of shallow forested soils during flash floods in West Virginia

    Treesearch

    James H. Patric

    1981-01-01

    On May 24, 1978, heavy rain caused flash flooding on densely forested land near Parsons, in Tucker County, West Virginia. Poststorm evidences of soil and water behavior were examined in detail on soils related to the Dekalb and Leetonia series. Other flash floods struck seven forested sections of the state in August. Less detailed observation after these storms...

  19. H.T. Odum and the Luquillo Experimental Forest

    Treesearch

    Ariel E. Lugo

    2004-01-01

    How does the forest operate, develop its patterns, retain information in its memory sites, and transmit the great message to the future? (Odum, 1970a, p. x) The rain forest achieves complexity, high metabolism, and stability over geological time periods without surges and waste. Can we find in this example the clues for designing our own equally effective systems of...

  20. 1954 forest fire weather in western Oregon and Washington.

    Treesearch

    Owen P. Cramer

    1954-01-01

    For the second successive fire season forest fire weather in western Oregon and Washington was far below normal severity. The low danger is reflected in record low numbers of fires reported by forestry offices of both States and by the U. S. Forest Service for their respective protection areas. Although spring and fall fire weather was near normal, a rain-producing...

  1. Basal area growth for 15 tropical tree species in Puerto Rico

    Treesearch

    Bernard R. Parresol

    1995-01-01

    The tabonuco forests of Puerto Rico support a diverse population of tree species valued for timber, fuel, food, wildlife food and cover, and erosion control among other uses. Tree basal area growth data spanning 39 years are available on 15 species from eight permanent plots in the Luquillo Experimental Forest. The complexity of the rain forest challenges current...

  2. Repelling invaders: Hawaiian foresters use ecology to counter invasive species

    Treesearch

    Jim Kling; Julie Featured: Denslow; Tracy Johnson; Susan Cordell

    2008-01-01

    The Hawaiian Islands are one of the United States' most treasured natural resources. Their natural beauty attracts legions of visitors every year, and they represent a unique set of ecosystems. Despite their limited geographic size, Hawai‘i hosts a remarkable range of habitats. On some islands, dry tropical forest, wet rain forest, and alpine ecosystems are found...

  3. Point-Source Contributions to the Water Quality of an Urban Stream

    NASA Astrophysics Data System (ADS)

    Little, S. F. B.; Young, M.; Lowry, C.

    2014-12-01

    Scajaquada Creek, which runs through the heart of the city of Buffalo, is a prime example of the ways in which human intervention and local geomorphology can impact water quality and urban hydrology. Beginning in the 1920's, the Creek has been partially channelized and connected to Buffalo's combined sewer system (CSS). At Forest Lawn Cemetery, where this study takes place, Scajaquada Creek emerges from a 3.5-mile tunnel built to route stream flow under the city. Collocated with the tunnel outlet is a discharge point for Buffalo's CSS, combined sewer outlet (CSO) #53. It is at this point that runoff and sanitary sewage discharge regularly during rain events. Initially, this study endeavored to create a spatial and temporal picture for this portion of the Creek, monitoring such parameters as conductivity, dissolved oxygen, pH, temperature, and turbidity, in addition to measuring Escherichia coli (E. coli) concentrations. As expected, these factors responded directly to seasonality, local geomorphology, and distance from the point source (CSO #53), displaying a overall, linear response. However, the addition of nitrate and phosphate testing to the study revealed an entirely separate signal from that previously observed. Concentrations of these parameters did not respond to location in the same manner as E. coli. Instead of decreasing with distance from the CSO, a distinct periodicity was observed, correlating with a series of outflow pipes lining the stream banks. It is hypothesized that nitrate and phosphate occurring in this stretch of Scajaquada Creek originate not from the CSO, but from fertilizers used to maintain the lawns within the subwatershed. These results provide evidence of the complexity related to water quality issues in urban streams as a result of point- and nonpoint-source hydrologic inputs.

  4. Ammonium sorption to channel and riparian sediments: A transient storage pool for dissolved inorganic nitrogen

    USGS Publications Warehouse

    Triska, Frank J.; Jackman, Alan P.; Duff, John H.; Avanzino, Ronald J.

    1994-01-01

    Sediment (0.5 mm–2.0 mm grain size) was incubated in nylon bags (200 μm mesh) below the water table in the channel and in two transects of shallow wells perpendicular to the banks (to 18 m) of a third-order stream during August, 1987. One transect of wells drained steep old-growth forest, and the other a steep 23 year-old clear-cut partially regenerated in alder. At approximately 6-week intervals between October, 1987, and June, 1988, bags were retrieved. Total exchangeable ammonium was determined on sediment, and dissolved oxygen, nitrate and ammonium were determined in stream and well water. Exchangeable ammonium ranged from 10 μeq/100 g of sediment in the stream where nitrification potential and subsurface exchange with stream water were high, to 115 μeq/100 g sediment 18 m inland where channel water-groundwater mixing and nitrification potential were both low. Sorbed ammonium was highest during summer/autumn base flow and lowest during winter storm flow. Both channel and well water contained measurable dissolved oxygen at all times. Ammonium concentration was typically < 10 μg-N/L in channel water, increased with distance inland, but did not exceed 365 μg-N/L at any site. Nitrate concentration was typically higher in well water than channel water. Nitrate levels increased dramatically in wells at the base of the clear-cut following the onset of autumn rains. The results indicate a potential for temporary storage of ammonium on riparian sediments which may influence biotic nitrogen cycling, and alter the timing and form of dissolved inorganic nitrogen transport from the watershed.

  5. Linked in: connecting riparian areas to support forest biodiversity

    Treesearch

    Marie Oliver; Kelly Burnett; Deanna Olson

    2010-01-01

    Many forest-dwelling species rely on both terrestrial and aquatic habitat for their survival. These species, including rare and little-understood amphibians and arthropods, live in and around headwater streams and disperse overland to neighboring headwater streams. Forest management policies that rely on riparian buffer strips and structurebased management—practices...

  6. Options for temporary wetland and stream crossings

    Treesearch

    Charles R. Blinn; Ricky Dahlman; Lola Hislop; Michael A. Thompson

    1999-01-01

    Forest management activities and environmental concerns have accelerated significantly in the past 10 years. Worldwide expansion of economies and population has increased the demand for forest products and other uses of forests. These demands have the potential to negatively affect wetlands and streams. Wetlands, as referred to here, are areas containing soil with...

  7. Aerosol emissions by tropical forest and savanna biomass burning: Characteristic trace elements and fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echalar, F.; Gaudichet, A.; Cachier, H.

    1995-11-15

    This report characterizes and compares trace element emissions from fires of three different types of savannas and from the southwestern amazonian rain forest. This study tries to verify a fingerprint that may characterize savanna fires or tropical biomass burning.

  8. Avian studies and research opportunities in the Luquillo Experimental Forest: a tropical rain forest in Puerto Rico

    Treesearch

    Joseph Wunderle, Jr; Wayne J. Arendt

    2011-01-01

    The Luquillo Experimental Forest (LEF) located on the Caribbean island of Puerto Rico has a rich history of ecological research, including a variety of avian studies, and is one of the most active ecological research sites in the Neotropics. The LEF spans an elevational range from 100 to 1075mover which five life zones and four forest types are found in a warm, humid...

  9. Comparing the sustainability of different action policy possibilities: application to the issue of both household survival and forest preservation in the corridor of Fianarantsoa.

    PubMed

    Bernard, C; Martin, S

    2013-10-01

    A sustainability issue for the rain forest in the corridor of Fianarantsoa (Madagascar) is to preserve the forest while ensuring the development of the local population. The aim of this paper is to determine whether the current situation is sustainable or not according to different action policy possibilities. We propose a general procedure based on viability analysis: Translation of sustainability issues into constraints on the system state; elaboration of a mathematical model of system evolution rules in the form of controlled dynamical system; computations of the viability kernels according to different action policy possibilities. Among control variables, we focus on monetary transfer. Without monetary transfer, we show that the current situation of the rain forest corridor is not sustainable in our mathematical modeling framework. We then estimate the minimal maximal amount per year necessary to make the current situation sustainable. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Reach-scale effects of riparian forest cover on urban stream ecosystems

    USGS Publications Warehouse

    Roy, A.H.; Faust, C.L.; Freeman, Mary C.; Meyer, J.L.

    2005-01-01

    We compared habitat and biota between paired open and forested reaches within five small streams (basin area 10?20 km2) in suburban catchments (9%?49% urban land cover) in the Piedmont of Georgia, USA. Stream reaches with open canopies were narrower than forested reaches (4.1 versus 5.0 m, respectively). There were no differences in habitat diversity (variation in velocity, depth, or bed particle size) between open and forested reaches. However, absence of local forest cover corresponded to decreased large wood and increased algal chlorophyll a standing crop biomass. These differences in basal food resources translated into higher densities of fishes in open (9.0 individuals?m?2) versus forested (4.9 individuals?m?2) reaches, primarily attributed to higher densities of the herbivore Campostoma oligolepis. Densities of terrestrial invertebrate inputs were higher in open reaches; however, trends suggested higher biomass of terrestrial inputs in forested reaches and a corresponding higher density of terrestrial prey consumed by water column feeding fishes. Reach-scale biotic integrity (macroinvertebrates, salamanders, and fishes) was largely unaffected by differences in canopy cover. In urbanizing areas where catchment land cover drives habitat and biotic quality, management practices that rely exclusively on forested riparian areas for stream protection are unlikely to be effective at maintaining ecosystem integrity.

  11. Evaluating changes in stream fish species richness over a 50-year time-period within a landscape context

    USGS Publications Warehouse

    Midway, Stephen R.; Wagner, Tyler; Tracy, Bryn H.; Hogue, Gabriela M.; Starnes, Wayne C.

    2015-01-01

    Worldwide, streams and rivers are facing a suite of pressures that alter water quality and degrade physical habitat, both of which can lead to changes in the composition and richness of fish populations. These potential changes are of particular importance in the Southeast USA, home to one of the richest stream fish assemblages in North America. Using data from 83 stream sites in North Carolina sampled in the 1960’s and the past decade, we used hierarchical Bayesian models to evaluate relationships between species richness and catchment land use and land cover (e.g., agriculture and forest cover). In addition, we examined how the rate of change in species richness over 50 years was related to catchment land use and land cover. We found a negative and positive correlation between forest land cover and agricultural land use and average species richness, respectively. After controlling for introduced species, most (66 %) stream sites showed an increase in native fish species richness, and the magnitude of the rate of increase was positively correlated to the amount of forested land cover in the catchment. Site-specific trends in species richness were not positive, on average, until the percentage forest cover in the network catchment exceeded about 55 %. These results suggest that streams with catchments that have moderate to high (>55 %) levels of forested land in upstream network catchments may be better able to increase the number of native species at a faster rate compared to less-forested catchments.

  12. Rapid regional recovery from sulfate and nitrate pollution in streams of the western Czech Republic - Comparison to other recovering areas

    USGS Publications Warehouse

    Majer, V.; Kram, P.; Shanley, J.B.

    2005-01-01

    Hydrochemical changes between 1991 and 2001 were assessed based on two synoptic stream surveys from the 820-km2 region of the Slavkov Forest and surrounding area, western Czech Republic. Marked declines of sulfate, nitrate, chloride, calcium and magnesium in surface waters were compared with other areas of Europe and North America recovering from acidification. Declines of sulfate concentration in the Slavkov Forest (-30 ??eq L-1 yr-1) were more dramatic than declines reported from other sites. However, these dramatic declines of strong acid anions did not generate a widespread increase of stream water pH in the Slavkov Forest. Only the most acidic streams experienced a slight increase of pH by 0.5 unit. An unexpected decline of stream water pH occurred in slightly alkaline streams. ?? 2004 Elsevier Ltd. All rights reserved.

  13. Influences of harvesting on functions of floodplain forests associated with low-order, blackwater streams

    Treesearch

    B.G. Lockaby; R.H. Jones; R.G. Clawson; J.S. Meadows; John A. Stanturf; F.C. Thornton

    1997-01-01

    The influence of both aerial and ground-based harvesting on functions of forested floodplains of low-order streams was studied during a two-year period. The study sites were associated with low-order, blackwater streams with infertile and primarily organic soils. Responses to harvesting were assessed in relation to water quality, denitrification, hydrology,...

  14. Stream Chemistry After An Operational Fertilizer Application in the Ouachita Mountains

    Treesearch

    Hal O. Liechty; Jami Nettles; Daniel A. Marion; Donald J. Turton

    1999-01-01

    The amount of forested land annually fertilized in the southern United States has increased rapidly in the past 10 years. Although forest growth responses to fertilizer are fairly well understood, knowledge concerning the effects of fertilization on stream chemistry and health in this region is limited. To better understand the potential changes in stream chemistry...

  15. What We Know--and Don't Know--About Water Quality at Stream Crossings

    Treesearch

    Steven E. Taylor; Robert B. Rummer; Kyung H. Yoo; Richard A. Welch; Jason D. Thompson

    1999-01-01

    Forest road stream crossings including fords, culverts, and bridges, are primary contributors of sediment to forest streams. Information on the water quality impacts form each type for crossings is limited, but the available literature indicates that signicifacent amounts of sediment are produced during installation fo fords and culverts; construction and use of...

  16. Salmon carcass movements in forest streams

    Treesearch

    Burke Strobel; Daniel R. Shivley; Brett B. Roper

    2009-01-01

    The movements of salmon carcasses over time were studied in two forest streams in the context of a large-scale salmon carcass supplementation program. The objectives were to assess both the level of treatment after stream flows had displaced carcasses and to evaluate whether the magnitude of carcass movements outside of a given reach could be predicted. The movements...

  17. Using NDVI to measure precipitation in semi-arid landscapes

    USGS Publications Warehouse

    Birtwhistle, Amy N.; Laituri, Melinda; Bledsoe, Brian; Friedman, Jonathan M.

    2016-01-01

    Measuring precipitation in semi-arid landscapes is important for understanding the processes related to rainfall and run-off; however, measuring precipitation accurately can often be challenging especially within remote regions where precipitation instruments are scarce. Typically, rain-gauges are sparsely distributed and research comparing rain-gauge and RADAR precipitation estimates reveal that RADAR data are often misleading, especially for monsoon season convective storms. This study investigates an alternative way to map the spatial and temporal variation of precipitation inputs along ephemeral stream channels using Normalized Difference Vegetation Index (NDVI) derived from Landsat Thematic Mapper imagery. NDVI values from 26 years of pre- and post-monsoon season Landsat imagery were derived across Yuma Proving Ground (YPG), a region covering 3,367 km2 of semiarid landscapes in southwestern Arizona, USA. The change in NDVI from a pre-to post-monsoon season image along ephemeral stream channels explained 73% of the variance in annual monsoonal precipitation totals from a nearby rain-gauge. In addition, large seasonal changes in NDVI along channels were useful in determining when and where flow events have occurred.

  18. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-08-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques such as LIDAR and radar interferometry have the potential to quantify the carbon contained in the vegetation, although this calculation contains due to the heterogeneity of the forest landscape structural uncertainties which restrict future applications to spatial averages of about one hectare in size. The uncertainties in AGB for a given canopy height are here 20-40% (95% confidence level) corresponding to a standard deviation of less than ± 10%. This uncertainty on the 1 ha-scale is much smaller than in the analysis of 0.04 ha-scale data. At this small scale (0.04 ha) AGB can only be calculated out of canopy height with an uncertainty which is at least of the magnitude of the signal itself due to the natural spatial heterogeneity of these forests.

  19. Biogenic emissions and biomass burning influences on the chemistry of the fogwater and stratiform precipitations in the African equatorial forest

    NASA Astrophysics Data System (ADS)

    Lacaux, J. P.; Loemba-Ndembi, J.; Lefeivre, B.; Cros, B.; Delmas, R.

    An automatic wet-only precipitation collector and a fogwater collector were operated in the coastal forest of equatorial Congo (Dimonika), for a complete seasonal cycle (November 1986-September 1987). Inorganic (Na +, K +, NH 4+, Ca 2+, NO 3-, Cl -, SO 42-) and organic (HCOO -, CH 3COO -) ions were determined in 33 stratiform rain events and nine fog events. With the raindrop size distributions, measured over a 1 year period (June 1988-June 1989) at the site of Enyelé in the Equatorial forest of Congo, were established the relationship between the liquid water content ( LWC in gm -3) and the rate of rainfall ( R in mm h -1) for the stratiform rains: LWC = 0.055 × R0.871 with a correlation coefficient of 0.98. Taking into account the dilution effect due to LWC, ionic concentrations of fogwater and stratiform precipitation are enriched during the dry season. In particular, K +, NO 3-, SO 42- and Ca 2+ are considerably enriched indicating the seasonal influence of the biomass burning due to savanna fires and terrigenous source from deserts of the Southern Hemisphere. Comparison of the chemical contents of fogwater—which mainly represents the local emission of the forest—and stratiform precipitation—which represent the air chemical content of the planetary boundary layer—during the dry season enabled us to show the following. Fog and rain with comparable chemical contents in mineral elements indicate a generalized contamination of the boundary layer by marine (Na +, Cl -), terrigenous (Ca 2+) and above all by biomass burning (K +, NO 3-, SO 42-) sources. The organic content (HCOO -, CH 3COO -) higher for the fogs than for rains, unexplainable by the dilution effect, has its source at a local level in the forest ecosystem. The estimation, from the organic content of fog and rain, of the gaseous concentrations of formic and acetic acids confirm the production of carboxylic acids measured in Amazonia during ABLE (for HCOOH : 510 ppt at canopy level and 170 ppt in free troposphere and for CH 3COOH : 410 ppt and 210 ppt, respectively).

  20. Prescribed fires as ecological surrogates for wildfires: A stream and riparian perspective

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.

    2010-01-01

    Forest managers use prescribed fire to reduce wildfire risk and to provide resource benefits, yet little information is available on whether prescribed fires can function as ecological surrogates for wildfire in fire-prone landscapes. Information on impacts and benefits of this management tool on stream and riparian ecosystems is particularly lacking. We used a beyond-BACI (Before, After, Control, Impact) design to investigate the effects of a prescribed fire on a stream ecosystem and compared these findings to similar data collected after wildfire. For 3 years after prescribed fire treatment, we found no detectable changes in periphyton, macroinvertebrates, amphibians, fish, and riparian and stream habitats compared to data collected over the same time period in four unburned reference streams. Based on changes in fuels, plant and litter cover, and tree scorching, this prescribed fire was typical of those being implemented in ponderosa pine forests throughout the western U.S. However, we found that the extent and severity of riparian vegetation burned was substantially lower after prescribed fire compared to nearby wildfires. The early-season prescribed fire did not mimic the riparian or in-stream ecological effects observed following a nearby wildfire, even in catchments with burn extents similar to the prescribed fire. Little information exists on the effects of long-term fire exclusion from riparian forests, but a "prescribed fire regime" of repeatedly burning upland forests while excluding fire in adjacent riparian forests may eliminate an important natural disturbance from riparian and stream habitats.

  1. Invertebrates Associated with Coarse Woody Debris in Streams, Upland Forests, and Wetlands: A Review

    Treesearch

    A. Braccia; D.P. Batzer

    1999-01-01

    We reviewed literature on the inbvertebrate groups associated with coarse woody debris in forests, streams, and wetlands, and contrasted patterns of invertebrate community development and wood decomposition among ecosystems.

  2. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-derived Dissolved Organic Matter (Tree-DOM) in an Epiphyte-laden Oak-cedar Forest.

    NASA Astrophysics Data System (ADS)

    Whitetree, A.; Van Stan, J. T., II; Wagner, S.; Guillemette, F.; Lewis, J.; Silva, L.; Stubbins, A.

    2017-12-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched compared to rainfall and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with FDOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g-C m-2 yr-1) compared well to other yields along the rainfall-to- discharge flow pathway, exceeding DOM yields from some river watersheds.

  3. Riparian influences on stream fish assemblage structure in urbanizing streams

    USGS Publications Warehouse

    Roy, A.H.; Freeman, B.J.; Freeman, Mary C.

    2007-01-01

    We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.

  4. Effects of riparian forest removal on the trophic dynamics of a Neotropical stream fish assemblage.

    PubMed

    Lobón-Cerviá, J; Mazzoni, R; Rezende, C F

    2016-07-01

    The effects of riparian forest removal on a neotropical stream fish assemblage were assessed in the Mata Atlântica. Fish assemblage structure and fish feeding patterns were quantified at three sites along a pristine-to-deforested gradient in a Serra do Mar stream: (1) a pristine site fully covered by canopy with no light penetration and transparent waters, (2) an intermediate site with partially removed forest and (3) a fully removed forest site with no canopy and full light penetration where siltation and turbid waters predominate. Fish assemblage structure, fish densities and their feeding patterns differed widely among sites. Whilst the same five fish species occurred at the three sites, forest removal favoured the occurrence of sediment-tolerant iliophagous benthic species at the deforested site. At the pristine site, invertebrate prey predominated in water column fish diet and feeding overlap among species was low. Severe shifts in the feeding patterns were noticed in both deforested sites. Invertebrates were replaced by detritus, organic matter and algae at both sites and feeding overlap increased markedly. The overwhelming feeding adaptability of these neotropical fishes appeared capable of buffering the deleterious effects of forest removal on stream quality in terms of increased light penetration, siltation and water turbidity. Forest cutting in this Mata Atlântica stream clearly caused strong functional changes associated with forest clearance through important modifications in the assemblage organization and trophic patterns of the main species, but did not eliminate species. © 2016 The Fisheries Society of the British Isles.

  5. Experimental forest watershed studies contribution to the effect of disturbances on water quality

    Treesearch

    Daniel G. Neary

    2012-01-01

    The most sustainable and best quality fresh water sources in the world originate in forested watersheds (Dissmeyer 2000, Brooks et al. 2003, Barten and Ernst 2004). The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, and moderating the climatic extremes which affect stream...

  6. Long-term recovery of a Mountain Stream from Clearcut Logging: The Effects of Forest Succession on Benthic Invertebrate Community Structure

    Treesearch

    Michael K. Stone; J. Bruce Wallace

    1998-01-01

    Summary1. Changes in benthic invertebrate community structure following 16 years of forest succession after logging were examined by estimating benthic invertebrate abundance, biomass and secondary production in streams draining a forested reference and a recovering clear-cut catchment. Benthic invertebrate abundance was three times higher,...

  7. Climate change, forests, fire, water, and fish: Building resilient landscapes, streams, and managers

    Treesearch

    Charles Luce; Penny Morgan; Kathleen Dwire; Daniel Isaak; Zachary Holden; Bruce Rieman

    2012-01-01

    Fire will play an important role in shaping forest and stream ecosystems as the climate changes. Historic observations show increased dryness accompanying more widespread fire and forest die-off. These events punctuate gradual changes to ecosystems and sometimes generate stepwise changes in ecosystems. Climate vulnerability assessments need to account for fire in their...

  8. Suspended sediment and turbidity after road construction/improvement and forest harvest in streams of the Trask River Watershed Study, Oregon

    NASA Astrophysics Data System (ADS)

    Arismendi, Ivan; Groom, Jeremiah D.; Reiter, Maryanne; Johnson, Sherri L.; Dent, Liz; Meleason, Mark; Argerich, Alba; Skaugset, Arne E.

    2017-08-01

    Transport of fine-grained sediment from unpaved forest roads into streams is a concern due to the potential negative effects of additional suspended sediment on aquatic ecosystems. Here we compared turbidity and suspended sediment concentration (SSC) dynamics in five nonfish bearing coastal Oregon streams above and below road crossings, during three consecutive time periods ("before", "after road construction/improvement", and "after forest harvest and hauling"). We hypothesized that the combined effects of road construction/improvement and the hauling following forest harvest would increase turbidity and SSC in these streams. We tested whether the differences between paired samples from above and below road crossing exceeded various biological thresholds, using literature values of biological responses to increases in SSC and turbidity. Overall, we found minimal increases of both turbidity and SSC after road improvement, forest harvest, and hauling. Because flow is often used as a surrogate for turbidity or SSC we examined these relationships using data from locations above road crossings that were unaffected by roads or forest harvest and hauling. In addition, we examined the association between turbidity and SSC for these background locations. We found a positive, but in some cases weak association between flow and turbidity, and between flow and SSC; the relationship between turbidity and SSC was more robust, but also inconsistent among sites over time. In these low order streams, the concentrations and transport of suspended sediment seems to be highly influenced by the variability of local conditions. Our study provides an expanded understanding of current forest road management practice effects on fine-grained sediment in streams and introduces alternative metrics using multiple thresholds to evaluate potential indicators of biological relevance.

  9. Impacts of acid precipitation on coniferous forest ecosystems

    Treesearch

    Gunnar Abrahamsen; Richard Horntvedt; Bjorn Tveite

    1976-01-01

    This paper summarizes the results from current studies in Norway. One main approach is the application of artificial acid "rain" and of lime to field plots and lysimeters. Application during two growth seasons of 50 mm per month of "rain water" of pH 3 to a podzol soil increased the acidity of the humus and decreased the base saturation. The...

  10. Multitrophic effects of calcium availability on invasive alien plants, birds, and bird prey items

    Treesearch

    Vince D' Amico; Greg Shriver; Jake Bowman; Meg Ballard; Whitney Wiest; Liz Tymkiw; Melissa Miller

    2011-01-01

    Acid rain alters forest soil calcium concentrations in two ways: (1) hydrogen ions displace exchangeable calcium adsorbed to soil surfaces, and (2) aluminum is released to soil water by acid rain and displaces adsorbed calcium. This increases the absorption of aluminum by plant roots, and decreases the absorption of calcium, causing calcium to be more readily leached...

  11. Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams

    PubMed Central

    Venkiteswaran, Jason J.; Schiff, Sherry L.; Wallin, Marcus B.

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. PMID:25058488

  12. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    PubMed

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  13. Temperate rain forest species partition fine-scale gradients in light availability based on their leaf mass per area (LMA)

    PubMed Central

    Fajardo, Alex; Siefert, Andrew

    2016-01-01

    Background and Aims Ecologists are increasingly using plant functional traits to predict community assembly, but few studies have linked functional traits to species’ responses to fine-scale resource gradients. In this study, it was tested whether saplings of woody species partition fine-scale gradients in light availability based on their leaf mass per area (LMA) in three temperate rain forests and one Mediterranean forest in southern Chile. Methods LMA was measured under field conditions of all woody species contained in approx. 60 plots of 2 m2 in each site, and light availability, computed as the gap light index (GLI), was determined. For each site, species’ pairwise differences in mean LMA (Δ LMA) and abundance-weighted mean GLI (Δ light response) of 2 m2 plots were calculated and it was tested whether they were positively related using Mantel tests, i.e. if species with different LMA values differed in their response to light availability. Additionally linear models were fitted to the relationship between plot-level mean LMA and GLI across plots for each site. Key Results A positive and significant relationship was found between species’ pairwise differences in mean LMA and differences in light response across species for all temperate rain forests, but not for the Mediterranean forest. The results also indicated a significant positive interspecific link between LMA and light availability for all forests. This is in contrast to what is traditionally reported and to expectations from the leaf economics spectrum. Conclusions In environments subjected to light limitation, interspecific differences in a leaf trait (LMA) can explain the fine-scale partitioning of light availability gradients by woody plant species. This niche partitioning potentially facilitates species coexistence at the within-community level. The high frequency of evergreen shade-intolerant species in these forests may explain the positive correlation between light availability and LMA. PMID:27604280

  14. Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China

    USGS Publications Warehouse

    Zhou, G.; Guan, L.; Wei, X.; Zhang, Dongxiao; Zhang, Q.; Yan, J.; Wen, D.; Liu, J.; Liu, S.; Huang, Z.; Kong, G.; Mo, J.; Yu, Q.

    2007-01-01

    Evaluation of litterfall production is important for understanding nutrient cycling, forest growth, successional pathways, and interactions with environmental variables in forest ecosystems. Litterfall was intensively studied during the period of 1982-2001 in two subtropical monsoon vegetation gradients in the Dinghushan Biosphere Reserve, Guangdong Province, China. The two gradients include: (1) a successional gradient composed of pine forest (PF), mixed pine and broadleaved forest (MF) and monsoon evergreen broadleaved forest (BF), and (2) an altitudinal gradient composed of Baiyunci ravine rain forest (BRF), Qingyunci ravine rain forest (QRF), BF and mountainous evergreen broadleaved forest (MMF). Mean annual litterfall production was 356, 861 and 849 g m-2 for PF, MF and BF of the successional gradient, and 1016, 1061, 849 and 489 g m-2 for BRF, QRF, BF and MMF of the altitudinal gradient, respectively. As expected, mean annual litterfall of the pioneer forest PF was the lowest, but rapidly increased over the observation period while those in other forests were relatively stable, confirming that forest litterfall production is closely related to successional stages and growth patterns. Leaf proportions of total litterfall in PF, MF, BF, BRF, QRF and MMF were 76.4%, 68.4%, 56.8%, 55.7%, 57.6% and 69.2%, respectively, which were consistent with the results from studies in other evergreen broadleaved forests. Our analysis on litterfall monthly distributions indicated that litterfall production was much higher during the period of April to September compared to other months for all studied forest types. Although there were significant impacts of some climate variables (maximum and effective temperatures) on litterfall production in some of the studied forests, the mechanisms of how climate factors (temperature and rainfall) interactively affect litterfall await further study. ?? 2006 Springer Science+Business Media B.V.

  15. Ecological setting of the Wind River old-growth forest.

    Treesearch

    David C. Shaw; Jerry F. Franklin; Ken Bible; Jeffrey Klopatek; Elizabeth Freeman; Sarah Greene; Geoffrey G. Parker

    2004-01-01

    The Wind River old-growth forest, in the southern Cascade Range of Washington State, is a cool (average annual temperature, 8.7°C), moist (average annual precipitation, 2223 mm), 500-year-old Douglas-fir-western hemlock forest of moderate to low productivity at 371-m elevation on a less than 10% slope. There is a seasonal snowpack (November-March), and rain-on-snow and...

  16. Community level analysis of opportunistically-breeding anurans in western Mexico

    Treesearch

    Paulette. L. Ford; J. Scott Norman

    2006-01-01

    Tropical dry forests are among the most seasonal habitats in the world. They are most common in hot lowlands outside the equatorial rain forest zone, where rainfall is more seasonal and the dry season is most pronounced, lasting for several weeks or months (Brown and Lomolino 1998). They are also some of the most threatened of the major tropical forest types, largely...

  17. Come Rain or Shine: A Whole School Approach to Forest School

    ERIC Educational Resources Information Center

    Vandewalle, Martyn

    2010-01-01

    This article begins by describing a typical Forest School session that takes place in every class every week at The Wroxham School in Potters Bar. It goes on to outline a brief history of Forest School from its inception, its aims and ethos, and how it has been adapted for the ethos and needs of the children at Wroxham. The article also looks at…

  18. Fog and soil weathering as sources of nutrients in a California redwood forest

    Treesearch

    Holly A. Ewing; Kathleen C. Weathers; Amanda M. Lindsey; Pamela H. Templer; Todd E. Dawson; Damon C. Bradbury; Mary K. Firestone; Vanessa K.S. Boukili

    2012-01-01

    Fog water deposition is thought to influence the ecological function of many coastal ecosystems, including coast redwood forests. We examined cation and anion inputs from fog and rain, as well as the fate of these inputs, within a Sonoma County, California, coast redwood forest to elucidate the availability of these ions and some of the biotic and abiotic processes...

  19. Seedling and Sapling Dynamics of Treefall Pits in Puerto Rico1

    Treesearch

    Lawrence R. Walker

    2000-01-01

    Seedling and sapling dynamics in a Puerto Rican rain forest were compared between forest understory and soil pits created by the uprooting of 27 trees during Hurricane Hugo. Soil N and P, organic matter, and soil moisture were lower and bulk densities were higher in the disturbed mineral soils of the pits than in undisturbed forest soils ten months after the hurricane...

  20. [Ecological regulation services of Hainan Island ecosystem and their valuation].

    PubMed

    Ouyang, Zhiyun; Zhao, Tongqian; Zhao, Jingzhu; Xiao, Han; Wang, Xiaoke

    2004-08-01

    Ecosystem services imply the natural environmental conditions on which human life relies for existence, and their effectiveness formed and sustained by ecosystem and its ecological processes. In newly research reports, they were divided into four groups, i. e., provisioning services, regulation services, cultural services, and supporting services. To assess and valuate ecosystem services is the foundation of regional environmental reserve and development. Taking Hainan Island as an example and based on the structure and processes of natural ecosystem, this paper discussed the proper methods for regulation services assessment. The ecosystems were classified into 13 types including valley rain forest, mountainous rain forest, tropical monsoon forest, mountainous coppice forest, mountainous evergreen forest, tropical coniferous forest, shrubs, plantation, timber forest, windbreak forest, mangrove, savanna, and cropland, and then, the regulation services and their economic values of Hainan Island ecosystem were assessed and evaluated by terms of water-holding, soil conservancy, nutrient cycle, C fixation, and windbreak function. The economic value of the regulation services of Hainan Island ecosystem was estimated as 2035.88 x 10(8)-2153.39 x 10(8) RMB yuan, 8 times higher to its provisioning services (wood and agricultural products) which were estimated as only 254.06 x 10(8) RMB yuan. The result implied that ecosystem regulation services played an even more important role in the sustainable development of society and economy in Hainan Island.

  1. Multicriteria evaluation of simulated logging scenarios in a tropical rain forest.

    PubMed

    Huth, Andreas; Drechsler, Martin; Köhler, Peter

    2004-07-01

    Forest growth models are useful tools for investigating the long-term impacts of logging. In this paper, the results of the rain forest growth model FORMIND were assessed by a multicriteria decision analysis. The main processes covered by FORMIND include tree growth, mortality, regeneration and competition. Tree growth is calculated based on a carbon balance approach. Trees compete for light and space; dying large trees fall down and create gaps in the forest. Sixty-four different logging scenarios for an initially undisturbed forest stand at Deramakot (Malaysia) were simulated. The scenarios differ regarding the logging cycle, logging method, cutting limit and logging intensity. We characterise the impacts with four criteria describing the yield, canopy opening and changes in species composition. Multicriteria decision analysis was used for the first time to evaluate the scenarios and identify the efficient ones. Our results plainly show that reduced-impact logging scenarios are more 'efficient' than the others, since in these scenarios forest damage is minimised without significantly reducing yield. Nevertheless, there is a trade-off between yield and achieving a desired ecological state of logged forest; the ecological state of the logged forests can only be improved by reducing yields and enlarging the logging cycles. Our study also demonstrates that high cutting limits or low logging intensities cannot compensate for the high level of damage caused by conventional logging techniques.

  2. Effect of climate on the trophic structure of temperate forested streams. a comparison of Mediterranean and Atlantic streams.

    PubMed

    Sabater, Sergi; Elosegi, Arturo; Acuña, Vicenç; Basaguren, Ana; Muñoz, Isabel; Pozo, Jesús

    2008-02-15

    Climate affects many aspects of stream ecosystems, although the presence of riparian forests can buffer differences between streams in different climatic settings. In an attempt to measure the importance of climate, we compared the seasonal patterns of hydrology, input and storage of allochthonous organic matter, and the trophic structure (abundance of algae and macroinvertebrates) in two temperate forested streams, one Mediterranean, the other Atlantic. Hydrology played a leading role in shaping the trophic structure of both streams. Frequency and timing of floods and droughts determined benthic detritus storage. Inputs and retention of allochthonous organic matter were higher in the Atlantic stream, whereas chlorophyll concentration was lower because of stronger light limitation. Instead, light availability and scour of particulate organic matter during late winter favoured higher chlorophyll concentration in the Mediterranean stream. As a result, in the Mediterranean stream grazers were more prevalent and consumers showed a higher dependence on autotrophic materials. On the other hand, the Atlantic stream depended on allochthonous materials throughout the whole study period. The overall trophic structure showed much stronger seasonality in the Mediterranean than in the Atlantic stream, this being the most distinctive difference between these two types of temperate streams. The different patterns observed in the two streams are an indication that climatic differences should be incorporated in proper measurements of ecosystem health.

  3. Headwater stream temperature: interpreting response after logging, with and without riparian buffers, Washington, USA

    Treesearch

    Jack E. Janisch; Steven M. Wondzell; William J. Ehinger

    2012-01-01

    We examined stream temperature response to forest harvest in small forested headwater catchments in western Washington, USA over a seven year period (2002-2008). These streams have very low discharge in late summer and many become spatially intermittent. We used a before-after, control-impact (BACl) study design to contrast the effect of clearcut logging with two...

  4. Vertebrate assemblages associated with headwater hydrology in western Oregon managed forests.

    Treesearch

    D.H. Olson; G. Weaver

    2007-01-01

    We characterized headwater stream habitats, fish, and amphibian fauna, in and along 106 headwater stream reaches at 12 study sites within managed forest stands 40 to 70 years old in western Oregon. Headwater stream types in our sample included perennial, spatially intermittent, and dry reaches. We captured 454 fish of three species groups and 1,796 amphibians of 12...

  5. Influence of headwater site conditions and riparian buffers on terrestrial salamander response to forest thinning.

    Treesearch

    D.E. Rundio; D.H. Olson

    2007-01-01

    We examined the effect of forest thinning and riparian buffers along headwater streams on terrestrial salamanders at two sites in western Oregon. Salamander numbers were reduced postthinning at one site with lower down-wood volume. Terrestrial salamander distributions along stream-to-upslope transects suggest benefits of one and two site-potential tree-height stream...

  6. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska

    Treesearch

    Emma F. Betts; Jeremy B. Jones

    2009-01-01

    With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...

  7. Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed

    Treesearch

    Randy A. Dahlgren

    1998-01-01

    The effects of forest harvest on stream-water quality and nitrogen cycling were examined for a redwood/Douglas-fir ecosystem in the North Fork, Caspar Creek experimental watershed in northern California. Stream-water samples were collected from treated (e.g., clearcut) and reference (e.g., noncut) watersheds, and from various locations downstream from the treated...

  8. The effects of logging road construction on insect drop into a small coastal stream

    Treesearch

    Lloyd J. Hess

    1969-01-01

    Abstract - Because stream fisheries are so closely associated with forested watersheds, it is necessary that the streams and forests be managed jointly under a system of multiple use. This requires a knowledge of the interrelationships between these resources to yield maximum returns from both. It is the purpose of this paper to relate logging practices to fish...

  9. Terrestrial litter inputs as determinants of food quality of organic matter in a forest stream

    Treesearch

    J.L. Meyer; C. Hax; J.B. Wallace; S.L. Eggert; J.R. Webster

    2000-01-01

    Inputs of leaf litter and other organic matter from the catchment exceed autochthonous production and provide an important food resource in most streams (WEBSTER & MEYER 1997, ANDERSON & SEDELL 1979). An experimental long-term exclusion of terrestrial litter inputs to a forested headwater stream (WALLACE et al. 1997) provided an opportunity to determine if the...

  10. Stream Community Structure: An Analysis of Riparian Forest Buffer Restoration in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Orzetti, L. L.; Jones, R. C.

    2005-05-01

    Forested riparian buffer zones have been proposed as an important aid in curtailing upland sources of pollution before they reach stream surface waters, and enhancing habitat for stream organisms. Our objective was to test the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining the stream macrobenthic community structure. To test our hypothesis, we collected riffle benthic and water samples, and performed habitat evaluations at 30 stream sites in the mid-Atlantic Piedmont, ranging in buffer age from 0 to greater than 50 years of age. Results showed that habitat, water quality, and benthic macroinvertebrate metrics improved with age of restored buffer. Habitat scores were driven mostly by instream substrate availability and width and age of riparian buffer zones. Water quality parameters varied within buffer age groups depending age of surrounding forest vegetation. Benthic invertebrate taxa richness, % EPT, % Plecoptera, % Ephemeroptera, and the FBI all improved with age of buffer zone. Instream habitat quality was the greatest driver of benthic macroinvertebrate community diversity and health, and appeared to plateau within 10-15 years of restoration with noticeable improvements occurring within 5-10 years post restoration.

  11. Headwater streams and forest management: does ecoregional context influence logging effects on benthic communities?

    USGS Publications Warehouse

    Medhurst, R. Bruce; Wipfli, Mark S.; Binckley, Chris; Polivka, Karl; Hessburg, Paul F.; Salter, R. Brion

    2010-01-01

    Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that differed in forest management (logged-roaded vs. unlogged-unroaded, hereafter logged and unlogged) within two ecological sub-regions (wet versus dry) within the eastern Cascade Range, Washington, USA. In both ecoregions, total macroinvertebrate density was highest at logged sites (P = 0.001) with gathering-collectors and shredders dominating. Total taxonomic richness and diversity did not differ between ecoregions or forest management types. Shredder densities were positively correlated with total deciduous and Sitka alder (Alnus sinuata) riparian cover. Further, differences in shredder density between logged and unlogged sites were greater in the wet ecoregion (logging × ecoregion interaction; P = 0.006) suggesting that differences in post-logging forest succession between ecoregions were responsible for differences in shredder abundance. Headwater stream benthic community structure was influenced by logging and regional differences in climate. Future development of ecoregional classification models at the subbasin scale, and use of functional metrics in addition to structural metrics, may allow for more accurate assessments of anthropogenic disturbances in mountainous regions where mosaics of localized differences in climate are common.

  12. Hyperparasitoid wasps (Hymenoptera: Trigonalidae) reared from dry forest and rain forest caterpillars of Area de Conservacion, Guanacaste, Costa Rica

    USDA-ARS?s Scientific Manuscript database

    Five species of Trigonalidae, hyperparasites of Ichneumonidae (Hymenoptera) and Tachinidae (Diptera) that parasitize caterpillars (Lepidoptera), have been reared during the ongoing caterpillar inventory of Area de Conservación Guanacaste (ACG), Guanacaste Province, northwestern Costa Rica: Lycogaste...

  13. [Epiphytic communities of arboreal formations in Southern Vietnam: an analysis of species composition and synusias structure in dependence on the extent of anthropogenic impact].

    PubMed

    Es'kov, A K

    2013-01-01

    Species composition of epiphytic communities within different formations of Phú Quôc Island (Southern Vietnam) is studied. The dependence of species composition and structural complexity of epiphytic communities on formation quality is demonstrated. Representatives of different families differ notably in their sensitivity to disturbances. Most vulnerable are Orchidaceae which represent the dominant group in epiphytic community of rain forest and which drop out almost completely under anthropogenic impacts. In less disturbed forests, epiphyte species diversity increases mainly at the expense of "lower" synusias and directly depends on the formation layering. Diminishing of layering numbers leads to dropping out of species belonging to "lower" synusias. Among epiphytes, the indicators of disturbed communities can be detected, namely species of ruderal strategy (explerents). In primal rain forest, they are absent or barely noticeable. An index is proposed for estimation of epiphytic communitiy complexity.

  14. Carbon monoxide and the burning earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, R.E.; Reichle, H.G. Jr.; Seiler, W.

    1989-10-01

    Carbon monoxide is one of many gases whose presence in the atmosphere is blamed largely on industrial activity in the Northern Hemisphere. Data collected by the authors show that the gas is also abundant in the Southern Hemisphere, where it comes mainly from the burning of tropical rain forests and savannas. The high levels of carbon monoxide confirm other evidence that the rain forests are being diminished rapidly, which may affect the climates of these regions as well as globally. Increases in carbon monoxide could also encourage the accumulation of pollutant gases such as ozone and methane. The first ismore » highly toxic to plants and the second would add to the greenhouse effect.« less

  15. Terrestrial and stream amphibians across clearcut-forest interfaces in the Siskiyou Mountains, Oregon

    USGS Publications Warehouse

    Biek, Roman; Mills, L. Scott; Bury, R. Bruce

    2002-01-01

    Timber harvest in the Pacific Northwest has resulted in a highly fragmented landscape. but there is no information on responses of amphibians to forest edges for this region. We investigated abundance of terrestrial and stream-dwelling amphibians on the interface of recent clearcuts and mature forest in the Siskiyou Mountains, Oregon, in summer and fall of 1998. We assessed relative abundance of terrestrial -amphibians on four clearcut forest transects with a combination of pitfall trapping and manual searches. Ensantinas and Del Norte salamanders, the most frequently recorded species, were found on all four sites.  While we commonly captured ensantinas using both techniques, we caught most Del Norte salamanders during manual searches. For both species we found no differences in abundance associated with distance to forest edge. Lack of differences in salamander abundance among clearcut and adjacent forests may be related lo large amounts of small woody debris that remained in the clearcuts. The abundance of larvae of tailed frogs and Pacific giant salamanders in five headwater streams was markedly lower in clearcuts than in downstream mature forest stands. No obvious differences existed for stream habitat variables across transects. but abundance of metamorphosed individuals and recruitment may be reduced in clearcut areas due lo hotter and drier conditions during

  16. Linking Weathering, Rock Moisture Dynamics, Geochemistry, Runoff, Vegetation and Atmospheric Processes through the Critical Zone: Graduate Student led Research at the Eel River Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Dietrich, W. E.

    2014-12-01

    In the Eel River Critical Zone Observatory lies Rivendell, a heavily-instrumented steep forested hillslope underlain by nearly vertically dipping argillite interbedded with sandstone. Under this convex hillslope lies "Zb", the transition to fresh bedrock, which varies from less than 6 m below the surface near the channel to 20 m at the divide. Rempe and Dietrich (2014, PNAS) show that the Zb profile can be predicted from the assumption that weathering occurs when drainage is induced in the uplifting fresh bedrock under hillslopes by lateral head gradients driven by channel incision at the hillslope boundary. Infiltrating winter precipitation is impeded at the lower conductivity boundary at Zb, generating perched groundwater that dynamically pulses water laterally to the channel, controlling stream runoff. Below the soil and above the water table lies an unsaturated zone through which all recharge to the perched groundwater (and thus all runoff to channels) occurs. It is this zone and the waters in them that profoundly affect critical zone processes. In our seasonally dry environment, the first rains penetrate past the soil and moisten the underlying weathered bedrock (Salve et al., 2012, WRR). It takes about 200 to 400 mm of cumulative rain, however, before the underlying groundwater rises significantly. Oshun et al (in review) show that by this cumulative rainfall the average of the wide-ranging isotopic signature of rain reaches a nearly constant average annual value. Consequently, the recharging perched groundwater shows only minor temporal isotopic variation. Kim et al, (2014, GCA) find that the winter high-flow groundwater chemistry is controlled by relatively fast-reacting cation exchange processes, likely occurring in transit in the unsaturated zone. Oshun also demonstrates that the Douglas fir rely on this rock moisture as a water source, while the broadleaf trees (oaks and madrone) use mostly soil moisture. Link et al (2014 WRR) show that Doug fir declines in transpiration rate significantly compared to the madrone during summer high water stress periods, with may induce feedbacks from the forest to atmospheric temperature and humidity. Collectively these studies spotlight the seasonally dynamic unsaturated zone in the weathered bedrock beneath the soil as key to understanding critical zone processes.

  17. Precipitation induced stream flow: An event based chemical and isotopic study of a small stream in the Great Plains region of the USA

    USGS Publications Warehouse

    Machavaram, M.V.; Whittemore, Donald O.; Conrad, M.E.; Miller, N.L.

    2006-01-01

    A small stream in the Great Plains of USA was sampled to understand the streamflow components following intense precipitation and the influence of water storage structures in the drainage basin. Precipitation, stream, ponds, ground-water and soil moisture were sampled for determination of isotopic (D, 18O) and chemical (Cl, SO4) composition before and after two intense rain events. Following the first storm event, flow at the downstream locations was generated primarily through shallow subsurface flow and runoff whereas in the headwaters region - where a pond is located in the stream channel - shallow ground-water and pond outflow contributed to the flow. The distinct isotopic signatures of precipitation and the evaporated pond water allowed separation of the event water from the other sources that contributed to the flow. Similarly, variations in the Cl and SO4 concentrations helped identify the relative contributions of ground-water and soil moisture to the streamflow. The relationship between deuterium excess and Cl or SO4 content reveals that the early contributions from a rain event to streamflow depend upon the antecedent climatic conditions and the position along the stream channel within the watershed. The design of this study, in which data from several locations within a watershed were collected, shows that in small streams changes in relative contributions from ground water and soil moisture complicate hydrograph separation, with surface-water bodies providing additional complexity. It also demonstrates the usefulness of combined chemical and isotopic methods in hydrologic investigations, especially the utility of the deuterium excess parameter in quantifying the relative contributions of various source components to the stream flow. ?? 2006 Elsevier B.V. All rights reserved.

  18. Some runoff characteristics of a small forested watershed in northern Idaho

    Treesearch

    A. R. Stage

    1957-01-01

    Benton Creek on the Priest River Experimental Forest, Idaho, is one of the few gauged streams flowing from a small, forested watershed in the northern Rocky Mountains, a region of summer drought and heavy winter snows. Over sixteen years of streamflow records from this watershed are summarized here to characterize the runoff from such a stream. The streamgauging...

  19. Changes in streamflow characteristics in Wisconsin as related to precipitation and land use

    USGS Publications Warehouse

    Gebert, Warren A.; Garn, Herbert S.; Rose, William J.

    2016-01-19

    Streamflow characteristics were determined for 15 longterm streamflow-gaging stations for the periods 1915–2008, 1915–68, and 1969–2008 to identify trends. Stations selected represent flow characteristics for the major river basins in Wisconsin. Trends were statistically significant at the 95 percent confidence level at 13 of the 15 streamflow-gaging stations for various streamflow characteristics for 1915–2008. Most trends indicated increases in low flows for streams with agriculture as the dominant land use. The three most important findings are: increases in low flows and average flows in agricultural watersheds, decreases in flood peak discharge for many streams in both agricultural and forested watersheds, and climatic change occurred with increasing annual precipitation and changes in monthly occurrence of precipitation. When the 1915–68 period is compared to the 1969–2008 period, the annual 7-day low flow increased an average of 60 percent for nine streams in agricultural areas as compared to a 15 percent increase for the five forested streams. Average annual flow for the same periods increased 23 percent for the agriculture streams and 0.6 percent for the forested streams. The annual flood peak discharge for the same periods decreased 15 percent for agriculture streams and 8 percent for forested streams. The largest increase in the annual 7-day low flow was 117 percent, the largest increase in annual average flow was 41 percent, and the largest decrease in annual peak discharge was 51 percent. The trends in streamflow characteristics affect frequency characteristics, which are used for a variety of design and compliance purposes. The frequencies for the 1969–2008 period were compared to frequencies for the 1915–68 period. The 7-day, 10-year (Q7, 10) low flow increased 91 percent for nine agricultural streams, while the five forested streams had an increase of 18 percent. The 100-year flood peak discharge decreased an average of 15 percent for streams in the agriculture area and 27 percent for streams in the forested area. Increases in low flow for agriculture streams are attributed to changes in agricultural practices and land use as well as increased precipitation. The decrease in annual flood peak discharge with increased annual precipitation is less clear, but is attributed to increased infiltration from changes in agricultural practices and climatic changes. For future low-flow studies, the 1969–2008 period should be used to determine low-flow characteristics since it represents current (2014) conditions and was generally free of significant trends.

  20. Spatial distribution by Canistropsis microps (E. Morren ex Mez) Leme (Bromeliaceae: Bromelioideae) in the Atlantic rain forest in Ilha Grande, Southeastern Brazil.

    PubMed

    Nunes-Freitas, A F; Rocha, C F D

    2007-08-01

    Canistropsis microps (Bromeliaceae: Bromelioideae) is an endemic species of Atlantic rain forest areas in Rio de Janeiro State, which are very abundant in not very disturbed forests in Ilha Grande, on the southern coast of the State. In this study, we analyzed the vertical and horizontal distribution patterns of the species in an area of rain forest with little evidence of disturbance at Vila Dois Rios, Ilha Grande, relating the patterns to sunlight in the microhabitat. We also identified the types of substrate used by the species and the rate of asexual reproduction. Canistropsis microps had high densities (estimated at 84,425 rosettes/ha), and has an aggregated distribution (Id = 2.86). About 80% of the rosettes were generated by clonal growth, whereas less than 20% were produced from seedlings. Most of the rosettes were found on straight tree trunks (DBH > 50 cm). There was a significant inverse correlation between the incidence of sunlight in the habitat and the abundance of individuals. Rosettes were found up to a maximum height of 9.5 m, but most occured between 1.5 and 5.5 m, where light varied from 25 to 50 micromol x s(-1) x m(-2). We conclude that vertical and horizontal distribution patterns in C. microps may be partially explained by the occurrence of appropriate substrate, an intensity of sunlight favorable to the development of the species and to a high rate of vegetative reproduction.

  1. RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.

    PubMed

    Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S

    Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.

  2. RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection

    PubMed Central

    Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.

    2015-01-01

    Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112

  3. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest.

    PubMed

    Inoue, Yuta; Ichie, Tomoaki; Kenzo, Tanaka; Yoneyama, Aogu; Kumagai, Tomo'omi; Nakashizuka, Tohru

    2017-10-01

    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf water relations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    PubMed

    Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W

    2013-01-01

    Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  5. Evaluating links between forest harvest and stream temperature threshold exceedances: the value of spatial and temporal data

    Treesearch

    Jeremiah D. Groom; Sherri L. Johnson; Joshua D. Seeds; George G. Ice

    2017-01-01

    We present the results of a replicated before-after-control-impact study on 33 streams to test the effectiveness of riparian rules for private and State forests at meeting temperature criteria in streams in western Oregon. Many states have established regulatory temperature thresholds, referred to as numeric criteria, to protect cold-water fishes such as salmon and...

  6. Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest

    Treesearch

    Stephen D. Sebestyen; Elizabeth W. Boyer; James B. Shanley; Carol Kendall; Daniel H. Doctor; George R. Aiken; Nobuhito Ohte

    2008-01-01

    We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high...

  7. Northwest Forest Plan—the first 15 years (1994–2008): watershed condition status and trend

    Treesearch

    Steven H. Lanigan; Sean N. Gordon; Peter Eldred; Mark Isley; Steve Wilcox; Chris Moyer; Heidi Andersen

    2012-01-01

    We used two data sets to evaluate stream and watershed condition for sixth-field watersheds in each aquatic province within the Northwest Forest Plan (NWFP) area: stream data and upslope data. The stream evaluation was based on inchannel data (e.g., substrate, pieces of large wood, water temperature, pool frequency, and macroinvertebrates) we sampled from 2002 to 2009...

  8. Flat Branch monitoring project: stream water temperature and sediment responses to forest cutting in the riparian zone

    Treesearch

    Barton D. Clinton; James M. Vose; Dick L. Fowler

    2010-01-01

    Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...

  9. Suspended sediment and turbidity after road construction/improvement and forest harvest in streams of the Trask River Watershed Study, Oregon

    Treesearch

    Ivan Arismendi; Jeremiah D. Groom; Maryanne Reiter; Sherri L. Johnson; Liz Dent; Mark Meleason; Alba Argerich; Arne E. Skaugset

    2017-01-01

    Transport of fine-grained sediment from unpaved forest roads into streams is a concern due to the potential negative effects of additional suspended sediment on aquatic ecosystems. Here we compared turbidity and suspended sediment concentration (SSC) dynamics in five nonfish bearing coastal Oregon streams above and below road crossings, during three consecutive time...

  10. Lichen Persistence and Recovery in Response to Varied Volcanic Disturbances

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Wheeler, T. B.

    2015-12-01

    Volcanic eruptions produce many ecological disturbances that structure vegetation. While lichens are sensitive to disturbances, little is known about their responses to volcanic disturbances, except for colonization of lava. We examined lichen community responses through time to different disturbances produced by the May 1, 2008 eruption of Volcan Chaiten in south-central Chile. Pre-eruption vegetation near the volcano was old-growth Valdivian temperate rainforest dominated by closed-canopy Nothofagus sp... In 2012, we installed thirteen 1-acre plots across volcanic disturbance zones on which a time-constrained search was done for all macrolichen species, each of which was assigned an approximate log10 categorical abundance. We also installed a 0.2 m2 quadrat on two representative trees per plot for repeat photography of lichen cover. We remeasured at least one plot per disturbance zone in 2014 and re-photographed tree quadrats in 2013 and 2014. We then analyzed species composition and abundance differences among disturbance zones. In 2012, the blast (pyroclastic density flow), scorch (standing scorched forest at the edge of the blast) and deep tephra (>10 cm) zones had the lowest lichen species richness (5-13 species), followed by reference (unimpacted) and shallow (<10 cm) tephra (17-20 species). Gravel rain (preexisting rock ejected by eruption initiation), gravel rain + pumice and flooded forests (fluvially reworked volcanic material entrained by heavy rains) were species-rich (25-42 species). In 2014, the blast and deep tephra had regained 2-3 times the number of lichen species since 2012 while the light tephra and reference were essentially unchanged. Gravel rain, gravel rain + pumice and flooded forest plots all had about the same number of species in 2014 as 2012. Lichen colonization and growth in tree quadrats varied widely, from very little colonization in the blast to prolific colonization in the gravel rain + pumice zone. Lichen's varied responses to different volcanic disturbances were attributable to varying degrees of mortality and subsequent availability of substrate, quantity of light and removal of competitors. While sensitive to disturbance, lichens are apparently resilient to and can quickly recolonize after a variety of large, violent volcanic disturbances.

  11. Impact of logging on aboveground biomass stocks in lowland rain forest, Papua New Guinea.

    PubMed

    Bryan, Jane; Shearman, Phil; Ash, Julian; Kirkpatrick, J B

    2010-12-01

    Greenhouse-gas emissions resulting from logging are poorly quantified across the tropics. There is a need for robust measurement of rain forest biomass and the impacts of logging from which carbon losses can be reliably estimated at regional and global scales. We used a modified Bitterlich plotless technique to measure aboveground live biomass at six unlogged and six logged rain forest areas (coupes) across two approximately 3000-ha regions at the Makapa concession in lowland Papua New Guinea. "Reduced-impact logging" is practiced at Makapa. We found the mean unlogged aboveground biomass in the two regions to be 192.96 +/- 4.44 Mg/ha and 252.92 +/- 7.00 Mg/ha (mean +/- SE), which was reduced by logging to 146.92 +/- 4.58 Mg/ha and 158.84 +/- 4.16, respectively. Killed biomass was not a fixed proportion, but varied with unlogged biomass, with 24% killed in the lower-biomass region, and 37% in the higher-biomass region. Across the two regions logging resulted in a mean aboveground carbon loss of 35 +/- 2.8 Mg/ha. The plotless technique proved efficient at estimating mean aboveground biomass and logging damage. We conclude that substantial bias is likely to occur within biomass estimates derived from single unreplicated plots.

  12. A butterfly photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-04

    A butterfly photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.

  13. A lizard photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-04

    A lizard photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.

  14. A plant photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-04

    A plant photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.

  15. A tree trunk structure photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-04

    A tree trunk structure photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.

  16. A unique tree trunk photographed in La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-04

    A unique tree trunk photographed in La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.

  17. A tree frog photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-04

    A tree frog photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.

  18. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico

    Treesearch

    J. Schellekensa; F.N. Scatenab; L.A. Bruijnzeela; A.J. \\t Wickela

    1999-01-01

    Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location—the Luquillo Experimental Forest in eastern Puerto Rico—66 days of detailed throughfall and above-canopy climatic data were collected in 1996 and analysed using the Rutter and...

  19. Sensitivity of snow process simulations to precipitation-phase transition method in forested and open areas

    NASA Astrophysics Data System (ADS)

    Lundberg, A.; Gustafsson, D.

    2009-04-01

    Modeling of forest snow processes is complicated and especially problematic seems to be the separation of precipitation phase in climates where a large part of the precipitation falls at temperatures near zero degrees Celsius. When the precipitation is classified as snow, the tree crowns can carry an order of magnitude more canopy storage as compared to when the precipitation is classified as rain, and snow in the trees also alters the albedo of the forest while rain does not. Many different schemes for the precipitation phase separation are used by various snow models. Some models use just one air temperature threshold (TR/S) below which all precipitation is assumed to be snow and above which all precipitation is classified as rain. A more common approach for forest snow models is to use two temperature thresholds. The snow fraction (SF) is then set to one below the snow threshold (TS) and to zero above the rain threshold (TR) and SF is assumed to decrease linearly between these two thresholds. Also more sophisticated schemes exist, but three seems to be a lack of agreement on how the precipitation phase separations should be performed. The aim with this study is to use a hydrological model including canopy snow processes to illustrate the sensitivity for different formulations of the precipitation phase separation on a) the simulated maximum snow pack storage b) the interception evaporation loss and c) snow melt runoff. In other words, to investigate of the choice of precipitation phase separation has an impact on the simulated wintertime water balance. Simulations are made for sites in different climates and for both open fields and forest sites in different regions of Sweden from north to south. In general, precipitation phase separation methods that classified snowfall at higher temperatures resulted in a larger proportion of the precipitation lost by interception evaporation as a result of the increased interception capacity. However, the maximum snow accumulation was also increased in some cases due to the overall increased snowfall, depending on canopy density and precipitation and temperature regimes. Results show that the choice of precipitation phase separation method can have an significant impact on the simulated wintertime water balance, especially in forested regions.

  20. Terrestrial-aquatic linkage in stream food webs along a forest chronosequence: multi-isotopic evidence.

    PubMed

    Ishikawa, Naoto F; Togashi, Hiroyuki; Kato, Yoshiyazu; Yoshimura, Mayumi; Kohmatsu, Yukihiro; Yoshimizu, Chikage; Ogawa, Nanako O; Ohte, Nobuhito; Tokuchi, Naoko; Ohkouchi, Naohiko; Tayasu, Ichiro

    2016-05-01

    Long-term monitoring of ecosystem succession provides baseline data for conservation and management, as well as for understanding the dynamics of underlying biogeochemical processes. We examined the effects of deforestation and subsequent afforestation of a riparian forest of Japanese cedar (Cryptomeria japonica) on stable isotope ratios of carbon (δ¹³C) and nitrogen (δ¹⁵N) and natural abundances of radiocarbon (Δ¹⁴C) in stream biota in the Mt. Gomadan Experimental Forest and the Wakayama Forest Research Station, Kyoto University, central Japan. Macroinvertebrates, periphytic algae attached to rock surfaces (periphyton), and leaf litter of terrestrial plants were collected from six headwater streams with similar climate, topography, and bedrock geology, except for the stand ages of riparian forests (from 3 to 49 yr old in five stands and > 90 yr old in one reference stand). Light intensity and δ¹³C values of both periphyton and macroinvertebrates decreased synchronously with forest age in winter. A Bayesian mixing model indicates that periphyton contributions to the stream food webs are maximized in 23-yr-old forests. Except for grazers, most macroinvertebrates showed Δ¹⁴C values similar to those of terrestrial leaf litter, reflecting the influence of modern atmospheric CO₂ Δ¹⁴C values. On the other hand, the Δ¹⁴C values of both periphyton and grazers (i.e., aquatic primary consumers) were significantly lower than that of modern atmospheric CO₂, and were lowest in 23-yr-old forest stands. Previous studies show that root biomass of C. japonica peaks at 15-30 yr after planting. These evidences suggest that soil CO₂ released by root respiration and dispersed by groundwater weathers carbonate substrata, and that dissolved inorganic carbon (DIC) with low Δ¹⁴C is incorporated into stream periphyton and some macroinvertebrates. The ecological response in the studied streams to clear-cutting and replanting of Japanese cedar is much slower (~20 yr) than the chemical response (< 5 yr). More than 50 yr is required for the food web structure to completely recover from clear-cutting. The ecological delay is attributed to several biogeochemical factors, the understanding of which is critical to integrated management of forest-stream continuum and the prediction of ecosystem resilience in response to environmental change.

  1. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.

    1991-01-01

    Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.

  2. Random Forest Application for NEXRAD Radar Data Quality Control

    NASA Astrophysics Data System (ADS)

    Keem, M.; Seo, B. C.; Krajewski, W. F.

    2017-12-01

    Identification and elimination of non-meteorological radar echoes (e.g., returns from ground, wind turbines, and biological targets) are the basic data quality control steps before radar data use in quantitative applications (e.g., precipitation estimation). Although WSR-88Ds' recent upgrade to dual-polarization has enhanced this quality control and echo classification, there are still challenges to detect some non-meteorological echoes that show precipitation-like characteristics (e.g., wind turbine or anomalous propagation clutter embedded in rain). With this in mind, a new quality control method using Random Forest is proposed in this study. This classification algorithm is known to produce reliable results with less uncertainty. The method introduces randomness into sampling and feature selections and integrates consequent multiple decision trees. The multidimensional structure of the trees can characterize the statistical interactions of involved multiple features in complex situations. The authors explore the performance of Random Forest method for NEXRAD radar data quality control. Training datasets are selected using several clear cases of precipitation and non-precipitation (but with some non-meteorological echoes). The model is structured using available candidate features (from the NEXRAD data) such as horizontal reflectivity, differential reflectivity, differential phase shift, copolar correlation coefficient, and their horizontal textures (e.g., local standard deviation). The influence of each feature on classification results are quantified by variable importance measures that are automatically estimated by the Random Forest algorithm. Therefore, the number and types of features in the final forest can be examined based on the classification accuracy. The authors demonstrate the capability of the proposed approach using several cases ranging from distinct to complex rain/no-rain events and compare the performance with the existing algorithms (e.g., MRMS). They also discuss operational feasibility based on the observed strength and weakness of the method.

  3. Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, S.; Rollenbeck, R.; Trachte, K.; Bendix, J.

    2014-10-01

    Atmospheric sulfur deposition above certain limits can represent a threat to tropical forests, causing nutrient imbalances and mobilizing toxic elements that impact biodiversity and forest productivity. Atmospheric sources of sulfur deposited by precipitation have been roughly identified in only a few lowland tropical forests. Even scarcer are studies of this type in tropical mountain forests, many of them mega-diversity hotspots and especially vulnerable to acidic deposition. In these places, the topographic complexity and related streamflow conditions affect the origin, type, and intensity of deposition. Furthermore, in regions with a variety of natural and anthropogenic sulfur sources, like active volcanoes and biomass burning, no source emission data has been used for determining the contribution of each source to the deposition. The main goal of the current study is to evaluate sulfate (SO4- deposition by rain and occult precipitation at two topographic locations in a tropical mountain forest of southern Ecuador, and to trace back the deposition to possible emission sources applying back-trajectory modeling. To link upwind natural (volcanic) and anthropogenic (urban/industrial and biomass-burning) sulfur emissions and observed sulfate deposition, we employed state-of-the-art inventory and satellite data, including volcanic passive degassing as well. We conclude that biomass-burning sources generally dominate sulfate deposition at the evaluated sites. Minor sulfate transport occurs during the shifting of the predominant winds to the north and west. Occult precipitation sulfate deposition and likely rain sulfate deposition are mainly linked to biomass-burning emissions from the Amazon lowlands. Volcanic and anthropogenic emissions from the north and west contribute to occult precipitation sulfate deposition at the mountain crest Cerro del Consuelo meteorological station and to rain-deposited sulfate at the upriver mountain pass El Tiro meteorological station.

  4. Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, S.; Rollenbeck, R.; Trachte, K.; Bendix, J.

    2014-05-01

    Atmospheric sulfur deposition above certain limits can represent a threat to tropical forests, causing nutrient imbalances and mobilizing toxic elements that impact biodiversity and forest productivity. Atmospheric sources of sulfur deposited by precipitation have being roughly identified in only a few lowland tropical forests. Even scarcer are these type of studies in tropical mountain forests, many of them megadiversity hotspots and especially vulnerable to acidic deposition. Here, the topographic complexity and related streamflow condition the origin, type, and intensity of deposition. Furthermore, in regions with a variety of natural and anthropogenic sulfur sources, like active volcanoes and biomass-burning, no source-emission data has been used for determining the contribution of each of them to the deposition. The main goal of the current study is to evaluate sulfate (SO4-) deposition by rain and occult precipitation at two topographic locations in a tropical mountain forest of southern Ecuador, and to trace back the deposition to possible emission sources applying back trajectory modeling. To link upwind natural (volcanic) and anthropogenic (urban/industrial and biomass-burning) sulfur emissions and observed sulfate deposition, we employed state of the art inventory and satellite data, including volcanic passive degassing as well. We conclude that biomass-burning sources generally dominate sulfate deposition at the evaluated sites. Minor sulfate transport occurs during the shifting of the predominant winds to the north and west. Occult precipitation sulfate deposition and likely rain sulfate deposition are mainly linked to biomass-burning emissions from the Amazon lowlands. Volcanic and anthropogenic emissions from the north and west contribute to occult precipitation sulfate deposition at the mountain crest Cerro del Consuelo meteorological station and to rain-deposited sulfate at the upriver mountain-pass El Tiro meteorological station.

  5. Tree Circumference Dynamics in Four Forests Characterized Using Automated Dendrometer Bands

    PubMed Central

    McMahon, Sean M.; Detto, Matteo; Lutz, James A.; Davies, Stuart J.; Chang-Yang, Chia-Hao; Anderson-Teixeira, Kristina J.

    2016-01-01

    Stem diameter is one of the most commonly measured attributes of trees, forming the foundation of forest censuses and monitoring. Changes in tree stem circumference include both irreversible woody stem growth and reversible circumference changes related to water status, yet these fine-scale dynamics are rarely leveraged to understand forest ecophysiology and typically ignored in plot- or stand-scale estimates of tree growth and forest productivity. Here, we deployed automated dendrometer bands on 12–40 trees at four different forested sites—two temperate broadleaf deciduous, one temperate conifer, and one tropical broadleaf semi-deciduous—to understand how tree circumference varies on time scales of hours to months, how these dynamics relate to environmental conditions, and whether the structure of these variations might introduce substantive error into estimates of woody growth. Diurnal stem circumference dynamics measured over the bark commonly—but not consistently—exhibited daytime shrinkage attributable to transpiration-driven changes in stem water storage. The amplitude of this shrinkage was significantly correlated with climatic variables (daily temperature range, vapor pressure deficit, and radiation), sap flow and evapotranspiration. Diurnal variations were typically <0.5 mm circumference in amplitude and unlikely to be of concern to most studies of tree growth. Over time scales of multiple days, the bands captured circumference increases in response to rain events, likely driven by combinations of increased stem water storage and bark hydration. Particularly at the tropical site, these rain responses could be quite substantial, ranging up to 1.5 mm circumference expansion within 48 hours following a rain event. We conclude that over-bark measurements of stem circumference change sometimes correlate with but have limited potential for directly estimating daily transpiration, but that they can be valuable on time scales of days to weeks for characterizing changes in stem growth and hydration. PMID:28030646

  6. Modeling nonlinear responses of DOC transport in boreal catchments in Sweden

    NASA Astrophysics Data System (ADS)

    Kasurinen, Ville; Alfredsen, Knut; Ojala, Anne; Pumpanen, Jukka; Weyhenmeyer, Gesa A.; Futter, Martyn N.; Laudon, Hjalmar; Berninger, Frank

    2016-07-01

    Stream water dissolved organic carbon (DOC) concentrations display high spatial and temporal variation in boreal catchments. Understanding and predicting these patterns is a challenge with great implications for water quality projections and carbon balance estimates. Although several biogeochemical models have been used to estimate stream water DOC dynamics, model biases common during both rain and snow melt-driven events. The parsimonious DOC-model, K-DOC, with 10 calibrated parameters, uses a nonlinear discharge and catchment water storage relationship including soil temperature dependencies of DOC release and consumption. K-DOC was used to estimate the stream water DOC concentrations over 5 years for eighteen nested boreal catchments having total area of 68 km2 (varying from 0.04 to 67.9 km2). The model successfully simulated DOC concentrations during base flow conditions, as well as, hydrological events in catchments dominated by organic and mineral soils reaching NSEs from 0.46 to 0.76. Our semimechanistic model was parsimonious enough to have all parameters estimated using statistical methods. We did not find any clear differences between forest and mire-dominated catchments that could be explained by soil type or tree species composition. However, parameters controlling slow release and consumption of DOC from soil water behaved differently for small headwater catchments (less than 2 km2) than for those that integrate larger areas of different ecosystem types (10-68 km2). Our results emphasize that it is important to account for nonlinear dependencies of both, soil temperature, and catchment water storage, when simulating DOC dynamics of boreal catchments.

  7. Water chemistry in 179 randomly selected Swedish headwater streams related to forest production, clear-felling and climate.

    PubMed

    Löfgren, Stefan; Fröberg, Mats; Yu, Jun; Nisell, Jakob; Ranneby, Bo

    2014-12-01

    From a policy perspective, it is important to understand forestry effects on surface waters from a landscape perspective. The EU Water Framework Directive demands remedial actions if not achieving good ecological status. In Sweden, 44 % of the surface water bodies have moderate ecological status or worse. Many of these drain catchments with a mosaic of managed forests. It is important for the forestry sector and water authorities to be able to identify where, in the forested landscape, special precautions are necessary. The aim of this study was to quantify the relations between forestry parameters and headwater stream concentrations of nutrients, organic matter and acid-base chemistry. The results are put into the context of regional climate, sulphur and nitrogen deposition, as well as marine influences. Water chemistry was measured in 179 randomly selected headwater streams from two regions in southwest and central Sweden, corresponding to 10 % of the Swedish land area. Forest status was determined from satellite images and Swedish National Forest Inventory data using the probabilistic classifier method, which was used to model stream water chemistry with Bayesian model averaging. The results indicate that concentrations of e.g. nitrogen, phosphorus and organic matter are related to factors associated with forest production but that it is not forestry per se that causes the excess losses. Instead, factors simultaneously affecting forest production and stream water chemistry, such as climate, extensive soil pools and nitrogen deposition, are the most likely candidates The relationships with clear-felled and wetland areas are likely to be direct effects.

  8. The intensity of segregation of the OH-Isoprene reaction -measurements above the amazon rain forest-

    NASA Astrophysics Data System (ADS)

    Sörgel, Matthias; Berger, Martina; Dlugi, Ralph; Harder, Hartwig; Kesselmeier, Jürgen; Mallik, Chinmay; Marno, Daniel; Tsokankunku, Anywhere; Wolff, Stefan; Yanez-Serrano, Ana-Maria; Zelger, Michael

    2017-04-01

    Incomplete mixing (segregation) causes reduced reaction rates compared to laboratory values derived for well mixed conditions. The dominant contribution to atmospheric chemistry is given by the most important oxidizing agent, the OH-radical, which is regarded as the detergent of the atmosphere as it reacts with the majority of atmospheric pollutants and therefore accelerates their removal from the atmosphere. Hence, to understand atmospheric self-cleansing, we need to quantify and understand the budgets (sources and sinks) of OH. Budgets are generally derived by measuring mixing ratios of known source molecules (either primary or recycling) and the total sink for OH of which isoprene is an important part in the pristine rain forest. The production and loss terms are calculated by using the measured mixing ratios and the laboratory derived kinetic values. If reactants are not well mixed their actual reaction rates are lower in the atmosphere than in the laboratory. Therefore, segregation might play a substantial role in quantifying and understanding the derived budgets. We measured OH-radicals, isoprene and other species (O3, NOx, HO2, H2O) with high time resolution (1-10 Hz) shortly above a rain forest canopy (41 m above ground level) at the ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W). The site is characterized by high isoprene (up to 20 ppb) and low NO (50 ppt - 500 ppt). Simultaneous measurements of OH and isoprene with high time resolution (necessary to directly calculate the intensity of segregation) are sparse. To our knowledge this is now the third dataset for OH-isoprene segregation but the first from a tropical rain forest. The results will be compared to modeling results from different environments and the effect of trace gas exchange driven by coherent structures on the intensity of segregation will be evaluated as well.

  9. Effects of simulated acid rain on soil respiration and its components in a subtropical mixed conifer and broadleaf forest in southern China.

    PubMed

    Liang, Guohua; Hui, Dafeng; Wu, Xiaoying; Wu, Jianping; Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang

    2016-02-01

    Soil respiration is a major pathway in the global carbon cycle and its response to environmental changes is an increasing concern. Here we explored how total soil respiration (RT) and its components respond to elevated acid rain in a mixed conifer and broadleaf forest, one of the major forest types in southern China. RT was measured twice a month in the first year under four treatment levels of simulated acid rain (SAR: CK, the local lake water, pH 4.7; T1, water pH 4.0; T2, water pH 3.25; and T3, water pH 2.5), and in the second year, RT, litter-free soil respiration (RS), and litter respiration (RL) were measured simultaneously. The results indicated that the mean rate of RT was 2.84 ± 0.20 μmol CO2 m(-2) s(-1) in the CK plots, and RS and RL contributed 60.7% and 39.3% to RT, respectively. SAR marginally reduced (P = 0.08) RT in the first year, but significantly reduced RT and its two components in the second year (P < 0.05). The negative effects were correlated with the decrease in soil microbial biomass and fine root biomass due to soil acidification under the SAR. The temperature coefficients (Q10) of RT and its two components generally decreased with increasing levels of the SAR, but only the decrease of RT and RL was significant (P < 0.05). In addition, the contribution of RL to RT decreased significantly under the SAR, indicating that RL was more sensitive to the SAR than RS. In the context of elevated acid rain, the decline trend of RT in the forests in southern China appears to be attributable to the decline of soil respiration in the litter layer.

  10. Evidence of continued effects from timber harvesting on lotic amphibians in redwood forests of northwestern California

    Treesearch

    Donald T. Ashton; Sharyn B. Marks; Hartwell H. Welsh Jr.

    2006-01-01

    We compared species richness and relative abundance of stream-associated amphibians in late-seral redwood forests with those in mid-seral, second-growth forests to examine the continued (as opposed to immediate) effects of timber harvest on amphibian populations. Lacking pre-harvest data on amphibian abundances for streams in the second-growth stands, we assumed that...

  11. Influence of forest roads standards and networks on water yield as predicted by the distributed hydrology-soil-vegetation model

    Treesearch

    Salli F. Dymond; W. Michael Aust; Steven P. Prisley; Mark H. Eisenbies; James M. Vose

    2013-01-01

    Throughout the country, foresters are continually looking at the effects of logging and forest roads on stream discharge and overall stream health. In the Pacific Northwest, a distributed hydrology-soil-vegetation model (DHSVM) has been used to predict the effects of logging on peak discharge in mountainous regions. DHSVM uses elevation, meteorological, vegetation, and...

  12. Continuity in fire disturbance between riparian and adjacent sideslopes in the Douglas-fire forest series.

    Treesearch

    Richard L. Everett; Richard Schellhaas; Pete Ohlson

    2000-01-01

    Fire scar and stand cohort records were used to estimate the number and timing of fire disturbance events that impacted riparian and adjacent sideslope forests in the Douglas-fir series. Data were gathered from 49 stream segments on 24 separate streams on the east slope of the Washington Cascade Range. Upslope forests had more traceable disturbance events than riparian...

  13. Using a Numerical Model to Assess the Geomorphic Impacts of Forest Management Scenarios on Streams

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; Eaton, B. C.

    2014-12-01

    In-stream large wood governs the morphology of many small to intermediate streams, while riparian vegetation influences bank strength and channel pattern. Forest management practices such as harvesting and fire suppression therefore dramatically influence channel processes and associated aquatic habitat. The primary objective of this research is to compare the impacts of three common forest scenarios - natural fire disturbance, forest harvesting with a riparian buffer, and fire suppression - on the volume of in-channel wood and the complexity of aquatic habitat in channels at a range of scales. Each scenario is explored through Monte Carlo simulations run over a period of 1000 years using a numerical reach scale channel simulator (RSCS), with variations in tree toppling rate and forest density used to represent each forest management trajectory. The habitat complexity associated with each scenario is assessed based on the area of the bed occupied by pools and spawning sized sediment, the availability of wood cover, and the probability of avulsion. Within the fire scenario, we also use the model to separately investigate the effects of root decay and recovery on equilibrium channel geometry by varying the rooting depth and associated bank strength through time. The results show that wood loading and habitat complexity are influenced by the timing and magnitude of wood recruitment, as well as channel scale. The forest harvesting scenario produces the lowest wood loads and habitat complexity so long as the buffer width is less than the average mature tree height. The natural fire cycle produces the greatest wood loading and habitat complexity, but also the greatest variability because these streams experience significant periods without wood recruitment as forests regenerate. In reaches that experience recurrent fires, width increases in the post-fire period as roots decay, at times producing a change in channel pattern when a threshold width to depth ratio is exceeded, and decreases as the forest regenerates. In all cases, the effects are greatest in small to intermediate sized streams where wood is the dominant driver of channel morphology, and become negligible in large streams governed by fluvial processes.

  14. Spatio-temporal variability in the distribution of ground-dwelling riparian spiders and their potential role in water-to-land energy transfer along Hong Kong forest streams

    PubMed Central

    Yuen, Elaine Y.L.

    2015-01-01

    Terrestrial predators have been shown to aggregate along stream margins during periods when the emergence of adult aquatic insects is high. Such aggregation may be especially evident when terrestrial surroundings are relatively unproductive, and there are steep productivity gradients across riparia. In tropical forests, however, the productivity of inland terrestrial habitats may decrease the resource gradient across riparia, thus lessening any tendency of terrestrial predators to aggregate along stream margins. We elucidated the spatio-temporal variability in the distribution of ground-dwelling spiders and terrestrial arthropod prey within the riparia of two forest streams in tropical Hong Kong by sampling arthropods along transects at different distances from the streams during the wet and dry seasons. Environmental variables that may have influenced spider distributions were also measured. The vast majority of ground-dwelling predators along all transects at both sites were spiders. Of the three most abundant spiders captured along stream margins, Heteropoda venatoria (Sparassidae) and Draconarius spp. (Agelenidae) were terrestrially inclined and abundant during both seasons. Only Pardosa sumatrana (Lycosidae) showed some degree of aggregation at the stream banks, indicating a potential reliance on aquatic insect prey. Circumstantial evidence supports this notion, as P. sumatrana was virtually absent during the dry season when aquatic insect emergence was low. In general, forest-stream riparia in Hong Kong did not appear to be feeding hotspots for ground-dwelling predators. The lack of aggregation in ground-dwelling spiders in general may be attributed to the low rates of emergence of aquatic insects from the study streams compared to counterpart systems, as well as the potentially high availability of terrestrial insect prey in the surrounding forest. Heteropoda venatoria, the largest of the three spiders maintained a high biomass (up to 28 mg dry weight/m2) in stream riparia, exceeding the total standing stock of all other spiders by 2–80 times. The biomass and inland distribution of H. venatoria could make it a likely conduit for the stream-to-land transfer of energy. PMID:26246974

  15. The emergence of modern type rain forests and mangroves and their traces in the palaeobotanical record during the Late Cretaceous and early Tertiary

    NASA Astrophysics Data System (ADS)

    Mohr, Barbara; Coiffard, Clément

    2014-05-01

    The origin of modern rain forests is still very poorly known. This ecosystem could have potentially fully evolved only after the development of relatively high numbers of flowering plant families adapted to rain forest conditions. During the early phase of angiosperm evolution in the early Cretaceous the palaeo-equatorial region was located in a seasonally dry climatic belt, so that during this phase, flowering plants often show adaptations to drought, rather than to continuously wet climate conditions. Therefore it is not surprising that except for the Nymphaeales, the most basal members of extant angiosperm families have members that do not necessarily occur in the continuously wet tropics today. However, during the late Early Cretaceous several clades emerged that later would give rise to families that are typically found today mostly in (shady) moist places in warmer regions. This is especially seen among the monocotyledons, a group of the mesangiosperms, that developed in many cases large leaves often with very specific venation patterns that make these leaves very unique and well recognizable. Especially members of three groups are here of interest: the arum family (Araceae), the palms (Arecaceae) and the Ginger and allies (Zingiberales). The earliest fossil of Araceae are restricted to low latitudes during the lower Cretaceous. Arecaceae and Zingiberales do not appear in the fossil record before the early late Cretaceous and occur at mid latitudes. During the Late Cretaceous, Araceae are represented at mid latitudes by non-tropical early diverging members and at low latitudes by derived rainforest members. Palms became widespread during the Late Cretataceous and also Nypa, a typical element of tropical to subtropical mangrove environments evolved during this time period. During the Paleocene Arecaceae appear to be restricted to lower latitudes as well as Zingiberales. All three groups are again widespread during the Eocene, reaching higher latitudes and probably diversifying at mid latitudes. Later on, they slowly became restricted to lower latitudes as seen today. This fluctuation appears to be linked to climate change and are still reflected by the regional diversity of these groups, which reflect rather well rain forest evolution. When tracing the fossil record of rain forest plants we clearly see a pattern that suggests the onset of this type of environment during the late Late Cretaceous and spread during the early Tertiary with phases of retreat during the Oligocene and from the mid-Miocene onwards.

  16. Single-image-based Rain Detection and Removal via CNN

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Fu, Chengzhou

    2018-04-01

    The quality of the image is degraded by rain streaks, which have negative impact when we extract image features for many visual tasks, such as feature extraction for classification and recognition, tracking, surveillance and autonomous navigation. Hence, it is necessary to detect and remove rain streaks from single images, which is a challenging problem since we have no spatial-temporal information of rain streaks compared to the dynamic video stream. Inspired by the priori that the rain streaks have almost the same feature, such as the direction or the thickness, although they are in different types of real-world images. The paper aims at proposing an effective convolutional neural network (CNN) to detect and remove rain streaks from single image. Two models of synthesized rainy image, linear additive composite model (LACM model) and screen blend model (SCM model), are considered in this paper. The main idea is that it is easier for our CNN network to find the mapping between the rainy image and rain streaks than between the rainy image and clean image. The reason is that rain streaks have fixed features, but clean images have various features. The experiments show that the designed CNN network outperforms state-of-the-art approaches on both synthesized and real-world images, which indicates the effectiveness of our proposed framework.

  17. Chemical properties of forest soils

    Treesearch

    Charles H. Perry; Michael C. Amacher

    2007-01-01

    Why Is Soil Chemistry Important? The soil quality indicator was initially developed as a tool for assessing the current status of forest soil resources and predicting potential changes in soil properties. Soil chemistry data can be used to diagnose tree vigor and document the deposition of atmospheric pollutants (e.g., acid rain). This chapter focuses on two chemical...

  18. Flood disturbance in a forested mountain landscape: interactions of land use and floods.

    Treesearch

    F.J. Swanson; S.L. Johnson; S.V. Gregory; S.A. Acker

    1998-01-01

    Recent flooding in the Pacific Northwest vividly illustrates the complexity of watershed and ecosystem responses to floods, especially in steep forest landscapes. Flooding involves a sequence of interactions that begins with climatic drivers. These drivers, generally rain and snowmelt, interact with landscape conditions, such as vegetation pattern and topography, to...

  19. Evaluation of soil quality in areas of cocoa cabruca, forest and multicropping in southern Bahia, Brazil

    USDA-ARS?s Scientific Manuscript database

    The Atlantic Rain Forest is one of the most complex natural environments of the earth and, linked with this ecosystem, the cacao-cabruca system is agroforestry cultivation with an arrangement including a range of environmental, social and economical benefits and can protect many features of the biod...

  20. Trees of Life: Saving Tropical Forests and Their Biological Wealth.

    ERIC Educational Resources Information Center

    Miller, Kenton; Tangley, Laura

    Staggering statistics and dramatic headlines about the destruction of rain forests, the world's richest ecosystems, are only a small part of the devastating story of global deforestation. This volume provides comprehensive coverage of this complex scientific and political catastrophe-in-the-making and examines the costs and the consequences, in…

Top