Sample records for rainfall cloud cover

  1. Observations of cloud and rainfall enhancement over irrigated agriculture in an arid environment

    NASA Astrophysics Data System (ADS)

    Garcia-Carreras, Luis; Marsham, John H.; Spracklen, Dominick V.

    2017-04-01

    The impact of irrigated agriculture on clouds and rainfall remains uncertain, particularly in less studied arid regions. Irrigated crops account for 20% of global cropland area, and non-renewable groundwater accounts for 20% of global irrigation water demand. Quantifying the feedbacks between agriculture and the atmosphere are therefore not only necessary to better understand the climate impacts of land-use change, but are also crucial for predicting long-term water use in water-scarce regions. Here we use high spatial-resolution satellite data to show the impact of irrigated crops in the arid environment of northern Saudi Arabia on cloud cover and rainfall patterns. Land surface temperatures over the crops are 5-10 K lower than their surroundings, linked to evapotranspiration rates of up to 20 mm/ month. Daytime cloud cover is up to 30% higher over the cropland compared to its immediate surroundings, and this enhancement is highly correlated with the seasonal variability in leaf area index. The cloud enhancement is associated with a much more rapid cloud cloud development during the morning. Afternoon rainfall is 85% higher over, and just downwind, of the cropland during the growing season, although rainfall remains very low in absolute terms. The feedback sign we find is the opposite to what has been observed in tropical and semiarid regions, where temperature gradients promote convergence and clouds on the warmer side of land-surface type discontinuities. This suggests that different processes are responsible for the land-atmosphere feedback in very dry environments, where lack of moisture may be a stronger constraint. Increased cloud and rainfall, and associated increases in diffuse radiation and reductions in temperature, can affect vegetation growth thus producing an internal feedback. These effects will therefore need to be taken into account to properly assess the impact of climate change on crop productivity and water use, as well as how global land-use change affects climate.

  2. Convective Cloud and Rainfall Processes Over the Maritime Continent: Simulation and Analysis of the Diurnal Cycle

    NASA Astrophysics Data System (ADS)

    Gianotti, Rebecca L.

    The Maritime Continent experiences strong moist convection, which produces significant rainfall and drives large fluxes of heat and moisture to the upper troposphere. Despite the importance of these processes to global circulations, current predictions of climate change over this region are still highly uncertain, largely due to inadequate representation of the diurnally-varying processes related to convection. In this work, a coupled numerical model of the land-atmosphere system (RegCM3-IBIS) is used to investigate how more physically-realistic representations of these processes can be incorporated into large-scale climate models. In particular, this work improves simulations of convective-radiative feedbacks and the role of cumulus clouds in mediating the diurnal cycle of rainfall. Three key contributions are made to the development of RegCM3-IBIS. Two pieces of work relate directly to the formation and dissipation of convective clouds: a new representation of convective cloud cover, and a new parameterization of convective rainfall production. These formulations only contain parameters that can be directly quantified from observational data, are independent of model user choices such as domain size or resolution, and explicitly account for subgrid variability in cloud water content and nonlinearities in rainfall production. The third key piece of work introduces a new method for representation of cloud formation within the boundary layer. A comprehensive evaluation of the improved model was undertaken using a range of satellite-derived and ground-based datasets, including a new dataset from Singapore's Changi airport that documents diurnal variation of the local boundary layer height. The performance of RegCM3-IBIS with the new formulations is greatly improved across all evaluation metrics, including cloud cover, cloud liquid water, radiative fluxes and rainfall, indicating consistent improvement in physical realism throughout the simulation. This work demonstrates that: (1) moist convection strongly influences the near surface environment by mediating the incoming solar radiation and net radiation at the surface; (2) dissipation of convective cloud via rainfall plays an equally important role in the convectiveradiative feedback as the formation of that cloud; and (3) over parts of the Maritime Continent, rainfall is a product of diurnally-varying convective processes that operate at small spatial scales, on the order of 1 km. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  3. Observed Land Impacts on Clouds, Water Vapor, and Rainfall at Continental Scales

    NASA Technical Reports Server (NTRS)

    Jin, Menglin; King, Michael D.

    2005-01-01

    How do the continents affect large-scale hydrological cycles? How important can one continent be to the climate system? To address these questions, 4-years of National Aeronautics and Space Administration (NASA) Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations, Tropical Rainfall Measuring Mission (TRMM) observations, and the Global Precipitation Climatology Project (GPCP) global precipitation analysis, were used to assess the land impacts on clouds, rainfall, and water vapor at continental scales. At these scales, the observations illustrate that continents are integrated regions that enhance the seasonality of atmospheric and surface hydrological parameters. Specifically, the continents of Eurasia and North America enhance the seasonality of cloud optical thickness, cirrus fraction, rainfall, and water vapor. Over land, both liquid water and ice cloud effective radii are smaller than over oceans primarily because land has more aerosol particles. In addition, different continents have similar impacts on hydrological variables in terms of seasonality, but differ in magnitude. For example, in winter, North America and Eurasia increase cloud optical thickness to 17.5 and 16, respectively, while in summer, Eurasia has much smaller cloud optical thicknesses than North America. Such different land impacts are determined by each continent s geographical condition, land cover, and land use. These new understandings help further address the land-ocean contrasts on global climate, help validate global climate model simulated land-atmosphere interactions, and help interpret climate change over land.

  4. Detection of long duration cloud contamination in hyper-temporal NDVI imagery

    NASA Astrophysics Data System (ADS)

    Ali, A.; de Bie, C. A. J. M.; Skidmore, A. K.; Scarrott, R. G.

    2012-04-01

    NDVI time series imagery are commonly used as a reliable source for land use and land cover mapping and monitoring. However long duration cloud can significantly influence its precision in areas where persistent clouds prevails. Therefore quantifying errors related to cloud contamination are essential for accurate land cover mapping and monitoring. This study aims to detect long duration cloud contamination in hyper-temporal NDVI imagery based land cover mapping and monitoring. MODIS-Terra NDVI imagery (250 m; 16-day; Feb'03-Dec'09) were used after necessary pre-processing using quality flags and upper envelope filter (ASAVOGOL). Subsequently stacked MODIS-Terra NDVI image (161 layers) was classified for 10 to 100 clusters using ISODATA. After classifications, 97 clusters image was selected as best classified with the help of divergence statistics. To detect long duration cloud contamination, mean NDVI class profiles of 97 clusters image was analyzed for temporal artifacts. Results showed that long duration clouds affect the normal temporal progression of NDVI and caused anomalies. Out of total 97 clusters, 32 clusters were found with cloud contamination. Cloud contamination was found more prominent in areas where high rainfall occurs. This study can help to stop error propagation in regional land cover mapping and monitoring, caused by long duration cloud contamination.

  5. Cloud-based NEXRAD Data Processing and Analysis for Hydrologic Applications

    NASA Astrophysics Data System (ADS)

    Seo, B. C.; Demir, I.; Keem, M.; Goska, R.; Weber, J.; Krajewski, W. F.

    2016-12-01

    The real-time and full historical archive of NEXRAD Level II data, covering the entire United States from 1991 to present, recently became available on Amazon cloud S3. This provides a new opportunity to rebuild the Hydro-NEXRAD software system that enabled users to access vast amounts of NEXRAD radar data in support of a wide range of research. The system processes basic radar data (Level II) and delivers radar-rainfall products based on the user's custom selection of features such as space and time domain, river basin, rainfall product space and time resolution, and rainfall estimation algorithms. The cloud-based new system can eliminate prior challenges faced by Hydro-NEXRAD data acquisition and processing: (1) temporal and spatial limitation arising from the limited data storage; (2) archive (past) data ingestion and format conversion; and (3) separate data processing flow for the past and real-time Level II data. To enhance massive data processing and computational efficiency, the new system is implemented and tested for the Iowa domain. This pilot study begins by ingesting rainfall metadata and implementing Hydro-NEXRAD capabilities on the cloud using the new polarimetric features, as well as the existing algorithm modules and scripts. The authors address the reliability and feasibility of cloud computation and processing, followed by an assessment of response times from an interactive web-based system.

  6. Forecasting Andean rainfall and crop yield from the influence of El Nino on Pleiades visibility

    PubMed

    Orlove; Chiang; Cane

    2000-01-06

    Farmers in drought-prone regions of Andean South America have historically made observations of changes in the apparent brightness of stars in the Pleiades around the time of the southern winter solstice in order to forecast interannual variations in summer rainfall and in autumn harvests. They moderate the effect of reduced rainfall by adjusting the planting dates of potatoes, their most important crop. Here we use data on cloud cover and water vapour from satellite imagery, agronomic data from the Andean altiplano and an index of El Nino variability to analyse this forecasting method. We find that poor visibility of the Pleiades in June-caused by an increase in subvisual high cirrus clouds-is indicative of an El Nino year, which is usually linked to reduced rainfall during the growing season several months later. Our results suggest that this centuries-old method of seasonal rainfall forecasting may be based on a simple indicator of El Nino variability.

  7. Evaluating rainfall errors in global climate models through cloud regimes

    NASA Astrophysics Data System (ADS)

    Tan, Jackson; Oreopoulos, Lazaros; Jakob, Christian; Jin, Daeho

    2017-07-01

    Global climate models suffer from a persistent shortcoming in their simulation of rainfall by producing too much drizzle and too little intense rain. This erroneous distribution of rainfall is a result of deficiencies in the representation of underlying processes of rainfall formation. In the real world, clouds are precursors to rainfall and the distribution of clouds is intimately linked to the rainfall over the area. This study examines the model representation of tropical rainfall using the cloud regime concept. In observations, these cloud regimes are derived from cluster analysis of joint-histograms of cloud properties retrieved from passive satellite measurements. With the implementation of satellite simulators, comparable cloud regimes can be defined in models. This enables us to contrast the rainfall distributions of cloud regimes in 11 CMIP5 models to observations and decompose the rainfall errors by cloud regimes. Many models underestimate the rainfall from the organized convective cloud regime, which in observation provides half of the total rain in the tropics. Furthermore, these rainfall errors are relatively independent of the model's accuracy in representing this cloud regime. Error decomposition reveals that the biases are compensated in some models by a more frequent occurrence of the cloud regime and most models exhibit substantial cancellation of rainfall errors from different regimes and regions. Therefore, underlying relatively accurate total rainfall in models are significant cancellation of rainfall errors from different cloud types and regions. The fact that a good representation of clouds does not lead to appreciable improvement in rainfall suggests a certain disconnect in the cloud-precipitation processes of global climate models.

  8. Potential reciprocal effect between land use / land cover change and climate change

    NASA Astrophysics Data System (ADS)

    Daham, Afrah; Han, Dawei; Rico-Ramirez, Miguel

    2016-04-01

    Land use/land cover (LULC) activity influences climate change and one way to explore climate change is to analyse the change in LULC patterns. Modelling the Spatio-temporal pattern of LULC change requires the use of satellite remote sensing data and aerial photographs with different pre-processing steps. The aim of this research is to analyse the reciprocal effects of LUCC (Land Use and Cover Change) and the climate change on each other in the study area which covers part of Bristol, South Gloucestershire, Bath and Somerset in England for the period (1975-2015). LUCC is assessed using remote sensing data. Three sets of remotely sensed data, LanSAT-1 Multispectral Scanner (MSS) data obtained in (1975 and 1976), LanSAT-5 Thematic Mapper (TM) data obtained in (1984 and 1997), and LandSAT-7 Enhanced Thematic Mapper Plus (ETM+) acquired in (2003 and 2015), with a time span of forty years were used in the study. One of the most common problems in the satellite images is the presence of cloud covers. In this study, the cloud cover problem is handled using a novel algorithm, which is capable of reducing the cloud coverage in the classified images significantly. This study also examines a suite of possible photogrammetry techniques applicable to detect the change in LULC. At the moment photogrammertic techniques are used to derive the ground truth for supervised classification from the high resolution aerial photos which were provided by Ordnance Survey (contract number: 240215) and global mapper for the years in (2001 and 2014). After obtaining the classified images almost free of clouds, accuracy assessment is implemented with the derived classified images using confusion matrix at some ground truth points. Eight classes (Improved grassland, Built up areas and gardens, Arable and horticulture, Broad-leaved / mixed woodland, Coniferous woodland, Oceanic seas, Standing open water and reservoir, and Mountain; heath; bog) have been classified in the chosen study area. Also, CORINE Land Cover (CLC) maps are used to study the environmental changes and to validate the obtained maps from remote sensing and photogrammetry data. On climate change, different sources of climate data were used in this research. Three rainfall datasets from the Global Precipitation Climatology Centre (GPCC), the Climate Research Unit (CRU) and Gridded Estimates of daily Areal Rainfall (CEH-GEAR) in the study area were compared at a resolution of 0.5 degrees. The dataset were available for the operational period 1975-2015. The historically observed rainfall datasets for the study area were obtained from the Met Office Integrated Data Archive System (MIDAS) Land and Marine downloaded through the British Atmospheric Data Centre (BADC) website, which includes the rainfall and the temperature, are collected from all the weather stations in the UK in the last 40 years. Only four gauging stations were available to represent the spatial variability of rainfall within and around the study area. The monthly rainfall time series were evaluated against a dataset based on four rain gauges. These data are processed and analysed statistically to find the changes in climate of the study area in the last 40 years. The potential reciprocal effect between the LULC change and the climate change is done by finding the correlation between LUCC and the variables Rainfall and Temperature. In addition, The Soil and Water Assessment Tool (SWAT) model is used to study the impact of LULC change on the water system and climate.

  9. Estimation of rainfall using remote sensing for Riyadh climate, KSA

    NASA Astrophysics Data System (ADS)

    AlHassoun, Saleh A.

    2013-05-01

    Rainfall data constitute an important parameter for studying water resources-related problems. Remote sensing techniques could provide rapid and comprehensive overview of the rainfall distribution in a given area. Thus, the infrared data from the LandSat satellite in conjunction with the Scofield-oliver method were used to monitor and model rainfall in Riyadh area as a resemble of any area in the Kingdom of Saudi Arabia(KSA). Four convective clouds that covered two rain gage stations were analyzed. Good estimation of rainfall was obtained from satellite images. The results showed that the satellite rainfall estimations were well correlated to rain gage measurements. The satellite climate data appear to be useful for monitoring and modeling rainfall at any area where no rain gage is available.

  10. Remote sensing of severe convective storms over Qinghai-Xizang Plateau

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.; Tsao, D. Y.; Smith, R. E.

    1984-01-01

    The American satellite, GOES-1 was moved to the Indian Ocean at 58 deg E during the First GARP Global Experiment (FGGE). The Qinghai-Xizang Plateau significantly affects the initiation and development of heavy rainfall and severe storms in China, just as the Rocky Mountains influence the local storms in the United States. Satelite remote sensing of short-lived, meso-scale convective storms is particularly important for covering a huge area of a high elevation with a low population density, such as the Qinghai-Xizang Plateau. Results of this study show that a high growth rate of the convective clouds, followed by a rapid collapse of the cloud top, is associated with heavy rainfall in the area. The tops of the convective clouds developed over the Plateau lie between the altitudes of the two tropopauses, while the tops of convective clouds associated with severe storms in the United States usually extend much above the tropopause.

  11. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    PubMed

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.

  12. Aerosol effects on clouds and precipitation over the eastern China

    NASA Astrophysics Data System (ADS)

    Wang, W. C.; Chen, G.; Song, Y.

    2017-12-01

    Anthropogenic aerosols (sulfates, nitrates and black carbons) can act as cloud condensation nuclei to regulate cloud droplet number and size, thereby changing cloud radiative properties and atmospheric short- and long-wave radiation. These together with aerosol direct radiative effects in turn alter the circulation with likely effects on the spatial distribution of cloud and precipitation. We conduct WRF model simulations over the eastern China to investigate the aerosol-cloud-climate interactions. In general, more aerosols yield more but smaller cloud droplets and larger cloud water content, whereas the changes of vertical distribution of cloud cover exhibit strong regional variations. For example, the low-cloud fraction and water content increase by more than 10% over the west part of the Yangtze-Huai River Valley (YHRV) and the southeast coastal region, but decrease over the east part of the YHRV, and high-cloud fraction decreases in South and North China but increases in the YHRV. The radiative forcing of aerosols and cloud changes are compared, with focus on the effects of changes of vertical distribution of cloud properties (microphysics and fraction). The precipitation changes are found to be closely associated with the circulation change, which favors more (and longer duration) rainfall over the YHRV but less (and shorter) rainfall over other regions. Details of the circulation change and its associations with clouds and precipitation will be presented.

  13. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    NASA Astrophysics Data System (ADS)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response as a function of the catchments' elevation and land cover. The forested catchment, located at the higher elevations, had the highest seasonal streamflows. During the wet season, different land covers at the lower elevations were important in defining the streamflow responses between the deforested catchment and the catchment with intermediate forest cover. Streamflows were higher and the rainfall-runoff responses were faster in the deforested catchment than in the intermediate forest cover catchment. During the dry season, the catchments' elevation defined streamflows due to higher water inputs and lower evaporative demand at the higher elevations.

  14. A Case Study of Urbanization Impact on Summer Precipitation in the Greater Beijing Metropolitan Area. Urban Heat Island Versus Aerosol Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Shi; Qian, Yun; Zhao, Chun

    Convection-resolving ensemble simulations using the WRF-Chem model coupled with a single-layer Urban Canopy Model (UCM) are conducted to investigate the individual and combined impacts of land use and anthropogenic pollutant emissions from urbanization on a heavy rainfall event in the Greater Beijing Metropolitan Area (GBMA) in China. The simulation with the urbanization effect included generally captures the spatial pattern and temporal variation of the rainfall event. An improvement of precipitation is found in the experiment including aerosol effect on both clouds and radiation. The expanded urban land cover and increased aerosols have an opposite effect on precipitation processes, with themore » latter playing a more dominant role, leading to suppressed convection and rainfall over the upstream (northwest) area, and enhanced convection and more precipitation in the downstream (southeast) region of the GBMA. In addition, the influence of aerosol indirect effect is found to overwhelm that of direct effect on precipitation in this rainfall event. Increased aerosols induce more cloud droplets with smaller size, which favors evaporative cooling and reduce updrafts and suppress convection over the upstream (northwest) region in the early stage of the rainfall event. As the rainfall system propagates southeastward, more latent heat is released due to the freezing of larger number of smaller cloud drops that are lofted above the freezing level, which is responsible for the increased updraft strength and convective invigoration over the downstream (southeast) area.« less

  15. Coherent variability between seasonal temperatures and rainfalls in the Iberian Peninsula, 1951-2016

    NASA Astrophysics Data System (ADS)

    Rodrigo, F. S.

    2018-02-01

    In this work trends of seasonal mean of daily minimum (TN), maximum (TX), mean (TM) temperatures, daily range of temperature (DTR), and total seasonal rainfall (R) in 35 Iberian stations since mid-twentieth century are studied. The interest is focused on the relationships between temperature variables and rainfall, taking into account the correlation coefficients between R and the temperature variables. The negative link between rainfall and temperatures is detected in the four seasons of the year, except in western stations in winter for TN and TM, and in autumn for TN (for this variable a certain annual cycle is detected, with predominance of positive correlation in winter, negative in spring and summer, and the autumn as transition season). The role of cloud cover is confirmed in those stations with total cloud cover data. Using an average peninsular series, the relationship between nighttime temperature and rainfall related to long wave radiation is confirmed for the four seasons of the year, although in spring and summer has minor importance than in the cold half year. The relationships between R, TN, and TX are in general terms stable after a moving correlation analysis, although the negative correlation between TX and R seems be weakened in spring and autumn and reinforced in summer. The role of convective precipitation in autumn is discussed. The analysis of combined extreme indices in four representative stations shows an increase of warm and dry days, and a decrease of cold and wet days.

  16. Hazard mitigation with cloud model based rainfall and convective data

    NASA Astrophysics Data System (ADS)

    Gernowo, R.; Adi, K.; Yulianto, T.; Seniyatis, S.; Yatunnisa, A. A.

    2018-05-01

    Heavy rain in Semarang 15 January 2013 causes flood. It is related to dynamic of weather’s parameter, especially with convection process, clouds and rainfall data. In this case, weather condition analysis uses Weather Research and Forecasting (WRF) model used to analyze. Some weather’s parameters show significant result. Their fluctuations prove there is a strong convection that produces convective cloud (Cumulonimbus). Nesting and 2 domains on WRF model show good output to represent weather’s condition commonly. The results of this study different between output cloud cover rate of observation result and output of model around 6-12 hours is because spinning-up of processing. Satellite Images of MTSAT (Multifunctional Transport Satellite) are used as a verification data to prove the result of WRF. White color of satellite image is Coldest Dark Grey (CDG) that indicates there is cloud’s top. This image consolidates that the output of WRF is good enough to analyze Semarang’s condition when the case happened.

  17. Hydrodynamic Modeling of Diego Garcia Lagoon

    DTIC Science & Technology

    2014-08-01

    relative humidity, rainfall rate (m/s), evapotranspiration rate (m/s), net solar shortwave radiation (J/m2/s), cloud cover, wind speed (m/s), and... Evapotranspiration estimates were made using a version of the Modified Penman Equation (CIMIS, 2014). Solar radiation measurements were obtained from

  18. Proceedings of the Second Pilot Climate Data System Workshop

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The proceedings of the workshop held on January 29 and 30, 1986 are discussed. Data management, satellite radiance data, clouds, ultraviolet flux variations in the upper atmosphere, rainfall during El Nino events, and the use of optical disks are among the topics covered.

  19. QUANTIFYING ULTRAVIOLET RADIATION DOSE RELATIVE TO WETLAND HABITAT VARIABLES FOR THE ASSESSMENT OF RISK TO AMPHIBIANS

    EPA Science Inventory

    Ultraviolet B radiation (UV-B) has increased globally over the last several decades due to reduction of stratospheric ozone. UV-B may also increase when climate change alters cloud cover, rainfall, and distributions of vegetation. In aquatic systems, these factors can also intera...

  20. A comparison between the effects of artificial land cover and anthropogenic heat on a localized heavy rain event in 2008 in Zoshigaya, Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Souma, Kazuyoshi; Tanaka, Kenji; Suetsugi, Tadashi; Sunada, Kengo; Tsuboki, Kazuhisa; Shinoda, Taro; Wang, Yuqing; Sakakibara, Atsushi; Hasegawa, Koichi; Moteki, Qoosaku; Nakakita, Eiichi

    2013-10-01

    5 August 2008, a localized heavy rainfall event caused a rapid increase in drainpipe discharge, which killed five people working in a drainpipe near Zoshigaya, Tokyo. This study compared the effects of artificial land cover and anthropogenic heat on this localized heavy rainfall event based on three ensemble experiments using a cloud-resolving model that includes realistic urban features. The first experiment CTRL (control) considered realistic land cover and urban features, including artificial land cover, anthropogenic heat, and urban geometry. In the second experiment NOAH (no anthropogenic heat), anthropogenic heat was ignored. In the third experiment NOLC (no land cover), urban heating from artificial land cover was reduced by keeping the urban geometry but with roofs, walls, and roads of artificial land cover replaced by shallow water. The results indicated that both anthropogenic heat and artificial land cover increased the amount of precipitation and that the effect of artificial land cover was larger than that of anthropogenic heat. However, in the middle stage of the precipitation event, the difference between the two effects became small. Weak surface heating in NOAH and NOLC reduced the near-surface air temperature and weakened the convergence of horizontal wind and updraft over the urban areas, resulting in a reduced rainfall amount compared with that in CTRL.

  1. Relating rainfall characteristics to cloud top temperatures at different scales

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Belušić, Danijel; Taylor, Christopher

    2017-04-01

    Extreme rainfall from mesoscale convective systems (MCS) poses a threat to lives and livelihoods of the West African population through increasingly frequent devastating flooding and loss of crops. However, despite the significant impact of such extreme events, the dominant processes favouring their occurrence are still under debate. In the data-sparse West African region, rainfall radar data from the Tropical Rainfall Measuring Mission (TRMM) gives invaluable information on the distribution and frequency of extreme rainfall. The TRMM 2A25 product provides a 15-year dataset of snapshots of surface rainfall from 2-4 overpasses per day. Whilst this sampling captures the overall rainfall characteristics, it is neither long nor frequent enough to diagnose changes in MCS properties, which may be linked to the trend towards rainfall intensification in the region. On the other hand, Meteosat geostationary satellites provide long-term sub-hourly records of cloud top temperatures, raising the possibility of combining these with the high-quality rainfall data from TRMM. In this study, we relate TRMM 2A25 rainfall to Meteosat Second Generation (MSG) cloud top temperatures, which are available from 2004 at 15 minutes intervals, to get a more detailed picture of the structure of intense rainfall within the life cycle of MCS. We find TRMM rainfall intensities within an MCS to be strongly coupled with MSG cloud top temperatures: the probability for extreme rainfall increases from <10% for minimum temperatures warmer than -40°C to over 70% when temperatures drop below -70°C, confirming the potential in analysing cloud-top temperatures as a proxy for extreme rain. The sheer size of MCS raises the question which scales of sub-cloud structures are more likely to be associated with extreme rain than others. In the end, this information could help to associate scale changes in cloud top temperatures with processes that affect the probability of extreme rain. We use 2D continuous wavelets to decompose cloud top temperatures into power spectra at scales between 15 and 200km. From these, cloud sub-structures are identified as circular areas of respective scale with local power maxima in their centre. These areas are then mapped onto coinciding TRMM rainfall, allowing us to assign rainfall fields to sub-cloud features of different scales. We find a higher probability for extreme rainfall for cloud features above a scale of 30km, with features 100km contributing most to the number of extreme rainfall pixels. Over the average diurnal cycle, the number of smaller cloud features between 15-60km shows an increase between 15 - 1700UTC, gradually developing into larger ones. The maximum of extreme rainfall pixels around 1900UTC coincides with a peak for scales 100km, suggesting a dominant role of these scales for intense rain for the analysed cloud type. Our results demonstrate the suitability of 2D wavelet decomposition for the analysis of sub-cloud structures and their relation to rainfall characteristics, and help us to understand long-term changes in the properties of MCS.

  2. Spatial characteristics of the tropical cloud systems: comparison between model simulation and satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Zurovac-Jevtic, Dance; Boer, Erwin R.

    1999-10-01

    A Lagrangian cloud classification algorithm is applied to the cloud fields in the tropical Pacific simulated by a high-resolution regional atmospheric model. The purpose of this work is to assess the model's ability to reproduce the observed spatial characteristics of the tropical cloud systems. The cloud systems are broadly grouped into three categories: deep clouds, mid-level clouds and low clouds. The deep clouds are further divided into mesoscale convective systems and non-mesoscale convective systems. It is shown that the model is able to simulate the total cloud cover for each category reasonably well. However, when the cloud cover is broken down into contributions from cloud systems of different sizes, it is shown that the simulated cloud size distribution is biased toward large cloud systems, with contribution from relatively small cloud systems significantly under-represented in the model for both deep and mid-level clouds. The number distribution and area contribution to the cloud cover from mesoscale convective systems are very well simulated compared to the satellite observations, so are low clouds as well. The dependence of the cloud physical properties on cloud scale is examined. It is found that cloud liquid water path, rainfall, and ocean surface sensible and latent heat fluxes have a clear dependence on cloud types and scale. This is of particular interest to studies of the cloud effects on surface energy budget and hydrological cycle. The diurnal variation of the cloud population and area is also examined. The model exhibits a varying degree of success in simulating the diurnal variation of the cloud number and area. The observed early morning maximum cloud cover in deep convective cloud systems is qualitatively simulated. However, the afternoon secondary maximum is missing in the model simulation. The diurnal variation of the tropospheric temperature is well reproduced by the model while simulation of the diurnal variation of the moisture field is poor. The implication of this comparison between model simulation and observations on cloud parameterization is discussed.

  3. Dynamical Downscaling of Climate Change over the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, C.; Hamilton, K. P.; Lauer, A.

    2015-12-01

    The pseudo-global-warming (PGW) method was applied to the Hawaii Regional Climate Model (HRCM) to dynamically downscale the projected climate in the late 21st century over the Hawaiian Islands. The initial and boundary conditions were adopted from MERRA reanalysis and NOAA SST data for the present-day simulations. The global warming increments constructed from the CMIP3 multi-model ensemble mean were added to the reanalysis and SST data to perform the future climate simulations. We found that the Hawaiian Islands are vulnerable to global warming effects and the changes are diverse due to the varied topography. The windward side will have more clouds and receive more rainfall. The increase of the moisture in the boundary layer makes the major contribution. On the contrary, the leeward side will have less clouds and rainfall. The clouds and rain can slightly slow down the warming trend over the windward side. The temperature increases almost linearly with the terrain height. Cloud base and top heights will slightly decline in response to the slightly lower trade wind inversion base height, while the trade wind occurrence frequency will increase by about 8% in the future. More extreme rainfall events will occur in the warming climate over the Hawaiian Islands. And the snow cover on the top of Mauna Kea and Mauna Loa will nearly disappear in the future winter.

  4. The Sensitivity of West African Squall Line Water Budgets to Land Cover

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Baker, R. David; Tao, Wei-Kuo; Famiglietti, James S.; Starr, David OC. (Technical Monitor)

    2001-01-01

    This study used a two-dimensional coupled land/atmosphere (cloud-resolving) model to investigate the influence of land cover on the water budgets of squall lines in the Sahel. Study simulations used the same initial sounding and one of three different land covers, a sparsely vegetated semi-desert, a grassy savanna, and a dense evergreen broadleaf forest. All simulations began at midnight and ran for 24 hours to capture a full diurnal cycle. In the morning, the latent heat flux, boundary layer mixing ratio, and moist static energy in the boundary layer exhibited notable variations among the three land covers. The broadleaf forest had the highest latent heat flux, the shallowest, moistest, slowest growing boundary layer, and significantly more moist static energy per unit area than the savanna and semi-desert. Although all simulations produced squall lines by early afternoon, the broadleaf forest had the most intense, longest-lived squall lines with 29% more rainfall than the savanna and 37% more than the semi-desert. The sensitivity of the results to vegetation density, initial sounding humidity, and grid resolution was also assessed. There were greater differences in rainfall among land cover types than among simulations of the same land cover with varying amounts of vegetation. Small changes in humidity were equivalent in effect to large changes in land cover, producing large changes in the condensate and rainfall. Decreasing the humidity had a greater effect on rainfall volume than increasing the humidity. Reducing the grid resolution from 1.5 km to 0.5 km decreased the temperature and humidity of the cold pools and increased the rain volume.

  5. Ecohydrological controls of watershed response to land use change in the montane cloud forest zone in Mexico

    NASA Astrophysics Data System (ADS)

    Asbjornsen, H.; Alvarado-Barrientos, M. S.; Bruijnzeel, L. A.; Dawson, T. E.; Geissert, D. R.; Goldsmith, G. R.; Gomez-Cardenas, M.; Gomez-Tagle, A.; Gotsch, S.; Holwerda, F.; McDonnell, J. J.; Munoz Villers, L. E.; Tobon, C.

    2012-12-01

    Land use conversion and climate change threaten the hydrological services from tropical montane cloud forest (TMCFs) regions, but knowledge about the ecohydrological mechanisms controlling catchment response is limited. This project traced the hydrologic sources, fluxes and flowpaths across the atmosphere-plant-soil-stream continuum under different land cover types (degraded pasture, regenerating forest, mature forest, pine reforestation) in a seasonally dry TMCF in Veracruz, Mexico. We used hydrological (cloud water interception, CWI; streamflow) and ecophysiological measurements (transpiration, E; foliar uptake, FU) in combination with stable isotope techniques to identify the key ecohydrological processes of each land cover and quantify the hydrological effects of TMCF conversion. Results revealed that CWI was only ≤2% of total annual rainfall due to low fog occurrence and wind speeds. Fog without rainfall reduced E by a factor of 4-5 relative to sunny conditions and by a factor of 2 relative to overcast conditions, whereas the water 'gained' from the fog suppression effect was ~80-100mm year-1 relative to sunny conditions. At the canopy scale, FU resulted in the recovery of 9% of total E, suggesting a crucial role in alleviating plant water deficit; nevertheless, it was not sufficient to compensate for the 17% water loss from nighttime E. Trees primarily utilized water from 30-50cm soil depth, while water reaching the stream was derived from deep, 'old' water that was distinct from both 'new' rainwater and water accessed by plants. These findings suggest that plants mainly access a more tightly bound soil water pool that does not actively mix with the more mobile water recharging deep soil and groundwater pools. Soils had high porosity, saturated conductivity, infiltration rates, and water storage capacity, which contributed to the relatively low rainfall-runoff responses, mainly generated from deep subsurface flowpaths. Results showed that conversion of mature forest to pasture or forest regeneration on former TMCF increased annual water yield by 600mm and 300mm, respectively, while planting pine on degraded pastures reduced water yield by 365mm. Differences in water yield mainly reflect differences in rainfall interception loss. Runoff behavior was similar among land cover types, except for very high intensity storms when pasture showed higher surface runoff. Our results suggest that the ecophysiological effects of fog via suppressed E and FU has a greater impact on water yield than direct inputs from CWI in this TMCF. Rapid vertical rainfall percolation and recharge result in a largely groundwater driven system whereby streamflow dynamics is uncoupled from plant water uptake, and water storage capacity and buffering potential are exceptionally high. These factors, combined with the soil properties, resulted in reduced dry season flows due to land use conversion to pasture only being detected towards the end of the dry season. Projected lifting of the cloud base associated with regional climate change combined with declining rainfall may significantly alter ecohydrological functions of these TMCFs.

  6. Selective cooling on land supports cloud formation by cosmic ray during geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Kitaba, I.; Hyodo, M.; Nakagawa, T.; Katoh, S.; Dettman, D. L.; Sato, H.

    2017-12-01

    On geological time scales, the galactic cosmic ray (GCR) flux at the Earth's surface has increased significantly during many short time intervals. There is a growing body of evidence that suggests that climatic cooling occurred during these episodes. Cloud formation by GCR has been claimed as the most likely cause of the linkage. However, the mechanism is not fully understood due to the difficulty of accurately estimating the amount of cloud cover in the geologic past. Our study focused on the geomagnetic field and climate in East Asia. The Earth's magnetic field provides a shield against GCR. The East Asian climate reflects the temperature balance between the Eurasian landmass and the Pacific Ocean that drives monsoon circulation.Two geomagnetic polarity reversals occurred at 780 ka and 1,070 ka. At these times the geomagnetic field decreased to about 10% of its present level causing a near doubling of the GCR flux. Temperature and rainfall amounts during these episodes were reconstructed using pollen in sediment cores from Osaka Bay, Japan. The results show a more significant temperature drop on the Eurasian continent than over the Pacific, and a decrease of summer rainfall in East Asia (i.e. a weakening of East Asian summer monsoon). These observed climate changes can be accounted for if the landmasses were more strongly cooled than the oceans. The simplest mechanism behind such asymmetric cooling is the so-called `umbrella effect' (increased cloud cover blocking solar radiation) that induces greater cooling of objects with smaller heat capacities.

  7. Indian summer monsoon rainfall: Dancing with the tunes of the sun

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.; Manjunath, Hegde; Soon, Willie

    2015-02-01

    There is strong statistical evidence that solar activity influences the Indian summer monsoon rainfall. To search for a physical link between the two, we consider the coupled cloud hydrodynamic equations, and derive an equation for the rate of precipitation that is similar to the equation of a forced harmonic oscillator, with cloud and rain water mixing ratios as forcing variables. Those internal forcing variables are parameterized in terms of the combined effect of external forcing as measured by sunspot and coronal hole activities with several well known solar periods (9, 13 and 27 days; 1.3, 5, 11 and 22 years). The equation is then numerically solved and the results show that the variability of the simulated rate of precipitation captures very well the actual variability of the Indian monsoon rainfall, yielding vital clues for a physical understanding that has so far eluded analyses based on statistical correlations alone. We also solved the precipitation equation by allowing for the effects of long-term variation of aerosols. We tentatively conclude that the net effects of aerosols variation are small, when compared to the solar factors, in terms of explaining the observed rainfall variability covering the full Indian monsoonal geographical domains.

  8. Cloud-Aerosol Interaction and Its Impact on the Onset of the East Asian Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, William K.-M.; Hsu, N. Christina; Tsay, Si-Chee

    2004-01-01

    Effect of aerosols from biomass burning on the early development of East Asian monsoon is investigated using various satellites and in situ observations including TOMS Aerosol Index (AI). GPCP precipitation, ISCCP cloud cover, and GISS surface air temperature. Based on TRMM fire produce and mean winds fields at 85Omb. we identified the source and interaction regions of aerosols and investigated aerosol-cloud-precipitation characteristics in those regions. During March-April, northern Thailand, Myanmar. and Laos are major source of smoke from the combustion of agricultural waste. Excessive smoke. represented by high AI, is observed especially during dry and cloud-free year. On the other hand. there is no ground source of smoke in the interaction region. The most of aerosols in this area are believed to be transported from the source region. AI is appeared to be correlated with more clouds and less precipitation in interaction region. It suggests that the aerosol-cloud interaction can alter the distribution of cloud and the characteristics of regional hydrology. Aerosol-induced changes in atmospheric stability and associated circulation turns out to be very important to pre-monsoon rainfall pattern in southern China. Prolonged biomass burning is especially effective in changing rainfall pattern during April and May. Results suggest that excessive aerosol transported from source region may intensify pre-monsoon rain band over central China in May and lead to early monsoon onset.

  9. Response to "The Iris Hypothesis: A Negative or Positive Cloud Feedback?"

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Based on radiance measurements of Japan's Geostationary Meteorological Satellite, Lindzen et al. found that the high-level cloud cover averaged over the tropical western Pacific decreases with increasing sea surface temperature. They further found that the response of high-level clouds to the sea surface temperature had an effect of reducing the magnitude of climate change, which is referred as a negative climate feedback. Lin et al. reassessed the results found by Lindzen et al. by analyzing the radiation and clouds derived from the Tropical Rainfall Measuring Mission Clouds and the Earth's Radiant Energy System measurements. They found a weak positive feedback between high-level clouds and the surface temperature. We have found that the approach taken by Lin et al. to estimating the albedo and the outgoing longwave radiation is incorrect and that the inferred climate sensitivity is unreliable.

  10. Analyses of the cloud contents of multispectral imagery from LANDSAT 2: Mesoscale assessments of cloud and rainfall over the British Isles

    NASA Technical Reports Server (NTRS)

    Barrett, E. C.; Grant, C. K. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. It was demonstrated that satellites with sufficiently high resolution capability in the visible region of the electromagnetic spectrum could be used to check the accuracy of estimates of total cloud amount assessed subjectively from the ground, and to reveal areas of performance in which corrections should be made. It was also demonstrated that, in middle latitude in summer, cloud shadow may obscure at least half as much again of the land surface covered by an individual LANDSAT frame as the cloud itself. That proportion would increase with latitude and/or time of year towards the winter solstice. Analyses of sample multispectral images for six different categories of clouds in summer revealed marked differences between the reflectance characteristics of cloud fields in the visible/near infrared region of the spectrum.

  11. Vulnerability of island tropical montane cloud forests to climate change, with special reference to East Maui, Hawaii

    USGS Publications Warehouse

    Loope, Lloyd L.; Giambelluca, Thomas W.

    1998-01-01

    Island tropical montane cloud forests may be among the most sensitive of the world's ecosystems to global climate change. Measurements in and above a montane cloud forest on East Maui, Hawaii, document steep microclimatic gradients. Relatively small climate-driven shifts in patterns of atmospheric circulation are likely to trigger major local changes in rainfall, cloud cover, and humidity. Increased interannual variability in precipitation and hurricane incidence would provide additional stresses on island biota that are highly vulnerable to disturbance-related invasion of non-native species. Because of the exceptional sensitivity of these microclimates and forests to change, they may provide valuable ‘listening posts’ for detecting the onset of human-induced global climate change.

  12. Two Distinct Modes in One-Day Rainfall Event during MC3E Field Campaign: Analyses of Disdrometer Observations and WRF-SBM Simulation

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo

    2012-01-01

    A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow wrm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.

  13. Two distinct modes in one-day rainfall event during MC3E field campaign: Analyses of disdrometer observations and WRF-SBM simulation

    NASA Astrophysics Data System (ADS)

    Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo

    2012-12-01

    A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow warm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.

  14. The Diurnal Cycle in TOGA-COARE: Regional Scale Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Jia, Y.

    1999-01-01

    The diurnal variation of precipitation processes over the tropics is a well-known phenomenon and has been studied using surface rainfall data, radar reflectivity data, and satellite-derived cloudiness and precipitation. Recently, analyzed observations from Tropical Oceans and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) in the tropical western Pacific ocean to study the relevant mechanisms producing diurnal variation of precipitation. They found that the diurnal Sea surface temperature (SST) cycle is important for afternoon showers in the undisturbed periods and diurnal radiative processes for nocturnal rainfall. Cloud resolving models (CRMS) have been used to determine the mechanisms associated with diurnal variation of precipitating processes. CRMs allow explicit cloud-radiation and air-sea interactive processes. However, CRMs can be only used for idealized simulations (i.e., no feedback between clouds and their embedded large-scale environments; cyclic lateral boundary conditions and idealized initial conditions). In this study, the Penn State/NCAR Mesoscale Model (MM5) with improved physics (i.e., cloud microphysics, radiation, land-soil-vegetation-surface processes, and TOGA COARE flux scheme) and a multiple level nesting technique (covers the TOGA COARE LSA/IFA with a 54 km grid and can nest down to 18, 6 and possibly even 2 km) will be adopted for studying the diurnal variations of rainfall. We will examine precipitation processes over open ocean and over land. We will also perform sensitivity tests to determine how the radiative forcing and diurnal SST cycle affects the development of convection.

  15. Conference on Satellite Meteorology and Oceanography, 5th, London, England, Sept. 3-7, 1990, Preprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The present conference on satellite meteorology and oceanography discusses climate and clouds, retrieval algorithms, air-sea phenomenology, oceanographic applications, SSM/I, mesoscale, synoptic, and NWP applications, and future satellites and systems. Attention is given to the properties of cirrus clouds measured by satellites and lidars, the geographical variation of the diurnal cycle of clouds from ISCCP, the susceptibility of cloud reflectance to pollution, and a global analysis of aerosol-cloud interactions. Topics addressed include precision intercomparisons between MSU channel 2 and radiosonde data over the U.S., humidity estimates from Meteosat observations, the assimilation of altimeter observations into a global wave model, and atmosphericmore » stratification effects on scatterometer model functions. Also discussed are observations of Indian Ocean eddy variability, the deconvolution of GOES infrared data, short-range variations in total cloud cover in the tropics, and rainfall monitoring by the SSM/I in middle latitudes.« less

  16. Aerosol and Urban Land Use Effect on Rainfall Around Cities in Indo-Gangetic Basin From Observations and Cloud Resolving Model Simulations

    NASA Astrophysics Data System (ADS)

    Sarangi, Chandan; Tripathi, S. N.; Qian, Yun; Kumar, Shailendra; Ruby Leung, L.

    2018-04-01

    Coupling of urban land use land cover (LULC) and aerosol loading on rainfall around cities in the Gangetic Basin (GB) is examined here. Long-term observations illustrate more rainfall at urban core and climatological downwind regions compared to the upwind regions of Kanpur, a metropolitan area located in central GB. In addition, analysis of a 15 day cloud resolving simulation using the Weather Research and Forecasting model also illustrated similar rainfall pattern around other major cities in the GB. Interestingly, the enhancement of downwind rainfall was greater than that over urban regions, and it was positively associated with both the urban area of the city and ambient aerosol loading during the propagating storm. Further, to gain a process-level understanding, a typical storm that propagated northwestward across Kanpur was simulated using Weather Research and Forecasting under three different scenarios. Case 1 has realistic LULC representation of Kanpur, while the grids representing the Kanpur urban region were replaced by cropland LULC pattern in Case 2. Comparison illustrated that urban heat island effect caused convergence of winds and moisture in the lower troposphere, which enhances convection over urban region and induced more rainfall over the urban core compared to upwind regions. Case 3 is similar to Case 1 but lower aerosol concentration (by a factor of 100) over the storm region. Analysis shows that aerosol-induced microphysical changes delay the initiation of warm rain (over the upwind region) but enhance ice phase particle formation in latter stages (over the urban and downwind regions) resulting in increase in downwind rainfall.

  17. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA

    NASA Astrophysics Data System (ADS)

    Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago; Giangrande, Scott; Silva Dias, Maria A. F.; Cecchini, Micael A.; Albrecht, Rachel; Andreae, Meinrat O.; Araujo, Wagner F.; Artaxo, Paulo; Borrmann, Stephan; Braga, Ramon; Burleyson, Casey; Eichholz, Cristiano W.; Fan, Jiwen; Feng, Zhe; Fisch, Gilberto F.; Jensen, Michael P.; Martin, Scot T.; Pöschl, Ulrich; Pöhlker, Christopher; Pöhlker, Mira L.; Ribaud, Jean-François; Rosenfeld, Daniel; Saraiva, Jaci M. B.; Schumacher, Courtney; Thalman, Ryan; Walter, David; Wendisch, Manfred

    2018-05-01

    This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. This study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weighted mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.

  18. Continental land cover classification using meteorological satellite data

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Townshend, J. R. G.; Goff, T. E.

    1983-01-01

    The use of the National Oceanic and Atmospheric Administration's advanced very high resolution radiometer satellite data for classifying land cover and monitoring of vegetation dynamics over an extremely large area is demonstrated for the continent of Africa. Data from 17 imaging periods of 21 consecutive days each were composited by a technique sensitive to the in situ green-leaf biomass to provide cloud-free imagery for the whole continent. Virtually cloud-free images were obtainable even for equatorial areas. Seasonal variation in the density and extent of green leaf vegetation corresponded to the patterns of rainfall associated with the inter-tropical convergence zone. Regional variations, such as the 1982 drought in east Africa, were also observed. Integration of the weekly satellite data with respect to time produced a remotely sensed assessment of biological activity based upon density and duration of green-leaf biomass. Two of the 21-day composited data sets were used to produce a general land cover classification. The resultant land cover distributions correspond well to those of existing maps.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Narendra; Solanki, Raman; Ojha, N.

    We present the measurements of cloud-base height variations over Aryabhatta Research Institute of Observational Science, Nainital (79.45 degrees E, 29.37 degrees N, 1958 m amsl) obtained from Vaisala Ceilometer, during the nearly year-long Ganges Valley Aerosol Experiment (GVAX). The cloud-base measurements are analysed in conjunction with collocated measurements of rainfall, to study the possible contributions from different cloud types to the observed monsoonal rainfall during June to September 2011. The summer monsoon of 2011 was a normal monsoon year with total accumulated rainfall of 1035.8 mm during June-September with a maximum during July (367.0 mm) and minimum during September (222.3more » mm). The annual mean monsoon rainfall over Nainital is 1440 +/- 430 mm. The total rainfall measured during other months (October 2011-March 2012) was only 9% of that observed during the summer monsoon. The first cloud-base height varied from about 31 m above ground level (AGL) to a maximum of 7.6 km AGL during the summer monsoon period of 2011. It is found that about 70% of the total rain is observed only when the first cloud-base height varies between surface and 2 km AGL, indicating that most of the rainfall at high altitude stations such as Nainital is associated with stratiform low-level clouds. However, about 25% of the total rainfall is being contributed by clouds between 2 and 6 km. The occurrences of high-altitude cumulus clouds are observed to be only 2-4%. This study is an attempt to fill a major gap of measurements over the topographically complex and observationally sparse northern Indian region providing the evaluation data for atmospheric models and therefore, have implications towards the better predictions of monsoon rainfall and the weather components over this region.« less

  20. Sensitivity of the southern West African mean atmospheric state to variations in low-level cloud cover as simulated by ICON

    NASA Astrophysics Data System (ADS)

    Kniffka, Anke; Knippertz, Peter; Fink, Andreas

    2017-04-01

    This contribution presents first results of numerical sensitivity experiments that are carried out in the framework of the project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa). DACCIWA aims to investigate the impact of the drastic increase in anthropogenic emissions in West Africa on the local weather and climate, for example through cloud-aerosol interactions or impacts on radiation and stability. DACCIWA organised a major international field campaign in West Africa in June-July 2016 and involves a wide range of modelling activities. Several studies have shown - and first results of the DACCIWA campaign confirm - that extensive ultra-low stratus clouds form in the southern parts of West Africa (8°W-8°E, 5-10°N) at night in connection with strong nocturnal low-level jets. The clouds persist long after sunrise and have therefore a substantial impact on the surface radiation budget and consequently on the diurnal evolution of the daytime, convectively mixed boundary layer. The objective of this study is to investigate the sensitivity of the West African monsoon system and its diurnal cycle to the radiative effects of these low clouds. The study is based on a series of daily 5-day sensitivity simulations using ICON, the operational numerical weather prediction model of the German Weather Service during the months July - September 2006. In these simulations, low clouds are made transparent, by artificially lowering the optical thickness information passed on to the model's radiation scheme. Results reveal a noticeable influence of the low-level cloud cover on the atmospheric mean state of our region of interest and beyond. Also the diurnal development of the convective boundary layer is influenced by the cloud modification. In the transparent-cloud experiments, the cloud deck tends to break up later in the day and is shifted to a higher altitude, thereby causing a short-lived intensification around 11 LT. The average rainfall patterns are modified as well, though no conclusion on the long-term impact on rainfall can be made due to the forced initial conditions in the presented experiment. In the future, the impact on the development of the West African monsoon system will be assessed.

  1. The influence of summertime fog and overcast clouds on the growth of a coastal Californian pine: a tree-ring study.

    PubMed

    Williams, A Park; Still, Christopher J; Fischer, Douglas T; Leavitt, Steven W

    2008-06-01

    The coast of California is home to numerous rare, endemic conifers and other plants that are limited in distribution by drought sensitivity and the summer-dry climate that prevails across most of the state. Ecologists have long assumed that some coastal plant populations survived the early Pleistocene transition to a warmer and drier environment because they benefit from frequent fog and stratus clouds that provide water and shade during the rainless summer. One such population is that of Torrey pine (Pinus torreyana ssp. Insularis) on Santa Rosa Island in Channel Islands National Park. Here we report that the tree-ring width record from this population indicates strong growth sensitivities to summer fog drip and cloud shading. We quantified the effects of summer cloud cover by comparing ring-width indices to coastal airport cloud-frequency records (1944-2004). For the first time observed, summertime cloud frequency correlated positively with ring-width indices, regardless of whether the effect of rainfall was first removed from the ring-width record. The effect of ground-level fog was strongest in July early mornings (03:00 PST, R(2) = 0.262, P < 0.0002). The effect of clouds high enough to provide shade but not fog water was also strongest in July, but climbed steadily throughout the day before becoming strongest in late afternoon (16:00-18:00 PST, R(2) = 0.148, P < 0.004). Correlations were substantially stronger in years with higher soil moisture, suggesting that growth response to summer clouds is strongly affected by pre-summer rainfall. A change in the height and/or timing of coastal cloud formation with climate change would likely affect this and other populations of California's coastal vegetation.

  2. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA

    DOE PAGES

    Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago; ...

    2018-05-07

    This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. Here, this study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weightedmore » mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.« less

  3. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago

    This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. Here, this study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weightedmore » mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.« less

  4. NAVO MSRC Navigator. Fall 2001

    DTIC Science & Technology

    2001-01-01

    of the CAVE. A view from the VR Juggler simulator . The particles indicate snow (white) & ice (blue). Rainfall is shown on the terrain, and clouds as...the Cover: Virtual environment built by the NAVO MSRC Visualization Center for the Concurrent Computing Laboratory for Materials Simulation at...Louisiana State University. This application allows the researchers to visualize a million atom simulation of an indentor puncturing a block of gallium

  5. Factors governing the total rainfall yield from continental convective clouds

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Daniel; Gagin, Abraham

    1989-01-01

    Several important factors that govern the total rainfall from continental convective clouds were investigated by tracking thousands of convective cells in Israel and South Africa. The rainfall volume yield (Rvol) of the individual cells that build convective rain systems has been shown to depend mainly on the cloud-top height. There is, however, considerable variability in this relationship. The following factors that influence the Rvol were parameterized and quantitatively analyzed: (1) cloud base temperature, (2)atmospheric instability, and (3) the extent of isolation of the cell. It is also shown that a strong low level forcing increases the duration of Rvol of clouds reaching the same vertical extent.

  6. Coast and river mouths, Columbia, South America

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Numerous rivers in Ecuador and Columbia stand out in this South American Pacific coastal scene (1.5N, 79.0W). This region has one of the highest rainfalls in the world with the consequent heavy cloud cover and it is rare to be able to photograph the surface. The Pacific mountain drainage area is small but produces a large volume of runoff and sediment flow into the ocean.

  7. Canopy water balance of windward and leeward Hawaiian cloud forests on Haleakalā, Maui, Hawai'i

    USGS Publications Warehouse

    Giambelluca, Thomas W.; DeLay, John K.; Nullet, Michael A.; Scholl, Martha A.; Gingerich, Stephen B.

    2011-01-01

    The contribution of intercepted cloud water to precipitation at windward and leeward cloud forest sites on the slopes of Haleakalā, Maui was assessed using two approaches. Canopy water balance estimates based on meteorological monitoring were compared with interpretations of fog screen measurements collected over a 2-year period at each location. The annual incident rainfall was 973 mm at the leeward site (Auwahi) and 2550 mm at the windward site (Waikamoi). At the leeward, dry forest site, throughfall was less than rainfall (87%), and, at the windward, wet forest site, throughfall exceeded rainfall (122%). Cloud water interception estimated from canopy water balance was 166 mm year−1 at Auwahi and 1212 mm year−1 at Waikamoi. Annual fog screen measurements of cloud water flux, corrected for wind-blown rainfall, were 132 and 3017 mm for the dry and wet sites respectively. Event totals of cloud water flux based on fog screen measurements were poorly correlated with event cloud water interception totals derived from the canopy water balance. Hence, the use of fixed planar fog screens to estimate cloud water interception is not recommended. At the wet windward site, cloud water interception made up 32% of the total precipitation, adding to the already substantial amount of rainfall. At the leeward dry site, cloud water interception was 15% of the total precipitation. Vegetation at the dry site, where trees are more exposed and isolated, was more efficient at intercepting the available cloud water than at the rainy site, but events were less frequent, shorter in duration and lower in intensity. A large proportion of intercepted cloud water, 74% and 83%, respectively for the two sites, was estimated to become throughfall, thus adding significantly to soil water at both sites

  8. Use of High-Resolution Satellite Observations to Evaluate Cloud and Precipitation Statistics from Cloud-Resolving Model Simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Tao, W.; Hou, A. Y.; Zeng, X.; Shie, C.

    2007-12-01

    The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model for different environmental conditions, i.e., the South China Sea Monsoon Experiment (SCSMEX), CRYSTAL-FACE, and KAWJEX are compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and as well as cloud observations from the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. The model presents large discrepancies in rain spectrum and vertical hydrometer profiles. The discrepancy in the precipitation field is also consistent with the cloud and radiation observations. The study will focus on the effects of large scale forcing and microphysics to the simulated model- observation discrepancies.

  9. Precipitation Discrimination from Satellite Infrared Temperatures over the CCOPE Mesonet Region.

    NASA Astrophysics Data System (ADS)

    Weiss, Mitchell; Smith, Eric A.

    1987-06-01

    A quantitative investigation of the relationship between satellite-derived cloud-top temperature parameters and the detection of intense convective rainfall is described. The area of study is that of the Cooperative Convective Precipitation Experiment (CCOPE), which was held near Miles City, Montana during the summer of 1981. Cloud-top temperatures, derived from the GOES-West operational satellite, were used to calculate a variety of parameters for objectively quantifying the convective intensity of a storm. A dense network of rainfall provided verification of surface rainfall. The cloud-top temperature field and surface rainfall data were processed into equally sized grid domains in order to best depict the individual samples of instantaneous precipitation.The technique of statistical discriminant analysis was used to determine which combinations of cloud-top temperature parameters best classify rain versus no-rain occurrence using three different rain-rate cutoffs: 1, 4, and 10 mm h1. Time lags within the 30 min rainfall verification were tested to determine the optimum time delay associated with rainfall reaching the ground.A total of six storm cases were used to develop and test the statistical models. Discrimination of rain events was found to be most accurate when using a 10 mm h1 rain-rate cutoff. Use parameters designated as coldest cloud-top temperature, the spatial mean of coldest cloud-top temperature, and change over time of mean coldest cloud-top temperature were found to be the best classifiers of rainfall in this study. Combining both a 10-min time lag (in terms of surface verification) with a 10 mm h1 rain-rate threshold resulted in classifying over 60% of all rain and no-rain cases correctly.

  10. W-band spaceborne radar observations of atmospheric river events

    NASA Astrophysics Data System (ADS)

    Matrosov, S. Y.

    2010-12-01

    While the main objective of the world first W-band radar aboard the CloudSat satellite is to provide vertically resolved information on clouds, it proved to be a valuable tool for observing precipitation. The CloudSat radar is generally able to resolve precipitating cloud systems in their vertical entirety. Although measurements from the liquid hydrometer layer containing rainfall are strongly attenuated, special retrieval approaches can be used to estimate rainfall parameters. These approaches are based on vertical gradients of observed radar reflectivity factor rather than on absolute estimates of reflectivity. Concurrent independent estimations of ice cloud parameters in the same vertical column allow characterization of precipitating systems and provide information on coupling between clouds and rainfall they produce. The potential of CloudSat for observations atmospheric river events affecting the West Coast of North America is evaluated. It is shown that spaceborne radar measurements can provide high resolution information on the height of the freezing level thus separating areas of rainfall and snowfall. CloudSat precipitation rate estimates complement information from the surface-based radars. Observations of atmospheric rivers at different locations above the ocean and during landfall help to understand evolutions of atmospheric rivers and their structures.

  11. Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years

    PubMed Central

    Patil, Nitin; Dave, Prashant; Venkataraman, Chandra

    2017-01-01

    Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis. PMID:28337991

  12. Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years.

    PubMed

    Patil, Nitin; Dave, Prashant; Venkataraman, Chandra

    2017-03-24

    Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis.

  13. On the Analysis of the Climatology of Cloudiness of the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Yousef, L. A.; Temimi, M.

    2015-12-01

    This study aims to determine the climatology of cloudiness over the Arabian Peninsula. The determined climatology will assist solar energy resource assessment in the region. The seasonality of cloudiness and its spatial variability will also help guide several cloud seeding operational experiments in the region. Cloud properties from the International Satellite Cloud Climatology Project (ISCCP) database covering the time period from 1983 through 2009 are analyzed. Time series of low, medium, high, and total cloud amounts are investigated, in addition to cloud optical depth and total column water vapor. Initial results show significant decreasing trends in the total and middle cloud amounts, both annually and seasonally, at a 95% confidence interval. The relationship between cloud amounts and climate oscillations known to affect the region is explored. Climate indices exhibiting significant correlations with the total cloud amounts include the Pacific Decadal Oscillation (PDO) index. The study also includes a focus on the United Arab Emirates (UAE), comparing the inferred cloudiness data to in situ rainfall measurements taken from rain gauges across the UAE. To assess the impact of cloudiness on solar power resources in the country, time series of cloud amounts and Direct Normal Irradiance (DNI), obtained from the UAE Solar Atlas, are compared.

  14. Estimating GATE rainfall with geosynchronous satellite images

    NASA Technical Reports Server (NTRS)

    Stout, J. E.; Martin, D. W.; Sikdar, D. N.

    1979-01-01

    A method of estimating GATE rainfall from either visible or infrared images of geosynchronous satellites is described. Rain is estimated from cumulonimbus cloud area by the equation R = a sub 0 A + a sub 1 dA/dt, where R is volumetric rainfall, A cloud area, t time, and a sub 0 and a sub 1 are constants. Rainfall, calculated from 5.3 cm ship radar, and cloud area are measured from clouds in the tropical North Atlantic. The constants a sub 0 and a sub 1 are fit to these measurements by the least-squares method. Hourly estimates by the infrared version of this technique correlate well (correlation coefficient of 0.84) with rain totals derived from composited radar for an area of 100,000 sq km. The accuracy of this method is described and compared to that of another technique using geosynchronous satellite images. It is concluded that this technique provides useful estimates of tropical oceanic rainfall on a convective scale.

  15. Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin; Cho, Nayeong; Tan, Jackson

    2018-03-01

    The co-variability of cloud and precipitation in the extended tropics (35° N-35° S) is investigated using contemporaneous data sets for a 13-year period. The goal is to quantify potential relationships between cloud type fractions and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud top pressure and cloud optical thickness in 1° grid cells, and the precipitation frequencies come from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) data set aggregated to the same grid.

    It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong precipitation with weak (i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when cloud types are known, and this is even more true over land than over ocean.

  16. Synthesis of the Ecohydrology of a Mexican Tropical Montane Cloud Forest and Implications of Land Use and Climate Change

    NASA Astrophysics Data System (ADS)

    Asbjornsen, H.; Alvarado-Barrientos, M. S.; Bruijnzeel, L. A.; Dawson, T. E.; Geissert, D.; Goldsmith, G. R.; Gomez-Cardenas, M.; Gomez-Tagle, A.; Gotsch, S. F.; Holwerda, F.; McDonnell, J. J.; Munoz Villers, L. E.; Tobon, C.

    2013-05-01

    Land use conversion and climate change threaten the hydrological services from tropical montane cloud forests (TMCFs), but knowledge about cloud forest ecohydrology and the effects of global change drivers is limited. Here, we present a synthesis of research that traced the hydrologic sources, fluxes and flowpaths under different land cover types degraded pasture, regenerating forest, mature forest, pine reforestation) in a seasonally dry TMCF in Veracruz, Mexico. We used hydrological (cloud water interception, CWI; streamflow) and ecophysiological measurements (transpiration, E; foliar uptake, FU) in combination with stable isotope techniques to elucidate to these ecohydrological processes. Results revealed that CWI was ≤2% of total annual rainfall due to low fog occurrence and wind speeds. Fog without rainfall reduced E by a factor of 4-5 relative to sunny conditions and by a factor of 2 relative to overcast conditions; the water 'gained' from fog suppression was ~80-100 mm year-1 relative to sunny conditions. At the canopy scale, FU resulted in the recovery of 9% of total E, suggesting a crucial role in alleviating water deficit; but not sufficient to offset the 17% water loss from nighttime E. Trees primarily utilized water from 30-50 cm soil depth, while water reaching the stream was derived from deep, 'old' water that was distinct from 'new' rainwater and plant water. Soils had high infiltration rates and water storage capacity, which contributed to the relatively low rainfall-runoff response, mainly generated from deep subsurface flowpaths. Conversion of mature forest to pasture or forest regeneration on former TMCF increased annual water yield by 600 mm and 300 mm, respectively, while planting pine on degraded pastures reduced water yield by 365 mm. Our results suggest that the ecophysiological effects of fog via suppressed E and FU have a greater impact on water yield than direct inputs from CWI in this TMCF. Rapid vertical rainfall percolation and recharge result in a largely groundwater driven system whereby streamflow dynamics is uncoupled from plant water uptake, and water storage and buffering capacity are exceptionally high. These factors, combined with the soil properties, resulted in reduced dry season flows due to land use conversion to pasture only being detected towards the end of the dry season. Projected lifting of the cloud base associated with regional climate change combined with declining rainfall may significantly alter ecohydrological functions of these TMCFs.

  17. 23 Years of Cloud Statistics Using HIRS Over Australia

    NASA Astrophysics Data System (ADS)

    Chedzey, H. C.; Menzel, W. P.; Lynch, M. J.; McGann, B. T.

    2004-05-01

    Clouds are an integral factor in the Earth's water and radiation budgets. Observations and improvements to the accuracy of measurements of cloud properties are crucial in supporting global climate change studies. Regional studies are also of interest and analysis of regional climate variability provides an insight into local weather systems. HIRS is the High-Resolution Infrared Radiation Sounder aboard polar orbiting satellites operated by NOAA (National Oceanographic and Atmospheric Administration). An archive of HIRS data obtained between 1979 (NOAA-5) through to 2001 (NOAA-16) was made available by CIMSS (Cooperative Institute for Meteorological Satellite Studies) at the University of Wisconsin-Madison. The data is obtained from near nadir and frequencies of observations are converted into percentages based on total number of observations for each 1 by 1 degree cell. An assessment of cloud frequency percentages for a region including areas of the Indian Ocean and Australia (0\\deg - 60\\deg S; 80\\deg E - 170\\deg E) will be presented. Climate variability and possible associations with future work to be conducted into cloud frequency and rainfall of North West Cloud Bands using MODIS data will also be covered.

  18. Remote rainfall sensing for landslide hazard analysis

    USGS Publications Warehouse

    Wieczorek, Gerald F.; McWreath, Harry; Davenport, Clay

    2001-01-01

    Methods of assessing landslide hazards and providing warnings are becoming more advanced as remote sensing of rainfall provides more detailed temporal and spatial data on rainfall distribution. Two recent landslide disasters are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. For the June 27, 1995, storm in Madison County, Virginia, USA, National Weather Service WSR-88D Doppler radar provided rainfall estimates based on a relation between cloud reflectivity and moisture content on a 1 sq. km. resolution every 6 minutes. Ground-based measurements of rainfall intensity and precipitation total, in addition to landslide timing and distribution, were compared with the radar-derived rainfall data. For the December 14-16, 1999, storm in Vargas State, Venezuela, infrared sensing from the GOES-8 satellite of cloud top temperatures provided the basis for NOAA/NESDIS rainfall estimates on a 16 sq. km. resolution every 30 minutes. These rainfall estimates were also compared with ground-based measurements of rainfall and landslide distribution. In both examples, the remotely sensed data either overestimated or underestimated ground-based values by up to a factor of 2. The factors that influenced the accuracy of rainfall data include spatial registration and map projection, as well as prevailing wind direction, cloud orientation, and topography.

  19. Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2009-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.

  20. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals

    NASA Astrophysics Data System (ADS)

    Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas

    2016-03-01

    Machine learning (ML) algorithms have successfully been demonstrated to be valuable tools in satellite-based rainfall retrievals which show the practicability of using ML algorithms when faced with high dimensional and complex data. Moreover, recent developments in parallel computing with ML present new possibilities for training and prediction speed and therefore make their usage in real-time systems feasible. This study compares four ML algorithms - random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) - for rainfall area detection and rainfall rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path serve as predictor variables. The results indicate an overestimation of rainfall area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour basis, the performance of the rainfall rate assignment yielded R2 values between 0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms' performance were rather small, NNET and AVNNET were identified as the most suitable algorithms. On average, they demonstrated the best performance in rainfall area delineation as well as in rainfall rate assignment. NNET's computational speed is an additional advantage in work with large datasets such as in remote sensing based rainfall retrievals. However, since no single algorithm performed considerably better than the others we conclude that further research in providing suitable predictors for rainfall is of greater necessity than an optimization through the choice of the ML algorithm.

  1. Improving PERSIANN-CCS rain estimation using probabilistic approach and multi-sensors information

    NASA Astrophysics Data System (ADS)

    Karbalaee, N.; Hsu, K. L.; Sorooshian, S.; Kirstetter, P.; Hong, Y.

    2016-12-01

    This presentation discusses the recent implemented approaches to improve the rainfall estimation from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Classification System (PERSIANN-CCS). PERSIANN-CCS is an infrared (IR) based algorithm being integrated in the IMERG (Integrated Multi-Satellite Retrievals for the Global Precipitation Mission GPM) to create a precipitation product in 0.1x0.1degree resolution over the chosen domain 50N to 50S every 30 minutes. Although PERSIANN-CCS has a high spatial and temporal resolution, it overestimates or underestimates due to some limitations.PERSIANN-CCS can estimate rainfall based on the extracted information from IR channels at three different temperature threshold levels (220, 235, and 253k). This algorithm relies only on infrared data to estimate rainfall indirectly from this channel which cause missing the rainfall from warm clouds and false estimation for no precipitating cold clouds. In this research the effectiveness of using other channels of GOES satellites such as visible and water vapors has been investigated. By using multi-sensors the precipitation can be estimated based on the extracted information from multiple channels. Also, instead of using the exponential function for estimating rainfall from cloud top temperature, the probabilistic method has been used. Using probability distributions of precipitation rates instead of deterministic values has improved the rainfall estimation for different type of clouds.

  2. Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Chattopadhyay, Goutami

    2012-10-01

    In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.

  3. On the Relationship of Rainfall and Temperature across Amazonia

    NASA Astrophysics Data System (ADS)

    Ribeiro Lima, C. H.; AghaKouchak, A.

    2017-12-01

    Extreme droughts in Amazonia seem to become more frequent and have been associated with local and global impacts on society and the ecosystem. The understanding of the dynamics and causes of Amazonia droughts have attracted some attention in the last years and pose several challenges for the scientific community. For instance, in previous work we have identified, based on empirical data, a compounding effect during Amazonia droughts: periods of low rainfall are always associated with positive anomalies of near surface air temperature. This inverse relationship of temperature and rainfall appears at multiple time scales and its intensity varies across Amazonia. To our knowledge, these findings have not been properly addressed in the literature, being not clear whether there is a causal relationship between these two variables, and in this case, which one leads the other one, or they are just responding to the same causal factor. Here we investigate the hypothesis that high temperatures during drought periods are a major response to an increase in the shortwave radiation (due to the lack of clouds) not compensating by an expected increase in the evapotranspiration from the rainforest. Our empirical analysis is based on observed series of daily temperature and rainfall over the Brazilian Amazonia and reanalysis data of cloud cover, outgoing longwave radiation (OLR) and moisture fluxes. The ability of Global Circulation Models (GCMs) to reproduce such compounding effect is also investigated for the historical period and for future RCP scenarios of global climate change. Preliminary results show that this is a plausible hypothesis, despite the complexity of land-atmosphere processes of mass and energy fluxes in Amazonia. This work is a step forward in better understanding the compounding effects of rainfall and temperature on Amazonia droughts, and what changes one might expect in a future warming climate.

  4. Rain-shadow: An area harboring "Gray Ocean" clouds

    NASA Astrophysics Data System (ADS)

    Padmakumari, B.; Maheskumar, R. S.; Harikishan, G.; Morwal, S. B.; Kulkarni, J. R.

    2018-06-01

    The characteristics of monsoon convective clouds over the rain-shadow region of north peninsular India have been investigated using in situ aircraft cloud microphysical observations collected during Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). The parameters considered for characterization are: liquid water content (LWC), cloud vertical motion (updraft, downdraft: w), cloud droplet number concentration (CDNC) and effective radius (Re). The results are based on 15 research flights which were conducted from the base station Hyderabad during summer monsoon season. The clouds studied were developing congestus. The clouds have low CDNC and low updraft values resembling the oceanic convective clouds. The super-saturation in clouds is found to be low (≤0.2%) due to low updrafts. The land surface behaves like ocean surface during monsoon as deduced from Bowen ratio. Microphysically the clouds showed oceanic characteristics. However, these clouds yield low rainfall due to their low efficiency (mean 14%). The cloud parameters showed a large variability; hence their characteristic values are reported in terms of median values. These values will serve the numerical models for rainfall simulations over the region and also will be useful as a scientific basis for cloud seeding operations to increase the rainfall efficiency. The study revealed that monsoon convective clouds over the rain-shadow region are of oceanic type over the gray land, and therefore we christen them as "Gray Ocean" clouds.

  5. Cloud structure evolution of heavy rain events from the East-West Pacific Ocean: a combined global observation analysis

    NASA Astrophysics Data System (ADS)

    Sekaranom, A. B.; Nurjani, E.; Pujiastuti, I.

    2018-04-01

    Heavy rain events are often associated with flood hazards as one of the most devastating events across the globe. It is therefore essential to identify the evolution of heavy rainfall cloud structures, primarily from global satellite observation, as a tool to provide better disaster early warning systems. To identify the mechanism of heavy rainfall systems and its relationship with cloud development, especially over The Pacific Ocean, we aim to study the westward evolution of the convective systems over this area. Several datasets from Tropical Rainfall Measuring Mission (TRMM), CloudSat GEOPROF product, and ECMWF-reanalysis (ERA) interim were utilized to characterize the evolution. Geolocation and orbital time-lag analysis of the three different datasets for more than 8 years (2006-2014) could provide information related to the evolution of cloud structures associated with heavy rain events. In the first step, a heavy rainfall database was generated from TRMM. The CloudSat coordinate and time position were then matched with TRMM coordinate and time position. All of the processes were programatically conducted in fortran programming language. The result shows a transition between East and West Pacific ocean for TMI data.

  6. Wavelet Scale Analysis of Mesoscale Convective Systems for Detecting Deep Convection From Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Belušić, Danijel; Taylor, Christopher M.

    2018-03-01

    Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long-term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of -40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below -80°C. Furthermore, we present a new method based on 2-D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below -80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone.

  7. Evaluation of NCMRWF unified model vertical cloud structure with CloudSat over the Indian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Jayakumar, A.; Mamgain, Ashu; Jisesh, A. S.; Mohandas, Saji; Rakhi, R.; Rajagopal, E. N.

    2016-05-01

    Representation of rainfall distribution and monsoon circulation in the high resolution versions of NCMRWF Unified model (NCUM-REG) for the short-range forecasting of extreme rainfall event is vastly dependent on the key factors such as vertical cloud distribution, convection and convection/cloud relationship in the model. Hence it is highly relevant to evaluate the vertical structure of cloud and precipitation of the model over the monsoon environment. In this regard, we utilized the synergy of the capabilities of CloudSat data for long observational period, by conditioning it for the synoptic situation of the model simulation period. Simulations were run at 4-km grid length with the convective parameterization effectively switched off and on. Since the sample of CloudSat overpasses through the monsoon domain is small, the aforementioned methodology may qualitatively evaluate the vertical cloud structure for the model simulation period. It is envisaged that the present study will open up the possibility of further improvement in the high resolution version of NCUM in the tropics for the Indian summer monsoon associated rainfall events.

  8. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew Wells

    Multiple sensors flying in the A-train constellation of satellites were used to determine the extent to which aerosol plumes from ships passing below marine stratocumulus alter the microphysical and macrophysical properties of the clouds. Aerosol plumes generated by ships sometimes influence cloud microphysical properties (effective radius) and, to a largely undetermined extent, cloud macrophysical properties (liquid water path, coverage, depth, precipitation, and longevity). Aerosol indirect effects were brought into focus, using observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the 94-GHZ radar onboard CloudSat. To assess local cloud scale responses to aerosol, the locations of over one thousand ship tracks coinciding with the radar were meticulously logged by hand from the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. MODIS imagery was used to distinguish ship tracks that were embedded in closed, open, and unclassifiable mesoscale cellular cloud structures. The impact of aerosol on the microphysical cloud properties in both the closed and open cell regimes were consistent with the changes predicted by the Twomey hypothesis. For the macrophysical changes, differences in the sign and magnitude of these properties were observed between cloud regimes. The results demonstrate that the spatial extent of rainfall (rain cover fraction) and intensity decrease in the clouds contaminated by the ship plume compared to the ambient pristine clouds. Although reductions of precipitation were common amongst the clouds with detectable rainfall (72% of cases), a substantial fraction of ship tracks (28% of cases) exhibited the opposite response. The sign and strength of the response was tied to the type of stratocumulus (e.g., closed vs open cells), depth of the boundary layer, and humidity in the free-troposphere. When closed cellular clouds were identified, liquid water path, drizzle rate, and rain cover fraction (an average relative decrease of 61%) was significantly smaller in the ship-contaminated clouds. Differences in drizzle rate resulted primarily from the reductions in rain cover fraction (i.e., fewer pixels were identified with rain in the clouds polluted by the ship). The opposite occurred in the open cell regime. Ship plumes ingested into this regime resulted in significantly deeper and brighter clouds with higher liquid water amounts and rain rates. Enhanced rain rates (average relative increase of 89%) were primarily due to the changes in intensity (i.e., rain rates on the 1.1 km pixel scale were higher in the ship contaminated clouds) and, to a lesser extent, rain cover fraction. One implication for these differences is that the local aerosol indirect radiative forcing was more than five times larger for ship tracks observed in the open cell regime (-59 W m-2) compared to those identified in the closed cell regime (-12 W m -2). The results presented here underline the need to consider the mesoscale structure of stratocumulus when examining the cloud dynamic response to changes in aerosol concentration. In the final part of the dissertation, the focus shifted to the climate scale to examine the impact of shipping on the Earth's radiation budget. Two studies were employed, in the first; changes to the radiative properties of boundary layer clouds (i.e., cloud top heights less than 3 km) were examined in response to the substantial decreases in ship traffic that resulted from the recent world economic recession in 2008. Differences in the annually averaged droplet effective radius and top of atmosphere outgoing shortwave radiative flux between 2007 and 2009 did not manifest as a clear response in the climate system and, was probably masked either due to competing aerosol cloud feedbacks or by interannual climate variability. In the second study, a method was developed to estimate the radiative forcing from shipping by convolving lanes of densely populated ships onto the global distributions of closed and open cell stratocumulus clouds. Closed cells were observed more than twice as often as open cells. Despite the smaller abundance of open cells, a significant portion of the radiaitve forcing from shipping was claimed by this regime. On the whole, the global radiative forcing from ship tracks was small (approximately -0.45 mW m-2) compared to the radiative forcing associated with the atmospheric buildup of anthropogenic CO2.

  9. Analysis of Impact of Tropical Cyclone Blance on Rainfall at Kupang Region Based on Atmospheric Condition and Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Roguna, S.; Saragih, I. J. A.; Siregar, P. S.; Julius, A. M.

    2018-04-01

    The Tropical Depression previously identified on March 3, 2017, at Arafuru Sea has grown to Tropical Cyclone Blance on March 5, 2017. The existence of Tropical Cyclone Blance gave impacts like increasing rainfall for some regions in Indonesia until March 7, 2017, such as Kupang. The increase of rainfall cannot be separated from the atmospheric dynamics related to convection processes and the formation of clouds. Analysis of weather parameters is made such as vorticity to observe vertical motion over the study area, vertical velocity to see the speed of lift force in the atmosphere, wind to see patterns of air mass distribution and rainfall to see the increase of rainfall compared to several days before the cyclone. Analysis of satellite imagery data is used as supporting analysis to see clouds imagery and movement direction of the cyclone. The results of weather parameters analysis show strong vorticity and lift force of air mass support the growth of Cumulonimbus clouds, cyclonic patterns on wind streamline and significant increase of rainfall compared to previous days. The results of satellite imagery analysis show the convective clouds over Kupang and surrounding areas when this phenomena and cyclone pattern moved down from Arafuru Sea towards the western part of Australia.

  10. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China

    PubMed Central

    Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507

  11. Relationship between convective clouds and precipitation over the Qinghai-Xizang Plateau area from satellite remote sensing and ground-based observations

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.; Tsao, D. Y.; Smith, R. E.

    1985-01-01

    Results of this study show that heavy rainfall in the Qinghai-Xizang Plateau area is usually preceded by a high growth rate of the convective clouds followed by a rapid collapse of the cloud top. The tops of the convective clouds associated with heavy rainfall over the plateau usually lie between the altitudes of the two tropopauses which exist over the plateau. Undoubtedly the double tropopause restricts the vertical growth of the clouds and this may be the reason why tornadoes rarely occur there.

  12. Using High-Resolution Satellite Observations for Evaluation of Cloud and Precipitation Statistics from Cloud-Resolving Model Simulations. Part I: South China Sea Monsoon Experiment

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Hou, A.; Lau, W. K.; Shie, C.; Tao, W.; Lin, X.; Chou, M.; Olson, W. S.; Grecu, M.

    2006-05-01

    The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model during the South China Sea Monsoon Experiment (SCSMEX) is compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) radiation and cloud retrievals. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. Mesoscale organization is adequately simulated except when environmental wind shear is very weak. The partitions between convective and stratiform rain are also close to TMI and PR classification. However, the model simulated rain spectrum is quite different from either TMI or PR measurements. The model produces more heavy rains and light rains (less than 0.1 mm/hr) than the observations. The model also produces heavier vertical hydrometer profiles of rain, graupel when compared with TMI retrievals and PR radar reflectivity. Comparing GCE simulated OLR and cloud properties with CERES measurements found that the model has much larger domain averaged OLR due to smaller total cloud fraction and a much skewed distribution of OLR and cloud top than CERES observations, indicating that the model's cloud field is not wide spread, consistent with the model's precipitation activity. These results will be used as guidance for improving the model's microphysics.

  13. Estimation of Microphysical and Radiative Parameters of Precipitating Cloud Systems Using mm-Wavelength Radars

    NASA Astrophysics Data System (ADS)

    Matrosov, Sergey Y.

    2009-03-01

    A remote sensing approach is described to retrieve cloud and rainfall parameters within the same precipitating system. This approach is based on mm-wavelength radar signal attenuation effects which are observed in a layer of liquid precipitation containing clouds and rainfall. The parameters of ice clouds in the upper part of startiform precipitating systems are then retrieved using the absolute measurements of radar reflectivity. In case of the ground-based radar location, these measurements are corrected for attenuation in the intervening layer of liquid hydrometers.

  14. Students' Understanding of Cloud and Rainbow Formation and Teachers' Awareness of Students' Performance

    ERIC Educational Resources Information Center

    Malleus, Elina; Kikas, Eve; Kruus, Sigrid

    2016-01-01

    This study describes primary school students' knowledge about rainfall, clouds and rainbow formation together with teachers' predictions about students' performance. In our study, primary school students' (N = 177) knowledge about rainfall and rainbow formation was examined using structured interviews with open-ended questions. Primary school…

  15. Deforestation and rainfall recycling in Brazil: Is decreased forest cover connectivity associated with decreased rainfall connectivity?

    NASA Astrophysics Data System (ADS)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2017-12-01

    In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.

  16. The Sensitivity of Tropical Squall Lines (GATE and TOGA COARE) to Surface Fluxes: Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Wang, Yansen; Tao, Wei-Kuo; Simpson, Joanne; Lang, Stephen

    1999-01-01

    Two tropical squall lines from TOGA COARE and GATE were simulated using a two-dimensional cloud-resolving model to examine the impact of surface fluxes on tropical squall line development and associated precipitation processes. The important question of how CAPE in clear and cloudy areas is maintained in the tropics is also investigated. Although the cloud structure and precipitation intensity are different between the TOGA COARE and GATE squall line cases, the effects of the surface fluxes on the amount of rainfall and on the cloud development processes are quite similar. The simulated total surface rainfall amount in the runs without surface fluxes is about 67% of the rainfall simulated with surface fluxes. The area where surface fluxes originated was categorized into clear and cloudy regions according to whether there was cloud in the vertical column. The model results indicated that the surface fluxes from the large clear air environment are the dominant moisture source for tropical squall line development even though the surface fluxes in the cloud region display a large peak. The high-energy air from the boundary layer in the clear area is what feeds the convection while the CAPE is removed by the convection. The surface rainfall was only reduced 8 to 9% percent in the simulations without surface fluxes in the cloud region. Trajectory and water budget analysis also indicated that most moisture (92%) was from the boundary layer of the clear air environment.

  17. Satellite rainfall monitoring over Africa using multi-spectral MSG data in an artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Chadwick, Robin; Grimes, David

    2010-05-01

    Rainfall monitoring over Africa is crucial for a variety of humanitarian and agricultural purposes, and satellites have been used for some time to provide real-time rainfall estimates over the region. Several recent applications of satellite rainfall estimates, such as flash-flood warning systems and crop-yield models, require accurate rainfall totals at daily timescales or below. Multi-spectral Meteosat Second Generation (MSG) data provide information on cloud properties such as optical depth and cloud particle size and phase. These parameters are all relevant to the probability of rainfall occurring from a cloud and the likely intensity of that rainfall, so the use of MSG data should lead to improved satellite rainfall estimates. An artificial neural network (ANN) using multi-spectral inputs from MSG has been trained to provide daily rainfall estimates over Ethiopia, using daily rain-gauge data for calibration. Although ANN methods have previously been applied to the problem of producing rainfall estimates from multi-spectral satellite data, in general precipitation radar data have been used for calibration. The advantage of using rain-gauge data is that gauges are far more widespread over Africa than radar networks, so this method can be easily transferred and if necessary re-calibrated in different climatological regions of the continent. The ANN estimates have been validated against independent Ethiopian gauge data at a variety of time and space scales. The ANN shows an improvement in accuracy at daily timescale when compared to rainfall estimates from the TAMSAT algorithm, which uses only single channel MSG data.

  18. The relation of radar to cloud area-time integrals and implications for rain measurements from space

    NASA Technical Reports Server (NTRS)

    Atlas, David; Bell, Thomas L.

    1992-01-01

    The relationships between satellite-based and radar-measured area-time integrals (ATI) for convective storms are determined, and both are shown to depend on the climatological conditional mean rain rate and the ratio of the measured cloud area to the actual rain area of the storms. The GOES precipitation index of Arkin (1986) for convective storms, an area-time integral for satellite cloud areas, is shown to be related to the ATI for radar-observed rain areas. The quality of GPI-based rainfall estimates depends on how well the cloud area is related to the rain area and the size of the sampling domain. It is also noted that the use of a GOES cloud ATI in conjunction with the radar area-time integral will improve the accuracy of rainfall estimates and allow such estimates to be made in much smaller space-time domains than the 1-month and 5-deg boxes anticipated for the Tropical Rainfall Measuring Mission.

  19. Climate Change and Tropical Total Lightning

    NASA Technical Reports Server (NTRS)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  20. Heavy rains over Chennai and surrounding areas as captured by Doppler weather radar during Northeast Monsoon 2015: a case study

    NASA Astrophysics Data System (ADS)

    Kamaljit, Ray; Kannan, B. A. M.; Stella, S.; Sen, Bikram; Sharma, Pradip; Thampi, S. B.

    2016-05-01

    During the Northeast monsoon season, India receives about 11% of its annual rainfall. Many districts in South Peninsula receive 30-60% of their annual rainfall. Coastal Tamil Nadu receives 60% of its annual rainfall and interior districts about 40-50 %. During the month of November, 2015, three synoptic scale weather systems affected Tamil Nadu and Pondicherry causing extensive rainfall activity over the region. Extremely heavy rains occurred over districts of Chennai, Thiruvallur and Kancheepuram, due to which these 3 districts were fully inundated. 122 people in Tamil Nadu were reported to have died due to the flooding, while over 70,000 people had been rescued. State government reported flood damage of the order of around Rs 8481 Crores. The rainfall received in Chennai district during 1.11.2015 to 5.12.2015 was 1416.8 mm against the normal of 408.4 mm. The extremely heavy rains were found to be associated with strong wind surges at lower tropospheric levels, which brought in lot of moisture flux over Chennai and adjoining area. The subtropical westerly trough at mid-tropospheric levels extended much southwards than its normal latitude, producing favorable environment for sustained rising motions ahead of approaching trough over coastal Tamil Nadu. Generated strong upward velocities in the clouds lifted the cloud tops to very high levels forming deep convective clouds. These clouds provided very heavy rainfall of the order of 150-200 mm/hour. In this paper we have used radar data to examine and substantiate the cloud burst that led to these torrential rains over Chennai and adjoining areas during the Northeast Monsoon period, 2015.

  1. Short-range prediction of a heavy precipitation event by assimilating Chinese CINRAD-SA radar reflectivity data using complex cloud analysis

    NASA Astrophysics Data System (ADS)

    Sheng, C.; Gao, S.; Xue, M.

    2006-11-01

    With the ARPS (Advanced Regional Prediction System) Data Analysis System (ADAS) and its complex cloud analysis scheme, the reflectivity data from a Chinese CINRAD-SA Doppler radar are used to analyze 3D cloud and hydrometeor fields and in-cloud temperature and moisture. Forecast experiments starting from such initial conditions are performed for a northern China heavy rainfall event to examine the impact of the reflectivity data and other conventional observations on short-range precipitation forecast. The full 3D cloud analysis mitigates the commonly known spin-up problem with precipitation forecast, resulting a significant improvement in precipitation forecast in the first 4 to 5 hours. In such a case, the position, timing and amount of precipitation are all accurately predicted. When the cloud analysis is used without in-cloud temperature adjustment, only the forecast of light precipitation within the first hour is improved. Additional analysis of surface and upper-air observations on the native ARPS grid, using the 1 degree real-time NCEP AVN analysis as the background, helps improve the location and intensity of rainfall forecasting slightly. Hourly accumulated rainfall estimated from radar reflectivity data is found to be less accurate than the model predicted precipitation when full cloud analysis is used.

  2. Determination of rainfall and condensational heating in the South Pacific convergence zone during FGGE SOP-1

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.

    1984-01-01

    The role of cloud related diabatic processes in maintaining the structure of the South Pacific Convergence Zone is discussed. The method chosen to evaluate the condensational heating is a diagnostic cumulus mass flux technique which uses GOES digital IR data to characterize the cloud population. This method requires as input an estimate of time/area mean rainfall rate over the area in question. Since direct observation of rainfall in the South Pacific is not feasible, a technique using GOES IR data is being developed to estimate rainfall amounts for a 2.5 degree grid at 12h intervals.

  3. Haze over Beijing

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Thick haze collected over the Beijing region in late March 2007. Earlier that month, the BBC News reported that an international team of scientists had documented how increasing pollution in China led to decreasing rainfall over the region. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard the Aqua satellite captured these images of the Beijing region on March 22, 2007. The top image is a 'true-color' picture, similar to a digital photo. The bottom, 'false-color,' image uses a combination of visible and infrared light to more clearly show vegetation, water, and clouds. Even sparse vegetation appears bright green, while water appears deep blue (bright blue when tinged with sediment). Clouds dominated by water droplets appear white, while clouds made of ice crystals appear light blue. The false-color image highlights water bodies, perhaps aqua-culture ponds, that are all but invisible in the true-color image, especially along the shores of the Bo Hai. While vegetation and water show up more clearly in the false-color image, haze is much more transparent. Although dingy gray haze dominates the true-color picture, it is all but invisible in the false-color view. The haze 'disappears' in the infrared-enhanced image because tiny haze particles do not reflect longer-wavelength infrared light very well, making this type of image useful for distinguishing haze from clouds. The bank of clouds in the upper right corner shows up clearly in both pictures. As China industrializes, factories, power plants, and automobiles all contribute to pollution in the region. In examining pollutants and rainfall, the team of scientists examined records covering more than 50 years, concluding that pollution decreased precipitation at Mount Hua near Xi'an in central China. They concluded that when conditions are so hazy that visibility is reduced to less than 8 kilometers (5 miles), hilly precipitation can drop by 30 to 50 percent. When moist air passes over mountains, it usually cools and forms raindrops, but heavy pollutant concentrations cause the clouds to hang on to their moisture.

  4. Cold Episodes, Their Precursors and Teleconnections in the Central Peruvian Andes (1958-2009)

    NASA Astrophysics Data System (ADS)

    Sulca, J. C.; Vuille, M. F.; Trasmonte, G.; Silva, Y.; Takahashi, K.

    2014-12-01

    The Mantaro valley (MV) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during the austral summer (January-March), which strongly damage crops. However, little is known about the causes and impacts of such cold episodes in the MV. The main goal of this study is thus to characterize cold episodes in the MV and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MV daily minimum temperature for the period 1958-2009 from Huayao station, located within the MV was used. We defined a cold episode as the period when daily minimum temperature drops below the 10-percentile for at least one day. Several gridded reanalysis and satellite products were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events for same period. Cold episodes in the MV are associated with positive OLR anomalies, which extend over much of the central Andes, indicating reduced convective cloud cover during these extremes, but also affirm the large-scale nature of these events. At the same time, northeastern Brazil (NEB) registers negative OLR anomalies, strong convective activity and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of its climatologic position. Further, it is associated with a weakening of the Bolivian High - Nordeste Low (BH-NL) system at upper levels, but also influenced by a low-level migratory high-pressure center develops at 30°S, 50°W; propagating from mid- to low latitudes as part of an extratropical Rossby wave train. In conclusion, cold episodes in the MV appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection. The reduced cloud cover in turn results from a robust large-scale pattern of westerly wind anomalies over central Peruvian Andes, inhibiting moisture influx, convective activity and hence cloud formation. At the same time NEB registers strong convective activity and enhanced cloud cover. This dipole is caused by a weakening of BH-NL system at upper levels, which is associated with a low-level migratory high-pressure center, propagating from mid- to low latitudes as part of an extratropical Rossby wave train.

  5. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2005-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds, Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.

  6. Variability and trends of wet season temperature in the Sudano-Sahelian zone and relationships with precipitation

    NASA Astrophysics Data System (ADS)

    Oueslati, Boutheina; Camberlin, Pierre; Zoungrana, Joël; Roucou, Pascal; Diallo, Saliou

    2018-02-01

    The relationships between precipitation and temperature in the central Sudano-Sahelian belt are investigated by analyzing 50 years (1959-2008) of observed temperature (Tx and Tn) and rainfall variations. At daily time-scale, both Tx and Tn show a marked decrease as a response to rainfall occurrence, with a strongest departure from normal 1 day after the rainfall event (-0.5 to -2.5 °C depending on the month). The cooling is slightly larger when heavy rainfall events (>5 mm) are considered. The temperature anomalies weaken after the rainfall event, but are still significant several days later. The physical mechanisms accounting for the temperature response to precipitation are analysed. The Tx drop is accounted for by reduced incoming solar radiation associated with increased cloud cover and increased surface evaporation following surface moistening. The effect of evaporation becomes dominant a few days after the rainfall event. The reduced daytime heat storage and the subsequent sensible heat flux result in a later negative Tn anomaly. The effect of rainfall variations on temperature is significant for long-term warming trends. The rainfall decrease experienced between 1959 and 2008 accounts for a rainy season Tx increase of 0.15 to 0.3 °C, out of a total Tx increase of 1.3 to 1.5 °C. These results have strong implications on the assessment of future temperature changes. The dampening or amplifying effects of precipitation are determined by the sign of future precipitation trends. Confidence on temperature changes under global warming partly depend on the robustness of precipitation projections.

  7. Observed and Simulated Radiative and Microphysical Properties of Tropical Convective Storms

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Increases in the ice content, albedo and cloud cover of tropical convective storms in a warmer climate produce a large negative contribution to cloud feedback in the GISS GCM. Unfortunately, the physics of convective upward water transport, detrainment, and ice sedimentation, and the relationship of microphysical to radiative properties, are all quite uncertain. We apply a clustering algorithm to TRMM satellite microwave rainfall retrievals to identify contiguous deep precipitating storms throughout the tropics. Each storm is characterized according to its size, albedo, OLR, rain rate, microphysical structure, and presence/absence of lightning. A similar analysis is applied to ISCCP data during the TOGA/COARE experiment to identify optically thick deep cloud systems and relate them to large-scale environmental conditions just before storm onset. We examine the statistics of these storms to understand the relative climatic roles of small and large storms and the factors that regulate convective storm size and albedo. The results are compared to GISS GCM simulated statistics of tropical convective storms to identify areas of agreement and disagreement.

  8. Influence of Superparameterization and a Higher-Order Turbulence Closure on Rainfall Bias Over Amazonia in Community Atmosphere Model Version 5: How Parameterization Changes Rainfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Fu, Rong; Shaikh, Muhammad J.

    We evaluate the Community Atmosphere Model Version 5 (CAM5) with a higher-order turbulence closure scheme, named Cloud Layers Unified By Binomials (CLUBB), and a Multiscale Modeling Framework (MMF) with two different microphysics configurations to investigate their influences on rainfall simulations over Southern Amazonia. The two different microphysics configurations in MMF are the one-moment cloud microphysics without aerosol treatment (SAM1MOM) and two-moment cloud microphysics coupled with aerosol treatment (SAM2MOM). Results show that both MMF-SAM2MOM and CLUBB effectively reduce the low biases of rainfall, mainly during the wet season. The CLUBB reduces low biases of humidity in the lower troposphere with furthermore » reduced shallow clouds. The latter enables more surface solar flux, leading to stronger convection and more rainfall. MMF, especially MMF-SAM2MOM, unstablizes the atmosphere with more moisture and higher atmospheric temperatures in the atmospheric boundary layer, allowing the growth of more extreme convection and further generating more deep convection. MMF-SAM2MOM significantly increases rainfall in the afternoon, but it does not reduce the early bias of the diurnal rainfall peak; LUBB, on the other hand, delays the afternoon peak time and produces more precipitation in the early morning, due to more realistic gradual transition between shallow and deep convection. MMF appears to be able to realistically capture the observed increase of relative humidity prior to deep convection, especially with its two-moment configuration. In contrast, in CAM5 and CAM5 with CLUBB, occurrence of deep convection in these models appears to be a result of stronger heating rather than higher relative humidity.« less

  9. Long-term study of aerosol-cloud-precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season

    NASA Astrophysics Data System (ADS)

    Kant, Sunny; Panda, Jagabandhu; Pani, Shantanu Kumar; Wang, Pao K.

    2018-05-01

    This study attempts to analyze possible aerosol-cloud-precipitation interaction over the eastern part of India including Bhubaneswar city and the whole Odisha region primarily using a long-term satellite-based dataset from 2000 to 2016 during pre-monsoon period. Relationship between aerosol optical depth (AOD), rainfall, and cloud properties is examined by taking convectively driven rain events. The two-sample student's t test is used to compute "p" value of datasets that are statically significant. Role of aerosols in governing cloud properties is analyzed through the variation of COD (cloud optical depth) and CER (cloud effective radius) in the AOD ranges 0.2-0.8. A relatively stronger and affirmative AOD-CER relationship is observed over Bhubaneswar city compared to Odisha region though the aerosols still play an appreciable role for the later too. The AOD-COD relationship is weak over both the regions. For Odisha, relationships between aerosol and cloud parameters are insignificant irrespective of rainfall regimes. Fostering of heavy rainfall over these regions takes place due to invigoration and microphysical effect during pre-monsoon months, depending upon meteorological conditions. Liquid water content and presence of a mixed-phase zone, both seem to be quite important in the convectively driven precipitation over Odisha region including Bhubaneswar city.

  10. Assessment on spatiotemporal relationship between rainfall and cloud top temperature from new generation weather satellite imagery

    NASA Astrophysics Data System (ADS)

    Wei, Chiang; Yeh, Hui-Chung; Chen, Yen-Chang

    2017-04-01

    This study addressed the relationship between rainfall and cloud top temperature (CCT) from new generation satellite Himawari-8 imagery at different spatiotemporal scale. This satellite provides higher band, more bits for data format, spatial and temporal resolution compared with previous GMS series. The multi-infrared channels with 10-minute and 1-2 km resolution make it possible for rainfall estimating/forecasting in small/medium watershed. The preliminary result investigated at Chenyulan watershed (443.6 square kilometer) of Central Taiwan in 2016 Typhoon Megi shows the regression coefficient fitted by negative exponential equation of largest rainfall vs. CCT (B8 band) at pixel scale increases as time scales enlarges and reach 0.462 for 120-minute accumulative rainfall; the value (CTT of B15 band) decreases from 0.635 for 10-minute to 0.423 for 120-minute accumulative rainfall at basin-wide scale. More rainfall events for different regime are yet to evaluate to get solid results.

  11. Effects of Raindrop Shape Parameter on the Simulation of Plum Rains

    NASA Astrophysics Data System (ADS)

    Mei, H.; Zhou, L.; Li, X.; Huang, X.; Guo, W.

    2017-12-01

    The raindrop shape parameter of particle distribution is generally set as constant in a Double-moment Bulk Microphysics Scheme (DBMS) using Gama distribution function though which suggest huge differences in time and space according to observations. Based on Milbrandt 2-mon(MY) DBMS, four cases during Plum Rains season are simulated coupled with four empirical relationships between shape parameter (μr) and slope parameter of raindrop which have been concluded from observations of raindrop distributions. The analysis of model results suggest that μr have some influences on rainfall. Introducing the diagnostic formulas of μr may have some improvement on systematic biases of 24h accumulated rainfall and show some correction ability on local characteristics of rainfall distribution. Besides,the tendency to improve strong rainfall could be sensitive to μr. With the improvement of the diagnosis of μr using the empirically diagnostic formulas, μr increases generally in the middle- and lower-troposphere and decreases with the stronger rainfall. Its conclued that, the decline in raindrop water content and the increased raindrop mass-weighted average terminal velocity directly related to μr are the direct reasons of variations in the precipitation.On the other side, the environmental conditions including relative humidity and dynamical parameters are the key indirectly causes which has close relationships with the changes in cloud particles and rainfall distributions.Furthermore,the differences in the scale of improvement between the weak and heavy rainfall mainly come from the distinctions of response features about their variable fields respectively. The extent of variation in the features of cloud particles in warm clouds of heavy rainfall differs greatly from that of weak rainfall, though they share the same trend of variation. On the conditions of weak rainfall, the response of physical characteristics to μr performed consistent trends and some linear features. However, environmental conditions of relative humidity and dynamical parameters perform strong and vertically deep adjustments in the heavy precipitation with vigorous cloud systems. In this case, the microphysical processes and environmental conditions experience complex interactions with each other and no significant laws could be concluded.

  12. Precipitation measurements for earth-space communications: Accuracy requirements and ground-truth techniques

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.; Kaul, R.

    1981-01-01

    Rainfall which is regarded as one of the more important observations for the measurements of this most variable parameter was made continuously, across large areas and over the sea. Ships could not provide the needed resolution nor could available radars provide the needed breadth of coverage. Microwave observations from the Nimbus-5 satellite offered some hope. Another possibility was suggested by the results of many comparisons between rainfall and the clouds seen in satellite pictures. Sequences of pictures from the first geostationary satellites were employed and a general correspondence between rain and the convective clouds visible in satellite pictures was found. It was demonstrated that the agreement was best for growing clouds. The development methods to infer GATE rainfall from geostationary satellite images are examined.

  13. The potential of using Landsat time-series to extract tropical dry forest phenology

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Helmer, E.

    2016-12-01

    Vegetation phenology is the timing of seasonal developmental stages in plant life cycles. Due to the persistent cloud cover in tropical regions, current studies often use satellite data with high frequency, such as AVHRR and MODIS, to detect vegetation phenology. However, the spatial resolution of these data is from 250 m to 1 km, which does not have enough spatial details and it is difficult to relate to field observations. To produce maps of phenology at a finer spatial resolution, this study explores the feasibility of using Landsat images to detect tropical forest phenology through reconstructing a high-quality, seasonal time-series of images, and tested it in Mona Island, Puerto Rico. First, an automatic method was applied to detect cloud and cloud shadow, and a spatial interpolator was use to retrieve pixels covered by clouds, shadows, and SLC-off gaps. Second, enhanced vegetation index time-series derived from the reconstructed Landsat images were used to detect 11 phenology variables. Detected phenology is consistent with field investigations, and its spatial pattern is consistent with the rainfall distribution on this island. In addition, we may expect that phenology should correlate with forest biophysical attributes, so 47 plots with field measurement of biophysical attributes were used to indirectly validate the phenology product. Results show that phenology variables can explain a lot of variations in biophysical attributes. This study suggests that Landsat time-series has great potential to detect phenology in tropical areas.

  14. Innovative technologies to understand hydrogeomorphic impacts of climate change scenarios on gully development in drylands: case study from Ethiopia

    NASA Astrophysics Data System (ADS)

    Frankl, Amaury; Stal, Cornelis; Abraha, Amanuel; De Wulf, Alain; Poesen, Jean

    2014-05-01

    Taking climate change scenarios into account, rainfall patterns are likely to change over the coming decades in eastern Africa. In brief, large parts of eastern Africa are expected to experience a wetting, including seasonality changes. Gullies are threshold phenomena that accomplish most of their geomorphic change during short periods of strong rainfall. Understanding the links between geomorphic change and rainfall characteristics in detail, is thus crucial to ensure the sustainability of future land management. In this study, we present image-based 3D modelling as a low-cost, flexible and rapid method to quantify gully morphology from terrestrial photographs. The methodology was tested on two gully heads in Northern Ethiopia. Ground photographs (n = 88-235) were taken during days with cloud cover. The photographs were processed in PhotoScan software using a semi-automated Structure from Motion-Multi View Stereo (SfM-MVS) workflow. As a result, full 3D models were created, accurate at cm level. These models allow to quantify gully morphology in detail, including information on undercut walls and soil pipe inlets. Such information is crucial for understanding the hydrogeomorphic processes involved. Producing accurate 3D models after each rainfall event, allows to model interrelations between rainfall, land management, runoff and erosion. Expected outcomes are the production of detailed vulnerability maps that allow to design soil and water conservation measures in a cost-effective way. Keywords: 3D model, Ethiopia, Image-based 3D modelling, Gully, PhotoScan, Rainfall.

  15. The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Matsui, T.

    2012-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to identify the impact of ice processes, radiation and large-scale influence on cloud-aerosol interactive processes, especially regarding surface rainfall amounts and characteristics (i.e., heavy or convective versus light or stratiform types). In addition, an inert tracer was included to follow the vertical redistribution of aerosols by cloud processes. We will also give a brief review from observational evidence on the role of aerosol on precipitation processes.

  16. A self-consistency approach to improve microwave rainfall rate estimation from space

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Mack, Robert A.; Hakkarinen, Ida M.

    1989-01-01

    A multichannel statistical approach is used to retrieve rainfall rates from the brightness temperature T(B) observed by passive microwave radiometers flown on a high-altitude NASA aircraft. T(B) statistics are based upon data generated by a cloud radiative model. This model simulates variabilities in the underlying geophysical parameters of interest, and computes their associated T(B) in each of the available channels. By further imposing the requirement that the observed T(B) agree with the T(B) values corresponding to the retrieved parameters through the cloud radiative transfer model, the results can be made to agree quite well with coincident radar-derived rainfall rates. Some information regarding the cloud vertical structure is also obtained by such an added requirement. The applicability of this technique to satellite retrievals is also investigated. Data which might be observed by satellite-borne radiometers, including the effects of nonuniformly filled footprints, are simulated by the cloud radiative model for this purpose.

  17. Relationship between aerosol and lightning over Indo-Gangetic Plain (IGP), India

    NASA Astrophysics Data System (ADS)

    Lal, D. M.; Ghude, Sachin D.; Mahakur, M.; Waghmare, R. T.; Tiwari, S.; Srivastava, Manoj K.; Meena, G. S.; Chate, D. M.

    2017-08-01

    The relationship between aerosol and lightning over the Indo-Gangetic Plain (IGP), India has been evaluated by utilising aerosol optical depth (AOD), cloud droplet effective radius and cloud fraction from Moderate Resolution Imaging Spectroradiometer. Lightning flashes have been observed by the lightning Imaging sensor on the board of Tropical Rainfall and Measuring Mission and humidity from modern-era retrospective-analysis for research and applications for the period of 2001-2012. In this study, the role of aerosol in lightning generation over the north-west sector of IGP has been revealed. It is found that lightning activity increases (decreases) with increasing aerosols during normal (deficient) monsoon rainfall years. However, lightning increases with increasing aerosol during deficient rainfall years when the average value of AOD is less than 0.88. We have found that during deficient rainfall years the moisture content of the atmosphere and cloud fraction is smaller than that during the years with normal or excess monsoon rainfall over the north-west IGP. Over the north-east Bay of Bengal and its adjoining region the variations of moisture and cloud fraction between the deficient and normal rainfall years are minimal. We have found that the occurrence of the lightning over this region is primarily due to its topography and localised circulation. The warm-dry air approaching from north-west converges with moist air emanating from the Bay of Bengal causing instability that creates an environment for deep convective cloud and lightning. The relationship between lightning and aerosol is stronger over the north-west sector of IGP than the north-east, whereas it is moderate over the central IGP. We conclude that aerosol is playing a major role in lightning activity over the north-west sector of IGP, but, local meteorological conditions such as convergences of dry and moist air is the principal cause of lightning over the north-east sector of IGP. In addition, atmospheric humidity also plays an important role in regulating the effect of aerosol on the microphysical properties of clouds over IGP region.

  18. Estimating precipitation susceptibility in warm marine clouds using multi-sensor aerosol and cloud products from A-Train satellites

    NASA Astrophysics Data System (ADS)

    Bai, Heming; Gong, Cheng; Wang, Minghuai; Zhang, Zhibo; L'Ecuyer, Tristan

    2018-02-01

    Precipitation susceptibility to aerosol perturbation plays a key role in understanding aerosol-cloud interactions and constraining aerosol indirect effects. However, large discrepancies exist in the previous satellite estimates of precipitation susceptibility. In this paper, multi-sensor aerosol and cloud products, including those from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) from June 2006 to April 2011 are analyzed to estimate precipitation frequency susceptibility SPOP, precipitation intensity susceptibility SI, and precipitation rate susceptibility SR in warm marine clouds. We find that SPOP strongly depends on atmospheric stability, with larger values under more stable environments. Our results show that precipitation susceptibility for drizzle (with a -15 dBZ rainfall threshold) is significantly different than that for rain (with a 0 dBZ rainfall threshold). Onset of drizzle is not as readily suppressed in warm clouds as rainfall while precipitation intensity susceptibility is generally smaller for rain than for drizzle. We find that SPOP derived with respect to aerosol index (AI) is about one-third of SPOP derived with respect to cloud droplet number concentration (CDNC). Overall, SPOP demonstrates relatively robust features throughout independent liquid water path (LWP) products and diverse rain products. In contrast, the behaviors of SI and SR are subject to LWP or rain products used to derive them. Recommendations are further made for how to better use these metrics to quantify aerosol-cloud-precipitation interactions in observations and models.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Min; Kollias, Pavlos; Feng, Zhe

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification ismore » equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.« less

  20. Cropland land surface phenology and seasonality in East Africa: Ethiopia, Tanzania, and South Sudan

    NASA Astrophysics Data System (ADS)

    Alemu, W. G.; Henebry, G. M.

    2015-12-01

    Most people in East Africa depend on rainfed agriculture. Rainfall in the region has been decreasing recently and is highly variable in space and time leading to high food insecurity. A comprehensive understanding of the regional cropland dynamics is therefore needed. Land surface phenology and land surface seasonality have important roles in monitoring cropland dynamics in a region with sparse coverage of in situ climatic and biophysical observations. However, commonly used optical satellite data are often degraded by cloud cover, aerosols, and dust and they are restricted to daytime observations. Here we used near-daily passive microwave (PM) data at 25 km spatial resolution from a series of microwave radiometers—AMSR-E, FengYun3B/MWRI, AMSR2—to study cropland dynamics for 2003-2013 in three important grain production areas of East Africa: Ethiopia, Tanzania, and South Sudan. PM data can be collected through clouds and at night. Based on Google Earth imagery, we identified several cropland areas corresponding to PM grid cells. Rainfall from TRMM and atmospheric water vapor (V) from PM data displayed temporal patterns that were unimodal in Ethiopia and South Sudan, but bimodal in Tanzania. We fitted convex quadratic models to link growing season increments of V and vegetation optical depth (VOD) to accumulated V (AV). The models yielded high coefficients of determination (r2 ≥0.8) and phenometrics calculated from the parameter coefficients. Peak rainfall lagged peak V, but preceded peak VOD. Growing degree-days (GDD), calculated from the PM air temperature data, displayed a weaker bimodal seasonality in which the lowest values occurred during the peak rainy season, due to the cooling effect of latent heat flux and coupled with higher reflection of insolation by the cloud deck. V as a function of GDD displays quasi-periodic behavior. Drier sites in the region displayed larger (smaller) intra-annual dynamic range of V (GDD) compared to the moister sites.

  1. Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology

    NASA Astrophysics Data System (ADS)

    Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng

    2016-05-01

    Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.

  2. Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: Application to the Sahel

    PubMed Central

    Zhou, Liming; Dickinson, Robert E.; Tian, Yuhong; Vose, Russell S.; Dai, Yongjiu

    2007-01-01

    Increased clouds and precipitation normally decrease the diurnal temperature range (DTR) and thus have commonly been offered as explanation for the trend of reduced DTR observed for many land areas over the last several decades. Observations show, however, that the DTR was reduced most in dry regions and especially in the West African Sahel during a period of unprecedented drought. Furthermore, the negative trend of DTR in the Sahel appears to have stopped and may have reversed after the rainfall began to recover. This study develops a hypothesis with climate model sensitivity studies showing that either a reduction in vegetation cover or a reduction in soil emissivity would reduce the DTR by increasing nighttime temperature through increased soil heating and reduced outgoing longwave radiation. Consistent with empirical analyses of observational data, our results suggest that vegetation removal and soil aridation would act to reduce the DTR during periods of drought and human mismanagement over semiarid regions such as the Sahel and to increase the DTR with more rainfall and better human management. Other mechanisms with similar effects on surface energy balance, such as increased nighttime downward longwave radiation due to increased greenhouse gases, aerosols, and clouds, would also be expected to have a larger impact on DTR over drier regions. PMID:17986620

  3. Cloud microphysical background for the Israel-4 cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel

    2015-05-01

    The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.

  4. Using Convective Stratiform Technique (CST) method to estimate rainfall (case study in Bali, December 14th 2016)

    NASA Astrophysics Data System (ADS)

    Vista Wulandari, Ayu; Rizki Pratama, Khafid; Ismail, Prayoga

    2018-05-01

    Accurate and realtime data in wide spatial space at this time is still a problem because of the unavailability of observation of rainfall in each region. Weather satellites have a very wide range of observations and can be used to determine rainfall variability with better resolution compared with a limited direct observation. Utilization of Himawari-8 satellite data in estimating rainfall using Convective Stratiform Technique (CST) method. The CST method is performed by separating convective and stratiform cloud components using infrared channel satellite data. Cloud components are classified by slope because the physical and dynamic growth processes are very different. This research was conducted in Bali area on December 14, 2016 by verifying the result of CST process with rainfall data from Ngurah Rai Meteorology Station Bali. It is found that CST method result had simililar value with data observation in Ngurah Rai meteorological station, so it assumed that CST method can be used for rainfall estimation in Bali region.

  5. Study of atmospheric condition during the heavy rain event in Bojonegoro using weather research and forecasting (WRF) model: case study 9 February 2017

    NASA Astrophysics Data System (ADS)

    Saragih, I. J. A.; Meygatama, A. G.; Sugihartati, F. M.; Sidauruk, M.; Mulsandi, A.

    2018-03-01

    During 2016, there are frequent heavy rains in the Bojonegoro region, one of which is rain on 9 February 2016. The occurrence of heavy rainfall can cause the floods that inundate the settlements, rice fields, roads, and public facilities. This makes it important to analyze the atmospheric conditions during the heavy rainfall events in Bojonegoro. One of the analytical methods that can be used is using WRF-Advanced Research WRF (WRF-ARW) model. This study was conducted by comparing the rain analysis from WRF-ARW model with the Himawari-8 satellite imagery. The data used are Final Analysis (FNL) data for the WRF-ARW model and infrared (IR) channel for Himawari-8 satellite imagery. The data are processed into the time-series images and then analyzed descriptively. The meteorological parameters selected to be analyzed are relative humidity, vortices, divergences, air stability index, and precipitation. These parameters are expected to indicate the existence of a convective activity in Bojonegoro during the heavy rainfall event. The Himawari-8 satellite imagery shows that there is a cluster of convective clouds in Bojonegoro during the heavy rainfall event. The lowest value of the cloud top temperature indicates that the cluster of convective clouds is a cluster of Cumulonimbus cloud (CB).

  6. Soil Texture Mediates the Response of Tree Cover to Rainfall Intensity in African Savannas

    NASA Astrophysics Data System (ADS)

    Case, M. F.; Staver, A. C.

    2017-12-01

    Global circulation models predict widespread shifts in the frequency and intensity of rainfall, even where mean annual rainfall does not change. Resulting changes in soil moisture dynamics could have major consequences for plant communities and ecosystems, but the direction of potential vegetation responses can be challenging to predict. In tropical savannas, where tree and grasses coexist, contradictory lines of evidence have suggested that tree cover could respond either positively or negatively to less frequent, more intense rainfall. Here, we analyzed remote sensing data and continental-scale soils maps to examine whether soil texture or fire could explain heterogeneous responses of savanna tree cover to intra-annual rainfall variability across sub-Saharan Africa. We find that tree cover generally increases with mean wet-season rainfall, decreases with mean wet-season rainfall intensity, and decreases with fire frequency. However, soil sand content mediates these relationships: the response to rainfall intensity switches qualitatively depending on soil texture, such that tree cover decreases dramatically with less frequent, more intense rainfall on clay soils but increases with rainfall intensity on sandy soils in semi-arid savannas. We propose potential ecohydrological mechanisms for this heterogeneous response, and emphasize that predictions of savanna vegetation responses to global change should account for interactions between soil texture and changing rainfall patterns.

  7. The EOS CERES Global Cloud Mask

    NASA Technical Reports Server (NTRS)

    Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.

    1996-01-01

    To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.

  8. The UAE Rainfall Enhancement Assessment Program: Implications of Thermodynamic Profiles on the Development of Precipitation in Convective Clouds over the Oman Mountains

    NASA Astrophysics Data System (ADS)

    Breed, D.; Bruintjes, R.; Jensen, T.; Salazar, V.; Fowler, T.

    2005-12-01

    During the winter and summer seasons of 2001 and 2002, data were collected to assess the efficacy of cloud seeding to enhance precipitation in the United Arab Emirates (UAE). The results of the feasibility study concluded: 1) that winter clouds in the UAE rarely produced conditions amenable to hygroscopic cloud seeding; 2) that summer convective clouds developed often enough, particularly over the Oman Mountains (e.g., the Hajar Mountains along the eastern UAE border and into Oman) to justify a randomized seeding experiment; 3) that collecting quantitative radar observations continues to be a complex but essential part of evaluating a cloud seeding experiment; 4) that successful flight operations would require solving several logistical issues; and 5) that several scientific questions would need to be studied in order to fully evaluate the efficacy and feasibility of hygroscopic cloud seeding, including cloud physical responses, radar-derived rainfall estimates as related to rainfall at the ground, and hydrological impacts. Based on these results, the UAE program proceeded through the design and implemention of a randomized hygroscopic cloud seeding experiment during the summer seasons to statistically quantify the potential for cloud seeding to enhance rainfall, specifically over the UAE and Oman Mountains, while collecting concurrent and separate physical measurements to support the statistical results and provide substantiation for the physical hypothesis. The randomized seeding experiment was carried out over the summers of 2003 and 2004, and a total of 134 cases were treated over the two summer seasons, of which 96 met the analysis criteria established in the experimental design of the program. The statistical evaluation of these cases yielded largely inconclusive results. Evidence will show that the thermodynamic profile had a large influence on storm characteristics and on precipitation development. This in turn provided a confounding factor in the conduct of the seeding experiment, particularly in the lateness of treatment in the storm cycle. The prevalence of capping inversions and the sensitivity of clouds to the level of the inversions as well as to wind shear will be shown using several data sets (soundings, aircraft, radar, numerical models). Concurrent physical measurements with the randomized experiment provided new insights into the physical processes of precipitation that developed in summertime convective clouds over the UAE that in turn helped in the interpretation of the statistical results.

  9. A sensitivity study of the coupled simulation of the Northeast Brazil rainfall variability

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu

    2007-06-01

    Two long-term coupled ocean-land-atmosphere simulations with slightly different parameterization of the diagnostic shallow inversion clouds in the atmospheric general circulation model (AGCM) of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model are compared for their annual cycle and interannual variability of the northeast Brazil (NEB) rainfall variability. It is seen that the solar insolation affected by the changes to the shallow inversion clouds results in large scale changes to the gradients of the SST and the surface pressure. The latter in turn modulates the surface convergence and the associated Atlantic ITCZ precipitation and the NEB annual rainfall variability. In contrast, the differences in the NEB interannual rainfall variability between the two coupled simulations is attributed to their different remote ENSO forcing.

  10. Improving Assimilated Global Climate Data Using TRMM and SSM/I Rainfall and Moisture Data

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.

    1999-01-01

    Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. Work has been underway at NASA's Data Assimilation Office to explore the use of TRMM and SSM/I-derived rainfall and total precipitable water (TPW) data in global data assimilation to directly constrain these hydrological parameters. We found that assimilating these data types improves not only the precipitation and moisture estimates but also key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation in the tropics. We will present results showing that assimilating TRMM and SSM/I 6-hour averaged rain rates and TPW estimates significantly reduces the state-dependent systematic errors in assimilated products. Specifically, rainfall assimilation improves cloud and latent heating distributions, which, in turn, improves the cloudy-sky radiation and the large-scale circulation, while TPW assimilation reduces moisture biases to improve radiation in clear-sky regions. Rainfall and TPW assimilation also improves tropical forecasts beyond 1 day.

  11. Estimating Cloud Cover

    ERIC Educational Resources Information Center

    Moseley, Christine

    2007-01-01

    The purpose of this activity was to help students understand the percentage of cloud cover and make more accurate cloud cover observations. Students estimated the percentage of cloud cover represented by simulated clouds and assigned a cloud cover classification to those simulations. (Contains 2 notes and 3 tables.)

  12. Mesoscale Simulations of a Florida Sea Breeze Using the PLACE Land Surface Model Coupled to a 1.5-Order Turbulence Parameterization

    NASA Technical Reports Server (NTRS)

    Lynn, Barry H.; Stauffer, David R.; Wetzel, Peter J.; Tao, Wei-Kuo; Perlin, Natal; Baker, R. David; Munoz, Ricardo; Boone, Aaron; Jia, Yiqin

    1999-01-01

    A sophisticated land-surface model, PLACE, the Parameterization for Land Atmospheric Convective Exchange, has been coupled to a 1.5-order turbulent kinetic energy (TKE) turbulence sub-model. Both have been incorporated into the Penn State/National Center for Atmospheric Research (PSU/NCAR) mesoscale model MM5. Such model improvements should have their greatest effect in conditions where surface contrasts dominate over dynamic processes, such as the simulation of warm-season, convective events. A validation study used the newly coupled model, MM5 TKE-PLACE, to simulate the evolution of Florida sea-breeze moist convection during the Convection and Precipitation Electrification Experiment (CaPE). Overall, eight simulations tested the sensitivity of the MM5 model to combinations of the new and default model physics, and initialization of soil moisture and temperature. The TKE-PLACE model produced more realistic surface sensible heat flux, lower biases for surface variables, more realistic rainfall, and cloud cover than the default model. Of the 8 simulations with different factors (i.e., model physics or initialization), TKE-PLACE compared very well when each simulation was ranked in terms of biases of the surface variables and rainfall, and percent and root mean square of cloud cover. A factor separation analysis showed that a successful simulation required the inclusion of a multi-layered, land surface soil vegetation model, realistic initial soil moisture, and higher order closure of the planetary boundary layer (PBL). These were needed to realistically model the effect of individual, joint, and synergistic contributions from the land surface and PBL on the CAPE sea-breeze, Lake Okeechobee lake breeze, and moist convection.

  13. Infrared Data for Storm Analysis

    NASA Technical Reports Server (NTRS)

    Adler, R.

    1982-01-01

    The papers in this section include: 1) 'Thunderstorm Top Structure Observed by Aircraft Overflights with an Infrared Radiometer'; 2) 'Thunderstorm Intensity as Determined from Satellite Data'; 3) 'Relation of Satellite-Based Thunderstorm Intensity to Radar-Estimated Rainfall'; 4) 'A Simple Physical Basis for Relating Geosynchronous Satellite Infrared Observations to Thunderstorm Rainfall'; 5) 'Satellite-Observed Cloud-Top Height Changes in Tornadic Thunderstorms'; 6) 'Predicting Tropical Cyclone Intensity Using Satellite-Measured Equivalent Blackbody Temperatures of Cloud Tops'.

  14. Performance Evaluation of Satellite Communication Systems Operating in the Q/V/W Bands

    DTIC Science & Technology

    2013-06-30

    cloud liquid water content (blue line = original MODIS data, red line = underlying Gaussian process) and of rainfall ( NIMROD rain rate data) .. 3-22...correlation of rainfall as obtained from an extensive set of rain field collected by the NIMROD weather radar network [Luini and Capsoni, 2012] has been...underlying Gaussian process) Rain ( NIMROD data) Figure 3-21. Decorrelation with distance of the cloud liquid water content (blue line = original

  15. Analysis of rainfall over northern Peru during El Nino: A PCDS application

    NASA Technical Reports Server (NTRS)

    Goldberg, R.; Tisnado, G.

    1986-01-01

    In an examination of GOES satellite data during the 1982 through 1983 El Nino period, the appearance of lee wave cloud patterns was revealed. A correlation was hypothesized relating an anomalous easterly flow across the Andes with the appearance of these wave patterns and with the subsequent onset of intense rainfall. The cloud patterns are belived to be associated with the El Nino period and could be viewed as precursors to significant changes in weather patterns. The ultimate goal of the researchers will be the ability to predict occurrences of rainstorms associated with the appearance of lee waves and related cloud patterns as harbingers of destruction caused by flooding, huaycos, and other catastrophic consequences of heavy and abnormal rainfall. Rainfall data from about 70 stations in northern Peru from 1980 through 1984 were formatted to be utilized within the Pilot Climate Data System (PCDS). This time period includes the 1982 through 1983 El Nino period. As an example of the approach, a well-pronounced lee wave pattern was shown from a GOES satellite image of April 4, 1983. The ground truth data were then displayed via the PCDS to graphically demonstrate the increase in intensity and areal distribution of rainfall in the northern Peruvian area in the next 4 to 5 days.

  16. Desert dust suppressing precipitation: A possible desertification feedback loop

    PubMed Central

    Rosenfeld, Daniel; Rudich, Yinon; Lahav, Ronen

    2001-01-01

    The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process. PMID:11353821

  17. Climatological determinants of woody cover in Africa.

    PubMed

    Good, Stephen P; Caylor, Kelly K

    2011-03-22

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.

  18. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz

    2018-02-01

    The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.

  19. Spatial and temporal variation of rainfall trends of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Wickramagamage, P.

    2016-08-01

    This study was based on daily rainfall data of 48 stations distributed over the entire island covering a 30-year period from 1981 to 2010. Data analysis was done to identify the spatial pattern of rainfall trends. The methods employed in data analysis are linear regression and interpolation by Universal Kriging and Radial Basis function. The slope of linear regression curves of 48 stations was used in interpolation. The regression coefficients show spatially and seasonally variable positive and negative trends of annual and seasonal rainfall. About half of the mean annual pentad series show negative trends, while the rest shows positive trends. By contrast, the rainfall trends of the Southwest Monsoon (SWM) season are predominantly negative throughout the country. The first phase of the Northeast Monsoon (NEM1) displays downward trends everywhere, with the exception of the Southeastern coastal area. The strongest negative trends were found in the Northeast and in the Central Highlands. The second phase (NEM2) is mostly positive, except in the Northeast. The Inter-Monsoon (IM) periods have predominantly upward trends almost everywhere, but still the trends in some parts of the Highlands and Northeast are negative. The long-term data at Watawala Nuwara Eliya and Sandringham show a consistent decline in the rainfall over the last 100 years, particularly during the SWM. There seems to be a faster decline in the rainfall in the last 3 decades. These trends are consistent with the observations in India. It is generally accepted that there has been changes in the circulation pattern. Weakening of the SWM circulation parameters caused by global warming appears to be the main causes of recent changes. Effect of the Asian Brown Cloud may also play a role in these changes.

  20. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Classification System

    NASA Astrophysics Data System (ADS)

    Hong, Yang

    Precipitation estimation from satellite information (VISIBLE , IR, or microwave) is becoming increasingly imperative because of its high spatial/temporal resolution and board coverage unparalleled by ground-based data. After decades' efforts of rainfall estimation using IR imagery as basis, it has been explored and concluded that the limitations/uncertainty of the existing techniques are: (1) pixel-based local-scale feature extraction; (2) IR temperature threshold to define rain/no-rain clouds; (3) indirect relationship between rain rate and cloud-top temperature; (4) lumped techniques to model high variability of cloud-precipitation processes; (5) coarse scales of rainfall products. As continuing studies, a new version of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN), called Cloud Classification System (CCS), has been developed to cope with these limitations in this dissertation. CCS includes three consecutive components: (1) a hybrid segmentation algorithm, namely Hierarchically Topographical Thresholding and Stepwise Seeded Region Growing (HTH-SSRG), to segment satellite IR images into separated cloud patches; (2) a 3D feature extraction procedure to retrieve both pixel-based local-scale and patch-based large-scale features of cloud patch at various heights; (3) an ANN model, Self-Organizing Nonlinear Output (SONO) network, to classify cloud patches into similarity-based clusters, using Self-Organizing Feature Map (SOFM), and then calibrate hundreds of multi-parameter nonlinear functions to identify the relationship between every cloud types and their underneath precipitation characteristics using Probability Matching Method and Multi-Start Downhill Simplex optimization techniques. The model was calibrated over the Southwest of United States (100°--130°W and 25°--45°N) first and then adaptively adjusted to the study region of North America Monsoon Experiment (65°--135°W and 10°--50°N) using observations from Geostationary Operational Environmental Satellite (GOES) IR imagery, Next Generation Radar (NEXRAD) rainfall network, and Tropical Rainfall Measurement Mission (TRMM) microwave rain rate estimates. CCS functions as a distributed model that first identifies cloud patches and then dispatches different but the best matching cloud-precipitation function for each cloud patch to estimate instantaneous rain rate at high spatial resolution (4km) and full temporal resolution of GOES IR images (every 30-minute). Evaluated over a range of spatial and temporal scales, the performance of CCS compared favorably with GOES Precipitation Index (GPI), Universal Adjusted GPI (UAGPI), PERSIANN, and Auto-Estimator (AE) algorithms, consistently. Particularly, the large number of nonlinear functions and optimum IR-rain rate thresholds of CCS model are highly variable, reflecting the complexity of dominant cloud-precipitation processes from cloud patch to cloud patch over various regions. As a result, CCS can more successfully capture variability in rain rate at small scales than existing algorithms and potentially provides rainfall product from GOES IR-NEXARD-TRMM TMI (SSM/I) at 0.12° x 0.12° and 3-hour resolution with relative low standard error (˜=3.0mm/hr) and high correlation coefficient (˜=0.65).

  1. Study of Aerosol - Cloud Interaction over Indo - Gangetic Basin During Normal Monsoon and Drought Years

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Ramachandran, S.

    2017-12-01

    Clouds are one of the major factors that influence the Earth's radiation budget and also change the precipitation pattern. Atmospheric aerosols play a crucial role in modifying the cloud properties acting as cloud condensation nuclei (CCN). It can change cloud droplet number concentration, cloud droplet size and hence cloud albedo. Therefore, the effects of aerosol on cloud parameters are one of the most important topics in climate change study. In the present study, we investigate the spatial variability of aerosol - cloud interactions during normal monsoon years and drought years over entire Indo - Gangetic Basin (IGB) which is one of the most polluted regions of the world. Based on aerosol loading and their major emission sources, we divided the entire IGB in to six major sub regions (R1: 66 - 71 E, 24 - 29 N; R2: 71 - 76 E, 29 - 34 N; R3: 76 - 81 E, 26 - 31 N; R4: 81 - 86 E, 23 - 28 N; R5: 86 - 91 E, 22 - 27 N and R6: 91 - 96 E, 23 - 28 N). With this objective, fifteen years (2001 - 2015), daily mean aerosol optical depth, cloud parameters and rainfall data obtained from MODerate resolution Imaging Spectroradiometer (MODIS) on board of Terra satellite and Tropical Rainfall Measuring Mission (TRMM) is analyzed over each sub regions of IGB for monsoon season (JJAS : June, July, August and September months). Preliminary results suggest that a slightly change in aerosol optical depth can affect the significant contribution of cloud fraction and other cloud properties which also show a large spatial heterogeneity. During drought years, higher cloud effective radius (i.e. CER > 20µm) decreases from western to eastern IGB suggesting the enhancement in cloud albedo. Relatively week correlation between cloud optical thickness and rainfall is found during drought years than the normal monsoon years over western IGB. The results from the present study will be helpful to reduce uncertainty in understanding of aerosol - cloud interaction over IGB. Further details will be presented during the conference.

  2. [Monitoring on spatial and temporal changes of snow cover in the Heilongjiang Basin based on remote sensing].

    PubMed

    Yu, Ling-Xue; Zhang, Shu-Wen; Guan, Cong; Yan, Feng-Qin; Yang, Chao-Bin; Bu, Kun; Yang, Jiu-Chun; Chang, Li-Ping

    2014-09-01

    This paper extracted and verified the snow cover extent in Heilongjiang Basin from 2003 to 2012 based on MODIS Aqua and Terra data, and the seasonal and interannual variations of snow cover extent were analyzed. The result showed that the double-star composite data reduced the effects of clouds and the overall accuracy was more than 91%, which could meet the research requirements. There existed significant seasonal variation of snow cover extent. The snow cover area was almost zero in July and August while in January it expanded to the maximum, which accounted for more than 80% of the basin. According to the analysis on the interannual variability of snow cover, the maximum winter snow cover areas in 2003-2004 and 2009-2010 (>180 x 10(4) km2) were higher than that of 2011 (150 x 10(4) km2). Meanwhile, there were certain correlations between the interannual fluctuations of snow cover and the changes of average annual temperature and precipitation. The year with the low snow cover was corresponding to less annual rainfall and higher average temperature, and vice versa. The spring snow cover showed a decreasing trend from 2003 to 2012, which was closely linked with decreasing precipitation and increasing temperature.

  3. Rainfall and sheet power model for interrill erosion in steep slope

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun

    2015-04-01

    The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).

  4. A satellite rainfall retrieval technique over northern Algeria based on the probability of rainfall intensities classification from MSG-SEVIRI

    NASA Astrophysics Data System (ADS)

    Lazri, Mourad; Ameur, Soltane

    2016-09-01

    In this paper, an algorithm based on the probability of rainfall intensities classification for rainfall estimation from Meteosat Second Generation/Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) has been developed. The classification scheme uses various spectral parameters of SEVIRI that provide information about cloud top temperature and optical and microphysical cloud properties. The presented method is developed and trained for the north of Algeria. The calibration of the method is carried out using as a reference rain classification fields derived from radar for rainy season from November 2006 to March 2007. Rainfall rates are assigned to rain areas previously identified and classified according to the precipitation formation processes. The comparisons between satellite-derived precipitation estimates and validation data show that the developed scheme performs reasonably well. Indeed, the correlation coefficient presents a significant level (r:0.87). The values of POD, POFD and FAR are 80%, 13% and 25%, respectively. Also, for a rainfall estimation of about 614 mm, the RMSD, Bias, MAD and PD indicate 102.06(mm), 2.18(mm), 68.07(mm) and 12.58, respectively.

  5. Precipitation Processes Derived from TRMM Satellite Data, Cloud Resolving Model and Field Campaigns

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid. and solid water. Present large-scale weather and climate models can simulate cloud latent heat release only crudely thus reducing their confidence in predictions on both global and regional scales. In this paper, NASA Tropical Rainfall Measuring (TRMM) precipitation radar (PR) derived rainfall information and the Goddard Convective and Stratiform Heating (CSH) algorithm used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to October 2000. Rainfall latent heating and radar reflectively structure between ENSO (1997-1998 winter) and non-ENSO (1998-1999 winter) periods are examined and compared. The seasonal variation of heating over various geographic locations (i.e. Indian ocean vs west Pacific; Africa vs S. America) are also analyzed. In addition, the relationship between rainfall latent heating maximum heating level), radar reflectively and SST are examined.

  6. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    Treesearch

    Ashley E. Van Beusekom; Grizelle Gonzalez; Martha A. Scholl

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline...

  7. A Broadband Microwave Radiometer Technique at X-band for Rain and Drop Size Distribution Estimation

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    2005-01-01

    Radiometric brightess temperatures below about 12 GHz provide accurate estimates of path attenuation through precipitation and cloud water. Multiple brightness temperature measurements at X-band frequencies can be used to estimate rainfall rate and parameters of the drop size distribution once correction for cloud water attenuation is made. Employing a stratiform storm model, calculations of the brightness temperatures at 9.5, 10 and 12 GHz are used to simulate estimates of path-averaged median mass diameter, number concentration and rainfall rate. The results indicate that reasonably accurate estimates of rainfall rate and information on the drop size distribution can be derived over ocean under low to moderate wind speed conditions.

  8. Droplet Size Distributions as a function of rainy system type and Cloud Condensation Nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Cecchini, Micael A.; Machado, Luiz A. T.; Artaxo, Paulo

    2014-06-01

    This work aims to study typical Droplet Size Distributions (DSDs) for different types of precipitation systems and Cloud Condensation Nuclei concentrations over the Vale do Paraíba region in southeastern Brazil. Numerous instruments were deployed during the CHUVA (Cloud processes of tHe main precipitation systems in Brazil: a contribUtion to cloud resolVing modeling and to the GPM) Project in Vale do Paraíba campaign, from November 22, 2011 through January 10, 2012. Measurements of CCN (Cloud Condensation Nuclei) and total particle concentrations, along with measurements of rain DSDs and standard atmospheric properties, including temperature, pressure and wind intensity and direction, were specifically made in this study. The measured DSDs were parameterized with a gamma function using the moment method. The three gamma parameters were disposed in a 3-dimensional space, and subclasses were classified using cluster analysis. Seven DSD categories were chosen to represent the different types of DSDs. The DSD classes were useful in characterizing precipitation events both individually and as a group of systems with similar properties. The rainfall regime classification system was employed to categorize rainy events as local convective rainfall, organized convection rainfall and stratiform rainfall. Furthermore, the frequencies of the seven DSD classes were associated to each type of rainy event. The rainfall categories were also employed to evaluate the impact of the CCN concentration on the DSDs. In the stratiform rain events, the polluted cases had a statistically significant increase in the total rain droplet concentrations (TDCs) compared to cleaner events. An average concentration increase from 668 cm- 3 to 2012 cm- 3 for CCN at 1% supersaturation was found to be associated with an increase of approximately 87 m- 3 in TDC for those events. For the local convection cases, polluted events presented a 10% higher mass weighted mean diameter (Dm) on average. For the organized convection events, no significant results were found.

  9. Improving rainfall estimation from commercial microwave links using METEOSAT SEVIRI cloud cover information

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Doumounia, Ali; Chwala, Christian; Moumouni, Sawadogo; Zougmoré, François; Kunstmann, Harald

    2017-04-01

    The number of rain gauges is declining worldwide. A recent promising method for alternative precipitation measurements is to derive rain rates from the attenuation of the microwave signal between remote antennas of mobile phone base stations, so called commercial microwave links (CMLs). In European countries, such as Germany, the CML technique can be used as a complementary method to the existing gauge and radar networks improving their products, for example, in mountainous terrain and urban areas. In West African countries, where a dense gauge or radar network is absent, the number of mobile phone users is rapidly increasing and so are the CML networks. Hence, the CML-derived precipitation measurements have high potential for applications such as flood warning and support of agricultural planning in this region. For typical CML bandwidths (10-40 GHz), the relationship of attenuation to rain rate is quasi-linear. However, also humidity, wet antennas or electronic noise can lead to signal interference. To distinguish these fluctuations from actual attenuation due to rain, a temporal wet (rain event occurred)/ dry (no rain event) classification is usually necessary. In dense CML networks this is possible by correlating neighboring CML time series. Another option is to use the correlation between signal time series of different frequencies or bidirectional signals. The CML network in rural areas is typically not dense enough for correlation analysis and often only one polarization and one frequency are available along a CML. In this work we therefore use cloud cover information derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer onboard the geostationary satellite METEOSAT for a wet (pixels along link are cloud covered)/ dry (no cloud along link) classification. We compare results for CMLs in Burkina Faso and Germany, which differ meteorologically (rain rate and duration, droplet size distributions) and technically (CML frequencies, lengths, signal level) and use rain gauge data as ground truth for validation.

  10. Orographic enhancement of rainfalls in the Rio San Francisco valley in southern Ecuador

    NASA Astrophysics Data System (ADS)

    Trachte, K.; Rollenbeck, R.; Bendix, J.

    2012-04-01

    In a tropical mountain rain forest in southern Ecuador diurnal dynamics of cloud development and precipitation behavior is investigated in the framework of the DFG research unit 816. With automatic climate stations and rain radar rainfalls in the Rio San Francisco valley are recorded. The observations showed the typical tropical late afternoon convective precipitation as well as local events such as mountain valley breezes and luv-lee effects. Additionally, the data revealed an unusually early morning peak that could be recognized as convective rainfalls. On the basis of GOES-E satellite imagery these rainfalls could be traced back to nocturnal convective clouds at the eastern Andes Mountains. There are some explanations for the occurrence of the clouds: One already examined mechanism is a katabatic induced cold front at the foothills of the Andes in the Peruvian Amazon basin. In this region the mountains form a quasi-concave configuration that contributes to a convergence of cold air drainage with subsequent convective activities. Another explanation for the events is the orographic enhancement by a local seeder-feeder mechanism. Mesoscale convective systems from the Amazon basin are transported to the west via the trade winds. At the Andes Mountains the complex and massive orography acts like a barrier to the clouds. The result is a disconnection of the upper part of the cloud from the lower part. The latter rains out at the eastern slopes and the upper cloud is transported further to the west. There it acts like a seeder to lower level clouds, i. e. the feeder. With the numerical model ARPS (Advanced Regional Prediction System) this procedure is investigated on the basis of two case studies. The events are detected and selected through the analysis of GOES-E brightness temperatures. They are also used to compare and validate the results of the model. Finally, the orographic enhancement of the clouds is examined. By using a vertically pointing radar the development of the resulting precipitation is analyzed and discussed in the context of a seeder-feeder mechanism.

  11. A study of the Merritt Island, Florida sea breeze flow regimes and their effect on surface heat and moisture fluxes

    NASA Technical Reports Server (NTRS)

    Rubes, M. T.; Cooper, H. J.; Smith, E. A.

    1993-01-01

    Data collected during the Convective and Precipitation/Electrification Experiment were analyzed as part of an investigation of the sea breeze in the vicinity of Merritt Island, Florida. Analysis of near-surface divergence fields shows that the classical 24-hour oscillation in divergence over the island due to the direct sea breeze circulation is frequently disrupted and exhibits two distinct modes: the classical sea breeze pattern and deviations from that pattern. A comparison of clear day surface energy fluxes with fluxes on other days indicates that changes in magnitudes were dominated by the presence or absence of clouds. Non-classical sea breeze days tended to lose more available energy in the morning than classical sea breeze days due to earlier development of small cumulus over the island. A composite storm of surface winds, surface energy fluxes, rainfall, and satellite visible data was constructed. A spectral transmittance over the visible wavelengths for the cloud cover resulting from the composite storm was calculated. It is shown that pre-storm transmittances of 0.8 fall to values near 0.1 as the downdraft moves directly over the site. It is also found that under post-composite storm conditions of continuous clear sky days, 3.5 days are required to evaporate back into the atmosphere the latent heat energy lost to the surface by rainfall.

  12. Idealized Cloud-System Resolving Modeling for Tropical Convection Studies

    NASA Astrophysics Data System (ADS)

    Anber, Usama M.

    A three-dimensional limited-domain Cloud-Resolving Model (CRM) is used in idealized settings to study the interaction between tropical convection and the large scale dynamics. The model domain is doubly periodic and the large-scale circulation is parameterized using the Weak Temperature Gradient (WTG) Approximation and Damped Gravity Wave (DGW) methods. The model simulations fall into two main categories: simulations with a prescribed radiative cooling profile, and others in which radiative cooling profile interacts with clouds and water vapor. For experiments with a prescribed radiative cooling profile, radiative heating is taken constant in the vertical in the troposphere. First, the effect of turbulent surface fluxes and radiative cooling on tropical deep convection is studied. In the precipitating equilibria, an increment in surface fluxes produces a greater increase in precipitation than an equal increment in column-integrated radiative heating. The gross moist stability remains close to constant over a wide range of forcings. With dry initial conditions, the system exhibits hysteresis, and maintains a dry state with for a wide range of net energy inputs to the atmospheric column under WTG. However, for the same forcings the system admits a rainy state when initialized with moist conditions, and thus multiple equilibria exist under WTG. When the net forcing is increased enough that simulations, which begin dry, eventually develop precipitation. DGW, on the other hand, does not have the tendency to develop multiple equilibria under the same conditions. The effect of vertical wind shear on tropical deep convection is also studied. The strength and depth of the shear layer are varied as control parameters. Surface fluxes are prescribed. For weak wind shear, time-averaged rainfall decreases with shear and convection remains disorganized. For larger wind shear, rainfall increases with shear, as convection becomes organized into linear mesoscale systems. This non-monotonic dependence of rainfall on shear is observed when the imposed surface fluxes are moderate. For larger surface fluxes, convection in the unsheared basic state is already strongly organized, but increasing wind shear still leads to increasing rainfall. In addition to surface rainfall, the impacts of shear on the parameterized large-scale vertical velocity, convective mass fluxes, cloud fraction, and momentum transport are also discussed. For experiments with interactive radiative cooling profile, the effect of cloud-radiation interaction on cumulus ensemble is examined in sheared and unsheared environments with both fixed and interactive sea surface temperature (SST). For fixed SST, interactive radiation, when compared to simulations in which radiative profile has the same magnitude and vertical shape but does not interact with clouds or water vapor, is found to suppress mean precipitation by inducing strong descent in the lower troposphere, increasing the gross moist stability. For interactive SST, using a slab ocean mixed layer, there exists a shear strength above which the system becomes unstable and develops oscillatory behavior. Oscillations have periods of wet precipitating states followed by periods of dry non-precipitating states. The frequencies of oscillations are intraseasonal to subseasonal, depending on the mixed layer depth. Finally, the model is coupled to a land surface model with fully interactive radiation and surface fluxes to study the diurnal and seasonal radiation and water cycles in the Amazon basin. The model successfully captures the afternoon precipitation and cloud cover peak and the greater latent heat flux in the dry season for the first time; two major biases in GCMs with implications for correct estimates of evaporation and gross primary production in the Amazon. One of the key findings is that the fog layer near the surface in the west season is crucial for determining the surface energy budget and precipitation. This suggests that features on the diurnal time scale can significantly impact climate on the seasonal time scale.

  13. Assessing Climatic Impacts due to Land Use Change over Southeast Asian Maritime Continent base on Mesoscale Model Simulations

    NASA Astrophysics Data System (ADS)

    Feng, N.; Christopher, S. A.; Nair, U. S.

    2014-12-01

    Due to increasing urbanization, deforestation, and agriculture, land use change over Southeast Asia has dramatically risen during the last decades. Large areas of peat swamp forests over the Southeast Asian Maritime Continent region (10°S~20°N and 90°E~135°E) have been cleared for agricultural purposes. The Center for Remote Imaging, Sensing and Processing (CRISP) Moderate Resolution Imaging Spectroradiometer (MODIS) derived land cover classification data show that changes in land use are dominated by conversion of peat swamp forests to oil palm plantation, open lowland or lowland mosaic categories. Nested grid simulations based on Weather Research Forecasting Version 3.6 modelling system (WRFV3.6) over the central region of the Sarawak coast are used to investigate the climatic impacts of land use change over Maritime Continent. Numerical simulations were conducted for August of 2009 for satellite derived land cover scenarios for years 2000 and 2010. The variations in cloud formation, precipitation, and regional radiative and non-radiative parameters on climate results from land use change have been assessed based on numerical simulation results. Modelling studies demonstrate that land use change such as extensive deforestation processes can produce a negative radiative forcing due to the surface albedo increase and evapotranspiration decrease, while also largely caused reduced rainfall and cloud formation, and enhanced shortwave radiative forcing and temperature over the study area. Land use and land cover changes, similar to the domain in this study, has also occurred over other regions in Southeast Asia including Indonesia and could also impact cloud and precipitation formation in these regions.

  14. Marine Cloud Brightening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latham, John; Bower, Keith; Choularton, Tom

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involvesmore » (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.« less

  15. Marine cloud brightening.

    PubMed

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  16. Evaluation of a Cloud Resolving Model Using TRMM Observations for Multiscale Modeling Applications

    NASA Technical Reports Server (NTRS)

    Posselt, Derek J.; L'Ecuyer, Tristan; Tao, Wei-Kuo; Hou, Arthur Y.; Stephens, Graeme L.

    2007-01-01

    The climate change simulation community is moving toward use of global cloud resolving models (CRMs), however, current computational resources are not sufficient to run global CRMs over the hundreds of years necessary to produce climate change estimates. As an intermediate step between conventional general circulation models (GCMs) and global CRMs, many climate analysis centers are embedding a CRM in each grid cell of a conventional GCM. These Multiscale Modeling Frameworks (MMFs) represent a theoretical advance over the use of conventional GCM cloud and convection parameterizations, but have been shown to exhibit an overproduction of precipitation in the tropics during the northern hemisphere summer. In this study, simulations of clouds, precipitation, and radiation over the South China Sea using the CRM component of the NASA Goddard MMF are evaluated using retrievals derived from the instruments aboard the Tropical Rainfall Measuring Mission (TRMM) satellite platform for a 46-day time period that spans 5 May - 20 June 1998. The NASA Goddard Cumulus Ensemble (GCE) model is forced with observed largescale forcing derived from soundings taken during the intensive observing period of the South China Sea Monsoon Experiment. It is found that the GCE configuration used in the NASA Goddard MMF responds too vigorously to the imposed large-scale forcing, accumulating too much moisture and producing too much cloud cover during convective phases, and overdrying the atmosphere and suppressing clouds during monsoon break periods. Sensitivity experiments reveal that changes to ice cloud microphysical parameters have a relatively large effect on simulated clouds, precipitation, and radiation, while changes to grid spacing and domain length have little effect on simulation results. The results motivate a more detailed and quantitative exploration of the sources and magnitude of the uncertainty associated with specified cloud microphysical parameters in the CRM components of MMFs.

  17. Use NU-WRF and GCE Model to Simulate the Precipitation Processes During MC3E Campaign

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Wu, Di; Matsui, Toshi; Li, Xiaowen; Zeng, Xiping; Peter-Lidard, Christa; Hou, Arthur

    2012-01-01

    One of major CRM approaches to studying precipitation processes is sometimes referred to as "cloud ensemble modeling". This approach allows many clouds of various sizes and stages of their lifecycles to be present at any given simulation time. Large-scale effects derived from observations are imposed into CRMs as forcing, and cyclic lateral boundaries are used. The advantage of this approach is that model results in terms of rainfall and QI and Q2 usually are in good agreement with observations. In addition, the model results provide cloud statistics that represent different types of clouds/cloud systems during their lifetime (life cycle). The large-scale forcing derived from MC3EI will be used to drive GCE model simulations. The model-simulated results will be compared with observations from MC3E. These GCE model-simulated datasets are especially valuable for LH algorithm developers. In addition, the regional scale model with very high-resolution, NASA Unified WRF is also used to real time forecast during the MC3E campaign to ensure that the precipitation and other meteorological forecasts are available to the flight planning team and to interpret the forecast results in terms of proposed flight scenarios. Post Mission simulations are conducted to examine the sensitivity of initial and lateral boundary conditions to cloud and precipitation processes and rainfall. We will compare model results in terms of precipitation and surface rainfall using GCE model and NU-WRF

  18. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Norris, Joel

    2005-01-01

    The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean, but comparison with EMS all-sky reflected shortwave radiation during 1985-1997 suggests this decrease may be underestimated.

  19. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distribution parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), groupel and frozen drops/hall] Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bim model explicitly calculates and allows for the examination of both the mass and number concentration of cpecies in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case produces fever droplets, larger size develop due to greater condencational and collectional growth, leading to a broader size spectrum in comparison to the high CCN case.

  20. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e.,pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size categor, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case produces fewer droplets, larger sized develop due to the greater condensational and collectional growth, leading to a broader size spectrum in comparison to the high CCN case.

  1. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    NASA Astrophysics Data System (ADS)

    Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.

    2017-06-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ˜ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ˜ 200-600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns that increase frequency of drought periods during the wet seasons (periods of higher cloud base) may also impact ecosystem health.

  2. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    USGS Publications Warehouse

    Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ∼ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ∼ 200–600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns that increase frequency of drought periods during the wet seasons (periods of higher cloud base) may also impact ecosystem health.

  3. A Look Inside Hurricane Alma

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  4. An Investigation of the Influence of Urban Areas on Rainfall Using a Cloud-Mesoscale Model and the TRMM Satellite

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Starr, David O'C (Technical Monitor)

    2001-01-01

    A recent paper by Shepherd and Pierce (conditionally accepted to Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. A convective-mesoscale model with extensive land-surface processes is employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. Early analysis suggests that urban surface roughness (through turbulence and low-level convergence) may control timing and initial location of UHI-induced convection. The magnitude of the heat island appears to be closely linked to the total rainfall amount with minor impact on timing and location. The physical size of the city may predominantly impact on the location of UHI-induced rainfall anomaly. The UHI factor parameter space will be thoroughly investigated with respect to their effects on rainfall amount, location, and timing. This study extends prior numerical investigations of the impact of urban surfaces on meteorological processes, particularly rainfall development. The work also contains several novel aspects, including the application of a high-resolution (less than I km) cloud-mesoscale model to investigate urban-induce rainfall process; investigation of thermal magnitude of the UHI on rainfall process; and investigation of UHI physical size on rainfall processes.

  5. Cloud Microphysics Budget in the Tropical Deep Convective Regime

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cloud microphysics budgets in the tropical deep convective regime are analyzed based on a 2-D cloud resolving simulation. The model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. The role of cloud microphysics is first examined by analyzing mass-weighted mean heat budget and column-integrated moisture budget. Hourly budgets show that local changes of mass-weighted mean temperature and column-integrated moisture are mainly determined by the residuals between vertical thermal advection and latent heat of condensation and between vertical moisture advection and condensation respectively. Thus, atmospheric thermodynamics depends on how cloud microphysical processes are parameterized. Cloud microphysics budgets are then analyzed for raining conditions. For cloud-vapor exchange between cloud system and its embedded environment, rainfall and evaporation of raindrop are compensated by the condensation and deposition of supersaturated vapor. Inside the cloud system, the condensation of supersaturated vapor balances conversion from cloud water to raindrop, snow, and graupel through collection and accretion processes. The deposition of supersaturated vapor balances conversion from cloud ice to snow through conversion and riming processes. The conversion and riming of cloud ice and the accretion of cloud water balance conversion from snow to graupel through accretion process. Finally, the collection of cloud water and the melting of graupel increase raindrop to compensate the loss of raindrop due to rainfall and the evaporation of raindrop.

  6. The physics of rainclouds, what is behind rainfall trends?

    NASA Astrophysics Data System (ADS)

    Junkermann, Wolfgang; Hacker, Jorg

    2017-04-01

    In several locations in the world rainfall was significantly declining during the last four decades since about 1970, despite during the same timespan the water vapor availability in the planetary boundary layer (PBL) was increasing by about five percent. Increasing water vapor levels in the PBL are a result of climate change and well in agreement with the observed one degree increase of air temperature over the oceans. Increasing water vapor availability due to an increase in evaporation should lead to a higher turnover rate within the hydrological cycle, which should result either in more frequent or in more intense rainfall. Several regional observations especially along the Australian coastline show a contrary picture. Often rainfall is less frequent and the annual rainfall is declining. Also the number of rainy days goes down. This behavior could be caused by a number of different processes affecting both, the amount of liquid water in the atmosphere and the microphysical properties of clouds. Within the discussions are: -A change in the large scale advection patterns due to global warming, shifting the trajectories of low pressure systems, a slow process that takes several decades. -A change in land use by deforestation leading to lower roughness, higher albedo and lower convective energy. Such a land use change might happen within about one decade (e.g. Western Australia). -A change in aerosol abundance. Addition of anthropogenic cloud condensation nuclei lead instantly to smaller cloud droplets and subsequently to a regional to continental scale redistribution of rainfall within the time scales of cloud lifetime (hours to days). Airborne experiments show that indeed the number of aerosols in several of the respective areas investigated up to now was increasing roughly in time with the observed rainfall changes. However, only in few of the areas the availability of historical aerosol data is sufficient for a more detailed investigation. We show results from experiments in search for physical reasons for a regional scale rainfall decline observed along the Australian coastline. Here the historical database including an airborne survey in the early 70's allows to reconstruct a 'laboratory' notebook an aerosol trends. This makes the area a perfect 'natural laboratory' for such studies on the physical background for climate change trends and to disentangle different climate / hydrological cycle relevant physical processes.

  7. Mapping the Impact of Aerosol-Cloud Interactions on Cloud Formation and Warm-season Rainfall in Mountainous Regions Using Observations and Models

    NASA Astrophysics Data System (ADS)

    Duan, Yajuan

    Light rainfall (< 3 mm/hr) amounts to 30-70% of the annual water budget in the Southern Appalachian Mountains (SAM), a mid-latitude mid-mountain system in the SE CONUS. Topographic complexity favors the diurnal development of regional-scale convergence patterns that provide the moisture source for low-level clouds and fog (LLCF). Low-level moisture and cloud condensation nuclei (CCN) are distributed by ridge-valley circulations favoring LLCF formation that modulate the diurnal cycle of rainfall especially the mid-day peak. The overarching objective of this dissertation is to advance the quantitative understanding of the indirect effect of aerosols on the diurnal cycle of LLCF and warm-season precipitation in mountainous regions generally, and in the SAM in particular, for the purpose of improving the representation of orographic precipitation processes in remote sensing retrievals and physically-based models. The research approach consists of integrating analysis of in situ observations from long-term observation networks and an intensive field campaign, multi-sensor satellite data, and modeling studies. In the first part of this dissertation, long-term satellite observations are analyzed to characterize the spatial and temporal variability of LLCF and to elucidate the physical basis of the space-time error structure in precipitation retrievals. Significantly underestimated precipitation errors are attributed to variations in low-level rainfall microstructure undetected by satellites. Column model simulations including observed LLCF microphysics demonstrate that seeder-feeder interactions (SFI) among upper-level precipitation and LLCF contribute to an three-fold increase in observed rainfall accumulation and can enhance surface rainfall by up to ten-fold. The second part of this dissertation examines the indirect effect of aerosols on cloud formation and warm-season daytime precipitation in the SAM. A new entraining spectral cloud parcel model was developed and applied to provide the first assessment of aerosol-cloud interactions in the early development of mid-day cumulus congestus over the inner SAM. Leveraging comprehensive measurements from the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014, model results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations. Further, to explore sensitivity of warm-season precipitation processes to CCN characteristics, detailed intercomparisons of Weather Research and Forecasting (WRF) model simulations using IPHEx and standard continental CCN spectra were conducted. The simulated CDNC using the local spectrum show better agreement with IPHEx airborne observations and better replicate the widespread low-level cloudiness around mid-day over the inner region. The local spectrum simulation also indicate suppressed early precipitation, enhanced ice processes tied to more vigorous vertical development of individual storm cells. The studied processes here are representative of dominant moist atmospheric processes in complex terrain and cloud forests in the humid tropics and extra-tropics, thus findings from this research in the SAM are transferable to mountainous areas elsewhere.

  8. Cloud cover models derived from satellite radiation measurements

    NASA Technical Reports Server (NTRS)

    Bean, S. J.; Somerville, P. N.

    1979-01-01

    Using daily measurement of day and night infrared and incoming and absorbed solar radiation obtained from a TIROS satellite over a period of approximately 45 months, and integrated over 2.5 degree latitude-longitude grids, the proportion of cloud cover over each grid each day was derived for the entire period. For each of four three-month periods, estimates a and b of the two parameters of the best-fit beta distribution were obtained for each grid location. The (a,b) plane was divided into a number of regions. All the geographical locations whose (a,b) estimates were in the same region in the (a,b) plane were said to have the same cloud cover type for that season. For each season, the world was thus divided into separate cloud cover types. Using estimates of mean cloud cover for each season, the world was again divided into separate cloud cover types. The process was repeated for standard deviations. Thus for each season, three separate cloud cover models were obtained using the criteria of shape of frequency distribution, mean cloud cover, and variability of cloud cover. The cloud cover statistics were derived from once-a-day, near-local-noon satellite radiation measurements.

  9. A Dynamic Optimization Technique for Siting the NASA-Clark Atlanta Urban Rain Gauge Network (NCURN)

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Taylor, Layi

    2003-01-01

    NASA satellites and ground instruments have indicated that cities like Atlanta, Georgia may create or alter rainfall. Scientists speculate that the urban heat island caused by man-made surfaces in cities impact the heat and wind patterns that form clouds and rainfall. However, more conclusive evidence is required to substantiate findings from satellites. NASA, along with scientists at Clark Atlanta University, are implementing a dense, urban rain gauge network in the metropolitan Atlanta area to support a satellite validation program called Studies of PRecipitation Anomalies from Widespread Urban Landuse (SPRAWL). SPRAWL will be conducted during the summer of 2003 to further identify and understand the impact of urban Atlanta on precipitation variability. The paper provides an. overview of SPRAWL, which represents one of the more comprehensive efforts in recent years to focus exclusively on urban-impacted rainfall. The paper also introduces a novel technique for deploying rain gauges for SPRAWL. The deployment of the dense Atlanta network is unique because it utilizes Geographic Information Systems (GIS) and Decision Support Systems (DSS) to optimize deployment of the rain gauges. These computer aided systems consider access to roads, drainage systems, tree cover, and other factors in guiding the deployment of the gauge network. GIS and DSS also provide decision-makers with additional resources and flexibility to make informed decisions while considering numerous factors. Also, the new Atlanta network and SPRAWL provide a unique opportunity to merge the high-resolution, urban rain gauge network with satellite-derived rainfall products to understand how cities are changing rainfall patterns, and possibly climate.

  10. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa

    2018-01-01

    Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.

  11. Rise in the frequency of cloud cover in LANDSAT data for the period 1973 to 1981. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Mendonca, F. J.; Neto, G. C.

    1983-01-01

    Percentages of cloud cover in LANDSAT imagery were used to calculate the cloud cover monthly average statistic for each LANDSAT scene in Brazil, during the period of 1973 to 1981. The average monthly cloud cover and the monthly minimum cloud cover were also calculated for the regions of north, northeast, central west, southeast and south, separately.

  12. Marine cloud brightening

    PubMed Central

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action. PMID:22869798

  13. Indian Summer Monsoon Drought 2009: Role of Aerosol and Cloud Microphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Anupam; Taraphdar, Sourav; Halder, Madhuparna

    2013-07-01

    Cloud dynamics played a fundamental role in defining Indian summer monsoon (ISM) rainfall during drought in 2009. The anomalously negative precipitation was consistent with cloud properties. Although, aerosols inhibited the growth of cloud effective radius in the background of sparse water vapor, their role is secondary. The primary role, however, is played by the interactive feedback between cloud microphysics and dynamics owing to reduced efficient cloud droplet growth, lesser latent heating release and shortage of water content. Cloud microphysical processes were instrumental for the occurrence of ISM drought 2009.

  14. The role of mountain precipitation as a drought buffer in Puerto Rico: Assessing natural systems' resilience to change

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Clark, K. E.; Van Beusekom, A.; Shanley, J. B.; Torres-Sanchez, A.; Murphy, S. F.; Gonzalez, G.

    2017-12-01

    Like many island and coastal areas, the Luquillo Mountains of Puerto Rico receive orographic precipitation (rain and cloud water), maintaining headwater streamflow and allowing diverse forest ecosystems to thrive. Although rainfall from regional-scale convective systems is greater in volume, multiple lines of evidence (stable isotope tracers; precipitation amount, frequency, and intensity; cloud immersion; regional cloud dynamics; weather analysis) show that trade-wind orographic precipitation contributes significantly to streamflow, soil water, and shallow groundwater. Ceilometer data and time-lapse photography of cloud-immersed conditions at the mountain indicated a seasonally invariant, sustained overnight regime of cloud water precipitation, in addition to the abundant rainfall in the mountains. Rising ocean temperatures and a warming tropical climate lead to questions about persistence of the trade-wind associated orographic precipitation and the resilience of similar mountain ecosystems to change. Projections for Caribbean climate change include amplification of trade winds; less frequent, more intense large convective systems; and a warming ocean. These may have opposing effects on mountain precipitation, increasing uncertainty about processes that mitigate drought. Field studies provide insights regarding these questions. Ceilometer and satellite observations showed cloud base is higher over the mountains than in the surrounding Caribbean region; with the trade-wind inversion cap, further rise in cloud base may produce shallower clouds and reduced precipitation. We analyzed the February-October 2015 drought, characterized by strong El Niño conditions, an absence of tropical storm systems, and reduced convection in easterly waves. Combined δ2H, δ18O and d-excess signatures of streamflow indicated precipitation was derived from shallow convective systems, trade-wind showers and cloud water. During severe drought on the island, streamflow-sustaining rainfall at the mountain station at 640 m persisted, albeit with 19% lower frequency and 52% fewer large (>10 mm) rain events than the 20-year average. Clearly, resilience of the mountain forest ecosystem and of streamflow to drought periods depends on orographic precipitation.

  15. Cloud water interception and canopy water balance in the Hawaiian Islands: preliminary results and emerging patterns

    NASA Astrophysics Data System (ADS)

    Tseng, H.; Giambelluca, T. W.; DeLay, J. K.; Nullet, M.

    2017-12-01

    Steep climate gradients and diverse ecosystems make the Hawaiian Islands an ideal laboratory for ecohydrological experiments. Researchers are able to control physical and ecological variables, which is difficult for most environmental studies, by selecting sites along these gradients. Tropical montane forests, especially those situated in the cloud zone, are known to improve recharge and sustain baseflow. This is probably the result of frequent and persistent fog characteristic to these systems. During fog events, evapotranspiration is suppressed due to high humidity and reduced solar radiation. Moreover, cloud water interception by the forest canopy can produce fog drip and contribute significantly to the local water budget. Because the interception process is a complex interaction between the atmosphere and the vegetation, the effects of the meteorological conditions and canopy characteristics are equally important and sometimes hard to separate. This study aims to examine patterns in cloud water interception and canopy water balance across five tropical montane forest sites on three of the main islands of Hawaii. The sites cover a range of elevations between 1100- 2114 m, annual rainfall between 1155-3375 mm, and different dominant plant species with canopy heights ranging from 1.5 m to 30 m. We investigate the effect of climatic factors by comparing passive fog gauge measurements and other meteorological variables, then examine the differences in canopy water balance by comparing throughfall and stemflow measurements at these sites. While this study is ongoing, we present the first few months of field observations and the results of preliminary analyses. This study will improve understanding of how large-scale climate and vegetation factors interact to control cloud water interception and will inform ongoing watershed management. This is particularly important for oceanic islands such as Hawaii because they rely on precipitation entirely for water supply and are, therefore, vulnerable to impacts of altered ecohydrological functioning due to climate and land cover changes.

  16. Observations of temporal change of nighttime cloud cover from Himawari 8 and ground-based sky camera over Chiba, Japan

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Gacal, G. F. B.; Kuze, H.

    2017-12-01

    Detection of nighttime cloud from Himawari 8 is implemented using the difference of digital numbers from bands 13 (10.4µm) and 7 (3.9µm). The digital number difference of -1.39x104 can be used as a threshold to separate clouds from clear sky conditions. To look at observations from the ground over Chiba, a digital camera (Canon Powershot A2300) is used to take images of the sky every 5 minutes at an exposure time of 5s at the Center for Environmental Remote Sensing, Chiba University. From these images, cloud cover values are obtained using threshold algorithm (Gacal, et al, 2016). Ten minute nighttime cloud cover values from these two datasets are compared and analyzed from 29 May to 05 June 2017 (20:00-03:00 JST). When compared with lidar data, the camera can detect thick high level clouds up to 10km. The results show that during clear sky conditions (02-03 June), both camera and satellite cloud cover values show 0% cloud cover. During cloudy conditions (05-06 June), the camera shows almost 100% cloud cover while satellite cloud cover values range from 60 to 100%. These low values can be attributed to the presence of low-level thin clouds ( 2km above the ground) as observed from National Institute for Environmental Studies lidar located inside Chiba University. This difference of cloud cover values shows that the camera can produce accurate cloud cover values of low level clouds that are sometimes not detected by satellites. The opposite occurs when high level clouds are present (01-02 June). Derived satellite cloud cover shows almost 100% during the whole night while ground-based camera shows cloud cover values that range from 10 to 100% during the same time interval. The fluctuating values can be attributed to the presence of thin clouds located at around 6km from the ground and the presence of low level clouds ( 1km). Since the camera relies on the reflected city lights, it is possible that the high level thin clouds are not observed by the camera but is observed by the satellite. Also, this condition constitutes layers of clouds that are not observed by each camera. The results of this study show that one instrument can be used to correct each other to provide better cloud cover values. These corrections is dependent on the height and thickness of the clouds. No correction is necessary when the sky is clear.

  17. TRMM and Its Connection to the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hong, Ye

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35' leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 in. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument.

  18. Typhoon Maysak

    NASA Image and Video Library

    2015-03-31

    ISS043E078143 (03/31/2015) --- Astronauts on board the International Space Station captured this image on Mar. 31, 2015 of the category 5 super Typhoon Maysak which is headed toward the Philippines. The Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites, both co-managed by NASA and the Japan Aerospace Exploration Agency, captured rainfall and cloud data that revealed heavy rainfall and high thunderstorms in the strengthening storm.

  19. Eo-1 Hyperion Measures Canopy Drought Stress In Amazonia

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Moutinho, Paulo; Harris, Thomas; Ray, David

    2004-01-01

    The central, south and southeast portions of the Amazon Basin experience a period of decreased cloud cover and precipitation from June through November. There are likely important effects of seasonal and interannual rainfall variation on forest leaf area index, canopy water stress, productivity and regional carbon cycling in the Amazon. While both ground and spaceborne studies of precipitation continue to improve, there has been almost no progress made in observing forest canopy responses to rainfall variability in the humid tropics. This shortfall stems from the large stature of the vegetation and great spatial extent of tropical forests, both of which strongly impede field studies of forest responses to water availability. Those few studies employing satellite measures of canopy responses to seasonal and interannual drought (e.g., Bohlman et al. 1998, Asner et al. 2000) have been limited by the spectral resolution and sampling available from Landsat and AVHRR sensors. We report on a study combining the first landscape-level, managed drought experiment in Amazon tropical forest with the first spaceborne imaging spectrometer observations of this experimental area. Using extensive field data on rainfall inputs, soil water content, and both leaf and canopy responses, we test the hypothesis that spectroscopic signatures unique to hyperspectral observations can be used to quantify relative differences in canopy stress resulting from water availability.

  20. Moisture status during a strong El Niño explains a tropical montane cloud forest's upper limit.

    PubMed

    Crausbay, Shelley D; Frazier, Abby G; Giambelluca, Thomas W; Longman, Ryan J; Hotchkiss, Sara C

    2014-05-01

    Growing evidence suggests short-duration climate events may drive community structure and composition more directly than long-term climate means, particularly at ecotones where taxa are close to their physiological limits. Here we use an empirical habitat model to evaluate the role of microclimate during a strong El Niño in structuring a tropical montane cloud forest's upper limit and composition in Hawai'i. We interpolate climate surfaces, derived from a high-density network of climate stations, to permanent vegetation plots. Climatic predictor variables include (1) total rainfall, (2) mean relative humidity, and (3) mean temperature representing non-El Niño periods and a strong El Niño drought. Habitat models explained species composition within the cloud forest with non-El Niño rainfall; however, the ecotone at the cloud forest's upper limit was modeled with relative humidity during a strong El Niño drought and secondarily with non-El Niño rainfall. This forest ecotone may be particularly responsive to strong, short-duration climate variability because taxa here, particularly the isohydric dominant Metrosideros polymorpha, are near their physiological limits. Overall, this study demonstrates moisture's overarching influence on a tropical montane ecosystem, and suggests that short-term climate events affecting moisture status are particularly relevant at tropical ecotones. This study further suggests that predicting the consequences of climate change here, and perhaps in other tropical montane settings, will rely on the skill and certainty around future climate models of regional rainfall, relative humidity, and El Niño.

  1. Study and Application on Cloud Covered Rate for Agroclimatical Distribution Using In Guangxi Based on Modis Data

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhong, Shiquan; Sun, Han; Tan, Zongkun; Li, Zheng; Ding, Meihua

    Based on analyzing of the physical characteristics of cloud and importance of cloud in agricultural production and national economy, cloud is a very important climatic resources such as temperature, precipitation and solar radiation. Cloud plays a very important role in agricultural climate division .This paper analyzes methods of cloud detection based on MODIS data in China and Abroad . The results suggest that Quanjun He method is suitable to detect cloud in Guangxi. State chart of cloud cover in Guangxi is imaged by using Quanjun He method .We find out the approach of calculating cloud covered rate by using the frequency spectrum analysis. At last, the Guangxi is obtained. Taking Rongxian County Guangxi as an example, this article analyze the preliminary application of cloud covered rate in distribution of Rong Shaddock pomelo . Analysis results indicate that cloud covered rate is closely related to quality of Rong Shaddock pomelo.

  2. The beta distribution: A statistical model for world cloud cover

    NASA Technical Reports Server (NTRS)

    Falls, L. W.

    1973-01-01

    Much work has been performed in developing empirical global cloud cover models. This investigation was made to determine an underlying theoretical statistical distribution to represent worldwide cloud cover. The beta distribution with probability density function is given to represent the variability of this random variable. It is shown that the beta distribution possesses the versatile statistical characteristics necessary to assume the wide variety of shapes exhibited by cloud cover. A total of 160 representative empirical cloud cover distributions were investigated and the conclusion was reached that this study provides sufficient statical evidence to accept the beta probability distribution as the underlying model for world cloud cover.

  3. Incident rainfall in Rome and its relation to biodeterioration of buildings

    NASA Astrophysics Data System (ADS)

    Caneva, G.; Gori, E.; Danin, A.

    Intensity and distribution of incident rainfall in Rome, and degree of lithobiont cover of building walls, were estimated, and their correlation was discussed. Rainfall and wind data over 10 years for the Rome Meteorological Observatory of Torre Calandrelli (UCEA) were used to calculate the actual hydrocontribution received over walls at various exposures. The biological colonization by lithobionts was evaluated on a sample of 14 buildings in various places of the city, using a phytosociological scale for quantifying their total cover. During all seasons the rainfall shows a significant peak in the south and the southeast exposures, where the highest cover of lithobionts is found. These results show the role of incident rainfall in the climatic conditions of Rome as the main driving factor for the growth of lithobionts on walls where rainfall is their principal source of water.

  4. Predictive ability of severe rainfall events over Catalonia for the year 2008

    NASA Astrophysics Data System (ADS)

    Comellas, A.; Molini, L.; Parodi, A.; Sairouni, A.; Llasat, M. C.; Siccardi, F.

    2011-07-01

    This paper analyses the predictive ability of quantitative precipitation forecasts (QPF) and the so-called "poor-man" rainfall probabilistic forecasts (RPF). With this aim, the full set of warnings issued by the Meteorological Service of Catalonia (SMC) for potentially-dangerous events due to severe precipitation has been analysed for the year 2008. For each of the 37 warnings, the QPFs obtained from the limited-area model MM5 have been verified against hourly precipitation data provided by the rain gauge network covering Catalonia (NE of Spain), managed by SMC. For a group of five selected case studies, a QPF comparison has been undertaken between the MM5 and COSMO-I7 limited-area models. Although MM5's predictive ability has been examined for these five cases by making use of satellite data, this paper only shows in detail the heavy precipitation event on the 9-10 May 2008. Finally, the "poor-man" rainfall probabilistic forecasts (RPF) issued by SMC at regional scale have also been tested against hourly precipitation observations. Verification results show that for long events (>24 h) MM5 tends to overestimate total precipitation, whereas for short events (≤24 h) the model tends instead to underestimate precipitation. The analysis of the five case studies concludes that most of MM5's QPF errors are mainly triggered by very poor representation of some of its cloud microphysical species, particularly the cloud liquid water and, to a lesser degree, the water vapor. The models' performance comparison demonstrates that MM5 and COSMO-I7 are on the same level of QPF skill, at least for the intense-rainfall events dealt with in the five case studies, whilst the warnings based on RPF issued by SMC have proven fairly correct when tested against hourly observed precipitation for 6-h intervals and at a small region scale. Throughout this study, we have only dealt with (SMC-issued) warning episodes in order to analyse deterministic (MM5 and COSMO-I7) and probabilistic (SMC) rainfall forecasts; therefore we have not taken into account those episodes that might (or might not) have been missed by the official SMC warnings. Therefore, whenever we talk about "misses", it is always in relation to the deterministic LAMs' QPFs.

  5. Monthly and Seasonal Cloud Cover Patterns at the Manila Observatory (14.64°N, 121.08°E)

    NASA Astrophysics Data System (ADS)

    Antioquia, C. T.; Lagrosas, N.; Caballa, K.

    2014-12-01

    A ground based sky imaging system was developed at the Manila Observatory in 2012 to measure cloud occurrence and to analyse seasonal variation of cloud cover over Metro Manila. Ground-based cloud occurrence measurements provide more reliable results compared to satellite observations. Also, cloud occurrence data aid in the analysis of radiation budget in the atmosphere. In this study, a GoPro Hero 2 with almost 180o field of view is employed to take pictures of the atmosphere. These pictures are taken continuously, having a temporal resolution of 1min. Atmospheric images from April 2012 to June 2013 (excluding the months of September, October, and November 2012) were processed to determine cloud cover. Cloud cover in an image is measured as the ratio of the number of pixels with clouds present in them to the total number of pixels. The cloud cover values were then averaged over each month to know its monthly and seasonal variation. In Metro Manila, the dry season occurs in the months of November to May of the next year, while the wet season occurs in the months of June to October of the same year. Fig 1 shows the measured monthly variation of cloud cover. No data was collected during the months of September (wherein the camera was used for the 7SEAS field campaign), October, and November 2012 (due to maintenance and repairs). Results show that there is high cloud cover during the wet season months (80% on average) while there is low cloud cover during the dry season months (62% on average). The lowest average cloud cover for a wet season month occurred in June 2012 (73%) while the highest average cloud cover for a wet season month occurred in June 2013 (86%). The variations in cloud cover average in this season is relatively smaller compared to that of the dry season wherein the lowest average cloud cover in a month was during April 2012 (38%) while the highest average cloud cover in a month was during January 2013 (77%); minimum and maximum averages being 39% apart. During the wet season, the cloud occurrence is mainly due to tropical storms, Southwest Monsoon, and local convection processes. In the dry season, less cloud is formed because of cold dry air from Northeast Monsoon (December to February) and generally dry and hot weather (March to May). Regular data collection has been implemented for further long term data analysis.

  6. Progress Towards Achieving the Challenge of Indian Summer Monsoon Climate Simulation in a Coupled Ocean-Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh Kumar; Pokhrel, Samir; Goswami, B. N.

    2017-10-01

    Simulation of the spatial and temporal structure of the monsoon intraseasonal oscillations (MISOs), which have effects on the seasonal mean and annual cycle of Indian summer monsoon (ISM) rainfall, remains a grand challenge for the state-of-the-art global coupled models. Biases in simulation of the amplitude and northward propagation of MISOs and related dry rainfall bias over ISM region in climate models are limiting the current skill of monsoon prediction. Recent observations indicate that the convective microphysics of clouds may be critical in simulating the observed MISOs. The hypothesis is strongly supported by high fidelity in simulation of the amplitude and space-time spectra of MISO by a coupled climate model, when our physically based modified cloud microphysics scheme is implemented in conjunction with a modified new Simple Arakawa Schubert (nSAS) convective parameterization scheme. Improved simulation of MISOs appears to have been aided by much improved simulation of the observed high cloud fraction and convective to stratiform rain fractions and resulted into a much improved simulation of the ISM rainfall, monsoon onset, and the annual cycle.

  7. Powerful Hurricane Irma Seen in 3D by NASA's CloudSat

    NASA Image and Video Library

    2017-09-08

    NASA's CloudSat satellite flew over Hurricane Irma on Sept. 6, 2017 at 1:45 p.m. EDT (17:45 UTC) as the storm was approaching Puerto Rico in the Atlantic Ocean. Hurricane Irma contained estimated maximum sustained winds of 185 miles per hour (160 knots) with a minimum pressure of 918 millibars. CloudSat transected the eastern edge of Hurricane Irma's eyewall, revealing details of the storm's cloud structure beneath its thick canopy of cirrus clouds. The CloudSat Cloud Profiling Radar excels in detecting the organization and placement of cloud layers beneath a storm's cirrus canopy, which are not readily detected by other satellite sensors. The CloudSat overpass reveals the inner details beneath the cloud tops of this large system; intense areas of convection with moderate to heavy rainfall (deep red and pink colors), cloud-free areas (moats) in between the inner and outer cloud bands of Hurricane Irma and cloud top heights averaging around 9 to 10 miles (15 to 16 kilometers). Lower values of reflectivity (areas of green and blue) denote smaller-sized ice and water particle sizes typically located at the top of a storm system (in the anvil area). The Cloud Profiling Radar loses signal at around 3 miles (5 kilometers) in height (in the melting layer) due to water (ice) particles larger than 0.12 inches (3 millimeters) in diameter. Moderate to heavy rainfall occurs in these areas where signal weakening is detectable. Smaller cumulus and cumulonimbus cloud types are evident as CloudSat moves farther south, beneath the thick cirrus canopy. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21947

  8. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2004-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.

  9. Characteristics Associated with the Madden-Julian Oscillation at Manus Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liping; McFarlane, Sally A.; Flaherty, Julia E.

    2013-05-15

    Ground-based high temporal and vertical resolution datasets from 2002 to 2008 of observations at the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site on Manus Island, Papua New Guinea are used to examine the evolution of clouds and rainfall associated with the MJO life cycle. A composite MJO event is developed based on the NOAA MJO Index 4 using 13 events. The analysis shows that the cloud evolution during the composited MJO life cycle depicts a two-phase structure consisting of a development phase and a mature phase. During the development phase, congestus is the most important cloud type; duringmore » the mature phase, deep convection is the dominant cloud type. Consistent with this two-phase structure, the heavy rainfall frequency also shows a two-peak structure during the MJO life cycle. Light rainfall does not show a clear relation to the MJO life cycle, but shows variability on shorter time scales. From the development phase to the mature phase, the MJO structure shifts from the Type I to Type II structure, showing a different phase relationship between convection and dynamic fields (or wave motion) in the development and mature phases. During the shift, mid-level clouds play an important role in moving moisture to the mid-troposphere and preparing the atmosphere for the following deep convection. The discharge-recharge theory explains some of observed features of the MJO evolution at the ARM TWP Manus Island site.« less

  10. Applying the WRF Double-Moment Six-Class Microphysics Scheme in the GRAPES_Meso Model: A Case Study

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Wang, Hong; Zhang, Xiaoye; Peng, Yue; Che, Huizheng

    2018-04-01

    This study incorporated the Weather Research and Forecasting (WRF) model double-moment 6-class (WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and PrEdiction System (GRAPES_Meso). A rainfall event that occurred during 3-5 June 2015 around Beijing was simulated by using the WDM6, the WRF single-moment 6-class scheme (WSM6), and the NCEP 5-class scheme, respectively. The results show that both the distribution and magnitude of the rainfall simulated with WDM6 were more consistent with the observation. Compared with WDM6, WSM6 simulated larger cloud liquid water content, which provided more water vapor for graupel growth, leading to increased precipitation in the cold-rain processes. For areas with the warmrain processes, the sensitivity experiments using WDM6 showed that an increase in cloud condensation nuclei (CCN) number concentration led to enhanced CCN activation ratio and larger cloud droplet number concentration ( N c) but decreased cloud droplet effective diameter. The formation of more small-size cloud droplets resulted in a decrease in raindrop number concentration ( N r), inhibiting the warm-rain processes, thus gradually decreasing the amount of precipitation. For areas mainly with the cold-rain processes, the overall amount of precipitation increased; however, it gradually decreased when the CCN number concentration reached a certain magnitude. Hence, the effect of CCN number concentration on precipitation exhibits significant differences in different rainfall areas of the same precipitation event.

  11. Marine Cloud Brightening: Recent Developments

    NASA Astrophysics Data System (ADS)

    Latham, J.; Gadian, A.; Kleypas, J. A.; Parkes, B.; Hauser, R.; Salter, S.

    2012-12-01

    Our detailed review of Marine Cloud Brightening (MCB) [Latham et al. (2012) Phil Trans Roy Soc] covers our work up to late 2010. We present herein an outline of some subsequent work. Areas in which we have been particularly active in the last 2 years include; (1) seawater spray technology, (2) influence of MCB on rainfall, (3) CFD studies of Flettner Rotor stability. (4) pseudo-random studies, (5), use of MCB to weaken hurricanes and halt coral bleaching. We used the UK Met. Office HADGEM 1 ocean/atmosphere coupled climate model in all the studies mentioned below. Our treatment of MCB is as described in our 2012 paper. In all cases below our conclusions are provisional, with more work required. We have analysed research conducted by others and ourselves on the important topic of the impact of MCB on rainfall. It appears that the widely varying predictions from different studies result from differences in cloud seeding locations and amounts. This raises the possibility - which needs much more investigation - that unacceptable rainfall differences could be overcome by changing seeding locations. It may be possible to produce a world-wide, everywhere-to-everywhere transfer function of the effects of increased cloud reflectivity by using pseudo-random variation of the CCN concentration in a climate model. Tests on artificial alterations to a real daily temperature record showed that, over a 20 year run, the scatter of results of the detection of the magnitude of the alteration were about 1% of the root mean square of the natural variation. In these studies the CCN values in 89 regions of the oceans were either multiplied or divided by a chosen constant, at different random 10-day intervals, during a run of 20 years. The resulting model predictions of important meteorological parameters such as temperature, precipitation and ice extent were recorded for all the regions of the world. For each point of interest the precipitation record was correlated for each different source region to give a world map of the influence of each spray region. This might be positive, negative or neutral. We obtained statistically significant results for precipitation in both directions at places far from the spray source, even in the opposite hemisphere, over eight 20 year runs. We may be able to reduce the probability of both floods and droughts by directing movements and activity of spray vessels. Our modeling indicates that MCB seeding of marine stratocumulus clouds in regions where hurricanes spawn or develop could reduce sea-surface-temperatures [SST] sufficiently to reduce hurricane intensity by perhaps one Category. Further modeling indicates that substantial coral bleaching predicted to result from CO2-doubling, in 3 important coral regions, might be essentially eliminated by MCB seeding.

  12. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon

    2011-05-01

    Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. We present (a) a spatially extensive analysis of tree cover and fire distribution in sub-Saharan Africa, and (b) a model, based on empirical results, demonstrating that savanna and forest may be alternative stable states in parts of Africa, with implications for understanding savanna distributions. Tree cover does not increase continuously with rainfall, but rather is constrained to low (<50%, "savanna") or high tree cover (>75%, "forest"). Intermediate tree cover rarely occurs. Fire, which prevents trees from establishing, differentiates high and low tree cover, especially in areas with rainfall between 1000 mm and 2000 mm. Fire is less important at low rainfall (<1000 mm), where rainfall limits tree cover, and at high rainfall (>2000 mm), where fire is rare. This pattern suggests that complex interactions between climate and disturbance produce emergent alternative states in tree cover. The relationship between tree cover and fire was incorporated into a dynamic model including grass, savanna tree saplings, and savanna trees. Only recruitment from sapling to adult tree varied depending on the amount of grass in the system. Based on our empirical analysis and previous work, fires spread only at tree cover of 40% or less, producing a sigmoidal fire probability distribution as a function of grass cover and therefore a sigmoidal sapling to tree recruitment function. This model demonstrates that, given relatively conservative and empirically supported assumptions about the establishment of trees in savannas, alternative stable states for the same set of environmental conditions (i.e., model parameters) are possible via a fire feedback mechanism. Integrating alternative stable state dynamics into models of biome distributions could improve our ability to predict changes in biome distributions and in carbon storage under climate and global change scenarios.

  13. Towards Near Real-time Convective Rainfall Observations over Kenya

    NASA Astrophysics Data System (ADS)

    Hoedjes, Joost; Said, Mohammed; Becht, Robert; Kifugo, Shem; Kooiman, André; Limo, Agnes; Maathuis, Ben; Moore, Ian; Mumo, Mark; Nduhiu Mathenge, Joseph; Su, Bob; Wright, Iain

    2013-04-01

    The existing meteorological infrastructure in Kenya is poorly suited for the countrywide real-time monitoring of precipitation. Rainfall radar is not available, and the existing network of rain gauges is sparse and challenging to maintain. This severely restricts Kenya's capacity to warn for, and respond to, weather related emergencies. Furthermore, the lack of accurate rainfall observations severely limits Kenya's climate change adaptation capabilities. Over the past decade, the mobile telephone network in Kenya has expanded rapidly. This network makes extensive use of terrestrial microwave (MW) links, received signal level (RSL) data from which can be used for the calculation of rainfall intensities. We present a novel method for the near-real time observation of convective rainfall over Kenya, based on the combined use of MW RSL data and Meteosat Second Generation (MSG) satellite data. In this study, the variable density rainfall information derived from several MW links is scaled up using MSG data to provide full rainfall information coverage for the region surrounding the links. Combining MSG data and MW link derived rainfall data for several adjacent MW links makes it possible to make the distinction between wet and dry pixels. This allows the disaggregation of the MW link derived rainfall intensities. With the distinction between wet and dry pixels made, and the MW derived rainfall intensities disaggregated, these data can then be used to develop instantaneous empirical relationships linking rainfall intensities to cloud physical properties. These relationships are then used to calculate rainfall intensities for the MSG scene. Since both the MSG and the MW data are available at the same temporal resolution, unique empirical coefficients can be determined for each interval. This approach ensures that changes in convective conditions from one interval to the next are taken into account. Initial results from a pilot study, which took place from November 2012 until January 2013, are presented. The work has been carried out in close cooperation with mobile telephone operator Safaricom, using RSL data from 15 microwave links in rain prone areas in Western Kenya (out of a total of 3000 MW links operated by Safaricom in Kenya). The data supplied by Safaricom consist of the mean, minimum and maximum RSL for each MW link over a 15 minute interval. For this pilot study, use has been made of the MSG Cloud Top Temperature data product from the Royal Dutch Meteorological Institute's MSG Cloud Physical Properties database (http://msgcpp.knmi.nl/).

  14. Novel SVM-based technique to improve rainfall estimation over the Mediterranean region (north of Algeria) using the multispectral MSG SEVIRI imagery

    NASA Astrophysics Data System (ADS)

    Sehad, Mounir; Lazri, Mourad; Ameur, Soltane

    2017-03-01

    In this work, a new rainfall estimation technique based on the high spatial and temporal resolution of the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) is presented. This work proposes efficient scheme rainfall estimation based on two multiclass support vector machine (SVM) algorithms: SVM_D for daytime and SVM_N for night time rainfall estimations. Both SVM models are trained using relevant rainfall parameters based on optical, microphysical and textural cloud proprieties. The cloud parameters are derived from the Spectral channels of the SEVIRI MSG radiometer. The 3-hourly and daily accumulated rainfall are derived from the 15 min-rainfall estimation given by the SVM classifiers for each MSG observation image pixel. The SVMs were trained with ground meteorological radar precipitation scenes recorded from November 2006 to March 2007 over the north of Algeria located in the Mediterranean region. Further, the SVM_D and SVM_N models were used to estimate 3-hourly and daily rainfall using data set gathered from November 2010 to March 2011 over north Algeria. The results were validated against collocated rainfall observed by rain gauge network. Indeed, the statistical scores given by correlation coefficient, bias, root mean square error and mean absolute error, showed good accuracy of rainfall estimates by the present technique. Moreover, rainfall estimates of our technique were compared with two high accuracy rainfall estimates methods based on MSG SEVIRI imagery namely: random forests (RF) based approach and an artificial neural network (ANN) based technique. The findings of the present technique indicate higher correlation coefficient (3-hourly: 0.78; daily: 0.94), and lower mean absolute error and root mean square error values. The results show that the new technique assign 3-hourly and daily rainfall with good and better accuracy than ANN technique and (RF) model.

  15. A cloud cover model based on satellite data

    NASA Technical Reports Server (NTRS)

    Somerville, P. N.; Bean, S. J.

    1980-01-01

    A model for worldwide cloud cover using a satellite data set containing infrared radiation measurements is proposed. The satellite data set containing day IR, night IR and incoming and absorbed solar radiation measurements on a 2.5 degree latitude-longitude grid covering a 45 month period was converted to estimates of cloud cover. The global area was then classified into homogeneous cloud cover regions for each of the four seasons. It is noted that the developed maps can be of use to the practicing climatologist who can obtain a considerable amount of cloud cover information without recourse to large volumes of data.

  16. Short-term modulation of Indian summer monsoon rainfall by West Asian dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinoj, V.; Rasch, Philip J.; Wang, Hailong

    The Indian summer monsoon is the result of a complex interplay between radiative heating, dynamics and cloud and aerosol interactions. Despite increased scientific attention, the effect of aerosols on monsoons still remains uncertain. Here we present both observational evidence and numerical modeling results demonstrating a remote aerosol link to Indian summer monsoon rainfall. Rainfall over central India is positively correlated to natural aerosols over the Arabian Sea and West Asia. Simulations using a state-of-the-art global climate model support this remote aerosol link and indicate that dust aerosols induce additional moisture transport and convergence over Central India, producing increased monsoon rainfall.more » The convergence is driven through solar heating and latent heating within clouds over West Asia that increases surface winds over the Arabian Sea. On the other hand, sea-salt aerosol tends to counteract the effect of dust and reduces rainfall. Our findings highlight the importance of natural aerosols in modulating the strength of the Indian summer monsoon, and motivate additional research in how changes in background aerosols of natural origin may be influencing long-term trends in monsoon precipitation.« less

  17. Rainfall and streamflow from small tree-covered and fern-covered and burned watersheds in Hawaii

    Treesearch

    H. W. Anderson; P. D. Duffy; Teruo Yamamoto

    1966-01-01

    Streamflow from two 30-acre watersheds near Honolulu was studied by using principal components regression analysis. Models using data on monthly, storm, and peak discharges were tested against several variables expressing amount and intensity of rainfall, and against variables expressing antecedent rainfall. Explained variation ranged from 78 to 94 percent. The...

  18. Satellite Studies of Cirrus Clouds for Project Fire

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Examine global cloud climatologies for evidence of human caused changes in cloud cover and their effect on the Earth's heat budget through radiative processes. Quantify climatological changes in global cloud cover and estimate their effect on the Earth's heat budget. Improve our knowledge of global cloud cover and its changes through the merging of several satellite data sets.

  19. Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series

    USGS Publications Warehouse

    Li, Ji; Lewis, J.; Rowland, James; Tappan, G.; Tieszen, L.L.

    2004-01-01

    Time series of rainfall data and normalized difference vegetation index (NDVI) were used to evaluate land cover performance in Senegal, Africa, for the period 1982–1997, including analysis of woodland/forest, agriculture, savanna, and steppe land cover types. A strong relationship exists between annual rainfall and season-integrated NDVI for all of Senegal (r=0.74 to 0.90). For agriculture, savanna, and steppe areas, high positive correlations portray ‘normal’ land cover performance in relation to the rainfall/NDVI association. Regions of low correlation might indicate areas impacted by human influence. However, in the woodland/forest area, a negative or low correlation (with high NDVI) may reflect ‘normal’ land cover performance, due in part to the saturation effect of the rainfall/NDVI association. The analysis identified three areas of poor performance, where degradation has occurred over many years. Use of the ‘Standard Error of the Estimate’ provided essential information for detecting spatial anomalies associated with land degradation.

  20. Cloud cover detection combining high dynamic range sky images and ceilometer measurements

    NASA Astrophysics Data System (ADS)

    Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.

    2017-11-01

    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.

  1. A Multi-scale Modeling System: Developments, Applications and Critical Issues

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, Jiundar; Atlas, Robert; Randall, David; Lin, Xin; Khairoutdinov, Marat; Li, Jui-Lin; Waliser, Duane E.; Hou, Arthur; Peters-Lidard, Christa; hide

    2006-01-01

    A multi-scale modeling framework (MMF), which replaces the conventional cloud parameterizations with a cloud-resolving model (CRM) in each grid column of a GCM, constitutes a new and promising approach. The MMF can provide for global coverage and two-way interactions between the CRMs and their parent GCM. The GCM allows global coverage and the CRM allows explicit simulation of cloud processes and their interactions with radiation and surface processes. A new MMF has been developed that is based the Goddard finite volume GCM (fvGCM) and the Goddard Cumulus Ensemble (GCE) model. This Goddard MMF produces many features that are similar to another MMF that was developed at Colorado State University (CSU), such as an improved .surface precipitation pattern, better cloudiness, improved diurnal variability over both oceans and continents, and a stronger, propagating Madden-Julian oscillation (MJO) compared to their parent GCMs using conventional cloud parameterizations. Both MMFs also produce a precipitation bias in the western Pacific during Northern Hemisphere summer. However, there are also notable differences between two MMFs. For example, the CSU MMF simulates less rainfall over land than its parent GCM. This is why the CSU MMF simulated less overall global rainfall than its parent GCM. The Goddard MMF overestimates global rainfall because of its oceanic component. Some critical issues associated with the Goddard MMF are presented in this paper.

  2. Improvement of Systematic Bias of mean state and the intraseasonal variability of CFSv2 through superparameterization and revised cloud-convection-radiation parameterization

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, P.; Phani Murali Krishna, R.; Goswami, Bidyut B.; Abhik, S.; Ganai, Malay; Mahakur, M.; Khairoutdinov, Marat; Dudhia, Jimmy

    2016-05-01

    Inspite of significant improvement in numerical model physics, resolution and numerics, the general circulation models (GCMs) find it difficult to simulate realistic seasonal and intraseasonal variabilities over global tropics and particularly over Indian summer monsoon (ISM) region. The bias is mainly attributed to the improper representation of physical processes. Among all the processes, the cloud and convective processes appear to play a major role in modulating model bias. In recent times, NCEP CFSv2 model is being adopted under Monsoon Mission for dynamical monsoon forecast over Indian region. The analyses of climate free run of CFSv2 in two resolutions namely at T126 and T382, show largely similar bias in simulating seasonal rainfall, in capturing the intraseasonal variability at different scales over the global tropics and also in capturing tropical waves. Thus, the biases of CFSv2 indicate a deficiency in model's parameterization of cloud and convective processes. Keeping this in background and also for the need to improve the model fidelity, two approaches have been adopted. Firstly, in the superparameterization, 32 cloud resolving models each with a horizontal resolution of 4 km are embedded in each GCM (CFSv2) grid and the conventional sub-grid scale convective parameterization is deactivated. This is done to demonstrate the role of resolving cloud processes which otherwise remain unresolved. The superparameterized CFSv2 (SP-CFS) is developed on a coarser version T62. The model is integrated for six and half years in climate free run mode being initialised from 16 May 2008. The analyses reveal that SP-CFS simulates a significantly improved mean state as compared to default CFS. The systematic bias of lesser rainfall over Indian land mass, colder troposphere has substantially been improved. Most importantly the convectively coupled equatorial waves and the eastward propagating MJO has been found to be simulated with more fidelity in SP-CFS. The reason of such betterment in model mean state has been found to be due to the systematic improvement in moisture field, temperature profile and moist instability. The model also has better simulated the cloud and rainfall relation. This initiative demonstrates the role of cloud processes on the mean state of coupled GCM. As the superparameterization approach is computationally expensive, so in another approach, the conventional Simplified Arakawa Schubert (SAS) scheme is replaced by a revised SAS scheme (RSAS) and also the old and simplified cloud scheme of Zhao-Karr (1997) has been replaced by WSM6 in CFSV2 (hereafter CFS-CR). The primary objective of such modifications is to improve the distribution of convective rain in the model by using RSAS and the grid-scale or the large scale nonconvective rain by WSM6. The WSM6 computes the tendency of six class (water vapour, cloud water, ice, snow, graupel, rain water) hydrometeors at each of the model grid and contributes in the low, middle and high cloud fraction. By incorporating WSM6, for the first time in a global climate model, we are able to show a reasonable simulation of cloud ice and cloud liquid water distribution vertically and spatially as compared to Cloudsat observations. The CFS-CR has also showed improvement in simulating annual rainfall cycle and intraseasonal variability over the ISM region. These improvements in CFS-CR are likely to be associated with improvement of the convective and stratiform rainfall distribution in the model. These initiatives clearly address a long standing issue of resolving the cloud processes in climate model and demonstrate that the improved cloud and convective process paramterizations can eventually reduce the systematic bias and improve the model fidelity.

  3. Detecting Aerosol Effect on Deep Precipitation Systems: A Modeling Study

    NASA Astrophysics Data System (ADS)

    Li, X.; Tao, W.; Khain, A.; Kummerow, C.; Simpson, J.

    2006-05-01

    Urban cities produce high concentrations of anthropogenic aerosols. These aerosols are generally hygroscopic and may serve as Cloud Condensation Nuclei (CCN). This study focuses on the aerosol indirect effect on the deep convective systems over the land. These deep convective systems contribute to the majority of the summer time rainfall and are important for local hydrological cycle and weather forecast. In a companion presentation (Tao et al.) in this session, the mechanisms of aerosol-cloud-precipitation interactions in deep convective systems are explored using cloud-resolving model simulations. Here these model results will be analyzed to provide guidance to the detection of the impact of aerosols as CCN on summer time, deep convections using the currently available observation methods. The two-dimensional Goddard Cumulus Ensemble (GCE) model with an explicit microphysical scheme has been used to simulate the aerosol effect on deep precipitation systems. This model simulates the size distributions of aerosol particles, as well as cloud, rain, ice crystals, snow, graupel, and hail explicitly. Two case studies are analyzed: a midlatitude summer time squall in Oklahoma, and a sea breeze convection in Florida. It is shown that increasing the CCN number concentration does not affect the rainfall structure and rain duration in these two cases. The total surface rainfall rate is reduced in the squall case, but remains essentially the same in the sea breeze case. For the long-lived squall system with a significant portion of the stratiform rain, the surface rainfall PDF (probability density function) distribution is more sensitive to the change of the initial CCN concentrations compared with the total surface rainfall. The possibility of detecting the aerosol indirect effect in deep precipitation systems from the space is also studied in this presentation. The hydrometeors fields from the GCE model simulations are used as inputs to a microwave radiative transfer model. It is found that Tb at higher frequencies (35 GHz and 85 GHz) are quite sensitive to the CCN concentration variations. This is because the higher frequency brightness temperatures are sensitive to large, ice-phase particles. In a clean environment, the deep convections produce larger cloud particles. When these cloud particles are transported above the freezing level by strong updrafts, they form larger precipitable ice particles (snow, graupel and hail) compared with dirty environment simulations. These larger ice particles result in significantly colder brightness temperatures at high frequencies in the clean scenario simulations.

  4. Variations in Precipitation Parameters between Drought and Nondrought Periods in Texas and Some Implications for Cloud Seeding.

    NASA Astrophysics Data System (ADS)

    Flynn, Michael S.; Griffiths, John F.

    1980-12-01

    An analysis of the possible differences among various rainfall parameters during drought and nondrought periods was undertaken for 12 Texas stations. The division of monthly rainfall amounts into quintiles served as the rainfall classification. Rainfall amounts, number of rains and rainfall intensities were calculated for each quintile for four thresholds of rainfall 0.0254, 0.2540, 0.5080 and 1.2700 cm. The thresholds were applied on a daily and hourly basis. At low rainfall thresholds in nearly every case, numbers of rains in very dry periods proved to be <100% of normal.The possible differences in persistence of rainfall during Very Dry and Very Wet periods were examined by calculating runs of rains of 0.0254 cm or more per hour. Medians of runs of rain hours in Very Dry periods were found to be less than those in Very Wet periods except at Corpus Christi in April and at Waco in February. Probabilities that a run of rain hours would extend to a given length were determined. During Very Dry periods a probability >0.5 that a rain will extend into a second hour during a month of key importance to agriculture (June, July and August) occurs only at Amarillo, Lovelady, Port Arthur and Waco. The probability that a rain will extend into a third hour is never above 0.5 during the key months in Very Dry periods for any of the stations studied.The implications of these findings are discussed in relation to feasibility of cloud seeding and to irrigation management during severe drought.

  5. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.

    2004-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.

  6. Robust effects of cloud superparameterization on simulated daily rainfall intensity statistics across multiple versions of the Community Earth System Model

    DOE PAGES

    Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.; ...

    2016-02-01

    This study evaluates several important statistics of daily rainfall based on frequency and amount distributions as simulated by a global climate model whose precipitation does not depend on convective parameterization—Super-Parameterized Community Atmosphere Model (SPCAM). Three superparameterized and conventional versions of CAM, coupled within the Community Earth System Model (CESM1 and CCSM4), are compared against two modern rainfall products (GPCP 1DD and TRMM 3B42) to discriminate robust effects of superparameterization that emerge across multiple versions. The geographic pattern of annual-mean rainfall is mostly insensitive to superparameterization, with only slight improvements in the double-ITCZ bias. However, unfolding intensity distributions reveal several improvementsmore » in the character of rainfall simulated by SPCAM. The rainfall rate that delivers the most accumulated rain (i.e., amount mode) is systematically too weak in all versions of CAM relative to TRMM 3B42 and does not improve with horizontal resolution. It is improved by superparameterization though, with higher modes in regions of tropical wave, Madden-Julian Oscillation, and monsoon activity. Superparameterization produces better representations of extreme rates compared to TRMM 3B42, without sensitivity to horizontal resolution seen in CAM. SPCAM produces more dry days over land and fewer over the ocean. Updates to CAM’s low cloud parameterizations have narrowed the frequency peak of light rain, converging toward SPCAM. Poleward of 50°, where more rainfall is produced by resolved-scale processes in CAM, few differences discriminate the rainfall properties of the two models. Lastly, these results are discussed in light of their implication for future rainfall changes in response to climate forcing.« less

  7. Near-surface air temperature lapse rate in a humid mountainous terrain on the southern slopes of the eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Kattel, Dambaru Ballab; Yao, Tandong; Panday, Prajjwal Kumar

    2018-05-01

    Based on climatic data from 18 stations on the southern slopes of the eastern Himalayas in Bhutan for the period from 1996 to 2009, this paper investigates monthly characteristics of the near-surface air temperature lapse rate (TLR). The station elevations used in this study range from 300 to 2760 m a. s. l. TLRs were evaluated using a linear regression model. The monthly values of maximum TLRs were always smaller than those of the minimum TLRs, which is in contrast to results from the surrounding mountainous regions. In this study, annual patterns of TLRs were somewhat consistent, particularly in the summer; during the other seasons, patterns contrasted to results from the southeastern Tibetan Plateau (China) and were almost comparable to results from Nepal. The shallowest observed values for TLRs in summer are due to intense latent heating at the higher elevation, associated with water vapor condensation from moist convection and evapotranspiration, and decreasing sensible heating at lower elevation, due to heavier rainfall, cloud, and forest cover. When compared to summer, the steeper TLRs in the non-monsoon season are due to sensible heating at the lower elevations, corresponding to dry and clear weather seasons, as well as increasing cooling at higher elevations, particularly in winter due to snow and cloud cover. Owing to lower albedo and higher aerodynamic roughness of forested areas, the TLRs were considerably reduced in daytime because of the dissipation of sensible heat to the atmospheric boundary layer. The distinct variation in diurnal TLR range is due to the diurnal variation in net radiation associated with reduced turbulent heating in the day and increased turbulent heating in the night, in addition to the effect of moisture and cloud cover. The shallower values of TLRs in this study when compared with the surrounding mountainous regions are due to high humidity, as well as the differing elevations and local climates.

  8. Large Area Crop Inventory Experiment (LACIE). Detection of episodic phenomena on LANDSAT imagery. [Kansas

    NASA Technical Reports Server (NTRS)

    Chesnutwood, C. M. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Episodic phenomena such as rainfall shortly before data pass, thin translucent clouds, cloud shadows, and aircraft condensation trails and their shadows are responsible for changes in the spectral reflectivities of some surfaces. These changes are readily detected on LANDSAT full-frame imagery. Histograms of selected areas in Kansas show a distinct decrease in mean radiance values, but also, an increase in scene contrast, in areas where recent rains had occurred. Histograms from a few individual fields indicate that the mean radiance values for winter wheat followed a different trend after a rainfall than alfalfa or grasses.

  9. On the response of MODIS cloud coverage to global mean surface air temperature

    NASA Astrophysics Data System (ADS)

    Yue, Qing; Kahn, Brian H.; Fetzer, Eric J.; Wong, Sun; Frey, Richard; Meyer, Kerry G.

    2017-01-01

    The global surface temperature change (ΔTs) mediated cloud cover response is directly related to cloud-climate feedback. Using satellite remote sensing data to relate cloud and climate requires a well-calibrated, stable, and consistent long-term cloud data record. The Collection 5.1 (C5) Moderate Resolution Imaging Spectroradiometer (MODIS) cloud observations have been widely used for this purpose. However, the MODIS data quality varies greatly with the surface type, spectral region, cloud type, and time periods of study, which calls for additional caution when applying such data to studies on cloud cover temporal trends and variability. Using 15 years of cloud observations made by Terra and Aqua MODIS, we analyze the ΔTs-mediated cloud cover response for different cloud types by linearly regressing the monthly anomaly of cloud cover (ΔC) with the monthly anomaly of global Ts. The Collection 6 (C6) Aqua data exhibit a similar cloud response to the long-term counterpart simulated by advanced climate models. A robust increase in altitude with increasing ΔTs is found for high clouds, while a robust decrease of ΔC is noticed for optically thick low clouds. The large differences between C5 and C6 results are from improvements in calibration and cloud retrieval algorithms. The large positive cloud cover responses with data after 2010 and the strong sensitivity to time period obtained from the Terra (C5 and C6) data are likely due to calibration drift that has not been corrected, suggesting that the previous estimate of the short-term cloud cover response from the these data should be revisited.

  10. Landscape monitoring of post-industrial areas using LiDAR and GIS technology

    NASA Astrophysics Data System (ADS)

    Wężyk, Piotr; Szostak, Marta; Krzaklewski, Wojciech; Pająk, Marek; Pierzchalski, Marcin; Szwed, Piotr; Hawryło, Paweł; Ratajczak, Michał

    2015-06-01

    The quarrying industry is changing the local landscape, forming deep open pits and spoil heaps in close proximity to them, especially lignite mines. The impact can include toxic soil material (low pH, heavy metals, oxidations etc.) which is the basis for further reclamation and afforestation. Forests that stand on spoil heaps have very different growth conditions because of the relief (slope, aspect, wind and rainfall shadows, supply of solar energy, etc.) and type of soil that is deposited. Airborne laser scanning (ALS) technology deliver point clouds (XYZ) and derivatives as raster height models (DTM, DSM, nDSM=CHM) which allow the reception of selected 2D and 3D forest parameters (e.g. height, base of the crown, cover, density, volume, biomass, etc). The automation of ALS point cloud processing and integrating the results into GIS helps forest managers to take appropriate decisions on silvicultural treatments in areas with failed plantations (toxic soil, droughts on south-facing slopes; landslides, etc.) or as regular maintenance. The ISOK country-wide project ongoing in Poland will soon deliver ALS point cloud data which can be successfully used for the monitoring and management of many thousands of hectares of destroyed post-industrial areas which according to the law, have to be afforested and transferred back to the State Forest.

  11. Using polarimetry to retrieve the cloud coverage of Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Stam, D. M.

    2017-11-01

    Context. Clouds have already been detected in exoplanetary atmospheres. They play crucial roles in a planet's atmosphere and climate and can also create ambiguities in the determination of atmospheric parameters such as trace gas mixing ratios. Knowledge of cloud properties is required when assessing the habitability of a planet. Aims: We aim to show that various types of cloud cover such as polar cusps, subsolar clouds, and patchy clouds on Earth-like exoplanets can be distinguished from each other using the polarization and flux of light that is reflected by the planet. Methods: We have computed the flux and polarization of reflected starlight for different types of (liquid water) cloud covers on Earth-like model planets using the adding-doubling method, that fully includes multiple scattering and polarization. Variations in cloud-top altitudes and planet-wide cloud cover percentages were taken into account. Results: We find that the different types of cloud cover (polar cusps, subsolar clouds, and patchy clouds) can be distinguished from each other and that the percentage of cloud cover can be estimated within 10%. Conclusions: Using our proposed observational strategy, one should be able to determine basic orbital parameters of a planet such as orbital inclination and estimate cloud coverage with reduced ambiguities from the planet's polarization signals along its orbit.

  12. Rain estimation from satellites: An examination of the Griffith-Woodley technique

    NASA Technical Reports Server (NTRS)

    Negri, A. J.; Adler, R. F.; Wetzel, P. J.

    1983-01-01

    The Griffith-Woodley Technique (GWT) is an approach to estimating precipitation using infrared observations of clouds from geosynchronous satellites. It is examined in three ways: an analysis of the terms in the GWT equations; a case study of infrared imagery portraying convective development over Florida; and the comparison of a simplified equation set and resultant rain map to results using the GWT. The objective is to determine the dominant factors in the calculation of GWT rain estimates. Analysis of a single day's convection over Florida produced a number of significant insights into various terms in the GWT rainfall equations. Due to the definition of clouds by a threshold isotherm the majority of clouds on this day did not go through an idealized life cycle before losing their identity through merger, splitting, etc. As a result, 85% of the clouds had a defined life of 0.5 or 1 h. For these clouds the terms in the GWT which are dependent on cloud life history become essentially constant. The empirically derived ratio of radar echo area to cloud area is given a singular value (0.02) for 43% of the sample, while the rainrate term is 20.7 mmh-1 for 61% of the sample. For 55% of the sampled clouds the temperature weighting term is identically 1.0. Cloud area itself is highly correlated (r=0.88) with GWT computed rain volume. An important, discriminating parameter in the GWT is the temperature defining the coldest 10% cloud area. The analysis further shows that the two dominant parameters in rainfall estimation are the existence of cold cloud and the duration of cloud over a point.

  13. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?

    PubMed Central

    Erasmus, B. F. N.; Archibald, S.

    2016-01-01

    Woody encroachment in ‘open’ biomes like grasslands and savannahs is occurring globally. Both local and global drivers, including elevated CO2, have been implicated in these increases. The relative importance of different processes is unresolved as there are few multi-site, multi-land-use evaluations of woody plant encroachment. We measured 70 years of woody cover changes over a 1020 km2 area covering four land uses (commercial ranching, conservation with elephants, conservation without elephants and communal rangelands) across a rainfall gradient in South African savannahs. Different directions of woody cover change would be expected for each different land use, unless a global factor is causing the increases. Woody cover change was measured between 1940 and 2010 using the aerial photo record. Detection of woody cover from each aerial photograph was automated using eCognitions' Object-based image analysis (OBIA). Woody cover doubled in all land uses across the rainfall gradient, except in conservation areas with elephants in low-rainfall savannahs. Woody cover in 2010 in low-rainfall savannahs frequently exceeded the maximum woody cover threshold predicted for African savannahs. The results indicate that a global factor, of which elevated CO2 is the likely candidate, may be driving encroachment. Elephants in low-rainfall savannahs prevent encroachment and localized megafaunal extinction is a probable additional cause of encroachment. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502384

  14. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?

    PubMed

    Stevens, Nicola; Erasmus, B F N; Archibald, S; Bond, W J

    2016-09-19

    Woody encroachment in 'open' biomes like grasslands and savannahs is occurring globally. Both local and global drivers, including elevated CO2, have been implicated in these increases. The relative importance of different processes is unresolved as there are few multi-site, multi-land-use evaluations of woody plant encroachment. We measured 70 years of woody cover changes over a 1020 km(2) area covering four land uses (commercial ranching, conservation with elephants, conservation without elephants and communal rangelands) across a rainfall gradient in South African savannahs. Different directions of woody cover change would be expected for each different land use, unless a global factor is causing the increases. Woody cover change was measured between 1940 and 2010 using the aerial photo record. Detection of woody cover from each aerial photograph was automated using eCognitions' Object-based image analysis (OBIA). Woody cover doubled in all land uses across the rainfall gradient, except in conservation areas with elephants in low-rainfall savannahs. Woody cover in 2010 in low-rainfall savannahs frequently exceeded the maximum woody cover threshold predicted for African savannahs. The results indicate that a global factor, of which elevated CO2 is the likely candidate, may be driving encroachment. Elephants in low-rainfall savannahs prevent encroachment and localized megafaunal extinction is a probable additional cause of encroachment.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  15. Detecting Climate Variability in Tropical Rainfall

    NASA Astrophysics Data System (ADS)

    Berg, W.

    2004-05-01

    A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to El Niño is substantially smaller due to decreased rainfall in the west Pacific partially canceling increases in the central and east Pacific. These differences are not limited to the long-term merged rainfall products using infrared data, but are also exist in state-of-the-art rainfall retrievals from the active and passive microwave sensors on board the Tropical Rainfall Measuring Mission (TRMM). For example, large differences exist in the response of tropical mean rainfall retrieved from the TRMM microwave imager (TMI) 2A12 algorithm and the precipitation radar (PR) 2A25 algorithm to the 1997/98 El Niño. To assist scientists attempting to wade through the vast array of climate rainfall products currently available, and to help them determine whether systematic biases in these rainfall products impact the conclusions of a given study, we have developed a Climate Rainfall Data Center (CRDC). The CRDC web site (rain.atmos.colostate.edu/CRDC) provides climate researchers information on the various rainfall datasets available as well as access to experts in the field of satellite rainfall retrievals to assist them in the appropriate selection and use of climate rainfall products.

  16. Application and Evaluation of an Explicit Prognostic Cloud-Cover Scheme in GRAPES Global Forecast System

    NASA Astrophysics Data System (ADS)

    Ma, Zhanshan; Liu, Qijun; Zhao, Chuanfeng; Shen, Xueshun; Wang, Yuan; Jiang, Jonathan H.; Li, Zhe; Yung, Yuk

    2018-03-01

    An explicit prognostic cloud-cover scheme (PROGCS) is implemented into the Global/Regional Assimilation and Prediction System (GRAPES) for global middle-range numerical weather predication system (GRAPES_GFS) to improve the model performance in simulating cloud cover and radiation. Unlike the previous diagnostic cloud-cover scheme (DIAGCS), PROGCS considers the formation and dissipation of cloud cover by physically connecting it to the cumulus convection and large-scale stratiform condensation processes. Our simulation results show that clouds in mid-high latitudes arise mainly from large-scale stratiform condensation processes, while cumulus convection and large-scale condensation processes jointly determine cloud cover in low latitudes. Compared with DIAGCS, PROGCS captures more consistent vertical distributions of cloud cover with the observations from Atmospheric Radiation Measurements (ARM) program at the Southern Great Plains (SGP) site and simulates more realistic diurnal cycle of marine stratocumulus with the ERA-Interim reanalysis data. The low, high, and total cloud covers that are determined via PROGCS appear to be more realistic than those simulated via DIAGCS when both are compared with satellite retrievals though the former maintains slight negative biases. In addition, the simulations of outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from PROGCS runs have been considerably improved as well, resulting in less biases in radiative heating rates at heights below 850 hPa and above 400 hPa of GRAPES_GFS. Our results indicate that a prognostic method of cloud-cover calculation has significant advantage over the conventional diagnostic one, and it should be adopted in both weather and climate simulation and forecast.

  17. Rainfall Controls on Land Surface Phenology over "Never-green" and "Ever-green" Lands in Africa

    NASA Astrophysics Data System (ADS)

    Yan, D.; Zhang, X.; Yu, Y.; Guo, W.

    2015-12-01

    The characteristics of land surface phenology (LSP) in the "Never-green" Sahara desert and the "Ever-green" equatorial Congo Basin were rarely discussed due to the extremely low seasonal greenness variations across the Sahara desert and the prolonged cloud cover over the Congo Basin. Based on 30-minute observations acquired by the Spinning Enhanced Visible and Infrared Imager onboard the METEOSAT geostationary satellites, we generated a three-day angularly corrected Two-band Enhanced Vegetation Index (EVI2) time series for each year between 2006 and 2013. We further reconstructed EVI2 temporal trajectories and retrieved LSP transitions using the Hybrid Piecewise Logistic Model. We associated the LSP transitions with the rainy season transitions derived from the Tropical Rainfall Measurement Mission Product 3B42. Results show that LSP within both the Sahara Desert and the Congo Basin was strongly controlled by the rainfall seasonality. Specially, although there is no vegetation growth in most part of the Sahara Desert, recurring LSP was spatially detected in irrigation agriculture and the geomorphological regions of wadis, dayas, chotts/sebkhas and rocky hills. These geomorphological features are able to store moisture in soil to keep plants growing during the long dry seasons after vegetation greenup is triggered by rainfall events. The spatial shift of phenological timing is controlled by the Mediterranean rainfall regime in the north and the rainfalls brought by the Intertropical Convergence Zone (ITCZ) in the south. Across the equatorial Congo Basin, EVI2 time series reveals that canopy greenness cycles (CGC) of the seasonal leaf variation occur in tropical rainforests, which differs from the commonly termed "growing season" with complete leafless canopies. The seasonal EVI2 amplitude is very small and represents the gradual "leaf-exchange" processes. Two annual CGC are found and their spatial shifts closely follow the seasonal migration of ITCZ precipitation.

  18. Tropical Cyclone Diurnal Cycle as Observed by TRMM

    PubMed Central

    Leppert, Kenneth D.; Cecil, Daniel J.

    2018-01-01

    Previous work has indicated a clear, consistent diurnal cycle in rainfall and cold cloudiness coverage around tropical cyclones. This cycle may have important implications for structure and intensity changes of these storms and the forecasting of such changes. The goal of this paper is to use passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle throughout a deep layer of a tropical cyclone’s clouds. The composite coverage by PR reflectivity ≥20 dBZ at various heights as a function of local standard time (LST) and radius suggests the presence of a diurnal signal for radii <500 km through a deep layer (2–10 km height) of the troposphere using 1998–2011 Atlantic tropical cyclones of at least tropical storm strength. The area covered by reflectivity ≥20 dBZ at radii 100–500 km peaks in the morning (0130–1030 LST) and reaches a minimum 1030–1930 LST. Radii between 300–500 km tend to reach a minimum in coverage closer to 1200 LST before reaching another peak at 2100 LST. The inner core (0–100 km) appears to be associated with a single-peaked diurnal cycle only at upper levels (8–10 km) with a maximum at 2230−0430 LST. The TMI rainfall composites suggest a clear diurnal cycle at all radii between 200 and 1000 km with peak rainfall coverage and rain rate occurring in the morning (0130−0730 LST). PMID:29371745

  19. Enhancement of orographic precipitation in Jeju Island during the passage of Typhoon Khanun (2012)

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Tae; Ko, Kyeong-Yeon; Lee, Dong-In; You, Cheol-Hwan; Liou, Yu-Chieng

    2018-03-01

    Typhoon Khanun caused over 226 mm of accumulated rainfall for 6 h (0700 to 1300 UTC), localized around the summit of Mt. Halla (height 1950 m), with a slanted rainfall pattern to the northeast. In this study, we investigated the enhancement mechanism for precipitation near the mountains as the typhoon passed over Jeju Island via dual-Doppler radar analysis and simple trajectory of passive tracers using a retrieved wind field. The analysis of vertical profiles of the mountain region show marked features matching the geophysical conditions. In the central mountain region, a strong wind (≥ 7 m s- 1) helps to lift low-level air up the mountain. The time taken for lifting is longer than the theoretical time required for raindrop growth via condensation. The falling particles (seeder) from the upper cloud were also one of the reasons for an increase in rainfall via the accretion process from uplifted cloud water (feeder). The lifted air and falling particles both contributed to the heavy rainfall in the central region. In contrast, on the leeward side, the seeder-feeder mechanism was important in the formation of strong radar reflectivity. The snow particles (above 5 km) were accelerated by strong downward winds (≤-6 m s- 1). Meanwhile, the nonlinear jumping flow (hydraulic jump) raised feeders (shifted from the windward side) to the upper level where particles fall. To support these development processes, a numerical simulation using cloud-resolving model theoretically carried out. The accreting of hydrometeors may be one of the key reasons why the lee side has strong radar reflectivity, and a lee side weighted rainfall pattern even though lee side includes no strong upward air motion.

  20. STS-48 ESC Earth observation of southwestern corner of the Great Salt Lake

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation of the southwestern corner of the Great Salt Lake, 308 nautical miles below Discovery, Orbiter Vehicle (OV) 103, was provided by the electronic still camera (ESC). While the image is mostly covered with a thin veil of cirrus clouds, many of the surface features can be recognized. The causeway linking the northern tip of the peninsula to the southwest shore of the lake is clearly visible as is the interstate highway. Considerable topographic detail is visible in the snow covered peaks to the south of the lake. The commercial salt pans between the peninsula and the interstate show high contrast with the brightness dependent on the concentration of the brackish water in the pan. Recent heavy rainfall has caused considerable runoff into the lake but the flooding hazard of a few years past no longer exists due to a pumping system that now transfers excess water to the Bonneville Salt Flats. The ESC image was stored on a removable hard disk or small optical disk and

  1. Influence of seasonal variation on the hydro-biogeochemical characteristics of two upland lakes in the Southeastern Amazon, Brazil.

    PubMed

    Sahoo, Prafulla K; Guimarães, José T F; Souza-Filho, Pedro W M; Silva, Marcio S DA; Silva, Renato O; Pessim, Gustavo; Moraes, Bergson C DE; Pessoa, Paulo F P; Rodrigues, Tarcísio M; Costa, Marlene F DA; Dall'agnol, Roberto

    2016-01-01

    Limnological characteristics of the Violão and Amendoim lakes, in the Serra dos Carajás, Amazon, were studied interannually (2013-2014). Climate data indicate anomalous conditions during the 2013 rainy period with higher rainfall and lower temperature in the beginning (November). Lake levels were influenced after the first and second hour of each rainfall, which showed a strong synchronization between seasonal fluctuation of lake levels and local weather patterns. Based on the water quality, both lakes are classified as classes "1" and "2" in the CONAMA (Conselho Nacional do Meio Ambiente) scheme and as "excellent" to "good" in the WQI (Water Quality Index) categories. However, the limnology is distinctly different between the lakes and seasons. Higher trophic state and phytoplankton productivity were observed mainly during the rainy period in Violão Lake compared to Amendoim Lake. This may be due to deposition of leached nutrients in the former, mainly total phosphorus (TP), which was probably derived from mafic soils and guano. This is consistent with the significant positive correlation between Chlorophyll-a and TP at the end of the rainy period (March-April), whereas this was not observed in the beginning (November). This could possibly be a consequence of the more intense cloud cover, and unusual high rainfall that limits nutrient availability.

  2. Overview of urban climate

    Treesearch

    Roscoe R., Jr. Braham

    1977-01-01

    The broad features of urban climate anomalies are described and explained by combining recent METROMEX data with those from prior studies. The urban heat island is well understood, and urban effects upon cloud nuclei and cloud microstructure are clearly observed and explained in part; but the causes of urban effects upon rainfall remain speculative.

  3. Use of Satellite Remote Sensing of Cloud and Rainfall for Selected Operational Applications in the Fields of Applied Hydrology and Food Production.

    NASA Astrophysics Data System (ADS)

    Power, Clare

    Available from UMI in association with The British Library. The material presented in this thesis takes the form of a series of discrete, but inter-related projects on subjects related to the use of satellite remote sensing techniques for selected applications in the fields of cloud, rainfall, vegetation and food production monitoring and assessment. Detailed literature reviews have been carried out on remote sensing techniques in these fields, in particular, for rainfall monitoring and the development of systems for food crop prediction from various rainfall, vegetation and crop monitoring algorithms. The second part of the thesis is devoted to a series of practical projects using five different and contrasting satellite rainfall monitoring techniques using visible and/or infrared imagery, three applied over the Sultanate of Oman and two over West Africa. The case studies applied over the Sultanate of Oman show a range of techniques from manual nephanalyses of Potential Rain Clouds and the derivation of a 20 year record of Tropical Cyclone tracks over the Arabian Sea, to the manual Bristol rainfall monitoring technique and its human-machine interactive successor BIAS, which are applicable to the analysis of short term extreme rainfall events. The remaining two techniques were developed simultaneously over West Africa. The first, namely, PERMIT (the Polar-orbiter Effective Rainfall Monitoring Technique), was developed by the Author, and the second, ADMIT (Agricultural Drought Monitoring Integrated Technique), by a colleague, Giles D'Souza. The development, testing on data from July and August 1985 and July 1986, and subsequent modification of the PERMIT technique is described. The 1986 Case Study results have been compared with the ADMIT results from the same data set, as part of a project funded by FAO to compare the performance of four Meteosat rainfall monitoring techniques (Snijders 1988). PERMIT was designed to be an economic, (in terms of satellite data and computer processing needs), automatic rainfall estimation technique suitable for use in environments where computer facilities are limited. Finally the PERMIT rainfall products have been compared with contemporaneous NOAA AVHRR Normalised Vegetation Index monthly composites. The relationships observed between these two satellite-derived products may contribute to the future development of a simple, low cost crop prediction scheme for developing countries. The main conclusion drawn from this research is that there is an urgent need for simple but effective rainfall and vegetation monitoring systems such as PERMIT, to be implemented operationally on low cost portable microcomputer systems which are readily installed in Developing Countries, where effective monitoring of such environmental elements can provide early warnings and reduce the impacts of drought inflicted famine disasters.

  4. The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Shanley, James B.; Zegarra, Jan Paul; Coplen, Tyler B.

    2009-01-01

    The stable isotope amount effect has often been invoked to explain patterns of isotopic composition of rainfall in the tropics. This paper describes a new approach, correlating the isotopic composition of precipitation with cloud height and atmospheric temperature using NEXRAD radar echo tops, which are a measure of the maximum altitude of rainfall within the clouds. The seasonal differences in echo top altitudes and their corresponding temperatures are correlated with the isotopic composition of rainfall. These results offer another factor to consider in interpretation of the seasonal variation in isotopic composition of tropical rainfall, which has previously been linked to amount or rainout effects and not to temperature effects. Rain and cloud water isotope collectors in the Luquillo Mountains in northeastern Puerto Rico were sampled monthly for three years and precipitation was analyzed for δ18O and δ2H. Precipitation enriched in 18O and 2H occurred during the winter dry season (approximately December–May) and was associated with a weather pattern of trade wind showers and frontal systems. During the summer rainy season (approximately June–November), precipitation was depleted in 18O and 2H and originated in low pressure systems and convection associated with waves embedded in the prevailing easterly airflow. Rain substantially depleted in 18O and 2H compared to the aforementioned weather patterns occurred during large low pressure systems. Weather analysis showed that 29% of rain input to the Luquillo Mountains was trade wind orographic rainfall, and 30% of rainfall could be attributed to easterly waves and low pressure systems. Isotopic signatures associated with these major climate patterns can be used to determine their influence on streamflow and groundwater recharge and to monitor possible effects of climate change on regional water resources.

  5. Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH

    NASA Astrophysics Data System (ADS)

    Wolters, E. L. A.; van den Hurk, B. J. J. M.; Roebeling, R. A.

    2011-02-01

    This paper describes the evaluation of the KNMI Cloud Physical Properties - Precipitation Properties (CPP-PP) algorithm over West Africa. The algorithm combines condensed water path (CWP), cloud phase (CPH), cloud particle effective radius (re), and cloud-top temperature (CTT) retrievals from visible, near-infrared and thermal infrared observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellites to estimate rain occurrence frequency and rain rate. For the 2005 and 2006 monsoon seasons, it is investigated whether the CPP-PP algorithm is capable of retrieving rain occurrence frequency and rain rate over West Africa with sufficient accuracy, using Tropical Monsoon Measurement Mission Precipitation Radar (TRMM-PR) as reference. As a second goal, it is assessed whether SEVIRI is capable of monitoring the seasonal and daytime evolution of rainfall during the West African monsoon (WAM), using Climate Prediction Center Morphing Technique (CMORPH) rainfall observations. The SEVIRI-detected rainfall area agrees well with TRMM-PR, with the areal extent of rainfall by SEVIRI being ~10% larger than from TRMM-PR. The mean retrieved rain rate from CPP-PP is about 8% higher than from TRMM-PR. Examination of the TRMM-PR and CPP-PP cumulative frequency distributions revealed that differences between CPP-PP and TRMM-PR are generally within +/-10%. Relative to the AMMA rain gauge observations, CPP-PP shows very good agreement up to 5 mm h-1. However, at higher rain rates (5-16 mm h-1) CPP-PP overestimates compared to the rain gauges. With respect to the second goal of this paper, it was shown that both the accumulated precipitation and the seasonal progression of rainfall throughout the WAM is in good agreement with CMORPH, although CPP-PP retrieves higher amounts in the coastal region of West Africa. Using latitudinal Hovmüller diagrams, a fair correspondence between CPP-PP and CMORPH was found, which is reflected by high correlation coefficients (~0.7) for both rain rate and rain occurrence frequency. The daytime cycle of rainfall from CPP-PP shows distinctly different patterns for three different regions in West Africa throughout the WAM, with a decrease in dynamical range of rainfall near the Inter Tropical Convergence Zone (ITCZ). The dynamical range as retrieved from CPP-PP is larger than that from CMORPH. It is suggested that this results from both the better spatio-temporal resolution of SEVIRI, as well as from thermal infrared radiances being partly used by CMORPH, which likely smoothes the daytime precipitation signal, especially in case of cold anvils from convective systems. The promising results show that the CPP-PP algorithm, taking advantage of the high spatio-temporal resolution of SEVIRI, is of added value for monitoring daytime precipitation patterns in tropical areas.

  6. Spatial variability of mountain stream dynamics along the Ethiopian Rift Valley escarpment

    NASA Astrophysics Data System (ADS)

    Asfaha, Tesfaalem-Ghebreyohannes; Frankl, Amaury; Zenebe, Amanuel; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Changes in hydrogeomorphic characteristics of mountain streams are generally deemed to be controlled mainly by land use/cover changes and rainfall variability. This study investigates the spatial variability of peak discharge in relation to land cover, rainfall and topographic variables in eleven catchments of the Ethiopian Rift Valley escarpment (average slope gradient = 48% (± 13%). Rapid deforestation of the escarpment in the second half of the 20th century resulted in the occurrence of strong flash floods, transporting large amounts of discharge and sediment to the lower graben bottom. Due to integrated reforestation interventions as of the 1980s, many of these catchments do show improvement in vegetation cover at various degrees. Daily rainfall was measured using seven non-recording rain gauges, while peak stage discharges were measured after floods using crest stage gauges installed at eleven stream reaches. Peak discharges were calculated using the Manning's equation. Daily area-weighted rainfall was computed for each catchment using the Thiessen Polygon method. To estimate the vegetation cover of each catchment, the Normalized Difference Vegetation Index was calculated from Landsat TM imagery (mean = 0.14 ± 0.05). In the rainy season of 2012, there was a positive correlation between daily rainfall and peak discharge in each of the monitored catchments. In a multiple linear regression analysis (R² = 0.83; P<0.01), average daily peak discharge in all rivers was positively related with rainfall depth and catchment size and negatively with vegetation cover (as represented by average NDVI values). Average slope gradient of the catchments and Gravelius's compactness index did not show a statistically significant relation with peak discharge. This study shows that though the average vegetation cover of the catchments is still relatively low, differences in vegetation cover, together with rainfall variability plays a determining role in the amount of peak discharges in flashy mountain streams.

  7. Possible external sources of terrestrial cloud cover variability: the solar wind

    NASA Astrophysics Data System (ADS)

    Voiculescu, Mirela; Usoskin, Ilya; Condurache-Bota, Simona

    2014-05-01

    Cloud cover plays an important role in the terrestrial radiation budget. The possible influence of the solar activity on cloud cover is still an open question with contradictory answers. An extraterrestrial factor potentially affecting the cloud cover is related to fields associated with solar wind. We focus here on a derived quantity, the interplanetary electric field (IEF), defined as the product between the solar wind speed and the meridional component, Bz, of the interplanetary magnetic field (IMF) in the Geocentric Solar Magnetospheric (GSM) system. We show that cloud cover at mid-high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Since the IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others. We also present results showing that the link between cloud cover and IMF varies depending on composition and altitude of clouds.

  8. Rainfall model investigation and scenario analyses of the effect of government reforestation policy on seasonal rainfalls: A case study from Northern Thailand

    NASA Astrophysics Data System (ADS)

    Duangdai, Eakkapong; Likasiri, Chulin

    2017-03-01

    In this work, 4 models for predicting rainfall amounts are investigated and compared using Northern Thailand's seasonal rainfall data for 1973-2008. Two models, global temperature, forest area and seasonal rainfall (TFR) and modified TFR based on a system of differential equations, give the relationships between global temperature, Northern Thailand's forest cover and seasonal rainfalls in the region. The other two models studied are time series and Autoregressive Moving Average (ARMA) models. All models are validated using the k-fold cross validation method with the resulting errors being 0.971233, 0.740891, 2.376415 and 2.430891 for time series, ARMA, TFR and modified TFR models, respectively. Under Business as Usual (BaU) scenario, seasonal rainfalls in Northern Thailand are projected through the year 2020 using all 4 models. TFR and modified TFR models are also used to further analyze how global temperature rise and government reforestation policy affect seasonal rainfalls in the region. Rainfall projections obtained via the two models are also compared with those from the International Panel on Climate Change (IPCC) under IS92a scenario. Results obtained through a mathematical model for global temperature, forest area and seasonal rainfall show that the higher the forest cover, the less fluctuation there is between rainy-season and summer rainfalls. Moreover, growth in forest cover also correlates with an increase in summer rainfalls. An investigation into the relationship between main crop productions and rainfalls in dry and rainy seasons indicates that if the rainy-season rainfall is high, that year's main-crop rice production will decrease but the second-crop rice, maize, sugarcane and soybean productions will increase in the following year.

  9. Biogenic Aerosols – Effects on Climate and Clouds. Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niple, E. R.; Scott, H. E.

    2016-04-01

    This report describes the data collected by the Three-Waveband Spectrally-agile Technique (TWST) sensor deployed at Hyytiälä, Finland from 16 July to 31 August 2014 as a guest on the Biogenic Aerosols Effects on Climate and Clouds (BAECC) campaign. These data are currently available from the Atmospheric Radiation Measurement (ARM) Data Archive website and consists of Cloud Optical Depth (COD) measurements for the clouds directly overhead approximately every second (with some dropouts described below) during the daylight periods. A good range of cloud conditions were observed from clear sky to heavy rainfall.

  10. The Research of Dr. Joanne Simpson: Fifty Years Investigating Hurricanes, Tropical Clouds and Cloud Systems

    NASA Technical Reports Server (NTRS)

    Tao, W. -K.; Halverson, J.; Adler, R.; Garstang, M.; Houze, R., Jr.; LeMone, M.; Pielke, R., Sr.; Woodley, W.; O'C.Starr, David (Technical Monitor)

    2001-01-01

    This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nine specific accomplishments during her fifty-year career: (1) hot tower hypothesis, (2) hurricanes, (3) airflow and clouds over heated islands, (4) cloud models, (5) trade winds and their role in cumulus development, (6) air-sea interaction, (7) cloud-cloud interactions and mergers, (8) waterspouts, and (9) TRMM science, will be described and discussed.

  11. The Effect of Environmental Conditions on Tropical Deep Convective Systems Observed from the TRMM Satellite

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Wielicki, Bruce A.; Minnis, Patrick; Chambers, Lin H.; Xu, Kuan-Man; Hu, Yongxiang; Fan, Tai-Fang

    2005-01-01

    This study uses measurements of radiation and cloud properties taken between January and August 1998 by three Tropical Rainfall Measuring Mission (TRMM) instruments, the Clouds and the Earth's Radiant Energy System (CERES) scanner, the TRMM Microwave Imager (TMI), and the Visible and InfraRed Scanner (VIRS), to evaluate the variations of tropical deep convective systems (DCS) with sea surface temperature (SST) and precipitation. This study finds that DCS precipitation efficiency increases with SST at a rate of approx. 2%/K. Despite increasing rainfall efficiency, the cloud areal coverage rises with SST at a rate of about 7%/K in the warm tropical seas. There, the boundary layer moisture supply for deep convection and the moisture transported to the upper troposphere for cirrus-anvil cloud formation increase by approx. 6.3%/K and approx. 4.0%/K, respectively. The changes in cloud formation efficiency, along with the increased transport of moisture available for cloud formation, likely contribute to the large rate of increasing DCS areal coverage. Although no direct observations are available, the increase of cloud formation efficiency with rising SST is deduced indirectly from measurements of changes in the ratio of DCS ice water path and boundary layer water vapor amount with SST. Besides the cloud areal coverage, DCS cluster effective sizes also increase with precipitation. Furthermore, other cloud properties, such as cloud total water and ice water paths, increase with SST. These changes in DCS properties will produce a negative radiative feedback for the earth's climate system due to strong reflection of shortwave radiation by the DCS. These results significantly differ from some previous hypothesized dehydration scenarios for warmer climates, and have great potential in testing current cloud-system resolving models and convective parameterizations of general circulation models.

  12. Cloud Height Maps for Hurricanes Frances and Ivan

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Multi-angle Imaging SpectroRadiometer (MISR) captured these images and cloud-top height retrievals of Hurricane Frances on September 4, 2004, when the eye sat just off the coast of eastern Florida, and Hurricane Ivan on September 5th, after this cyclone had devastated Grenada and was heading toward the central and western Caribbean. Hurricane Frances made landfall in the early hours of September 5, and was downgraded to Tropical Storm status as it swept inland through the Florida panhandle and continued northward. On the heels of Frances is Hurricane Ivan, which is on record as the strongest tropical cyclone to form at such a low latitude in the Atlantic, and was the most powerful hurricane to have hit the Caribbean in nearly a decade.

    The ability of forecasters to predict the intensity and amount of rainfall associated with hurricanes still requires improvement, especially on the 24 to 48 hour timescale vital for disaster planning. To improve the operational models used to make hurricane forecasts, scientists need to better understand the multi-scale interactions at the cloud, mesoscale and synoptic scales that lead to hurricane intensification and dissipation, and the various physical processes that affect hurricane intensity and rainfall distributions. Because these uncertainties with regard to how to represent cloud processes still exist, it is vital that the model findings be evaluated against hurricane observations whenever possible. Two-dimensional maps of cloud height such as those shown here offer an unprecedented opportunity for comparing simulated cloud fields against actual hurricane observations.

    The left-hand panel in each image pair is a natural color view from MISR's nadir camera. The right-hand panels are cloud-top height retrievals produced by automated computer recognition of the distinctive spatial features between images acquired at different view angles. These results indicate that at the time that these images were acquired, clouds within Frances and Ivan had attained altitudes of 15 kilometers and 16 kilometers above sea level, respectively. The height fields pictured here are uncorrected for the effects of cloud motion. Wind-corrected heights (which have higher accuracy but sparser spatial coverage) are within about 1 kilometer of the heights shown here.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 25081 and 25094. The panels cover an area of 380 kilometers x 924 kilometers, and utilize data from within blocks 65 to 87 within World Reference System-2 paths 14 and 222, respectively.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California In

  13. Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall

    NASA Astrophysics Data System (ADS)

    Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo

    2013-04-01

    Recently, the necessity for rainfall estimation and forecasting using the radar is being highlighted, due to the frequent occurrence of torrential rainfall resulting from abnormal changes of weather. Radar rainfall data represents temporal and spatial distributions properly and replace the existing rain gauge networks. It is also frequently applied in many hydrologic field researches. However, the radar rainfall data has an accuracy limitation since it estimates rainfall, by monitoring clouds and precipitation particles formed around the surface of the earth(1.5-3km above the surface) or the atmosphere. In a condition like Korea where nearly 70% of the land is covered by mountainous areas, there are lots of restrictions to use rainfall radar, because of the occurrence of beam blocking areas by topography. This study is aiming at analyzing runoff and examining the applicability of (R(Z), R(ZDR) and R(KDP)) provided by the Han River Flood Control Office(HRFCO) based on the basin elevation of Nakdong river watershed. For this purpose, the amount of radar rainfall of each rainfall event was estimated according to three sub-basins of Nakdong river watershed with the average basin elevation above 400m which are Namgang dam, Andong dam and Hapcheon dam and also another three sub-basins with the average basin elevation below 150m which are Waegwan, Changryeong and Goryeong. After runoff analysis using a distribution model, Vflo model, the results were reviewed and compared with the observed runoff. This study estimated the rainfall by using the radar-rainfall transform formulas, (R(Z), R(Z,ZDR) and R(Z,ZDR,KDP) for four stormwater events and compared the results with the point rainfall of the rain gauge. As the result, it was overestimated or underestimated, depending on rainfall events. Also, calculation indicates that the values from R(Z,ZDR) and R(Z,ZDR,KDP) relatively showed the most similar results. Moreover the runoff analysis using the estimated radar rainfall is performed. Then hydrologic component of the runoff hydrographs, peak flows and total runoffs from the estimated rainfall and the observed rainfall are compared. The results show that hydrologic components have high fluctuations depending on storm rainfall event. Thus, it is necessary to choose appropriate radar rainfall data derived from the above radar rainfall transform formulas to analyze the runoff of radar rainfall. The simulated hydrograph by radar in the three basins of agricultural areas is more similar to the observed hydrograph than the other three basins of mountainous areas. Especially the peak flow and shape of hydrograph of the agricultural areas is much closer to the observed ones than that of mountainous areas. This result comes from the difference of radar rainfall depending on the basin elevation. Therefore we need the examination of radar rainfall transform formulas following rainfall event and runoff analysis based on basin elevation for the improvement of radar rainfall application. Acknowledgment This study was financially supported by the Construction Technology Innovation Program(08-Tech-Inovation-F01) through the Research Center of Flood Defence Technology for Next Generation in Korea Institute of Construction & Transportation Technology Evaluation and Planning(KICTEP) of Ministry of Land, Transport and Maritime Affairs(MLTM)

  14. Cloud cover estimation: Use of GOES imagery in development of cloud cover data base for insolation assessment

    NASA Technical Reports Server (NTRS)

    Huning, J. R.; Logan, T. L.; Smith, J. H.

    1982-01-01

    The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics.

  15. Complexity confers stability: Climate variability, vegetation response and sand transport on longitudinal sand dunes in Australia's deserts

    NASA Astrophysics Data System (ADS)

    Hesse, Paul P.; Telfer, Matt W.; Farebrother, Will

    2017-04-01

    The relationship between antecedent precipitation, vegetation cover and sand movement on sand dunes in the Simpson and Strzelecki Deserts was investigated by repeated (up to four) surveys of dune crest plots (≈25 × 25 m) over a drought cycle (2002-2012) in both winter (low wind) and spring (high wind). Vegetation varied dramatically between surveys on vegetated and active dune crests. Indices of sand movement had significant correlations with vegetation cover: the depth of loose sand has a strong inverse relationship with crust (cyanobacterial and/or physical) while the area covered by ripples has a strong inverse relationship with the areal cover of vascular plants. However, the relationship between antecedent rainfall and vegetation cover was found to be complex. We tentatively identify two thresholds; (1) >10 mm of rainfall in the preceding 90 days leads to rapid and near total cover of crust and/or small plants <50 cm tall, and (2) >400 mm of rainfall in the preceding three years leads to higher cover of persistent and longer-lived plants >50 cm tall. These thresholds were used to predict days of low vegetation cover on dune crests. The combination of seasonality of predicted bare-crest days, potential sand drift and resultant sand drift direction explains observed patterns of sand drift on these dunes. The complex vegetation and highly variable rainfall regime confer meta-stability on the dunes through the range of responses to different intervals of antecedent rainfall and non-linear growth responses. This suggests that the geomorphic response of dunes to climate variation is complex and non-linear.

  16. a Empirical Modelation of Runoff in Small Watersheds Using LIDAR Data

    NASA Astrophysics Data System (ADS)

    Lopatin, J.; Hernández, J.; Galleguillos, M.; Mancilla, G.

    2013-12-01

    Hydrological models allow the simulation of water natural processes and also the quantification and prediction of the effects of human impacts in runoff behavior. However, obtaining the information that is need for applying these models can be costly in both time and resources, especially in large and difficult to access areas. The objective of this research was to integrate LiDAR data in the hydrological modeling of runoff in small watersheds, using derivated hydrologic, vegetation and topography variables. The study area includes 10 small head watersheds cover bay forest, between 2 and 16 ha, which are located in the south-central coastal range of Chile. In each of the former instantaneous rainfall and runoff flow of a total of 15 rainfall events were measured, between August 2012 and July 2013, yielding a total of 79 observations. In March 2011 a Harrier 54/G4 Dual System was used to obtain a LiDAR point cloud of discrete pulse with an average of 4.64 points per square meter. A Digital Terrain Model (DTM) of 1 meter resolution was obtained from the point cloud, and subsequently 55 topographic variables were derived, such as physical watershed parameters and morphometric features. At the same time, 30 vegetation descriptive variables were obtained directly from the point cloud and from a Digital Canopy Model (DCM). The classification and regression "Random Forest" (RF) algorithm was used to select the most important variables in predicting water height (liters), and the "Partial Least Squares Path Modeling" (PLS-PM) algorithm was used to fit a model using the selected set of variables. Four Latent variables were selected (outer model) related to: climate, topography, vegetation and runoff, where in each one was designated a group of the predictor variables selected by RF (inner model). The coefficient of determination (R2) and Goodnes-of-Fit (GoF) of the final model were obtained. The best results were found when modeling using only the upper 50th percentile of rainfall events. The best variables selected by the RF algorithm were three topographic variables and three vegetation related ones. We obtained an R2 of 0.82 and a GoF of 0.87 with a 95% of confidence interval. This study shows that it is possible to predict the water harvesting collected during a rainstorm event in forest environment using only LiDAR data. However, this type of methodology does not have good result in flow produced by low magnitude rainfall events, as these are more influenced by initial conditions of soil, vegetation and climate, which make their behavior slower and erratic.

  17. An Investigation of the Influence of Urban Areas on Rainfall Using a Cloud-Mesoscale Model and TRMM Satellite

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Starr, David OC (Technical Monitor)

    2002-01-01

    The urban heat island (UHI) has become a widely acknowledged, observed, and researched phenomena because of its broad implications. It is estimated that by the year 2025, 80% of the world's population will live in cities (UNFP, 1999). The UHI has been documented in the literature to affect local and regional temperature distributions, wind patterns and air quality. The UHI can also impact the development of clouds and precipitation in and around cities. This paper will focus primarily on the UHI's impact on precipitation. In the past 30 years, several observational and climatological studies have theorized that the UHI can have a significant influence on mesoscale circulations and resulting precipitation (see Shepherd et al. 2002 for a thorough review). More recent studies have continued to validate and extend the findings from pre and post-METROMEX investigations. Shepherd et al. (2002) was one of the first (and possibly the first) attempts to identify rainfall modification by urban areas using satellite-based rainfall measurements. Using a 15-month (spanning three years) analysis of mean rainfall rates, the cities of Atlanta, Montgomery, Dallas, Waco, and San Antonio were examined. Shepherd et al. (2002) found that the average percentage increase in mean rainfall rate in a hypothesized "downwind maximum impact area" over an "upwind control area" was 28.4% with a range of 14.6 to 51%. The typical distance of the downwind rainfall rate anomaly from the urban center was 30-60 km, consistent with earlier studies. This fact provides confidence that UHI-rainfall effects are real and detectable by TRMM satellite estimates.

  18. TRMM and its Connection to the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hong, Ye

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The Tropical Rainfall Measuring Mission (TRMM) orbit is inclined 35 degrees leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 m. The minimum detectable signal from the precipitation radar has been measured at - 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument. This presentation will focus primarily on the advances in our understanding of tropical rain systems needed to interpret the TRMM data. Global averages, as well as case studies from TRMM radar (PR), the TRMM Microwave Imager (TMI) and Visible and Infrared Sensor (VIRS) will be presented. Comparisons and contrasts among the different sensors will be drawn. Results will also be compared to previous rainfall climatologies generated from the SSM/I instrument. In particular this paper will focus on the synergy between the TRMM radar and passive microwave radiometer and what we have learned from its synergy.

  19. Relating Convective and Stratiform Rain to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Stephen; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2010-01-01

    The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate-high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.58 horizontal resolution, the occurrence of conditional rain rates over 100 mm/day is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations. An improved convective-stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in the new CSH algorithm.

  20. Improving Global Analysis and Short-Range Forecast Using Rainfall and Moisture Observations Derived from TRMM and SSM/I Passive Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.; Kummerow, Christian D.; Simpson, Joanne

    2000-01-01

    The Global Precipitation Mission, a satellite project under consideration as a follow-on to the Tropical Rainfall Measuring Mission (TRMM) by the National Aeronautics and Space Agency (NASA) in the United States, the National Space Development Agency (NASDA) in Japan, and other international partners, comprises an improved TRMM-like satellite and a constellation of 8 satellites carrying passive microwave radiometers to provide global rainfall measurements at 3-hour intervals. The success of this concept relies on the merits of rainfall estimates derived from passive microwave radiometers. This article offers a proof-of-concept demonstration of the benefits of using, rainfall and total precipitable water (TPW) information derived from such instruments in global data assimilation with observations from the TRMM Microwave Imager (TMI) and 2 Special Sensor Microwave/Imager (SSM/I) instruments. Global analyses that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data analyses contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the tropics. We show that assimilating the 6-h averaged TMI and SSM/I surface rainrate and TPW retrievals improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the upper tropospheric moisture in the analysis produced by the Goddard Earth Observing System (GEOS) Data Assimilation System, as verified against radiation measurements by the Clouds and the Earth's Radiant Energy System (CERES) instrument and brightness temperature observations by the TIROS Operational Vertical Sounder (TOVS) instruments. Typically, rainfall assimilation improves clouds and radiation in areas of active convection, as well as the latent heating and large-scale motions in the tropics, while TPW assimilation leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. Ensemble forecasts initialized with analyses that incorporate TMI and SSM/I rainfall and TPW data also yield better short-range predictions of geopotential heights, winds, and precipitation in the tropics. This study offers a compelling illustration of the potential of using rainfall and TPW information derived from passive microwave instruments to significantly improve the quality of 4-dimensional global datasets for climate analysis and weather forecasting applications.

  1. A method to combine spaceborne radar and radiometric observations of precipitation

    NASA Astrophysics Data System (ADS)

    Munchak, Stephen Joseph

    This dissertation describes the development and application of a combined radar-radiometer rainfall retrieval algorithm for the Tropical Rainfall Measuring Mission (TRMM) satellite. A retrieval framework based upon optimal estimation theory is proposed wherein three parameters describing the raindrop size distribution (DSD), ice particle size distribution (PSD), and cloud water path (cLWP) are retrieved for each radar profile. The retrieved rainfall rate is found to be strongly sensitive to the a priori constraints in DSD and cLWP; thus, these parameters are tuned to match polarimetric radar estimates of rainfall near Kwajalein, Republic of Marshall Islands. An independent validation against gauge-tuned radar rainfall estimates at Melbourne, FL shows agreement within 2% which exceeds previous algorithms' ability to match rainfall at these two sites. The algorithm is then applied to two years of TRMM data over oceans to determine the sources of DSD variability. Three correlated sets of variables representing storm dynamics, background environment, and cloud microphysics are found to account for approximately 50% of the variability in the absolute and reflectivity-normalized median drop size. Structures of radar reflectivity are also identified and related to drop size, with these relationships being confirmed by ground-based polarimetric radar data from the North American Monsoon Experiment (NAME). Regional patterns of DSD and the sources of variability identified herein are also shown to be consistent with previous work documenting regional DSD properties. In particular, mid-latitude regions and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Intertropical Convergence Zone. Due to properties of the DSD and rain water/cloud water partitioning that change with column water vapor, it is shown that increases in water vapor in a global warming scenario could lead to slight (1%) underestimates of a rainfall trends by radar but larger overestimates (5%) by radiometer algorithms. Further analyses are performed to compare tropical oceanic mean rainfall rates between the combined algorithm and other sources. The combined algorithm is 15% higher than the version 6 of the 2A25 radar-only algorithm and 6.6% higher than the Global Precipitation Climatology Project (GPCP) estimate for the same time-space domain. Despite being higher than these two sources, the combined total is not inconsistent with estimates of the other components of the energy budget given their uncertainties.

  2. Kindergarten and Primary School Children's Everyday, Synthetic, and Scientific Concepts of Clouds and Rainfall

    ERIC Educational Resources Information Center

    Malleus, Elina; Kikas, Eve; Marken, Tiivi

    2017-01-01

    The purpose of this research was to explore children's understandings of everyday, synthetic and scientific concepts to enable a description of how abstract, verbally taught material relates to previous experience-based knowledge and the consistency of understanding about cloud formation. This study examined the conceptual understandings of cloud…

  3. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE PAGES

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  4. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sungduk; Pritchard, Michael S.

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  5. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  6. Representing the Seasonal Variation of Marine Stratus and Stratocumulus near the Western Coast of Continents

    NASA Astrophysics Data System (ADS)

    He, Y.; Dickinson, R.

    2005-12-01

    The seasonal variation of marine stratus and stratocumulus (MSC) plays a significant role in ocean- atmosphere-land interaction during the seasonal transition of basic climate in the Eastern Pacific. A key factor in parameterization of MSC cloud cover is atmospheric stability. In this study, we examine the importance of lower troposphere stability for Marine Stratus and Stratocumulus (MSC) cloud cover variations over subtropical oceans on monthly and seasonal timescales. Our approach is to consider a two-layer conceptual model with moist denser boundary layer air topped by dry lighter free air beneath a trade wind inversion at around 700 mb.The vertical integrated dry static energy is of central importance in the lower troposphere. The variation of dry static energy transport and latent heat release leads to the variation of cloud top radiative forcing, which is a function of low cloud cover. A diagnostic cloud cover scheme derived from the model is a nonlinear function of lower troposphere stability and large-scale subsidence. Use ERA-40 and ISCCP-FD data as input, the scheme reproduces well the seasonal variation of low cloud cover in four MSC regions near the western coast of continents. NCAR CAM linear empirical cloud cover scheme could explain 16% of the observed ISCCP monthly covariance in the southeast subtropical Pacific during 1990 to 2000 period; while the new cloud cover scheme could explain 50% of the total covariance. When implementing new scheme into NCAR CAM3.1, it is found that the seasonal phase of MSC is better simulated near the Peruvian region, but the seasonal amplitudes of MSC cloud cover in four MSC regions using both schemes have systematic problems. Possible causes for model cloud biases are investigated through numerical experiments. The importance of MSC cloud cover in the eastern Pacific on local mean climate is also discussed.

  7. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data.

    PubMed

    Shang, Huazhe; Letu, Husi; Nakajima, Takashi Y; Wang, Ziming; Ma, Run; Wang, Tianxing; Lei, Yonghui; Ji, Dabin; Li, Shenshen; Shi, Jiancheng

    2018-01-18

    Analysis of cloud cover and its diurnal variation over the Tibetan Plateau (TP) is highly reliant on satellite data; however, the accuracy of cloud detection from both polar-orbiting and geostationary satellites over this area remains unclear. The new-generation geostationary Himawari-8 satellites provide high-resolution spatial and temporal information about clouds over the Tibetan Plateau. In this study, the cloud detection of MODIS and AHI is investigated and validated against CALIPSO measurements. For AHI and MODIS, the false alarm rate of AHI and MODIS in cloud identification over the TP was 7.51% and 1.94%, respectively, and the cloud hit rate was 73.55% and 80.15%, respectively. Using hourly cloud-cover data from the Himawari-8 satellites, we found that at the monthly scale, the diurnal cycle in cloud cover over the TP tends to increase throughout the day, with the minimum and maximum cloud fractions occurring at 10:00 a.m. and 18:00 p.m. local time. Due to the limited time resolution of polar-orbiting satellites, the underestimation of MODIS daytime average cloud cover is approximately 4.00% at the annual scale, with larger biases during the spring (5.40%) and winter (5.90%).

  8. Rainfall intensity effects on removal of fecal indicator bacteria from solid dairy manure applied over grass-covered soil

    USDA-ARS?s Scientific Manuscript database

    The rainfall-induced removal of pathogens and microbial indicators from land-applied manure with runoff and infiltration greatly contributes to the impairment of surface and groundwater resources. It has been assumed that rainfall intensity and changes in rainfall intensity during a rainfall event d...

  9. Do Clouds Save the Great Barrier Reef? Satellite Imagery Elucidates the Cloud-SST Relationship at the Local Scale

    PubMed Central

    Leahy, Susannah M.; Kingsford, Michael J.; Steinberg, Craig R.

    2013-01-01

    Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an “ocean thermostat” and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR) shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006) and two relatively cool summers (2007 and 2008). Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005) and La Niña (2008) study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs. PMID:23894649

  10. Predicting the temporal and spatial probability of orographic cloud cover in the Luquillo Experimental Forest in Puerto Rico using generalized linear (mixed) models.

    Treesearch

    Wei Wu; Charlesb Hall; Lianjun Zhang

    2006-01-01

    We predicted the spatial pattern of hourly probability of cloud cover in the Luquillo Experimental Forest (LEF) in North-Eastern Puerto Rico using four different models. The probability of cloud cover (defined as “the percentage of the area covered by clouds in each pixel on the map” in this paper) at any hour and any place is a function of three topographic variables...

  11. Global surface-based cloud observation for ISCCP

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Visual observations of cloud cover are hindered at night due to inadequate illumination of the clouds. This usually leads to an underestimation of the average cloud cover at night, especially for the amounts of middle and high clouds, in climatologies on surface observations. The diurnal cycles of cloud amounts, if based on all the surface observations, are therefore in error, but they can be obtained more accurately if the nighttime observations are screened to select those made under sufficient moonlight. Ten years of nighttime weather observations from the northern hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 degrees or from a partial moon at higher elevation, or twilight from the sun less than 9 degrees below the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. Cloud cover is greater at night than during the day over the open oceans far from the continents, particularly in summer. However, near noon maxima are still evident in the coastal regions, so that the global annual average oceanic cloud cover is still slightly greater during the day than at night, by 0.3%. Over land, where daytime maxima are still obtained but with reduced amplitude, average cloud cover is 3.3% greater during the daytime. The diurnal cycles of total cloud cover we obtain are compared with those of ISCCP for a few regions; they are generally in better agreement if the moonlight criterion is imposed on the surface observations. Using the moonlight criterion, we have analyzed ten years (1982-1991) of surface weather observations over land and ocean, worldwide, for total cloud cover and for the frequency of occurrence of clear sky, fog and precipitation The global average cloud cover (average of day and night) is about 2% higher if we impose the moonlight criterion than if we use all observations. The difference is greater in winter than in summer, because of the fewer hours of darkness in the summer. The amplitude of the annual cycle of total cloud cover over the Arctic Ocean and at the South Pole is diminished by a few percent when the moonlight criterion is imposed. The average cloud cover for 1982-1991 is found to be 55% for northern hemisphere land, 53% for southern hemisphere land, 66% for northern hemisphere ocean, and 70% for southern hemisphere ocean, giving a global average of 64%. The global average for daytime is 64.6% for nighttime 63.3%.

  12. Clouds and the Near-Earth Environment: Possible Links

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Voiculescu, Mirela; Dragomir, Carmelia

    2015-12-01

    Climate variability is a hot topic not only for scientists and policy-makers, but also for each and every one of us. The anthropogenic activities are considered to be responsible for most climate change, however there are large uncertainties about the magnitude of effects of solar variability and other extraterrestrial influences, such as galactic cosmic rays on terrestrial climate. Clouds play an important role due to feedbacks of the radiation budget: variation of cloud cover/composition affects climate, which, in turn, affects cloud cover via atmospheric dynamics and sea temperature variations. Cloud formation and evolution are still under scientific scrutiny, since their microphysics is still not understood. Besides atmospheric dynamics and other internal climatic parameters, extraterrestrial sources of cloud cover variation are considered. One of these is the solar wind, whose effect on cloud cover might be modulated by the global atmospheric electrical circuit. Clouds height and composition, their seasonal variation and latitudinal distribution should be considered when trying to identify possible mechanisms by which solar energy is transferred to clouds. The influence of the solar wind on cloud formation can be assessed also through the ap index - the geomagnetic storm index, which can be readily connected with interplanetary magnetic field, IMF structure. This paper proposes to assess the possible relationship between both cloud cover and solar wind proxies, as the ap index, function of cloud height and composition and also through seasonal studies. The data covers almost three solar cycles (1984-2009). Mechanisms are looked for by investigating observed trends or correlation at local/seasonal scale

  13. Cloud Cover Increase with Increasing Aerosol Absorptivity: A Counterexample to the Conventional Semidirect Aerosol Effect

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Miller, Ron L.

    2010-01-01

    We reexamine the aerosol semidirect effect using a general circulation model and four cases of the single-scattering albedo of dust aerosols. Contrary to the expected decrease in low cloud cover due to heating by tropospheric aerosols, we find a significant increase with increasing absorptivity of soil dust particles in regions with high dust load, except during Northern Hemisphere winter. The strongest sensitivity of cloud cover to dust absorption is found over land during Northern Hemisphere summer. Here even medium and high cloud cover increase where the dust load is highest. The cloud cover change is directly linked to the change in relative humidity in the troposphere as a result of contrasting changes in specific humidity and temperature. More absorption by aerosols leads to larger diabatic heating and increased warming of the column, decreasing relative humidity. However, a corresponding increase in the specific humidity exceeds the temperature effect on relative humidity. The net effect is more low cloud cover with increasing aerosol absorption. The higher specific humidity where cloud cover strongly increases is attributed to an enhanced convergence of moisture driven by dust radiative heating. Although in some areas our model exhibits a reduction of low cloud cover due to aerosol heating consistent with the conventional description of the semidirect effect, we conclude that the link between aerosols and clouds is more varied, depending also on changes in the atmospheric circulation and the specific humidity induced by the aerosols. Other absorbing aerosols such as black carbon are expected to have a similar effect.

  14. Architectures for Rainfall Property Estimation From Polarimetric Radar

    NASA Astrophysics Data System (ADS)

    Collis, S. M.; Giangrande, S. E.; Helmus, J.; Troemel, S.

    2014-12-01

    Radars that transmit and receive signals in polarizations aligned both horizontal and vertical to the horizon collect a number of measurements. The relation both between these measurements and between measurements and desired microphysical quantities (such as rainfall rate) is complicated due to a number of scattering mechanisms. The result is that there ends up being an intractable number of often incompatible techniques for extracting geophysical insight. This presentation will discuss methods developed by the Atmospheric Measurement Climate (ARM) Research Facility to streamline the creation of application chains for retrieving rainfall properties for the purposes of fine scale model evaluation. By using a Common Data Model (CDM) approach and working in the popular open source Python scientific environment analysis techniques such as Linear Programming (LP) can be bought to bear on the task of retrieving insight from radar signals. This presentation will outline how we have used these techniques to detangle polarimetric phase signals, estimate a three-dimensional precipitation field and then objectively compare to cloud resolving model derived rainfall fields from the NASA/DoE Mid-Latitude Continental Convective Clouds Experiment (MC3E). All techniques show will be available, open source, in the Python-ARM Radar Toolkit (Py-ART).

  15. Isolating the Liquid Cloud Response to Recent Arctic Sea Ice Variability Using Spaceborne Lidar Observations

    NASA Astrophysics Data System (ADS)

    Morrison, A. L.; Kay, J. E.; Chepfer, H.; Guzman, R.; Yettella, V.

    2018-01-01

    While the radiative influence of clouds on Arctic sea ice is known, the influence of sea ice cover on Arctic clouds is challenging to detect, separate from atmospheric circulation, and attribute to human activities. Providing observational constraints on the two-way relationship between sea ice cover and Arctic clouds is important for predicting the rate of future sea ice loss. Here we use 8 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spaceborne lidar observations from 2008 to 2015 to analyze Arctic cloud profiles over sea ice and over open water. Using a novel surface mask to restrict our analysis to where sea ice concentration varies, we isolate the influence of sea ice cover on Arctic Ocean clouds. The study focuses on clouds containing liquid water because liquid-containing clouds are the most important cloud type for radiative fluxes and therefore for sea ice melt and growth. Summer is the only season with no observed cloud response to sea ice cover variability: liquid cloud profiles are nearly identical over sea ice and over open water. These results suggest that shortwave summer cloud feedbacks do not slow long-term summer sea ice loss. In contrast, more liquid clouds are observed over open water than over sea ice in the winter, spring, and fall in the 8 year mean and in each individual year. Observed fall sea ice loss cannot be explained by natural variability alone, which suggests that observed increases in fall Arctic cloud cover over newly open water are linked to human activities.

  16. Different Applications of FORTRACC: From Convective Clouds to thunderstorms and radar fields

    NASA Astrophysics Data System (ADS)

    Morales, C.; Machado, L. A.

    2009-09-01

    The algorithm Forecasting and Tracking the Evolution of Cloud Clusters (ForTraCC), Vila et al. (2008), has been employed operationally in Brazil since 2005 to track and forecast the development of convective clouds. This technique depicts the main morphological features of the cloud systems and most importantly it reconstructs its entire life cycle. Based on this information, several relationships that use the area expansion and convective and stratiform fraction are employed to predict the life time duration and cloud area. Because of these features, the civil defense and power companies are using this information to mitigate the damages in the population. Further developments in FORTRACC included the integration of satellite rainfall retrievals, radar fields and thunderstorm initiation. These improvements try to address the following problems: a) most of the satellite rainfall retrievals do not take into account the life cycle stage that it is a key element on defining the rain area and rain intensity; b) by using the life cycle information it is possible to better predict the precipitation pattern observed in the radar fields; c) cloud signatures are associated to the development of systems that have lightning and no lightning activity. During the presentation, an overview of the different applications of FORTRACC will be presented including case studies and evaluation of the technique. Finally, the presentation will address how the users can have access to the algorithm to implement in their institute.

  17. Use of microwave satellite data to study variations in rainfall over the Indian Ocean

    NASA Technical Reports Server (NTRS)

    Hinton, Barry B.; Martin, David W.; Auvine, Brian; Olson, William S.

    1990-01-01

    The University of Wisconsin Space Science and Engineering Center mapped rainfall over the Indian Ocean using a newly developed Scanning Multichannel Microwave Radiometer (SMMR) rain-retrieval algorithm. The short-range objective was to characterize the distribution and variability of Indian Ocean rainfall on seasonal and annual scales. In the long-range, the objective is to clarify differences between land and marine regimes of monsoon rain. Researchers developed a semi-empirical algorithm for retrieving Indian Ocean rainfall. Tools for this development have come from radiative transfer and cloud liquid water models. Where possible, ground truth information from available radars was used in development and testing. SMMR rainfalls were also compared with Indian Ocean gauge rainfalls. Final Indian Ocean maps were produced for months, seasons, and years and interpreted in terms of historical analysis over the sub-continent.

  18. A new NASA/MSFC mission analysis global cloud cover data base

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Jeffries, W. R., III

    1985-01-01

    A global cloud cover data set, derived from the USAF 3D NEPH Analysis, was developed for use in climate studies and for Earth viewing applications. This data set contains a single parameter - total sky cover - separated in time by 3 or 6 hr intervals and in space by approximately 50 n.mi. Cloud cover amount is recorded for each grid point (of a square grid) by a single alphanumeric character representing each 5 percent increment of sky cover. The data are arranged in both quarterly and monthly formats. The data base currently provides daily, 3-hr observed total sky cover for the Northern Hemisphere from 1972 through 1977 less 1976. For the Southern Hemisphere, there are data at 6-hr intervals for 1976 through 1978 and at 3-hr intervals for 1979 and 1980. More years of data are being added. To validate the data base, the percent frequency of or = 0.3 and or = 0.8 cloud cover was compared with ground observed cloud amounts at several locations with generally good agreement. Mean or other desired cloud amounts can be calculated for any time period and any size area from a single grid point to a hemisphere. The data base is especially useful in evaluating the consequence of cloud cover on Earth viewing space missions. The temporal and spatial frequency of the data allow simulations that closely approximate any projected viewing mission. No adjustments are required to account for cloud continuity.

  19. Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Axelsson, C.; Hanan, N. P.

    2016-12-01

    High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.

  20. Woody vegetation die off and regeneration in response to rainfall variability in the west African Sahel

    USGS Publications Warehouse

    Brandt, Martin; Tappan, G. Gray; Aziz Diouf, Abdoul; Beye, Gora; Mbow, Cheikh; Fensholt, Rasmus

    2017-01-01

    The greening in the Senegalese Sahel has been linked to an increase in net primary productivity, with significant long-term trends being closely related to the woody strata. This study investigates woody plant growth and mortality within greening areas in the pastoral areas of Senegal, and how these dynamics are linked to species diversity, climate, soil and human management. We analyse woody cover dynamics by means of multi-temporal and multi-scale Earth Observation, satellite based rainfall and in situ data sets covering the period 1994 to 2015. We find that favourable conditions (forest reserves, low human population density, sufficient rainfall) led to a rapid growth of Combretaceae and Balanites aegyptiaca between 2000 and 2013 with an average increase of 4% woody cover. However, the increasing dominance and low drought resistance of drought prone species bears the risk of substantial woody cover losses following drought years. This was observed in 2014–2015, with a die off of Guiera senegalensis in most places of the study area. We show that woody cover and woody cover trends are closely related to mean annual rainfall, but no clear relationship with rainfall trends was found over the entire study period. The observed spatial and temporal variation contrasts with the simplified labels of “greening” or “degradation”. While in principal a low woody plant diversity negatively impacts regional resilience, the Sahelian system is showing signs of resilience at decadal time scales through widespread increases in woody cover and high regeneration rates after periodic droughts. We have reaffirmed that the woody cover in Sahel responds to its inherent climatic variability and does not follow a linear trend.

  1. C-band attenuation by tropical rainfall in Darwin, Australia, using climatologically tuned Z(e)-R relations

    NASA Technical Reports Server (NTRS)

    Atlas, David; Rosenfeld, Daniel; Wolff, David B.

    1993-01-01

    The probability matching method (PMM) is used as a basis for estimating attenuation in tropical rains near Darwin, Australia. PMM provides a climatological relationship between measured radar reflectivity and rain rate, which includes the effects of rain and cloud attenuation. When the radar sample is representative, PMM estimates the rainfall without bias. When the data are stratified for greater than average rates, the method no longer compensates for the higher attenuation and the radar rainfall estimates are biased low. The uncompensated attenuation is used to estimate the climatological attenuation coefficient. The two-way attenuation coefficient was found to be 0.0085 dB/km ( mm/h) exp -1.08 for the tropical rains and associated clouds in Darwin for the first two months of the year for horizontally polarized radiation at 5.63 GHz. This unusually large value is discussed. The risks of making real-time corrections for attenuation are also treated.

  2. Intra-annual variability of cloud cover over the Mediterranean region based on NCEP/NCAR, MODIS and ECAD data sets

    NASA Astrophysics Data System (ADS)

    Ioannidis, Eleftherios; Lolis, Christos J.; Papadimas, Christos D.; Hatzianastassiou, Nikolaos; Bartzokas, Aristides

    2017-04-01

    The seasonal variability of total cloud cover in the Mediterranean region is examined for the period 1948-2014 using a multivariate statistical methodology. The data used consist of: i) daily gridded (1.875°x1.905°) values of total cloud cover over the broader Mediterranean region for the 66-year period 1948-2014, obtained from NCEP/NCAR Reanalysis data set, ii) daily gridded (1°x1°) values of total cloud cover for the period 2003-2014 obtained from the Moderate resolution Imaging Spectroradiometer (MODIS) satellite data set and iii) daily station cloud cover data for the period 2003-2014 obtained from the European Climate Assessment & Dataset (ECA&D). At first, the multivariate statistical method of Factor Analysis (S-mode) with varimax rotation is applied as a dimensionality reduction tool on the mean day to day intra-annual variation of NCEP/NCAR cloud cover for the period 1948-2014. According to the results, three main modes of intra-annual variation of cloud cover are found. The first mode is characterized by a winter maximum and a summer minimum and prevails mainly over the sea; a weak see-saw teleconnection over the Alps represents the opposite intra-annual marching. The second mode presents maxima in early autumn and late spring, and minima in late summer and winter, and prevails over the SW Europe and NW Africa inland regions. The third mode shows a maximum in June and a minimum in October and prevails over the eastern part of central Europe. Next, the mean day to day intra-annual variation of NCEP/NCAR cloud cover over the core regions of the above factors is calculated for the entire period 1948-2014 and the three 22-year sub-periods 1948-70, 1970-92 and 1992-2014. A comparison is carried out between each of the three sub-periods and the total period in order to reveal possible long-term changes in seasonal march of total cloud cover. The results show that cloud cover was reduced above all regions during the last 22-year sub-period 1992-2014 throughout the year, but especially in winter. Finally, given the different nature of the utilized NCEP/NCAR (Reanalysis), MODIS (satellite) and ECAD (stations) cloud cover data sets, an inter-comparison is made among them as it concerns the intra-annual variation of cloud cover for the common period 2003-2014. The results show a nice similarity among the three datasets, with some differences in magnitude during the cold period of the year.

  3. Typhoon Maysak

    NASA Image and Video Library

    2015-03-31

    ISS043E078169 (03/31/2015) --- This close up of the huge Typhoon Maysak "eye" of the category 5 (hurricane status on the Saffir-Simpson Wind Scale) was captured by astronauts on board the International Space Station Mar. 31, 2015. The massive Typhoon is headed toward the Philippines and expected to land on the upcoming Easter weekend. The Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites, both co-managed by NASA and the Japan Aerospace Exploration Agency, captured rainfall and cloud data that revealed very heavy rainfall and high thunderstorms in the still strengthening storm.

  4. Bias adjustment of infrared-based rainfall estimation using Passive Microwave satellite rainfall data

    NASA Astrophysics Data System (ADS)

    Karbalaee, Negar; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan

    2017-04-01

    This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the Integrated Multisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained.

  5. Understanding aerosol-cloud interactions in the development of orographic cumulus congestus during IPHEx

    NASA Astrophysics Data System (ADS)

    Barros, A. P.; Duan, Y.

    2017-12-01

    A new cloud parcel model (CPM) including activation, condensation, collision-coalescence, and lateral entrainment processes is presented here to investigate aerosol-cloud interactions (ACI) in cumulus development prior to rainfall onset. The CPM was employed along with ground based radar and surface aerosol measurements to predict the vertical structure of cloud formation at early stages and evaluated against airborne observations of cloud microphysics and thermodynamic conditions during the Integrated Precipitation and Hydrology Experiment (IPHEx) over the Southern Appalachian Mountains. Further, the CPM was applied to explore the space of ACI physical parameters controlling cumulus congestus growth not available from measurements, and to examine how variations in aerosol properties and microphysical processes influence the evolution and thermodynamic state of clouds over complex terrain via sensitivity analysis. Modeling results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations around the same altitude. This is in contrast with high values reported in previous studies assuming adiabatic conditions. Entrainment is shown to govern the vertical development of clouds and the change of droplet numbers with height, and the sensitivity analysis suggests that there is a trade-off between entrainment strength and condensation process. Simulated CDNC also exhibits high sensitivity to variations in initial aerosol concentration at cloud base, but weak sensitivity to aerosol hygroscopicity. Exploratory multiple-parcel simulations capture realistic time-scales of vertical development of cumulus congestus (deeper clouds and faster droplet growth). These findings provide new insights into determinant factors of mid-day cumulus congestus formation that can explain a large fraction of warm season rainfall in mountainous regions.

  6. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, S. T.; Artaxo, P.; Machado, L.

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across two years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied USA, employed an unparalleled suite of measurements at nine ground sites and onboard two aircraft to investigate the flow of background air into Manaus, the emissions into the air over themore » city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  7. Mesoscale Convective Systems During SCSMEX: Simulations with a Regional Climate Model and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Qian, J.-H.; Shie, C.-L.; Lau, W. K.-M.; Kakar, R.; Starr, David (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convection and circulation changes associated with monsoons over the South China Sea region. SCSMEX also provided precipitation derived from atmospheric budgets and comparison to those obtained from the Tropical Rainfall Measuring Mission (TRMM). In this paper, a regional scale model (with grid size of 20 km) and Goddard Cumulus Ensemble (GCE) model (with 1 km grid size) are used to perform multi-day integration to understand the precipitation processes associated with the summer monsoon over Southeast Asia and southern China. The regional climate model is used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around China's Yantz River during SCSMEX Sensitivity tests on various land surface models, sea surface temperature (SST) variations, and cloud processes are performed to understand the precipitation processes associated with the onset of the monsoon over the S. China Sea during SCSMEX. These tests have indicated that the land surface model has a major impact on the circulation over the S. China Sea. Cloud processes can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. The exact location (region) of the flooding can be effected by the soil-rainfall feedback. The GCE-model results captured many observed precipitation characteristics because it used a fine grid size. For example, the model simulated rainfall temporal variation compared quite well to the sounding-estimated rainfall. The results show there are more latent heat fluxes prior to the onset of the monsoon. However, more rainfall was simulated after the onset of the monsoon. This modeling study indicates the latent heat fluxes (or evaporation) have more of an impact on precipitation processes and rainfall in the regional climate model simulations than in the cloud-resolving model simulations. Research is underway to determine if the difference in the grid sizes or the moist processes used in these two models is responsible for the differing influence of surface fluxes an precipitation processes.

  8. Relationship between convective precipitation and lightning activity using radar quantitative precipitation estimates and total lightning data

    NASA Astrophysics Data System (ADS)

    Pineda, N.; Rigo, T.; Bech, J.; Argemí, O.

    2009-09-01

    Thunderstorms can be characterized by both rainfall and lightning. The relationship between convective precipitation and lightning activity may be used as an indicator of the rainfall regime. Besides, a better knowledge of local thunderstorm phenomenology can be very useful to assess weather surveillance tasks. Two types of approach can be distinguished in the bibliography when analyzing the rainfall and lightning activity. On one hand, rain yields (ratio of rain mass to cloud-to-ground flash over a common area) calculated for long temporal and spatial domains and using rain-gauge records to estimate the amounts of precipitation. On the other hand, a case-by-case approach has been used in many studies to analyze the relationship between convective precipitation and lightning in individual storms, using weather radar data to estimate rainfall volumes. Considering a local thunderstorm case study approach, the relation between rainfall and lightning is usually quantified as the Rainfall-Lightning ratio (RLR). This ratio estimates the convective rainfall volume per lightning flash. Intense storms tend to produce lower RLR values than moderate storms, but the range of RLR found in diverse studies is quite wide. This relationship depends on thunderstorm type, local climatology, convective regime, type of lightning flashes considered, oceanic and continental storms, etc. The objective of this paper is to analyze the relationship between convective precipitation and lightning in a case-by-case approach, by means of daily radar-derived quantitative precipitation estimates (QPE) and total lightning data, obtained from observations of the Servei Meteorològic de Catalunya remote sensing systems, which covers an area of approximately 50000 km2 in the NE of the Iberian Peninsula. The analyzed dataset is composed by 45 thunderstorm days from April to October 2008. A good daily correlation has been found between the radar QPE and the CG flash counts (best linear fit with a R^2=0.74). The daily RLR found has a mean value of 86 10^3m3 rainfall volume per CG flash. The daily range of variation is quite wide, as it goes from 19 to 222 10^3m3 per CG flash. This variation has a seasonal component, related to changes in the convective regime. Summer days (July to middle September) had a mean RLR of 57 10^3m3 rainfall volume per CG flash, while from middle September to the end of October the rainfall volume per CG flash doubles (mean of 125 10^3m3 per CG flash).

  9. Why the Australian Monsoon Strengthened During the Cold Last Glacial Maximum?

    NASA Astrophysics Data System (ADS)

    Yan, M.; Wang, B.; Liu, J.; Ning, L.

    2017-12-01

    The multi-model ensemble simulation suggests that the global monsoon and most sub-monsoons are weakened during the Last Glacial Maximum (LGM) due to the lower green-house gases concentration, the presence of the ice-sheets and the weakened seasonal distribution of insolation. In contrast, the Australian monsoon is strengthened during the LGM. The precipitation there increases in austral summer and decreases in austral winter, so that the annual range or monsoonality increases. The strengthened monsoonality is mainly due to the decreased precipitation in austral winter, which is primarily caused by circulation changes, although the reduced atmospheric water vapor also has a moderate contribution. On the other hand, the strengthened Australian summer monsoon rainfall is likely caused by the change of land-sea thermal contrast due to the alteration of land-sea configuration and by the asymmetric change in sea surface temperature (SST) over Indo-Pacific warm pool region. The strengthened land-sea thermal contrast and Western Pacific-Eastern Indian Ocean thermal gradients in the pre-summer monsoon season triggers a cyclonic wind anomaly that is maintained to the monsoon season, thereby increasing summer precipitation. The increased summer precipitation is associated with the increased cloud cover over the land and decreased cloud cover over the ocean. This may weaken the land-sea thermal contrast, which agrees with the paleoclimate reconstruction. The biases between different models are likely related to the different responses of SST over the North Atlantic Ocean in the pre-summer monsoon season.

  10. Radar characteristics of cloud-to-ground lightning producing storms in Florida

    NASA Technical Reports Server (NTRS)

    Buechler, D. E.; Goodman, S. J.

    1991-01-01

    The interrelation between cloud-to-ground lightning, convective rainfall, and the environment in Central Florida storms is examined. The rain flux, storm area, and ground discharge rates are computed within the outlined area. Time-height cross sections of maximum dBZ values at each level for two storms are shown. The multicellular nature of these storms is readily apparent. The cloud-to-ground lightning activity occurs mainly where high reflectivity values (30-40 dBZ) extend above 7 km.

  11. Characteristics of extreme rainfall events in northwestern Peru during the 1982-1983 El Nino period

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Tisnado, G. M.; Scofield, R. A.

    1987-01-01

    Histograms and contour maps describing the daily rainfall characteristics of a northwestern Peru area most severely affected by the 1982-1983 El Nino event were prepared from daily rainfall data obtained from 66 stations in this area during the El Nino event, and during the same 8-month intervals for the two years preceding and following the event. These data were analyzed, in conjunction with the anlysis of visible and IR satellite images, for cloud characteristics and structure. The results present a comparison of the rainfall characteristics as a function of elevation, geographic location, and the time of year for the El Nino and non-El Nino periods.

  12. Tailoring Earth Observation To Ranchers For Improved Land Management And Profitability: The VegMachine Online Project

    NASA Astrophysics Data System (ADS)

    Scarth, P.; Trevithick, B.; Beutel, T.

    2016-12-01

    VegMachine Online is a freely available browser application that allows ranchers across Australia to view and interact with satellite derived ground cover state and change maps on their property and extract this information in a graphical format using interactive tools. It supports the delivery and communication of a massive earth observation data set in an accessible, producer friendly way . Around 250,000 Landsat TM, ETM and OLI images were acquired across Australia, converted to terrain corrected surface reflectance and masked for cloud, cloud shadow, terrain shadow and water. More than 2500 field sites across the Australian rangelands were used to derive endmembers used in a constrained unmixing approach to estimate the per-pixel proportion of bare, green and non-green vegetation for all images. A seasonal metoid compositing method was used to produce national fractional cover virtual mosaics for each three month period since 1988. The time series of green fraction is used to estimate the persistent green due to tree and shrub canopies, and this estimate is used to correct the fractional cover to ground cover for our mixed tree-grass rangeland systems. Finally, deciles are produced for key metrics every season to track a pixels relativity to the entire time series. These data are delivered through time series enabled web mapping services and customised web processing services that enable the full time series over any spatial extent to be interrogated in seconds via a RESTful interface. These services interface with a front end browser application that provides product visualization for any date in the time series, tools to draw or import polygon boundaries, plot time series ground cover comparisons, look at the effect of historical rainfall and tools to run the revised universal soil loss equation in web time to assess the effect of proposed changes in cover retention. VegMachine Online is already being used by ranchers monitoring paddock condition, organisations supporting land management initiatives in Great Barrier Reef catchments, by students developing tools to understand land condition and degradation and the underlying data and APIs are supporting several other land condition mapping tools.

  13. Cloud cover analysis associated to cut-off low-pressure systems over Europe using Meteosat Imagery

    NASA Astrophysics Data System (ADS)

    Delgado, G.; Redaño, A.; Lorente, J.; Nieto, R.; Gimeno, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.

    2007-04-01

    This paper reports a cloud cover analysis of cut-off low pressure systems (COL) using a pattern recognition method applied to IR and VIS bispectral histograms. 35 COL occurrences were studied over five years (1994-1998). Five cloud types were identified in COLs, of which high clouds (HCC) and deep convective clouds (DCC) were found to be the most relevant to characterize COL systems, though not the most numerous. Cloud cover in a COL is highly dependent on its stage of development, but a higher percentage of cloud cover is always present in the frontal zone, attributable due to higher amounts of high and deep convective clouds. These general characteristics are most marked during the first stage (when the amplitude of the geopotencial wave increases) and second stage (characterized by the development of a cold upper level low), closed cyclonic circulation minimizing differences between rearward and frontal zones during the third stage. The probability of heavy rains during this stage decreases considerably. The centres of mass of high and deep convective clouds move towards the COL-axis centre during COL evolution.

  14. Precipitation Dynamics and Feedback mechanisms of the Arabian Desert

    NASA Astrophysics Data System (ADS)

    Burger, Roelof; Kucera, Paul; Piketh, Stuart; Axisa, Duncan; Chapman, Michael; Krauss, Terry; Ghulam, Ayman

    2010-05-01

    The subtropical Arabian desert extends across the entire Peninsula. The Arabian desert finds itself in the downward branch of the Hadley cell with persistent subsidence. This stabilizes the atmosphere and lowers the relative humidity. The result is a strongly capped convective boundary layer and an extremely dry mid troposphere. Most of the area experience very little rainfall, generally below 100 mm per year, resulting in the largest uninterrupted sand desert in the world. However, local factors such as an unbroken 1000 km escarpment along the Red Sea, rocky mountains between 2000 and 3000 m, and gravel plains cut by wadis, causes micro climates with significant altered precipitation characteristics. Altitude oases with annual rainfall between 200 mm and 500 mm are found on the Asir mountains in the south west and over the Jebel Akdhar mountains on the Gulf coast of Oman. This region receives most of its rainfall in the Northern Hemisphere summer driven by a monsoon trough and the ITCZ. During summer, moist surface winds from the Red Sea converges with dry easterlies triggering convection along the Asir escarpment on a daily basis. Clear mornings grow into a layer of Altocumulus stratiformis cumulogenites by noon, which usually last until sunset. This cloud deck interacts with large severe convective cells which grow to the top of the troposphere by mid afternoon. The north experience a mediterranean climate with eastward propagating midlatitude cyclones causing wintertime rainfall. Characteristic cloud bands form over the northern interior. Vertically layered embedded convective cells that are not coupled with the surface propagate on north easterly tracks. This result in another oasis with annual rainfall exceeding 200 mm. Surface based convection causes isolated thunderstorms during spring and early summer, but cloud bases increase as the season progress until the evaporating downdraft causes dust storms. In-situ measurements, WRF model runs, radiosonde ascends, radar and satellite data are used to explore these dynamics and the associated feedback mechanisms of precipitation over the Arabian desert.

  15. The Tropical Rainfall Measuring Mission: An Overview

    NASA Technical Reports Server (NTRS)

    Kummerow. Christian; Hong, Ye

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. To address these issues, the TRMM satellite was launched in Nov. 1997. It has been operating successfully ever since.

  16. Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.

    NASA Astrophysics Data System (ADS)

    Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.

    2000-12-01

    The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air temperature.

  17. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa

    NASA Astrophysics Data System (ADS)

    Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe

    2017-05-01

    Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets.

  18. Discrete post-processing of total cloud cover ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian

    2017-04-01

    This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.

  19. Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots.

    PubMed

    Marques, María José; Bienes, Ramón; Jiménez, Luis; Pérez-Rodríguez, Raquel

    2007-05-25

    The erosive power of frequent light rainfalls is studied in this paper. Field experiments of simulated rainfall (Intensity, 21 mm h(-1) and kinetic energy, 13.5 J m(-2) mm(-1)) were conducted over 8 bounded USLE plots (80 m(2) each) with a slope of 10%. In 4 plots the soil was almost bare (<4% vegetation cover); the other 4 plots had almost full cover with natural vegetation in one year. Runoff and sediment yield was recorded. The results revealed the efficiency of vegetation cover reducing runoff and sediments. Runoff and sediments were negligible in covered plots. Therefore, in bare plots, although sediment yield was generally low, averaging 74+/-43 kg ha(-1), the mean of runoff achieved a coefficient of 35%, this magnitude has to be taken into consideration in this region verging on aridity. Rains around 13.5 J m(-2) mm(-1) of kinetic energy are quite frequent in the study area (34% of recorded rains en 12 years). If we would consider the usual lower limits from the literature, we would be ignoring an important percent of natural rainfall episodes.

  20. Clouds at CTIO and the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Jr., Eric

    An understanding of the weather patters at Cerro-Tololo Inter-American (CTIO) Observatory, the observing site for the Dark Energy Survey (DES), is important for assessing the efciency of DES operations in using observing time and for planning future operations. CTIO has maintained records of cloud-cover by quarters of nights since 1975. A comparison between these cloud records in the 2013-2014 DES observing season (DES year 1) and achieved observing efciency and exposure quality allows the DES collaboration to make better use of the historical records in survey planning. Plots and tables here relate human recorded cloud-cover to collection of good DESmore » data, show the variation of typical cloud-cover by month, and evaluate the relationship between the El Niño weather pattern and cloud-cover at CTIO.« less

  1. Sensitivity of a Cumulus Parameterization Scheme to Precipitation Production Representation and Its Impact on a Heavy Rain Event over Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Ji-Young; Hong, Song-You; Sunny Lim, Kyo-Sun

    The sensitivity of a cumulus parameterization scheme (CPS) to a representation of precipitation production is examined. To do this, the parameter that determines the fraction of cloud condensate converted to precipitation in the simplified Arakawa–Schubert (SAS) convection scheme is modified following the results from a cloud-resolving simulation. While the original conversion parameter is assumed to be constant, the revised parameter includes a temperature dependency above the freezing level, whichleadstolessproductionoffrozenprecipitating condensate with height. The revised CPS has been evaluated for a heavy rainfall event over Korea as well as medium-range forecasts using the Global/Regional Integrated Model system (GRIMs). The inefficient conversionmore » of cloud condensate to convective precipitation at colder temperatures generally leads to a decrease in pre-cipitation, especially in the category of heavy rainfall. The resultant increase of detrained moisture induces moistening and cooling at the top of clouds. A statistical evaluation of the medium-range forecasts with the revised precipitation conversion parameter shows an overall improvement of the forecast skill in precipitation and large-scale fields, indicating importance of more realistic representation of microphysical processes in CPSs.« less

  2. Characteristics of Precipitation, Cloud, and Latent Heating Associated with the Madden-Julian Oscillation

    NASA Technical Reports Server (NTRS)

    Lau, K-M.; Wu, H-T.

    2010-01-01

    This study investigates the evolution of cloud and rainfall structures associated with Madden Julian oscillation (MJO) using Tropical Rainfall Measuring Mission (TRMM) data. Two complementary indices are used to define MJO phases. Joint probability distribution functions (PDFs) of cloud-top temperature and radar echo-top height are constructed for each of the eight MJO phases. The genesis stage of MJO convection over the western Pacific (phases 1 and 2) features a bottom-heavy PDF, characterized by abundant warm rain, low clouds, suppressed deep convection, and higher sea surface temperature (SST). As MJO convection develops (phases 3 and 4), a transition from the bottom-heavy to top-heavy PDF occurs. The latter is associated with the development of mixed-phase rain and middle-to-high clouds, coupled with rapid SST cooling. At the MJO convection peak (phase 5), a top-heavy PDF contributed by deep convection with mixed-phase and ice-phase rain and high echo-top heights (greater than 5 km) dominates. The decaying stage (phases 6 and 7) is characterized by suppressed SST, reduced total rain, increased contribution from stratiform rain, and increased nonraining high clouds. Phase 7, in particular, signals the beginning of a return to higher SST and increased warm rain. Phase 8 completes the MJO cycle, returning to a bottom-heavy PDF and SST conditions similar to phase 1. The structural changes in rain and clouds at different phases of MJO are consistent with corresponding changes in derived latent heating profiles, suggesting the importance of a diverse mix of warm, mixed-phase, and ice-phase rain associated with low-level, congestus, and high clouds in constituting the life cycle and the time scales of MJO.

  3. Analysis of aerosol-cloud-precipitation interactions based on MODIS data

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Zhang, Jiahua; He, Junliang; Zha, Yong; Li, Qiannan; Li, Yunmei

    2017-01-01

    Aerosols exert an indirect impact on climate change via its impact on clouds by altering its radiative and optical properties which, in turn, changes the process of precipitation. Over recent years how to study the indirect climate effect of aerosols has become an important research topic. In this study we attempted to understand the complex mutual interactions among aerosols, clouds and precipitation through analysis of the spatial correlation between aerosol optical depth (AOD), cloud effective radius (CER) and precipitation during 2000-2012 in central-eastern China that has one of the highest concentrations of aerosols globally. With the assistance of moderate resolution imaging spectroradiometer (MODIS)-derived aerosol and cloud product data, this analysis focuses on regional differentiation and seasonal variation of the correlation in which in situ observed precipitation was incorporated. On the basis of the achieved results, we proposed four patterns depicting the mutual interactions between aerosols, clouds and precipitation. They characterize the indirect effects of aerosols on the regional scale. These effects can be summarized as complex seasonal variations and north-south regional differentiation over the study area. The relationship between AOD and CER is predominated mostly by the first indirect effect (the negative correlation between AOD and CER) in the north of the study area in the winter and spring seasons, and over the entire study area in the summer season. The relationship between CER and precipitation is dominated chiefly by the second indirect effect (the positive correlation between CER and precipitation) in the northern area in summer and over the entire study area in autumn. It must be noted that aerosols are not the factor affecting clouds and rainfall singularly. It is the joint effect of aerosols with other factors such as atmospheric dynamics that governs the variation in clouds and rainfall.

  4. Cloud cover and solar disk state estimation using all-sky images: deep neural networks approach compared to routine methods

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey

    2017-04-01

    Shortwave radiation is an important component of surface heat budget over sea and land. To estimate them accurate observations of cloud conditions are needed including total cloud cover, spatial and temporal cloud structure. While massively observed visually, for building accurate SW radiation parameterizations cloud structure needs also to be quantified using precise instrumental measurements. While there already exist several state of the art land-based cloud-cameras that satisfy researchers needs, their major disadvantages are associated with inaccuracy of all-sky images processing algorithms which typically result in the uncertainties of 2-4 octa of cloud cover estimates with the resulting true-scoring cloud cover accuracy of about 7%. Moreover, none of these algorithms determine cloud types. We developed an approach for cloud cover and structure estimating, which provides much more accurate estimates and also allows for measuring additional characteristics. This method is based on the synthetic controlling index, namely the "grayness rate index", that we introduced in 2014. Since then this index has already demonstrated high efficiency being used along with the technique namely the "background sunburn effect suppression", to detect thin clouds. This made it possible to significantly increase the accuracy of total cloud cover estimation in various sky image states using this extension of routine algorithm type. Errors for the cloud cover estimates significantly decreased down resulting the mean squared error of about 1.5 octa. Resulting true-scoring accuracy is more than 38%. The main source of this approach uncertainties is the solar disk state determination errors. While the deep neural networks approach lets us to estimate solar disk state with 94% accuracy, the final result of total cloud estimation still isn`t satisfying. To solve this problem completely we applied the set of machine learning algorithms to the problem of total cloud cover estimation directly. The accuracy of this approach varies depending on algorithm choice. Deep neural networks demonstrated the best accuracy of more than 96%. We will demonstrate some approaches and the most influential statistical features of all-sky images that lets the algorithm reach that high accuracy. With the use of our new optical package a set of over 480`000 samples has been collected in several sea missions in 2014-2016 along with concurrent standard human observed and instrumentally recorded meteorological parameters. We will demonstrate the results of the field measurements and will discuss some still remaining problems and the potential of the further developments of machine learning approach.

  5. Roles of Fog and Topography in Redwood Forest Hydrology

    NASA Astrophysics Data System (ADS)

    Francis, E. J.; Asner, G. P.

    2017-12-01

    Spatial variability of water in forests is a function of both climatic gradients that control water inputs and topo-edaphic variation that determines the flows of water belowground, as well as interactions of climate with topography. Coastal redwood forests are hydrologically unique because they are influenced by coastal low clouds, or fog, that is advected onto land by a strong coastal-to-inland temperature difference. Where fog intersects the land surface, annual water inputs from summer fog drip can be greater than that of winter rainfall. In this study, we take advantage of mapped spatial gradients in forest canopy water storage, topography, and fog cover in California to better understand the roles and interactions of fog and topography in the hydrology of redwood forests. We test a conceptual model of redwood forest hydrology with measurements of canopy water content derived from high-resolution airborne imaging spectroscopy, topographic variables derived from high-resolution LiDAR data, and fog cover maps derived from NASA MODIS data. Landscape-level results provide insight into hydrological processes within redwood forests, and cross-site analyses shed light on their generality.

  6. Shuttle landing facility cloud cover study: Climatological analysis and two tenths cloud cover rule evaluation

    NASA Technical Reports Server (NTRS)

    Atchison, Michael K.; Schumann, Robin; Taylor, Greg; Warburton, John; Wheeler, Mark; Yersavich, Ann

    1993-01-01

    The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings at the Kennedy Space Center (KSC) states: 'for scattered cloud layers below 10,000 feet, cloud cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go decision time (approximately 90 minutes before landing time)'. This rule was designed to protect against a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after the de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) developed and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Landing Facility for a five-year (1986-1990) period. The data indicate the best time to land the shuttle at KSC is during the summer while the worst time is during the winter. The analysis also shows the highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 UTC time periods. The worst time of the day to land a shuttle is near sunrise and during the afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations has shown that there is a significant difference in the proportions of weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct., 700 mb northerly wind category, 1500 UTC category, and 1600 UTC category there is some evidence that the 0.2 cloud cover rule may be overly conservative. This possibility requires further investigation. As a result of these analyses, the AMU developed nomograms to help the Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (CCFF) forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC. Future work will include updating the two tenths database, further analysis of the data for several categorizations, and developing a proof of concept artificial neural network to provide forecast guidance of weather constraint violations for shuttle landings.

  7. Seasonality on the rainfall partitioning of a fast-growing tree plantation under Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    molina, antonio; llorens, pilar; biel, carme

    2014-05-01

    Studies on rainfall interception in fast-growing tree plantations are less numerous than those in natural forests. Trees in these plantations are regularly distributed, and the canopy cover is clumped but changes quickly, resulting on high variability in the volume and composition of water that reach the soil. In addition, irrigation supply is normally required in semiarid areas to get optimal wood production; consequently, knowing rainfall interception and its yearly evolution is crucial to manage the irrigation scheme properly. This work studies the rainfall partitioning seasonality in a cherry tree (Prunus avium) plantation orientated to timber production under Mediterranean conditions. The monitoring design started on March 2012 and consists of a set of 58 throughfall tipping buckets randomly distributed (based on a 1x1 m2 grid) in a plot of 128 m2 with 8 trees. Stemflow is measured in all the trees with 2 tipping buckets and 6 accumulative collectors. Canopy cover is regularly measured throughout the study period, in leaf and leafless periods, by mean of sky-orientated photographs taken 50 cm above the center of each tipping bucket. Others tree biometrics are also measured such as diameter and leaf area index. Meteorological conditions are measured at 2 m above the forest cover. This work presents the first analyses describing the rainfall partitioning and its dependency on canopy cover, distance to tree and meteorological conditions. The modified Gash' model for rainfall interception in dispersed vegetation is also preliminary evaluated.

  8. Observed climate variability over Chad using multiple observational and reanalysis datasets

    NASA Astrophysics Data System (ADS)

    Maharana, Pyarimohan; Abdel-Lathif, Ahmat Younous; Pattnayak, Kanhu Charan

    2018-03-01

    Chad is the largest of Africa's landlocked countries and one of the least studied region of the African continent. The major portion of Chad lies in the Sahel region, which is known for its rapid climate change. In this study, multiple observational datasets are analyzed from 1950 to 2014, in order to examine the trend of precipitation and temperature along with their variability over Chad to understand possible impacts of climate change over this region. Trend analysis of the climatic fields has been carried out using Mann-Kendall test. The precipitation over Chad is mostly contributed during summer by West African Monsoon, with maximum northward limit of 18° N. The Atlantic Ocean as well as the Mediterranean Sea are the major source of moisture for the summer rainfall over Chad. Based on the rainfall time series, the entire study period has been divided in to wet (1950 to 1965), dry (1966 to 1990) and recovery period (1991 to 2014). The rainfall has decreased drastically for almost 3 decades during the dry period resulted into various drought years. The temperature increases at a rate of 0.15 °C/decade during the entire period of analysis. The seasonal rainfall as well as temperature plays a major role in the change of land use/cover. The decrease of monsoon rainfall during the dry period reduces the C4 cover drastically; this reduction of C4 grass cover leads to increase of C3 grass cover. The slow revival of rainfall is still not good enough for the increase of shrub cover but it favors the gradual reduction of bare land over Chad.

  9. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model

    DOE PAGES

    Bae, Soo Ya; Hong, Song -You; Lim, Kyo-Sun Sunny

    2016-01-01

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and itmore » is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. In conclusion, a spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.« less

  10. Water isotope tracers of tropical hydroclimate in a warming world

    NASA Astrophysics Data System (ADS)

    Konecky, B. L.; Noone, D.; Nusbaumer, J. M.; Cobb, K. M.; Di Nezio, P. N.; Otto-Bliesner, B. L.

    2016-12-01

    The tropical water cycle is projected to undergo substantial changes under a warming climate, but direct meteorological observations to contextualize these changes are rare prior to the 20th century. Stable oxygen and hydrogen isotope ratios (δ18O, δD) of environmental waters preserved in geologic archives are increasingly being used to reconstruct terrestrial rainfall over many decades to millions of years. However, a rising number of new, modern-day observations and model simulations have challenged previous interpretations of these isotopic signatures. This presentation systematically evaluates the three main influences on the δ18O and δD of modern precipitation - rainfall amount, cloud type, and moisture transport - from terrestrial stations throughout the tropics, and uses this interpretive framework to understand past changes in terrestrial tropical rainfall. Results indicate that cloud type and moisture transport have a larger influence on modern δ18O and δD of tropical precipitation than previously believed, indicating that isotope records track changes in cloud characteristics and circulation that accompany warmer and cooler climate states. We use our framework to investigate isotopic records of the land-based tropical rain belt during the Last Glacial Maximum, the period of warming following the Little Ice Age, and the 21st century. Proxy and observational data are compared with water isotope-enabled simulations with the Community Earth System Model in order to discuss how global warming and cooling may influence tropical terrestrial hydroclimate.

  11. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Soo Ya; Hong, Song -You; Lim, Kyo-Sun Sunny

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and itmore » is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. In conclusion, a spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.« less

  12. Coupling WRF Double-Moment 6-Class Microphysics Schemes to RRTMG Radiation Scheme in Weather Research Forecasting Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Soo Ya; Hong, Song-You; Lim, Kyo-Sun Sunny

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and itmore » is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. A spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.« less

  13. 350 Year Cloud Reconstruction Deduced from Northeast Caribbean Coral Proxies

    NASA Astrophysics Data System (ADS)

    Winter, A.; Sammarco, P. W.; Mikolajewicz, U.; Jury, M.; Zanchettin, D.

    2014-12-01

    Clouds are a major factor influencing the global climate and its response to external forcing through their implications for the global hydrological cycle, and hence for the planetary radiative budget. Clouds also contribute to regional climates and their variability through, e.g., the changes they induce in regional precipitation patterns. There have been very few studies of decadal and longer-term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data are too short to unambiguously discern any temporal trends in cloud cover. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Skeletons of scleractinian corals are considered to provide among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, d13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover for the northeastern Caribbean region. Using this proxy we have been able to reconstruct cloud cover conditions back to the year 1760 and thus determine historical cloud cover prior to the recent use of instrumental records. We will also discuss how our coral proxy record of cloud cover compares to paleo-climate model runs for the same time period.

  14. Empirical studies of the microwave radiometric response to rainfall in the tropics and midlatitudes

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    Results are presented from quantitative comparisons between satellite microwave radiometer observations and digital radar observations of equatorial convective cloud clusters and midlatitude frontal precipitation. Simultaneous data from the Winter Monsoon Experiment digital radar and the SMMR for December 1978 are analyzed. It is found that the most important differences between the microwave response to rainfall in the equatorial tropics and to stratiform rain in oceanic midlatitude fronts is caused by the different spatial characteristics of stratiform and convective rainfall and by the different background brightness temperature fields associated with tropical and midlatitude levels of atmospheric water vapor.

  15. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions.

    PubMed

    Wilson, Adam M; Jetz, Walter

    2016-03-01

    Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km) monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties.

  16. Sensitivity of single column model simulations of Arctic springtime clouds to different cloud cover and mixed phase cloud parameterizations

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Lohmann, Ulrike

    2003-08-01

    The single column model of the Canadian Centre for Climate Modeling and Analysis (CCCma) climate model is used to simulate Arctic spring cloud properties observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. The model is driven by the rawinsonde observations constrained European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Five cloud parameterizations, including three statistical and two explicit schemes, are compared and the sensitivity to mixed phase cloud parameterizations is studied. Using the original mixed phase cloud parameterization of the model, the statistical cloud schemes produce more cloud cover, cloud water, and precipitation than the explicit schemes and in general agree better with observations. The mixed phase cloud parameterization from ECMWF decreases the initial saturation specific humidity threshold of cloud formation. This improves the simulated cloud cover in the explicit schemes and reduces the difference between the different cloud schemes. On the other hand, because the ECMWF mixed phase cloud scheme does not consider the Bergeron-Findeisen process, less ice crystals are formed. This leads to a higher liquid water path and less precipitation than what was observed.

  17. Impact of rainfall pattern on interrill erosion process

    USDA-ARS?s Scientific Manuscript database

    The impact of rainfall pattern on the interrill erosion process is not fully understood despite its importance. Systematic rainfall simulation experiments involving different rain intensities, stages, intensity sequences, and surface cover conditions were conducted to investigate the impacts of rain...

  18. Temporal variability of total cloud cover at a Mediterranean megacity in the 20th century: Evidence from visual observations and climate models

    NASA Astrophysics Data System (ADS)

    Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos

    2013-04-01

    Cloud cover is one of the major factors that determine the radiation budget and the climate system of the Earth. Moreover, the response of clouds has always been an important source of uncertainty in global climate models. Visual surface observations of clouds have been conducted at the National Observatory of Athens (NOA) since the mid 19th century. The historical archive of cloud reports at NOA since 1860 has been digitized and updated, spanning now a period of one and a half century. Mean monthly values of total cloud cover were derived by averaging subdaily observations of cloud cover (3 observations/day). Changes in observational practice (e.g. from 1/10 to 1/8 units) were considered, however, subjective measures of cloud cover from trained observers introduces some kind of uncertainty in the time series. Data before 1884 were considered unreliable, so the analysis was restricted to the series from 1884 to 2012. The time series of total cloud cover at NOA is validated and correlated with historical time series of other (physically related) variables such as the total sunshine duration as well as DTR (Diurnal Temperature Range) which are independently measured. Trend analysis was performed on the mean annual and seasonal series of total cloud cover from 1884-2012. The mean annual values show a marked temporal variability with sub periods of decreasing and increasing tendencies, however, the overall linear trend is positive and statistically significant (p <0.001) amounting to +2% per decade and implying a total increase of almost 25% for the whole analysed period. These results are in agreement qualitatively with the trends reported in other studies worldwide, especially concerning the period before the mid 20th century. On a seasonal basis, spring and summer series present outstanding positive long term trends, while in winter and autumn total cloud cover reveals also positive but less pronounced long term trends Additionally, an evaluation of cloud cover and/or sunshine duration/diurnal temperature range as depicted by regional climate models over Athens will be performed. Regional climate models are valuable tools for projections of future climate change but their performance is typically assessed only in terms of temperature and precipitation. The representation of non-standard parameters such as cloud cover and/or sunshine duration/diurnal temperature range has so far seen little or no evaluation in the models and can therefore be prone to large uncertainties. Regional climate models developed in the framework of recent EU projects, such as the ENSEMBLES (www.ensembles-eu.org) and the CIRCE (www.circeproject.eu) projects, will be used and an initial validation of these parameters against the historical archive of NOA will be performed.

  19. Geo-spatial distribution of cloud cover and influence of cloud induced attenuation and noise temperature on satellite signal propagation over Nigeria

    NASA Astrophysics Data System (ADS)

    Ojo, Joseph Sunday

    2017-05-01

    The study of the influence of cloud cover on satellite propagation links is becoming more demanding due to the requirement of larger bandwidth for different satellite applications. Cloud attenuation is one of the major factors to consider for optimum performance of Ka/V and other higher frequency bands. In this paper, the geo-spatial distribution of cloud coverage over some chosen stations in Nigeria has been considered. The substantial scale spatial dispersion of cloud cover based on synoptic meteorological data and the possible impact on satellite communication links at higher frequency bands was also investigated. The investigation was based on 5 years (2008-2012) achieved cloud cover data collected by the Nigerian Meteorological Agency (NIMET) Federal Ministry of Aviation, Oshodi Lagos over four synoptic hours of the day covering day and night. The performances of satellite signals as they traverse through the cloud and cloud noise temperature at different seasons and over different hours of days at Ku/W-bands frequency are also examined. The overall result shows that the additional total atmospheric noise temperature due to the clear air effect and the noise temperature from the cloud reduces the signal-to-noise ratio of the satellite receiver systems, leading to more signal loss and if not adequately taken care of may lead to significant outage. The present results will be useful for Earth-space link budgeting, especially for the proposed multi-sensors communication satellite systems in Nigeria.

  20. Solute deposition from cloud water to the canopy of a puerto rican montane forest

    NASA Astrophysics Data System (ADS)

    Asbury, Clyde E.; McDowell, William H.; Trinidad-Pizarro, Roberto; Berrios, Samuel

    Deposition of cloud water and dissolved solutes onto vegetation was studied by sampling clouds, throughfall and stemflow during 12 cloud-only events at Pico Del Este, a tropical cloud forest in the Luquillo Mountains of Puerto Rico. Liquid water content of the sampled clouds was low (0.016 g m -3), but deposition of water (1.3 mm d -1)was comparable to other sites, apparently due to efficient capture of clouds by epiphyte-laden vegetation. Elemental deposition by cloud water was similar to that in other, more polluted sites, but was only 8-30% of total deposition (cloud-only plus rain) due to the high rainfall at the site (approximately 5 m). Na and CI from marine aerosols dominated cloud chemistry, with concentrations of 400 μeqδ -1. Sulfate and nitrate concentrations were 180 and 60 μedδ -1, respectively. After passage through the canopy, concentrations of base cations in deposited cloud water increased, and concentrations of nitrogen decreased.

  1. Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    DTIC Science & Technology

    2013-09-30

    Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys Axel...how changes in sea ice and sea surface conditions in the SIZ affect changes in cloud properties and cover . • Determine the role additional atmospheric...REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the

  2. The impact of low-level cloud over the eastern subtropical Pacific on the ``Double ITCZ'' in LASG FGCM-0

    NASA Astrophysics Data System (ADS)

    Dai, Fushan; Yu, Rucong; Zhang, Xuehong; Yu, Yongqiang; Li, Jianglong

    2003-05-01

    Like many other coupled models, the Flexible coupled General Circulation Model (FGCM-0) suffers from the spurious “Double ITCZ”. In order to understand the “Double ITCZ” in FGCM-0, this study first examines the low-level cloud cover and the bulk stability of the low troposphere over the eastern subtropical Pacific simulated by the National Center for Atmospheric Research (NCAR) Community Climate Model version 3 (CCM3), which is the atmosphere component model of FGCM-0. It is found that the bulk stability of the low troposphere simulated by CCM3 is very consistent with the one derived from the National Center for Environmental Prediction (NCEP) reanalysis, but the simulated low-level cloud cover is much less than that derived from the International Satellite Cloud Climatology Project (ISCCP) D2 data. Based on the regression equations between the low-level cloud cover from the ISCCP data and the bulk stability of the low troposphere derived from the NCEP reanalysis, the parameterization scheme of low-level cloud in CCM3 is modified and used in sensitivity experiments to examine the impact of low-level cloud over the eastern subtropical Pacific on the spurious “Double ITCZ” in FGCM-0. Results show that the modified scheme causes the simulated low-level cloud cover to be improved locally over the cold oceans. Increasing the low-level cloud cover off Peru not only significantly alleviates the SST warm biases in the southeastern tropical Pacific, but also causes the equatorial cold tongue to be strengthened and to extend further west. Increasing the low-level cloud fraction off California effectively reduces the SST warm biases in ITCZ north of the equator. In order to examine the feedback between the SST and low-level cloud cover off Peru, one additional sensitivity experiment is performed in which the SST over the cold ocean off Peru is restored. It shows that decreasing the SST results in similar impacts over the wide regions from the southeastern tropical Pacific northwestwards to the western/central equatorial Pacific as increasing the low-level cloud cover does.

  3. TRMM and Its Connection to the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Kummerow, Chiristian

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35 degrees leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 m. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument. This presentation will focus primarily on the advances in our understanding of tropical rain systems needed to interpret the TRMM data. Global averages, as well as case studies from TRMM radar (PR), the TRMM Microwave Imager (TMI) and Visible and Infrared Sensor (VIRS) will be presented. Comparisons and contrasts among the different sensors will be drawn. Results will also be compared to previous rainfall climatologies generated from the SSM/I instrument. In particular this paper will focus on the synergy between the TRMM radar and passive microwave radiometer and what we have learned from is synergy.

  4. Tropical and Subtropical Cloud Transitions in Weather and Climate Prediction Models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI)

    NASA Technical Reports Server (NTRS)

    Teixeira, J.; Cardoso, S.; Bonazzola, M.; Cole, J.; DeGenio, A.; DeMott, C.; Franklin, C.; Hannay, C.; Jakob, C.; Jiao, Y.; hide

    2011-01-01

    A model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/ WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June July August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the 40-yr ECMWF Re-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of cloud properties (in particular), vertical velocity, and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite Cloud Climatology Project (ISCCP)] is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade wind Lagrangian trajectory. Histograms of cloud cover along the cross section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models.

  5. The effect of moonlight on observation of cloud cover at night, and application to cloud climatology

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Warren, Stephen G.; London, Julius

    1995-01-01

    Ten years of nighttime weather observations from the Northern Hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 deg, light from a partial moon at higher elevation, or twilight from the sun less than 9 deg bvelow the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. The diurnal cycles of total cloud cover we obtain are compared with those of the International Satellite Cloud Climatology Project (ISCCP) for a few regions; they are generally in better agreement if the moonlight criterion is imposed on the surface observations. Using the moonlight criterion, we have analyzed 10 years (1982-91) of surface weather observations over land and ocean, worldwide, for total cloud cover and for the frequency of occurrence of clear sky, fog, and precipitation. The global average cloud cover (average of day and night) is about 2% higher if the moonlight criterion is imposed than if all observations are used. The difference is greater in winter than in summer, because of the fewer hours of darkness in summer. The amplitude of the annual cycle of total cloud cover over the Arctic Ocean and at the South Pole is diminished by a few percent when the moonlight criterion is imposed. The average cloud cover for 1982-91 is found to be 55% for Northern Hemisphere land, 53% for Southern Hemisphere land, 66% for Northern Hemisphere ocean, and 70% for Southern Hemisphere ocean, giving a global average of 64%. The global average for daytime is 64.6%; for nighttime 63.3%.

  6. Trends and uncertainties in U.S. cloud cover from weather stations and satellite data

    NASA Astrophysics Data System (ADS)

    Free, M. P.; Sun, B.; Yoo, H. L.

    2014-12-01

    Cloud cover data from ground-based weather observers can be an important source of climate information, but the record of such observations in the U.S. is disrupted by the introduction of automated observing systems and other artificial shifts that interfere with our ability to assess changes in cloudiness at climate time scales. A new dataset using 54 National Weather Service (NWS) and 101 military stations that continued to make human-augmented cloud observations after the 1990s has been adjusted using statistical changepoint detection and visual scrutiny. The adjustments substantially reduce the trends in U.S. mean total cloud cover while increasing the agreement between the cloud cover time series and those of physically related climate variables such as diurnal temperature range and number of precipitation days. For 1949-2009, the adjusted time series give a trend in U.S. mean total cloud of 0.11 ± 0.22 %/decade for the military data, 0.55 ± 0.24 %/decade for the NWS data, and 0.31 ± 0.22 %/decade for the combined dataset. These trends are less than half those in the original data. For 1976-2004, the original data give a significant increase but the adjusted data show an insignificant trend of -0.17 (military stations) to 0.66 %/decade (NWS stations). The differences between the two sets of station data illustrate the uncertainties in the U.S. cloud cover record. We compare the adjusted station data to cloud cover time series extracted from several satellite datasets: ISCCP (International Satellite Cloud Climatology Project), PATMOS-x (AVHRR Pathfinder Atmospheres Extended) and CLARA-a1 (CM SAF cLoud Albedo and RAdiation), and the recently developed PATMOS-x diurnally corrected dataset. Like the station data, satellite cloud cover time series may contain inhomogeneities due to changes in the observing systems and problems with retrieval algorithms. Overall we find good agreement between interannual variability in most of the satellite data and that in our station data, with the diurnally corrected PATMOS-x product generally showing the best match. For the satellite period 1984-2007, trends in the U.S. mean cloud cover from satellite data vary widely among the datasets, and all are more negative than those in the station data, with PATMOS-x having the trends closest to those in the station data.

  7. A cloud and radiation model-based algorithm for rainfall retrieval from SSM/I multispectral microwave measurements

    NASA Technical Reports Server (NTRS)

    Xiang, Xuwu; Smith, Eric A.; Tripoli, Gregory J.

    1992-01-01

    A hybrid statistical-physical retrieval scheme is explored which combines a statistical approach with an approach based on the development of cloud-radiation models designed to simulate precipitating atmospheres. The algorithm employs the detailed microphysical information from a cloud model as input to a radiative transfer model which generates a cloud-radiation model database. Statistical procedures are then invoked to objectively generate an initial guess composite profile data set from the database. The retrieval algorithm has been tested for a tropical typhoon case using Special Sensor Microwave/Imager (SSM/I) data and has shown satisfactory results.

  8. Weekly Cycle of Lightning and Associated Patterns of Rainfall, Cloud, and Aerosols over Korea and Adjacent Oceans during Boreal Summer

    NASA Technical Reports Server (NTRS)

    Kim, Ji-In; Kim, Kyu-Myong

    2011-01-01

    In this study, we analyze the weekly cycle of lightning over Korea and adjacent oceans and associated variations of aerosols, clouds, precipitation, and atmospheric circulations, using aerosol optical depth (AOD) from the NASA Moderate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), cloud properties from MODIS, precipitation and storm height from Tropical Rainfall Measuring Mission (TRMM) satellite, and lightning data from the Korean Lightning Detection Network (KLDN) during 9-year from 2002 to 2010. Lightning data was divided into three approximately equal areas, land area of Korea, and two adjacent oceans, Yellow Sea and South Sea. Preliminary results show that the number of lightning increases during the middle of the week over Yellow Sea. AOD data also shows moderately significant midweek increase at about the same time as lightning peaks. These results are consistent with the recent studies showing the invigoration of storms with more ice hydrometeors by aerosols, and subsequently wash out of aerosols by rainfall. Frequency of lightning strokes tend to peak at weekend in land area and over South Sea, indicating local weekly anomalous circulation between land and adjacent ocean. On the other hand, lightning frequency over Yellow Sea appears to have very strong weekly cycle with midweek peak on around Wednesday. It is speculated that the midweek peak of lightning over Yellow Sea was related with aerosol transport from adjacent land area. AOD data also suggests midweek peak over Yellow Sea, however, the weekly cycle of AOD was not statistically significant. Changes in weekly cycle of lightning from pre-monsoon to monsoon season, as well as associated clouds and circulation patterns are also discussed.

  9. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE PAGES

    Martin, S. T.; Artaxo, P.; Machado, L.; ...

    2017-05-15

    The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraftmore » to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Here in this paper, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  10. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, S. T.; Artaxo, P.; Machado, L.

    The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraftmore » to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Here in this paper, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  11. Introducing the MIT Regional Climate Model (MRCM)

    NASA Astrophysics Data System (ADS)

    Eltahir, Elfatih A. B.; Winter, Jonathn M.; Marcella, Marc P.; Gianotti, Rebecca L.; Im, Eun-Soon

    2013-04-01

    During the last decade researchers at MIT have worked on improving the skill of Regional Climate Model version 3 (RegCM3) in simulating climate over different regions through the incorporation of new physical schemes or modification of original schemes. The MIT Regional Climate Model (MRCM) features several modifications over RegCM3 including coupling of Integrated Biosphere Simulator (IBIS), a new surface albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Here, we introduce the MRCM and briefly describe the major model modifications relative to RegCM3 and their impact on the model performance. The most significant difference relative to the RegCM3 original configuration is coupling the Integrated Biosphere Simulator (IBIS) land-surface scheme (Winter et al., 2009). Based on the simulations using IBIS over the North America, the Maritime Continent, Southwest Asia and West Africa, we demonstrate that the use of IBIS as the land surface scheme results in better representation of surface energy and water budgets in comparison to BATS. Furthermore, the addition of a new irrigation scheme to IBIS makes it possible to investigate the effects of irrigation over any region. Also a new surface albedo assignment method used together with IBIS brings further improvement in simulations of surface radiation (Marcella and Eltahir, 2013). Another important feature of the MRCM is the introduction of a new convective cloud and rainfall auto-conversion scheme (Gianotti and Eltahir, 2013). This modification brings more physical realism into an important component of the model, and succeeds in simulating convective-radiative feedback improving model performance across several radiation fields and rainfall characteristics. Other features of MRCM such as the modified boundary layer height and cloud scheme, and the improvements in the dust emission and transport representations will be discussed.

  12. Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon

    2015-10-01

    This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.

  13. New optical package and algorithms for accurate estimation and interactive recording of the cloud cover information over land and sea

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey; Gulev, Sergey

    2014-05-01

    Cloud fraction is a critical parameter for the accurate estimation of short-wave and long-wave radiation - one of the most important surface fluxes over sea and land. Massive estimates of the total cloud cover as well as cloud amount for different layers of clouds are available from visual observations, satellite measurements and reanalyses. However, these data are subject of different uncertainties and need continuous validation against highly accurate in-situ measurements. Sky imaging with high resolution fish eye camera provides an excellent opportunity for collecting cloud cover data supplemented with additional characteristics hardly available from routine visual observations (e.g. structure of cloud cover under broken cloud conditions, parameters of distribution of cloud dimensions). We present operational automatic observational package which is based on fish eye camera taking sky images with high resolution (up to 1Hz) in time and a spatial resolution of 968x648px. This spatial resolution has been justified as an optimal by several sensitivity experiments. For the use of the package at research vessel when the horizontal positioning becomes critical, a special extension of the hardware and software to the package has been developed. These modules provide the explicit detection of the optimal moment for shooting. For the post processing of sky images we developed a software realizing the algorithm of the filtering of sunburn effect in case of small and moderate could cover and broken cloud conditions. The same algorithm accurately quantifies the cloud fraction by analyzing color mixture for each point and introducing the so-called "grayness rate index" for every pixel. The accuracy of the algorithm has been tested using the data collected during several campaigns in 2005-2011 in the North Atlantic Ocean. The collection of images included more than 3000 images for different cloud conditions supplied with observations of standard parameters. The system is fully autonomous and has a block for digital data collection at the hard disk. The system has been tested for a wide range of open ocean cloud conditions and we will demonstrate some pilot results of data processing and physical interpretation of fractional cloud cover estimation.

  14. Atmospheric water distribution in a midlatitude cyclone observed by the Seasat Scanning Multichannel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Mcmurdie, L. A.; Katsaros, K. B.

    1985-01-01

    Patterns in the horizontal distribution of integrated water vapor, integrated liquid water and rainfall rate derived from the Seasat Scanning Multichannel Microwave Radiometer (SMMR) during a September 10-12, 1978 North Pacific cyclone are studied. These patterns are compared with surface analyses, ship reports, radiosonde data, and GOES-West infrared satellite imagery. The SMMR data give a unique view of the large mesoscale structure of a midlatitude cyclone. The water vapor distribution is found to have characteristic patterns related to the location of the surface fronts throughout the development of the cyclone. An example is given to illustrate that SMMR data could significantly improve frontal analysis over data-sparse oceanic regions. The distribution of integrated liquid water agrees qualitatively well with corresponding cloud patterns in satellite imagery and appears to provide a means to distinguish where liquid water clouds exist under a cirrus shield. Ship reports of rainfall intensity agree qualitatively very well with SMMR-derived rainrates. Areas of mesoscale rainfall, on the order of 50 km x 50 km or greater are detected using SMMR derived rainrates.

  15. Precipitation Estimation from the ARM Distributed Radar Network During the MC3E Campaign

    NASA Astrophysics Data System (ADS)

    Theisen, A. K.; Giangrande, S. E.; Collis, S. M.

    2012-12-01

    The DOE - NASA Midlatitude Continental Convective Cloud Experiment (MC3E) was the first demonstration of the Atmospheric Radiation Measurement (ARM) Climate Research Facility scanning precipitation radar platforms. A goal for the MC3E field campaign over the Southern Great Plains (SGP) facility was to demonstrate the capabilities of ARM polarimetric radar systems for providing unique insights into deep convective storm evolution and microphysics. One practical application of interest for climate studies and the forcing of cloud resolving models is improved Quantitative Precipitation Estimates (QPE) from ARM radar systems positioned at SGP. This study presents the results of ARM radar-based precipitation estimates during the 2-month MC3E campaign. Emphasis is on the usefulness of polarimetric C-band radar observations (CSAPR) for rainfall estimation to distances within 100 km of the Oklahoma SGP facility. Collocated ground disdrometer resources, precipitation profiling radars and nearby surface Oklahoma Mesonet gauge records are consulted to evaluate potential ARM radar-based rainfall products and optimal methods. Rainfall products are also evaluated against the regional NEXRAD-standard observations.

  16. Estimation and Mapping of Clouds and Rainfall Areas with an Interactive Computer.

    DTIC Science & Technology

    1982-12-01

    test. C . TEST PROCEDURES The following lis1t is the set of procedures for this test of the SPADS Cloud Model. The steps taken were to: 1. Capture...12, 1640-1648. 121 0 APPENDIX4 SPADS CLOUD MlDEL COMPUTER PROGrRArt C CLOY) -IS DRIVER/IMAIN PROGRAIM C T41S PROC.RAM ANALYZES VIS AND IR. TOGETHEI TO...NITH AN INTERACTIVE COMPUTER(U) NAYAL POSTGRADUATE SCHOOL MONTEREY CA C A NELSON DEC 92 UNLSSIFIED F/G 9/2 NUC MENOMONE NONI smhhhhhhhhohh

  17. ULF geomagnetic activity effects on tropospheric temperature, specific humidity, and cloud cover in Antarctica, during 2003-2010

    NASA Astrophysics Data System (ADS)

    Regi, Mauro; Redaelli, Gianluca; Francia, Patrizia; De Lauretis, Marcello

    2017-06-01

    In the present study we investigated the possible relationship between the ULF geomagnetic activity and the variations of several atmospheric parameters. In particular, we compared the ULF activity in the Pc1-2 frequency band (100 mHz-5 Hz), computed from geomagnetic field measurements at Terra Nova Bay in Antarctica, with the tropospheric temperature T, specific humidity Q, and cloud cover (high cloud cover, medium cloud cover, and low cloud cover) obtained from reanalysis data set. The statistical analysis was conducted during the years 2003-2010, using correlation and Superposed Epoch Analysis approaches. The results show that the atmospheric parameters significantly change following the increase of geomagnetic activity within 2 days. These changes are evident in particular when the interplanetary magnetic field Bz component is oriented southward (Bz<0) and the By component duskward (By>0). We suggest that both the precipitation of electrons induced by Pc1-2 activity and the intensification of the polar cap potential difference, modulating the microphysical processes in the clouds, can affect the atmosphere conditions.

  18. Runoff and erosion response of simulated waste burial covers in a semi-arid environment

    USGS Publications Warehouse

    Bent, G.C.; Goff, B.F.; Rightmire, K.G.; Sidle, R.C.

    1999-01-01

    Control of runoff (reducing infiltration) and erosion at shallow land burials is necessary in order to assure environmentally safe disposal of low-level radioactive-waste and other waste products. This study evaluated the runoff and erosion response of two perennial grass species on simulated waste burial covers at Idaho National Engineering and Environmental Laboratory (INEEL). Rainfall simulations were applied to three plots covered by crested wheatgrass [Agropyron desertorum (Fischer ex Link) Shultes], three plots covered by streambank wheatgrass [Elymus lanceolatus (Scribner and Smith) Gould spp. lanceolatus], and one bare plot. Average total runoff for rainfall simulations in 1987, 1989, and 1990 was 42 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Average total soil loss for rainfall simulations in 1987 and 1990 was 105 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Total runoff and soil loss from natural rainfall and snowmelt events during 1987 were 25 and 105 percent greater, respectively, on streambank wheatgrass plots than on crested wheatgrass plots. Thus, crested wheatgrass appears to be better suited in revegetation of waste burial covers at INEEL than streambank wheatgrass due to its much lower erosion rate and only slightly higher infiltration rate (lower runoff rate).

  19. Seasonal and interannual variations of top-of-atmosphere irradiance and cloud cover over polar regions derived from the CERES data set

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Loeb, Norman G.; Minnis, Patrick; Francis, Jennifer A.; Charlock, Thomas P.; Rutan, David A.; Clothiaux, Eugene E.; Sun-Mack, Szedung

    2006-10-01

    The daytime cloud fraction derived by the Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm using Moderate Resolution Imaging Spectroradiometer (MODIS) radiances over the Arctic from March 2000 through February 2004 increases at a rate of 0.047 per decade. The trend is significant at an 80% confidence level. The corresponding top-of-atmosphere (TOA) shortwave irradiances derived from CERES radiance measurements show less significant trend during this period. These results suggest that the influence of reduced Arctic sea ice cover on TOA reflected shortwave radiation is reduced by the presence of clouds and possibly compensated by the increase in cloud cover. The cloud fraction and TOA reflected shortwave irradiance over the Antarctic show no significant trend during the same period.

  20. Thunderstorms over Brazil

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This photograph, acquired in February 1984 by an astronaut aboard the space shuttle, shows a series of mature thunderstorms located near the Parana River in southern Brazil. With abundant warm temperatures and moisture-laden air in this part of Brazil, large thunderstorms are commonplace. A number of overshooting tops and anvil clouds are visible at the tops of the clouds. Storms of this magnitude can drop large amounts of rainfall in a short period of time, causing flash floods. However, a NASA-funded researcher has discovered that tiny airborne particles of pollution may modify developing thunderclouds by increasing the quantity and reducing the size of the ice crystals within them. These modifications may affect the clouds' impact on the Earth's 'radiation budget,' or the amount of radiation that enters and leaves our planet. Steven Sherwood, a professor at Yale University, found that airborne aerosols reduce the size of ice crystals in thunderclouds and may reduce precipitation as well. Using several satellites and instruments including NASA's Total Ozone Mapping Spectrometer (TOMS) and NASA's Tropical Rainfall Measuring Mission (TRMM) satellite, Sherwood observed how airborne pollution particles (aerosols) affect large thunderstorms, or cumulonimbus clouds in the tropics. Common aerosols include mineral dust, smoke, and sulfates. An increased number of these particles create a larger number of smaller ice crystals in cumulonimbus clouds. As a result of their smaller size, the ice crystals evaporate from a solid state directly into a gas, instead of falling as rain. Sherwood noted that this effect is more prevalent over land than open ocean areas. Previous research by Daniel Rosenfeld of Hebrew University revealed that aerosols and pollution reduced rainfall in shallow cumulus clouds of liquid water, which do not have the capability to produce as much rainfall. Sherwood expanded on that research by looking at cumulonimbus clouds with more ice particles. Studies have also proven that ice particles are smaller in the upper reaches of thunderclouds when there is more pollution and when the rising air in the clouds (convection) is stronger. Aerosols seem to have the most influence on seasonal and longer timescales such as during the warmer months when plants and undergrowth are burned to clear fields. Over areas where biomass burning occurs, such as South America, aerosols have been found to reduce the diameter of ice crystals in the clouds by as much as 20 percent. Areas over deserts, such as Africa's Sahel Region where dust is a primary aerosol, there was a 10 percent decrease in the diameter of ice crystals in cumulonimbus clouds. Aerosol particles are necessary for clouds to form, and it has been suspected that clouds might be altered by large concentrations of them. By looking at ten years of aerosol data and statistically analyzing many thunderclouds, Sherwood was able to confirm that they were affected. Sherwood found that ice crystals are smaller in clouds over continents than oceans, which could be attributed to the amount of pollution generated over land. The highest values occur widely over Northern Africa, where desert dust and smoke from agricultural burning occur. Intermediate values prevail over much of Asia, through the Indonesia region and into the south Pacific. The largest ice crystal sizes were found over the eastern Pacific and southern Indian Oceans. Sherwood's article, 'Aerosols and Ice Particle Size in Tropical Cumulonimbus,' appears in the May 1, 2002, issue of the American Meteorological Society Journal of Climate. This work was performed under the NASA Earth Observing System/Interdisciplinary Science (IDS) program under the Earth Science Enterprise (ESE). Image STS41B-41-2347 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth

  1. Rainfall estimation with TFR model using Ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Asyiqotur Rohmah, Nabila; Apriliani, Erna

    2018-03-01

    Rainfall fluctuation can affect condition of other environment, correlated with economic activity and public health. The increasing of global average temperature is influenced by the increasing of CO2 in the atmosphere, which caused climate change. Meanwhile, the forests as carbon sinks that help keep the carbon cycle and climate change mitigation. Climate change caused by rainfall intensity deviations can affect the economy of a region, and even countries. It encourages research on rainfall associated with an area of forest. In this study, the mathematics model that used is a model which describes the global temperatures, forest cover, and seasonal rainfall called the TFR (temperature, forest cover, and rainfall) model. The model will be discretized first, and then it will be estimated by the method of Ensemble Kalman Filter (EnKF). The result shows that the more ensembles used in estimation, the better the result is. Also, the accurateness of simulation result is influenced by measurement variable. If a variable is measurement data, the result of simulation is better.

  2. New Indices to Evaluate the Effects of Rainfall Pattern on Runoff and Soil Loss under Different Vegetation in the Loess Plateau, China.

    NASA Astrophysics Data System (ADS)

    Liu, J.; Gao, G.; Jiao, L.; Fu, B.

    2016-12-01

    The rainfall amount, density and duration were commonly used to evaluate the influences of rainfall on runoff and soil loss, which could completely express the information of rainfall, especially rainfall pattern. In this study, the peak zone of rainfall intensity (PZRI) and intra-event intermittency of rainfall (IERI) were developed to detect the effects of rainfall pattern on runoff and soil loss under different land cover types in the Loess Plateau of China. The runoff and soil loss of three vegetation types (Prunus armeniaca, Artemisia sacrorum and Andropogon yunnanensis) and bare land were measured from 2012 to 2015. The PZRI was significantly correlated with average rainfall intensity (I) and maximum rainfall intensity in 30 minutes (I30). The runoff coefficient (RC) and soil loss were not significantly correlated with I, but they were significantly affected by I30 and PZRI (p<0.05). The greater value of IERI indicated more proportion of PZRI in rainfall duration, and there was positive correlation between IERI and RC. It was showed that the RC was most correlated with PZRI, whereas the correlation between soil loss and I30 was most significant under all cover types. This indicated that the changes of rainfall pattern had more effects on runoff than soil loss. In addition, the position of PZRI in the rainfall profile had an important role on runoff and soil loss. RC and soil loss under bare land was most sensitive to the occurrence period of rainfall peak, followed by Prunus armeniaca, Artemisia sacrorum and Andropogon yunnanensis.

  3. Improving snow fraction spatio-temporal continuity using a combination of MODIS and Fengyun-2 satellites over China

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Wang, G.

    2017-12-01

    Snow cover is one of key elements in the investigations of weather, climatic change, water resource, and snow hazard. Satellites observations from on-board optical sensors provides the ability to snow cover mapping through the discrimination of snow from other surface features and cloud. MODIS provides maximum of snow cover data using 8-day composition data in order to reduce the cloud obscuration impacts. However, snow cover mapping is often required to obtain at the temporal scale of less than one day, especially in the case of disasters. Geostationary satellites provide much higher temporal resolution measurements (typically at 15 min or half or one hour), which has a great potential to reduce cloud cover problem and observe ground surface for identifying snow. The proposed method in this work is that how to take the advantages of polar-orbiting and geostationary optical sensors to accurately map snow cover without data gaps due to cloud. FY-2 geostationary satellites have high temporal resolution observations, however, they are lacking enough spectral bands essential for snow cover monitoring, such as the 1.6 μm band. Based on our recent work (Wang et al., 2017), we improved FY-2/VISSR fractional snow cover estimation with a linear spectral unmixing analysis method. The linear approach is applied then using the reflectance observed at the certain hourly image of FY-2 to calculate pixel-wise snow cover fraction. The composition of daily factional snow cover employs the sun zenith angle, where the snow fraction under lowest sun zenith angle is considered as the most confident result. FY-2/VISSR fractional snow cover map has less cloud due to the composition of multi-temporal snow maps in a single day. In order to get an accurate and cloud-reduced fractional snow cover map, both of MODIS and FY-2/VISSR daily snow fraction maps are blended together. With the combination of FY-2E/VISSR and MODIS, there are still some cloud existing in the daily snow fraction map. Then the combination snow fraction map is temporally reconstructed using MATLAB Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) function to derive a completely daily cloud-free snow cover map under all the sky conditions.

  4. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa

    PubMed Central

    Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe

    2017-01-01

    Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets. PMID:28534868

  5. Midweek Intensification of Rain in the U.S.: Does Air Pollution Invigorate Storms?

    NASA Technical Reports Server (NTRS)

    Bell, T. L.; Rosenfeld, D.; Hahnenberger, M.

    2005-01-01

    The effect of pollution on rainfall has been observed to depend both on the type of pollution and the precipitating environment. The climatological consequences of pollution for rainfall are uncertain. In some urban areas, pollution varies with the day of the week because of weekly variations in human activity, in effect providing a repeated experiment on the effects of pollution. Weekly variations in temperature, pressure, cloud characteristics, hails and lightning are observed in many areas. Observing a weekly cycle in rainfall statistics has proven to be more difficult, although there is some evidence for it. Here we examine rainfall statistics from the Tropical Rainfall Measuring Mission (TRMM) satellite over the southern U.S. and adjacent waters, and find that there is a distinct, statistically significant weekly cycle in summertime rainfall over the southeast U.S., as well as weekly variations in rainfall over the nearby Atlantic and the Gulf of Mexico. Rainfall over land peaks in the middle of the week, suggesting that summer rainfall on large scales may increase as pollution levels rise. Both rain statistics over land and what appear to be compensating effects over adjacent seas support the suggestion that air pollution invigorates convection and outflow aloft.

  6. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions

    PubMed Central

    Wilson, Adam M.; Jetz, Walter

    2016-01-01

    Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km) monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties. PMID:27031693

  7. Spatio-temporal variability and trends of precipitation and extreme rainfall events in Ethiopia in 1980-2010

    NASA Astrophysics Data System (ADS)

    Gummadi, Sridhar; Rao, K. P. C.; Seid, Jemal; Legesse, Gizachew; Kadiyala, M. D. M.; Takele, Robel; Amede, Tilahun; Whitbread, Anthony

    2017-12-01

    This article summarizes the results from an analysis conducted to investigate the spatio-temporal variability and trends in the rainfall over Ethiopia over a period of 31 years from 1980 to 2010. The data is mostly observed station data supplemented by bias-corrected AgMERRA climate data. Changes in annual and Belg (March-May) and Kiremt (June to September) season rainfalls and rainy days have been analysed over the entire Ethiopia. Rainfall is characterized by high temporal variability with coefficient of variation (CV, %) varying from 9 to 30% in the annual, 9 to 69% during the Kiremt season and 15-55% during the Belg season rainfall amounts. Rainfall variability increased disproportionately as the amount of rainfall declined from 700 to 100 mm or less. No significant trend was observed in the annual rainfall amounts over the country, but increasing and decreasing trends were observed in the seasonal rainfall amounts in some areas. A declining trend is also observed in the number of rainy days especially in Oromia, Benishangul-Gumuz and Gambella regions. Trends in seasonal rainfall indicated a general decline in the Belg season and an increase in the Kiremt season rainfall amounts. The increase in rainfall during the main Kiremt season along with the decrease in the number of rainy days leads to an increase in extreme rainfall events over Ethiopia. The trends in the 95th-percentile rainfall events illustrate that the annual extreme rainfall events are increasing over the eastern and south-western parts of Ethiopia covering Oromia and Benishangul-Gumuz regions. During the Belg season, extreme rainfall events are mostly observed over central Ethiopia extending towards the southern part of the country while during the Kiremt season, they are observed over parts of Oromia, (covering Borena, Guji, Bali, west Harerge and east Harerge), Somali, Gambella, southern Tigray and Afar regions. Changes in the intensity of extreme rainfall events are mostly observed over south-eastern parts of Ethiopia extending to the south-west covering Somali and Oromia regions. Similar trends are also observed in the greatest 3-, 5- and 10-day rainfall amounts. Changes in the consecutive dry and wet days showed that consecutive wet days during Belg and Kiremt seasons decreased significantly in many areas in Ethiopia while consecutive dry days increased. The consistency in the trends over large spatial areas confirms the robustness of the trends and serves as a basis for understanding the projected changes in the climate. These results were discussed in relation to their significance to agriculture.

  8. Evaluating the feasibility of global climate models to simulate cloud cover effect controlled by Marine Stratocumulus regime transitions

    NASA Astrophysics Data System (ADS)

    Goren, Tom; Muelmenstaedt, Johannes; Rosenfeld, Daniel; Quaas, Johannes

    2017-04-01

    Marine stratocumulus clouds (MSC) occur in two main cloud regimes of open and closed cells that differ significantly by their cloud cover. Closed cells gradually get cleansed of high CCN concentrations in a process that involves initiation of drizzle that breaks the full cloud cover into open cells. The drizzle creates downdrafts that organize the convection along converging gust fronts, which in turn produce stronger updrafts that can sustain more cloud water that compensates the depletion of the cloud water by the rain. In addition, having stronger updrafts allow the clouds to grow relatively deep before rain starts to deplete its cloud water. Therefore, lower droplet concentrations and stronger rain would lead to lower cloud fraction, but not necessary also to lower liquid water path (LWP). The fundamental relationships between these key variables derived from global climate model (GCM) simulations are analyzed with respect to observations in order to determine whether the GCM parameterizations can represent well the governing physical mechanisms upon MSC regime transitions. The results are used to evaluate the feasibility of GCM's for estimating aerosol cloud-mediated radiative forcing upon MSC regime transitions, which are responsible for the largest aerosol cloud-mediated radiative forcing.

  9. On the existence of tropical anvil clouds

    NASA Astrophysics Data System (ADS)

    Seeley, J.; Jeevanjee, N.; Langhans, W.; Romps, D.

    2017-12-01

    In the deep tropics, extensive anvil clouds produce a peak in cloud cover below the tropopause. The dominant paradigm for cloud cover attributes this anvil peak to a layer of enhanced mass convergence in the clear-sky upper-troposphere, which is presumed to force frequent detrainment of convective anvils. However, cloud cover also depends on the lifetime of cloudy air after it detrains, which raises the possibility that anvil clouds may be the signature of slow cloud decay rather than enhanced detrainment. Here we measure the cloud decay timescale in cloud-resolving simulations, and find that cloudy updrafts that detrain in the upper troposphere take much longer to dissipate than their shallower counterparts. We show that cloud lifetimes are long in the upper troposphere because the saturation specific humidity becomes orders of magnitude smaller than the typical condensed water loading of cloudy updrafts. This causes evaporative cloud decay to act extremely slowly, thereby prolonging cloud lifetimes in the upper troposphere. As a consequence, extensive anvil clouds still occur in a convecting atmosphere that is forced to have no preferential clear-sky convergence layer. On the other hand, when cloud lifetimes are fixed at a characteristic lower-tropospheric value, extensive anvil clouds do not form. Our results support a revised understanding of tropical anvil clouds, which attributes their existence to the microphysics of slow cloud decay rather than a peak in clear-sky convergence.

  10. Tropical Cyclone Monty Strikes Western Australia

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) acquired these natural color images and cloud top height measurements for Monty before and after the storm made landfall over the remote Pilbara region of Western Australia, on February 29 and March 2, 2004 (shown as the left and right-hand image sets, respectively). On February 29, Monty was upgraded to category 4 cyclone status. After traveling inland about 300 kilometers to the south, the cyclonic circulation had decayed considerably, although category 3 force winds were reported on the ground. Some parts of the drought-affected Pilbara region received more than 300 millimeters of rainfall, and serious and extensive flooding has occurred.

    The natural color images cover much of the same area, although the right-hand panels are offset slightly to the east. Automated stereoscopic processing of data from multiple MISR cameras was utilized to produce the cloud-top height fields. The distinctive spatial patterns of the clouds provide the necessary contrast to enable automated feature matching between images acquired at different view angles. The height retrievals are at this stage uncorrected for the effects of the high winds associated with cyclone rotation. Areas where heights could not be retrieved are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 22335 and 22364. The panels cover an area of about 380 kilometers x 985 kilometers, and utilize data from blocks 105 to 111 within World Reference System-2 paths 115 and 113.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  11. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  12. Enhancement of Cloud Cover and Suppression of Nocturnal Drizzle in Stratocumulus Polluted by Haze

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, O. B.; Stevens, D. E.; Coakley, J. A., Jr.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Recent satellite observations indicate a significant decrease of cloud water in ship tracks, in contrast to an ensemble of in situ ship-track measurements that show no average change in cloud water relative to the surrounding clouds. We find through large-eddy simulations of stratocumulus that the trend in the satellite data is likely an artifact of sampling only overcast clouds. The simulations instead show cloud cover increasing with droplet concentrations. Our simulations also show that increases in cloud water from drizzle suppression (by increasing droplet concentrations) are favored at night or at extremely low droplet concentrations.

  13. Spatial Dependence of the Relationship between Rainfall and Outgoing Longwave Radiation in the Tropical Atlantic.

    NASA Astrophysics Data System (ADS)

    Yoo, Jung-Moon; Carton, James A.

    1988-10-01

    We develop a Spatially dependent formula to estimate rainfall from satellite-derived outgoing longwave radiation (OLR) data and the height of the base of the trade-wind inversion. This formula has been constructed by comparing rainfall records from twelve islands in the tropical Atlantic with 11 years of OLR data. Zonal asymmetries due to the differing cloud types in the eastern and western Atlantic and the presence of Saharan sand in the cast are included.The climatological winter and summer rainfall derived from the above formula concurs with ship observations described by Dorman and Bourke. However, during the spring and fall, OLR-derived rainfall is higher than observations by 2-4 mm day1 in the intertropical convergence zone. The largest discrepancy occurs during the fall in the region west of 28°W. Interannual anomalies of rainfall computed using this technique are large enough to cause potentially important changes in ocean surface salinity.

  14. Tropical Oceanic Precipitation Processes over Warm Pool: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.- K.; Johnson, D.

    1998-01-01

    Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere, The vertical distribution of convective latent-heat release modulates the large-scale circulations of the tropics, Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate models simulate cloud processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMS) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and cloud systems, The major objective of this paper is to investigate the latent heating, moisture and momenti,im budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (CCE) model which includes a 3-class ice-phase microphysical scheme, The model domain contains 256 x 256 grid points (using 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km depth) in the vertical, The 2D domain has 1024 grid points. The simulations are performed over a 7 day time period. We will examine (1) the precipitation processes (i.e., condensation/evaporation) and their interaction with warm pool; (2) the heating and moisture budgets in the convective and stratiform regions; (3) the cloud (upward-downward) mass fluxes in convective and stratiform regions; (4) characteristics of clouds (such as cloud size, updraft intensity and cloud lifetime) and the comparison of clouds with Radar observations. Differences and similarities in organization of convection between simulated 2D and 3D cloud systems. Preliminary results indicated that there is major differences between 2D and 3D simulated stratiform rainfall amount and convective updraft and downdraft mass fluxes.

  15. Soil Moisture, Coastline Curvature, and Sea Breeze Initiated Precipitation Over Florida

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo

    1999-01-01

    Land surface-atmosphere interaction plays a key role in the development of summertime convection and precipitation over the Florida peninsula. Land-ocean temperature contrasts induce sea-breeze circulations along both coasts. Clouds develop along sea-breeze fronts, and significant precipitation can occur during the summer months. However, other factors such as soil moisture distribution and coastline curvature may modulate the timing, location, and intensity of sea breeze initiated precipitation. Here, we investigate the role of soil moisture and coastline curvature on Florida precipitation using the 3-D Goddard Cumulus Ensemble (GCE) cloud model coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data from the Convection and Precipitation Electrification Experiment (CaPE) collected on 27 July 1991. Our numerical simulations suggest that a realistic distribution of soil moisture influences the location and intensity of precipitation but not the timing of precipitation. In contrast, coastline curvature affects the timing and location of precipitation but has little influence on peak rainfall rates. However, both factors (soil moisture and coastline curvature) are required to fully account for observed rainfall amounts.

  16. Impact of capturing rainfall scavenging intermittency using cloud superparameterization on simulated continental scale wildfire smoke transport

    NASA Astrophysics Data System (ADS)

    Pritchard, M. S.; Kooperman, G. J.; Zhao, Z.; Wang, M.; Russell, L. M.; Somerville, R. C.; Ghan, S. J.

    2011-12-01

    Evaluating the fidelity of new aerosol physics in climate models is confounded by uncertainties in source emissions, systematic error in cloud parameterizations, and inadequate sampling of long-range plume concentrations. To explore the degree to which cloud parameterizations distort aerosol processing and scavenging, the Pacific Northwest National Laboratory (PNNL) Aerosol-Enabled Multi-Scale Modeling Framework (AE-MMF), a superparameterized branch of the Community Atmosphere Model Version 5 (CAM5), is applied to represent the unusually active and well sampled North American wildfire season in 2004. In the AE-MMF approach, the evolution of double moment aerosols in the exterior global resolved scale is linked explicitly to convective statistics harvested from an interior cloud resolving scale. The model is configured in retroactive nudged mode to observationally constrain synoptic meteorology, and Arctic wildfire activity is prescribed at high space/time resolution using data from the Global Fire Emissions Database. Comparisons against standard CAM5 bracket the effect of superparameterization to isolate the role of capturing rainfall intermittency on the bulk characteristics of 2004 Arctic plume transport. Ground based lidar and in situ aircraft wildfire plume constraints from the International Consortium for Atmospheric Research on Transport and Transformation field campaign are used as a baseline for model evaluation.

  17. Variability of and Factors Controlling Precipitation Production in Shallow Cumulus - Results from the ARM Eastern North Atlantic Site

    NASA Astrophysics Data System (ADS)

    Luke, E. P.; Kollias, P.

    2016-12-01

    Shallow cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans and frequently produce warm rain. However, quantitative rainfall estimates from these clouds are challenging to acquire from satellites due to their small horizontal scale. Here, two years of observations from the US Department of Energy Atmospheric Radiation Measurement Program (ARM) Eastern North Atlantic (ENA) site located on Graciosa Island in the Azores are used to characterize the frequency, intensity, and fractional coverage of shallow cumulus precipitation. The analyzed dataset is the most comprehensive of its type, considering both its temporal extent and the sophistication of the ground-based observations. The precipitation rate at the base of shallow cumulus is estimated using combined radar-lidar observations and the rain retrievals are compared to the rainfall measurements available at the ground by optical disdrometers. Using synergy between surfaced-based observations of aerosols and thermodynamic soundings, the vertical structure of the Marine Boundary Layer and the temporal variability of the cloud condensation nuclei (CCN) number concentration are determined. The observed variability in shallow cumulus precipitation is examined in relation to the variability of the large-scale environment as captured by the humidity profile, the magnitude of the low-level horizontal winds and aerosol loading.

  18. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  19. Optical Algorithm for Cloud Shadow Detection Over Water

    DTIC Science & Technology

    2013-02-01

    REPORT DATE (DD-MM-YYYY) 05-02-2013 2. REPORT TYPE Journal Article 3. DATES COVERED (From ■ To) 4. TITLE AND SUBTITLE Optical Algorithm for Cloud...particularly over humid tropical regions. Throughout the year, about two-thirds of the Earth’s surface is always covered by clouds [1]. The problem...V. Khlopenkov and A. P. Trishchenko, "SPARC: New cloud, snow , cloud shadow detection scheme for historical I-km AVHHR data over Canada," / Atmos

  20. New, Improved Goddard Bulk-Microphysical Schemes for Studying Precipitation Processes in WRF

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    An improved bulk microphysical parameterization is implemented into the Weather Research and Forecasting ()VRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atlantic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with a cloud ice-snow-hail configuration agreed better with observations in terms of rainfall intensity and a narrow convective line than did simulations with a cloud ice-snow-graupel or cloud ice-snow (i.e., 2ICE) configuration. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 in For an Atlantic hurricane case, the Goddard microphysical schemes had no significant impact on the track forecast but did affect the intensity slightly. The improved Goddard schemes are also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in the southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE scheme with the hail option and the Thompson scheme agree better with observations in terms of rainfall intensity, expect that the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of model simulated cloud species (i.e., snow) are quite sensitive to microphysical schemes, which is an important issue for future verification against satellite retrievals. Both the Purdue-Lin and WSM6 schemes simulated very little snow compared to the other schemes for both the midlatitude convective line and hurricane cases. Sensitivity tests are performed for these two WRF schemes to identify that snow productions could be increased by increasing the snow intercept, turning off the auto-conversion from snow to graupel and reducing the transfer processes from cloud-sized particles to precipitation-sized ice.

  1. Studying Precipitation Processes in WRF with Goddard Bulk Microphysics in Comparison with Other Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Shi, J.J.; Braun, S.; Simpson, J.; Chen, S.S.; Lang, S.; Hong, S.Y.; Thompson, G.; Peters-Lidard, C.

    2009-01-01

    A Goddard bulk microphysical parameterization is implemented into the Weather Research and Forecasting (WRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on different weather events: a midlatitude linear convective system and an Atlantic hurricane. The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with the cloud ice-snow-hail configuration agreed better with observations ill of rainfall intensity and having a narrow convective line than did simulations with the cloud ice-snow-graupel and cloud ice-snow (i.e., 2ICE) configurations. This is because the Goddard 3ICE-hail configuration has denser precipitating ice particles (hail) with very fast fall speeds (over 10 m/s) For an Atlantic hurricane case, the Goddard microphysical scheme (with 3ICE-hail, 3ICE-graupel and 2ICE configurations) had no significant impact on the track forecast but did affect the intensity slightly. The Goddard scheme is also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE-hail and Thompson schemes were closest to the observed rainfall intensities although the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of model-simulated cloud species (e.g., snow) are quite sensitive to the microphysical schemes, which is an issue for future verification against satellite retrievals. Both the Purdue-Lin and WSM6 schemes simulated very little snow compared to the other schemes for both the midlatitude convective line and hurricane case. Sensitivity tests with these two schemes showed that increasing the snow intercept, turning off the auto-conversion from snow to graupel, eliminating dry growth, and reducing the transfer processes from cloud-sized particles to precipitation-sized ice collectively resulted in a net increase in those schemes' snow amounts.

  2. Temporal variation of the cloud top height over the tropical Pacific observed by geostationary satellites

    NASA Astrophysics Data System (ADS)

    Nishi, N.; Hamada, A.

    2012-12-01

    Stratiform clouds (nimbostratus and cirriform clouds) in the upper troposphere accompanied with cumulonimbus activity cover large part of the tropical region and largely affect the radiation and water vapor budgets there. Recently new satellites (CloudSat and CALIPSO) can give us the information of cloud height and cloud ice amount even over the open ocean. However, their coverage is limited just below the satellite paths; it is difficult to capture the whole shape and to trace the lifecycle of each cloud system by using just these datasets. We made, as a complementary product, a dataset of cloud top height and visible optical thickness with one-hour resolution over the wide region, by using infrared split-window data of the geostationary satellites (AGU fall meeting 2011) and released on the internet (http://database.rish.kyoto-u.ac.jp/arch/ctop/). We made lookup tables for estimating cloud top height only with geostationary infrared observations by comparing them with the direct cloud observation by CloudSat (Hamada and Nishi, 2010, JAMC). We picked out the same-time observations by MTSAT and CloudSat and regressed the cloud top height observation of CloudSat back onto 11μm brightness temperature (Tb) and the difference between the 11μm Tb and 12μm Tb. We will call our estimated cloud top height as "CTOP" below. The area of our coverage is 85E-155W (MTSAT2) and 80E-160W(MTSAT1R), and 20S-20N. The accuracy of the estimation with the IR split-window observation is the best in the upper tropospheric height range. We analyzed the formation and maintenance of the cloud systems whose top height is in the upper troposphere with our CTOP analysis, CloudSat 2B-GEOPROF, and GSMaP (Global Satellite Mapping of Precipitation) precipitation data. Most of the upper tropospheric stratiform clouds have their cloud top within 13-15 km range. The cloud top height decreases slowly when dissipating but still has high value to the end. However, we sometimes observe that a little lower cloud top height (6-10 km) is kept within one-two days. A typical example is observed on 5 January 2011 in a dissipating cloud system with 1000-km scale. This cluster located between 0-10N just west of the International Date Line and moved westward with keeping relatively lower cloud top (6-10 km) over one day. This top height is lower than the ubiquitous upper-tropospheric stratiform clouds but higher than the so-called 'congestus cloud' whose top height is around 0C. CloudSat data show the presence of convective rainfall. It suggests that this cloud system continuously kept making new anvil clouds in a little lower height than usual. We examined the seasonal variation of the distribution of cloud systems with a little lower cloud top height (6-11 km) during 2010-11. The number of such cloud systems is not constant with seasons but frequently increased in some specific seasons. Over the equatorial ocean region (east of 150E), they were frequently observed during the northern winter.

  3. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J. R.; Maslanik, J. A.

    1988-01-01

    The principal objectives of this project are: (1) to develop suitable validation data sets to evaluate the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; (2) to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers; and (3) to compare synoptic cloud data from a control run experiment of the GISS climate model II with typical observed synoptic cloud patterns.

  4. Observational evidence for cloud cover enhancement over western European forests.

    PubMed

    Teuling, Adriaan J; Taylor, Christopher M; Meirink, Jan Fokke; Melsen, Lieke A; Miralles, Diego G; van Heerwaarden, Chiel C; Vautard, Robert; Stegehuis, Annemiek I; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-11

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.

  5. Observational evidence for cloud cover enhancement over western European forests

    PubMed Central

    Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-01

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas. PMID:28074840

  6. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    NASA Technical Reports Server (NTRS)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows little geographical relationship to the high cloud input. Considering whether these effects would be observable, changing upper level cloud cover by as little as 0.4% produces warming greater than 2 standard deviations in the Microwave Sounding Unit (MSU) channels 4, 2 and 2r, in flight path regions and in the subtropics. Despite the simplified nature of these experiments, the results emphasize the sensitivity of the modeled climate to high level cloud cover changes, and thus the potential ability of aircraft to influence climate by altering clouds in the upper troposphere.

  7. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  8. An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean peninsula

    NASA Astrophysics Data System (ADS)

    Song, Hwan-Jin; Sohn, Byung-Ju

    2018-01-01

    The Korean peninsula is the region of distinctly showing the heavy rain associated with relatively low storm height and small ice water content in the upper part of cloud system (i.e., so-called warm-type heavy rainfall). The satellite observations for the warmtype rain over Korea led to a conjecture that the cloud microphysics parameterization suitable for the continental deep convection may not work well for the warm-type heavy rainfall over the Korean peninsula. Therefore, there is a growing need to examine the performance of cloud microphysics schemes for simulating the warm-type heavy rain structures over the Korean peninsula. This study aims to evaluate the capabilities of eight microphysics schemes in the Weather Research and Forecasting (WRF) model how warmtype heavy rain structures can be simulated, in reference to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity measurements. The results indicate that the WRF Double Moment 6-class (WDM6) scheme simulated best the vertical structure of warm-type heavy rain by virtue of a reasonable collisioncoalescence process between liquid droplets and the smallest amount of snow. Nonetheless the WDM6 scheme appears to have limitations that need to be improved upon for a realistic reflectivity structure, in terms of the reflectivity slope below the melting layer, discontinuity in reflectivity profiles around the melting layer, and overestimation of upper-level reflectivity due to high graupel content.

  9. An Evaluation of WRF Microphysics Schemes for Simulating the Warm-Type Heavy Rain over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Song, Hwan-Jin; Sohn, Byung-Ju

    2018-05-01

    The Korean peninsula is the region of distinctly showing the heavy rain associated with relatively low storm height and small ice water content in the upper part of cloud system (i.e., so-called warm-type heavy rainfall). The satellite observations for the warm-type rain over Korea led to a conjecture that the cloud microphysics parameterization suitable for the continental deep convection may not work well for the warm-type heavy rainfall over the Korean peninsula. Therefore, there is a growing need to examine the performance of cloud microphysics schemes for simulating the warm-type heavy rain structures over the Korean peninsula. This study aims to evaluate the capabilities of eight microphysics schemes in the Weather Research and Forecasting (WRF) model how warm-type heavy rain structures can be simulated, in reference to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity measurements. The results indicate that the WRF Double Moment 6-class (WDM6) scheme simulated best the vertical structure of warm-type heavy rain by virtue of a reasonable collision-coalescence process between liquid droplets and the smallest amount of snow. Nonetheless the WDM6 scheme appears to have limitations that need to be improved upon for a realistic reflectivity structure, in terms of the reflectivity slope below the melting layer, discontinuity in reflectivity profiles around the melting layer, and overestimation of upper-level reflectivity due to high graupel content.

  10. Fog in a marginal agricultural area surrounded by montane Andean cloud forest during El Niño climate

    NASA Astrophysics Data System (ADS)

    García-Santos, G.

    2010-07-01

    The aim of the present study was to evaluate temporal variations of water inputs, rainfall and fog (cloud water), and its contribution to the water balance in a marginal agricultural area of potato surrounded by tropical montane cloud forest in Colombia. Fog in the air boundary layer was estimated using a cylindrical fog collector. Liquid water content of fog events were evaluated before and during natural climate event of El Niño. Our study shows the temporal variation of these two water inputs in both daily and monthly cycles on Boyacá at 2900 m a.s.l. Rainfall was the most frequently observed atmospheric phenomenon, being present on average 62% of the days per year, whereas fog was 45% of the time. Reflected on the lower frequency, annual amount of fog was 11% of precipitation. However during the anomalous dry climate of El Niño, total amount of rainfall was negligible and the few fog events were the only water source for plant growth. Estimated water crop requirements were higher than the water inputs. The survival of the crops was explained by meteorological conditions during dew and fog events. High relative humidity might have eased the plant’s water stress by decreasing transpiration and temperature in leaves and soil, affecting the water balance and the heat exchange between the atmosphere-land interfaces in the marginal agricultural areas during exceptional dry climate.

  11. Research on snow cover monitoring of Northeast China using Fengyun Geostationary Satellite

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Gu, Lingjia; Ren, Ruizhi; Zhou, TIngting

    2017-09-01

    Snow cover information has great significance for monitoring and preventing snowstorms. With the development of satellite technology, geostationary satellites are playing more important roles in snow monitoring. Currently, cloud interference is a serious problem for obtaining accurate snow cover information. Therefore, the cloud pixels located in the MODIS snow products are usually replaced by cloud-free pixels around the day, which ignores snow cover dynamics. FengYun-2(FY-2) is the first generation of geostationary satellite in our country which complements the polar orbit satellite. The snow cover monitoring of Northeast China using FY-2G data in January and February 2016 is introduced in this paper. First of all, geometric and radiometric corrections are carried out for visible and infrared channels. Secondly, snow cover information is extracted according to its characteristics in different channels. Multi-threshold judgment methods for the different land types and similarity separation techniques are combined to discriminate snow and cloud. Furthermore, multi-temporal data is used to eliminate cloud effect. Finally, the experimental results are compared with the MOD10A1 and MYD10A1 (MODIS daily snow cover) product. The MODIS product can provide higher resolution of the snow cover information in cloudless conditions. Multi-temporal FY-2G data can get more accurate snow cover information in cloudy conditions, which is beneficial for monitoring snowstorms and climate changes.

  12. Rainfall simulation experiments in the Southwestern USA using the Walnut Gulch rainfall simulator

    USDA-ARS?s Scientific Manuscript database

    The dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semi-arid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30% of the plots simulations were conducted up to five time...

  13. The Cloud Detection and Ultraviolet Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.; Loh, Eugene C.; Krizmanic, John F.; Sokolsky, Pierre; Streitmatter, Robert E.

    2004-01-01

    In this paper we describe a new balloon instrument - CLUE - which is designed to monitor ultraviolet (uv) nightglow levels and determine cloud cover and cloud heights with a CO2 slicing technique. The CO2 slicing technique is based on the MODIS instrument on NASA's Aqua and Terra spacecraft. CLUE will provide higher spatial resolution (0.5 km) and correlations between the uv and the cloud cover.

  14. Historical reconstruction of climatic and elevation preferences and the evolution of cloud forest-adapted tree ferns in Mesoamerica.

    PubMed

    Sosa, Victoria; Ornelas, Juan Francisco; Ramírez-Barahona, Santiago; Gándara, Etelvina

    2016-01-01

    Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors.

  15. Historical reconstruction of climatic and elevation preferences and the evolution of cloud forest-adapted tree ferns in Mesoamerica

    PubMed Central

    2016-01-01

    Background Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Methods Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Results Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Conclusions Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors. PMID:27896030

  16. Using cloud and climate data to understand warm season hydrometeorology from diurnal to monthly timescales

    NASA Astrophysics Data System (ADS)

    Betts, A. K.; Tawfik, A. B.; Desjardins, R. L.

    2016-12-01

    We use 600 station years of hourly data from 14 stations on the Canadian Prairies to map the warm season hydrometeorology. The months from April (after snowmelt) to September, have a very similar coupling between surface thermodynamics and opaque cloud cover, which has been calibrated to give cloud radiative forcing. We can derive both the mean diurnal ranges and the diurnal imbalances as a function of opaque cloud cover. For the monthly diurnal climate, we compute the coupling coefficients with opaque cloud cover and lagged precipitation. In April the diurnal cycle climate has memory of precipitation back to freeze-up in November. During the growing season months of June, July and August, there is memory of precipitation back to March. Monthly mean temperature depends strongly on cloud but little on precipitation, while monthly mean mixing ratio depends on precipitation, but rather little on cloud. The coupling coefficients to cloud and precipitation change with increasing monthly precipitation anomaly. This observational climate analysis provides a firm basis for model evaluation.

  17. A combined spectral and object-based approach to transparent cloud removal in an operational setting for Landsat ETM+

    NASA Astrophysics Data System (ADS)

    Watmough, Gary R.; Atkinson, Peter M.; Hutton, Craig W.

    2011-04-01

    The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.

  18. Cloud cover estimation optical package: New facility, algorithms and techniques

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail

    2017-02-01

    Short- and long-wave radiation is an important component of surface heat budget over sea and land. For estimating them accurate observations of the cloud cover are needed. While massively observed visually, for building accurate parameterizations cloud cover needs also to be quantified using precise instrumental measurements. Major disadvantages of the most of existing cloud-cameras are associated with their complicated design and inaccuracy of post-processing algorithms which typically result in the uncertainties of 20% to 30% in the camera-based estimates of cloud cover. The accuracy of these types of algorithm in terms of true scoring compared to human-observed values is typically less than 10%. We developed new generation package for cloud cover estimating, which provides much more accurate results and also allows for measuring additional characteristics. New algorithm, namely SAIL GrIx, based on routine approach, also developed for this package. It uses the synthetic controlling index ("grayness rate index") which allows to suppress the background sunburn effect. This makes it possible to increase the reliability of the detection of the optically thin clouds. The accuracy of this algorithm in terms of true scoring became 30%. One more approach, namely SAIL GrIx ML, we have used to increase the cloud cover estimating accuracy is the algorithm that uses machine learning technique along with some other signal processing techniques. Sun disk condition appears to be a strong feature in this kind of models. Artificial Neural Networks type of model demonstrates the best quality. This model accuracy in terms of true scoring increases up to 95,5%. Application of a new algorithm lets us to modify the design of the optical sensing package and to avoid the use of the solar trackers. This made the design of the cloud camera much more compact. New cloud-camera has already been tested in several missions across Atlantic and Indian oceans on board of IORAS research vessels.

  19. Detecting the hydrological impacts of forest cover change in tropical mountain areas: need for detrending time series of rainfall and streamflow data.

    NASA Astrophysics Data System (ADS)

    Molina, A.; Vanacker, V.; Brisson, E.; Balthazar, V.

    2012-04-01

    Interactions between human activities and the physical environment have increasingly transformed the hydrological functioning of Andean ecosystems. In these human-modified landscapes, land use/-cover change may have a profound effect on riverine water and sediment fluxes. The hydrological impacts of land use/-cover change are diverse, as changes in vegetation affect the various components of the hydrological cycle including evapotranspiration, infiltration and surface runoff. Quantitative data for tropical mountain regions are scarce, as few long time series on rainfall, water discharge and land use are available. Furthermore, time series of rainfall and streamflow data in tropical mountains are often highly influenced by large inter- and intra-annual variability. In this paper, we analyse the hydrological response to complex forest cover change for a catchment of 280 km2 located in the Ecuadorian Andes. Forest cover change in the Pangor catchment was reconstructed based on airphotos (1963, 1977), LANDSAT TM (1991) and ETM+ data (2001, 2009). From 1963, natural vegetation was converted to agricultural land and pine plantations: forests decreased by a factor 2, and paramo decreased by 20 km2 between 1963 and 2009. For this catchment, there exists an exceptionally long record of rainfall and streamflow data that dates back from the '70s till now, but large variability in hydrometeorological data exists that is partly related to ENSO events. Given the nonstationary and nonlinear character of the ENSO-related changes in rainfall, we used the Hilbert-Huang transformation to detrend the time series of the river flow data from inter- and intra-annual fluctuations in rainfall. After applying adaptive data analysis based on empirical model decomposition techniques, it becomes apparent that the long-term trend in streamflow is different from the long-term trend in rainfall data. While the streamflow data show a long-term decrease in monthly flow, the rainfall data have a trend of increasing and then decreasing precipitation amounts. These results suggest that the land use changes had an important impact on the total water yield of the catchment. Interestingly, the effect of reforestation in the upper part of the catchment with its associated decrease in water yield seems to be dominant over the effect of deforestation in the lower part of the basin.

  20. Snow cover detection algorithm using dynamic time warping method and reflectances of MODIS solar spectrum channels

    NASA Astrophysics Data System (ADS)

    Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo

    2016-10-01

    Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria. The result of our study detect as snow cover in the several regions which are did not detected as snow in MOD10 L2 and detected as snow cover in MODIS RGB image. The result of our study can improve accuracy of other surface product such as land surface reflectance and land surface emissivity. Also it can use input data of hydrological modeling.

  1. Studying the Diurnal Cycle of Convection Using a TRMM-Calibrated Infrared Rain Algorithm

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.

    2005-01-01

    The development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale is presented. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics. The technique makes use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of nonraining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the last being important for the calculation of vertical profiles of latent heating. The diurnal cycle of rainfall, as well as the division between convective and Stratiform rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. Results from five years of PR data will show the global-tropical partitioning of convective and stratiform rainfall.

  2. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Li, Gen; Xie, Shang-Ping; He, Chao; Chen, Zesheng

    2017-10-01

    The agrarian-based socioeconomic livelihood of densely populated South Asian countries is vulnerable to modest changes in Indian summer monsoon (ISM) rainfall. How the ISM rainfall will evolve is a question of broad scientific and socioeconomic importance. In response to increased greenhouse gas (GHG) forcing, climate models commonly project an increase in ISM rainfall. This wetter ISM projection, however, does not consider large model errors in both the mean state and ocean warming pattern. Here we identify a relationship between biases in simulated present climate and future ISM projections in a multi-model ensemble: models with excessive present-day precipitation over the tropical western Pacific tend to project a larger increase in ISM rainfall under GHG forcing because of too strong a negative cloud-radiation feedback on sea surface temperature. The excessive negative feedback suppresses the local ocean surface warming, strengthening ISM rainfall projections via atmospheric circulation. We calibrate the ISM rainfall projections using this `present-future relationship’ and observed western Pacific precipitation. The correction reduces by about 50% of the projected rainfall increase over the broad ISM region. Our study identifies an improved simulation of western Pacific convection as a priority for reliable ISM projections.

  3. Shallow convection on day 261 of GATE - Mesoscale arcs

    NASA Technical Reports Server (NTRS)

    Warner, C.; Simpson, J.; Martin, D. W.; Suchman, D.; Mosher, F. R.; Reinking, R. F.

    1979-01-01

    Cloudy convection in the moist layer of a cloud cluster growing in the GATE ship array is examined. Analyses suggest that the moist layer was dominated by features of horizontal dimension roughly 40 km and lifetime roughly 2 h, with arc patterns triggered by dense downdraft air accompanying rainfall, and composed of many small cumulus clouds. Aircraft recorded data on thermodynamic quantities and winds, indicating that the arcs persisted as mesoscale circulations driven by the release of latent heat in the clouds, rather than being driven by the original density current at the surface. It is also suggested that the mesoscale cloud patterns of the moist layer play a primary role in heat transfer upward within this layer, and contribute to the forcing of showering midtropospheric clouds.

  4. Extension of four-dimensional atmospheric models. [and cloud cover data bank

    NASA Technical Reports Server (NTRS)

    Fowler, M. G.; Lisa, A. S.; Tung, S. L.

    1975-01-01

    The cloud data bank, the 4-D atmospheric model, and a set of computer programs designed to simulate meteorological conditions for any location above the earth are described in turns of space vehicle design and simulation of vehicle reentry trajectories. Topics discussed include: the relationship between satellite and surface observed cloud cover using LANDSAT 1 photographs and including the effects of cloud shadows; extension of the 4-D model to the altitude of 52 km; and addition of the u and v wind components to the 4-D model of means and variances at 1 km levels from the surface to 25 km. Results of the cloud cover analysis are presented along with the stratospheric model and the tropospheric wind profiles.

  5. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  6. Earthshots: Satellite images of environmental change – Elburz Mountains, Iran

    USGS Publications Warehouse

    ,

    2013-01-01

    The Elburz Mountains run parallel to the southern coast of the Caspian Sea, and these mountains act as a barrier to rain clouds moving southward; as the clouds rise in altitude to cross the mountains they drop their moisture. This abundant rainfall supports a heavy rainforest (the bright red area) on the northern slopes. The valley to the south receives little precipitation because of this rain-shadow effect of the mountains.

  7. Diagnosing Hydrologic Flow Paths in Forest and Pasture Land Uses within the Panama Canal Watershed Using Simulated Rainfall and Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Mojica, A.; Kempema, E. W.; Briceno, J. C.; Regina, J. A.

    2014-12-01

    Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and use across the Panama Canal Watershed. In this study we used an ARS-type rainfall simulator to apply rainfall rates up to 200 mm per hour over a 2m by 6m area on deep saprolitic soils in forest and pasture land covers. A salinity contrast added to the applied rainwater allowed observation of bulk flow paths and velocities in the subsurface. The observed effects of land cover and land use on hydrological response were striking. In the forest site, we were unable to produce surface runoff even after the application of 600 mm of rainfall in three hours, and observed flow in soils down to approximately 2 m depth, and no downslope macropore flow. In the pasture site, surface runoff was produced, and we measured the permeability of the area with applied rainfall. Observed flow paths were much shallower, less than 1 m depth, with significant macropore flow observed at downslope positions. We hypothesize that land use and land cover have significant impacts on flow paths as they affect creation, connectivity, and function of biologically created macropores in the soil.

  8. Influence of urban land cover changes and climate change for the exposure of European cities to flooding during high-intensity precipitation

    NASA Astrophysics Data System (ADS)

    Skougaard Kaspersen, P.; Høegh Ravn, N.; Arnbjerg-Nielsen, K.; Madsen, H.; Drews, M.

    2015-06-01

    The extent and location of impervious surfaces within urban areas due to past and present city development strongly affects the amount and velocity of run-off during high-intensity rainfall and consequently influences the exposure of cities towards flooding. The frequency and intensity of extreme rainfall are expected to increase in many places due to climate change and thus further exacerbate the risk of pluvial flooding. This paper presents a combined hydrological-hydrodynamic modelling and remote sensing approach suitable for examining the susceptibility of European cities to pluvial flooding owing to recent changes in urban land cover, under present and future climatic conditions. Estimated changes in impervious urban surfaces based on Landsat satellite imagery covering the period 1984-2014 are combined with regionally downscaled estimates of current and expected future rainfall extremes to enable 2-D overland flow simulations and flood hazard assessments. The methodology is evaluated for the Danish city of Odense. Results suggest that the past 30 years of urban development alone has increased the city's exposure to pluvial flooding by 6% for 10-year rainfall up to 26% for 100-year rainfall. Corresponding estimates for RCP4.5 and RCP8.5 climate change scenarios (2071-2100) are in the order of 40 and 100%, indicating that land cover changes within cities can play a central role for the cities' exposure to flooding and conversely also for their adaptation to a changed climate.

  9. Flood risk reduction and flow buffering as ecosystem services - Part 2: Land use and rainfall intensity effects in Southeast Asia

    NASA Astrophysics Data System (ADS)

    van Noordwijk, Meine; Tanika, Lisa; Lusiana, Betha

    2017-05-01

    Watersheds buffer the temporal pattern of river flow relative to the temporal pattern of rainfall. This ecosystem service is inherent to geology and climate, but buffering also responds to human use and misuse of the landscape. Buffering can be part of management feedback loops if salient, credible and legitimate indicators are used. The flow persistence parameter Fp in a parsimonious recursive model of river flow (Part 1, van Noordwijk et al., 2017) couples the transmission of extreme rainfall events (1 - Fp), to the annual base-flow fraction of a watershed (Fp). Here we compare Fp estimates from four meso-scale watersheds in Indonesia (Cidanau, Way Besai and Bialo) and Thailand (Mae Chaem), with varying climate, geology and land cover history, at a decadal timescale. The likely response in each of these four to variation in rainfall properties (including the maximum hourly rainfall intensity) and land cover (comparing scenarios with either more or less forest and tree cover than the current situation) was explored through a basic daily water-balance model, GenRiver. This model was calibrated for each site on existing data, before being used for alternative land cover and rainfall parameter settings. In both data and model runs, the wet-season (3-monthly) Fp values were consistently lower than dry-season values for all four sites. Across the four catchments Fp values decreased with increasing annual rainfall, but specific aspects of watersheds, such as the riparian swamp (peat soils) in Cidanau reduced effects of land use change in the upper watershed. Increasing the mean rainfall intensity (at constant monthly totals for rainfall) around the values considered typical for each landscape was predicted to cause a decrease in Fp values by between 0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of Fp to changes in land use change plus changes in rainfall intensity depends on other characteristics of the watersheds, and generalisations made on the basis of one or two case studies may not hold, even within the same climatic zone. A wet-season Fp value above 0.7 was achievable in forest-agroforestry mosaic case studies. Inter-annual variability in Fp is large relative to effects of land cover change. Multiple (5-10) years of paired-plot data would generally be needed to reject no-change null hypotheses on the effects of land use change (degradation and restoration). Fp trends over time serve as a holistic scale-dependent performance indicator of degrading/recovering watershed health and can be tested for acceptability and acceptance in a wider social-ecological context.

  10. The variability of California summertime marine stratus: impacts on surface air temperatures

    USGS Publications Warehouse

    Iacobellis, Sam F.; Cayan, Daniel R.

    2013-01-01

    This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.

  11. The Role of Fog in Ecosystem Hydrology: Initial Results from Investigations Using Stable Isotopes of Water in Hawaiian Cloud Forests

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Gingerich, S. B.; Giambelluca, T. W.; Nullet, M. A.; Loope, L. L.

    2002-05-01

    The role of fog drip in cloud forest ecosystems is being investigated at two sites, one each on the windward and leeward sides of East Maui, Hawaii. The study involves using the different isotopic signatures of fog (cloud water) and rain to trace fog through the forest water cycle, as well as comparing relative amounts of fog, rain, and throughfall. At each site, volume of rain, fog plus rain, and throughfall is recorded hourly. Stable isotope samples of rain, fog, soil water, stream water, and tree sap are collected monthly, and each site has a visibility sensor and weather station. The windward site, at 1950 m altitude, is enveloped by orographic clouds under trade wind conditions almost every day. This site is near the upper boundary of extensive forested mountain slopes that are a major watershed for the island. Volume data suggest that fog drip (compared to rain as measured by a standard gage) contributes substantially to the forest water budget on the windward side. Tree sap deuterium composition was consistently similar to fog composition for samples analyzed thus far, while soil water was isotopically lighter, possibly reflecting a mixture of fog with rain or shallow groundwater. The leeward site, at 1220 m, is often in a cloud bank under trade wind conditions. During the summer the major source of precipitation is cloud water; rainfall generally occurs during winter storms. Scattered cloud forest remnants persist at this site despite degradation of extensive native forest by ungulate browsing, plant invasion, and fire. Here, fog drip was a smaller proportion of the total precipitation than at the windward site, but exceeded rainfall for some precipitation events. Unlike the windward site, tree sap and soil water had similar isotopic composition. The information gained from this study underscores the importance of trees and shrubs in extracting cloud water that contributes to soil moisture, groundwater recharge, and stream flow in watersheds.

  12. Assessment of Changes in Cloud Microphysical Properties and Rainfall in the Southeast Atlantic During the ORACLES 2016 Deployment

    NASA Astrophysics Data System (ADS)

    Diamond, M. S.; Dzambo, A.; L'Ecuyer, T.; Wood, R.; Durden, S. L.; Sy, O. O.; Tanelli, S.; Freitag, S.; Howell, S. G.; Smirnow, N.; Small Griswold, J. D.; Heikkila, A.

    2017-12-01

    Complex interactions between aerosol particles and clouds are the largest source of uncertainty in present-day radiative forcing and future projections of anthropogenic climate change. Unlike that of well-mixed greenhouse gases, the pattern of forcing for aerosol-cloud interactions (ACI) is regionally heterogeneous; one region of particular interest is the southeast Atlantic Ocean (SEA) off the western coast of Africa. During the southern African biomass burning (BB) season from July to October, a persistent layer of BB aerosol has been observed overlying one of the world's three semi-permanent stratocumulus (Sc) cloud decks. The vertical distribution of smoke over the SEA region remains poorly understood, particularly how much BB aerosol mixes into the Sc deck, which alters the clouds' microphysical properties. To investigate the effects of BB aerosols over the SEA Sc deck, we utilize data from the Airborne Third Generation Precipitation Radar (APR-3), an assortment of cloud probes, the Hawaii Group for Environmental Aerosol Research (HIGEAR) nephelometer, and other in-situ instruments on the P-3 aircraft during NASA's ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) 2016 campaign. Nearly all clouds observed in this experiment have a cloud top altitude of 1.5 km or less, with cloud top reflectivities rarely exceeding -15 dBZ. Two representative flights, the Aug. 31 and Sept. 6 missions, have cloud droplet number concentration (CDNC) values approximately between 250 and 350 per cubic centimeter (cc), with values exceeding 400/cc near the coast. Retrieved rainfall estimates suggest intermittent drizzle production occurs but rarely exceeds 0.1 mm h-1 further into the BB layer, and any drizzle production corresponds to CDNC values of approximately 300/cc or less. These two particular flights show that, when CDNC exceeds 400/cc, clouds drizzle less than 1% of the time. The distance between the Sc deck and BB layer is computed. Although a majority of cases show the Sc deck and BB layer are in contact, CDNC is not primarily controlled by this "gap" distance, suggesting that BB layer-Sc deck contact is not sufficient enough to explain cloud microphysical variability in the SEA region. Trajectory analyses of air masses are also presented to highlight underlying meteorological controls.

  13. Using Space Lidar Observations to Decompose Longwave Cloud Radiative Effect Variations Over the Last Decade

    NASA Astrophysics Data System (ADS)

    Vaillant de Guélis, Thibault; Chepfer, Hélène; Noel, Vincent; Guzman, Rodrigo; Winker, David M.; Plougonven, Riwal

    2017-12-01

    Measurements of the longwave cloud radiative effect (LWCRE) at the top of the atmosphere assess the contribution of clouds to the Earth warming but do not quantify the cloud property variations that are responsible for the LWCRE variations. The CALIPSO space lidar observes directly the detailed profile of cloud, cloud opacity, and cloud cover. Here we use these observations to quantify the influence of cloud properties on the variations of the LWCRE observed between 2008 and 2015 in the tropics and at global scale. At global scale, the method proposed here gives good results except over the Southern Ocean. We find that the global LWCRE variations observed over ocean are mostly due to variations in the opaque cloud properties (82%); transparent cloud columns contributed 18%. Variation of opaque cloud cover is the first contributor to the LWCRE evolution (58%); opaque cloud temperature is the second contributor (28%).

  14. Application of lightning data to satellite-based rainfall estimation

    NASA Technical Reports Server (NTRS)

    Martin, David W.; Hinton, Barry B.; Auvine, Brian A.

    1991-01-01

    Information on lightning may improve rain estimates made from infrared images of a geostationary satellite. We address this proposition through a case from the Cooperative Huntsville Meteorological Experiment (COHMEX). During the afternoon and evening of 13 July 1986 waves of showers and thunderstorms developed over and near the lower Tennessee River Valley. For the shower and thunderstorm region within 200 km of the National Weather Service radar at Nashville, Tennessee, we measure cold-cloud area in a sequence of GOES infrared images covering all but the end of the shower and thunderstorm period. From observations of the NASA/Marshall direction-finding network in this small domain, we also count cloud-to-ground lightning flashes and, from scans of the Nashville radar, we calculate volume rain flux. Using a modified version of the Williams and Houze scheme, over an area within roughly 240 km of the radar (the large domain), we identify and track cold cloud systems. For these systems, over the large domain, we measure area and count flashes; over the small domain, we calculate volume rain flux. For a temperature threshold of 235K, peak cloud area over the small domain lags both peak rain flux and peak flash count by about four hours. At a threshold of 226K, the lag is about two hours. Flashes and flux are matched in phase. Over the large domain, nine storm systems occur. These range in size from 300 to 60,000 km(exp 2); in lifetime, from about 2 1/2 h to 6 h or more. Storm system area lags volume rain flux and flash count; nevertheless, it is linked with these variables. In essential respects the associations were the same when clouds were defined by a threshold of 226K. Tentatively, we conclude that flash counts complement infrared images in providing significant additional information on rain flux.

  15. Use of Remotely Piloted Aircraft System (RPAS) in the analysis of historical landslide occurred in 1885 in the Rječina River Valley, Croatia

    NASA Astrophysics Data System (ADS)

    Dugonjić Jovančević, Sanja; Peranić, Josip; Ružić, Igor; Arbanas, Željko; Kalajžić, Duje; Benac, Čedomir

    2016-04-01

    Numerous instability phenomena have been recorded in the Rječina River Valley, near the City of Rijeka, in the past 250 years. Large landslides triggered by rainfall and floods, were registered on both sides of the Valley. Landslide inventory in the Valley was established based on recorded historical events and LiDAR imagery. The Rječina River is a typical karstic river 18.7km long, originating from the Gorski Kotar Mountains. The central part of the Valley, belongs to the dominant morphostructural unit that strikes in the northwest-southeast direction along the Rječina River. Karstified limestone rock mass is visible on the top of the slopes, while the flysch rock mass is present on the lower slopes and at the bottom of the Valley. Different types of movements can be distinguished in the area, such as the sliding of slope deposits over the flysch bedrock, rockfalls from limestone cliffs, sliding of huge rocky blocks, and active landslide on the north-eastern slope. The paper presents investigation of the dormant landslide located on the south-western slope of the Valley, which was recorded in 1870 in numerous historical descriptions. Due to intense and long-term rainfall, the landslide was reactivated in 1885, destroying and damaging houses in the eastern part of the Grohovo Village. To predict possible reactivation of the dormant landslide on the south-western side of the Valley, 2D stability back analyses were performed on the basis of landslide features, in order to approximate the position of sliding surface and landslide dimensions. The landslide topography is very steep, and the slope is covered by unstable debris material, so therefore hard to perform any terrestrial geodetic survey. Consumer-grade DJI Phantom 2 Remotely Piloted Aircraft System (RPAS) was used to provide the data about the present slope topography. The landslide 3D point cloud was derived from approximately 200 photographs taken with RPAS, using structure-from-motion (SfM) photogrammetry. Images were processed using the online Autodesk service "ReCap". Ground control points (GCP) collected with Total Station are identified on photorealistic point cloud and used for geo-referencing. Cloud Compare software was used for the point cloud processing. This study compared georeferenced landslide point cloud delivered from images with data acquired from laser scanning. RAPS and SfM application produced high accuracy landslide 3D point cloud, characterized by safe and quick data acquisition. Based on the adopted rock mass strength parameters, obtained from the back analysis, a stability analysis of the present slope situation was performed, and the present stability of the landslide body is determined. The unfavourable conditions and possible triggering factors such as saturation of the slope, caused by heavy rain and earthquake, were included in the analyses what enabled estimation of future landslide hazard and risk.

  16. Convection intertropicale et pluviometrie - Essai de mise en relation pour l'Afrique de l'ouest du 11 Mai au 20 Aout 1985

    NASA Astrophysics Data System (ADS)

    Guillot, B.; Bellec, B.; Lahuec, J. P.

    Relationship between deep convection and rainfall in West Africa May 11 - August 20 1981 From May 11 to August 20, an attempt at monitoring convective clouds over West Africa was carried out in Lannion by ORSTOM and the ``Centre de Météorologie Spatiale''. Since most of the rain in sudanese countries is the result of convective activity, it was assumed that the measure of occurrences of cold top clouds with infrared Meteosat II data could give us a good relation with synoptic stations rainfall data. The comparison of visible and infrared data gave us a threshold of -40°C. Five scenes were computed daily (9h, 12h, 15h, 18h, 24h) during 102 days. This attempt led us to discover homogeneous areas according to zonal climatic features and topography. Further research including the use of radar data, the setting up of a better network for rainfall measurements, special experiments to improve the threshold efficiency are expected to be carried out next year. Several French research laboratories are involved in this program. Good results are also expected in the field of crop monitoring.

  17. The Influence of Soil Moisture and Wind on Rainfall Distribution and Intensity in Florida

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo

    1998-01-01

    Land surface processes play a key role in water and energy budgets of the hydrological cycle. For example, the distribution of soil moisture will affect sensible and latent heat fluxes, which in turn may dramatically influence the location and intensity of precipitation. However, mean wind conditions also strongly influence the distribution of precipitation. The relative importance of soil moisture and wind on rainfall location and intensity remains uncertain. Here, we examine the influence of soil moisture distribution and wind distribution on precipitation in the Florida peninsula using the 3-D Goddard Cumulus Ensemble (GCE) cloud model Coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data collected on 27 July 1991 in central Florida during the Convection and Precipitation Electrification Experiment (CaPE). The idealized numerical experiments consider a block of land (the Florida peninsula) bordered on the east and on the west by ocean. The initial soil moisture distribution is derived from an offline PLACE simulation, and the initial environmental wind profile is determined from the CaPE sounding network. Using the factor separation technique, the precise contribution of soil moisture and wind to rainfall distribution and intensity is determined.

  18. A 350 Year Cloud Cover Reconstruction Deduced from Caribbean Coral Proxies

    NASA Astrophysics Data System (ADS)

    Winter, Amos; Sammarco, Paul; Mikolajewicz, Uwe; Jury, Mark; Zanchettin, Davide

    2015-04-01

    Clouds are a major factor contributing to climate change with respect to a variety of effects on the earth's climates, primarily radiative effects, amelioration of heating, and regional changes in precipitation patterns. There have been very few studies of decadal and longer term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data is so short that it is difficult to discern any temporal trends. The skeletons of scleractinian corals are considered to contain among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3 crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, δ13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover and present a new reconstruction of cloud cover over the Caribbean Sea that extends back to the year 1760. We will show that there is good agreement between the main features of our coral proxy record of cloud cover and of reanalysis and climate simulations for the same time period.

  19. Validation of a global satellite rainfall product for real time monitoring of meteorological extremes

    NASA Astrophysics Data System (ADS)

    Cánovas-García, Fulgencio; García-Galiano, Sandra; Karbalaee, Negar

    2017-10-01

    The real time monitoring of storms is important for the management and prevention of flood risks. However, in the southeast of Spain, it seems that the density of the rain gauge network may not be sufficient to adequately characterize the rainfall spatial distribution or the high rainfall intensities that are reached during storms. Satellite precipitation products such as PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Cloud Classification System) could be used to complement the automatic rain gauge networks and so help solve this problem. However, the PERSIANN-CCS product has only recently become available, so its operational validity for areas such as south-eastern Spain is not yet known. In this work, a methodology for the hourly validation of PERSIANN-CCS is presented. We used the rain gauge stations of the SIAM (Sistema de Información Agraria de Murcia) network to study three storms with a very high return period. These storms hit the east and southeast of the Iberian Peninsula and resulted in the loss of human life, major damage to agricultural crops and a strong impact on many different types of infrastructure. The study area is the province of Murcia (Region of Murcia), located in the southeast of the Iberian Peninsula, covering an area of more than 11,000 km2 and with a population of almost 1.5 million. In order to validate the PERSIANN-CCS product for these three storms, contrasts were made with the hyetographs registered by the automatic rain gauges, analyzing statistics such as bias, mean square difference and Pearson's correlation coefficient. Although in some cases the temporal distribution of rainfall was well captured by PERSIANN-CCS, in several rain gauges high intensities were not properly represented. The differences were strongly correlated with the rain gauge precipitation, but not with satellite-obtained rainfall. The main conclusion concerns the need for specific local calibration for the study area if PERSIANN-CCS is to be used as an operational tool for the monitoring of extreme meteorological phenomena.

  20. Numerical Simulation of an Industrial Cumulus Affected by Heat, Moisture, and CCN Released from an Oil Refinery.

    NASA Astrophysics Data System (ADS)

    Guan, S.; Reuter, G. W.

    1996-08-01

    Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind conditions using an axisymmetric cloud model. The factor separation technique is applied to isolate the net contributions of waste heat, vapor, and CCN on the rainfall of a cumulus developing in the industrial plume. The mutual-interactive contributions of two or three of the factors are also computed.The simulations for midlatitude and tropical conditions indicate that the sensible heat provides the major stimulus for cloud development and rain formation. The pure contribution of the industrial CCN is to enhance the condensation, causing an increase in the mass of total cloud water. The simulation results indicate that mutual interactions between waste heat and industrial CCN are large for both cases considered.

  1. Some new worldwide cloud-cover models

    NASA Technical Reports Server (NTRS)

    Bean, S. J.; Somerville, P. N.

    1981-01-01

    Using daily measurements of day and night infrared, and incoming and absorbed solar radiation obtained from a Tiros satellite over a period of approximately 45 months, and integrated over 2.5 deg latitude-longitude grids, the proportion of cloud cover over each grid each day was derived for the entire period. For each of four 3-month periods, for each grid location, estimates a and b of the two parameters of the best-fit beta distribution were obtained. The (a, b) plane was divided into a number of regions. All the geographical locations whose (a, b) estimates were in the same region in the (a, b) plane were said to have the same cloud cover type for that season. For each season, the world is thus divided into separate cloud-cover types.

  2. Earth observations taken from Space Shuttle Columbia during STS-80 mission

    NASA Image and Video Library

    1996-11-25

    STS080-758-065 (19 Nov.-7 Dec. 1996) --- The island of Oahu, state of Hawaii was photographed by the crew members aboard the Earth-orbiting Space Shuttle Columbia. The western portion (lower part of photograph) of the well eroded extinct volcano is quite clear. The northeastern coastal area and Koolau Range of mountains, which runs the length of the island (30 miles) are cloud covered. This is an unusual case. This is the windward side of the island (great for surfing) and the warm moist Pacific winds sweep up the mountains thus causing the clouds and an unusually high rainfall. The city of Honolulu is along the right side with the Honolulu International Airport clearly seen. Below the airport is the narrow entrance to Pearl Harbor and nearby Hickam Air Force Base. The narrow sand beaches of the Waikiki Beach resort area, just above Diamond Head - on the lower right, appear as narrow white lines along the coast above the airport and port of Honolulu. The sharp point at the lower portion of the photo is Kaena Point. The cliffs there are so steep that there is no developed roadway although a narrow gauge railway was carved into the cliffs and operated the first half of the century.

  3. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions

    NASA Astrophysics Data System (ADS)

    Helin, Aku; Sietiö, Outi-Maaria; Heinonsalo, Jussi; Bäck, Jaana; Riekkola, Marja-Liisa; Parshintsev, Jevgeni

    2017-11-01

    Primary biological aerosol particles (PBAPs) are ubiquitous in the atmosphere and constitute ˜ 30 % of atmospheric aerosol particle mass in sizes > 1 µm. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples (< 1.0, 1-2.5, 2.5-10 and > 10 µm) were collected in boreal forest (Hyytiälä, Finland) during a 9-month period covering all seasons and analysed for free amino acids (FAAs), DNA concentration and microorganism (bacteria, Pseudomonas and fungi). Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.

  4. Cloud types and the tropical Earth radiation budget, revised

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1989-01-01

    Nimbus-7 cloud and Earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. The normal analysis was to consider net radiation as the independent variable and examine how cloud cover, cloud type, albedo and emitted radiation varied with the net radiation. Two recurring themes keep repeating on a local, regional, and zonal basis: the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.

  5. The influence of water table depth and the free atmospheric state on convective rainfall predisposition

    DOE PAGES

    Bonetti, Sara; Manoli, Gabriele; Domec, Jean-Christophe; ...

    2015-03-16

    Here, we report a mechanistic model for the soil-plant system is coupled to a conventional slab representation of the atmospheric boundary layer (ABL) to explore the role of groundwater table (WT) variations and free atmospheric (FA) states on convective rainfall predisposition (CRP) at a Loblolly pine plantation site situated in the lower coastal plain of North Carolina. Predisposition is quantified using the crossing between modeled lifting condensation level (LCL) and convectively grown ABL depth. The LCL-ABL depth crossing is necessary for air saturation but not sufficient for cloud formation and subsequent convective rainfall occurrence. However, such crossing forms the mainmore » template for which all subsequent dynamical processes regulating the formation (or suppression) of convective rainfall operate on. If the feedback between surface fluxes and FA conditions is neglected, a reduction in latent heat flux associated with reduced WT levels is shown to enhance the ABL-LCL crossing probability. When the soil-plant system is fully coupled with ABL dynamics thereby allowing feedback with ABL temperature and humidity, FA states remain the leading control on CRP. However, vegetation water stress plays a role in controlling ABL-LCL crossing when the humidity supply by the FA is within an intermediate range of values. When FA humidity supply is low, cloud formation is suppressed independent of surface latent heat flux. Similarly, when FA moisture supply is high, cloud formation can occur independent of surface latent heat flux. In an intermediate regime of FA moisture supply, the surface latent heat flux controlled by soil water availability can supplement (or suppress) the necessary water vapor leading to reduced LCL and subsequent ABL-LCL crossing. Lastly, it is shown that this intermediate state corresponds to FA values around the mode in observed humidity lapse rates γ w (between -2.5 × 10 -6 and -1.5 × 10 -6 kg kg -1m -1), suggesting that vegetation water uptake may be controlling CRP at the study site.« less

  6. Daytime Cloud Property Retrievals Over the Arctic from Multispectral MODIS Data

    NASA Technical Reports Server (NTRS)

    Spangenberg, Douglas A.; Trepte, Qing; Minnis, Patrick; Uttal, Taneil

    2004-01-01

    Improving climate model predictions over Earth's polar regions requires a complete understanding of polar clouds properties. Passive satellite remote sensing techniques can be used to retrieve macro and microphysical properties of polar cloud systems. However, over the Arctic, there is minimal contrast between clouds and the background snow surface observed in satellite data, especially for visible wavelengths. This makes it difficult to identify clouds and retrieve their properties from space. Variable snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds further complicate cloud property identification. For this study, the operational Clouds and the Earth s Radiant Energy System (CERES) cloud mask is first used to discriminate clouds from the background surface in Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data. A solar-infrared infrared nearinfrared technique (SINT) first used by Platnick et al. (2001) is used here to retrieve cloud properties over snow and ice covered regions.

  7. Evaluation and Applications of Cloud Climatologies from CALIOP

    NASA Technical Reports Server (NTRS)

    Winker, David; Getzewitch, Brian; Vaughan, Mark

    2008-01-01

    Clouds have a major impact on the Earth radiation budget and differences in the representation of clouds in global climate models are responsible for much of the spread in predicted climate sensitivity. Existing cloud climatologies, against which these models can be tested, have many limitations. The CALIOP lidar, carried on the CALIPSO satellite, has now acquired over two years of nearly continuous cloud and aerosol observations. This dataset provides an improved basis for the characterization of 3-D global cloudiness. Global average cloud cover measured by CALIOP is about 75%, significantly higher than for existing cloud climatologies due to the sensitivity of CALIOP to optically thin cloud. Day/night biases in cloud detection appear to be small. This presentation will discuss detection sensitivity and other issues associated with producing a cloud climatology, characteristics of cloud cover statistics derived from CALIOP data, and applications of those statistics.

  8. Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Zhibiao; Wu, Renguang; Chen, Shangfeng; Huang, Gang; Liu, Ge; Zhu, Lihua

    2018-03-01

    The influence of boreal winter-spring eastern Tibetan Plateau snow anomalies on the East Asian summer rainfall variability has been the focus of previous studies. The present study documents the impacts of boreal summer western and southern Tibetan Plateau snow cover anomalies on summer rainfall over East Asia. Analysis shows that more snow cover in the western and southern Tibetan Plateau induces anomalous cooling in the overlying atmospheric column. The induced atmospheric circulation changes are different corresponding to more snow cover in the western and southern Tibetan Plateau. The atmospheric circulation changes accompanying the western Plateau snow cover anomalies are more obvious over the midlatitude Asia, whereas those corresponding to the southern Plateau snow cover anomalies are more prominent over the tropics. As such, the western and southern Tibetan Plateau snow cover anomalies influence the East Asian summer circulation and precipitation through different pathways. Nevertheless, the East Asian summer circulation and precipitation anomalies induced by the western and southern Plateau snow cover anomalies tend to display similar distribution so that they are more pronounced when the western and southern Plateau snow cover anomalies work in coherence. Analysis indicates that the summer snow cover anomalies over the Tibetan Plateau may be related to late spring snow anomalies due to the persistence. The late spring snow anomalies are related to an obvious wave train originating from the western North Atlantic that may be partly associated with sea surface temperature anomalies in the North Atlantic Ocean.

  9. Mechanism of shallow disrupted slide induced by extreme rainfall

    NASA Astrophysics Data System (ADS)

    Igwe, O.; Fukuoka, H.

    2010-12-01

    On July 16, 2010, extreme rainfall attacked western Japan and it caused very intense rainfall in Shobara city, Hiroshima prefecture, Japan. This rainfall induced hundreds of shallow disrupted slides and many of those became debris flows. One of this debris flows attacked a house standing in front of the exit of a channel, and claimed a resident’s life. Western Japan had repeatedly similar disasters in the past. Last event took place from July 19 to 26, 2009, when western Japan had a severe rainstorms and caused floods and landslides. Most of the landslides are debris slide - debris flows. Most devastated case took place in Hofu city, Japan. On July 21, extremely intense rainstorm caused numerous debris flows and mud flows in the hillslopes. Some of the debris flows destroyed residential houses and home for elderly people, and finally killed 14 residents. One of the unusual feature of both disaster was that landslides are distributed in very narrow area. In the 2010 Shobara city disaster, all of the landslides were distributed in 5 km x 3 km, and in the 2009 Hofu city disaster, most devastated zone of landslides were 10 km x 5 km. Rain radars of Meteorological Agency of Government of Japan detected the intense rainfall, however, the spatial resolution is usually larger than 5 km and the disaster area is too small to predict landslides nor issue warning. Furthermore, it was found that the growth rate of baby clouds was very quick. The geology of both areas are rhyolite (Shobara) and granite (Hofu), so the areal assessment of landslide hazard should be prepared before those intense rainfall will come. As for the Hofu city case, it was proved that debris flows took place in the high precipitation area and covered by covered by weathered granite sands and silts which is called “masa". This sands has been proved susceptible against landslides under extreme rainfall conditions. However, the transition from slide - debris flow process is not well revealed, except authors past experiment on the similar masa samples in June 1999 Hiroshima debris flow case. Authors have embedded pore pressure control system for the undrained ring shear apparatus. Strongly weathered sandy soils were sampled just on the smooth and flat granitic sliding surface of one of the upstream small-scale landslides. Those contained finer grains and lower permeability rather than the one sampled in the Hiroshima case. Sample was consolidated by smaller stress corresponding to the site condition, and saturated by overnight circulating de-aired water. Normal stress and shear stress corresponding the slope condition was given, then, pore pressure (back pressure) was raised artificially at constant rate. When the effective stress reached the failure line, suddenly measured pore pressure monitored at about 2 mm above the shear plane, quickly increased. This sudden change abruptly accelerate the shear displacement. Stress condition soon reached the steady state and remained there thereafter. The reason of the excess pore pressure generation was the negative dilatancy, following a slight positive dilatancy. Most of the negative dilatancy could be explained by collapse of loose soil skelton as well as grain crushing during deformation and shearing.

  10. Seasonal forecasting of fire over Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Spessa, A. C.; Field, R. D.; Pappenberger, F.; Langner, A.; Englhart, S.; Weber, U.; Stockdale, T.; Siegert, F.; Kaiser, J. W.; Moore, J.

    2015-03-01

    Large-scale fires occur frequently across Indonesia, particularly in the southern region of Kalimantan and eastern Sumatra. They have considerable impacts on carbon emissions, haze production, biodiversity, health, and economic activities. In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean-atmosphere model. Based on analyses of long, up-to-date series observations on burnt area, rainfall, and tree cover, we demonstrate that fire activity is negatively correlated with rainfall and is positively associated with deforestation in Indonesia. There is a contrast between the southern region of Kalimantan (high fire activity, high tree cover loss, and strong non-linear correlation between observed rainfall and fire) and the central region of Kalimantan (low fire activity, low tree cover loss, and weak, non-linear correlation between observed rainfall and fire). The ECMWF seasonal forecast provides skilled forecasts of burnt and fire-affected area with several months lead time explaining at least 70% of the variance between rainfall and burnt and fire-affected area. Results are strongly influenced by El Niño years which show a consistent positive bias. Overall, our findings point to a high potential for using a more physical-based method for predicting fires with several months lead time in the tropics rather than one based on indexes only. We argue that seasonal precipitation forecasts should be central to Indonesia's evolving fire management policy.

  11. Verification of Rapid Focused-Recharge in Depressions of Kuwait and the Arabian Peninsula Using Thermal and VNIR Remote Sensing

    NASA Astrophysics Data System (ADS)

    Rotz, R. R.; Milewski, A.

    2013-12-01

    In the Arabian Peninsula, freshwater recharge from rainfall is infrequent. Recharge is typically focused in small depressions that fill with seasonal runoff and potentially form freshwater lenses. This phenomenon has been verified in the Raudhatain watershed in Kuwait. This study aims to substantiate previously hypothesized lens locations and detect water in the subsurface by using thermal remote sensing and rainfall data. Potential freshwater lenses (~142) have been previously postulated throughout Kuwait and Saudi Arabia, but lack verification due to inadequate monitoring networks. We hypothesize that due to water's unique heat capacity, recharge zones can be detected by identifying areas with lower changes in surface radiance values than neighboring dry areas between day and night after peak or sustained rainfall. If successful, recharge zones and freshwater lenses can be identified and verified in remote hyper-arid regions. We collected 320 high-resolution (15m - 90m), low cloud cover (<10%) images in the visible near-infrared (VNIR) and thermal infrared (TIR) wavelengths obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer sensor (ASTER) between 2004 and 2012. Overlapping day and night images were subtracted from each other to show surface radiance fluctuations and difference images were compared with rainfall data from Daily TRMM_3B42v7a between 2004 and 2012. Several lens locations, runoff channels, agricultural regions, and wetlands were detected in areas where radiance values change between 0.067 - 2.25 Wsr-1m-2 from day to night scenes and verified by Google Earth (15m), Landsat (30m), and ASTER VNIR (15m) images. Additionally, two seasonal peak rainfall (~35mm/day) events positively correlate with the surface radiance difference values. Surface radiance values for dry areas adjacent to the postulated lens locations range between 2.25 - 12.2 Wsr-1m-2. Results demonstrate the potential for shallow groundwater detection through the presence of ephemeral water bodies in hyper-arid regions en masse; however, the absence of comparable diurnal images limits data in these regions. Linking high rainfall events with low diurnal surface radiance images is ideal for capturing the presence of temporary surface runoff and recharge zones. Expanded research on hyper-arid regions including thermal values, proposed lens locations, and in-situ data will provide more data points and bolster the methodology.

  12. Sensitivity of Latent Heating Profiles to Environmental Conditions: Implications for TRMM and Climate Research

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) as a part of NASA's Earth System Enterprise is the first mission dedicated to measuring tropical rainfall through microwave and visible sensors, and includes the first spaceborne rain radar. Tropical rainfall comprises two-thirds of global rainfall. It is also the primary distributor of heat through the atmosphere's circulation. It is this circulation that defines Earth's weather and climate. Understanding rainfall and its variability is crucial to understanding and predicting global climate change. Weather and climate models need an accurate assessment of the latent heating released as tropical rainfall occurs. Currently, cloud model-based algorithms are used to derive latent heating based on rainfall structure. Ultimately, these algorithms can be applied to actual data from TRMM. This study investigates key underlying assumptions used in developing the latent heating algorithms. For example, the standard algorithm is highly dependent on a system's rainfall amount and structure. It also depends on an a priori database of model-derived latent heating profiles based on the aforementioned rainfall characteristics. Unanswered questions remain concerning the sensitivity of latent heating profiles to environmental conditions (both thermodynamic and kinematic), regionality, and seasonality. This study investigates and quantifies such sensitivities and seeks to determine the optimal latent heating profile database based on the results. Ultimately, the study seeks to produce an optimized latent heating algorithm based not only on rainfall structure but also hydrometeor profiles.

  13. Projection of the change in future extremes over Japan using a cloud-resolving model: (2) Precipitation Extremes and the results of the NHM-1km experiments

    NASA Astrophysics Data System (ADS)

    Kanada, S.; Nakano, M.; Nakamura, M.; Hayashi, S.; Kato, T.; Kurihara, K.; Sasaki, H.; Uchiyama, T.; Aranami, K.; Honda, Y.; Kitoh, A.

    2008-12-01

    In order to study changes in the regional climate in the vicinity of Japan during the summer rainy season due to global warming, experiments by a semi-cloud resolving non-hydrostatic model with a horizontal resolution of 5km (NHM-5km) have been conducted from June to October by nesting within the results of the 10-year time-integrated experiments using a hydrostatic atmospheric general circulation model with a horizontal grid of 20 km (AGCM-20km: TL959L60) for the present and future up to the year 2100. A non-hydrostatic model developed by the Japan Meteorological Agency (JMA) (JMA-NHM; Saito et al. 2001, 2006) was adopted. Detailed descriptions of the NHM-5km are shown by the poster of Nakano et al. Our results show that rainy days over most of the Japanese Islands will decrease in June and July and increase in August and September in the future climate. Especially, remarkable increases in intense precipitations such as larger than 150 - 300 mm/day are projected from the present to future climate. The 90th percentiles of regional largest values among maximum daily precipitations (R-MDPs) grow 156 to 207 mm/day in the present and future climates, respectively. It is well-known that the horizontal distribution of precipitation, especially the heavy rainfall in the vicinity of Japan, much depends on the topography. Therefore, higher resolution experiments by a cloud-resolving model with a horizontal resolution of 1km (NHM-1km) are one-way nested within the results of NHM-5km. The basic frame and design of the NHM-1km is the same as those of the NHM-5km, but the topography is finer and no cumulus parameterization is used in the NHM-1km experiments. The NHM-1km, which treats the convection and cloud microphysics explicitly, can represent not only horizontal distributions of rainfall in detail but also the 3-dimensional structures of meso-beta-scale convective systems (MCSs). Because of the limitation of computation resources, only heavy rainfall events that rank in top 10 % of all rainfall events are selected for the NHM-1km experiments (Heavy rainfall events are defined by R-MDPs > 156 and 207 mm/day for the present and future climates, respectively, from the results of the NHM-5km). Tentative comparisons between the results of the NHM-1km and NHM-1km experiments reveal that the NHM-1km can re-produce more detailed and realistic horizontal distributions of rainfall in many cases. (This study is supported by the Ministry of Education, Culture, Sports, Science and Technology under the framework of the KAKUSHIN program. Numerical simulations are performed in the Earth Simulator)

  14. Development and Evaluation of a Cloud-Gap-Filled MODIS Daily Snow-Cover Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Foster, James L.; Kumar, Sujay V.

    2010-01-01

    The utility of the Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover products is limited by cloud cover which causes gaps in the daily snow-cover map products. We describe a cloud-gap-filled (CGF) daily snowcover map using a simple algorithm to track cloud persistence, to account for the uncertainty created by the age of the snow observation. Developed from the 0.050 resolution climate-modeling grid daily snow-cover product, MOD10C1, each grid cell of the CGF map provides a cloud-persistence count (CPC) that tells whether the current or a prior day was used to make the snow decision. Percentage of grid cells "observable" is shown to increase dramatically when prior days are considered. The effectiveness of the CGF product is evaluated by conducting a suite of data assimilation experiments using the community Noah land surface model in the NASA Land Information System (LIS) framework. The Noah model forecasts of snow conditions, such as snow-water equivalent (SWE), are updated based on the observations of snow cover which are obtained either from the MOD1 OC1 standard product or the new CGF product. The assimilation integrations using the CGF maps provide domain averaged bias improvement of -11 %, whereas such improvement using the standard MOD1 OC1 maps is -3%. These improvements suggest that the Noah model underestimates SWE and snow depth fields, and that the assimilation integrations contribute to correcting this systematic error. We conclude that the gap-filling strategy is an effective approach for increasing cloud-free observations of snow cover.

  15. Rainfall Interception by Hardwood Forest Litter in the Southern Appalachians

    Treesearch

    J.D. Helvey

    1964-01-01

    The portion of rainfall over forest cover which does not reach mineral soil can be separated into the parts evaporated from the canopy and from the litter. Canopy interception loss is usually estimated by subtracting the sum of throughfall (water falling through tree crowns) and stemflow (water running down stems) from rainfall measured in forest openings (Hamilton...

  16. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    2001-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.

  17. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  18. Antarctica Cloud Cover for October 2003 from GLAS Satellite Lidar Profiling

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hart, W. D.

    2005-01-01

    Seeing clouds in polar regions has been a problem for the imagers used on satellites. Both clouds and snow and ice are white, which makes clouds over snow hard to see. And for thermal infrared imaging both the surface and the clouds cold. The Geoscience Laser Altimeter System (GLAS) launched in 2003 gives an entirely new way to see clouds from space. Pulses of laser light scatter from clouds giving a signal that is separated in time from the signal from the surface. The scattering from clouds is thus a sensitive and direct measure of the presence and height of clouds. The GLAS instrument orbits over Antarctica 16 times a day. All of the cloud observations for October 2003 were summarized and compared to the results from the MODIS imager for the same month. There are two basic cloud types that are observed, low stratus with tops below 3 km and high cirrus form clouds with cloud top altitude and thickness tending at 12 km and 1.3 km respectively. The average cloud cover varies from over 93 % for ocean and coastal regions to an average of 40% over the East Antarctic plateau and 60-90% over West Antarctica. When the GLAS monthly average cloud fractions are compared to the MODIS cloud fraction data product, differences in the amount of cloud cover are as much as 40% over the continent. The results will be used to improve the way clouds are detected from the imager observations. These measurements give a much improved understanding of distribution of clouds over Antarctica and may show how they are changing as a result of global warming.

  19. Diurnal, Seasonal, and Interannual Variations of Cloud Properties Derived for CERES From Imager Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Brown, Richard R.; Gibson, Sharon; Heck, Patrick W.

    2004-01-01

    Simultaneous measurement of the radiation and cloud fields on a global basis is a key component in the effort to understand and model the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. The NASA Clouds and Earth s Radiant Energy System (CERES) Project, begun in 1998, is meeting this need. Broadband shortwave (SW) and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth OD from the TRMM Visible Infrared Scanner (VIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Besides aiding the interpretation of the broadband radiances, the CERES cloud properties are valuable for understanding cloud variations at a variety of scales. In this paper, the resulting CERES cloud data taken to date are averaged at several temporal scales to examine the temporal and spatial variability of the cloud properties on a global scale at a 1 resolution.

  20. Towards a Multisensor Approach to Improve on Current TRMM Retrievals of Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; LEcuyer, Tristan S.; Austin, Richard T.

    2002-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was designed to measure tropical rainfall and its variation from a low inclination orbiting satellite. The TRMM payload was carefully chosen to overcome a number of limitations of past satellite observing systems. This payload is predicated on the combination of active and passive observations from the TRMM Precipitation Radar (PR) and TRMM Microwave Imager (TMI) and Visible and Infrared Scanner (VIRS). Our research over the past three years has been devoted to the challenge of developing the most effective way of combining complementary information from these sensors to provide the most consistent estimate of precipitation. We have approached this problem from three directions. The first was to carry out preliminary analysis of passive microwave and infrared data from the TMI and VIRS instruments to understand the character of clear and cloudy skies in the basis defined by polarization and brightness temperature differences. Using this information as a foundation, the properties of two retrieval algorithms were analyzed, one for retrieving ice clouds from VIRS that was developed in parallel with this project and the other for rainfall from the TMI. Finally, the knowledge gleaned from each of these studies, coupled with ancillary data from NWP models and a broadband radiative transfer model, was used to create and algorithm for synthesizing the principal components of the Earth's energy budget from the basic building blocks of the atmosphere, gases, clouds, and precipitation. Principal results from each of these areas of research and their role in the TRMM and climate communities are summarized.

  1. The relationship of marine stratus to synoptic conditions

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.; Hinton, Barry; Grimm, Peter; Kloesel, Kevin A.

    1990-01-01

    The marine stratus which persistently covered most of the eastern Pacific Ocean, had large clear areas during the FIRE Intensive Field Operations (IFO) in 1987. Clear zones formed inside the large oceanic cloud mass on almost every day during the IFO. The location and size of the clear zones varied from day to day implying that they were related to dynamic weather conditions and not to oceanic conditions. Forecasting of cloud cover for aircraft operations during the IFO was directed towards predicting when and where the clear and broken zones would form inside the large marine stratus cloud mass. The clear zones often formed to the northwest of the operations area and moved towards it. However, on some days the clear zones appeared to form during the day in the operations area as part of the diurnal cloud burn off. The movement of the clear zones from day to day were hard to follow because of the large diurnal changes in cloud cover. Clear and broken cloud zones formed during the day only to distort in shape and fill during the following night. The field forecasters exhibited some skill in predicting when the clear and broken cloud patterns would form in the operations area. They based their predictions on the analysis and simulations of the models run by NOAA's Numeric Meteorological Center. How the atmospheric conditions analyzed by one NOAA/NMC model related to the cloud cover is discussed.

  2. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    PubMed Central

    Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations. PMID:29057838

  3. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    NASA Technical Reports Server (NTRS)

    Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.

  4. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition.

    PubMed

    Belle, Jessica H; Chang, Howard H; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-10-18

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM 2.5 ) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM 2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM 2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM 2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM 2.5 concentrations.

  5. Role of mixed precipitating cloud systems on the typhoon rainfall

    NASA Astrophysics Data System (ADS)

    Pan, C. J.; Krishna Reddy, K.; Lai, H. C.; Yang, S. S.

    2010-01-01

    L-band wind profiler data are utilized to diagnose the vertical structure of the typhoon precipitating cloud systems in Taiwan. For several typhoons, a pronounced bright band (BB) around 5 km is commonly observed from the observation. Since strong convection within typhoon circulation may disturb and/or disrupt the melting layer, the BB shall not appear persistently. Hence, an understanding of the vertical structure of the BB region is important because it holds extensive hydrometeors information on the type of precipitation and its variability. Wind profiler observational results suggest that the mixture of convective and stratiform (embedded type) clouds are mostly associated with typhoons. In the case of one typhoon, BB is appeared around 5.5 km with embedded precipitation and also BB height of 1 km higher than ordinary showery precipitation. This is evident from the long-term observations of wind profiler and Tropical Rainfall Measuring Mission. The Doppler velocity profiles show hydrometers (ice/snow) at 6 km but liquid below 5 km for typhoons and 4 km for showery precipitation. In the BB region the melting particles accelerations of 5.8 ms-1 km-1 and 3.2 ms-1 km-1 are observed for typhoon and showery precipitation, respectively.

  6. Testing the Role of Impacts in Warming Early Mars: Comparisons Between 1-D and GCM Results

    NASA Astrophysics Data System (ADS)

    Steakley, K.; Kahre, M. A.; Murphy, J. R.; Haberle, R. M.; Kling, A.

    2017-12-01

    Comet and asteroid impacts have been explored as a potential mechanism for producing warmer and wetter conditions for early Mars and possibly contributing to valley network formation. However, criticisms have been made regarding the timing of large impacts compared to valley network activity and the ability of such impacts to induce long lasting climate changes and the appropriate amount of precipitation. We test the impact heating hypothesis for the late Noachian Mars atmosphere by revisiting the scenarios described in Segura et al. (2008, JGR Planets 113, E11007) with a 3D global climate model (GCM). Segura et al. (2008) showed with a 1-D model that impacts ranging 30-100 km in diameter could in certain cases induce months to years of above-freezing temperatures and tens of cm to meters of rainfall in atmospheres with 150-mbar, 1-bar, or 2-bar surface pressures. We impose the same initial conditions into the Ames Research Center Mars GCM with updated water cycle physics that includes bulk cloud formation, sedimentation, precipitation (liquid or snow), a Manabe moist convection scheme, and the radiative effects of both liquid and ice clouds. Initial conditions in the GCM match those described in Segura et al. (2008) as closely as possible and include a hot post-impact debris layer, a warm atmosphere, and water vapor profiles consistent with the water abundances mobilized by the impact. Scenarios with 30-, 50- and 100- km impactors in 150-mbar, 1-bar, and 2-bar surface pressure cases are explored both with and without radiatively active water clouds. Our goals are to determine how global rainfall totals and global surface temperatures from the GCM compare with the simpler 1-D Segura et al. (2008) model, to examine what rainfall patterns emerge in the GCM and how they compare to the observed valley network distribution, and to more carefully assess the role of cloud microphysics and radiative effects on the duration and intensity of post-impact climates.

  7. The variation of cloud amount and light rainy days under heavy pollution over South China during 1960-2009.

    PubMed

    Fu, Chuanbo; Dan, Li

    2018-01-01

    The ground observation data was used to analyze the variation of cloud amount and light precipitation over South China during 1960-2009. The total cloud cover (TCC) decreases in this period, whereas the low cloud cover (LCC) shows the obvious opposite change with increasing trends. LCP defined as low cloud cover/total cloud cover has increased, and small rainy days (< 10 mm day -1 ) decreased significantly (passing 0.001 significance level) during the past 50 years, which is attributed to the enhanced levels of air pollution in the form of anthropogenic aerosols. The horizontal visibility and sunshine duration are used to depict the anthropogenic aerosol loading. When horizontal visibility declines to 20 km or sunshine duration decreases to 5 h per day, LCC increases 52% or more and LCP increases significantly. The correlation coefficients between LCC and horizontal visibility or sunshine duration are - 0.533 and - 0.927, and the values between LCP and horizontal visibility or sunshine duration are - 0.849 and - 0.641, which pass 0.001 significance level. The results indicated that aerosols likely impacted the long-term trend of cloud amount and light precipitation over South China.

  8. Rainfall over the African continent from the 19th through the 21st century

    NASA Astrophysics Data System (ADS)

    Nicholson, Sharon E.; Funk, Chris; Fink, Andreas H.

    2018-06-01

    Most of the African continent is semi-arid and hence prone to extreme variations in rainfall from year to year. The extreme droughts that have plagued the Sahel and eastern Africa are particularly well known. This article uses a markedly expanded and updated rainfall data set to examine rainfall variability in 13 sectors that cover most of the continent. Annual rainfall is presented for each sector; the March-to-May and October-November seasons are also examined for equatorial sectors. In each case, the article includes the longest and most comprehensive precipitation gauge series ever published. All time series cover at least a century and most cover roughly one and one-half centuries or more. Although towards the end of the 20th century there was a widespread trend towards more arid conditions, few significant trends are evident over the entire period of record. The largest were downward trends in the Sahel and western sectors of North Africa. In those regions, an abrupt reduction in rainfall occurred around 1968, but a synchronous change occurred many other parts of Africa. A recovery did occur in the Sahel, but to varying degrees across the east-west expanse of the region. Noteworthy is that the west-to-east rainfall gradient across the region appears to have weakened in recent decades. For the continent as a whole, another change began in the 1980s decade, with more arid conditions persisting at the continental scale until early in the twenty-first century. No other such period of dry conditions occurred within the roughly one and one-half centuries evaluated here. A notable change also occurred at the seasonal level. During the period 1980 to 1998 rainfall during March-to-May was well below the long-term mean throughout most of the area from 20° N to 35° S. At the same time rainfall was above the long-term mean in most of eastern sectors within this latitude span, indicating a change in the seasonality of rainfall of a large part of Africa.

  9. NASA Sees Heavy Rainfall in Tropical Storm Andrea

    NASA Image and Video Library

    2013-06-06

    NASA’s Terra satellite passed over Tropical Storm Andrea on June 5 at 16:25 UTC (12:25 p.m. EDT) and the MODIS instrument captured this visible image of the storm. Andrea’s clouds had already extended over more than half of Florida. Credit: NASA Goddard MODIS Rapid Response Team --- NASA Sees Heavy Rainfall in Tropical Storm Andrea NASA’s TRMM satellite passed over Tropical Storm Andrea right after it was named, while NASA’s Terra satellite captured a visible image of the storm’s reach hours beforehand. TRMM measures rainfall from space and saw that rainfall rates in the southern part of the storm was falling at almost 5 inches per hour. NASA’s Terra satellite passed over Tropical Storm Andrea on June 5 at 16:25 UTC (12:25 p.m. EDT) and the Moderate Resolution Imaging Spectroradiometer or MODIS instrument, captured a visible image of the storm. At that time, Andrea’s clouds had already extended over more than half of Florida. At 8 p.m. EDT on Wednesday, June 5, System 91L became the first tropical storm of the Atlantic Ocean hurricane season. Tropical Storm Andrea was centered near 25.5 North and 86.5 West, about 300 miles (485 km) southwest of Tampa, Fla. At the time Andrea intensified into a tropical storm, its maximum sustained winds were near 40 mph (65 kph). Full updates can be found at NASA's Hurricane page: www.nasa.gov/hurricane Rob Gutro NASA’s Goddard Space Flight Center

  10. A lightning-based nowcast-warning approach for short-duration rainfall events: Development and testing over Beijing during the warm seasons of 2006-2007

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cui, Xiaopeng; Zhang, Da-Lin

    2018-06-01

    Nowcasting short-duration (i.e., <6 h) rainfall (SDR) events is examined using total [i.e., cloud-to-ground (CG) and intra-cloud (IC)] lightning observations over the Beijing Metropolitan Region (BMR) during the warm seasons of 2006-2007. A total of 928 moderate and 554 intense SDR events, i.e., with the respective hourly rainfall rates (HRR) of 10-20 and ≥20 mm h-1, are utilized to estimate sharp-increasing rates in rainfall and lightning flash, termed as rainfall and lightning jumps, respectively. By optimizing the parameters in a lightning jump and a rainfall jump algorithm, their different jump intensity grades are verified for the above two categories of SDR events. Then, their corresponding graded nowcast-warning models are developed for the moderate and intense SDR events, respectively, with a low-grade warning for hitting more SDR events and a high-grade warning for reducing false alarms. Any issued warning in the nowcast-warning models is designed to last for 2 h after the occurrence of a lightning jump. It is demonstrated that the low-grade warnings can have the probability of detection (POD) of 67.8% (87.0%) and the high-grade warnings have the false alarms ratio (FAR) of 27.0% (22.2%) for the moderate (intense) SDR events, with an averaged lead time of 36.7 (52.0) min. The nowcast-warning models are further validated using three typical heavy-rain-producing storms that are independent from those used to develop the models. Results show that the nowcast-warning models can provide encouraging early warnings for the associated SDR events from the regional to meso-γ scales, indicating that they have a great potential in being applied to the other regions where high-resolution total lightning observations are available.

  11. Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting

    NASA Astrophysics Data System (ADS)

    Wardah, T.; Abu Bakar, S. H.; Bardossy, A.; Maznorizan, M.

    2008-07-01

    SummaryFrequent flash-floods causing immense devastation in the Klang River Basin of Malaysia necessitate an improvement in the real-time forecasting systems being used. The use of meteorological satellite images in estimating rainfall has become an attractive option for improving the performance of flood forecasting-and-warning systems. In this study, a rainfall estimation algorithm using the infrared (IR) information from the Geostationary Meteorological Satellite-5 (GMS-5) is developed for potential input in a flood forecasting system. Data from the records of GMS-5 IR images have been retrieved for selected convective cells to be trained with the radar rain rate in a back-propagation neural network. The selected data as inputs to the neural network, are five parameters having a significant correlation with the radar rain rate: namely, the cloud-top brightness-temperature of the pixel of interest, the mean and the standard deviation of the temperatures of the surrounding five by five pixels, the rate of temperature change, and the sobel operator that indicates the temperature gradient. In addition, three numerical weather prediction (NWP) products, namely the precipitable water content, relative humidity, and vertical wind, are also included as inputs. The algorithm is applied for the areal rainfall estimation in the upper Klang River Basin and compared with another technique that uses power-law regression between the cloud-top brightness-temperature and radar rain rate. Results from both techniques are validated against previously recorded Thiessen areal-averaged rainfall values with coefficient correlation values of 0.77 and 0.91 for the power-law regression and the artificial neural network (ANN) technique, respectively. An extra lead time of around 2 h is gained when the satellite-based ANN rainfall estimation is coupled with a rainfall-runoff model to forecast a flash-flood event in the upper Klang River Basin.

  12. Seasonal and spatial variability of rainfall redistribution under Scots pine and Downy oak forests in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Garcia-Estringana, Pablo; Latron, Jérôme; Molina, Antonio J.; Llorens, Pilar

    2013-04-01

    The large degree of temporal and spatial variability of throughfall input patterns may lead to significant changes in the volume of water that reach the soil in each location, and beyond in the hydrological response of forested hillslopes. To explore the role of vegetation in the temporal and spatial redistribution of rainfall in Mediterranean climatic conditions two contrasted stands were monitored. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both are located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. 100 hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover as well as biometric characteristics of the plots are also regularly measured. This work presents the first results describing the variability of throughfall beneath each forest stand and compares the persistence of temporal patterns among stands, and for the oaks stand among the leafed and the leafless period. Furthermore, canopy structure, rainfall characteristics and meteorological conditions of rainfall events are evaluated as main drivers of throughfall redistribution.

  13. Cold episodes in the Peruvian Central Andes: Composites, Types, and their Impacts over South America (1958-2014)

    NASA Astrophysics Data System (ADS)

    Sulca, J. C.; Vuille, M. F.; Roundy, P. E.; Trasmonte, G.; Silva, Y.; Takahashi, K.

    2015-12-01

    The Mantaro basin (MB) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during austral summer (January-March), that strongly damage crops. However, little is known about the causes and impacts of such cold episodes. The main goal of this study is thus to characterize cold episodes in the MB and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MB daily minimum temperature (Tmin) for the period 1958-2014 from Huayao station, located within the MB was used. A cold episode is defined when daily minimum temperature drops below its 10-percentile for at least one day. Additionally, to study the sensitivity between physical mechanisms associated with cold episodes and temperature, cold episodes are classified in three groups: Weak cold episodes (7.5 ≤ Tmin ≤ 10 percentile), strong cold episodes (Tmin ≤ 2.5 percentile), but excluding the 9 coldest events (Tmin ≤ 0 ͦ C), henceforth referred to as extraordinary cold episodes. Several gridded reanalysis were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events. Weak and strong cold episodes in the MB are mainly associated with a weakening of the Bolivian High-Nordeste Low system by tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the development of cloud cover (e.g., positive OLR anomalies over MB). The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below 10-percentile. Simultaneously, northeastern Brazil (NEB) registers negative OLR anomalies, strong convection and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of its climatologic position. By contrast, extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. On interannual timescales, El Niño may limit the occurrence of all types of cold episodes in the MB through enhanced tropical tropospheric background warming.

  14. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less

  15. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE PAGES

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.; ...

    2016-05-10

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less

  16. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Fridlind, Ann M.; Zipser, Edward J.; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-01-01

    The Tropical Warm Pool.International Cloud Experiment (TWP ]ICE) provided extensive observational data sets designed to initialize, force, and constrain atmospheric model simulations. In this first of a two ]part study, precipitation and cloud structures within nine cloud ]resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Seven of nine simulations overestimate convective area by 20% or more leading to general overestimation of convective rainfall. This is balanced by underestimation of stratiform rainfall by 5% to 50% despite overestimation of stratiform area by up to 65% because of a preponderance of very low stratiform rain rates in all simulations. All simulations fail to reproduce observed radar reflectivity distributions above the melting level in convective regions and throughout the troposphere in stratiform regions. Observed precipitation ]sized ice reaches higher altitudes than simulated precipitation ]sized ice despite some simulations that predict lower than observed top ]of ]atmosphere infrared brightness temperatures. For the simulations that overestimate radar reflectivity aloft, graupel is the cause with one ]moment microphysics schemes whereas snow is the cause with two ]moment microphysics schemes. Differences in simulated radar reflectivity are more highly correlated with differences in mass mean melted diameter (Dm) than differences in ice water content. Dm is largely dependent on the mass ]dimension relationship and gamma size distribution parameters such as size intercept (N0) and shape parameter (m). Having variable density, variable N0, or m greater than zero produces radar reflectivities closest to those observed.

  17. A TRMM-Calibrated Infrared Technique for Global Rainfall Estimation

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.

    2002-01-01

    The development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale is presented. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics during 2001. The technique is calibrated separately over land and ocean, making ingenious use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The low sampling rate of TRMM PR imposes limitations on calibrating IR-based techniques; however, our research shows that PR observations can be applied to improve IR-based techniques significantly by selecting adequate calibration areas and calibration length. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of non-raining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the latter being important for the calculation of vertical profiles of latent heating.

  18. Sustainable land cover and terrain modification to enhance convection and precipitation in the arid region of the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, V.; Branch, O.; Adebabseh, A.; Temimi, M.

    2017-12-01

    Irrigated plantations and modified terrain can provide a sustainable means of enhancing convective rainfall in arid regions like the United Arab Emirates, or UAE, and can be used to aid ongoing cloud seeding operations through the geographic-localization of seedable cloud formation. The first method, the planting of vast irrigated plantations of hardy desert shrubs, can lead to wind convergence and vertical mixing through increased roughness and modified radiative balances. When upper-air atmospheric instability is present, these phenomena can initiate convection. The second method, increasing the elevation of moderate-sized mountains, is based on the correlation between elevation and the number of summertime convection initiation events observed in the mountains of the UAE and Oman. This augmentation of existing orographic features should therefore increase the likelihood and geographic range of convection initiation events. High-resolution simulations provide a powerful means of assessing the likely impacts of land surface modifications. Previous convection-permitting simulations have yielded some evidential support for these hypotheses, but higher resolutions down to 1 km provide more detail regarding convective processes and land surface representation. Using seasonal simulations with the WRF-NOAHMP land-atmosphere model at a 2.5 km resolution, we identify frequent zones of convergence and atmospheric instability in the UAE and select interesting cases. Using these results, as well as an agricultural feasibility study, we identify optimal plantation positions within the UAE. We then run realistic plantation scenarios for single case studies at 1 km resolution. Using the same cases, we simulate the impact of augmenting mountain elevations on convective processes, with the augmentation being achieved through GIS-based modification of the terrain data. For both methods, we assess the impacts quantitatively and qualitatively, and assess key processes and dependencies. If we can demonstrate that convective rainfall would be enhanced through feasible agricultural and engineering methods, then land surface-based weather modification deserves serious consideration as a solution for water scarcity and anthropogenic climate change.

  19. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets.

    PubMed

    Lasko, Kristofer; Vadrevu, Krishna Prasad; Nguyen, Thanh Thi Nhat

    2018-01-01

    Air pollution is one of the major environmental concerns in Vietnam. In this study, we assess the current status of air pollution over Hanoi, Vietnam using multiple different satellite datasets and weather information, and assess the potential to capture rice residue burning emissions with satellite data in a cloud-covered region. We used a timeseries of Ozone Monitoring Instrument (OMI) Ultraviolet Aerosol Index (UVAI) satellite data to characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 3-hourly MERRA-2 reanalysis Black Carbon (BC) concentration data for 5 years from 2012-2016 and explored pollution trends over time. We then used MODIS active fires, and synoptic wind patterns to attribute variability in Hanoi pollution to different sources. Because Hanoi is within the Red River Delta where rice residue burning is prominent, we explored trends to see if the residue burning signal is evident in the UVAI or BC data. Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the BC data based on daily rainfall amounts. Results indicated forest biomass burning from Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of March and April. Whereas, during local rice residue burning months of June and October, no increase in UVAI is observed, with slight BC increase in October only. During the peak BC months of December and January, wind patterns indicated pollutant transport from southern China megacity areas. Results also indicated severe pollution episodes during December 2013 and January 2014. We observed significantly higher BC concentrations during nighttime than daytime with peaks generally between 2130 and 0030 local time. Our results highlight the need for better air pollution monitoring systems to capture episodic pollution events and their surface-level impacts, such as rice residue burning in cloud-prone regions in general and Hanoi, Vietnam in particular.

  20. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets

    PubMed Central

    Vadrevu, Krishna Prasad; Nguyen, Thanh Thi Nhat

    2018-01-01

    Air pollution is one of the major environmental concerns in Vietnam. In this study, we assess the current status of air pollution over Hanoi, Vietnam using multiple different satellite datasets and weather information, and assess the potential to capture rice residue burning emissions with satellite data in a cloud-covered region. We used a timeseries of Ozone Monitoring Instrument (OMI) Ultraviolet Aerosol Index (UVAI) satellite data to characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 3-hourly MERRA-2 reanalysis Black Carbon (BC) concentration data for 5 years from 2012–2016 and explored pollution trends over time. We then used MODIS active fires, and synoptic wind patterns to attribute variability in Hanoi pollution to different sources. Because Hanoi is within the Red River Delta where rice residue burning is prominent, we explored trends to see if the residue burning signal is evident in the UVAI or BC data. Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the BC data based on daily rainfall amounts. Results indicated forest biomass burning from Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of March and April. Whereas, during local rice residue burning months of June and October, no increase in UVAI is observed, with slight BC increase in October only. During the peak BC months of December and January, wind patterns indicated pollutant transport from southern China megacity areas. Results also indicated severe pollution episodes during December 2013 and January 2014. We observed significantly higher BC concentrations during nighttime than daytime with peaks generally between 2130 and 0030 local time. Our results highlight the need for better air pollution monitoring systems to capture episodic pollution events and their surface-level impacts, such as rice residue burning in cloud-prone regions in general and Hanoi, Vietnam in particular. PMID:29738543

  1. Possible Influences of Air Pollution, Dust and Sandstorms on the Indian Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong; Hsu, Christina N.; Holben, Brent N.

    2010-01-01

    In Asian monsoon countries, such as China and India, human health and safety problems caused by air pollution are becoming increasingly serious, due to the increased loading of atmospheric pollutants from waste gas emissions and from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash floods or prolonged drought, has caused major loss of human life and damage to crops and.property with devastating societal impacts. Historically, air-pollution and monsoons research are treated as separate problems. However recent studies have suggested that the two problems may be intrinsically linked and need to be studied jointly. Fundamentally, aerosols can affect precipitation through radiative effects cif suspended particles in the atmosphere (direct effect) and/or by interfering and changing: the cloud and precipitation formation processes (indirect effect). Based on their optical properties, aerosols can be classified into two types.: those that absorb solar radiation, and those that do not. Both types of aerosols scatter sunlight and reduce the amount of solar radiation from reaching the Earth's surface, causing it to cool. The surface cooling increases atmospheric stability and reduces convection potential, Absorbing aerosols, however, in addition to cooling the surface, can heat the atmosphere. The heating of the atmosphere may reduce the amount of low clouds by increased evaporation in cloud drops. The heating, however, may induce rising motion, enhance low-level moisture, convergence and, hence, increases rainfall, The latent heating from enhanced rainfall may excite feedback processes in the large-scale circulation, further amplify.the initial response to aerosol heating and producing more rain. Additionally, aerosols can increase the concentration of cloud condensation nuclei (CCN), increase cloud amount and decrease coalescence and collision rates, leading to reduced precipitation. However, in the presence of increasing moist and warm air, the reduced coalescence/collision may lead to supercooled drops at higher altitudes where ice precipitation falls and melts. The latent heat release from freezing aloft and melting below implies greater upward heat transport in polluted clouds and invigorate deep convection. In this way, aerosols may lead to increased local convection. Hence, depending on the ambient large-scale conditions and dynamical feedback processes, aerosols' effect on precipitation can be positive, negative or mixed. In the Asian monsoon and adjacent regions, the aerosol forcing and responses of the water cycle are even more complex, Both direct and indirect effects may take place locally and simultaneously, interacting with each other. in addition to local effects, monsoon rainfall may be affected by aerosols transported from other regions and intensified through large-scale circulation and moisture feedback. Thus, dust transported by the large-scale circulation from the adjacent deserts to northern India may affect rainfall over the Bay of Bengal; sulphate and black carbon front industrial pollution in central, southern China and northern India may affect the rainfall regime over the Korean peninsula and Japan; organic and black carbon front biomass burning from Indo-China may modulate the pre-monsoon rainfall regime over southern China and coastal regions, contributing to variability in differential heating and cooling of the atmosphere and to the land-sea thermal contrast. During the pre-monsoon season and monsoon breaks, it has been suggested that radiative forcing by absorbing aerosols have nearly the same order of magnitude as the forcing due to latent heating from convection and surface fluxes. The magnitude of the total aerosol radiative cooling due to sulphates and soot is of the order of 20-40 W/m2 over the Asian monsoon land region in the pre-monsoon season, compared to about 1-2 W/m2 for global warng. However, the combined forcing at the surface and in the atmosphere, including all species. if aerosols, and details of aerosol mixing, and impacts on the energy and water cycles in the monsoon land regions, are not well known.

  2. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  3. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    PubMed

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  4. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.

    PubMed

    Hofer, Stefan; Tedstone, Andrew J; Fettweis, Xavier; Bamber, Jonathan L

    2017-06-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation.

  5. Improved cloud parameterization for Arctic climate simulations based on satellite data

    NASA Astrophysics Data System (ADS)

    Klaus, Daniel; Dethloff, Klaus; Dorn, Wolfgang; Rinke, Annette

    2015-04-01

    The defective representation of Arctic cloud processes and properties remains a crucial problem in climate modelling and in reanalysis products. Satellite-based cloud observations (MODIS and CPR/CALIOP) and single-column model simulations (HIRHAM5-SCM) were exploited to evaluate and improve the simulated Arctic cloud cover of the atmospheric regional climate model HIRHAM5. The ECMWF reanalysis dataset 'ERA-Interim' (ERAint) was used for the model initialization, the lateral boundary forcing as well as the dynamical relaxation inside the pan-Arctic domain. HIRHAM5 has a horizontal resolution of 0.25° and uses 40 pressure-based and terrain-following vertical levels. In comparison with the satellite observations, the HIRHAM5 control run (HH5ctrl) systematically overestimates total cloud cover, but to a lesser extent than ERAint. The underestimation of high- and mid-level clouds is strongly outweighed by the overestimation of low-level clouds. Numerous sensitivity studies with HIRHAM5-SCM suggest (1) the parameter tuning, enabling a more efficient Bergeron-Findeisen process, combined with (2) an extension of the prognostic-statistical (PS) cloud scheme, enabling the use of negatively skewed beta distributions. This improved model setup was then used in a corresponding HIRHAM5 sensitivity run (HH5sens). While the simulated high- and mid-level cloud cover is improved only to a limited extent, the large overestimation of low-level clouds can be systematically and significantly reduced, especially over sea ice. Consequently, the multi-year annual mean area average of total cloud cover with respect to sea ice is almost 14% lower than in HH5ctrl. Overall, HH5sens slightly underestimates the observed total cloud cover but shows a halved multi-year annual mean bias of 2.2% relative to CPR/CALIOP at all latitudes north of 60° N. Importantly, HH5sens produces a more realistic ratio between the cloud water and ice content. The considerably improved cloud simulation manifests in a more correct radiative transfer and better energy budget in the atmospheric boundary layer and results also in a more realistic surface energy budget associated with more reasonable turbulent fluxes. All this mitigates the positive temperature, relative humidity and horizontal wind speed biases in the lower model levels.

  6. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J. R.; Maslanik, J. A.

    1988-01-01

    The principal objectives of this project are: to develop suitable validation data sets to evaluate the effectiveness of the ISCCP operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers: and to compare synoptic cloud data from a control run experiment of the Goddard Institute for Space Studies (GISS) climate model 2 with typical observed synoptic cloud patterns. Current investigations underway are listed and the progress made to date is summarized.

  7. A Battlefield Obscuration Model (Smoke & Dust)

    DTIC Science & Technology

    1979-10-01

    ia £ utace of clouds, izsclacioon (incoming radiation) during :he day ts dependent upon solar ali.::ude, which is a fuc nof time of: d&7 and time of...year. ’Irnn clouds exisc, chai~r cover and :b*ickness decrease incoming and ouzgoingS radiation. Z-a this syscea iasola:ion ts estimated b7 solar ...alzictude and =odi44ed -or existing condi:±ons of total cloud cover and cloud ceiling height. kc zig~ic, estimates of oucgoing radiacion are =ade by

  8. Cloud Forecast Simulation Model.

    DTIC Science & Technology

    1981-10-01

    creasing the kurtosis of the distribution, i.e., making it more negative (more platykurtic ). Case (a) might be the distribution of forecast cloud cover be...fore smoothing, and (b) might be the distribution after smoothing. Character- istically, smoothing makes cloud cover distributions less platykurtic ...19, this effect of smoothing can be described in terms of making the smoothed distribu- tion less platykurtic than the unsmoothed distribution

  9. Cloud Response to Arctic Sea Ice Loss and Implications for Feedbacks in the CESM1 Climate Model

    NASA Astrophysics Data System (ADS)

    Morrison, A.; Kay, J. E.; Chepfer, H.; Guzman, R.; Bonazzola, M.

    2017-12-01

    Clouds have the potential to accelerate or slow the rate of Arctic sea ice loss through their radiative influence on the surface. Cloud feedbacks can therefore play into Arctic warming as clouds respond to changes in sea ice cover. As the Arctic moves toward an ice-free state, understanding how cloud - sea ice relationships change in response to sea ice loss is critical for predicting the future climate trajectory. From satellite observations we know the effect of present-day sea ice cover on clouds, but how will clouds respond to sea ice loss as the Arctic transitions to a seasonally open water state? In this study we use a lidar simulator to first evaluate cloud - sea ice relationships in the Community Earth System Model (CESM1) against present-day observations (2006-2015). In the current climate, the cloud response to sea ice is well-represented in CESM1: we see no summer cloud response to changes in sea ice cover, but more fall clouds over open water than over sea ice. Since CESM1 is credible for the current Arctic climate, we next assess if our process-based understanding of Arctic cloud feedbacks related to sea ice loss is relevant for understanding future Arctic clouds. In the future Arctic, summer cloud structure continues to be insensitive to surface conditions. As the Arctic warms in the fall, however, the boundary layer deepens and cloud fraction increases over open ocean during each consecutive decade from 2020 - 2100. This study will also explore seasonal changes in cloud properties such as opacity and liquid water path. Results thus far suggest that a positive fall cloud - sea ice feedback exists in the present-day and future Arctic climate.

  10. How much rainfall sustained a Green Sahara during the mid-Holocene?

    NASA Astrophysics Data System (ADS)

    Hopcroft, Peter; Valdes, Paul; Harper, Anna

    2016-04-01

    The present-day Sahara desert has periodically transformed to an area of lakes and vegetation during the Quaternary in response to orbitally-induced changes in the monsoon circulation. Coupled atmosphere-ocean general circulation model simulations of the mid-Holocene generally underestimate the required monsoon shift, casting doubt on the fidelity of these models. However, the climatic regime that characterised this period remains unclear. To address this, we applied an ensemble of dynamic vegetation model simulations using two different models: JULES (Joint UK Land Environment Simulator) a comprehensive land surface model, and LPJ (Lund-Potsdam-Jena model) a widely used dynamic vegetation model. The simulations are forced with a number of idealized climate scenarios, in which an observational climatology is progressively altered with imposed anomalies of precipitation and other related variables, including cloud cover and humidity. The applied anomalies are based on an ensemble of general circulation model simulations, and include seasonal variations but are spatially uniform across the region. When perturbing precipitation alone, a significant increase of at least 700mm/year is required to produce model simulations with non-negligible vegetation coverage in the Sahara region. Changes in related variables including cloud cover, surface radiation fluxes and humidity are found to be important in the models, as they modify the water balance and so affect plant growth. Including anomalies in all of these variables together reduces the precipitation change required for a Green Sahara compared to the case of increasing precipitation alone. We assess whether the precipitation changes implied by these vegetation model simulations are consistent with reconstructions for the mid-Holocene from pollen samples. Further, Earth System models predict precipitation increases that are significantly smaller than that inferred from these vegetation model simulations. Understanding this difference presents an ongoing challenge.

  11. Infiltration and Runoff Measurements on Steep Burned Hillslopes Using a Rainfall Simulator with Variable Rain Intensities

    USGS Publications Warehouse

    Kinner, David A.; Moody, John A.

    2008-01-01

    Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities (about 20 millimeters per hour [mm/h], 35 mm/h, and 50 mm/h), were conducted on four plots. Measurements during and after the simulations included runoff, rainfall, suspended-sediment concentrations, surface ash layer thickness, soil moisture, soil grain size, soil lost on ignition, and plot topography. Runoff discharge reached a steady state within 7 to 26 minutes. Steady infiltration rates with the 50-mm/h application rainfall intensity approached 20?35 mm/h. If these rates are projected to rainfall application intensities used in many studies of burned area runoff production (about 80 mm/h), the steady discharge rates are on the lower end of measurements from other studies. Experiments using multiple rainfall intensities (three) suggest that runoff begins at rainfall intensities around 20 mm/h at the 1-square-meter scale, an observation consistent with a 10-mm/h rainfall intensity threshold needed for runoff initiation that has been reported in the literature.

  12. Quasi-Equilibrium States in the Tropics Simulated by a Cloud-Resolving Model. Part 1; Specific Features and Budget Analysis

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A series of long-term integrations using the two-dimensional Goddard Cumulus Ensemble (GCE) model were performed by altering imposed environmental components to produce various quasi-equilibrium thermodynamic states. Model results show that the genesis of a warm/wet quasi-equilibrium state is mainly due to either strong vertical wind shear (from nudging) or large surface fluxes (from strong surface winds), while a cold/dry quasi-equilibrium state is attributed to a remarkably weakened mixed-wind shear (from vertical mixing due to deep convection) along with weak surface winds. In general, latent heat flux and net large-scale temperature forcing, the two dominant physical processes, dominate in the beginning stage of the simulated convective systems, then considerably weaken in the final stage, which leads to quasi-equilibrium states. A higher thermodynamic regime is found to produce a larger rainfall amount, as convective clouds are the leading source of rainfall over stratiform clouds even though the former occupy much less area. Moreover, convective clouds are more likely to occur in the presence of strong surface winds (latent heat flux), while stratiform clouds (especially the well-organized type) are favored in conditions with strong wind shear (large-scale forcing). The convective systems, which consist of distinct cloud types due to the variation in horizontal winds, are also found to propagate differently. Accordingly, convective systems with mixed-wind shear generally propagate in the direction of shear, while the system with strong (multidirectional) wind shear propagates in a more complex way. Based on the results from the temperature (Q1) and moisture (Q2) budgets, cloud-scale eddies are found to act as a hydrodynamic 'vehicle' that cascades the heat and moisture vertically. Several other specific features such as atmospheric stability, CAPE, and mass fluxes are also investigated and found to be significantly different between diverse quasi-equilibrium states. Detailed comparisons between the various states are presented.

  13. An Investigation of the Influence of Urban Areas on Rainfall Using the TRMM Satellite and a Cloud-Mesoscale Model

    NASA Astrophysics Data System (ADS)

    Shepherd, J.

    2002-05-01

    A recent paper by Shepherd et al. (in press at Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. Data (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. A convective-mesoscale model with extensive land-surface processes is currently being employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. The study will discuss the feasibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. The talk also introduces very preliminary results from the modeling component of the study.

  14. Relevance of long term time - Series of atmospheric parameters at a mountain observatory to models for climate change

    NASA Astrophysics Data System (ADS)

    Kancírová, M.; Kudela, K.; Erlykin, A. D.; Wolfendale, A. W.

    2016-10-01

    A detailed analysis has been made based on annual meteorological and cosmic ray data from the Lomnicky stit mountain observatory (LS, 2634 masl; 49.40°N, 20.22°E; vertical cut-off rigidity 3.85 GV), from the standpoint of looking for possible solar cycle (including cosmic ray) manifestations. A comparison of the mountain data with the Global average for the cloud cover in general shows no correlation but there is a possible small correlation for low clouds (LCC in the Global satellite data). However, whereas it cannot be claimed that cloud cover observed at Lomnicky stit (LSCC) can be used directly as a proxy for the Global LCC, its examination has value because it is an independent estimate of cloud cover and one that has a different altitude weighting to that adopted in the satellite-derived LCC. This statement is derived from satellite data (http://isccp.giss.nasa.gov/climanal7.html) which shows the time series for the period 1983-2010 for 9 cloud regimes. There is a significant correlation only between cosmic ray (CR) intensity (and sunspot number (SSN)) and the cloud cover of the types cirrus and stratus. This effect is mainly confined to the CR intensity minimum during the epoch around 1990, when the SSN was at its maximum. This fact, together with the present study of the correlation of LSCC with our measured CR intensity, shows that there is no firm evidence for a significant contribution of CR induced ionization to the local (or, indeed, Global) cloud cover. Pressure effects are the preferred cause of the cloud cover changes. A consequence is that there is no evidence favouring a contribution of CR to the Global Warming problem. Our analysis shows that the LS data are consistent with the Gas Laws for a stable mass of atmosphere.

  15. Fog Bank, Namib Desert, Namibia, Africa

    NASA Image and Video Library

    1991-12-01

    Fog is the only source of moisture for desert dwelling animals and plants living in the Namib Desert sand dune field, Namibia (23.5N, 15.0E). Coastal stratus clouds provide most of the life supporting moisture as fog droplets in this arid land where the usual annual rainfall is less than a quarter of an inch for decades at a time. In this view, the stratus clouds over the coast conform to the dune pattern proving that the fog is in ground contact.

  16. Fog Bank, Namib Desert, Namibia, Africa

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Fog is the only source of moisture for desert dwelling animals and plants living in the Namib Desert sand dune field, Namibia (23.5N, 15.0E). Coastal stratus clouds provide most of the life supporting moisture as fog droplets in this arid land where the usual annual rainfall is less than a quarter of an inch for decades at a time. In this view, the stratus clouds over the coast conform to the dune pattern proving that the fog is in ground contact.

  17. More Frequent Cloud Free Sky and Less Surface Solar Radiation in China from 1955-2000

    NASA Technical Reports Server (NTRS)

    Qian, Yun; Kaiser, Dale P.; Leung, L. Ruby; Xu, Ming

    2006-01-01

    In this study, we used newly available data frorn extended weather stations and time period to reveal that much of China has experienced significant decreases in cloud cover over the last half of the Twentieth century. This conclusion is supported by analysis of the more reliably observed frequency of cloud-free sky and overcast sky. We estimated that the total cloud cover and low cloud cover in China have decreased 0.88% and 0.33% per decade, respectively, and cloud-free days have increased 0.60% and overcast days decreased 0.78% per decade from 1954-2001. Meanwhile, both solar radiation and pan evaporation have decreased in China, with'solar radiation decreasing 3.1 w/square m and pan evaporation decreasing 39 mm per decade. Combining these results with findings of previous studies, we speculated that increased air pollution may have produced a fog-like haze that reflected/absorbed radiation from the sun and resulted in less solar radiation reaching the surface, despite concurrent increasing trends in cloud-free sky over China.

  18. The cloud-radiative processes and its modulation by sea-ice cover and stability as derived from a merged C3M Data product.

    NASA Astrophysics Data System (ADS)

    Nag, B.

    2016-12-01

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aims to take advantage of a merged C3M data (CALIPSO, CloudSat, CERES, and MODIS) product from the NASA's A-Train Series to explore the sea-ice and atmospheric conditions in the Arctic on a spatial coverage spanning 70N to 80N. This study is aimed at the interactions or the feedbacks processes among sea-ice, clouds and the atmosphere. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture and its impacts. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally. The effect of the marginal sea-ice cover becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. It is found that a stronger stability cover in the winter is responsible for the longwave cloud radiative feedback in winter which is missing during the summer. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.

  19. The Eastern Pacific ITCZ during the Boreal Spring

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.; Sobel, Adam H.

    2004-01-01

    The 6-year (1998-2003) rainfall products from the Tropical Rainfall Measuring Mission (TRMM) are used to quantify the Intertropical Convergence Zone (ITCZ) in the eastern Pacific (defined by longitudinal averages over 90 degrees W-130 degrees W) during boreal spring (March-April). The double ITCZ phenomenon, represented by the occurrence of two maxima with respect to latitude in monthly mean rainfall, is observed in most but not all of the years studied. The relative spatial locations of maxima in sea surface temperature (SST), rainfall, and surface pressure are examined. Interannual and weekly variability are characterized in SST, rainfall, surface convergence, total column water vapor, and cloud water. There appears to be a competition for rainfall between the two hemispheres during this season. When one of the two rainfall maxima is particularly strong, the other tends to be weak, with the total rainfall integrated over the two varying less than does the difference between the rainfall integrated over each separately. There is some evidence for a similar competition between the SST maxima in the two hemispheres, but this is more ambiguous, and there is evidence that some variations in the relative strengths of the two rainfall maxima may be independent of SST. Using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP), four distinct ITCZ types during March-April are defined, based on the relative strengths of rainfall peaks north and south of, and right over the equator. Composite meridional profiles and spatial distributions of rainfall and SST are documented for each type. Consistent with previous studies, an equatorial cold tongue is essential to the existence of the double ITCZs. However, too strong a cold tongue may dampen either the southern or northern rainfall maximum, depending on the magnitude of SST north of the equator.

  20. Extraction of convective cloud parameters from Doppler Weather Radar MAX(Z) product using Image Processing Technique

    NASA Astrophysics Data System (ADS)

    Arunachalam, M. S.; Puli, Anil; Anuradha, B.

    2016-07-01

    In the present work continuous extraction of convective cloud optical information and reflectivity (MAX(Z) in dBZ) using online retrieval technique for time series data production from Doppler Weather Radar (DWR) located at Indian Meteorological Department, Chennai has been developed in MATLAB. Reflectivity measurements for different locations within the DWR range of 250 Km radii of circular disc area can be retrieved using this technique. It gives both time series reflectivity of point location and also Range Time Intensity (RTI) maps of reflectivity for the corresponding location. The Graphical User Interface (GUI) developed for the cloud reflectivity is user friendly; it also provides the convective cloud optical information such as cloud base height (CBH), cloud top height (CTH) and cloud optical depth (COD). This technique is also applicable for retrieving other DWR products such as Plan Position Indicator (Z, in dBZ), Plan Position Indicator (Z, in dBZ)-Close Range, Volume Velocity Processing (V, in knots), Plan Position Indicator (V, in m/s), Surface Rainfall Intensity (SRI, mm/hr), Precipitation Accumulation (PAC) 24 hrs at 0300UTC. Keywords: Reflectivity, cloud top height, cloud base, cloud optical depth

  1. Cloud Detection by Fusing Multi-Scale Convolutional Features

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang

    2018-04-01

    Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.

  2. MISR RICO Products

    Atmospheric Science Data Center

    2016-11-25

    ... microphysics of the transition to a mature rainshaft, organization of trade wind clouds, water budget of trade wind cumulus, and the ... (MISR) mission objectives involve providing accurate information on cloud cover, cloud-track winds, stereo-derived cloud-top ...

  3. Impact of Rainfall, Land-Cover and Population Growth on Groundwater - A Case Study From Karnataka State, India

    NASA Astrophysics Data System (ADS)

    Srivastav, R. K.; Chinnapa Reddy, A. R.

    2015-12-01

    Recent trends in climate, land-use pattern and population has affected almost every portable water resources in the world. Due to depleting surface water and untimely distribution of precipitation, the demand to use groundwater has increased considerably. Further recent studies have shown that the groundwater stress is more in developing countries like India. This study focuses on understanding the impacts of three major factors (i.e., rainfall, land-cover and population growth) effecting the groundwater levels. For this purpose, the correlation between the trends in groundwater time series is compared with trends in rainfall, land-cover and population growth. To detect the trends in time series, two statistical methods namely, least square method and Mann-Kendall method, are adopted. The results were analyzed based on the measurements from 1800 observation wells in the Karnataka state, India. The data is obtained for a total of 9 year time period ranging from 2005 to 2013. A gridded precipitation data of 0.5o× 0.5o over the entire region is used. The change in land-cover and population data was approximately obtained from the local governing bodies. The early results show significant correlation between rainfall and groundwater time series trends. The outcomes will assess the vulnerability of groundwater levels under changing physical and hydroclimatic conditions, especially under climate change.

  4. Rainfall simulation in education

    NASA Astrophysics Data System (ADS)

    Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia

    2016-04-01

    Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain occurs. The MSc level course 'Fundamentals of Land Management' students carry out a hands-on practical in which they compare soil type and design and evaluate the effect of soil and water conservation measures. Also, MSc thesis research is being carried out using this facility. For instance, the distribution and movement of pesticide Glyphosate with sediment transportation was being quantified using the rainfall simulation facility.

  5. Correlation between atmospheric electric fields and cloud cover using a field mill and cloud observation data

    NASA Astrophysics Data System (ADS)

    Nakamori, Kota; Suzuki, Yasuki; Ohya, Hiroyo; Takano, Toshiaki; Kawamura, Yohei; Nakata, Hiroyuki; Yamashita, Kozo

    2017-04-01

    It is known that lightning and precipitations of rain droplets generated from thunderclouds are a generator of global atmospheric electric circuit. In the fair weather, the atmospheric electric fields (AEF) are downward (positive), while they are upward (negative) during lightning and precipitations. However, the correlations between the AEF, and the cloud parameters such as cloud cover, weather phenomenon, have been not revealed quantitatively yet. In this study, we investigate the correlations between the AEF and the cloud parameters, weather phenomenon using a field mill, the 95 GHz-FALCON (FMCW Radar for Cloud Observations)-I and all-sky camera observations. In this study, we installed a Boltek field mill on the roof of our building in Chiba University, Japan, (Geographic coordinate: 35.63 degree N, 140.10 degree E, the sea level: 55 m) on the first June, 2016. The sampling time of the AEF is 0.5 s. On the other hand, the FALCON-I has observed the cloud parameters far from about 76 m of the field mill throughout 24 hours every day. The vertical cloud profiles and the Doppler velocity of cloud particles can be derived by the FALCON-I with high distance resolutions (48.8 m) (Takano et al., 2010). In addition, the images of the clouds and precipitations are recorded with 30-s sampling by an all-sky camera using a CCD camera on the same roof during 05:00-22:00 LT every day. The distance between the field mill and the all-sky camera is 3.75 m. During 08:30 UT - 10:30 UT, on 4 July, 2016, we found the variation of the AEF due to the approach of thundercloud. The variation consisted of two patterns. One was slow variation due to the movement of thunderclouds, and the other was rapid variation associated with lightning discharges. As for the movement of thunderclouds, the AEF increased when the anvil was located over the field mill, which was opposite direction of the previous studies. This change might be due to the positive charges in the upper anvil more than 14 km altitude. As for the rapid variations of the AEF, 12 peaks of the AEF coincided with the occurrence of the lightning within 37 km. Moreover, we developed the automatic procedure to estimate the cloud cover from cloud optical images using the RGB color values. We estimated the correlation between the cloud cover and the AEF during June - November, 2016. The AEF decreased with increasing the cloud cover. This trend may be caused by the dielectric polarization due to the insert of the dielectric clouds into the global condenser. The standard deviation of AEF was small when the cloud cover increased. In this session, we will show the variations in the AEF during usual precipitations and snowing.

  6. Cloud and surface textural features in polar regions

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.

    1990-01-01

    The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.

  7. Fewer clouds in the Mediterranean: consistency of observations and climate simulations

    PubMed Central

    Sanchez-Lorenzo, Arturo; Enriquez-Alonso, Aaron; Calbó, Josep; González, Josep-Abel; Wild, Martin; Folini, Doris; Norris, Joel R.; Vicente-Serrano, Sergio M.

    2017-01-01

    Clouds play a major role in the climate system, but large uncertainties remain about their decadal variations. Here we report a widespread decrease in cloud cover since the 1970 s over the Mediterranean region, in particular during the 1970 s–1980 s, especially in the central and eastern areas and during springtime. Confidence in these findings is high due to the good agreement between the interannual variations of cloud cover provided by surface observations and several satellite-derived and reanalysis products, although some discrepancies exist in their trends. Climate model simulations of the historical experiment from the Coupled Model Intercomparison Project Phase 5 (CMIP5) also exhibit a decrease in cloud cover over the Mediterranean since the 1970 s, in agreement with surface observations, although the rate of decrease is slightly lower. The observed northward expansion of the Hadley cell is discussed as a possible cause of detected trends. PMID:28148960

  8. Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xue; Klein, S. A.; Ma, H. -Y.

    To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less

  9. Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores

    DOE PAGES

    Zheng, Xue; Klein, S. A.; Ma, H. -Y.; ...

    2016-07-19

    To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less

  10. Categorisation of northern California rainfall for periods with and without a radar brightband using stable isotopes and a novel automated precipitation collector

    USGS Publications Warehouse

    Coplen, Tyler B.; Paul J. Neiman,; Allen B. White,; Ralph, F. Martin

    2015-01-01

    During landfall of extratropical cyclones between 2005 and 2011, nearly 1400 precipitation samples were collected at intervals of 30-min time resolution with novel automated collectors at four NOAA sites in northern California [Alta (ATA), Bodega Bay (BBY), Cazadero (CZD) and Shasta Dam (STD)] during 43 events. Substantial decreases were commonly followed hours later by substantial increases in hydrogen isotopic composition (δ2HVSMOW where VSMOW is Vienna Standard Mean Ocean Water) and oxygen isotopic composition (δ18OVSMOW) of precipitation. These variations likely occur as pre-cold frontal precipitation generation transitions from marine vapour masses having low rainout to cold cloud layers having much higher rainout (with concomitant brightband signatures measured by an S-band profiling radar and lower δ2HVSMOW values of precipitation), and finally to shallower, warmer precipitating clouds having lower rainout (with non-brightband signatures and higher δ2HVSMOW values of precipitation), in accord with ‘seeder–feeder’ precipitation. Of 82 intervals identified, a remarkable 100.5 ‰ decrease in δ2HVSMOW value was observed for a 21 January 2010 event at BBY. Of the 61 intervals identified with increases in δ2HVSMOW values as precipitation transitioned to shallower, warmer clouds having substantially less rainout (the feeder part of the seeder–feeder mechanism), a remarkable increase in δ2HVSMOW value of precipitation of 82.3 ‰ was observed for a 10 February 2007 event at CZD. All CZD and ATA events having δ2HVSMOW values of precipitation below −105 ‰ were atmospheric rivers (ARs), and of the 13 events having δ2HVSMOWvalues of precipitation below −80 ‰, 77 % were ARs. Cloud echo-top heights (a proxy for atmospheric temperature) were available for 23 events. The mean echo-top height is greater for higher rainout periods than that for lower rainout periods in 22 of the 23 events. The lowest δ2HVSMOW of precipitation of 28 CZD events was −137.9 ‰ on 16 February 2009 during an AR with cold precipitating clouds and very high rainout with tops >6.5 km altitude. An altitude effect of −2.5 ‰ per 100 m was measured from BBY and CZD δ2HVSMOW data and of −1.8 ‰ per 100 m for CZD and ATA δ2HVSMOW data. We present a new approach to categorise rainfall intervals using δ2HVSMOW values of precipitation and rainfall rates. We term this approach the algorithmic-isotopic categorisation of rainfall, and we were able to identify higher rainout and/or lower rainout periods during all events in this study. We conclude that algorithmic-isotopic categorisation of rainfall can enable users to distinguish between tropospheric vapour masses having relatively high rainout (typically with brightband rain and that commonly are ARs) and vapour masses having lower rainout (commonly with non-brightband rain).

  11. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    PubMed Central

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-01-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol’s thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3–5 W⋅m−2) and a surface cooling (−5 to −8 W⋅m−2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569

  12. Large-scale assessment of soil erosion in Africa: satellites help to jointly account for dynamic rainfall and vegetation cover

    NASA Astrophysics Data System (ADS)

    Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn

    2015-04-01

    Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.

  13. A Model Evaluation Data Set for the Tropical ARM Sites

    DOE Data Explorer

    Jakob, Christian

    2008-01-15

    This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

  14. Three-dimensional circulation structures leading to heavy summer rainfall over central North China

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Yu, Rucong; Li, Jian; Yuan, Weihua

    2016-04-01

    Using daily and hourly rain gauge records and Japanese 25 year reanalysis data over 30 years, this work reveals two major circulation structures leading to heavy summer rainfall events in central North China (CNC), and further analyzes the effects of the circulations on these rainfall events. One circulation structure has an extensive upper tropospheric warm anomaly (UTWA) covering North China (NC). By strengthening the upper anticyclonic anomaly and lower southerly flows around NC, the UTWA plays a positive role in forming upper level divergence and lower level moisture convergence. As a result, the warm anomalous circulation has a solid relationship with large-scale, long-duration rainfall events with a diurnal peak around midnight to early morning. The other circulation structure has an upper tropospheric cold anomaly (UTCA) located in the upper stream of NC. Contributed to by the UTCA, a cold trough appears in the upper stream of NC and an unstable configuration with upper (lower) cold (warm) anomalies forms around CNC. Consequently, CNC is covered by strong instability and high convective energy, and the cold anomalous circulation is closely connected with local, short-duration rainfall events concentrated from late afternoon to early nighttime. The close connections between circulation structures and typical rainfall events are confirmed by two independent converse analysis processes: from circulations to rainfall characteristics, and from typical rainfall events to circulations. The results presented in this work indicate that the upper tropospheric temperature has significant influences on heavy rainfall, and thus more attention should be paid to the upper tropospheric temperature in future analyses.

  15. Rainfall thresholds for possible landslide occurrence in Italy

    NASA Astrophysics Data System (ADS)

    Peruccacci, Silvia; Brunetti, Maria Teresa; Gariano, Stefano Luigi; Melillo, Massimo; Rossi, Mauro; Guzzetti, Fausto

    2017-08-01

    The large physiographic variability and the abundance of landslide and rainfall data make Italy an ideal site to investigate variations in the rainfall conditions that can result in rainfall-induced landslides. We used landslide information obtained from multiple sources and rainfall data captured by 2228 rain gauges to build a catalogue of 2309 rainfall events with - mostly shallow - landslides in Italy between January 1996 and February 2014. For each rainfall event with landslides, we reconstructed the rainfall history that presumably caused the slope failure, and we determined the corresponding rainfall duration D (in hours) and cumulated event rainfall E (in mm). Adopting a power law threshold model, we determined cumulated event rainfall-rainfall duration (ED) thresholds, at 5% exceedance probability, and their uncertainty. We defined a new national threshold for Italy, and 26 regional thresholds for environmental subdivisions based on topography, lithology, land-use, land cover, climate, and meteorology, and we used the thresholds to study the variations of the rainfall conditions that can result in landslides in different environments, in Italy. We found that the national and the environmental thresholds cover a small part of the possible DE domain. The finding supports the use of empirical rainfall thresholds for landslide forecasting in Italy, but poses an empirical limitation to the possibility of defining thresholds for small geographical areas. We observed differences between some of the thresholds. With increasing mean annual precipitation (MAP), the thresholds become higher and steeper, indicating that more rainfall is needed to trigger landslides where the MAP is high than where it is low. This suggests that the landscape adjusts to the regional meteorological conditions. We also observed that the thresholds are higher for stronger rocks, and that forested areas require more rainfall than agricultural areas to initiate landslides. Finally, we observed that a 20% exceedance probability national threshold was capable of predicting all the rainfall-induced landslides with casualties between 1996 and 2014, and we suggest that this threshold can be used to forecast fatal rainfall-induced landslides in Italy. We expect the method proposed in this work to define and compare the thresholds to have an impact on the definition of new rainfall thresholds for possible landslide occurrence in Italy, and elsewhere.

  16. Multisite rainfall downscaling and disaggregation in a tropical urban area

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Qin, X. S.

    2014-02-01

    A systematic downscaling-disaggregation study was conducted over Singapore Island, with an aim to generate high spatial and temporal resolution rainfall data under future climate-change conditions. The study consisted of two major components. The first part was to perform an inter-comparison of various alternatives of downscaling and disaggregation methods based on observed data. This included (i) single-site generalized linear model (GLM) plus K-nearest neighbor (KNN) (S-G-K) vs. multisite GLM (M-G) for spatial downscaling, (ii) HYETOS vs. KNN for single-site disaggregation, and (iii) KNN vs. MuDRain (Multivariate Rainfall Disaggregation tool) for multisite disaggregation. The results revealed that, for multisite downscaling, M-G performs better than S-G-K in covering the observed data with a lower RMSE value; for single-site disaggregation, KNN could better keep the basic statistics (i.e. standard deviation, lag-1 autocorrelation and probability of wet hour) than HYETOS; for multisite disaggregation, MuDRain outperformed KNN in fitting interstation correlations. In the second part of the study, an integrated downscaling-disaggregation framework based on M-G, KNN, and MuDRain was used to generate hourly rainfall at multiple sites. The results indicated that the downscaled and disaggregated rainfall data based on multiple ensembles from HadCM3 for the period from 1980 to 2010 could well cover the observed mean rainfall amount and extreme data, and also reasonably keep the spatial correlations both at daily and hourly timescales. The framework was also used to project future rainfall conditions under HadCM3 SRES A2 and B2 scenarios. It was indicated that the annual rainfall amount could reduce up to 5% at the end of this century, but the rainfall of wet season and extreme hourly rainfall could notably increase.

  17. The impact of inter-annual rainfall variability on African savannas changes with mean rainfall.

    PubMed

    Synodinos, Alexis D; Tietjen, Britta; Lohmann, Dirk; Jeltsch, Florian

    2018-01-21

    Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cloud/climate sensitivity experiments

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.; Remer, L.

    1982-01-01

    A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.

  19. Trends in Upper-Level Cloud Cover and Surface Divergence Over the Tropical Indo-Pacific Ocean Between 1952 And 1997

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.

    2005-01-01

    This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.

  20. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011

    NASA Astrophysics Data System (ADS)

    Tang, Zhiguang; Wang, Jian; Li, Hongyi; Yan, Lili

    2013-01-01

    Snow cover changes over the Tibetan plateau (TP) are examined using moderate resolution imaging spectroradiometer (MODIS) daily fractional snow cover (FSC) data from 2001 to 2011 as well as in situ temperature data. First, the accuracy of the MODIS FSC data under clear sky conditions is evaluated by comparing with Landsat 30-m observations. Then we describe a cloud-gap-filled (CGF) method using cubic spline interpolation algorithm to fill in data gaps caused by clouds. Finally, the spatial and temporal changes of snow cover are analyzed on the basis of the MODIS-derived snow-covered area and snow-covered days (SCD) data. Results show that the mean absolute error of MODIS FSC data under clear sky condition is about 0.098 over the TP. The CGF method is efficient in cloud reduction (overall mean absolute error of the retrieved FSC data is 0.092). There is a very high inter-annual and intra-seasonal variability of snow cover in the 11 years. The higher snow cover corresponds well with the huge mountains. The accumulation and melt periods of snow cover vary in different elevation zones. About 34.14% (5.56% with a significant decline) and 24.75% (3.9% with a significant increase) of the study area presents declining and increasing trend in SCD, respectively. The inter-annual fluctuation of snow cover can be explained by the high negative correlations observed between the snow cover and the in situ temperature, especially in some elevations of February, April, May, August, and September.

  1. The relationship of lightning activity and short-duration rainfall events during warm seasons over the Beijing metropolitan region

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cui, Xiaopeng; Zhang, Da-Lin; Qiao, Lin

    2017-10-01

    The relationship between lightning activity and rainfall associated with 2925 short-duration rainfall (SDR) events over the Beijing metropolitan region (BMR) is examined during the warm seasons of 2006-2007, using the cloud-to-ground (CG) and intracloud (IC) lightning data from Surveillance et Alerte Foudre par Interférometrie Radioélectrique (SAFIR)-3000 and 5-min rainfall data from automatic weather stations (AWSs). An optimal radius of 10 km around selected AWSs is used to determine the lightning-rainfall relationship. The lightning-rainfall correlations vary significantly, depending upon the intensity of SDR events. That is, correlation coefficient (R 0.7) for the short-duration heavy rainfall (SDHR, i.e., ≥ 20 mm h- 1) events is found higher than that (R 0.4) for the weak SDR (i.e., 5-10 mm h- 1) events, and lower percentage of the SDHR events (< 10%) than the weak SDR events (40-50%) are observed with few flashes. Significant time-lagged correlations between lightning and rainfall are also found. About 80% of the SDR events could reach their highest correlation coefficients when the associated lightning flashes shift at time lags of < 25 min before and after rainfall begins. Those events with lightning preceding rainfall account for 50-60% of the total SDR events. Better lightning-rainfall correlations can be attained when time lags are incorporated, with the use of total (CG and IC) lightning data. These results appear to have important implications for improving the nowcast of SDHR events.

  2. Formation of the southern Bay of Bengal cold pool

    NASA Astrophysics Data System (ADS)

    Das, Umasankar; Vinayachandran, P. N.; Behara, Ambica

    2016-09-01

    A pool of relatively cooler water, called here as the southern Bay of Bengal cold pool, exists around Sri Lanka and southern tip of India during the summer monsoon. This cold pool is enveloped by the larger Indian Ocean warm pool and is believed to affect the intraseasonal variations of summer monsoon rainfall. In this study, we have investigated the mechanisms responsible for the formation of the cold pool using a combination of both satellite data sets and a general circulation model of the Indian Ocean. Sea surface temperature (SST) within the cold pool, after the steady increase during the February-April period, decreases first during a pre-monsoon spell in April and then with the monsoon onset during May. The onset cooling is stronger (~1.8°C) than the pre-monsoon cooling (~0.8°C) and culminates in the formation of the cold pool. Analysis of the model temperature equation shows that SST decrease during both events is primarily due to a decrease in incoming solar radiation and an increase in latent heat loss. These changes in the net heat flux are brought about by the arrival of cloud bands above the cold pool during both periods. During the pre-monsoon period, a cloud band originates in the western equatorial Indian Ocean and subsequently arrives above the cold pool. Similarly, during the monsoon onset, a band of clouds originating in the eastern equatorial Indian Ocean comes over the cold pool region. A lead-lag correlation calculation between daily SST and rainfall anomalies suggest that cooling in SST occurs in response to rainfall events with a lag of 5 days. These sequence of events occur every year with certain amount of interannual variability.

  3. Introducing hydrological information in rainfall intensity-duration thresholds

    NASA Astrophysics Data System (ADS)

    Greco, Roberto; Bogaard, Thom

    2016-04-01

    Regional landslide hazard assessment is mainly based on empirically derived precipitation-intensity-duration (PID) thresholds. Generally, two features of rainfall events are plotted to discriminate between observed occurrence and absence of occurrence of mass movements. Hereafter, a separation line is drawn in logarithmic space. Although successfully applied in many case studies, such PID thresholds suffer from many false positives as well as limited physical process insight. One of the main limitations is indeed that they do not include any information about the hydrological processes occurring along the slopes, so that the triggering is only related to rainfall characteristics. In order to introduce such an hydrological information in the definition of rainfall thresholds for shallow landslide triggering assessment, in this study the introduction of non-dimensional rainfall characteristics is proposed. In particular, rain storm depth, intensity and duration are divided by a characteristic infiltration depth, a characteristic infiltration rate and a characteristic duration, respectively. These latter variables depend on the hydraulic properties and on the moisture state of the soil cover at the beginning of the precipitation. The proposed variables are applied to the case of a slope covered with shallow pyroclastic deposits in Cervinara (southern Italy), for which experimental data of hourly rainfall and soil suction were available. Rainfall thresholds defined with the proposed non-dimensional variables perform significantly better than those defined with dimensional variables, either in the intensity-duration plane or in the depth-duration plane.

  4. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet

    PubMed Central

    Hofer, Stefan; Tedstone, Andrew J.; Fettweis, Xavier; Bamber, Jonathan L.

    2017-01-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation. PMID:28782014

  5. The effects of moon illumination, moon angle, cloud cover, and sky glow on night vision goggle flight performance

    NASA Astrophysics Data System (ADS)

    Loro, Stephen Lee

    This study was designed to examine moon illumination, moon angle, cloud cover, sky glow, and Night Vision Goggle (NVG) flight performance to determine possible effects. The research was a causal-comparative design. The sample consisted of 194 Fort Rucker Initial Entry Rotary Wing NVG flight students being observed by 69 NVG Instructor Pilots. The students participated in NVG flight training from September 1992 through January 1993. Data were collected using a questionnaire. Observations were analyzed using a Kruskal-Wallis one-way analysis of variance and a Wilcox matched pairs signed-ranks test for difference. Correlations were analyzed using Pearson's r. The analyses results indicated that performance at high moon illumination levels is superior to zero moon illumination, and in most task maneuvers, superior to >0%--50% moon illumination. No differences were found in performance at moon illumination levels above 50%. Moon angle had no effect on night vision goggle flight performance. Cloud cover and sky glow have selective effects on different maneuvers. For most task maneuvers, cloud cover does not affect performance. Overcast cloud cover had a significant effect on seven of the 14 task maneuvers. Sky glow did not affect eight out of 14 task maneuvers at any level of sky glow.

  6. Peak discharges in steep mountain catchments in relation to rainfall variability, vegetation cover and geomorphology of the Rift Valley Escarpment of Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebreyohannes, Tesfaalem; Frankl, Amaury; Haile, Mitiku; Abraha, Amanuel; Monsieurs, Elise; Nyssen, Jan

    2015-04-01

    The hydrological characteristics of steep mountain streams are often considered to be mainly influenced by rainfall distribution and topography. In this study, with the objective of analyzing the runoff response of mountain catchments, a total of 340 peak stage discharges were recorded in three rainy seasons (2012-2014) in 11 sloping (27-65%) mountain catchments (0.4 - 25 km²) of the marginal western Rift Valley escarpment of Northern Ethiopia. Daily rainfall data were collected using 7 rain gauges installed at different altitudes (1623 - 2851 m a.s.l) in and nearby the catchments, and used to calculate weighted average daily rain depths over the catchments. Event peak discharges were calculated from daily measurements by 11 crest stage gauges using the Manning's equation. Percentages of land use and cover classes were detected from high resolution (0.6 m) Google Earth imagery (February 1, 2014). Morphometric characteristics of the catchments were computed from ASTER digital elevation model and topographic maps. Correlation analysis between daily rainfall and peak discharge showed direct relationship (R² = 0.5-0.94, P<0.01) in all the catchments. The average specific peak discharge was negatively related to percentage of forest and grass cover (R² = 0.64, P<0.01), time of concentration (R² = 0.31, P<0.01), drainage texture (R² = 0.42, P<0.01), and catchment perimeter (R² = 0.36, P<0.01). The specific peak discharge was positively correlated with average slope gradient of the catchments (R² = 0.34, P<0.01) and with an index representing the spatial distribution of forest and grass cover (R² = 0.43, P<0.01). A stepwise multiple regression analyses showed that 84% (P<0.01) of the variability of the runoff response in the catchments can be predicted by the percentage of forest and grass cover and the relief ratio of the catchments. All in all, this study demonstrates that the magnitude of flash floods in mountain catchments is not only influenced by the morphometric characteristics of the catchments and by rainfall, but more importantly even by vegetation cover (forest and grasses).

  7. On the impact of cloudiness on the characteristics of nocturnal downslope flows

    NASA Astrophysics Data System (ADS)

    Ye, Z. J.; Segal, M.; Garratt, J. R.; Pielke, R. A.

    1989-10-01

    The effects of cloud cover amount and the height of cloud base on nighttime thermally induced downslope flow were investigated using analytical and numerical model approaches. The conclusions obtained with the analytical and the numerical model evaluations agreed. It was concluded that, (i) as cloud cover increases and/or the height of cloud base decreases, the depth and the intensity of nighttime thermally-induced downslope flows may decrease by a factor reaching one sixth and one tenth, respectively, in the case of overcast low cloud; (ii) when skies suddenly cloud over around midnight, the development of the downslope flow is altered in different ways: a reduction in intensity; or a cessation of further development, depending on the fraction of cloud coverage, and (iii) with a sudden clearing of overcast low cloud around midnight, the depth and the intensity of the downslope flow increases significantly.

  8. Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Piazzolla, S.

    2002-01-01

    Cloud opacity is one of the main atmospheric physical phenomena that can jeopardize the successful completion of an optical link between a spacecraft and a ground station. Hence, the site location chosen for a telescope used for optical communications must rely on knowledge of weather and cloud cover statistics for the geographical area where the telescope itself is located.

  9. Runoff prediction using rainfall data from microwave links: Tabor case study.

    PubMed

    Stransky, David; Fencl, Martin; Bares, Vojtech

    2018-05-01

    Rainfall spatio-temporal distribution is of great concern for rainfall-runoff modellers. Standard rainfall observations are, however, often scarce and/or expensive to obtain. Thus, rainfall observations from non-traditional sensors such as commercial microwave links (CMLs) represent a promising alternative. In this paper, rainfall observations from a municipal rain gauge (RG) monitoring network were complemented by CMLs and used as an input to a standard urban drainage model operated by the water utility of the Tabor agglomeration (CZ). Two rainfall datasets were used for runoff predictions: (i) the municipal RG network, i.e. the observation layout used by the water utility, and (ii) CMLs adjusted by the municipal RGs. The performance was evaluated in terms of runoff volumes and hydrograph shapes. The use of CMLs did not lead to distinctively better predictions in terms of runoff volumes; however, CMLs outperformed RGs used alone when reproducing a hydrograph's dynamics (peak discharges, Nash-Sutcliffe coefficient and hydrograph's rising limb timing). This finding is promising for number of urban drainage tasks working with dynamics of the flow. Moreover, CML data can be obtained from a telecommunication operator's data cloud at virtually no cost. That makes their use attractive for cities unable to improve their monitoring infrastructure for economic or organizational reasons.

  10. Use of meteorological satellite observations in weather modification programs

    NASA Technical Reports Server (NTRS)

    Dennis, A. S.; Smith, P. L., Jr.; Biswas, K. R.

    1973-01-01

    The potential value of weather satellite data in field operations of weather modification is appraised. It was found that satellites could play a useful role in operational weather modification projects, particularly in the recognition of treatment opportunities. Satellite cloud photographs and infrared observations appear promising in the identification of treatment opportunities in seeding orographic cloud systems for increased snowpack, in seeding convective clouds for increased rainfall, in identifying hail threats, and in tracking and observing hurricanes as an aid to timing and location of seeding treatments. It was concluded that the potential value of satellite data in the treatment and evaluation phases of operational projects is not as great as in the recognition of treatment opportunity.

  11. Preparatory studies of zero-g cloud drop coalescence experiment

    NASA Technical Reports Server (NTRS)

    Telford, J. W.; Keck, T. S.

    1979-01-01

    Experiments to be performed in a weightless environment in order to study collision and coalescence processes of cloud droplets are described. Rain formation in warm clouds, formation of larger cloud drops, ice and water collision processes, and precipitation in supercooled clouds are among the topics covered.

  12. The Tropical Rainfall Measuring (TRMM) - What Have We Learned and What Does the Future Hold?

    NASA Technical Reports Server (NTRS)

    Kummerow, C.; Hong, Y.; Olsen, W. S.

    2000-01-01

    Rainfall is important in the hydrological cycle and to the lives and welfare of humans. In addition to being a life-giving resource, rainfall processes also plays a crucial role in the dynamics of the global atmospheric circulation. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. It varies greatly in space and time. The rain-producing cloud systems may last several hours or days. Their dimensions range from 10 km to several hundred km. This makes it difficult to incorporate rainfall directly large-scale weather and climate models. Until the end of 1997, precipitation in the global tropics was not known to within a factor of two. Regarding "global warming", the various large-scale models differed among themselves in the predicted magnitude of the warming and in the expected regional effects of these temperature and moisture changes. The Tropical Rainfall Measuring Mission (TRMM) satellite has yielded important interim results related to rainfall observations, data assimilation and model forecast skills when rainfall data is assimilated. This talk will summarize where the TRMM science team is with regards to answering some of these important scientific challenges, as well as discuss the future Global Precipitation Mission which will provide 3 hourly rainfall coverage and offers some unique collaborative potential for NOAA and NASA.

  13. A TRMM-Calibrated Infrared Technique for Global Rainfall Estimation

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming

    2003-01-01

    This paper presents the development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics during summer 2001. The technique is calibrated separately over land and ocean, making ingenious use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The low sampling rate of TRMM PR imposes limitations on calibrating IR- based techniques; however, our research shows that PR observations can be applied to improve IR-based techniques significantly by selecting adequate calibration areas and calibration length. The diurnal cycle of rainfall, as well as the division between convective and t i f m rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of non-raining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the latter being important for the calculation of vertical profiles of latent heating.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Courtney

    One of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Parsivel2 disdrometers was deployed at the first ARM Mobile Facility (AMF1) T3 site in Manacapuru, Brazil at the beginning of the second Green Ocean Amazon (GoAmazon)2014/15 intensive operational period (IOP2) in September 2014 through the end of the field campaign in December 2015. The Parsivel2 provided one-minute drop-size distribution (DSD) observations that have already been used for a number of applications related to GoAmazon2014/15 science objectives. The first use was the creation of a reflectivity-rain rate (Z-R) relation enabling the calculation of rain rates frommore » the Brazilian Sistema de Protecao da Amazonia (SIPAM) S-band operational radar in Manaus. The radar-derived rainfall is an important constraint for the variational analysis of a large-scale forcing data set, which was recently released for the two IOPs that took place in the 2014 wet and transition seasons, respectively. The SIPAM radar rainfall is also being used to validate a number of cloud-resolving model simulations being run for the campaign. A second use of the Parsivel2 DSDs has been to provide a necessary reference point to calibrate the vertical velocity retrievals from the AMF1 W Band ARM Cloud Radar (WACR) cloud-profiling and ultra-high-frequency (UHF) wind-profiling instruments. Accurate retrievals of in-cloud vertical velocities are important to understand the microphysical and kinematic properties of Amazonian convective clouds and their interaction with the land surface and atmospheric aerosols. Further use of the Parsivel2 DSD observations can be made to better understand precipitation characteristics and their variability during GoAmazon2014/15.« less

  15. Susceptibility and triggering scenarios at a regional scale for shallow landslides

    NASA Astrophysics Data System (ADS)

    Gullà, G.; Antronico, L.; Iaquinta, P.; Terranova, O.

    2008-07-01

    The work aims at identifying susceptible areas and pluviometric triggering scenarios at a regional scale in Calabria (Italy), with reference to shallow landsliding events. The proposed methodology follows a statistical approach and uses a database linked to a GIS that has been created to support the various steps of spatial data management and manipulation. The shallow landslide predisposing factors taken into account are derived from (i) the 40-m digital terrain model of the region, an ˜ 15,075 km 2 extension; (ii) outcropping lithology; (iii) soils; and (iv) land use. More precisely, a map of the slopes has been drawn from the digital terrain model. Two kinds of covers [prevalently coarse-grained (CG cover) or fine-grained (FG cover)] were identified, referring to the geotechnical characteristics of geomaterial covers and to the lithology map; soilscapes were drawn from soil maps; and finally, the land use map was employed without any prior processing. Subsequently, the inventory maps of some shallow landsliding events, totaling more than 30,000 instabilities of the past and detected by field surveys and photo aerial restitution, were employed to calibrate the relative importance of these predisposing factors. The use of single factors (first level analysis) therefore provides three different susceptibility maps. Second level analysis, however, enables better location of areas susceptible to shallow landsliding events by crossing the single susceptibility maps. On the basis of the susceptibility map obtained by the second level analysis, five different classes of susceptibility to shallow landsliding events have been outlined over the regional territory: 8.9% of the regional territory shows very high susceptibility, 14.3% high susceptibility, 15% moderate susceptibility, 3.6% low susceptibility, and finally, about 58% very low susceptibility. Finally, the maps of two significant shallow landsliding events of the past and their related rainfalls have been utilized to identify the relevant pluviometric triggering scenarios. By using 205 daily rainfall series, different triggering pluviometric scenarios have been identified with reference to CG and FG covers: a value of 365 mm of the total rainfall of the event and/or 170 mm/d of the rainfall maximum intensity and a value of 325 mm of the total rainfall of the event and/or 158 mm/d of the rainfall maximum intensity are able to trigger shallow landsliding events for CG and FG covers, respectively. The results obtained from this study can help administrative authorities to plan future development activities and mitigation measures in shallow landslide-prone areas. In addition, the proposed methodology can be useful in managing emergency situations at a regional scale for shallow landsliding events triggered by intense rainfalls; through this approach, the susceptibility and the pluviometric triggering scenario maps will be improved by means of finer calibration of the involved factors.

  16. A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis

    NASA Astrophysics Data System (ADS)

    Bech, Joan; Pineda, Nicolau; Rigo, Tomeu; Aran, Montserrat; Amaro, Jéssica; Gayà, Miquel; Arús, Joan; Montanyà, Joan; der Velde, Oscar van

    2011-06-01

    This study presents an analysis of a severe weather case that took place during the early morning of the 2nd of November 2008, when intense convective activity associated with a rapidly evolving low pressure system affected the southern coast of Catalonia (NE Spain). The synoptic framework was dominated by an upper level trough and an associated cold front extending from Gibraltar along the Mediterranean coast of the Iberian Peninsula to SE France, which moved north-eastward. South easterly winds in the north of the Balearic Islands and the coast of Catalonia favoured high values of 0-3 km storm relative helicity which combined with moderate MLCAPE values and high shear favoured the conditions for organized convection. A number of multicell storms and others exhibiting supercell features, as indicated by Doppler radar observations, clustered later in a mesoscale convective system, and moved north-eastwards across Catalonia. They produced ground-level strong damaging wind gusts, an F2 tornado, hail and heavy rainfall. Total lightning activity (intra-cloud and cloud to ground flashes) was also relevant, exhibiting several classical features such as a sudden increased rate before ground level severe damage, as discussed in a companion study. Remarkable surface observations of this event include 24 h precipitation accumulations exceeding 100 mm in four different observatories and 30 minute rainfall amounts up to 40 mm which caused local flash floods. As the convective system evolved northward later that day it also affected SE France causing large hail, ground level damaging wind gusts and heavy rainfall.

  17. The Relationship Between Latent Heating, Vertical Velocity, and Precipitation Processes: the Impact of Aerosols on Precipitation in Organized Deep Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen

    2016-01-01

    A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updraftsdowndrafts in the middlelower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.

  18. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection accuracy of the proposed method is better than related methods.

  19. Retrieval of cloud cover parameters from multispectral satellite images

    NASA Technical Reports Server (NTRS)

    Arking, A.; Childs, J. D.

    1985-01-01

    A technique is described for extracting cloud cover parameters from multispectral satellite radiometric measurements. Utilizing three channels from the AVHRR (Advanced Very High Resolution Radiometer) on NOAA polar orbiting satellites, it is shown that one can retrieve four parameters for each pixel: cloud fraction within the FOV, optical thickness, cloud-top temperature and a microphysical model parameter. The last parameter is an index representing the properties of the cloud particle and is determined primarily by the radiance at 3.7 microns. The other three parameters are extracted from the visible and 11 micron infrared radiances, utilizing the information contained in the two-dimensional scatter plot of the measured radiances. The solution is essentially one in which the distributions of optical thickness and cloud-top temperature are maximally clustered for each region, with cloud fraction for each pixel adjusted to achieve maximal clustering.

  20. The roles of dry convection, cloud-radiation feedback processes and the influence of recent improvements in the parameterization of convection in the GLA GCM

    NASA Technical Reports Server (NTRS)

    Sud, Y.; Molod, A.

    1988-01-01

    The Goddard Laboratory for Atmospheres GCM is used to study the sensitivity of the simulated July circulation to modifications in the parameterization of dry and moist convection, evaporation from falling raindrops, and cloud-radiation interaction. It is shown that the Arakawa-Schubert (1974) cumulus parameterization and a more realistic dry convective mixing calculation yielded a better intertropical convergence zone over North Africa than the previous convection scheme. It is found that the physical mechanism for the improvement was the upward mixing of PBL moisture by vigorous dry convective mixing. A modified rain-evaporation parameterization which accounts for raindrop size distribution, the atmospheric relative humidity, and a typical spatial rainfall intensity distribution for convective rain was developed and implemented. This scheme led to major improvements in the monthly mean vertical profiles of relative humidity and temperature, convective and large-scale cloudiness, rainfall distributions, and mean relative humidity in the PBL.

  1. Long-term effects of climate and land cover change on freshwater provision in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Molina, A.; Vanacker, V.; Brisson, E.; Mora, D.; Balthazar, V.

    2015-06-01

    Andean headwater catchments play a pivotal role to supply fresh water for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes. In this paper, we assess multi-decadal change in freshwater provision based on long time series (1974-2008) of hydrometeorological data and land cover reconstructions for a 282 km2 catchment located in the tropical Andes. Three main land cover change trajectories can be distinguished: (1) rapid decline of native vegetation in montane forest and páramo ecosystems in ~1/5 or 20% of the catchment area, (2) expansion of agricultural land by 14% of the catchment area, (3) afforestation of 12% of native páramo grasslands with exotic tree species in recent years. Given the strong temporal variability of precipitation and streamflow data related to El Niño-Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow that exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term climate change but very likely result from direct anthropogenic disturbances after land cover change. Partial water budgets for montane cloud forest and páramo ecosystems suggest that the strongest changes in evaporative water losses are observed in páramo ecosystems, where progressive colonization and afforestation of high alpine grasslands leads to a strong increase in transpiration losses.

  2. Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Morin, Efrat

    2018-02-01

    Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.

  3. A further assessment of vegetation feedback on decadal Sahel rainfall variability

    NASA Astrophysics Data System (ADS)

    Kucharski, Fred; Zeng, Ning; Kalnay, Eugenia

    2013-03-01

    The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM ("SPEEDY") is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.

  4. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    NASA Astrophysics Data System (ADS)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  5. Inference of precipitation through thermal infrared measurements of soil moisture

    NASA Technical Reports Server (NTRS)

    Wetzel, P. J.; Atlas, D.

    1981-01-01

    The physics of microwave radiative transfer is well understood so that causal models can be assembled which relate the observed brightness temperatures to assumed distributions of hydrometeors (both liquid and ice), non-precipitating clouds, water vapor oxygen, and surface conditions. Present models assume a Marshall Palmer size distribution of liquid hydrometers from the surface to the freezing level (near the 0 C isotherm) and a variable thickness of frozen hydrometeors above that with various reasonable distribution of the other relevant constituents. The validity of such models is discussed. All uncertainties in the rain rate retrieval algorithms can be expressed in terms of specific model uncertainties which can be addressed through appropriate measurements. Those factors which must be known to achieve umambiguous results can be identified so that rainfall measuring algorithms can be developed and improved. The emissivity of the underlying surface significantly affects the contrast that may be measured between areas covered by rain and those which are dry. Sensing strategies for measuring rain over the ocean and rain over land are reviewed.

  6. Ground Calibrations of the Clouds and the Earth's Radiant Energy System (CERES) Tropical Rainfall Measuring Mission Spacecraft Thermistor Bolometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Smith, G. Lou; Barkstrom, Bruce R.; Priestley, Kory J.; Thomas, Susan; Paden, Jack; Pandey, Direndra K.; Thornhill, K. Lee; Bolden, William C.; Wilson, Robert S.

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers will measure earth-reflected solar and earth-emmitted,longwave radiances, at the top-of-the-atmosphere. The measurements are performed in the broadband shortwave (0.3-5.0 micron) and longwave (5.0 - >100 micron) spectral regions as well as in the 8 -12 micron water vapor window over geographical footprints as small as 10 kilometers at the nadir. The CERES measurements are designed to improve our knowledge of the earth's natural climate processes, in particular those related to clouds, and man's impact upon climate as indicated by atmospheric temperature. November 1997, the first set of CERES bolometers is scheduled for launch on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft. The CERES bolometers were calibrated radiometrically in a vacuum ground facility using absolute reference sources, tied to the International Temperature Scale of 1990. Accurate bolometer calibrations are dependent upon the derivations of the radiances from the spectral properties [reflectance, transmittance, emittance, etc.] of both the sources and bolometers. In this paper, the overall calibration approaches are discussed for the longwave and shortwave calibrations. The spectral responses for the TRMM bolometer units are presented and applied to the bolometer ground calibrations in order to determine pre-launch calibration gains.

  7. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    NASA Astrophysics Data System (ADS)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  8. Comparison of monthly nighttime cloud fraction products from MODIS and AIRS and ground-based camera over Manila Observatory (14.64N, 121.07E)

    NASA Astrophysics Data System (ADS)

    Gacal, G. F. B.; Lagrosas, N.

    2017-12-01

    Cloud detection nowadays is primarily achieved by the utilization of various sensors aboard satellites. These include MODIS Aqua, MODIS Terra, and AIRS with products that include nighttime cloud fraction. Ground-based instruments are, however, only secondary to these satellites when it comes to cloud detection. Nonetheless, these ground-based instruments (e.g., LIDARs, ceilometers, and sky-cameras) offer significant datasets about a particular region's cloud cover values. For nighttime operations of cloud detection instruments, satellite-based instruments are more reliably and prominently used than ground-based ones. Therefore if a ground-based instrument for nighttime operations is operated, it ought to produce reliable scientific datasets. The objective of this study is to do a comparison between the results of a nighttime ground-based instrument (sky-camera) and that of MODIS Aqua and MODIS Terra. A Canon Powershot A2300 is placed ontop of Manila Observatory (14.64N, 121.07E) and is configured to take images of the night sky at 5min intervals. To detect pixels with clouds, the pictures are converted to grayscale format. Thresholding technique is used to screen pixels with cloud and pixels without clouds. If the pixel value is greater than 17, it is considered as a cloud; otherwise, a noncloud (Gacal et al., 2016). This algorithm is applied to the data gathered from Oct 2015 to Oct 2016. A scatter plot between satellite cloud fraction in the area covering the area 14.2877N, 120.9869E, 14.7711N and 121.4539E and ground cloud cover is graphed to find the monthly correlation. During wet season (June - November), the satellite nighttime cloud fraction vs ground measured cloud cover produce an acceptable R2 (Aqua= 0.74, Terra= 0.71, AIRS= 0.76). However, during dry season, poor R2 values are obtained (AIRS= 0.39, Aqua & Terra = 0.01). The high correlation during wet season can be attributed to a high probability that the camera and satellite see the same clouds. However during dry season, the satellite sees high altitude clouds and the camera can not detect these clouds from the ground as it relies on city lights reflected from low level clouds. With this acknowledged disparity, the ground-based camera has the advantage of detecting haze and thin clouds near the ground that are hardly or not detected by the satellites.

  9. Discrimination Between Clouds and Snow in Landsat 8 Imagery: an Assessment of Current Methods and a New Approach

    NASA Astrophysics Data System (ADS)

    Stillinger, T.; Dozier, J.; Phares, N.; Rittger, K.

    2015-12-01

    Discrimination between snow and clouds poses a serious but tractable challenge to the consistent delivery of high-quality information on mountain snow from remote sensing. Clouds obstruct the surface from the sensor's view, and the similar optical properties of clouds and snow make accurate discrimination difficult. We assess the performance of the current Landsat 8 operational snow and cloud mask products (LDCM CCA and CFmask), along with a new method, using over one million manually identified snow and clouds pixels in Landsat 8 scenes. The new method uses physically based scattering models to generate spectra in each Landsat 8 band, at that scene's solar illumination, for snow and cloud particle sizes that cover the plausible range for each. The modeled spectra are compared to pixels' spectra via several independent ways to identify snow and clouds. The results are synthesized to create a final snow/cloud mask, and the method can be applied to any multispectral imager with bands covering the visible, near-infrared, and shortwave-infrared regions. Each algorithm we tested misidentifies snow and clouds in both directions to varying degrees. We assess performance with measures of Precision, Recall, and the F statistic, which are based on counts of true and false positives and negatives. Tests for significance in differences between spectra in the measured and modeled values among incorrectly identified pixels help ascertain reasons for misidentification. A cloud mask specifically designed to separate snow from clouds is a valuable tool for those interested in remotely sensing snow cover. Given freely available remote sensing datasets and computational tools to feasibly process entire mission histories for an area of interest, enabling researchers to reliably identify and separate snow and clouds increases the usability of the data for hydrological and climatological studies.

  10. Soil Erosion Risk Map based on irregularity of the vegetative activity

    NASA Astrophysics Data System (ADS)

    Saa-Requejo, Antonio; Tarquis, Ana Maria; Martín-Sotoca, Juan J.; Valencia, Jose L.; Gobin, Anne; Rodriguez-Sinobas, Leonor

    2016-04-01

    Because of the difficulties to build on both daily rainfall and base shorter time, we explored the possibilities of building indexes based on land cover, which also provide us the opportunity to evaluate their evolution over time. We consider the Fournier index (Fournier, 1960) which is used to assess the rainfall erosivity based on monthly rainfall, alternatively to use of the rainfall intensity in time bases under one hour (eg., van der Knijff et al., 1999; Shamshad et al, 2008). This index can also be interpreted as an index of irregularity and representing a ratio between maximum monthly precipitation and annual rainfall. We propose to calculate this irregularity in terms of irregularity of the vegetative activity. This activity is related to precipitation, but also with the availability of water in the soil reservoir and land use. Therefore, we propose a kind of Fournier index on the effective use of water, which is also closely related to variations in infiltration. Higher is the presence of vegetation higher is the effective use of water. For this "modified Fourier index" we used the NDVI (Normalized Difference Vegetation Index) as index of available vegetative activity, which is widely reported in the literature (Jensen, 2000). Initial calculations have been done with MODIS 500 x 500 m satellite data. The selected area was Cega-Eresma-Adaja subbasin during the period from 2009 to 2012. We selected 8 days composite images product. The calculation of the valid values to eliminate areas with clouds or snow is performed according to the criteria of Martinez Sotoca (2014), ie with a Saturation (based on HSL color model) greater or equal to 0.15. Then, an average of these values was estimated to represent each month of the year. The results are very interesting when we compare Modified Fournier Index on NDVIs with the map of potential soil loss. We have found surprisingly similar patterns and practical equivalence between several classes. Therefore, the Modified Fournier Index on NDVI values seems to synthesize the different parameters of the USLE, referring to rainfall, soil, geomorphology and vegetation cover. Acknowledgements Authors are grateful to TALE project (CICYT PCIN-2014-080) and DURERO project (Env.C1.3913442) for their financial support. References Fournier, F. (1960), Climat et erosion. P.U.F. Paris. Jensen, J.R. (2000). Remote Sensing of the Environment: An Earth Resource Perpective, Prentice Hall, New Jersey. Martínez Sotoca, J. J. (2014) estructura espacial de la sequía en pastos y sus aplicaciones en el seguro agrario indexado. (In Spanish) Master Thesis, UPM. Shamshad, A., Azhari M.N., Isaac, M.H., wan Hussin, W.M.A., Parida, B.P.. (2008). Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia. Catena, 72, 423-432. van der Knijff, J.M., Jones, R.J.A., Montanarella, L. (1999). Soil Erosion Risk Assessment Italy Soil Erosion Risk Assessment in Italy. European Commission Soil Bureau Joint Research Centre European Commission. EUR 19022EN.

  11. View of Earth from Apollo 10 taken from reproduction of tv transmission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A cloud-covered earth from about 12,800 nautical miles away is seen in this color reproduction taken from the second TV transmission made by the color television camera onboard the Apollo 10 spacecraft. The United States and Mexico are located at right center. The more cloud-free area is the western and southwestern part of the U.S. and northern Mexico. Clouds cover the eastern half of the U.S.

  12. Cloud cover archiving on a global scale - A discussion of principles

    NASA Technical Reports Server (NTRS)

    Henderson-Sellers, A.; Hughes, N. A.; Wilson, M.

    1981-01-01

    Monitoring of climatic variability and climate modeling both require a reliable global cloud data set. Examination is made of the temporal and spatial variability of cloudiness in light of recommendations made by GARP in 1975 (and updated by JOC in 1978 and 1980) for cloud data archiving. An examination of the methods of comparing cloud cover frequency curves suggests that the use of the beta distribution not only facilitates objective comparison, but also reduces overall storage requirements. A specific study of the only current global cloud climatology (the U.S. Air Force's 3-dimensional nephanalysis) over the United Kingdom indicates that discussion of methods of validating satellite-based data sets is urgently required.

  13. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    NASA Astrophysics Data System (ADS)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  14. Estimation of the fractional coverage of rainfall in climate models

    NASA Technical Reports Server (NTRS)

    Eltahir, E. A. B.; Bras, R. L.

    1993-01-01

    The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.

  15. The Cloud Detection and UV Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.

    2004-01-01

    We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.

  16. Estimation of Rainfall Rates from Passive Microwave Remote Sensing.

    NASA Astrophysics Data System (ADS)

    Sharma, Awdhesh Kumar

    Rainfall rates have been estimated using the passive microwave and visible/infrared remote sensing techniques. Data of September 14, 1978 from the Scanning Multichannel Microwave Radiometer (SMMR) on board SEA SAT-A and the Visible and Infrared Spin Scan Radiometer (VISSR) on board GOES-W (Geostationary Operational Environmental Satellite - West) was obtained and analyzed for rainfall rate retrieval. Microwave brightness temperatures (MBT) are simulated, using the microwave radiative transfer model (MRTM) and atmospheric scattering models. These MBT were computed as a function of rates of rainfall from precipitating clouds which are in a combined phase of ice and water. Microwave extinction due to ice and liquid water are calculated using Mie-theory and Gamma drop size distributions. Microwave absorption due to oxygen and water vapor are based on the schemes given by Rosenkranz, and Barret and Chung. The scattering phase matrix involved in the MRTM is found using Eddington's two stream approximation. The surface effects due to winds and foam are included through the ocean surface emissivity model. Rainfall rates are then inverted from MBT using the optimization technique "Leaps and Bounds" and multiple linear regression leading to a relationship between the rainfall rates and MBT. This relationship has been used to infer the oceanic rainfall rates from SMMR data. The VISSR data has been inverted for the rainfall rates using Griffith's scheme. This scheme provides an independent means of estimating rainfall rates for cross checking SMMR estimates. The inferred rainfall rates from both techniques have been plotted on a world map for comparison. A reasonably good correlation has been obtained between the two estimates.

  17. Study on Rainfall Forecasting by Using Weather Satellite Imagery in a Small Watershed Located at Mountainous Area of Central Taiwan

    NASA Astrophysics Data System (ADS)

    Wei, C.; Cheng, K. S.

    Using meteorological radar and satellite imagery had become an efficient tool for rainfall forecasting However few studies were aimed to predict quantitative rainfall in small watersheds for flood forecasting by using remote sensing data Due to the terrain shelter and ground clutter effect of Central Mountain Ridges the application of meteorological radar data was limited in mountainous areas of central Taiwan This study devises a new scheme to predict rainfall of a small upstream watershed by combing GOES-9 geostationary weather satellite imagery and ground rainfall records which can be applied for local quantitative rainfall forecasting during periods of typhoon and heavy rainfall Imagery of two typhoon events in 2004 and five correspondent ground raingauges records of Chitou Forest Recreational Area which is located in upstream region of Bei-Shi river were analyzed in this study The watershed accounts for 12 7 square kilometers and altitudes ranging from 1000 m to 1800 m Basin-wide Average Rainfall BAR in study area were estimated by block kriging Cloud Top Temperature CTT from satellite imagery and ground hourly rainfall records were medium correlated The regression coefficient ranges from 0 5 to 0 7 and the value decreases as the altitude of the gauge site increases The regression coefficient of CCT and next 2 to 6 hour accumulated BAR decrease as the time scale increases The rainfall forecasting for BAR were analyzed by Kalman Filtering Technique The correlation coefficient and average hourly deviates between estimated and observed value of BAR for

  18. Enhancement of vegetation-rainfall feedbacks on the Australian summer monsoon by the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Notaro, Michael

    2018-01-01

    A regional climate modeling analysis of the Australian monsoon system reveals a substantial modulation of vegetation-rainfall feedbacks by the Madden Julian Oscillation (MJO), both of which operate at similar sub-seasonal time scales, as evidence that the intensity of land-atmosphere interactions is sensitive to the background atmospheric state. Based on ensemble experiments with imposed modification of northern Australian leaf area index (LAI), the atmospheric responses to LAI anomalies are composited for negative and positive modes of the propagating MJO. In the regional climate model (RCM), northern Australian vegetation feedbacks are characterized by evapotranspiration (ET)-driven rainfall responses, with the moisture feedback mechanism dominating over albedo and roughness feedback mechanisms. During November-April, both Tropical Rainfall Measuring Mission and RCM data reveal MJO's pronounced influence on rainfall patterns across northern Australia, tropical Indian Ocean, Timor Sea, Arafura Sea, and Gulf of Carpentaria, with the MJO dominating over vegetation feedbacks in terms of regulating monsoon rainfall variability. Convectively-active MJO phases support an enhancement of positive vegetation feedbacks on monsoon rainfall. While the MJO imposes minimal regulation of ET responses to LAI anomalies, the vegetation feedback-induced responses in precipitable water, cloud water, and rainfall are greatly enhanced during convectively-active MJO phases over northern Australia, which are characterized by intense low-level convergence and efficient precipitable water conversion. The sub-seasonal response of vegetation-rainfall feedback intensity to the MJO is complex, with significant enhancement of rainfall responses to LAI anomalies in February during convectively-active MJO phases compared to minimal modulation by the MJO during prior and subsequent calendar months.

  19. Recognizing the importance of tropical forests in limiting rainfall-induced debris flows

    EPA Science Inventory

    Worldwide concern for continuing loss of montane forest cover in the tropics usually focuses on adverse ecological consequences. Less recognized, but equally important to inhabitants of these affected regions, is an increasing susceptibility to rainfall-induced debris flows and t...

  20. Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document. Volume 3; Cloud Analyses and Determination of Improved Top of Atmosphere Fluxes (Subsystem 4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 3 details the advanced CERES methods for performing scene identification and inverting each CERES scanner radiance to a top-of-the-atmosphere (TOA) flux. CERES determines cloud fraction, height, phase, effective particle size, layering, and thickness from high-resolution, multispectral imager data. CERES derives cloud properties for each pixel of the Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and the Earth Observing System (EOS) moderate-resolution imaging spectroradiometer. Cloud properties for each imager pixel are convolved with the CERES footprint point spread function to produce average cloud properties for each CERES scanner radiance. The mean cloud properties are used to determine an angular distribution model (ADM) to convert each CERES radiance to a TOA flux. The TOA fluxes are used in simple parameterization to derive surface radiative fluxes. This state-of-the-art cloud-radiation product will be used to substantially improve our understanding of the complex relationship between clouds and the radiation budget of the Earth-atmosphere system.

  1. Comparison of CERES Cloud Properties Derived from Aqua and Terra MODIS Data and TRMM VIRS Radiances

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Young, D. F.; Sun-Mack, S.; Trepte, Q. Z.; Chen, Y.; Heck, P. W.; Wielicki, B. A.

    2003-12-01

    The Clouds and Earth's Radiant Energy System (CERES) Project is obtaining Earth radiation budget measurements of unprecedented accuracy as a result of improved instruments and an analysis system that combines simultaneous, high-resolution cloud property retrievals with the broadband radiance data. The cloud properties are derived from three different satellite imagers: the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) and the Moderate Resolution Imaging Spectroradiometers (MODIS) on the Aqua and Terra satellites. A single set of consistent algorithms using the 0.65, 1.6 or 2.1, 3.7, 10.8, and 12.0-æm channels are applied to all three imagers. The cloud properties include, cloud coverage, height, thickness, temperature, optical depth, phase, effective particle size, and liquid or ice water path. Because each satellite is in a different orbit, the results provide information on the diurnal cycle of cloud properties. Initial intercalibrations show excellent consistency between the three images except for some differences of ~ 1K between the 3.7-æm channel on Terra and those on VIRS and Aqua. The derived cloud properties are consistent with the known diurnal characteristics of clouds in different areas. These datasets should be valuable for exploring the role of clouds in the radiation budget and hydrological cycle.

  2. Cloud Statistics and Discrimination in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Chan, M.; Comiso, J. C.

    2012-12-01

    Despite their important role in the climate system, cloud cover and their statistics are poorly known, especially in the polar regions, where clouds are difficult to discriminate from snow covered surfaces. The advent of the A-train, which included Aqua/MODIS, CALIPSO/CALIOP and CloudSat/CPR sensors has provided an opportunity to improve our ability to accurately characterize the cloud cover. MODIS provides global coverage at a relatively good temporal and spatial resolution while CALIOP and CPR provide limited nadir sampling but accurate characterization of the vertical structure and phase of the cloud cover. Over the polar regions, cloud detection from a passive sensors like MODIS is challenging because of the presence of cold and highly reflective surfaces such as snow, sea-ice, glaciers, and ice-sheet, which have surface signatures similar to those of clouds. On the other hand, active sensors such as CALIOP and CPR are not only very sensitive to the presence of clouds but can also provide information about its microphysical characteristics. However, these nadir-looking sensors have sparse spatial coverage and their global data can have data spatial gaps of up to 100 km. We developed a polar cloud detection system for MODIS that is trained using collocated data from CALIOP and CPR. In particular, we employ a machine learning system that reads the radiative profile observed by MODIS and determine whether the field of view is cloudy or clear. Results have shown that the improved cloud detection scheme performs better than typical cloud mask algorithms using a validation data set not used for training. A one-year data set was generated and results indicate that daytime cloud detection accuracies improved from 80.1% to 92.6% (over sea-ice) and 71.2% to 87.4% (over ice-sheet) with CALIOP data used as the baseline. Significant improvements are also observed during nighttime, where cloud detection accuracies increase by 19.8% (over sea-ice) and 11.6% (over ice-sheet). The immediate impact of the new algorithm is that it can minimize large biases of MODIS-derived cloud amount over the Polar Regions and thus a more realistic and high quality global cloud statistics. In particular, our results show that cloud fraction in the Arctic is typically 81.2 % during daytime and 84.0% during nighttime. This is significantly higher than the 71.8% and 58.5%, respectively, derived from standard MODIS cloud product.

  3. An Observational Study of the Relationship between Cloud, Aerosol and Meteorology in Broken Low-Level Cloud Conditions

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.; Schuster, Gregory L.

    2008-01-01

    Global satellite analyses showing strong correlations between aerosol optical depth and 3 cloud cover have stirred much debate recently. While it is tempting to interpret the results as evidence of aerosol enhancement of cloud cover, other factors such as the influence of meteorology on both the aerosol and cloud distributions can also play a role, as both aerosols and clouds depend upon local meteorology. This study uses satellite observations to examine aerosol-cloud relationships for broken low-level cloud regions off the coast of Africa. The analysis approach minimizes the influence of large-scale meteorology by restricting the spatial and temporal domains in which the aerosol and cloud properties are compared. While distributions of several meteorological variables within 5deg 5deg latitude-longitude regions are nearly identical under low and high aerosol optical depth, the corresponding distributions of single-layer low cloud properties and top-of-atmosphere radiative fluxes differ markedly, consistent with earlier studies showing increased cloud cover with aerosol optical depth. Furthermore, fine-mode fraction and Angstrom Exponent are also larger in conditions of higher aerosol optical depth, even though no evidence of systematic latitudinal or longitudinal gradients between the low and high aerosol optical depth populations are observed. When the analysis is repeated for all 5deg 5deg latitude-longitude regions over the global oceans (after removing cases in which significant meteorological differences are found between the low and high aerosol populations), results are qualitatively similar to those off the coast of Africa.

  4. Effective cloud optical depth and enhancement effects for broken liquid water clouds in Valencia (Spain)

    NASA Astrophysics Data System (ADS)

    Marín, M. J.; Serrano, D.; Utrillas, M. P.; Núñez, M.; Martínez-Lozano, J. A.

    2017-10-01

    Partly cloudy skies with liquid water clouds have been analysed, founding that it is essential to distinguish data if the Sun is obstructed or not by clouds. Both cases can be separated considering simultaneously the Cloud Modification Factor (CMF) and the clearness index (kt). For partly cloudy skies and the Sun obstructed the effective cloud optical depth (τ) has been obtained by the minimization method for overcast skies. This method was previously developed by the authors but, in this case, taking into account partial cloud cover. This study has been conducted for the years 2011-2015 with the multiple scattering model SBDART and irradiance measurements for the UV Erythemal Radiation (UVER) and the broadband ranges. Afterwards a statistical analysis of τ has shown that the maximum value is much lower than for overcast skies and there is more discrepancy between the two spectral ranges regarding the results for overcast skies. In order to validate these results the effective cloud optical depth has been correlated with several transmission factors, giving similar fit parameters to those obtained for overcast skies except for the clearness index in the UVER range. As our method is not applicable for partly cloudy skies with the visible Sun, the enhancement of radiation caused by clouds when the Sun is visible has been studied. Results show that the average enhancement CMF values are the same for both ranges although enhancement is more frequent for low cloud cover in the UVER and medium-high cloud cover in the broadband range and it does not depend on the solar zenith angle.

  5. Assessing operative natural and anthropogenic forcing factors from long-term climate time series of Uttarakhand (India) in the backdrop of recurring extreme rainfall events over northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Agnihotri, Rajesh; Dimri, A. P.; Joshi, H. M.; Verma, N. K.; Sharma, C.; Singh, J.; Sundriyal, Y. P.

    2017-05-01

    The entire Indo-Himalayan region from northwest (Kashmir) to northeast (Assam) is facing prevalence of floods and landslides in recent years causing massive loss of property, human and animal lives, infrastructure, and eventually threatening tourist activities substantially. Extremely intense rainfall event of 2013 C.E. (between 15 and 17 June) kicked off mammoth flash floods in the Kedarnath area of Uttarakhand state, resulting in huge socioeconomic losses to the state and country. Uttarakhand is an important hilly region attracting thousands of tourists every year owing to numerous shrines and forested mountainous tourist spots. Though recent studies indicate a plausible weakening of Indian summer monsoon rainfall overall, recurrent anomalous high rainfall events over northwest Himalaya (e.g. -2010, 2013, and 2016) point out the need for a thorough reassessment of long-term time series data of regional rainfall and ambient temperatures in order to trace signatures of a shifting pattern in regional meteorology, if any. Accordingly, here we investigate 100-year-long monthly rainfall and air temperature time series data for a selected grid (28.5°N, 31.25°N; 78.75°E, 81.25°E) covering most parts of Uttarakhand state. We also examined temporal variance in interrelationships among regional meteorological data (temperature and precipitation) and key global climate variability indices using advance statistical methods. Major findings are (i) significant increase in pre-monsoon air temperature over Uttarakhand after 1997, (ii) increasing upward trend in June-July rainfall and its relationship with regional May temperatures (iii) monsoonal rainfall (June, July, August, and September; JJAS) showing covariance with interannual variability in Eurasian snow cover (ESC) extent during the month of March, and (iv) enhancing tendency of anomalous high rainfall events during negative phases of Arctic Oscillation. Obtained results indicate that under warming scenario, JJ rainfall (over AS) may further increase with occasional extreme rainfall spells when AO index (March) is negative.

  6. Effects of rainfall partitioning in the seasonal and spatial variability of soil water content in a Mediterranean downy oak forest

    NASA Astrophysics Data System (ADS)

    Garcia-Estringana, P.; Latron, J.; Molina, A. J.; Llorens, P.

    2012-04-01

    Rainfall partitioning fluxes (throughfall and stemflow) have a large degree of temporal and spatial variability and may consequently lead to significant changes in the volume and composition of water that reach the understory and the soil. The objective of this work is to study the effect of rainfall partitioning on the seasonal and spatial variability of the soil water content in a Mediterranean downy oak forest (Quercus pubescens), located in the Vallcebre research catchments (42° 12'N, 1° 49'E). The monitoring design, started on July 2011, consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. One hundred hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover, in leaf and leafless periods, as well as biometric characteristics of the plot, are also regularly measured. This work presents the first results describing throughfall and soil moisture spatial variability during both the leaf and leafless periods. The main drivers of throughfall variability, as canopy structure and meteorological conditions are also analysed.

  7. Impact of convection on stratospheric humidity and upper tropospheric clouds

    NASA Astrophysics Data System (ADS)

    Ueyama, R.; Schoeberl, M. R.; Jensen, E. J.; Pfister, L.; Avery, M. A.

    2017-12-01

    The role of convection on stratospheric water vapor and upper tropospheric cloud fraction is investigated using two sets of complementary transport and microphysical models driven by MERRA-2 and ERA-Interim meteorological analyses: (1) computationally efficient ensembles of forward trajectories with simplified cloud microphysics, and (2) one-dimensional simulations with detailed microphysics along back trajectories. Convective influence along the trajectories is diagnosed based on TRMM/GPM rainfall products and geostationary infrared satellite cloud-top measurements, with convective cloud-top height adjusted to match the CloudSat, CALIPSO, and CATS measurements. We evaluate and constrain the model results by comparison with satellite observations (e.g., Aura MLS, CALIPSO CALIOP) and high-altitude aircraft campaigns (e.g., ATTREX, POSIDON). Convection moistens the lower stratosphere by approximately 10-15% and increases the cloud fraction in the upper troposphere by 35-50%. Convective moistening is dominated by the saturating effect of parcels; convectively-lofted ice has a negligible impact on lower stratospheric humidity. We also find that the highest convective clouds have a disproportionately large impact on stratospheric water vapor because stratospheric relative humidity is low. Implications of these model results on the role of convection on present and future climate will be discussed.

  8. Land Cover and Rainfall Interact to Shape Waterbird Community Composition

    PubMed Central

    Studds, Colin E.; DeLuca, William V.; Baker, Matthew E.; King, Ryan S.; Marra, Peter P.

    2012-01-01

    Human land cover can degrade estuaries directly through habitat loss and fragmentation or indirectly through nutrient inputs that reduce water quality. Strong precipitation events are occurring more frequently, causing greater hydrological connectivity between watersheds and estuaries. Nutrient enrichment and dissolved oxygen depletion that occur following these events are known to limit populations of benthic macroinvertebrates and commercially harvested species, but the consequences for top consumers such as birds remain largely unknown. We used non-metric multidimensional scaling (MDS) and structural equation modeling (SEM) to understand how land cover and annual variation in rainfall interact to shape waterbird community composition in Chesapeake Bay, USA. The MDS ordination indicated that urban subestuaries shifted from a mixed generalist-specialist community in 2002, a year of severe drought, to generalist-dominated community in 2003, of year of high rainfall. The SEM revealed that this change was concurrent with a sixfold increase in nitrate-N concentration in subestuaries. In the drought year of 2002, waterbird community composition depended only on the direct effect of urban development in watersheds. In the wet year of 2003, community composition depended both on this direct effect and on indirect effects associated with high nitrate-N inputs to northern parts of the Bay, particularly in urban subestuaries. Our findings suggest that increased runoff during periods of high rainfall can depress water quality enough to alter the composition of estuarine waterbird communities, and that this effect is compounded in subestuaries dominated by urban development. Estuarine restoration programs often chart progress by monitoring stressors and indicators, but rarely assess multivariate relationships among them. Estuarine management planning could be improved by tracking the structure of relationships among land cover, water quality, and waterbirds. Unraveling these complex relationships may help managers identify and mitigate ecological thresholds that occur with increasing human land cover. PMID:22558286

  9. Land cover and rainfall interact to shape waterbird community composition.

    PubMed

    Studds, Colin E; DeLuca, William V; Baker, Matthew E; King, Ryan S; Marra, Peter P

    2012-01-01

    Human land cover can degrade estuaries directly through habitat loss and fragmentation or indirectly through nutrient inputs that reduce water quality. Strong precipitation events are occurring more frequently, causing greater hydrological connectivity between watersheds and estuaries. Nutrient enrichment and dissolved oxygen depletion that occur following these events are known to limit populations of benthic macroinvertebrates and commercially harvested species, but the consequences for top consumers such as birds remain largely unknown. We used non-metric multidimensional scaling (MDS) and structural equation modeling (SEM) to understand how land cover and annual variation in rainfall interact to shape waterbird community composition in Chesapeake Bay, USA. The MDS ordination indicated that urban subestuaries shifted from a mixed generalist-specialist community in 2002, a year of severe drought, to generalist-dominated community in 2003, of year of high rainfall. The SEM revealed that this change was concurrent with a sixfold increase in nitrate-N concentration in subestuaries. In the drought year of 2002, waterbird community composition depended only on the direct effect of urban development in watersheds. In the wet year of 2003, community composition depended both on this direct effect and on indirect effects associated with high nitrate-N inputs to northern parts of the Bay, particularly in urban subestuaries. Our findings suggest that increased runoff during periods of high rainfall can depress water quality enough to alter the composition of estuarine waterbird communities, and that this effect is compounded in subestuaries dominated by urban development. Estuarine restoration programs often chart progress by monitoring stressors and indicators, but rarely assess multivariate relationships among them. Estuarine management planning could be improved by tracking the structure of relationships among land cover, water quality, and waterbirds. Unraveling these complex relationships may help managers identify and mitigate ecological thresholds that occur with increasing human land cover.

  10. MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno

    2017-04-01

    Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.

  11. Validation of satellite daily rainfall estimates in complex terrain of Bali Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Rahmawati, Novi; Lubczynski, Maciek W.

    2017-11-01

    Satellite rainfall products have different performances in different geographic regions under different physical and climatological conditions. In this study, the objective was to select the most reliable and accurate satellite rainfall products for specific, environmental conditions of Bali Island. The performances of four spatio-temporal satellite rainfall products, i.e., CMORPH25, CMORPH8, TRMM, and PERSIANN, were evaluated at the island, zonation (applying elevation and climatology as constraints), and pixel scales, using (i) descriptive statistics and (ii) categorical statistics, including bias decomposition. The results showed that all the satellite products had low accuracy because of spatial scale effect, daily resolution and the island complexity. That accuracy was relatively lower in (i) dry seasons and dry climatic zones than in wet seasons and wet climatic zones; (ii) pixels jointly covered by sea and mountainous land than in pixels covered by land or by sea only; and (iii) topographically diverse than uniform terrains. CMORPH25, CMORPH8, and TRMM underestimated and PERSIANN overestimated rainfall when comparing them to gauged rain. The CMORPH25 had relatively the best performance and the PERSIANN had the worst performance in the Bali Island. The CMORPH25 had the lowest statistical errors, the lowest miss, and the highest hit rainfall events; it also had the lowest miss rainfall bias and was relatively the most accurate in detecting, frequent in Bali, ≤ 20 mm day-1 rain events. Lastly, the CMORPH25 coarse grid better represented rainfall events from coastal to inlands areas than other satellite products, including finer grid CMORPH8.

  12. Cloud cover and horizontal plane eye damaging solar UV exposures.

    PubMed

    Parisi, A V; Downs, N

    2004-11-01

    The spectral UV and the cloud cover were measured at intervals of 5 min with an integrated cloud and spectral UV measurement system at a sub-tropical Southern Hemisphere site for a 6-month period and solar zenith angle (SZA) range of 4.7 degrees to approximately 80 degrees . The solar UV spectra were recorded between 280 nm and 400 nm in 0.5 nm increments and weighted with the action spectra for photokeratitis and cataracts in order to investigate the effect of cloud cover on the horizontal plane biologically damaging UV irradiances for cataracts (UVBE(cat)) and photokeratitis (UVBE(pker)). Eighty five percent of the recorded spectra produced a measured irradiance to a cloud free irradiance ratio of 0.6 and higher while 76% produced a ratio of 0.8 and higher. Empirical non-linear expressions as a function of SZA have been developed for all sky conditions to allow the evaluation of the biologically damaging UV irradiances for photokeratitis and cataracts from a knowledge of the unweighted UV irradiances.

  13. Modulation of SSM/I microwave soil radiances by rainfall

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Fulton, Richard

    1992-01-01

    The feasibility of using SSM/I satellite data for estimating the soil moisture content was investigated by correlating the rainfall and soil moisture data with values of the SSM/I microwave brightness temperature obtained for the lower Great Plains in the United States during 1987. It was found that the areas of lowest brightness temperatures coincided with regions of bare soil which had received significant rainfall. The time-history plots of the brightness temperature and the antecedent precipitation index during an extremely large rain event indicated a slow recovery period (about 15 days) back to the dry soil state. However, regions covered with vegetation showed smaller temperature drops and much weaker correlation with rain events, questioning the feasibility of using SSM/I measurements for estimations of soil moisture in regions containing vegetation-covered soil.

  14. Satellite Remote Sensing of Tropical Precipitation and Ice Clouds for GCM Verification

    NASA Technical Reports Server (NTRS)

    Evans, K. Franklin

    2001-01-01

    This project, supported by the NASA New Investigator Program, has primarily been funding a graduate student, Darren McKague. Since August 1999 Darren has been working part time at Raytheon, while continuing his PhD research. Darren is planning to finish his thesis work in May 2001, thus some of the work described here is ongoing. The proposed research was to use GOES visible and infrared imager data and SSM/I microwave data to obtain joint distributions of cirrus cloud ice mass and precipitation for a study region in the Eastern Tropical Pacific. These joint distributions of cirrus cloud and rainfall were to be compared to those from the CSU general circulation model to evaluate the cloud microphysical amd cumulus parameterizations in the GCM. Existing algorithms were to be used for the retrieval of cloud ice water path from GOES (Minnis) and rainfall from SSM/I (Wilheit). A theoretical study using radiative transfer models and realistic variations in cloud and precipitation profiles was to be used to estimate the retrieval errors. Due to the unavailability of the GOES satellite cloud retrieval algorithm from Dr. Minnis (a co-PI), there was a change in the approach and emphasis of the project. The new approach was to develop a completely new type of remote sensing algorithm - one to directly retrieve joint probability density functions (pdf's) of cloud properties from multi-dimensional histograms of satellite radiances. The usual approach is to retrieve individual pixels of variables (i.e. cloud optical depth), and then aggregate the information. Only statistical information is actually needed, however, and so a more direct method is desirable. We developed forward radiative transfer models for the SSM/I and GOES channels, originally for testing the retrieval algorithms. The visible and near infrared ice scattering information is obtained from geometric ray tracing of fractal ice crystals (Andreas Macke), while the mid-infrared and microwave scattering is computed with Mie scattering. The radiative transfer is performed with the Spherical Harmonic Discrete Ordinate Method (developed by the PI), and infrared molecular absorption is included with the correlated k-distribution method. The SHDOM radiances have been validated by comparison to version 2 of DISORT (the community "standard" discrete-ordinates radiative transfer model), however we use SHDOM since it is computationally more efficient.

  15. 7 CFR 1450.206 - Obligations of participant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... excessive rainfall, flooding, or drought; and (2) The participant establishes the approved cover as soon as practicable after the wet or drought conditions that prevented the establishment of such cover subside. ...

  16. Automated Visibility & Cloud Cover Measurements with a Solid State Imaging System

    DTIC Science & Technology

    1989-03-01

    GL-TR-89-0061 SIO Ref. 89-7 MPL-U-26/89 AUTOMATED VISIBILITY & CLOUD COVER MEASUREMENTS WITH A SOLID-STATE IMAGING SYSTEM C) to N4 R. W. Johnson W. S...include Security Classification) Automated Visibility & Cloud Measurements With A Solid State Imaging System 12. PERSONAL AUTHOR(S) Richard W. Johnson...based imaging systems , their ics and control algorithms, thus they ar.L discussed sepa- initial deployment and the preliminary application of rately

  17. Cloud-to-ground lightning and surface rainfall in warm-season Florida thunderstorms

    USGS Publications Warehouse

    Gungle, B.; Krider, E.P.

    2006-01-01

    Relationships between cloud-to-ground (CG) lightning and surface rainfall have been examined in nine isolated, warm-season thunderstorms on the east coast of central Florida. CG flashes and the associated rain volumes were measured as a function of time in storm-centered reference frames that followed each storm over a network of rain gauges. Values of the storm-average rain volume per CG flash ranged from 0.70 ?? 104 to 6.4 ?? 104 m3/CG flash, with a mean (and standard deviation) of 2.6 ?? 104 ?? 2.1 ?? 104 m3/CG flash. Values of the rain volume concurrent with CG flashes ranged from 0.11 ?? 104 to 4.9 ?? 104 m3/CG flash with a mean of 2.1 ?? 104 ?? 2.0 ?? 104 m3/CG flash. The lag-time between the peak CG flash rate and the peak rainfall rate (using 5 min bins), and the results of a lag correlation analysis, show that surface rainfall tends to follow the lightning (positive lag) by up to 20 min in six storms. In one storm the rainfall preceded the lightning by 5 min, and two storms had nonsignificant lags. Values of the lagged rain volume concurrent with CG flashes ranged from 0.43 ?? 104 to 4.9 ?? 104 m3/CG flash, and the mean was 1.9 ?? 104 ?? 1.7 ?? 104 m3/CG flash. For the five storms that produced 12 or more flashes and had significant lags, a plot of the optimum lag time versus the total number of CG flashes shows a linear trend (R2 = 0.56). The number of storms is limited, but the lag results do indicate that large storms tend to have longer lags. A linear fit to the lagged rain volume vs. the number of concurrent CG flashes has a slope of 1.9 ?? 104 m3/CG flash (R2 = 0.83). We conclude that warm-season Florida thunderstorms produce a roughly constant rain volume per CG flash and that CG lightning can be used to estimate the location and intensity of convective rainfall in that weather regime. Copyright 2006 by the American Geophysical Union.

  18. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica.

    PubMed

    Häger, Achim

    2010-12-01

    On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilardn mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain) and temperatures were installed along a 2.5km transect ranging from 1200 m.a.s.l. on the Atlantic to 1200 m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1500 m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05 ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh) > or = 5 cm were identified to species. Species' distributions were explored by feeding pairwise Serensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge). Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is suggested that beta-diversity in the study area is largely driven by species with narrow spatial ranges, due to the interactions between topography, climate and soil formation processes, especially around the wind-exposed and cloud covered ridge area. The findings emphasize the extraordinary conservation value of tropical montane cloud forests in environmentally heterogeneous areas at mid-elevations.

  19. Role of Satellite Rainfall Information in Improving Understanding of the Dynamical Link Between the Tropics and Extratropics Prospects of Improved Forecasts of Weather and Short-Term Climate Variability on Sub-Seasonal Time Scales

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2002-01-01

    The tropics and extratropics are two dynamically distinct regimes. The coupling between these two regimes often defies simple analytical treatment. Progress in understanding of the dynamical interaction between the tropics and extratropics relies on better observational descriptions to guide theoretical development. However, global analyses currently contain significant errors in primary hydrological variables such as precipitation, evaporation, moisture, and clouds, especially in the tropics. Tropical analyses have been shown to be sensitive to parameterized precipitation processes, which are less than perfect, leading to order-one discrepancies between estimates produced by different data assimilation systems. One strategy for improvement is to assimilate rainfall observations to constrain the analysis and reduce uncertainties in variables physically linked to precipitation. At the Data Assimilation Office at the NASA Goddard Space Flight Center, we have been exploring the use of tropical rain rates derived from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments in global data assimilation. Results show that assimilating these data improves not only rainfall and moisture fields but also related climate parameters such as clouds and radiation, as well as the large-scale circulation and short-range forecasts. These studies suggest that assimilation of microwave rainfall observations from space has the potential to significantly improve the quality of 4-D assimilated datasets for climate investigations (Hou et al. 2001). In the next few years, there will be a gradual increase in microwave rain products available from operational and research satellites, culminating to a target constellation of 9 satellites to provide global rain measurements every 3 hours with the proposed Global Precipitation Measurement (GPM) mission in 2007. Continued improvements in assimilation methodology, rainfall error estimates, and model parameterizations are needed to ensure that we derive maximum benefits from these observations.

  20. Hydro-meteorological functioning of the Eastern Andean Tropical Montane Cloud Forests: Insight from a paired catchment study in the Orinoco river basin highlands

    NASA Astrophysics Data System (ADS)

    Ramirez, Beatriz; Teuling, Adriaan J.; Ganzeveld, Laurens; Leemans, Rik

    2016-04-01

    Tropical forests regulate large scale precipitation patterns and catchment-scale streamflow, while tropical mountains influence runoff by orographic effects and snowmelt. Along tropical elevation gradients, these climate/ecosystem/hydrological interactions are specific and heterogeneous. These interactions are poorly understood and represented in hydro-meteorological monitoring networks and regional or global earth system models. A typical case are the South American Tropical Montane Cloud Forests (TMCF), whose water balance is strongly driven by fog persistence. This also depends on local and up wind temperature and moisture, and changes in this balance alter the impacts of changes in land use and climate on hydrology. These TMCFs were until 2010 only investigated up to 350km from the coast. Continental TMCFs are largely ignored. This gap is covered by our study area, which is part of the Orinoco river basin highlands and located on the northern Eastern Andes at an altitudinal range of 1550 to 2300m a.s.l. The upwind part of our study area is dominated by lowland savannahs that are flooded seasonally. Because meteorological stations are absent in our study area, we first describe the spatial and seasonal meteorological variability and analyse the corresponding catchment hydrology. Our hydro-meteorological data set is collected at three gauged neighbouring catchments with contrasting TMCF/grassland cover from June 2013 to May 2014 and includes hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and runoff measurements. We compare our results with recent TCMF studies in the eastern Andean highlands in the Amazon basin. The studied elevational range always shows wetter conditions at higher elevations. This indicates a positive relation between elevation and fog or rainfall persistence. Lower elevations are more seasonally variable. Soil moisture data indicate that TMCFs do not use persistently more water than grasslands. Runoff data from our three catchments reflect the interaction between ecosystems and elevation. The less-forested catchment at lower elevations has a more seasonally variable runoff and present the lowest base flows during the dry season. In this season, soil water storage and the wetter conditions at higher elevations are crucial to sustain their base flow. The hydro-meteorological patterns of our study area are similar to those at the eastern Andean TMCF sites, but differences in the elevation of fog and rainfall persistence suggest that specific upwind ecosystem conditions and distance to the coast are important to explain and understand regional seasonal differences.

Top