Sample records for rainfall soil type

  1. Response of runoff and soil loss to reforestation and rainfall type in red soil region of southern China.

    PubMed

    Huang, Zhigang; Ouyang, Zhiyun; Li, Fengrui; Zheng, Hua; Wang, Xiaoke

    2010-01-01

    To evaluate the long-term effects of reforestation types on soil erosion on degraded land, vegetation and soil properties under conventional sloping farmland (CSF) and three different reforestation types including a Pinus massoniana secondary forest (PSF), an Eucommia ulmoides artificial economic forest (EEF) and a natural succession type forest (NST), were investigated at runoff plot scale over a six-year period in a red soil region of southern China. One hundred and thirty erosive rainfall events generating runoff in plots were grouped into four rainfall types by means of K-mean clustering method. Erosive rainfall type I is the dominant rainfall type. The amount of runoff and the soil loss under erosive rainfall type III were the most, followed by rain-fall type II, IV and I. Compared with CSF treatment, reforestation treatments decreased the average annual runoff depth and the soil loss by 25.5%-61.8% and 93.9%-96.2% during the study period respectively. Meanwhile, runoff depth at PSF and EEF treatments was significantly lower than that in NST treatment, but no significant difference existed in soil erosion modulus among the three reforestation treatments. This is mainly due to the improved vegetation properties (i.e., vegetation coverage, biomass of above- and below-ground and litter-fall mass) and soil properties (i.e., bulk density, total porosity, infiltration rate and organic carbon content) in the three reforestation treatments compared to CSF treatment. The PSF and EEF are recommended as the preferred reforestation types to control runoff and soil erosion in the red soil region of southern China, with the NST potentially being used as an important supplement.

  2. Vegetation Response to Rainfall and Soil Moisture Variability in Botswana

    DTIC Science & Technology

    1991-01-01

    Effects of Varying Soil Type on the NDVI /Rainfall and NDVI /Soil Moisture...examine the effects of different soil types on the vegetation growth/rainfall relationship. The goals are to determine whether differences in the water-use...34first step" in removing the soil effect (Huete et al., 1985). Indeed, no large-scale soil corrections have been attempted as yet on NDVI data.

  3. New Indices to Evaluate the Effects of Rainfall Pattern on Runoff and Soil Loss under Different Vegetation in the Loess Plateau, China.

    NASA Astrophysics Data System (ADS)

    Liu, J.; Gao, G.; Jiao, L.; Fu, B.

    2016-12-01

    The rainfall amount, density and duration were commonly used to evaluate the influences of rainfall on runoff and soil loss, which could completely express the information of rainfall, especially rainfall pattern. In this study, the peak zone of rainfall intensity (PZRI) and intra-event intermittency of rainfall (IERI) were developed to detect the effects of rainfall pattern on runoff and soil loss under different land cover types in the Loess Plateau of China. The runoff and soil loss of three vegetation types (Prunus armeniaca, Artemisia sacrorum and Andropogon yunnanensis) and bare land were measured from 2012 to 2015. The PZRI was significantly correlated with average rainfall intensity (I) and maximum rainfall intensity in 30 minutes (I30). The runoff coefficient (RC) and soil loss were not significantly correlated with I, but they were significantly affected by I30 and PZRI (p<0.05). The greater value of IERI indicated more proportion of PZRI in rainfall duration, and there was positive correlation between IERI and RC. It was showed that the RC was most correlated with PZRI, whereas the correlation between soil loss and I30 was most significant under all cover types. This indicated that the changes of rainfall pattern had more effects on runoff than soil loss. In addition, the position of PZRI in the rainfall profile had an important role on runoff and soil loss. RC and soil loss under bare land was most sensitive to the occurrence period of rainfall peak, followed by Prunus armeniaca, Artemisia sacrorum and Andropogon yunnanensis.

  4. Rainfall simulation in education

    NASA Astrophysics Data System (ADS)

    Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia

    2016-04-01

    Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain occurs. The MSc level course 'Fundamentals of Land Management' students carry out a hands-on practical in which they compare soil type and design and evaluate the effect of soil and water conservation measures. Also, MSc thesis research is being carried out using this facility. For instance, the distribution and movement of pesticide Glyphosate with sediment transportation was being quantified using the rainfall simulation facility.

  5. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  6. Effect of rainfall infiltration into unsaturated soil using soil column

    NASA Astrophysics Data System (ADS)

    Ibrahim, A.; Mukhlisin, M.; Jaafar, O.

    2018-02-01

    Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.

  7. Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils.

    PubMed

    Meite, Fatima; Alvarez-Zaldívar, Pablo; Crochet, Alexandre; Wiegert, Charline; Payraudeau, Sylvain; Imfeld, Gwenaël

    2018-03-01

    The combined influence of soil characteristics, pollutant aging and rainfall patterns on the export of pollutants from topsoils is poorly understood. We used laboratory experiments and parsimonious modeling to evaluate the impact of rainfall characteristics on the ponding and the leaching of a pollutant mixture from topsoils. The mixture included the fungicide metalaxyl, the herbicide S-metolachlor, as well as copper (Cu) and zinc (Zn). Four rainfall patterns, which differed in their durations and intensities, were applied twice successively with a 7days interval on each soil type. To evaluate the influence of soil type and aging, experiments included crop and vineyard soils and two stages of pollutant aging (0 and 10days). The global export of pollutants was significantly controlled by the rainfall duration and frequency (P<0.01). During the first rainfall event, the longest and most intense rainfall pattern yielded the largest export of metalaxyl (44.5±21.5% of the initial mass spiked in the soils), S-metolachlor (8.1±3.1%) and Cu (3.1±0.3%). Soil compaction caused by the first rainfall reduced in the second rainfall the leaching of remaining metalaxyl, S-metolachlor, Cu and Zn by 2.4-, 2.9-, 30- and 50-fold, respectively. In contrast, soil characteristics and aging had less influence on pollutant mass export. The soil type significantly influenced the leaching of Zn, while short-term aging impacted Cu leaching. Our results suggest that rainfall characteristics predominantly control export patterns of metalaxyl and S-metolachlor, in particular when the aging period is short. We anticipate our study to be a starting point for more systematic evaluation of the dissolved pollutant ponding/leaching partitioning and the export of pollutant mixtures from different soil types in relation to rainfall patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Linking soil type and rainfall characteristics towards estimation of surface evaporative capacitance

    NASA Astrophysics Data System (ADS)

    Or, D.; Bickel, S.; Lehmann, P.

    2017-12-01

    Separation of evapotranspiration (ET) to evaporation (E) and transpiration (T) components for attribution of surface fluxes or for assessment of isotope fractionation in groundwater remains a challenge. Regional estimates of soil evaporation often rely on plant-based (Penman-Monteith) ET estimates where is E is obtained as a residual or a fraction of potential evaporation. We propose a novel method for estimating E from soil-specific properties, regional rainfall characteristics and considering concurrent internal drainage that shelters soil water from evaporation. A soil-dependent evaporative characteristic length defines a depth below which soil water cannot be pulled to the surface by capillarity; this depth determines the maximal soil evaporative capacitance (SEC). The SEC is recharged by rainfall and subsequently emptied by competition between drainage and surface evaporation (considering canopy interception evaporation). We show that E is strongly dependent on rainfall characteristics (mean annual, number of storms) and soil textural type, with up to 50% of rainfall lost to evaporation in loamy soil. The SEC concept applied to different soil types and climatic regions offers direct bounds on regional surface evaporation independent of plant-based parameterization or energy balance calculations.

  9. Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south China.

    PubMed

    Wu, Xinliang; Wei, Yujie; Wang, Junguang; Xia, Jinwen; Cai, Chongfa; Wei, Zhiyuan

    2018-04-15

    Soil erosion poses a major threat to the sustainability of natural ecosystems. The main objective of this study was to investigate the effects of soil type and rainfall intensity on sheet erosion processes (hydrological, erosional processes and sediment characteristics) from temperate to tropical climate. Field plot experiments were conducted under pre-wetted bare fallow condition for five soil types (two Luvisols, an Alisol, an Acrisol and a Ferralsol) with heavy textures (silty clay loam, silty clay and clay) derived separately from loess deposits, quaternary red clays and basalt in central-south China. Rainfall simulations were performed at two rainfall intensities (45 and 90mmh -1 ) and lasted one hour after runoff generation. Runoff coefficient, sediment concentration, sediment yield rate and sediment effective size distribution were determined at 3-min intervals. Runoff temporal variations were similar at the high rainfall intensity, but exhibited a remarkable difference at the low rainfall intensity among soil types except for tropical Ferralsol. Illite was positively correlated with runoff coefficient (p<0.05). Rainfall intensity significantly contributed to the erosional process (p<0.001). Sediment concentration and yield rate were the smallest for the tropical Ferralsol and sediment concentration was the largest for the temperate Luvisol. The regimes (transport and detachment) limiting erosion varied under the interaction of rainfall characteristics (intensity and duration) and soil types, with amorphous iron oxides and bulk density jointly enhancing soil resistance to erosive forces (Adj-R 2 >88%, p<0.001). Sediment size was dominated by <0.1mm size fraction for the Luvisols and bimodally distributed with the peaks at <0.1mm and 1-0.5mm size for the other soil types. Exchangeable sodium decreased sediment size while rainfall intensity and clay content increased it (Adj-R 2 =96%, p<0.01). These results allow to better understand the climate effect on erosion processes at the spatial-temporal scale from the perspective of soil properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Soil erodibility variability in laboratory and field rainfall simulations

    NASA Astrophysics Data System (ADS)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán

    2017-04-01

    Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?

  11. Effects of soil type on leaching and runoff transport of rare earth elements and phosphorous in laboratory experiments.

    PubMed

    Wang, Lingqing; Liang, Tao; Chong, Zhongyi; Zhang, Chaosheng

    2011-01-01

    Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated. Results of the leaching experiments showed that vertical transports of REEs and P were relatively low, with transport depths less than 6 cm. The vertical leaching rates of REEs and P in the different soils followed the order of purple soil > terra nera soil > red soil > cinnamon soil > loess soil. Results of the simulated rainfall experiments (83 mm h⁻¹) revealed that more than 92% of REEs and P transported with soil particles in runoff. The loss rates of REEs and P in surface runoff in the different soil types were in the order of loess soil > terra nera soil > cinnamon soil > red soil > purple soil. The total amounts of losses of REEs and P in runoff were significantly correlated.

  12. Wind erodibility response of physical and biological crusts to rain and flooding

    NASA Astrophysics Data System (ADS)

    Aubault, H.; Bullard, J. E.; Strong, C. L.; Ghadiri, H.; McTainsh, G. H.

    2015-12-01

    Soil surface crusts are important controllers of the small-scale wind entrainment processes that occur across all dust source regions globally. The crust type influences water and wind erosion by impacting infiltration, runoff, threshold wind velocity and surface storage capacity of both water and loose erodible material. The spatial and temporal patterning of both physical and biological crusts is known to change with rainfall and flooding. However, little is known about the impact of differing water quantity (from light rainfall through to flooding) on soil crusting characteristics (strength, roughness, sediment loss). This study compares the response of two soil types (loamy sand - LS, sandy loam - SL) with and without BSCs to three different rainfall events (2mm, 8mm, 15mm). Two BSC treatments were used one that simulated a young cyanobacteria dominated crust and an older flood induced multi species biological crust. For both soil types, soil surface strength increased with increasing rainfall amount with LS having consistently higher resistance to rupture than SL. Regardless of texture, soils with BSCs were more resistant and strength did not change in response to rainfall impact. Soil loss due to wind erosion was substantially higher on bare LS (4 times higher) and SL (3 times higher) soils compared with those with BSCs. Our results also show that young biological crust (formed by the rainfall event) have reduced soil erodibility with notably greater strength, roughness and reduced sediment losses when compared to soils with physical crust. Interestingly though, the erodibility of the old BSC did not differ greatly from that of the young BSC with respect to strength, roughness and sediment loss. This raises questions regarding the rapid soil surface protection offered by young colonising cyanobacteria crusts. Further analyses exploring the role of biological soil crusts on surface response to rainfall and wind saltation impact are ongoing.

  13. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    PubMed Central

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θ s - θ r), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process. PMID:24672332

  14. Analysis of rainfall infiltration law in unsaturated soil slope.

    PubMed

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  15. Mini rainfall simulation for assessing soil erodibility

    NASA Astrophysics Data System (ADS)

    Peters, Piet; Palese, Dina; Baartman, Jantiene

    2016-04-01

    The mini rainfall simulator is a small portable rainfall simulator to determine erosion and water infiltration characteristics of soils. The advantages of the mini rainfall simulator are that it is suitable for soil conservation surveys and light and easy to handle in the field. Practical experience over the last decade has shown that the used 'standard' shower is a reliable method to assess differences in erodibility due to soil type and/or land use. The mini rainfall simulator was used recently in a study on soil erosion in olive groves (Ferrandina-Italy). The propensity to erosion of a steep rain-fed olive grove (mean slope ~10%) with a sandy loam soil was evaluated by measuring runoff and sediment load under extreme rain events. Two types of soil management were compared: spontaneous grass as a ground cover (GC) and tillage (1 day (T1) and 10 days after tillage (T2)). Results indicate that groundcover reduced surface runoff to approximately one-third and soil-losses to zero compared with T1. The runoff between the two tilled plots was similar, although runoff on T1 plots increased steadily over time whereas runoff on T2 plots remained stable.

  16. A model for estimating time-variant rainfall infiltration as a function of antecedent surface moisture and hydrologic soil type

    NASA Technical Reports Server (NTRS)

    Wilkening, H. A.; Ragan, R. M.

    1982-01-01

    Recent research indicates that the use of remote sensing techniques for the measurement of near surface soil moisture could be practical in the not too distant future. Other research shows that infiltration rates, especially for average or frequent rainfall events, are extremely sensitive to the proper definition and consideration of the role of the soil moisture at the beginning of the rainfall. Thus, it is important that an easy to use, but theoretically sound, rainfall infiltration model be available if the anticipated remotely sensed soil moisture data is to be optimally utilized for hydrologic simulation. A series of numerical experiments with the Richards' equation for an array of conditions anticipated in watershed hydrology were used to develop functional relationships that describe temporal infiltration rates as a function of soil type and initial moisture conditions.

  17. An empirical method for determining average soil infiltration rates and runoff, Powder River structural basin, Wyoming

    USGS Publications Warehouse

    Rankl, James G.

    1982-01-01

    This report describes a method to estimate infiltration rates of soils for use in estimating runoff from small basins. Average rainfall intensity is plotted against storm duration on log-log paper. All rainfall events are designated as having either runoff or nonrunoff. A power-decay-type curve is visually fitted to separate the two types of rainfall events. This separation curve is an incipient-ponding curve and its equation describes infiltration parameters for a soil. For basins with more than one soil complex, only the incipient-ponding curve for the soil complex with the lowest infiltration rate can be defined using the separation technique. Incipient-ponding curves for soils with infiltration rates greater than the lowest curve are defined by ranking the soils according to their relative permeabilities and optimizing the curve position. A comparison of results for six basins produced computed total runoff for all events used ranging from 16.6 percent less to 2.3 percent more than measured total runoff. (USGS)

  18. Qualitative comparison of soil erosion, runoff and infiltration coefficients using small portable rainfall simulators in Germany, Spain and France

    NASA Astrophysics Data System (ADS)

    Rodrigo Comino, Jesús; Iserloh, Thomas; Morvan, Xavier; Malam Issa, Oumarou; Naisse, Christophe; Keesstra, Saskia; Cerdà, Artemi; Prosdocimi, Massimo; Arnáez, José; Lasanta, Teodoro; Concepción Ramos, María; José Marqués, María; Ruiz Colmenero, Marta; Bienes, Ramón; Damián Ruiz Sinoga, José; Seeger, Manuel; Ries, Johannes B.

    2016-04-01

    Small portable rainfall simulators are considered as a useful tool to analyze soil erosion processes in cultivated lands. European research groups of Spain (Valencia, Málaga, Lleida, Madrid and La Rioja), France (Reims) or Germany (Trier) have used different rainfall simulators (varying in drop size distribution and fall velocities, kinetic energy, plot forms and sizes, and field of application)to study soil loss, surface flow, runoff and infiltration coefficients in different experimental plots (Valencia, Montes de Málaga, Penedès, Campo Real and La Rioja in Spain, Champagne in France and Mosel-Ruwer valley in Germany). The measurements and experiments developed by these research teams give an overview of the variety in the methodologies with rainfall simulations in studying the problem of soil erosion and describing the erosion features in different climatic environments, management practices and soil types. The aim of this study is: i) to investigate where, how and why researchers from different wine-growing regions applied rainfall simulations with successful results as a tool to measure soil erosion processes; ii) to make a qualitative comparison about the general soil erosion processes in European terroirs; iii) to demonstrate the importance of the development a standard method for soil erosion processes in vineyards, using rainfall simulators; iv) and to analyze the key factors that should be taken into account to carry out rainfall simulations. The rainfall simulations in all cases allowed knowing the infiltration capacity and the susceptibility of the soil to be detached and to generate sediment loads to runoff. Despite using small plots, the experiments were useful to analyze the influence of soil cover to reduce soil erosion and to make comparison between different locations or the influence of different soil characteristics.

  19. Implications of altered rainfall and exotic plants on soil microbial communities and carbon biomass

    NASA Astrophysics Data System (ADS)

    Castro, S.; Lipson, D.; Cleland, E. E.

    2016-12-01

    Climate and exotic plant disturbances are among the most significant threats to Mediterranean-type ecosystems, compromising their renowned biodiversity and role in the global carbon cycle. Predicted shifts in rainfall patterns have become a particular concern, especially when interactions with other stressors and effects on biogeochemical processes remain poorly understood. To understand the impacts of altered rainfall on belowground dynamics as well as the role of inter- and intra-annual variation and plant community composition, we monitored soil microbial communities under native and exotic plant dominated plots with rainfall manipulation treatments in a semi-arid Mediterranean-type ecosystem. We measured microbial biomass, respiration rates, and community structure across treatments and vegetation types. Soil moisture and dissolved organic carbon were also measured to characterize abiotic soil properties. The soil moisture gradient established by the rainfall treatments had a positive correlation with microbial biomass carbon under native- and exotic-dominated plots but had no effect on respiration rates. A significant reduction in microbial biomass under exotic plants was found in 2013 but not in 2014 and 2015. Substrate-induced respiration values were higher in the exotic-dominated plots during the spring seasons, resulting in a significant interaction between plant community type and season. Bacterial communities showed little variation except in the Proteobacteria phyla, which was lower in exotic plants-dominated plots. Dissolved organic carbon was significantly reduced in exotic-dominated plots by approximately 26% based on average values of all plots throughout. Our results illustrate that rainfall quantity and exotic plants can cause changes in microbial biomass, community composition and respiration rates jeopardizing soil carbon storage. They also reinforce the importance of temporal variability and the need for repeated sampling to correctly interpret environmental changes in semi-arid ecosystems. We conclude that to improve predictions of the implications of global stressors on biogeochemical cycles in semi-arid ecosystems, there is a need to incorporate microbial data with the understanding that it is highly dependent on temporal dynamics and plant community.

  20. Determining erosion relevant soil characteristics with a small-scale rainfall simulator

    NASA Astrophysics Data System (ADS)

    Schindewolf, M.; Schmidt, J.

    2009-04-01

    The use of soil erosion models is of great importance in soil and water conservation. Routine application of these models on the regional scale is not at least limited by the high parameter demands. Although the EROSION 3D simulation model is operating with a comparable low number of parameters, some of the model input variables could only be determined by rainfall simulation experiments. The existing data base of EROSION 3D was created in the mid 90s based on large-scale rainfall simulation experiments on 22x2m sized experimental plots. Up to now this data base does not cover all soil and field conditions adequately. Therefore a new campaign of experiments would be essential to produce additional information especially with respect to the effects of new soil management practices (e.g. long time conservation tillage, non tillage). The rainfall simulator used in the actual campaign consists of 30 identic modules, which are equipped with oscillating rainfall nozzles. Veejet 80/100 (Spraying Systems Co., Wheaton, IL) are used in order to ensure best possible comparability to natural rainfalls with respect to raindrop size distribution and momentum transfer. Central objectives of the small-scale rainfall simulator are - effectively application - provision of comparable results to large-scale rainfall simulation experiments. A crucial problem in using the small scale simulator is the restriction on rather small volume rates of surface runoff. Under this conditions soil detachment is governed by raindrop impact. Thus impact of surface runoff on particle detachment cannot be reproduced adequately by a small-scale rainfall simulator With this problem in mind this paper presents an enhanced small-scale simulator which allows a virtual multiplication of the plot length by feeding additional sediment loaded water to the plot from upstream. Thus is possible to overcome the plot length limited to 3m while reproducing nearly similar flow conditions as in rainfall experiments on standard plots. The simulator is extensively applied to plots of different soil types, crop types and management systems. The comparison with existing data sets obtained by large-scale rainfall simulations show that results can adequately be reproduced by the applied combination of small-scale rainfall simulator and sediment loaded water influx.

  1. Surfactant-Induced Changes of Water Flow and Solute Transport in Soils

    NASA Astrophysics Data System (ADS)

    Kinsey, E. N.; Korte, C.; Peng, Z.; Yu, C.; Powelson, D.; Jacobson, A. R.; Baveye, P. C.; Darnault, C. J. G.

    2016-12-01

    Surfactants are present in the environment due to agricultural practices such as irrigation with wastewater, biosolid soil amendments, and/or environmental engineering remediation. Furthermore, surfactants occur widely in soils due to the application of pesticides in surfactant solution sprays, or the application of surfactants as soil wetting agents. Surfactants, because they are amphiphilic and impact the surface tension of aqueous solutions and the contact angle between aqueous and solid phases have the potential to influence water flow in porous media and the physicochemical properties of soils. The objective of this study was to assess the impact of surfactant on the soil infiltration process. Four different soils were used in this study: two sandy loam soils (Lewiston and Greenson series) and two loamy sand soils (Sparta and Gilford series). Rainfall was simulated to flow through different columns filled with the four different types of soil and effluent samples were collected at the end of each column. Each type of soil had two columns, one with a non-ionic surfactant Aerosol®22 at twice the critical micelle concentration, in the rainfall solution and one without. A conservative tracer, potassium bromide, was added to all rainfalls to monitor the infiltration process in soil. Tracer breakthrough curves were used to characterize flow in soils. Flow rates were also recorded for each soil. The presence of surfactant decreased the flow rate by a significant amount in most soil types. The decrease in flow rate can be attributed to the effects on the soil properties of hydraulic conductivity and soil aggregates. A decrease in pore space from the swelling of the soil particles can decrease the hydraulic conductivity. The properties in surfactants also decrease the surface tension and therefore soil particles are able to be dislodged from soil aggregates and cause potential soil clogging.

  2. Rainfall-triggered shallow landslides at catchment scale: Threshold mechanics-based modeling for abruptness and localization

    NASA Astrophysics Data System (ADS)

    von Ruette, J.; Lehmann, P.; Or, D.

    2013-10-01

    Rainfall-induced shallow landslides may occur abruptly without distinct precursors and could span a wide range of soil mass released during a triggering event. We present a rainfall-induced landslide-triggering model for steep catchments with surfaces represented as an assembly of hydrologically and mechanically interconnected soil columns. The abruptness of failure was captured by defining local strength thresholds for mechanical bonds linking soil and bedrock and adjacent columns, whereby a failure of a single bond may initiate a chain reaction of subsequent failures, culminating in local mass release (a landslide). The catchment-scale hydromechanical landslide-triggering model (CHLT) was applied to results from two event-based landslide inventories triggered by two rainfall events in 2002 and 2005 in two nearby catchments located in the Prealps in Switzerland. Rainfall radar data, surface elevation and vegetation maps, and a soil production model for soil depth distribution were used for hydromechanical modeling of failure patterns for the two rainfall events at spatial and temporal resolutions of 2.5 m and 0.02 h, respectively. The CHLT model enabled systematic evaluation of the effects of soil type, mechanical reinforcement (soil cohesion and lateral root strength), and initial soil water content on landslide characteristics. We compared various landslide metrics and spatial distribution of simulated landslides in subcatchments with observed inventory data. Model parameters were optimized for the short but intense rainfall event in 2002, and the calibrated model was then applied for the 2005 rainfall, yielding reasonable predictions of landslide events and volumes and statistically reproducing localized landslide patterns similar to inventory data. The model provides a means for identifying local hot spots and offers insights into the dynamics of locally resolved landslide hazards in mountainous regions.

  3. Predicting rainfall erosivity by momentum and kinetic energy in Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Carollo, Francesco G.; Ferro, Vito; Serio, Maria A.

    2018-05-01

    Rainfall erosivity is an index that describes the power of rainfall to cause soil erosion and it is used around the world for assessing and predicting soil loss on agricultural lands. Erosivity can be represented in terms of both rainfall momentum and kinetic energy, both calculated per unit time and area. Contrasting results on the representativeness of these two variables are available: some authors stated that momentum and kinetic energy are practically interchangeable in soil loss estimation while other found that kinetic energy is the most suitable expression of rainfall erosivity. The direct and continuous measurements of momentum and kinetic energy by a disdrometer allow also to establish a relationship with rainfall intensity at the study site. At first in this paper a comparison between the momentum-rainfall intensity relationships measured at Palermo and El Teularet by an optical disdrometer is presented. For a fixed rainfall intensity the measurements showed that the rainfall momentum values measured at the two experimental sites are not coincident. However both datasets presented a threshold value of rainfall intensity over which the rainfall momentum assumes a quasi-constant value. Then the reliability of a theoretically deduced relationship, linking momentum, rainfall intensity and median volume diameter, is positively verified using measured raindrop size distributions. An analysis to assess which variable, momentum or kinetic energy per unit area and time, is the best predictor of erosivity in Italy and Spain was also carried out. This investigation highlighted that the rainfall kinetic energy per unit area and time can be substituted by rainfall momentum as index for estimating the rainfall erosivity, and this result does not depend on the site where precipitation occurs. Finally, rainfall intensity measurements and soil loss data collected from the bare plots equipped at Sparacia experimental area were used to verify the reliability of some rainfall erosivity indices and their ability to distinguish the type of involved soil erosion processes.

  4. [Ecological suitability regionalization for Gastrodia elata in Zhaotong based on Maxent and ArcGIS].

    PubMed

    Shi, Zi-Wei; Ma, Cong-Ji; Kang, Chuan-Zhi; Wang, Li; Zhang, Zhi-Hui; Chen, Jun-Fei; Zhang, Xiao-Bo; Liu, Da-Hui

    2016-09-01

    In this paper, the potential distribution information and ecological suitability regionalization for Gastrodia elata in Zhaotong were studied based on the climate, terrain, soil and vegetation factors analysis by Maxent and ArcGIS. The results showed that the highly potential distribution (suitability index>0.6) mainly located in Zhaotong, Yunnan province(Zhenxiong,Yiliang and Daguan county, with an area of 2 872 km²), and Bijie, Guizhou province (Hezhang,Bijie,Weining county, 1 251 km²). The AUC of ROC curve was above 0.99, indicating that the predictive results with the Maxent model were highly precise. The main ecological factors determining the potential distribution were the altitude, average rainfall in November, average rainfall in October, vegetation types, average rainfall in March, average rainfall in April,soil types,isothermal characteristic and average rainfall in June. The environmental variables in the highly potential areas were determined as altitude around 1 450-2 200 m,annual average temperature around 18.0-20.4 ℃,annual average precipitation around 900 mm,yellow soil or yellow brown soil,and acid sandy loam or slightly acidic sandy loam.The results will provide valuable references for plantation regionalization and the siting for imitation wild planting of G. elata in Zhaotong. Copyright© by the Chinese Pharmaceutical Association.

  5. Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Axelsson, C.; Hanan, N. P.

    2016-12-01

    High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.

  6. Small scale rainfall simulators: Challenges for a future use in soil erosion research

    NASA Astrophysics Data System (ADS)

    Ries, Johannes B.; Iserloh, Thomas; Seeger, Manuel

    2013-04-01

    Rainfall simulation on micro-plot scale is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. The produced data are of great significance not only for the analysis of the simulated processes, but also as a source of input-data for soil erosion modelling. The reliability of the data is therefore of paramount importance, and quality management of rainfall simulation procedure a general responsibility of the rainfall simulation community. This was an accepted outcome at the "International Rainfall Simulator Workshop 2011" at Trier University. The challenges of the present and near future use of small scale rainfall simulations concern the comparability of results and scales, the quality of the data for soil erosion modelling, and further technical developments to overcome physical limitations and constraints. Regarding the high number of research questions, different fields of application, and due to the great technical creativity of researchers, a large number of different types of rainfall simulators is available. But each of the devices produces a different rainfall, leading to different kinetic energy values influencing soil surface and erosion processes. Plot sizes are also variable, as well as the experimental simulation procedures. As a consequence, differing runoff and erosion results are produced. The presentation summarises the three important aspects of rainfall simulations, following a processual order: 1. Input-factor "rain" and its calibration 2. Surface-factor "plot" and its documentation 3. Output-factors "runoff" and "sediment concentration" Finally, general considerations about the limitations and challenges for further developments and applications of rainfall simulation data are presented.

  7. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics

    NASA Astrophysics Data System (ADS)

    Armenise, Elena; Simmons, Robert W.; Ahn, Sujung; Garbout, Amin; Doerr, Stefan H.; Mooney, Sacha J.; Sturrock, Craig J.; Ritz, Karl

    2018-01-01

    This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 min). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 to 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24-0.48 mm below the soil surface. This contrasting behaviour was related to different dynamics and processes of seal formation which depended on the soil properties. The impact of rainfall-induced surface sealing on the hydrological behaviour of soil (as represented by WDTP and Kun) was rapid and substantial: an average 60% reduction in Kun occurred for all soils between 2 and 9 min rainfall, and water repellent surfaces were identified for SZL and ZCL. This highlights that the condition of the immediate surface of agricultural soils involving rainfall-induced structural seals has a strong impact in the overall ability of soil to function as water reservoir.

  8. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia.

    PubMed

    Schulze, Ernst-Detlef; Turner, Neil C; Nicolle, Dean; Schumacher, Jens

    2006-04-01

    Leaves and samples of recent wood of Eucalyptus species were collected along a rainfall gradient parallel to the coast of Western Australia between Perth in the north and Walpole in the south and along a southwest to northeast transect from Walpole in southwestern Australia, to near Mount Olga in central Australia. The collection included 65 species of Eucalyptus sampled at 73 sites and many of the species were collected at several sites along the rainfall gradient. Specific leaf area (SLA) and isotopic ratio of 13C to 12C (delta 13C) of leaves that grew in 2002, and tree ring growth and delta 13C of individual cell layers of the wood were measured. Rainfall data were obtained from the Australian Bureau of Meteorology for 29 locations that represented one or a few closely located collection sites. Site-averaged data and species-specific values of delta 13C decreased with decreasing annual rainfall between 1200 and 300 mm at a rate of 1.63 per thousand per 1000 mm decrease in rainfall. Responses became variable in the low rainfall region (< 300 mm), with some species showing decreasing delta 13C with rainfall, whereas delta 13C increased or remained constant in other species. The range of delta 13C values in the low rainfall region was as large as the range observed at sites receiving > 300 mm of annual rainfall. Specific leaf area varied between 2 and 6 m2 kg(-1) and tended to increase with decreasing annual rainfall in some species, but not all, whereas delta 13C decreased with SLA. The relationship between delta 13C and SLA was highly species and soil-type specific. Leaf-area-based nitrogen (N) content varied between 2 and almost 6 g m(-2) and decreased with rainfall. Thus, thicker leaves were associated with higher N content and this compensated for the effect of drought on delta 13C. Nitrogen content was also related to soil type and species identity. Based on a linear mixed model, statistical analysis of the whole data set showed that 27% of the variation in delta 13C was associated with changes in SLA, 16% with soil type and only 1% with rainfall. Additionally, 21% was associated with species identity. For a subset of sites with > 300 mm rainfall, 43% of the variation was explained by SLA, 13% by soil type and only 3% by rainfall. The species effect decreased to 9% because there were fewer species in the subset of sites. The small effect of rainfall on delta 13C was further supported by a path analysis that yielded a standardized path coefficient of 0.38 for the effect of rainfall on SLA and -0.50 for the effect of SLA on delta 13C, but an insignificantly low standardized path coefficient of -0.05 for the direct effect of rainfall on delta 13C. Thus, in contrast to our hypothesis that delta 13C decreases with rainfall independent of soil type and species, we detected no statistically significant relationship between rainfall and delta 13C in leaves of trees growing at sites receiving < 300 mm of rainfall annually. Rainfall affected delta 13C indirectly through soil type (a surrogate for water-holding capacity) across the rainfall gradient. Annual tree rings are not clearly visible in evergreen Eucalyptus species, even in the seasonally cool climate of SW Australia. Generally, visible density transitions in the wood are related not to a strict annual cycle but to periods of growth associated mainly with rainfall. The relationship between delta 13C of leaves and the width of these stem increments was not statistically significant. Analysis of stem growth periods showed that delta 13C in wood responded to rainfall events, but carbohydrate storage and reallocation also affected the isotopic signature. Although delta 13C in wood of any one species varied over a range of 2 to 4 per thousand, there was a general relationship between delta 13C of the leaves and the annual range of delta 13C in wood. We conclude that species-specific traits are important in understanding the response of Eucalyptus to rainfall and that the diversity of the genus may reflect its response to the large climatic gradient in Australia and to the large annual and interannual variations in rainfall at any one location.

  9. Rainfall intensity effects on removal of fecal indicator bacteria from solid dairy manure applied over grass-covered soil.

    PubMed

    Blaustein, Ryan A; Hill, Robert L; Micallef, Shirley A; Shelton, Daniel R; Pachepsky, Yakov A

    2016-01-01

    The rainfall-induced release of pathogens and microbial indicators from land-applied manure and their subsequent removal with runoff and infiltration precedes the impairment of surface and groundwater resources. It has been assumed that rainfall intensity and changes in intensity during rainfall do not affect microbial removal when expressed as a function of rainfall depth. The objective of this work was to test this assumption by measuring the removal of Escherichia coli, enterococci, total coliforms, and chloride ion from dairy manure applied in soil boxes containing fescue, under 3, 6, and 9cmh(-1) of rainfall. Runoff and leachate were collected at increasing time intervals during rainfall, and post-rainfall soil samples were taken at 0, 2, 5, and 10cm depths. Three kinetic-based models were fitted to the data on manure-constituent removal with runoff. Rainfall intensity appeared to have positive effects on rainwater partitioning to runoff, and removal with this effluent type occurred in two stages. While rainfall intensity generally did not impact the parameters of runoff-removal models, it had significant, inverse effects on the numbers of bacteria remaining in soil after rainfall. As rainfall intensity and soil profile depth increased, the numbers of indicator bacteria tended to decrease. The cumulative removal of E. coli from manure exceeded that of enterococci, especially in the form of removal with infiltration. This work may be used to improve the parameterization of models for bacteria removal with runoff and to advance estimations of depths of bacteria removal with infiltration, both of which are critical to risk assessment of microbial fate and transport in the environment. Published by Elsevier B.V.

  10. WEPP and ANN models for simulating soil loss and runoff in a semi-arid Mediterranean region.

    PubMed

    Albaradeyia, Issa; Hani, Azzedine; Shahrour, Isam

    2011-09-01

    This paper presents the use of both the Water Erosion Prediction Project (WEPP) and the artificial neural network (ANN) for the prediction of runoff and soil loss in the central highland mountainous of the Palestinian territories. Analyses show that the soil erosion is highly dependent on both the rainfall depth and the rainfall event duration rather than on the rainfall intensity as mostly mentioned in the literature. The results obtained from the WEPP model for the soil loss and runoff disagree with the field data. The WEPP underestimates both the runoff and soil loss. Analyses conducted with the ANN agree well with the observation. In addition, the global network models developed using the data of all the land use type show a relatively unbiased estimation for both runoff and soil loss. The study showed that the ANN model could be used as a management tool for predicting runoff and soil loss.

  11. Characteristics of Soil and Organic Carbon Loss Induced by Water Erosion on the Loess Plateau in China

    PubMed Central

    Li, Zhongwu; Nie, Xiaodong; Chang, Xiaofeng; Liu, Lin; Sun, Liying

    2016-01-01

    Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau. PMID:27124482

  12. Characteristics of Soil and Organic Carbon Loss Induced by Water Erosion on the Loess Plateau in China.

    PubMed

    Li, Zhongwu; Nie, Xiaodong; Chang, Xiaofeng; Liu, Lin; Sun, Liying

    2016-01-01

    Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau.

  13. Effect of Land Use, Seasonality, and Hydrometeorological Conditions on the K+ Concentration-Discharge Relationship During Different Types of Floods in Carpathian Foothills Catchments (Poland).

    PubMed

    Siwek, Joanna P; Żelazny, Mirosław; Siwek, Janusz; Szymański, Wojciech

    2017-01-01

    The purpose of the study was to determine the role of land use, seasonality, and hydrometeorological conditions on the relationship between stream water potassium (K + ) concentration and discharge during different types of floods-short- and long-duration rainfall floods as well as snowmelt floods on frozen and thawed soils. The research was conducted in small catchments (agricultural, woodland, mixed-use) in the Carpathian Foothills (Poland). In the woodland catchment, lower K + concentrations were noted for each given specific runoff value for summer rainfall floods versus snowmelt floods (seasonal effect). In the agricultural and mixed-use catchments, the opposite was true due to their greater ability to flush K + out of the soil in the summer. In the stream draining woodland catchment, higher K + concentrations occurred during the rising limb than during the falling limb of the hydrograph (clockwise hysteresis) for all flood types, except for snowmelt floods with the ground not frozen. In the agricultural catchment, clockwise hystereses were produced for short- and long-duration rainfall floods caused by high-intensity, high-volume rainfall, while anticlockwise hystereses were produced for short- and long-duration rainfall floods caused by low-intensity, low-volume rainfall as well as during snowmelt floods with the soil frozen and not frozen. In the mixed-use catchment, the hysteresis direction was also affected by different lag times for water reaching stream channels from areas with different land use. K + hystereses for the woodland catchment were more narrow than those for the agricultural and mixed-use catchments due to a smaller pool of K + in the woodland catchment. In all streams, the widest hystereses were produced for rainfall floods preceded by a long period without rainfall.

  14. Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2016-03-01

    Spatial variations in soil properties affect key hydrological processes, yet their role in soil mechanical response to hydro-mechanical loading is rarely considered. This study aims to fill this gap by systematically quantifying effects of spatial variations in soil type and initial water content on rapid rainfall-induced shallow landslide predictions at the hillslope- and catchment-scales. We employed a physically-based landslide triggering model that considers mechanical interactions among soil columns governed by strength thresholds. At the hillslope scale, we found that the emergence of weak regions induced by spatial variations of soil type and initial water content resulted in early triggering of landslides with smaller volumes of released mass relative to a homogeneous slope. At the catchment scale, initial water content was linked to a topographic wetness index, whereas soil type varied deterministically with soil depth considering spatially correlated stochastic components. Results indicate that a strong spatial organization of initial water content delays landslide triggering, whereas spatially linked soil type with soil depth promoted landslide initiation. Increasing the standard deviation and correlation length of the stochastic component of soil type increases landslide volume and hastens onset of landslides. The study illustrates that for similar external boundary conditions and mean soil properties, landslide characteristics vary significantly with soil variability, hence it must be considered for improved landslide model predictions.

  15. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    NASA Astrophysics Data System (ADS)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  16. Effect of rainfall intensity and slope steepness on the development of soil erosion in the Southern Cis-Ural region (A model experiment)

    NASA Astrophysics Data System (ADS)

    Sobol, N. V.; Gabbasova, I. M.; Komissarov, M. A.

    2017-09-01

    The effect of rainfall intensity on the erosion of residual calcareous agrogray soils and clay-illuvial agrochernozems in the Southern Cis-Ural region on slopes of different inclination and vegetation type has been studied by simulating with a small-size sprinkler. It has been shown that soil loss linearly depends on rainfall intensity (2, 4, and 6 mm/min) and slope inclination (3° and 7°). When the rainfall intensity and duration, and the slope inclination increase, soil loss by erosion from agrogray soils increases higher than from agrochernozems. On the plowland with a slope of 3°, runoff begins 12, 10, and 5 min, on the average, after the beginning of rains at these intensities. When the slope increases to 7°, runoff begins earlier by 7, 6, and 4 min, respectively. After the beginning of runoff and with its increase by 1 mm, the soil loss from slopes of 3° and 7° reaches 4.2 and 25.7 t/ha on agrogray soils and 1.4 and 4.7 t/ha on agrochernozems, respectively. Fallow soils have higher erosion resistance, and the soil loss little depends on the slope gradient: it gradually increases to 0.3-1.0 t/ha per 1 mm of runoff with increasing rainfall intensity and duration. The content of physical clay in eroded material is higher than in the original soils. Fine fractions prevail in this material, which increases their humus content. The increase in rainfall intensity and duration to 4 and 6 mm/min results in the entrapment of coarse silt and sand by runoff.

  17. A point-infiltration model for estimating runoff from rainfall on small basins in semiarid areas of Wyoming

    USGS Publications Warehouse

    Rankl, James G.

    1990-01-01

    A physically based point-infiltration model was developed for computing infiltration of rainfall into soils and the resulting runoff from small basins in Wyoming. The user describes a 'design storm' in terms of average rainfall intensity and storm duration. Information required to compute runoff for the design storm by using the model include (1) soil type and description, and (2) two infiltration parameters and a surface-retention storage parameter. Parameter values are tabulated in the report. Rainfall and runoff data for three ephemeral-stream basins that contain only one type of soil were used to develop the model. Two assumptions were necessary: antecedent soil moisture is some long-term average, and storm rainfall is uniform in both time and space. The infiltration and surface-retention storage parameters were determined for the soil of each basin. Observed rainstorm and runoff data were used to develop a separation curve, or incipient-runoff curve, which distinguishes between runoff and nonrunoff rainfall data. The position of this curve defines the infiltration and surface-retention storage parameters. A procedure for applying the model to basins that contain more than one type of soil was developed using data from 7 of the 10 study basins. For these multiple-soil basins, the incipient-runoff curve defines the infiltration and retention-storage parameters for the soil having the highest runoff potential. Parameters were defined by ranking the soils according to their relative permeabilities and optimizing the position of the incipient-runoff curve by using measured runoff as a control for the fit. Analyses of runoff from multiple-soil basins indicate that the effective contributing area of runoff is less than the drainage area of the basin. In this study, the effective drainage area ranged from 41.6 to 71.1 percent of the total drainage area. Information on effective drainage area is useful in evaluating drainage area as an independent variable in statistical analyses of hydrologic data, such as annual peak frequency distributions and sediment yield.A comparison was made of the sum of the simulated runoff and the sum of the measured runoff for all available records of runoff-producing storms in the 10 study basins. The sums of the simulated runoff ranged from 12.0 percent less than to 23.4 percent more than the sums of the measured runoff. A measure of the standard error of estimate was computed for each data set. These values ranged from 20 to 70 percent of the mean value of the measured runoff. Rainfall-simulator infiltrometer tests were made in two small basins. The amount of water uptake measured by the test in Dugout Creek tributary basin averaged about three times greater than the amount of water uptake computed from rainfall and runoff data. Therefore, infiltrometer data were not used to determine infiltration rates for this study.

  18. Identifying hydrological pre-conditions and rainfall triggers of slope failures for 2014 storm events in the Ialomita Subcarpathians, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Bogaard, Thom; Busuioc, Aristita; Burcea, Sorin; Adler, Mary-Jeanne; Sandric, Ionut

    2015-04-01

    Like in many parts of the world, in Romania, landslides represent recurrent phenomena that produce numerous damages to infrastructure every few years. Various studies on landslide occurrence in the Curvature Subcarpathians reveal that rainfall represents the most important triggering factor for landslides. Depending on rainfall characteristics and environmental factors different types of landslides were recorded in the Ialomita Subcarpathians: slumps, earthflows and complex landslides. This area, located in the western part of Curvature Subcarpathians, is characterized by a very complex geology whose main features are represented by the nappes system, the post tectonic covers, the diapirism phenomena and vertical faults. This work aims to investigate hydrological pre-conditions and rainfall characteristics which triggered slope failures in 2014 in the Ialomita Subcarpathians, Romania. Hydrological pre-conditions were investigated by means of water balance analysis and low flow techniques, while spatial and temporal patterns of rainfalls were estimated using radar data and six rain gauges. Additionally, six soil moisture stations that are fitted with volumetric soil moisture sensors and temperature soil sensors were used to estimate the antecedent soil moisture conditions.

  19. Influence of development stage and disturbance of physical and biological soil crusts on soil water erosion

    NASA Astrophysics Data System (ADS)

    Chamizo, S.; Cantón, Y.; Lázaro, R.; Solé-Benet, A.; Calvo-Cases, A.; Miralles, I.; Domingo, F.

    2009-04-01

    Most soils exposed to rainfall are prone to sealing and crusting processes causing physical soil crusts (PSCs). When climate and soil stability conditions are suitable, PSCs can be consolidated by a complex community consisting of cyanobacteria, bacteria, green algae, microfungi, lichens and bryophytes, which are collectively known as biological soil crust (BSC). The influence of soil crusts on erosion processes is complex: crusts may reduce detachment, increasing soil stability and protecting soil against raindrop impact, although that protection will depend on the type of soil crust and the stage of development; they can also build up runoff, suggesting that downstream erosion may actually be increased or favoured water harvesting to vegetated areas. On the other hand, BSCs have been demonstrated to be very vulnerable to disturbance which in turn can lead to accelerate soil erosion and other forms of land degradation. Incorporation of the response of different type of soil crusts and the effects of their disturbance is highly likely to improve the prediction of runoff and water erosion models in arid and semi-arid catchments. The objective of this work is to analyse the erosional response of PSCs and BSCs in different stages of their development and subject to distinct disturbances when extreme rainfalls intensities are applied at plot scale in semiarid environments. Small plots on the most representative crust types, corresponding to different stages of crust development, in two semiarid ecosystems in SE Spain, El Cautivo (in the Tabernas Desert) and Amoladeras (in the Natural Park Cabo de Gata-Níjar), were selected and three disturbance treatments were applied on each crust type: a) no disturbance (control), b) trampling, stepping 100 times over the crust and c) scraping. Two consecutive rainfall simulation experiments (50 mm/h rainfall intensity) were carried out on each plot: the first on dry soil and the second, 30 minutes later, on wet soil conditions. Samples of runoff were collected regularly during the rainfall simulation and sediments in runoff extracted later in laboratory. Erosion rates were significantly different at both sites, being lower in Amoladeras than in El Cautivo due to a flatter topography and a higher infiltration capacity of the sandy soils with higher organic matter content. There were not significant differences on total erosion rates between the first and the second rainfall event, as consequence of the increase of runoff under wet conditions. In El Cautivo, the erosion rates significantly decreased as crust development stage increased. However, in Amoladeras, the erosion was low in all crust types and there were not significant differences on erosion rates among the crust development stages. Among treatments, in El Cautivo, scraping and trampling promoted significant higher erosion rates than undisturbed crust, but no significant differences were found between both treatments, except for the lichen-dominated crust. In Amoladeras, no significant differences on erosion rates between the undisturbed and the trampled crust were found since in this area trampling did not have an important effect. Although the removal of the crust in semiarid environments, at local scale, always increased erosion, the effects of crust disturbance on erosion varied depending on the ecosystem, with stronger erosional effects in badland areas with a silty substrate and steep topography than in areas with a flat topography and a coarser soil texture.

  20. Mathematical model of sediment and solute transport along slope land in different rainfall pattern conditions

    PubMed Central

    Tao, Wanghai; Wu, Junhu; Wang, Quanjiu

    2017-01-01

    Rainfall erosion is a major cause of inducing soil degradation, and rainfall patterns have a significant influence on the process of sediment yield and nutrient loss. The mathematical models developed in this study were used to simulate the sediment and nutrient loss in surface runoff. Four rainfall patterns, each with a different rainfall intensity variation, were applied during the simulated rainfall experiments. These patterns were designated as: uniform-type, increasing-type, increasing- decreasing -type and decreasing-type. The results revealed that changes in the rainfall intensity can have an appreciable impact on the process of runoff generation, but only a slight effect on the total amount of runoff generated. Variations in the rainfall intensity in a rainfall event not only had a significant effect on the process of sediment yield and nutrient loss, but also the total amount of sediment and nutrient produced, and early high rainfall intensity may lead to the most severe erosion and nutrient loss. In this study, the calculated data concur with the measured values. The model can be used to predict the process of surface runoff, sediment transport and nutrient loss associated with different rainfall patterns. PMID:28272431

  1. Optimization of typical diffuse herbicide pollution control by soil amendment configurations under four levels of rainfall intensities.

    PubMed

    Ouyang, Wei; Huang, Weijia; Wei, Peng; Hao, Fanghua; Yu, Yongyong

    2016-06-15

    Herbicides are a main source of agricultural diffuse pollution due to their wide application in tillage practices. The aim of this study is to optimize the control efficiency of the herbicide atrazine with the aid of modified soil amendments. The soil amendments were composed of a combination of biochar and gravel. The biochar was created from corn straw with a catalytic pyrolysis of ammonium dihydrogen phosphate. The leaching experiments under four rainfall conditions were measured for the following designs: raw soil, soil amended with gravel, biochar individually and together with gravel. The control efficiency of each design was also identified. With the designed equipment, the atrazine content in the contaminant load layer, gravel substrate layer, biochar amendment layer and soil layer was measured under four types of rainfall intensities (1.25 mm/h, 2.50 mm/h, 5.00 mm/h and 10.00 mm/h). Furthermore, the vertical distribution of atrazine in the soil sections was also monitored. The results showed that the herbicide leaching load increased under the highest rainfall intensity in all designs. The soil with the combination of gravel and biochar provided the highest control efficiency of 87.85% on atrazine when the additional proportion of biochar was 3.0%. The performance assessment under the four kinds of rainfall intensity conditions provided the guideline for the soil amendment configuration. The combination of gravel and biochar is recommended as an efficient method for controlling diffuse herbicide pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Characterizing meteorological and hydrologic conditions associated with shallow landslide initiation in the coastal bluffs of the Atlantic Highlands, New Jersey

    USGS Publications Warehouse

    Ashland, Francis; Fiore, Alex R.; Reilly, Pamela A.; De Graff, Jerome V.; Shakoor, Abdul

    2017-01-01

    Meteorological and hydrologic conditions associated with shallow landslide initiation in the coastal bluffs of the Atlantic Highlands, New Jersey remain undocumented despite a history of damaging slope movement extending back to at least 1903. This study applies an empirical approach to quantify the rainfall conditions leading to shallow landsliding based on analysis of overlapping historical precipitation data and records of landslide occurrence, and uses continuous monitoring to quantify antecedent soil moisture and hydrologic response to rainfall events at two failure-prone hillslopes. Analysis of historical rainfall data reveals that both extended duration and cumulative rainfall amounts are critical characteristics of many landslide-inducing storms, and is consistent with current monitoring results that show notable increases in shallow soil moisture and pore-water pressure in continuous rainfall periods. Monitoring results show that shallow groundwater levels and soil moisture increase from annual lows in late summer-early fall to annual highs in late winter-early spring, and historical data indicate that shallow landslides occur most commonly from tropical cyclones in late summer through fall and nor’easters in spring. Based on this seasonality, we derived two provisional rainfall thresholds using a limited dataset of documented landslides and rainfall conditions for each season and storm type. A lower threshold for landslide initiation in spring corresponds with high antecedent moisture conditions, and higher rainfall amounts are required to induce shallow landslides during the drier soil moisture conditions in late summer-early fall.

  3. Wet deposition and soil content of Beryllium - 7 in a micro-watershed of Minas Gerais (Brazil).

    PubMed

    Esquivel L, Alexander D; Moreira, Rubens M; Monteiro, Roberto Pellacani G; Dos Santos, Anômora A Rochido; Juri Ayub, Jimena; Valladares, Diego L

    2017-04-01

    Beryllium-7 ( 7 Be) is a natural radionuclide of cosmogenic origin, normally used as a tracer for several environmental processes; such as soil redistribution, sediment source discrimination, atmospheric mass transport, and trace metal scavenging from the atmosphere. In this research the content of 7 Be in soil, its seasonal variation throughout the year and its relationship with the rainfall regime in the Mato Frio creek micro-watershed was investigated, to assess its potential use in estimating soil erosion. The 7 Be content in soil shows a marked variation throughout the year. Minimum 7 Be values were observed in the dry season (from April to September) and were between 7 and 14 times higher in the rainy season (from October to March). The seasonal oscillations in 7 Be soil content could be explained by the asymmetric rainfall regime. A highly linear relationship between rainfall amount and 7 Be deposition was observed in rain water. A good agreement between 7 Be soil content and 7 Be atmospheric deposition was noticed, mainly in wet months. 7 Be penetration in soil reaches a 5 cm depth, this could be explained by the soil type in the region. The soils are Acrisol type, characterized by low pH values and clay illuviation in deeper layers of the soil. In some regions of Brazil special attention should be paid if this radionuclide will be used as soil erosion tracer, taking into account the soil origin and its particular properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Two types of flash drought over China and their connections with sub-seasonal to seasonal soil moisture drought

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yuan, X.; Xie, Z.

    2017-12-01

    Flash drought has been receiving attention recently due to its rapid development and vast damage on crops in the growing season. Accompanied with heatwave and rainfall deficit, the soil moisture decreased rapidly in a short time and may lead to the failure of root water uptake and large-scale crops wither. There are two types of flash droughts according to the causes (Mo and Lettenmaier, 2016), i.e., heat wave flash drought and rainfall deficit flash drought. Here, based on pentad-mean surface air temperature and precipitation observations from over two thousand meteorological stations as well as soil moisture and ET estimations from three global reanalysis products, the characteristics and evolution of the two types of flash droughts over China are being explored. Heat wave flash drought is more likely to occur in humid and semi-humid areas, such as southern China, while rainfall deficit flash drought is more likely to occur in northern China. Unlike the traditional drought that persists for a few months to decades, the mean durations of both types of flash droughts are very short. We use monthly mean soil moisture to calculate sub-seasonal to seasonal (S2S) soil moisture drought, and compare its characteristics and preferred conditions such as the large-scale atmospheric circulation and oceanic anomaly for both types of flash droughts. The percentages of flash drought in different periods of S2S drought are also being explored to see the potential relationship between flash drought and S2S drought over different regions.

  5. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling

    2017-05-01

    Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.

  6. Dynamics and spatio-temporal variability of environmental factors in Eastern Australia using functional principal component analysis

    USGS Publications Warehouse

    Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.

    2010-01-01

    This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.

  7. Projected effects of vegetation and organic matter on soil carbon dynamics after rainfall in a model basalt landscape.

    NASA Astrophysics Data System (ADS)

    Van Haren, J. L. M.; Sanchez-Canete, E. P.; Juarez, S.; Howard, E. L.; Dontsova, K.; Le Galliard, J. F.; Barron-Gafford, G.; Volkmann, T.; Troch, P. A.

    2017-12-01

    Basalt is one of the most important rock types in controlling atmospheric carbon dioxide concentrations on a geologic scale. At the University of Arizona's Biosphere 2 facility, we have built the world's largest geological model system - the Landscape Evolution Observatory (LEO) - to determine the hydrological and biogeochemical changes before and after the addition of plants. LEO consists of three 30x11 m and 1-m deep hillslope landscapes of basaltic tephra ground to homogenous loamy sand inside an environmentally controlled facility. Each landscape contains a sensor network capable of capturing water, carbon, and energy cycling processes at 15-min resolution and sub-meter to whole-landscape scales. At LEO, we measured the soil carbon dynamics in bare soil, with only minimal biological activity, after multiple rainfall events. These measurements consistently showed that rainfall, soil moisture, and soil gas diffusion are strong drivers of carbon uptake in a porous basalt matrix. Our expectation is that the addition of plants will dramatically change the carbon dynamics following rainfall events and produce Birch-effect-like pulses of carbon dioxide following rainfall events. We tested this prediction in smaller-scale and shorter-term experiments done at the CEREEP-ECOTRON lab in Ile de France, France, where we experimented with three different plant species grown in the same LEO soil. Soil carbon responses were similar to the LEO slope irrespective of whether plants were grown in the soil: initial wetting leads to a strong drawdown of carbon dioxide in the soil. However, due to plant activity, the soil carbon dioxide concentration recovered faster in the basalt soil when plants were present. Only in small scale incubations with a mixture of LEO soil with an organic-rich (6.5% carbon) prairie soil did we see the expected pulse of carbon dioxide following the addition of water. The smaller-scale experiments suggest that the occurrence of carbon dioxide fluxes generated by rainfall events will not occur after the addition of plants, but will depend on the development of an organic horizon within the LEO soil.

  8. Nonmonotonic and spatial-temporal dynamic slope effects on soil erosion during rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Wu, Songbai; Yu, Minghui; Chen, Li

    2017-02-01

    The slope effect on flow erosivity and soil erosion still remains a controversial issue. This theoretical framework explained and quantified the direct slope effect by coupling the modified Green-Ampt equation accounting for slope effect on infiltration, 1-D kinematic wave overland flow routing model, and WEPP soil erosion model. The flow velocity, runoff rate, shear stress, interrill, and rill erosion were calculated on 0°-60° isotropic slopes with equal horizontal projective length. The results show that, for short-duration rainfall events, the flow erosivity and erosion amounts exhibit a bell-shaped trend which first increase with slope gradient, and then decrease after a critical slope angle. The critical slope angles increase significantly or even vanish with increasing rainfall duration but are nearly independent of the slope projective length. The soil critical shear stress, rainfall intensity, and temporal patterns have great influences on the slope effect trend, while the other soil erosion parameters, soil type, hydraulic conductivity, and antecedent soil moisture have minor impacts. Neglecting the slope effect on infiltration would generate smaller erosion and reduce critical slope angles. The relative slope effect on soil erosion in physically based model WEPP was compared to those in the empirical models USLE and RUSLE. The trends of relative slope effect were found quite different, but the difference may diminish with increasing rainfall duration. Finally, relatively smaller critical slope angles could be obtained with the equal slope length and the range of variation provides a possible explanation for the different critical slope angles reported in previous studies.

  9. [Effects of rainfall intensity on rainfall infiltration and redistribution in soil on Loess slope land].

    PubMed

    Li, Yi; Shao, Ming'an

    2006-12-01

    With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.

  10. Extension of the soil conservation service rainfall-runoff methodology for ungaged watersheds

    DOT National Transportation Integrated Search

    1981-07-01

    The estimation of direct runoff for ungaged watersheds is a common problem in : engineering hydrology. The method of the Soil Conservation Services (SCS) is widely used due to its ease of application. Runoff estimates are based upon the soil types an...

  11. Relationships between soil erosion risk, soil use and soil properties in Mediterranean areas. A comparative study of three typical sceneries

    NASA Astrophysics Data System (ADS)

    Gil, Juan; Priego-Navas, Mercedes; Zavala, Lorena M.; Jordán, Antonio

    2013-04-01

    Generally, literature shows that the high variability of rainfall-induced soil erosion is related to climatic differences, relief, soil properties and land use. Very different runoff rates and soil loss values have been reported in Mediterranean cropped soils depending on soil management practices, but also in soils under natural vegetation types. OBJECTIVES The aim of this research is to study the relationships between soil erosion risk, soil use and soil properties in three typical Mediterranean areas from southern Spain: olive groves under conventional tillage, minimum tillage and no-till practices, and soils under natural vegetation. METHODS Rainfall simulation experiments have been carried out in order to assess the relationship between soil erosion risk, land use, soil management and soil properties in olive-cropped soils under different types of management and soils under natural vegetation type from Mediterranean areas in southern Spain RESULTS Results show that mean runoff rates decrease from 35% in olive grove soils under conventional tillage to 25% in olive (Olea europaea) grove soils with minimum tillage or no-till practices, and slightly over 22% in soils under natural vegetation. Moreover, considering the different vegetation types, runoff rates vary in a wide range, although runoff rates from soils under holm oak (Quercus rotundifolia), 25.70%, and marginal olive groves , 25.31%, are not significantly different. Results from soils under natural vegetation show that the properties and nature of the organic residues play a role in runoff characteristics, as runoff rates above 50% were observed in less than 10% of the rainfall simulations performed on soils with a organic layer. In contrast, more than half of runoff rates from bare soils reached or surpassed 50%. Quantitatively, average values for runoff water losses increase up to 2.5 times in unprotected soils. This is a key issue in the study area, where mean annual rainfall is above 600 mm. Regarding soil properties, the analysis shows that organic matter from soils under minimum tillage or no-till is strongly related with runoff, the amount of sediments in runoff and soil loss. In soils from olive groves, the amount of sediments in runoff was significantly related to soil pH. Moreover, for olive-cropped soils under conventional tillage, soil loss is strongly related with clayey texture, which is characteristic of these soils. Concerning this, the relationship between soil loss and coarse sand contents is highly significant, and shows that medium-sized soil particles are most prone to detachment and transport by runoff. Thus, the average content of these fractions in soils under conventional management is more than two times that from olive groves under minimal or no tillage, which are more coarsely textured. In fine-textured soils, hydraulic conductivity is reduced, thus increasing soil erosion risk. In addition, in sandy and silty soils with low clay content, infiltration rates are high even when soil sealing is observed. At the scale of this experiment, runoff generation and soil erosion risk decrease significantly in areas under natural vegetation, with lower clay contents

  12. Modifying the 'pulse-reserve' paradigm for deserts of North America: precipitation pulses, soil water, and plant responses.

    PubMed

    Reynolds, James F; Kemp, Paul R; Ogle, Kiona; Fernández, Roberto J

    2004-10-01

    The 'pulse-reserve' conceptual model--arguably one of the most-cited paradigms in aridland ecology--depicts a simple, direct relationship between rainfall, which triggers pulses of plant growth, and reserves of carbon and energy. While the heuristics of 'pulses', 'triggers' and 'reserves' are intuitive and thus appealing, the value of the paradigm is limited, both as a conceptual model of how pulsed water inputs are translated into primary production and as a framework for developing quantitative models. To overcome these limitations, we propose a revision of the pulse-reserve model that emphasizes the following: (1) what explicitly constitutes a biologically significant 'rainfall pulse', (2) how do rainfall pulses translate into usable 'soil moisture pulses', and (3) how are soil moisture pulses differentially utilized by various plant functional types (FTs) in terms of growth? We explore these questions using the patch arid lands simulation (PALS) model for sites in the Mojave, Sonoran, and Chihuahuan deserts of North America. Our analyses indicate that rainfall variability is best understood in terms of sequences of rainfall events that produce biologically-significant 'pulses' of soil moisture recharge, as opposed to individual rain events. In the desert regions investigated, biologically significant pulses of soil moisture occur in either winter (October-March) or summer (July-September), as determined by the period of activity of the plant FTs. Nevertheless, it is difficult to make generalizations regarding specific growth responses to moisture pulses, because of the strong effects of and interactions between precipitation, antecedent soil moisture, and plant FT responses, all of which vary among deserts and seasons. Our results further suggest that, in most soil types and in most seasons, there is little separation of soil water with depth. Thus, coexistence of plant FTs in a single patch as examined in this PALS study is likely to be fostered by factors that promote: (1) separation of water use over time (seasonal differences in growth), (2) relative differences in the utilization of water in the upper soil layers, or (3) separation in the responses of plant FTs as a function of preceding conditions, i.e., the physiological and morphological readiness of the plant for water-uptake and growth. Finally, the high seasonal and annual variability in soil water recharge and plant growth, which result from the complex interactions that occur as a result of rainfall variability, antecedent soil moisture conditions, nutrient availability, and plant FT composition and cover, call into question the use of simplified vegetation models in forecasting potential impacts of climate change in the arid zones in North America.

  13. Impacts of Different Soil Texture and Organic Content on Hydrological Performance of Bioretention

    NASA Astrophysics Data System (ADS)

    Gülbaz, Sezar; Melek Kazezyilmaz Alhan, Cevza

    2015-04-01

    The land development and increase in urbanization in a watershed has adverse effects such as flooding and water pollution on both surface water and groundwater resources. Low Impact Development (LID) Best Management Practices (BMPs) such as bioretentions, vegetated rooftops, rain barrels, vegetative swales and permeable pavements have been implemented in order to diminish adverse effects of urbanization. LID-BMP is a land planning method which is used to manage storm water runoff by reducing peak flows as well as simultaneously improving water quality. The aim of this study is developing a functional experimental setup called as Rainfall-Watershed-Bioretention (RWB) System in order to investigate and quantify the hydrological performance of bioretention. RWB System is constructed on the Istanbul University Campus and includes an artificial rainfall system, which allows for variable rainfall intensity, drainage area, which has controllable size and slope, and bioretention columns with different soil ratios. Four bioretention columns with different soil textures and organic content are constructed in order to investigate their effects on water quantity. Using RWB System, the runoff volume, hydrograph, peak flow rate and delay in peak time at the exit of bioretention columns may be quantified under various rainfalls in order to understand the role of soil types used in bioretention columns and rainfall intensities. The data obtained from several experiments conducted in RWB System are employed in establishing a relation among rainfall, surface runoff and flow reduction after bioretention. Moreover, the results are supported by mathematical models in order to explain the physical mechanism of bioretention. Following conclusions are reached based on the analyses carried out in this study: i) Results show that different local soil types in bioretention implementation affect surface runoff and peak flow considerably. ii) Rainfall intensity and duration affect peak flow reduction and arrival time and shape of the hydrograph. iii) A mathematical representation of the relation among the rainfall, surface runoff over the watershed and outflow from the bioretention is developed by incorporating kinematic wave equation into the modified Green-Ampt Method. The rainfall intensity in modified Green-Ampt method is represented by the inflow per unit surface area of bioretention which may be obtained from kinematic wave solution using the measured rainfall data. Variable rainfall cases may be taken into account by using the modified Green-Ampt method. Thus, employing the modified Green-Ampt method helps significantly in understanding and explaining the hydrological mechanism of a bioretention cell where the Darcy law or the classical Green-Ampt method is inadequate which works under constant rainfall intensities. Consequently, the rainfall is directly related with the outflow through the bioretention. This study discusses only the water quantity of bioretention.

  14. Temporal Variations in Soil Moisture for Three Typical Vegetation Types in Inner Mongolia, Northern China

    PubMed Central

    Zheng, Hao; Gao, Jixi; Teng, Yanguo; Feng, Chaoyang; Tian, Meirong

    2015-01-01

    Drought and shortages of soil water are becoming extremely severe due to global climate change. A better understanding of the relationship between vegetation type and soil-moisture conditions is crucial for conserving soil water in forests and for maintaining a favorable hydrological balance in semiarid areas, such as the Saihanwula National Nature Reserve in Inner Mongolia, China. We investigated the temporal dynamics of soil moisture in this reserve to a depth of 40 cm under three types of vegetation during a period of rainwater recharge. Rainwater from most rainfalls recharged the soil water poorly below 40 cm, and the rainfall threshold for increasing the moisture content of surface soil for the three vegetations was in the order: artificial Larix spp. (AL) > Quercus mongolica (QM) > unused grassland (UG). QM had the highest mean soil moisture content (21.13%) during the monitoring period, followed by UG (16.52%) and AL (14.55%); and the lowest coefficient of variation (CV 9.6-12.5%), followed by UG (CV 10.9-18.7%) and AL (CV 13.9-21.0%). QM soil had a higher nutrient content and higher soil porosities, which were likely responsible for the higher ability of this cover to retain soil water. The relatively smaller QM trees were able to maintain soil moisture better in the study area. PMID:25781333

  15. Prediction of Soil Erosion Rates in Japan where Heavily Forested Landscape with Unstable Terrain

    NASA Astrophysics Data System (ADS)

    Nanko, K.; Oguro, M.; Miura, S.; Masaki, T.

    2016-12-01

    Soil is fundamental for plant growth, water conservation, and sustainable forest management. Multidisciplinary interest in the role of the soil in areas such as biodiversity, ecosystem services, land degradation, and water security has been growing (Miura et al., 2015). Forest is usually protective land use from soil erosion because vegetation buffers rainfall power and erosivity. However, some types of forest in Japan show high susceptibility to soil erosion due to little ground cover and steep slopes exceeding thirty degree, especially young Japanese cypress (Chamaecyparis obtusa) plantations (Miura et al., 2002). This is a critical issue for sustainable forest management because C. obtusaplantations account for 10% of the total forest coverage in Japan (Forestry Agency, 2009). Prediction of soil erosion rates on nationwide scale is necessary to make decision for future forest management plan. To predict and map soil erosion rates across Japan, we applied three soil erosion models, RUSLE (Revised Universal Soil Loss Equation, Wischmeier and Smith, 1978), PESERA (Pan-European Soil Erosion Risk Assessment, Kirkby et al., 2003), and RMMF (Revised Morgan-Morgan-Finney, Morgan, 2001). The grid scale is 1-km. RUSLE and PESERA are most widely used erosion models today. RMMF includes interactions between rainfall and vegetation, such as canopy interception and ratio of canopy drainage in throughfall. Evaporated rainwater by canopy interception, generally accounts for 15-20% in annual rainfall, does not contribute soil erosion. Whereas, larger raindrops generated by canopy drainage produced higher splash erosion rates than gross rainfall (Nanko et al., 2008). Therefore, rainfall redistribution process in canopy should be considered to predict soil erosion rates in forested landscape. We compared the results from three erosion models and analyze the importance of environmental factors for the prediction of soil erosion rates. This research was supported by the Environment Research and Technology Development Fund (S15-2-2) of the Ministry of the Environment, Japan.

  16. Soil biotic legacy effects of extreme weather events influence plant invasiveness

    PubMed Central

    Meisner, Annelein; De Deyn, Gerlinde B.; de Boer, Wietse; van der Putten, Wim H.

    2013-01-01

    Climate change is expected to increase future abiotic stresses on ecosystems through extreme weather events leading to more extreme drought and rainfall incidences [Jentsch A, et al. (2007) Front Ecol Environ 5(7):365–374]. These fluctuations in precipitation may affect soil biota, soil processes [Evans ST, Wallenstein MD (2012) Biogeochemistry 109:101–116], and the proportion of exotics in invaded plant communities [Jiménez MA, et al. (2011) Ecol Lett 14:1277–1235]. However, little is known about legacy effects in soil on the performance of exotics and natives in invaded plant communities. Here we report that drought and rainfall effects on soil processes and biota affect the performance of exotics and natives in plant communities. We performed two mesocosm experiments. In the first experiment, soil without plants was exposed to drought and/or rainfall, which affected soil N availability. Then the initial soil moisture conditions were restored, and a mixed community of co-occurring natives and exotics was planted and exposed to drought during growth. A single stress before or during growth decreased the biomass of natives, but did not affect exotics. A second drought stress during plant growth resetted the exotic advantage, whereas native biomass was not further reduced. In the second experiment, soil inoculation revealed that drought and/or rainfall influenced soil biotic legacies, which promoted exotics but suppressed natives. Our results demonstrate that extreme weather events can cause legacy effects in soil biota, promoting exotics and suppressing natives in invaded plant communities, depending on the type, frequency, and timing of extreme events. PMID:23716656

  17. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls.

    PubMed

    Vaezi, Ali Reza; Ahmadi, Morvarid; Cerdà, Artemi

    2017-04-01

    Soil erosion by water is a three-phase process that consists of detachment of soil particles from the soil mass, transportation of detached particles either by raindrop impact or surface water flow, and sedimentation. Detachment by raindrops is a key component of the soil erosion process. However, little information is available on the role of raindrop impact on soil losses in the semi-arid regions where vegetation cover is often poor and does not protect the soil from rainfall. The objective of this study is to determine the contribution of raindrop impact to changes in soil physical properties and soil losses in a semiarid weakly-aggregated agricultural soil. Soil losses were measured under simulated rainfalls of 10, 20, 30, 40, 50, 60 and 70mmh -1 , and under two conditions: i) with raindrop impact; and, ii) without raindrop impact. Three replications at each rainfall intensity and condition resulted in a total of 42 microplots of 1m×1.4m installed on a 10% slope according to a randomized complete block design. The contribution of raindrop impact to soil loss was computed using the difference between soil loss with raindrop impact and without raindrop impact at each rainfall intensity. Soil physical properties (aggregate size, bulk density and infiltration rate) were strongly damaged by raindrop impact as rainfall intensity increased. Soil loss was significantly affected by rainfall intensity under both soil surface conditions. The contribution of raindrop impact to soil loss decreased steadily with increasing rainfall intensity. At the lower rainfall intensities (20-30mmh -1 ), raindrop impact was the dominant factor controlling soil loss from the plots (68%) while at the higher rainfall intensities (40-70mmh -1 ) soil loss was mostly affected by increasing runoff discharge. At higher rainfall intensities the sheet flow protected the soil from raindrop impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Soil erosion on upland areas by rainfall and overland flow

    USDA-ARS?s Scientific Manuscript database

    Soil erosion in agricultural watersheds is a systemic problem that has plagued mankind ever since the practice of agriculture began some 9,000 years ago. It is a worldwide problem, the severity of which varies from location to location depending on weather, soil type, topography, cropping practices,...

  19. Soil Texture Mediates the Response of Tree Cover to Rainfall Intensity in African Savannas

    NASA Astrophysics Data System (ADS)

    Case, M. F.; Staver, A. C.

    2017-12-01

    Global circulation models predict widespread shifts in the frequency and intensity of rainfall, even where mean annual rainfall does not change. Resulting changes in soil moisture dynamics could have major consequences for plant communities and ecosystems, but the direction of potential vegetation responses can be challenging to predict. In tropical savannas, where tree and grasses coexist, contradictory lines of evidence have suggested that tree cover could respond either positively or negatively to less frequent, more intense rainfall. Here, we analyzed remote sensing data and continental-scale soils maps to examine whether soil texture or fire could explain heterogeneous responses of savanna tree cover to intra-annual rainfall variability across sub-Saharan Africa. We find that tree cover generally increases with mean wet-season rainfall, decreases with mean wet-season rainfall intensity, and decreases with fire frequency. However, soil sand content mediates these relationships: the response to rainfall intensity switches qualitatively depending on soil texture, such that tree cover decreases dramatically with less frequent, more intense rainfall on clay soils but increases with rainfall intensity on sandy soils in semi-arid savannas. We propose potential ecohydrological mechanisms for this heterogeneous response, and emphasize that predictions of savanna vegetation responses to global change should account for interactions between soil texture and changing rainfall patterns.

  20. Plot-scale soil loss estimation with laser scanning and photogrammetry methods

    NASA Astrophysics Data System (ADS)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán; Somogyi, Árpád; Barsi, Árpád

    2017-04-01

    Structure from Motion (SfM) is an automatic feature-matching algorithm, which nowadays is widely used tool in photogrammetry for geoscience applications. SfM method and parallel terrestrial laser scanning measurements are widespread and they can be well accomplished for quantitative soil erosion measurements as well. Therefore, our main scope was soil erosion characterization quantitatively and qualitatively, 3D visualization and morphological characterization of soil-erosion-dynamics. During the rainfall simulation, the surface had been measured and compared before and after the rainfall event by photogrammetry (SfM - Structure from Motion) and laser scanning (TLS - Terrestrial Laser Scanning) methods. The validation of the given results had been done by the caught runoff and the measured soil-loss value. During the laboratory experiment, the applied rainfall had 40 mm/h rainfall intensity. The size of the plot was 0.5 m2. The laser scanning had been implemented with Faro Focus 3D 120 S type equipment, while the SfM shooting had been carried out by 2 piece SJCAM SJ4000+ type, 12 MP resolution and 4K action cams. The photo-reconstruction had been made with Agisoft Photoscan software, while evaluation of the resulted point-cloud from laser scanning and photogrammetry had been implemented partly in CloudCompare and partly in ArcGIS. The resulted models and the calculated surface changes didn't prove to be suitable for estimating soil-loss, only for the detection of changes in the vertical surface. The laser scanning resulted a quite precise surface model, while the SfM method is affected by errors at the surface model due to other factors. The method needs more adequate technical laboratory preparation.

  1. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    NASA Astrophysics Data System (ADS)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  2. Rainfall erosivity: An historical review

    USDA-ARS?s Scientific Manuscript database

    Rainfall erosivity is the capability of rainfall to cause soil loss from hillslopes by water. Modern definitions of rainfall erosivity began with the development of the Universal Soil Loss Equation (USLE), where rainfall characteristics were statistically related to soil loss from thousands of plot...

  3. Debris flow study in Malaysia

    NASA Astrophysics Data System (ADS)

    Bahrin Jaafar, Kamal

    2016-04-01

    The phenomenon of debris flow occurs in Malaysia occasionally. The topography of Peningsular Malysia is characterized by the central mountain ranges running from south to north. Several parts of hilly areas with steep slopes, combined with high saturation of soil strata that deliberately increase the pore water pressure underneath the hill slope. As a tropical country Malaysia has very high intensity rainfall which is triggered the landslide. In the study area where the debris flow are bound to occur, there are a few factors that contribute to this phenomenon such as high rainfall intensity, very steep slope which an inclination more than 35 degree and sandy clay soil type which is easily change to liquidity soil. This paper will discuss the study of rainfall, mechanism, modeling and design of mitigation measure to avoid repeated failure in future in same area.

  4. Impact of Circulation Weather Types in the study of Landslides in the Northern Lisbon region

    NASA Astrophysics Data System (ADS)

    Salvação, Nadia; Trigo, Ricardo; Câmara, Carlos; Zêzere, José Luis

    2010-05-01

    Landslides in the region north of Lisbon during the last 60 years have been induced almost entirely by rainfall, and landslide activity has been confined to very wet periods. Previous results obtained using empirical relationships between rainfall intensity and slope instability show that critical rainfall conditions for failure are not the same for different types of landslides (Zêzere et al, 2008). Shallow translational soil slips have been related to intense rainfall periods ranging from 1 to 15 days, while deep slope movements (translational slides, rotational slides and complex and composite slope movements) have been occurred in relation to longer periods of less intense rain, lasting from 30 to 90 days. The different time span is consistent with the distinct hydrological triggering conditions related to different types of landslides. Intense rainfall is responsible by the rapid growth of pore pressure and by the loss of the apparent cohesion of thin soils, resulting in failure within the soil material or at the contact with the underlying impermeable bedrock. Long lasting precipitation periods allows the steady rising of the groundwater table, thus resulting in deep failures in soils and rocks by the reduction of shear strength. Rainfall information regarding 19 important landslide events occurred between 1958 and 2001, and the knowledge of the circulation weather types (CWTs) affecting those days, allow us to study the relationship between the CWTs frequency and the occurrence of landslide episodes. We have identified 10 basic CWTs (Cyclonic, Anticyclonic and 8 directional types) following the methodology previously adopted (Trigo and DaCamara, 2000). The composites and anomalies of several meteorological fields associated to landslide events show a large precipitation anomaly in the central region of Portugal and an anomalous low-pressure system located northwest of Iberia. This pattern is similar for both shallow and deep landslides events. However, for shallow landslide events, the rainfall and sea level pressure anomalies are stronger in the first 5 and 15 days anteceding the event and practically nonexistent in the 30 days previous to the event, while deep landslide events show higher anomalies that extent backwards 30 days prior to the event. The CWTs most associated to the days with landslide events are the "wet" weather types: cyclonic (C), westerly (W) and southwesterly (SW) with 76% of the days with events having at least one of these types associated. Looking at the 30 days that antecede an event, the shallow landslides are preceded by 44% days with wet CWTs pattern, while for the deep events this number rises to 69% of wet CWTs. In any case for both type of landslide events the frequency of wet CWTs is considerably above the climatological values observed that amount just up to 28% of wet CWTs. Trigo R.M. and Da Camara C.C. (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int. J. Climatol., 20, 1559-1581. Zezere JL, Trigo RM, Fragoso M, et al. (2008). Rainfall-triggered landslides in the Lisbon region over 2006 and relationships with the North Atlantic Oscillation. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 8, 3, 483-499.

  5. The characteristics of soil and water loss in Pinus Massoniana forest in Quaternary red soil area of south China

    NASA Astrophysics Data System (ADS)

    Song, Yuejun; Huang, Yanhe; Jie, Yang

    2017-08-01

    The soil and water loss in Pinus massoniana forests is an urgent environmental problem in the red soil region of southern China.Using the method of field monitoring, by analogy and statistical analysis, The characteristics of soil and water loss of Pinus massoniana forests in Quaternary red soil region under 30 rainfall were analyzed,the results show that the relationship models of rainfall,runoff and sediment of pure Pinus massoniana plot were slightly different from the naked control plot,were all the univariate quadratic linear regression models.the contribution of runoff and sediment in different rain types were different, and the water and soil loss in Pinus massoniana forest was most prominent under moderate rain.The merging effect of sparse Pinus massoniana forest on raindrop, aggravated the degree of soil and water loss to some extent.

  6. Evaluating the efficacy of wood shreds for mitigating erosion

    Treesearch

    Randy B. Foltz; Natalie S. Copeland

    2009-01-01

    An erosion control product made by shredding on-site woody materials was evaluated for mitigating erosion through a series of rainfall simulations. Tests were conducted on bare soil and soil with 30, 50, and 70% cover on a coarse and a fine-grained soil. Results indicated that the wood product known as wood shreds reduced runoff and soil loss from both soil types....

  7. Predicting watershed acidification under alternate rainfall conditions

    USGS Publications Warehouse

    Huntington, T.G.

    1996-01-01

    The effect of alternate rainfall scenarios on acidification of a forested watershed subjected to chronic acidic deposition was assessed using the model of acidification of groundwater in catchments (MAGIC). The model was calibrated at the Panola Mountain Research Watershed, near Atlanta, Georgia, U.S.A. using measured soil properties, wet and dry deposition, and modeled hydrologic routing. Model forecast simulations were evaluated to compare alternate temporal averaging of rainfall inputs and variations in rainfall amount and seasonal distribution. Soil water alkalinity was predicted to decrease to substantially lower concentrations under lower rainfall compared with current or higher rainfall conditions. Soil water alkalinity was also predicted to decrease to lower levels when the majority of rainfall occurred during the growing season compared with other rainfall distributions. Changes in rainfall distribution that result in decreases in net soil water flux will temporarily delay acidification. Ultimately, however, decreased soil water flux will result in larger increases in soil- adsorbed sulfur and soil-water sulfate concentrations and decreases in alkalinity when compared to higher water flux conditions. Potential climate change resulting in significant changes in rainfall amounts, seasonal distribution of rainfall, or evapotranspiration will change net soil water flux and, consequently, will affect the dynamics of the acidification response to continued sulfate loading.

  8. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring

    NASA Astrophysics Data System (ADS)

    Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William

    2013-01-01

    Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.

  9. Identification of key climatic factors regulating the transport of pesticides in leaching and to tile drains.

    PubMed

    Nolan, Bernard T; Dubus, Igor G; Surdyk, Nicolas; Fowler, Hayley J; Burton, Aidan; Hollis, John M; Reichenberger, Stefan; Jarvis, Nicholas J

    2008-09-01

    Key climatic factors influencing the transport of pesticides to drains and to depth were identified. Climatic characteristics such as the timing of rainfall in relation to pesticide application may be more critical than average annual temperature and rainfall. The fate of three pesticides was simulated in nine contrasting soil types for two seasons, five application dates and six synthetic weather data series using the MACRO model, and predicted cumulative pesticide loads were analysed using statistical methods. Classification trees and Pearson correlations indicated that simulated losses in excess of 75th percentile values (0.046 mg m(-2) for leaching, 0.042 mg m(-2) for drainage) generally occurred with large rainfall events following autumn application on clay soils, for both leaching and drainage scenarios. The amount and timing of winter rainfall were important factors, whatever the application period, and these interacted strongly with soil texture and pesticide mobility and persistence. Winter rainfall primarily influenced losses of less mobile and more persistent compounds, while short-term rainfall and temperature controlled leaching of the more mobile pesticides. Numerous climatic characteristics influenced pesticide loss, including the amount of precipitation as well as the timing of rainfall and extreme events in relation to application date. Information regarding the relative influence of the climatic characteristics evaluated here can support the development of a climatic zonation for European-scale risk assessment for pesticide fate.

  10. How internal drainage affects evaporation dynamics from soil surfaces ?

    NASA Astrophysics Data System (ADS)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  11. Simulation of infiltration and redistribution of intense rainfall using Land Surface Models

    NASA Astrophysics Data System (ADS)

    Mueller, Anna; Verhoef, Anne; Cloke, Hannah

    2016-04-01

    Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to describe and deal with this top boundary condition definition. All three LSMs discretise the spatial derivative in the Richards equation (∂/∂z) using central finite differences, which is a 2nd order method, that according to Godunov's theorem is non-monotone. It is prone to producing non-physical oscillations in the solution. We performed a mesh and timestep dependence study for hypothetical soil columns and showed the presence of the oscillations in Jules and SWAP solutions. We also investigated the rainfall/runoff partition and redistribution in case of intense rainfall using these three models.

  12. Rainfall characteristics associated to the triggering of fast- and slow-moving landslides - a comparison between the South French Alps and Lower Austria

    NASA Astrophysics Data System (ADS)

    Remaitre, Alexandre; Wallner, Stefan; Promper, Catrin; Glade, Thomas; Malet, Jean-Philippe

    2013-04-01

    Rainfall is worldwide a recognized trigger of landslides. Numerous studies were conducted in order to define the relationships between the precipitations and the triggering or the reactivation of landslides. Hydrological triggering of landslides can be divided in three general types: (1) development of local perched water tables in the subsoil leading to shallow slope instabilities and possible gravitational flows, (2) long-lasting rise in permanent water tables leading to more deep-seated slope instabilities, and (3) intense runoff causing channel-bed erosion and debris flows. Types (1) and (3) are usually observed during high rainfall intensities (hourly and daily rainfall) associated to heavy storms; type (2) is usually observed through increasing water content in the subsoil due to antecedent rainfalls (weekly or monthly rainfall) and/or massive snowmelt. Many investigations have been carried out to determine the amount of precipitation needed to trigger slopes failures. For rainfall-induced landslides a threshold may be define the rainfall, soil moisture or hydrological conditions that, when reached or exceeded, are likely to trigger landslides. Usually rainfall thresholds can be defined on physical process-based or conceptual models or empirical, historical and statistical bases. Nevertheless, both the large variety of landslides and to the extreme variety of climatic conditions leading to the triggering or the reactivation of a landslide lead to a regional definition of relationships between landslide occurrence and associated climatic conditions. The purpose of this case study is to analyze the relationships between the triggering of three types of landslides, debris flows, shallow landslides and deep-seated mudslides, and different patterns of rainfall in two study sites with different physiographic and climatic characteristics: the Barcelonnette basin in the South French Alps and the Waidhofen an der Ybbs area in Lower Austria. For this purpose, we exploit for the two test sites a landslide catalogue and rainfall data series to define a typology of rainfall induced-landslides for the relevant landslide types. Results from an analysis of the rainfall conditions associated to these events at different time scale (yearly, monthly, daily and hourly) show a clear distinction between these landslides. Slow-moving landslides are often associated to persistent rainstorms with low intensities during long periods causing the saturation of the soils while fast-moving landslides are usually triggered by short rainfall events with high intensities that occur in summer.

  13. soil organic matter pools and quality are sensitive to global climate change in tropical forests from India

    NASA Astrophysics Data System (ADS)

    Mani, Shanmugam; Merino, Agustín; García-Oliva, Felipe; Riotte, Jean; Sukumar, Raman

    2016-04-01

    Soil organic carbon (SOC) storage and quality are some of the most important factors determining ecological process in tropical forests, which are especially sensitive to global climate change (GCC). In India, the GCC scenarios expect increasing of drought period and wildfire, which may affect the SOC, and therefore the capacity of forest for C sequestration. The aim of the study was to evaluate the amount of soil C and its quality in the mineral soil across precipitation gradient with different factors (vegetation, pH, soil texture and bedrock composition) for generate SOC predictions under GCC. Six soil samples were collected (top 10 cm depth) from 19 1-ha permanent plots in the Mudumalai Wildlife Sanctuary of southern India, which are characterised by four types of forest vegetation (i.e. dry thorn, dry deciduous, moist deciduous and semi-evergreen forest) distributed along to rainfall gradient. The driest sites are dominated by sandy soils, while the soil clay proportion increased in the wet sites. Total organic C (Leco CN analyser), and the SOM quality was assessed by Differential Scanning Calorimetry (DSC) and Solid-state 13CCP-MAS NMR analyses. Soil organic C was positively correlated with precipitation (R2 = 0.502, p<0.01) and with soil clay content (R2 =0.15, p<0.05), and negatively with soil sand content (R2=0.308, p<0.001) and with pH (R2=0.529, p<0.01); while the C/N was only found positive correlation with clay (R2= 0.350, p<0.01). The driest sites (dry thorn forest) has the lowest proportion of thermal combustion of recalcitrant organic matter (Q2,375-475 °C) than the other sites (p<0.05) and this SOC fraction correlated positively with rainfall (R2=0.27, p=0.01). The Q2 model with best fit included rainfall, pH, sand, clay, C and C/N (R2=0.52, p=0.01). Principal component analysis explains 77% of total variance. The sites on the fist component are distributed along the rainfall gradient. These results suggest that the 50% of variance was explained by precipitation and therefore vegetation type. Consequently, the drier sites has a lower C pools with a higher proportion of labile SOC fraction. As a consequence, we expect if the rainfall decreased by GCC could increase SOC mineralization, and therefore reducing the capacity of C sequestration within soil profile.

  14. Assessing the effect of biochar on erosion by using a high precision rainfall simulator

    NASA Astrophysics Data System (ADS)

    Goldman, Nina; Mayer, Marius; Fister, Wolfgang

    2017-04-01

    Numerus studies have explored the effect of biochar as a soil amendment and its beneficial effects on different soil properties. Adding biochar to soils might also act as a long-term carbon sink, which would mitigate the anthropogenic climate change. However, there are limitations regarding the current process knowledge on the effects of biochar on soil erosion and its erodibility. First test results point towards lower erosion rates of the substrates, which were enriched with biochar. In contrast, biochar concurrently shows relatively high erosion rates due to its lower bulk density, which makes it more susceptible to erosion. However, the number of conducted experiments does not yet allow quantitative statements. The overall objectives of this study are to gain insight into the process knowledge of erodibility of soils with incorporated biochar, and to develop new techniques for their observation. A drip type rainfall simulator is used on a microscale flume (0.2m2) to be able to control and monitor the thin surface flows and rainfall characteristics precisely. Two different types of biochars (high and low temperature pyrolysis) are used in combination with different substrates ranging from pure sand to naturally developed soils. Depending on the particle size and density of the biochar, different erosion rates can be observed. Particle analysis of the eroded material produces insights into which particle sizes and forms are preferably eroded. Since differentiation between eroded soil organic matter and biochar is very difficult without the use of heavy acids, two new methods are being developed and tested to monitor erosion rates of biochar. Comparing the original substrate with the eroded sediment by means of photogrammetry and isotope analysis, it should be possible to infer how much biochar was discharged and to assess the actual particle movement on the erosion flume. The results of this study could provide guidelines for the types of biochar that should be incorporated into fields as well as to calculate the potential monetary loss due to biochar discharge through rainfall events.

  15. Relation Between the Rainfall and Soil Moisture During Different Phases of Indian Monsoon

    NASA Astrophysics Data System (ADS)

    Varikoden, Hamza; Revadekar, J. V.

    2018-03-01

    Soil moisture is a key parameter in the prediction of southwest monsoon rainfall, hydrological modelling, and many other environmental studies. The studies on relationship between the soil moisture and rainfall in the Indian subcontinent are very limited; hence, the present study focuses the association between rainfall and soil moisture during different monsoon seasons. The soil moisture data used for this study are the ESA (European Space Agency) merged product derived from four passive and two active microwave sensors spanning over the period 1979-2013. The rainfall data used are India Meteorological Department gridded daily data. Both of these data sets are having a spatial resolution of 0.25° latitude-longitude grid. The study revealed that the soil moisture is higher during the southwest monsoon period similar to rainfall and during the pre-monsoon period, the soil moisture is lower. The annual cycle of both the soil moisture and rainfall has the similitude of monomodal variation with a peak during the month of August. The interannual variability of soil moisture and rainfall shows that they are linearly related with each other, even though they are not matched exactly for individual years. The study of extremes also exhibits the surplus amount of soil moisture during wet monsoon years and also the regions of surplus soil moisture are well coherent with the areas of high rainfall.

  16. A protocol for conducting rainfall simulation to study soil runoff.

    PubMed

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B

    2014-04-03

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  17. A Protocol for Conducting Rainfall Simulation to Study Soil Runoff

    PubMed Central

    Kibet, Leonard C.; Saporito, Louis S.; Allen, Arthur L.; May, Eric B.; Kleinman, Peter J. A.; Hashem, Fawzy M.; Bryant, Ray B.

    2014-01-01

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff. PMID:24748061

  18. Interactions and Survival of Enteric Viruses in Soil Materials

    PubMed Central

    Sobsey, Mark D.; Dean, Cheryl H.; Knuckles, Maurice E.; Wagner, Ray A.

    1980-01-01

    There were marked differences in the abilities of eight different soil materials to remove and retain viruses from settled sewage, but for each soil material the behavior of two different viruses, poliovirus type 1 and reovirus type 3, was often similar. Virus adsorption to soil materials was rapid, the majority occurring within 15 min. Clayey materials efficiently adsorbed both viruses from wastewater over a range of pH and total dissolved solids levels. Sands and organic soil materials were comparatively poor adsorbents, but in some cases their ability to adsorb viruses increased at low pH and with the addition of total dissolved solids or divalent cations. Viruses in suspensions of soil material in settled sewage survived for considerable time periods, despite microbial activity. In some cases virus survival was prolonged in suspensions of soil materials compared to soil-free controls. Although sandy and organic soil materials were poor virus adsorbents when suspended in wastewater, they gave ≥95% virus removal from intermittently applied wastewater as unsaturated, 10-cm-deep columns. However, considerable quantities of the retained viruses were washed from the columns by simulated rainfall. Under the same conditions, clayey soil material removed ≥99.9995% of the viruses from applied wastewater, and none were washed from the columns by simulated rainfall. PMID:6250478

  19. The Effects of More Extreme Rainfall Patterns on Infiltration and Nutrient Losses in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2015-12-01

    In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.

  20. Transport mechanisms of Silver Nanoparticles by runoff - A Flume Experiment

    NASA Astrophysics Data System (ADS)

    Mahdi Mahdi, Karrar NM; Commelin, Meindert; Peters, Ruud J. B.; Baartman, Jantiene E. M.; Ritsema, Coen; Geissen, Violette

    2017-04-01

    Silver Nanoparticles (AgNPs) are being used in many products as it has unique antimicrobial-biocidal properties. Through leaching, these particles will reach the soil environment which may affect soil organisms and disrupt plants. This work aims to study the potential transport of AgNPs with water and sediment over the soil surface due to soil erosion by water. This was done in a laboratory setting, using a rainfall simulator and flume. Low AgNPs concentration (50 μg.kg-1) was applied to two soil-flumes with slopes of 20% and 10%. The rainfall was applied in four events of 15 min each with the total amount of rainfall was 15mm in each event. After applying the rainfall, different samples were collected; soil clusters, background (BS) and surface sediments (Sf), from the flume surface, and, Runoff sediments (RS) and water (RW) was collected from the outlet. The results showed that AgNPs were detected in all samples collected, however, AgNPs concentration varied according samples type (soil or water), time of collection (for runoff water and sediment) and the slope of the soil flume. Further, the higher AgNPs concentrations were detected in the background soil (BS); as the BS samples have more finer parts (silt and clay). The AgNPs concentration in the runoff sediments increased with subsequent applied rain events. In addition to that, increasing the slope of the flume from 10% to 20% increased the total AgNPs transported with the runoff sediments by a factor 1.5. The study confirms that AgNPs can be transported over the soil surface by both runoff water and sediments due to erosion.

  1. Set-up and calibration of an indoor nozzle-type rainfall simulator for soil erosion studies

    NASA Astrophysics Data System (ADS)

    Lassu, T.; Seeger, M.

    2012-04-01

    Rainfall simulation is one of the most prevalent methods used in soil erosion studies on agricultural land. In-situ simulators have been used to relate soil surface characteristics and management to runoff generation, infiltration and erosion, eg. the influence of different cultivation systems, and to parameterise erosion models. Laboratory rainfall simulators have been used to determine the impact of the soil surface characteristics such as micro-topography, surface roughness, and soil chemistry on infiltration and erosion rates, and to elucidate the processes involved. The purpose of the following study is to demonstrate the set-up and the calibration of a large indoor, nozzle-type rainfall simulator (RS) for soil erosion, surface runoff and rill development studies. This RS is part of the Kraijenhoff van de Leur Laboratory for Water and Sediment Dynamics in Wageningen University. The rainfall simulator consists from a 6 m long and 2,5 m wide plot, with metal lateral frame and one open side. Infiltration can be collected in different segments. The plot can be inclined up to 15.5° slope. From 3,85 m height above the plot 2 Lechler nozzles 460.788 are sprinkling the water onto the surface with constant intensity. A Zehnder HMP 450 pump provides the constant water supply. An automatic pressure switch on the pump keeps the pressure constant during the experiments. The flow rate is controlled for each nozzle by independent valves. Additionally, solenoid valves are mounted at each nozzle to interrupt water flow. The flow is monitored for each nozzle with flow meters and can be recorded within the computer network. For calibration of the RS we measured the rainfall distribution with 60 gauges equally distributed over the plot during 15 minutes for each nozzle independently and for a combination of 2 identical nozzles. The rainfall energy was recorded on the same grid by measuring drop size distribution and fall velocity with a laser disdrometer. We applied 2 different flow rates (4,5 l/min and 5,5 l/min), resulting in different rainfall intensities and made 2 repetitions each. The average rainfall intensity was 36,8 mm/h at the first and 37,6 mm/h at the second repetition with the lower flow rate (4,5 l/min). With the higher flow rate (5,5 l/min) at the first repetition it was 44,4 mm/h and 46 mm/h at the second one. The maximum and minimum values were 22 mm and 2 mm at the lower (4,5 l/min) flow rate, respectively 26 mm and 4 mm at the higher one (5,5 l/min). In this latter case, the resulting average kinetic energy reached 7 J m-2 mm-1, with a maximum 31,3 J m-2 mm-1 of and a minimum of 2,9 J m-2 mm-1. The Christiansen Uniformity coefficient (CU) for the lower intensities was 66% and 69%, respectively, with the higher intensities slightly better (70% and 72%). The data of the rainfall simulator in Wageningen make it a promising tool for research in soil erosion processes.

  2. Contributions of water supply from the weathered bedrock zone to forest soil quality

    Treesearch

    James H. Witty; Robert C. Graham; Kenneth R. Hubbert; James A. Doolittle; Jonathan A. Wald

    2003-01-01

    One measure of forest soil quality is the ability of the soil to support tree growth. In mediterranean-type ecosystems, such as most of California's forests, there is virtually no rainfall during the summer growing season, so trees must rely on water stored within the substrate. Water is the primary limitation to productivity in these forests. Many forest soils in...

  3. Using rainfall simulations to understand the relationship between precipitation, soil crust and infiltration in four agricultural soils

    NASA Astrophysics Data System (ADS)

    Angulo-Martinez, Marta; Alastrué, Juan; Moret-Fernández, David; Beguería, Santiago; López, Mariví; Navas, Ana

    2017-04-01

    Rainfall simulation experiments were carried out in order to study soil crust formation and its relation with soil infiltration parameters—sorptivity (S) and hydraulic conductivity (K)—on four common agricultural soils with contrasted properties; namely, Cambisol, Gypsisol, Solonchak, and Solonetz. Three different rainfall simulations, replicated three times each of them, were performed over the soils. Prior to rainfall simulations all soils were mechanically tilled with a rototiller to create similar soil surface conditions and homogeneous soils. Rainfall simulation parameters were monitored in real time by a Thies Laser Precipitation Monitor, allowing a complete characterization of simulated rainfall microphysics (drop size and velocity distributions) and integrated variables (accumulated rainfall, intensity and kinetic energy). Once soils dried after the simulations, soil penetration resistance was measured and soil hydraulic parameters, S and K, were estimated using the disc infiltrometry technique. There was little variation in rainfall parameters among simulations. Mean intensity and mean median diameter (D50) varied in simulations 1 ( 0.5 bar), 2 ( 0.8 bar) and 3 ( 1.2 bar) from 26.5 mm h-1 and 0.43 mm (s1) to 40.5 mm h-1 and 0.54 mm (s2) and 41.1 mm h-1 and 0.56 mm for (s3), respectively. Crust formation by soil was explained by D50 and subsequently by the total precipitation amount and the percentage of silt and clay in soil, being Cambisol and Gypsisol the soils that showed more increase in penetration resistance by simulation. All soils showed similar S values by simulations which were explained by rainfall intensity. Different patterns of K were shown by the four soils, which were explained by the combined effect of D50 and intensity, together with soil physico-chemical properties. This study highlights the importance of monitoring all precipitation parameters to determine their effect on different soil processes.

  4. Biological soil crusts: An organizing principle in dryland ecosystems (aka: the role of biocrusts in arid land hydrology)

    USGS Publications Warehouse

    Chamizo, Sonia; Belnap, Jayne; Elridge, David J; Issa, Oumarou M

    2016-01-01

    Biocrusts exert a strong influence on hydrological processes in drylands by modifying numerous soil properties that affect water retention and movement in soils. Yet, their role in these processes is not clearly understood due to the large number of factors that act simultaneously and can mask the biocrust effect. The influence of biocrusts on soil hydrology depends on biocrust intrinsic characteristics such as cover, composition, and external morphology, which differ greatly among climate regimes, but also on external factors as soil type, topography and vegetation distribution patterns, as well as interactions among these factors. This chapter reviews the most recent literature published on the role of biocrusts in infiltration and runoff, soil moisture, evaporation and non-rainfall water inputs (fog, dew, water absorption), in an attempt to elucidate the key factors that explain how biocrusts affect land hydrology. In addition to the crust type and site characteristics, recent studies point to the crucial importance of the type of rainfall and the spatial scale at which biocrust effects are analyzed to understand their role in hydrological processes. Future studies need to consider the temporal and spatial scale investigated to obtain more accurate generalizations on the role of biocrusts in land hydrology.

  5. Soil erosion in a man-made landscape: the Mediterranean

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Ruiz Sinoga, J. D.; Cammeraat, L. H.

    2012-04-01

    Mediterranean-type ecosystems are characterised by a seasonally contrasted distribution of precipitation, by the coincidence of the driest and hottest season in summer, by an often-mountainous terrain, and by a long history of intense human occupation, especially around the Mediterranean Sea. The history of the Mediterranean lands is the history of human impacts on the soil system, and soil erosion is the most intense and widespread impact on this land where high intensity and uneven rainfall is found. A review of the soil erosion rates measured in the Mediterranean basin will be shown. The measurements done by means of erosion pins, topographical measurements, rainfall simulators, Gerlach collectors in open or close plots, watershed/basin measurements, reservoirs siltation and historical data will be shown. A review of the soil erosion models applied in the Mediterranean will be shown. The tentative approach done until October 2011 show that the soil erosion rates on Mediterranean type ecosystems are not as high as was supposed by the pioneers in the 70's. And this is probably due to the fact that the soils are very shallow and sediments are not available after millennia of high erosion rates. This is related to the large amount of rock fragments are covering the soil, and the rock outcrops that are found in the upper slope trams and the summits. Soil erosion in the Mediterranean is seasonal due to the rainfall concentration in winter, and highly variable within years as the high intensity rainfall events control the sediment production. Natural vegetation is adapted to the Mediterranean environmental conditions, and they are efficient to control the soil losses. An example are the forest fire that increase the soil losses but this is a temporal change as after 2-4 years the soil erosion rates are similar to the pre-fire period. Agriculture lands are the source of sediments although the highest erosion rates are found in badland areas that cover a small part of the Mediterranean lands. The methods applied to measure or estimate the soil erosion should be improved to make them comparable. An agreement is necessary to decide the size of the plots, the material and equipment to be used and the future research topics. This research study is being supported by the the research project CGL2008-02879/BTE

  6. Quasi-continuous stochastic simulation framework for flood modelling

    NASA Astrophysics Data System (ADS)

    Moustakis, Yiannis; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas

    2017-04-01

    Typically, flood modelling in the context of everyday engineering practices is addressed through event-based deterministic tools, e.g., the well-known SCS-CN method. A major shortcoming of such approaches is the ignorance of uncertainty, which is associated with the variability of soil moisture conditions and the variability of rainfall during the storm event.In event-based modeling, the sole expression of uncertainty is the return period of the design storm, which is assumed to represent the acceptable risk of all output quantities (flood volume, peak discharge, etc.). On the other hand, the varying antecedent soil moisture conditions across the basin are represented by means of scenarios (e.g., the three AMC types by SCS),while the temporal distribution of rainfall is represented through standard deterministic patterns (e.g., the alternative blocks method). In order to address these major inconsistencies,simultaneously preserving the simplicity and parsimony of the SCS-CN method, we have developed a quasi-continuous stochastic simulation approach, comprising the following steps: (1) generation of synthetic daily rainfall time series; (2) update of potential maximum soil moisture retention, on the basis of accumulated five-day rainfall; (3) estimation of daily runoff through the SCS-CN formula, using as inputs the daily rainfall and the updated value of soil moisture retention;(4) selection of extreme events and application of the standard SCS-CN procedure for each specific event, on the basis of synthetic rainfall.This scheme requires the use of two stochastic modelling components, namely the CastaliaR model, for the generation of synthetic daily data, and the HyetosMinute model, for the disaggregation of daily rainfall to finer temporal scales. Outcomes of this approach are a large number of synthetic flood events, allowing for expressing the design variables in statistical terms and thus properly evaluating the flood risk.

  7. The use of Mediterranean shrub to flight against the land degradation. The rainfall partitioning fluxes

    NASA Astrophysics Data System (ADS)

    García-Estringana, Pablo; Nieves Alonso-Blazquez, M.; Alegre, Jesús; Cerdà, Artemi

    2014-05-01

    Desertification can be triggered by the lost of vegetation (Izzo et al., 2013). One of the impacts of the lack of vegetation is the increase in the effective rainfall and then higher soil and water losses. Vegetation can reduce the effective rainfall by interception. To recover the land that is affected by Desertification we must select plant species that will intercept the rainfall, but will not avoid the rainfall to reach the soil. This is why, studies on the plant rainfall interception are relevant to flight Land Degradation processes. Soil erosion is highly dependent on the effective rainfall (Cerdà and Lasanta, 2005; Haile and Fetene; 2012; Miao et al., 2012, Prokop and Poręba, 2012). The amount of rainfall that reaches the soil surface and can contribute to detach and transport material is determined by the interception of plants. Interception is also a key factor of the watershed hydrology (Zema et al., 2012). The importance of the rainfall partitioning fluxes is related to the climatic conditions, as climate control the plant cover and the soil properties, and then the soil losses (Cerdà, 1998). Although the shrubs has been seen as a key vegetation cover in semiarid lands to control the soil and water losses (Cerdà and Doerr, 2007) little information is available about rainfall interception in Mediterranean shrub vegetation, due to technical difficulties to measure them in such small-sized vegetation (Belmonte Serrato and Romero Diaz, 1998). The aim of this work was to assess the influence of different Mediterranean shrubs (Retama sphaerocarpa, Colutea arborescens, Dorycnium pentaphyllum, Medicago strasseri, Pistacia Lentiscus and Quercus coccifera) on rainfall partitioning fluxes (interception losses, throughfall and stemflow) in semiarid environments. The experiment was carried out under natural rainfall conditions with live specimens during two years, with automatic measurement of rainfall partitioning fluxes. In order to assess the influence of biotic and abiotic factors on rainfall partitioning fluxes and their seasonal variation, twenty rainfall events, ten small-size events (P≤10 mm) and ten major events (P>10 mm), were selected. Great differences were observed among species, with interception losses varying between 10% for R. sphaerocarpa to greater than 36% for D. pentaphyllum and M. strasseri, and with stemflow percentages changing between less than 11% for D. pentaphyllum and M. strasseri and 20% for R. sphaerocarpa (Garcia-Estringana, 2011). Pistacia Lentiscus intercepted 21 % of the rainfall and Quercus coccifera 31 %. Species was the most important biotic factor, rainfall volume was the most significant abiotic factor. Stemflow percentages increased and interception losses percentages decreased as rainfall volume increased, both until a stable value reached when rainfall volume was greater than 10 mm. Stemflow and interception losses varied greatly in small events, consequently it is difficult to predict rainfall interception fluxes in semiarid regions, where small events are the most frequent ones. Rainfall volume events greater than 10 mm are much less frequent, but more rainfall is concentrated around the stem base, being during these events when species which used stemflow as an adaptive mechanism to aridity store water in deep soil layers. Stemflow reached their maximum values in autumn and winter, and their minimum values in summer, unlike interception losses, which were higher in summer, except for M. strasseri because it sheds all its leaves. Hydrologic impact of shrubs was very variable depending on the species, and its capacity to form dense communities. Therefore it makes this type of vegetation of great interest in the Mediterranean region, not only by the effect on soil protection (Garcia-Estringana et al., 2010), but also by the effect on hydrology and water availability in a region where water is a scarce resource and shrub vegetation is proliferating as a result of agricultural abandonment. Acknowledgements TThe research projects 07 M/0077/1998, 07 M/0023/2000 and RTA01-078-C2- 2, GL2008-02879/BTE, LEDDRA243857 and RECARE FP7 project 603498 supported this research. References: Belmonte Serrato, F., Romero Díaz, A. 1998. A simple technique for measuring rainfall interception by small shrub: "interception flow collection box. Hydrological Processes 12, 471-481. Cerdà, A. 1998. Relationship between climate and soil hydrological and erosional characteristics along climatic gradients in Mediterranean limestone areas. Geomorphology, 25, 123-134. Cerdà, A., Doerr, S.H. 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrological Processes, 21, 2325-2336. doi: 10.1016/j.catena.2008.03.010. Cerdà, A., Lasanta, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 1. Water and sediment yield. Catena, 60, 59-80. Garcia-Estringana, P. 2011. Efectos de diferentes tipos de vegetación mediterránea sobre la hidrología y la pérdida de suelo. Tesis Doctoral, Universidad de Alcalá, Facultad de Ciencias, pp. 170. Garcia-Estringana, P., Alonso-Blázquez, N., Marques, M.J., Bienes, R., Alegre, J. 2010. Direct and indirect effects of Mediterranean vegetation on runoff and soil loss. European Journal of Soil Science 61, 174-185. Izzo, M., Araujo, N., Aucelli, P. P. C., Maratea, A., and Sánchez, A. 2013. Land sensitivity to Desertification in the Dominican Republic: an adaptation of the ESA methodology. Land Degradation & Development, 24: 486- 498. DOI 10.1002/ldr.2241 Lasanta, A., Cerdà, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 2. Solute release. Catena, 60, 80-101 Miao, C. Y., Yang, L., Chen, X. H., Gao, Y. 2012. The vegetation cover dynamics (1982-2006) in different erosion regions of the Yellow River Basin, China. Land Degradation & Development, 23: 62- 71. DOI 10.1002/ldr.1050 Prokop, P., Poręba, G. J. 2012. Soil erosion associated with an upland farming system under population pressure in Northeast India. Land Degradation & Development, 23: 310- 321. DOI 10.1002/ldr.2147 Zema, D. A., Bingner, R. L., Denisi, P., Govers, G., Licciardello, F., Zimbone, S. M. 2012. Evaluation of runoff, peak flow and sediment yield for events simulated by the AnnAGNPS model in a belgian agricultural watershed. Land Degradation & Development, 23: 205- 215. DOI 10.1002/ldr.1068

  8. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.

    PubMed

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K

    2016-01-01

    Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.

  9. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert

    PubMed Central

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.

    2016-01-01

    Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203

  10. The wildgeographer avatar shows how to measure soil erosion rates by means of a rainfall simulator

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; González Pelayo, Óscar; Pereira, Paulo; Novara, Agata; Iserloh, Thomas; Prosdocimi, Massimo

    2015-04-01

    This contribution to the immersed worlds wish to develop the avatar that will teach the students and other scientists how to develop measurements of soil erosion, surface runoff and wetting fronts by means of simulated rainfall experiments. Rainfall simulation is a well established and knows methodology to measure the soil erosion rates and soil hydrology under controlled conditions (Cerdà 1998a; Cerdà, 1998b; Cerdà and Jurgensen, 2011; Dunkerley, 2012; Iserloh et al., 2012; Iserloh et al., 2013; Ziadat and Taimeh, 2013; Butzen et al., 2014). However, is a method that requires a long training and expertise to avoid mismanagement and mistaken. To use and avatar can help in the teaching of the technique and the dissemination of the findings. This contribution will show to other avatars how to develop an experiment with simulated rainfall and will help to take the right decision in the design of the experiments. Following the main parts of the experiments and measurements the Wildgeographer avatar must develop: 1. Determine the objectives and decide which rainfall intensity and distribution, and which plot size to be used. Choose between a laboratory or a field rainfall simulation. 2. Design of the rainfall simulator to achieve the objectives: type of rainfall simulator (sprayer or drop former) and calibrate. 3. The experiments are carried out. 4. The results are show. Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., Ries, J. B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena, 113, 202-212. Cerdà, A. 1998a. Effect of climate on surface flow along a climatological gradient in Israel. A field rainfall simulation approach. Journal of Arid Environments, 38, 145-159. Cerdà, A. 1998b. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78, 321-330. Cerdà, A., Jurgensen, M. F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena, 85(3), 231-236. Dunkerley, D. 2012. Effects of rainfall intensity fluctuations on infiltration and runoff: rainfall simulation on dryland soils, Fowlers Gap, Australia. Hydrological Processes, 26(15), 2211-2224. Iserloh, T., Ries, J.B., Arnaez, J., Boix Fayos, C., Butzen, V., Cerdà, A., Echeverría, M.T., Fernández-Gálvez, J., Fister, W., Geißler, C., Gómez, J.A., Gómez-Macpherson, H., Kuhn, N.J., Lázaro, R., León, F.J., Martínez-Mena, M., Martínez-Murillo, J.F., Marzen, M., Mingorance, M.D., Ortigosa, L., Peters, P., Regüés, D., Ruiz-Sinoga, J.D., Scholten, T., Seeger, M., Solé-Benet, A., Wengel, R., Wirtz, S. 2013. European small portable rainfall simulators: a comparison of rainfall characteristics. Catena, 110, 100-112. Doi: 10.1016/j.catena.2013.05.013 Iserloh, T., Ries, J.B., Cerdà, A., Echeverría, M.T., Fister, W., Geißler, C., Kuhn, N.J., León, F.J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., Seeger, M. (2012): Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift für Geomorphologie, 57, 193-201. DOI: 10.1127/0372- 8854/2012/S-00118. Ziadat, F. M., Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24: 582- 590. DOI 10.1002/ldr.2239

  11. Impact of an intense rainfall event on soil properties following a wildfire in a Mediterranean environment (North-East Spain).

    PubMed

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Mataix-Solera, Jorge; Úbeda, Xavier

    2016-12-01

    Intense rainfall events after severe wildfires can have an impact on soil properties, above all in the Mediterranean environment. This study seeks to examine the immediate impact and the effect after a year of an intense rainfall event on a Mediterranean forest affected by a high severity wildfire. The work analyses the following soil properties: soil aggregate stability, total nitrogen, total carbon, organic and inorganic carbon, the C/N ratio, carbonates, pH, electrical conductivity, extractable calcium, magnesium, sodium, potassium, available phosphorous and the sodium and potassium adsorption ratio (SPAR). We sampled soils in the burned area before, immediately after and one year after the rainfall event. The results showed that the intense rainfall event did not have an immediate impact on soil aggregate stability, but a significant difference was recorded one year after. The intense precipitation did not result in any significant changes in soil total nitrogen, total carbon, inorganic carbon, the C/N ratio and carbonates during the study period. Differences were only registered in soil organic carbon. The soil organic carbon content was significantly higher after the rainfall than in the other sampling dates. The rainfall event did increase soil pH, electrical conductivity, major cations, available phosphorous and the SPAR. One year after the fire, a significant decrease in soil aggregate stability was observed that can be attributed to high SPAR levels and human intervention, while the reduction in extractable elements can be attributed to soil leaching and vegetation consumption. Overall, the intense rainfall event, other post-fire rainfall events and human intervention did not have a detrimental impact on soil properties in all probability owing to the flat plot topography. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. [Soil infiltration capacity under different vegetations in southern Ningxia Loess hilly region].

    PubMed

    Yang, Yong-Hui; Zhao, Shi-Wei; Lei, Ting-Wu; Liu, Han

    2008-05-01

    A new apparatus for measuring the run off-on-out under simulated rainfall conditions was used to study the soil infiltration capacity under different rainfall intensities and vegetations in loess hilly region of southern Ningxia, with the relationships between soil water-stable aggregate content and soil stable infiltration rate under different vegetations analyzed. The results showed that the regression equations between rainfall duration and soil infiltration rate under different vegetations all followed y = a + be(-cx), with R2 ranged from 0.9678 to 0.9969. With the increase of rainfall intensity, the soil stable infiltration rate on slope cropland decreased, while that on Medicago lupulina land, natural grassland, and Caragana korshinskii land increased. Under the rainfall intensity of 20 mm h(-1), the rainfall infiltration translation rate (RITR) was decreased in the order of M. lupulina land > slope cropland > natural grassland > C. korshinskii land; while under the rainfall intensity of 40 mm h(-1) and 56 mm h(-1), the RITR was in the sequence of M. lupulina land > natural grassland > slope cropland > C. korshinskii land, and decreased with increasing rainfall intensity. After the reversion of cropland to grassland and forest land, and with the increase of re-vegetation, the amount of >0.25 mm soil aggregates increased, and soil infiltration capacity improved. The revegetation in study area effectively improved soil structure and soil infiltration capacity, and enhanced the utilization potential of rainfall on slope.

  13. Effect of water potential and void ratio on erodibility for agricultural soils

    USDA-ARS?s Scientific Manuscript database

    Soil erodibility has confounded researchers for decades. Difficulties arise with initiation of motion, pore-water status, physical, and perhaps biological, material properties and type of applied energy (i.e. rainfall, runoff, freeze/thaw, wind). Though specific tests have been developed to determin...

  14. Soil conservation service curve number: How to take into account spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Rianna, M.; Orlando, D.; Montesarchio, V.; Russo, F.; Napolitano, F.

    2012-09-01

    The most commonly used method to evaluate rainfall excess, is the Soil Conservation Service (SCS) runoff curve number model. This method is based on the determination of the CN valuethat is linked with a hydrological soil group, cover type, treatment, hydrologic condition and antecedent runoff condition. To calculate the antecedent runoff condition the standard procedure needs to calculate the rainfall over the entire basin during the five days previous to the beginning of the event in order to simulate and then to use that volume of rainfall to calculate the antecedent moisture condition (AMC). This is necessary in order to obtain the correct curve number value. The value of the modified parameter is then kept constant throughout the whole event. The aim of this work is to evaluate the possibility of improving the curve number method. The various assumptions are focused on modifying those related to rainfall and the determination of an AMC condition and their role in the determination of the value of the curve number parameter. In order to consider the spatial variability we assumed that the rainfall which influences the AMC and the CN value does not account for the rainfall over the entire basin, but for the rainfall within a single cell where the basin domain is discretized. Furthermore, in order to consider the temporal variability of rainfall we assumed that the value of the CN of the single cell is not maintained constant during the whole event, but instead varies throughout it according to the time interval used to define the AMC conditions.

  15. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China

    PubMed Central

    Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507

  16. Land use and rainfall effect on soil CO2 fluxes in a Mediterranean agroforestry system

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Álvaro-Fuentes, Jorge; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soils are the largest C reservoir of terrestrial ecosystems and play an important role in regulating the concentration of CO2 in the atmosphere. The exchange of CO2 between the atmosphere and soil controls the balance of C in soils. The CO2 fluxes may be influenced by climate conditions and land use and cover change especially in the upper soil organic layer. Understanding C dynamics is important for maintaining C stocks to sustain and improve soil quality and to enhance sink C capacity of soils. This study focuses on the response of the CO2 emitted to rainfall events from different land uses (i.e. forest, abandoned cultivated soils and winter cereal cultivated soils) in a representative Mediterranean agroforestry ecosystem in the central part of the Ebro basin, NE Spain (30T 4698723N 646424E). A total of 30 measurement points with the same soil type (classified as Calcisols) were selected. Soil CO2 flux was measured in situ using a portable EGM-4 CO2 analyzer PPSystems connected to a dynamic chamber system (model CFX-1, PPSystems) weekly during autumn 2016. Eleven different rainfall events were measured at least 24 hours before (n=7) and after the rainfall event (n=4). Soil water content and temperature were measured at each sampling point within the first 5 cm. Soil samples were taken at the beginning of the experiment to determine soil organic carbon (SOC) content using a LECO RC-612. The mean SOC for forest, abandoned and cultivated soils were 2.5, 2.7 and 0.6 %, respectively. The results indicated differences in soil CO2 fluxes between land uses. The field measurements of CO2 flux show that before cereal sowing the highest values were recorded in the abandoned soils varying from 56.1 to 171.9 mg CO2-C m-2 h-1 whereas after cereal sowing the highest values were recorded in cultivated soils ranged between 37.8 and 116.2 mg CO2-C m-2 h-1 indicating the agricultural impact on CO2 fluxes. In cultivated soils, lower mean CO2 fluxes were measured after direct seeding (60.8 mg CO2-C m-2 h-1) than before (65.4 mg CO2-C m-2 h-1). The mean of topsoil water content before rainfall events was 19.7% and after was 28.9%. Soil CO2 fluxes increased on the following days after the rainfall event as the soil dried out but with lower emissions just after the events. This pattern was attributed to the control of soil moisture on microbial activity that affects CO2 production via soil respiration. CO2 measurements from soil surface are useful to evaluate the potential for soil respiration and soil carbon dioxide production capacity under different land use and environmental conditions for a better understanding of C cycling.

  17. Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951-2010

    Treesearch

    Wei Qin; Qiankun Guo; Changqing Zuo; Zhijie Shan; Liang Ma; Ge Sun

    2016-01-01

    Rainfall erosivity is an important factor for estimating soil erosion rates. Understanding the spatial distributionand temporal trends of rainfall erosivity is especially critical for soil erosion risk assessment and soil conservationplanning in mainland China. However, reports on the spatial distribution and temporal trends of rainfall...

  18. Where do forests influence rainfall?

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line

    2017-04-01

    Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.

  19. Automated general temperature correction method for dielectric soil moisture sensors

    NASA Astrophysics Data System (ADS)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a significant error factor comparable to ±1% manufacturer's accuracy.

  20. Geographic Information System and Remote Sensing Approach with Hydrologic Rational Model for Flood Event Analysis in Jakarta

    NASA Astrophysics Data System (ADS)

    Aditya, M. R.; Hernina, R.; Rokhmatuloh

    2017-12-01

    Rapid development in Jakarta which generates more impervious surface has reduced the amount of rainfall infiltration into soil layer and increases run-off. In some events, continuous high rainfall intensity could create sudden flood in Jakarta City. This article used rainfall data of Jakarta during 10 February 2015 to compute rainfall intensity and then interpolate it with ordinary kriging technique. Spatial distribution of rainfall intensity then overlaid with run-off coefficient based on certain land use type of the study area. Peak run-off within each cell resulted from hydrologic rational model then summed for the whole study area to generate total peak run-off. For this study area, land use types consisted of 51.9 % industrial, 37.57% parks, and 10.54% residential with estimated total peak run-off 6.04 m3/sec, 0.39 m3/sec, and 0.31 m3/sec, respectively.

  1. The effect of the fires on gypseous soil properties: changes of the hydrology and splash resistance.

    NASA Astrophysics Data System (ADS)

    León, J.; Seeger, M.; Echeverría, M.; Badía, D.; Peters, P.

    2012-04-01

    Mediterranean ecosystems have been severely affected by fires in the last decades. Due to social and economical changes, wildfires have caused hydrological and geomorphologic changes to be more pronounced, resulting in enhanced soil erosion. Soil heating caused by fires affects soil aggregates stability, water infiltration and may generate hydrophobicity. In order to understand how wildfire affects soil hydrological behavior in general, and splash and runoff processes in particular, of gypsum soils,it is advantageous to use a rainfall simulator. In August 2009 a large forest fire affected 6700 ha in Remolinos (NW Zaragoza, Spain). The area is covered by shrubs such as gorse (Genista scorpius L.), broom (Retama sphaerocarpa L.) and rosemary (Rosmarinus officinalis L.), and with small areas occupied by Aleppo pine (Pinus halepensis Mill) and Kermes evergreen-oak (Quercus coccifera L.). This region has a semarid Mediterranean climate, with an average annual rainfall ca 560 mm and a mean annual temperature of 12.5°C, resulting in an estimated climatic water deficit of ca. 400mm. The relief consists of stepped slopes (200-748 m), on two different types of soil have developed: Renzic Phaeozem, on limestone, and Haplic Gypsisol, on gypsum (IUSS, 2006). Within this study, we wanted to investigate the differences in affection by fire of the different soil types, as it may be caused by different fire intensities. Therefore, both soil types were sampled after fire. Also, similar locations were sampled which were not affected by the wildfires. With this, we could differentiate 4 treatments: burnt and unburnt pine forest and burnt and unburnt shrub on gypseous soils. We designed a set of lab experiments to elucidate the effect of heat on soil composition, aggregate stability, and splash susceptibility. Samples were taken using cylinders of 5 cm depth. Under laboratory conditions were measured pH, CE, organic matter (OM), soil aggregates stability (SAS), bulk density, porosity and mineralogical changes, using 5 subsamples of each treatment. The samples were heated at different temperatures (105 °C and 205 °C) in an oven for 30 min to simulated different fire intensities, for comparison. A set was only air dried (35 °C). To study the splash effect of the gypsum soils were use small scale rainfall simulator in laboratory, applying a rainfall intensity of 47 mm h-1 during 20 min, resulting in a kinetic energy of 8.94 J m-2 mm-1. The gross loss of material of each of the undisturbed samples was measured after 20 minutes of simulation. The pH is slightly alkaline and oscillates between 7.93-8.32, depending on soil cover type, and is highest under burnt pine forest. The EC (2.08-5.01 mS cm-1) did not change after heating of the unburnt shrub cover, but in the soil under burnt pine forest, the EC was lowered with increasing temperature. The OM content is moderate (3.73-4.85 %), and higher on burnt soils, increasing also with an increase of treatment temperature. The SAS (43.17-75.92 %) is strongly depending on the temperature applied, and was found higher on the burnt surfaces. The gypsum content of the soils is moderate to high (11.30-39.58 %), but decreases with the treatment at 205°C. The soil loss by splash vaied between 0.9 to 2.8 g (per sample) after 20 min of rainfall simulation. Highest losses were found on burnt surfaces. The results show that fire and temperature affects not all characteristics of soils. Acknowledgements: This research was supported by the Ministry of Science and Innovation BES-2008-003056, the CETSUS project (CGL2007-66644-C04-04/HIDCLI) and the Geomorphology and Global Change Research Group (D.G.A., 2011). The Spanish Army has supported this work at the San Gregorio CENAF.

  2. Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes

    NASA Astrophysics Data System (ADS)

    Tian, Pei; Xu, Xinyi; Pan, Chengzhong; Hsu, Kuolin; Yang, Tiantian

    2017-05-01

    Limited information has isolated the impacts of rainfall on rill formation and erosion on steep hillslopes where upslope inflow simultaneously exists. Field simulation experiments were conducted on steep hillslopes (26°) under rainfall (60 mm h-1), inflow (6, 12, 18, 24, 30, 36 L min-1 m-1), and combination of rainfall and inflow to explore the impacts of rainfall on rill formation, and the interaction between rainfall and inflow on soil erosion. Rainfall decreased soil infiltration rate (10%-26%) mainly due to soil crust by raindrop impact. Rainfall strengthened rill formation, which behaved in the increment in rill width (5%-26%), length (4%-22%), and depth (3%-22%), but this increment decreased as inflow rates increased. Additionally, the contribution of rainfall on rill formation was most significant at the initial stage, followed by the final stage and active period of rill development. Rainfall increased rill erosion (8%-80%) and interrill erosion (36%-64%), but it played a dominant role in increasing interrill erosion under relatively high inflow rates. The most sensitive hydrodynamic parameter to soil erosion was shear stress and stream power under inflow and 'inflow + rainfall' conditions, respectively. For the lowest inflow rate, the reduction in soil loss by interaction between rainfall and inflow accounted for 20% of total soil loss, indicating a negative interaction. However, such interaction became positive with increasing inflow rates. The contribution rate to rill erosion by the interaction was greater than that of interrill erosion under relatively low inflow rates. Our results provide a better understanding of hillslope soil erosion mechanism.

  3. Duripan effect on soil water availability: study case in North-Central Namibia

    NASA Astrophysics Data System (ADS)

    Prudat, Brice; Bloemertz, Lena; Kuhn, Nikolaus J.

    2016-04-01

    Soils with duripan and other hardpans are frequently disregarded for agriculture. However, in North-Central Namibia, farmers cultivate a type of sandy soil with a developing duripan at few decimetres of depth. This soil is particularly valuable for Pearl Millet cultivation during years with limited rainfall. Understanding the water dynamic and the role of the duripan in the soil moisture dynamic will improve livelihood and secure food production in North-Central Namibia, in Southern Angola and other areas in the world where similar soils appear. We recorded soil water content during five months at different depth in one of these sandy soil. The comparison of the recorded data with values calculated with models based on e.g. texture indicate that the duripan plays a very important role as water reservoir. Our results demonstrate that soils with duripans should not be disregarded for agricultural development, especially in context with irregular rainfall patterns. Understanding the role of duripans based on this study will thus help to anticipate and alleviate the effect of climate change in northern Namibia and other semi-arid regions, where similar soils occur.

  4. Experimental study of water fluxes in a residential area: 2. Road infiltration, runoff and evaporation

    NASA Astrophysics Data System (ADS)

    Ragab, R.; Rosier, P.; Dixon, A.; Bromley, J.; Cooper, J. D.

    2003-08-01

    Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water-table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October-March) and summer (April-September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21-24% of annual rainfall, with more evaporation taking place during summer than winter.

  5. How is overland flow produced under intermittent rain? An analysis using plot-scale rainfall simulation on dryland soils

    NASA Astrophysics Data System (ADS)

    Dunkerley, David

    2018-01-01

    The characteristic intermittency of rainfall includes temporary cessations (hiatuses), as well as periods of very low intensity within more intense events. To understand how these characteristics of rainfall affect overland flow production, rainfall simulations involving repeated cycles of on-off intermittency were carried out on dryland soils in arid western New South Wales, Australia. Periods of rain (10 mm/h) and no-rain were applied in alternation with cycle times from 3 min to 25 min, in experiments lasting 1-1.5 h. Results showed that intermittency could delay the onset of runoff by more than 30 min, reduce the runoff ratio, reduce the peak runoff rate, and reduce the apparent event infiltration rate by 30-45%. When hiatuses in rainfall were longer than 15-20 min, runoff that had resulted from prior rain ceased completely before the recommencement of rain. Results demonstrate that if rainfall intermittency is not accounted for, estimates of infiltrability based on runoff plot data can be systematically in error. Despite the use of intermittent rain, the episodic occurrence of runoff could be predicted successfully by fitting multiple affine Horton infiltration equations, whose changing f0 and Kf coefficients, but uniform values of fc, reflected the redistribution of soil moisture and the change in the infiltrability f during hiatuses in rainfall. The value of fc varied little among the fitted equations, so constituting an affine set of relationships. This new approach provides an alternative to the use of steady-state methods that are common in rainfall simulation experiments and which typically yield only an estimate of fc. The new field results confirm that intermittency affects infiltration and runoff depths and timing at plot scale and on intra-event timescales. Additional work on other soil types, and at other spatial and temporal scales, is needed to test the generality of these findings.

  6. Influence of aeration implements, phosphorus fertilizers, and soil taxa on phosphorus losses from grasslands.

    PubMed

    Franklin, D H; Butler, D M; Cabrera, M L; Calvert, V H; West, L T; Rema, J A

    2011-01-01

    Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.

  7. Soil erosion under multiple time-varying rainfall events

    NASA Astrophysics Data System (ADS)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  8. Analysis and modeling of soil slips in the Emilia Romagna Apennine (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Montrasio, L.; Valentino, R.; Losi, G.

    2009-04-01

    On 10-11 April 2005 the Emilia Romagna Apennine was affected by an intense rainfall event that triggered dozens of soil slips in the Province of Reggio Emilia. These phenomena have been widely described in the scientific literature, referring to historical events occurred in many parts of the world. The particular danger of these phenomena is related to their speed of development, with the difficulty of foreseeing their location, but also with the high density of distribution of individual phenomena, whose downhill trajectories have a substantial probability of interfering with urbanized areas. During the event of April 2005 in the Emilia Romagna Apennine, these shallow landslides mainly occurred on slopes of cultivated lands, often provoking the interruption of roads, heavy damages to the farming activities and economic losses. On the basis of an inventory by aerial photograph interpretation, it was possible to locate 45 sites where soil slips occurred. In the present work the study area is described, considering both geological and climatic aspects. The inducing factors, which are relative to the territory morphology, and the outbreak factors of the triggering mechanism, which are relative to the rainfall conditions, are deeply analyzed. Once known geometrical features and soil characteristics of the slopes, for each site a physically based triggering model, that has recently developed by the Authors, has been applied by considering the local scale of the phenomenon. The model allows to take into account dynamically, in a simplified way, the connection between the stability condition of a slope, the characteristics of the soil and rainfall amounts, including also antecedent rainfalls. The model, in fact, is aimed to give an answer to the recent challenge represented by the dynamic use of real-time landslides early warning systems, the basis of which have to be the coupling between rainfall amounts, hydrological model and stability slope models. The triggering model is based on the limit equilibrium method and considers the hypothesis of infinite slope. The model takes into account the mechanical characteristics of the soil, in condition of partial saturation, and the outflow of underground water. The model allows to calculate the safety factor of a slope versus time on the basis of the previous rainfall amount. The paper contains also a detailed explanation of the choice of the model input data that have been used to carry out the procedure of back analysis for the 45 study sites. In particular, the slope angle has been evaluated for each site on the basis of the Digital Elevation Model (DEM) information and the thickness of the soil has been determined on the basis of field observations. Colluvial, regolithic and in general Quaternary deposits are the soils involved in the soil slips considered. On the basis of geological map information and according to the Unified Soil Classification System (USCS), the most common types of soil present in the sample sites resulted silty sand, silty clay and sandy silt. The physical properties of these soils, such as porosity and specific weight, and Mohr-Coulomb shear strength parameters, were assumed taking into account the average values of parameters as reported in the scientific literature for the same types of soils. Other specific model parameters that are directly linked with the type of soil, have been consequently assigned on the basis of previous works carried out by the Authors. Moreover, the parameter that describes the discharge capability of the soil, has been assumed as typical permeability value obtained through field measurements by other Authors, for similar kind of soils and conditions. The results obtained by the application of the model are accurately analyzed and discussed. For each analyzed site, it is shown how the model highlights the instability condition on the real date of the event and the stability condition for the remaining period, under an observation period of 3 years, thus confirming the capability of the model to grasp the triggering mechanism of the analyzed phenomena.

  9. Do we really use rainfall observations consistent with reality in hydrological modelling?

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves

    2017-04-01

    Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.

  10. Soil degradation level under particular annual rainfall at Jenawi District– Karanganyar, Indonesia

    NASA Astrophysics Data System (ADS)

    Herawati, A.; Suntoro; Widijanto, H.; Pusponegoro, I.; Sutopo, N. R.; Mujiyo

    2018-03-01

    The study of the climatic elements such as rainfall is vital for the sustainable development of agriculture at a region. The aims of the study were to evaluate the soil degradation based on the annual rainfall and to determine the key factors which responsible for the soil degradation at in Jenawi Sub-District. The mapping of soil degradation potency is an identification of initial soil condition to discover the potential of the land degradation. The mapping was done by overlaying the map of soil, slope, rainfall and land use with the standard procedures to obtain the value and status of Soil Degradation Potency (SDP). The result showed that SDP in Jenawi District categorized in very low (SDP I) 0.00 ha (0.00%); low (SDP II) 109.01 ha (2.57%); moderate (SDP III) 1,935.92 ha (45.63%); high (SDP IV) 1,959.54 ha (46.19%) and very high (SDP V) 238.08 ha (5.61%). The rainfall is the factor which has the strong correlation with the SDP (r = 0.65, P < 0.01, n = 306). The changes in the rainfall as the impact of climate change need to be anticipated to minimize soil degradation. The result can be adapted to the rainfall changes in various ways based on local soil-land characteristics.

  11. Application of the Nimbus 5 ESMR to rainfall detection over land surfaces

    NASA Technical Reports Server (NTRS)

    Meneely, J. M.

    1975-01-01

    The ability of the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) to detect rainfall over land surfaces was evaluated. The ESMR brightness temperatures (Tb sub B) were compared with rainfall reports from climatological stations for a limited number of rain events over portions of the U.S. The greatly varying emissivity of land surfaces precludes detection of actively raining areas. Theoretical calculations using a ten-layer atmospheric model showed this to be an expected result. Detection of rain which had fallen was deemed feasible over certain types of land surfaces by comparing the Tb sub B fields before and after the rain fell. This procedure is reliable only over relatively smooth terrain having a substantial fraction of bare soil, such as exists in major agricultural regions during the dormant or early growing seasons. Soil moisture budgets were computed at selected sites to show how the observed emissivity responded to changes in the moisture content of the upper soil zone.

  12. A Stand-Alone Demography and Landscape Structure Module for Earth System Models: Integration with Inventory Data from Temperate and Boreal Forests

    NASA Astrophysics Data System (ADS)

    Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2014-12-01

    In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.

  13. The effect of leaf litter cover on surface runoff and soil erosion in Northern China.

    PubMed

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2014-01-01

    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.

  14. The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China

    PubMed Central

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2014-01-01

    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858

  15. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    NASA Astrophysics Data System (ADS)

    Muñoz-Carpena, Rafael; Lauvernet, Claire; Carluer, Nadia

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO) based on a combination of approaches by Salvucci and Entekhabi (1995) and Chu (1997) with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation). The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure) exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes. SWINGO is coupled with an existing VFS model in the companion paper (Lauvernet and Muñoz-Carpena, 2018), where the potential effects of seasonal or permanent WTs on VFS sediment and pesticide trapping are studied.

  16. Comparing a simple methodology to evaluate hydrodynamic parameters with rainfall simulation experiments

    NASA Astrophysics Data System (ADS)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Burguet, Maria; Cerdà, Artemi; Iovino, Massimo; Prosdocimi, Massimo

    2016-04-01

    Studying soil hydraulic properties is necessary for interpreting and simulating many hydrological processes having environmental and economic importance, such as rainfall partition into infiltration and runoff. The saturated hydraulic conductivity, Ks, exerts a dominating influence on the partitioning of rainfall in vertical and lateral flow paths. Therefore, estimates of Ks are essential for describing and modeling hydrological processes (Zimmermann et al., 2013). According to several investigations, Ks data collected by ponded infiltration tests could be expected to be unusable for interpreting field hydrological processes, and particularly infiltration. In fact, infiltration measured by ponding give us information about the soil maximum or potential infiltration rate (Cerdà, 1996). Moreover, especially for the hydrodynamic parameters, many replicated measurements have to be carried out to characterize an area of interest since they are known to vary widely both in space and time (Logsdon and Jaynes, 1996; Prieksat et al., 1994). Therefore, the technique to be applied at the near point scale should be simple and rapid. Bagarello et al. (2014) and Alagna et al. (2015) suggested that the Ks values determined by an infiltration experiment carried applying water at a relatively large distance from the soil surface could be more appropriate than those obtained with a low height of water pouring to explain surface runoff generation phenomena during intense rainfall events. These authors used the Beerkan Estimation of Soil Transfer parameters (BEST) procedure for complete soil hydraulic characterization (Lassabatère et al., 2006) to analyze the field infiltration experiment. This methodology, combining low and high height of water pouring, seems appropriate to test the effect of intense and prolonged rainfall events on the hydraulic characteristics of the surface soil layer. In fact, an intense and prolonged rainfall event has a perturbing effect on the soil surface and, reasonably, it can better be represented by the high runs than the low runs (Alagna et al., 2015). Obviously, this methodology is also simpler than an approach involving soil characterization both before and after natural or simulated rainfall since it needs less equipment and field work. On the other hand, rainfall simulation experiments are more realistic and accurate, but also more sophisticated and costly (Cerdà, 1997). Rainfall simulation is often used to measure the infiltration process (e.g., Bhardwaj and Singh, 1992; Cerdà, 1999, 1997, 1996; Cerdà and Doerr, 2007; Iserloh et al., 2013; Liu et al., 2011; Tricker, 1979), and it has become an important method for assessing the subjects of soil erosion and soil hydrological processes (Iserloh et al., 2013). Its application allows a quick, specific and reproducible assessment of the meaning and impact of several factors, such as slope, soil type (infiltration, permeability), soil moisture, splash effect of raindrops (aggregate stability), surface structure, vegetation cover and vegetation structure (Bowyer-Bower and Burt, 1989). The objectives of this investigation are: (i) to compare infiltration rates measured by applying water at a relatively large distance from the soil surface with those obtained by rainfall simulation experiments and (ii) to verify if the Ks values determined with the BEST procedure are in line with the occurrence of runoff measured with a more robust methodology. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project). References Alagna, V., Bagarello, V., Di Prima, S., Giordano, G., Iovino, M., 2015. Testing infiltration run effects on the estimated hydrodynamic parameters of a sandy-loam soil. Submitted to Geoderma. Bagarello, V., Castellini, M., Di Prima, S., Iovino, M., 2014. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma 213, 492-501. doi:10.1016/j.geoderma.2013.08.032 Bhardwaj, A., Singh, R., 1992. Development of a portable rainfall simulator infiltrometer for infiltration, runoff and erosion studies. Agricultural Water Management 22, 235-248. doi:10.1016/0378-3774(92)90028-U Bouwer, H., 1966. Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resour. Res. 2, 729-738. doi:10.1029/WR002i004p00729 Bowyer-Bower, T.A.S., Burt, T.P., 1989. Rainfall simulators for investigating soil response to rainfall. Soil Technology 2, 1-16. doi:10.1016/S0933-3630(89)80002-9 Cerdà, A., 1999. Simuladores de lluvia y su aplicación a la Geomorfologia: estado de la cuestión. Cuadernos de investigación geográfica 45-84. Cerdà, A., 1997. Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. Journal of Hydrology 198, 209-225. doi:10.1016/S0022-1694(96)03295-7 Cerdà, A., 1996. Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma 69, 217-232. doi:10.1016/0016-7061(95)00062-3 Cerdà, A., Doerr, S.H., 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process. 21, 2325-2336. doi:10.1002/hyp.6755 Iserloh, T., Ries, J.B., Arnáez, J., Boix-Fayos, C., Butzen, V., Cerdà, A., Echeverría, M.T., Fernández-Gálvez, J., Fister, W., Geißler, C., Gómez, J.A., Gómez-Macpherson, H., Kuhn, N.J., Lázaro, R., León, F.J., Martínez-Mena, M., Martínez-Murillo, J.F., Marzen, M., Mingorance, M.D., Ortigosa, L., Peters, P., Regüés, D., Ruiz-Sinoga, J.D., Scholten, T., Seeger, M., Solé-Benet, A., Wengel, R., Wirtz, S., 2013. European small portable rainfall simulators: A comparison of rainfall characteristics. CATENA 110, 100-112. doi:10.1016/j.catena.2013.05.013 Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments - BEST. Soil Science Society of America Journal 70, 521. doi:10.2136/sssaj2005.0026 Liu, H., Lei, T.W., Zhao, J., Yuan, C.P., Fan, Y.T., Qu, L.Q., 2011. Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method. Journal of Hydrology 396, 24-32. doi:10.1016/j.jhydrol.2010.10.028 Logsdon, S.D., Jaynes, D.B., 1996. Spatial Variability of Hydraulic Conductivity in a Cultivated Field at Different Times. Soil Science Society of America Journal 60, 703. doi:10.2136/sssaj1996.03615995006000030003x Prieksat, M.A., Kaspar, T.C., Ankeny, M.D., 1994. Positional and Temporal Changes in Ponded Infiltration in a Corn Field. Soil Science Society of America Journal 58, 181. doi:10.2136/sssaj1994.03615995005800010026x Tricker, A.S., 1979. The design of a portable rainfall simulator infiltrometer. Journal of Hydrology 41, 143-147. doi:10.1016/0022-1694(79)90111-2 van De Giesen, N.C., Stomph, T.J., de Ridder, N., 2000. Scale effects of Hortonian overland flow and rainfall-runoff dynamics in a West African catena landscape. Hydrol. Process. 14, 165-175. doi:10.1002/(SICI)1099-1085(200001)14:1<165::AID-HYP920>3.0.CO;2-1 Zimmermann, A., Schinn, D.S., Francke, T., Elsenbeer, H., Zimmermann, B., 2013. Uncovering patterns of near-surface saturated hydraulic conductivity in an overland flow-controlled landscape. Geoderma 195-196, 1-11. doi:10.1016/j.geoderma.2012.11.002

  17. The canopy interception-landslide initiation conundrum: insight from a tropical secondary forest in northern Thailand

    NASA Astrophysics Data System (ADS)

    Sidle, Roy C.; Ziegler, Alan D.

    2017-01-01

    The interception and smoothing effect of forest canopies on pulses of incident rainfall and its delivery to the soil has been suggested as a factor in moderating peak pore water pressure in soil mantles, thus reducing the risk of shallow landslides. Here we provide 3 years of rainfall and throughfall data in a tropical secondary dipterocarp forest characterized by few large trees in northern Thailand, along with selected soil moisture dynamics, to address this issue. Throughfall was an estimated 88 % of rainfall, varying from 86 to 90 % in individual years. Data from 167 events demonstrate that canopy interception was only weakly associated (via a nonlinear relationship) with total event rainfall, but not significantly correlated with duration, mean intensity, or antecedent 2-day precipitation (API2). Mean interception during small events (≤ 35 mm) was 17 % (n = 135 events) compared with only 7 % for large events (> 35 mm; n = 32). Examining small temporal intervals within the largest and highest intensity events that would potentially trigger landslides revealed complex patterns of interception. The tropical forest canopy had little smoothing effect on incident rainfall during the largest events. During events with high peak intensities, high wind speeds, and/or moderate-to-high pre-event wetting, measured throughfall was occasionally higher than rainfall during large event peaks, demonstrating limited buffering. However, in events with little wetting and low-to-moderate wind speed, early event rainfall peaks were buffered by the canopy. As rainfall continued during most large events, there was little difference between rainfall and throughfall depths. A comparison of both rainfall and throughfall depths to conservative mean intensity-duration thresholds for landslide initiation revealed that throughfall exceeded the threshold in 75 % of the events in which rainfall exceeded the threshold for both wet and dry conditions. Throughfall intensity for the 11 largest events (rainfall = 65-116 mm) plotted near or above the intensity-duration threshold for landslide initiation during wet conditions; 5 of the events were near or above the threshold for dry conditions. Soil moisture responses during large events were heavily and progressively buffered at depths of 1 to 2 m, indicating that the timescale of any short-term smoothing of peak rainfall inputs (i.e., ≤ 1 h) has little influence on peak pore water pressure at depths where landslides would initiate in this area. Given these findings, we conclude that canopy interception would have little effect on mitigating shallow landslide initiation during the types of monsoon rainfall conditions in this and similar tropical secondary forest sites.

  18. Designing laboratory rainfall simulation experiments to examine the effects of a layer of vegetative ash on soil hydrology in Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Cerdà, Artemi; Doerr, Stefan H.; Mataix-Solera, Jorge

    2010-05-01

    Vegetative ash formed during forest wildfires often blankets the ground. Some studies have found the ash layer to increases infiltration by storing rainfall and protecting the underlying soil from sealing (Cerdà, and Doerr, 2008; Woods and Balfour, 2008), but at the same time, others identified it as a potential cause of increased overland flow due to sealing the soil pores or crusting (Mallik et al., 1984; Onda et al., 2008). The variability in the effects of ash depends mainly on the ash type and temperature of combustion, ash thickness and soil type (Kinner and Moody, 2007; Larsen et al., 2009). In order to study the effect of the ash layer on the soil hydrology and soil erosion under i) intense thunderstorms, ii) wettable and water repellent soil and iii) different ash thicknesses, rainfall simulation experiments were performed in a small plot (0.09 m2) in order to reach the highest accuracy. The simulator comprises a constant head tank of 40x40 cm with 190 hypodermic needles of 0.5 mm. A randomization screen served to break up the raindrops and ensure random drop landing positions (Kamphorst, 1987). The average of the intensities applied in the experiment was 82.5 ± 4.13 mm h-1 during 40 minutes. In order to verify the constancy of the intensity it was measured before and after each simulation. The rainfall was conducted in a metal box of 30x30 cm within 1 m of distance from the randomization screen. The slope of the box was set at 10° (17%). It is designed to collect overland flow and subsurface flow through the soil. Each rainfall simulation was conducted on 3 cm of both wettable and water repellent soil (WDPT>7200s). They are the same soil but one transformed into hydrophobic. The treatments carried out are: a) bare soil, b) 5 mm of ash depth, c) 15 mm of ash depth and d) 30 mm of ash depth, with three replicates. The ash was collected from a wildfire and the thicknesses are in the range of the reported in the literature. The first replicate was used for analysis of water repellency, infiltration pattern and ash incorporation into the soil and the other replicates are used for a second rainfall, one after 24 hours and the other after being dried 4 days in the oven at 25°C. In total there were 40 simulations. Overland flow and subsurface drainage were collected at 1-minute intervals and the forms was stored every 5 min to allow determination of sediment concentrations, yield and erosion rates. The experiment was completed with the installation of two moisture sensors at 1.5 cm of the soil and four splash cups that allowed determining the splash detachment at the end on the simulation. The importance in this series of experiments is the reproducibility and comparison of the different thicknesses of ash with the wettable and repellent soil. The results demonstrate that ash is a key factor on the post-fire soil erosion and hydrology and that rainfall simulation is a key tool to improve knowledge on low frequency - high magnitude events. References Cerdà, A. and Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74: 256-263. Kamphorst, A., 1987. A small rainfall simulator for the determination of soil erodibility. Neth J Agric Sci 35, pp. 407-415. Kinner, D.A. and Moody, J.A., 2007. Infiltration and runoff measurements on steep burned hillslope using a rainfall simulator with variable rain intensities, U.S. Department of the Interior U.S. Geological Survey. Larsen, I.J. et al., 2009. Causes of post-fire runoff and erosion: water repellency, cover, or soil sealing? Soil Science SOciety American Journal 73: 1393-1407. Mallik, A.U., Gimingham, C.H. and Rahman, A.A., 1984. Ecological effects of heater burning. I. Water infiltration, moisture retention and porosity of surface soil. Journal of Ecology, 72: 767-776. Onda, Y., Dietrich, W.E. and Booker, F., 2008. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena, 72: 13-20. Woods, S.W. and Balfour, V., 2008. The effect of ash on runoff and erosion after a forest wildfire, Montana, U.S.A. International Journal of Wildland Fire, 17(5): 535-548.

  19. Soybean supplementation increases the resilience of microbial and nematode communities in soil to extreme rainfall in an agroforestry system.

    PubMed

    Sun, Feng; Pan, Kaiwen; Li, Zilong; Wang, Sizhong; Tariq, Akash; Olatunji, Olusanya Abiodun; Sun, Xiaoming; Zhang, Lin; Shi, Weiyu; Wu, Xiaogang

    2018-06-01

    A current challenge for ecological research in agriculture is to identify ways in which to improve the resilience of the soil food web to extreme climate events, such as severe rainfall. Plant species composition influence soil biota communities differently, which might affect the recovery of soil food web after extreme rainfall. We compared the effects of rainfall stress up on the soil microbial food web in three planting systems: a monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Medicago sativa or Z. bungeanum and Glycine max. We tested the effect of the presence of a legume on the recovery of trophic interactions between microorganisms and nematodes after extreme rainfall. Our results indicated that all chemical properties of the soil recovered to control levels (normal rainfall) in the three planting systems 45 days after exposure to extreme rain. However, on day 45, the bulk microbial community differed from controls in the monoculture treatment, but not in the two mixed planting treatments. The nematode community did not fully recover in the monoculture or Z. bungeanum and M. sativa treatments, while nematode populations in the combined Z. bungeanum and G. max treatment were indistinguishable from controls. G. max performed better than M. sativa in terms of increasing the resilience of microbial and nematode communities to extreme rainfall. Soil microbial biomass and nematode density were positively correlated with the available carbon and nitrogen content in soil, demonstrating a link between soil health and biological properties. This study demonstrated that certain leguminous plants can stabilize the soil food web via interactions with soil biota communities after extreme rainfall. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Improving long-term global precipitation dataset using multi-sensor surface soil moisture retrievals and the soil moisture analysis rainfall tool (SMART)

    USDA-ARS?s Scientific Manuscript database

    Using multiple historical satellite surface soil moisture products, the Kalman Filtering-based Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available rain g...

  1. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet-up and between seasons and treatments. Overall, microbial activity may directly (C respiration) and indirectly (enzyme potential) reduce soil organic matter pools less in drier soils, and soil C sequestration potential (CUE) may be higher in soils with a history of extended dry periods between rainfall events. The implications include that soil C loss may be reduced or compensated for via different mechanisms at varying time scales, and that microbial taxa with better stress tolerance or growth efficiency may be associated with these functional shifts.

  2. Influence of land use on rainfall simulation results in the Souss basin, Morocco

    NASA Astrophysics Data System (ADS)

    Peter, Klaus Daniel; Ries, Johannes B.; Hssaine, Ali Ait

    2013-04-01

    Situated between the High and Anti-Atlas, the Souss basin is characterized by a dynamic land use change. It is one of the fastest growing agricultural regions of Morocco. Traditional mixed agriculture is replaced by extensive plantations of citrus fruits, bananas and vegetables in monocropping, mainly for the European market. For the implementation of the land use change and further expansion of the plantations into marginal land which was former unsuitable for agriculture, land levelling by heavy machinery is used to plane the fields and close the widespread gullies. These gully systems are cutting deep between the plantations and other arable land. Their development started already over 400 years ago with the introduction of sugar production. Heavy rainfall events lead to further strong soil and gully erosion in this with 200 mm mean annual precipitation normally arid region. Gullies are cutting into the arable land or are re-excavating their old stream courses. On the test sites around the city of Taroudant, a total of 122 rainfall simulations were conducted to analyze the susceptibility of soils to surface runoff and soil erosion under different land use. A small portable nozzle rainfall simulator is used for the rainfall simulation experiments, quantifying runoff and erosion rates on micro-plots with a size of 0.28 m2. A motor pump boosts the water regulated by a flow metre into the commercial full cone nozzle at a height of 2 m. The rainfall intensity is maintained at about 40 mm h-1 for each of the 30 min lasting experiments. Ten categories of land use are classified for different stages of levelling, fallow land, cultivation and rangeland. Results show that mean runoff coefficients and mean sediment loads are significantly higher (1.4 and 3.5 times respectively) on levelled study sites compared to undisturbed sites. However, the runoff coefficients of all land use types are relatively equal and reach high median coefficients from 39 to 56 %. Only the rainfall simulations underneath mandarin trees in a plantation show with 10 % low coefficients. The results are stronger differentiated for the sediment loads. On levelled areas, the simulations reach median sediment loads of 41 and 61 g m-2 respectively. In spite of high runoff coefficients, the lowest sediment loads of around 4.5 g m-2 are measured on old fallow land (>5 y.) and rangeland which are both protected by biological crusts. The same low result is found on the mandarin plantation. On other younger fallow land (1-2, 2-5 y.) as well as on stone covered badlands and sundry anthropogenic influenced soils medium soil losses between 18 and 25 g m-2 are reached. On sparsely vegetated grain fields, soil erosion is because of initiated crusting despite lower runoff coefficients with 30 g m-2 still high. Land-levelling measures have the greatest influence on rainfall simulation results. Although runoff coefficients on almost all land use types are similar, clear differences of soil erosion due to different land use can be identified.

  3. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  4. Rainfall-induced soil aggregate breakdown in field experiments at different rainfall intensities and initial soil moisture conditions

    NASA Astrophysics Data System (ADS)

    Shi, Pu; Thorlacius, Sigurdur; Keller, Thomas; Keller, Martin; Schulin, Rainer

    2017-04-01

    Soil aggregate breakdown under rainfall impact is an important process in interrill erosion, but is not represented explicitly in water erosion models. Aggregate breakdown not only reduces infiltration through surface sealing during rainfall, but also determines the size distribution of the disintegrated fragments and thus their availability for size-selective sediment transport and re-deposition. An adequate representation of the temporal evolution of fragment mass size distribution (FSD) during rainfall events and the dependence of this dynamics on factors such as rainfall intensity and soil moisture content may help improve mechanistic erosion models. Yet, little is known about the role of those factors in the dynamics of aggregate breakdown under field conditions. In this study, we conducted a series of artificial rainfall experiments on a field silt loam soil to investigate aggregate breakdown dynamics at different rainfall intensity (RI) and initial soil water content (IWC). We found that the evolution of FSD in the course of a rainfall event followed a consistent two-stage pattern in all treatments. The fragment mean weight diameter (MWD) drastically decreased in an approximately exponential way at the beginning of a rainfall event, followed by a further slow linear decrease in the second stage. We proposed an empirical model that describes this temporal pattern of MWD decrease during a rainfall event and accounts for the effects of RI and IWC on the rate parameters. The model was successfully tested using an independent dataset, showing its potential to be used in erosion models for the prediction of aggregate breakdown. The FSD at the end of the experimental rainfall events differed significantly among treatments, indicating that different aggregate breakdown mechanisms responded differently to the variation in initial soil moisture and rainfall intensity. These results provide evidence that aggregate breakdown dynamics needs to be considered in a case-specific manner in modelling sediment mobilization and transport during water erosion events.

  5. Runoff and soil erosion of field plots in a subtropical mountainous region of China

    NASA Astrophysics Data System (ADS)

    Fang, N. F.; Wang, L.; Shi, Z. H.

    2017-09-01

    Anthropogenic pressure coupled with strong precipitation events and a mountainous landscape have led to serious soil erosion and associated problems in the subtropical climate zone of China. This study analyzes 1576 rainfall-runoff-soil loss events at 36 experimental plots (a total of 148 plot-years of data) under a wide range of conditions in subtropical mountainous areas of China where slope farming is commonly practiced. The plots, which have standardized dimensions, represent five common types of land use and have four different slopes. Event-based analyses show that almost half of the total rainfall caused soil erosion in the study area. The dominant factor controlling the runoff coefficient is the slope gradient rather than the land use type. The maximum soil lossfor crop plots under steep tillage (35°) is 5004 t km-2 for a single event. Among the common local crops, the average soil loss values increase in the following order: buckwheat < mung bean < sesame. Among the most widespread grasses, orchards and crops, the soil loss increase in the following order: red clover < nectarine < orange < maize. A large proportion of the soil loss is caused by a small number of extreme events. The annual average soil loss of the 44 plots ranges from 19 to 4090 t km-2 year-1. The annual soil loss of plots of different land use types decrease in the following order: bare land (1533 t km-2 year-1) > cropland (1179 t km-2 year-1) > terraced cropland (1083 t km-2 year-1) > orchard land (1020 t km-2 year-1) > grassland (762 t km-2 year-1) > terraced orchard land (297 t km-2 year-1) > forest and grassland (281 t km-2 year-1).

  6. An Establishment of Rainfall-induced Soil Erosion Index for the Slope Land in Watershed

    NASA Astrophysics Data System (ADS)

    Tsai, Kuang-Jung; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Shu, Chia-Chun; Chen, Ying-Hui

    2014-05-01

    With more and more concentrated extreme rainfall events as a result of climate change, in Taiwan, mass cover soil erosion occurred frequently and led to sediment related disasters in high intensity precipiton region during typhoons or torrential rain storms. These disasters cause a severely lost to the property, public construction and even the casualty of the resident in the affected areas. Therefore, we collected soil losses by using field investigation data from the upstream of watershed where near speific rivers to explore the soil erosion caused by heavy rainfall under different natural environment. Soil losses induced by rainfall and runoff were obtained from the long-term soil depth measurement of erosion plots, which were established in the field, used to estimate the total volume of soil erosion. Furthermore, the soil erosion index was obtained by referring to natural environment of erosion test plots and the Universal Soil Loss Equation (USLE). All data collected from field were used to compare with the one obtained from laboratory test recommended by the Technical Regulation for Soil and Water Conservation in Taiwan. With MATLAB as a modeling platform, evaluation model for soil erodibility factors was obtained by golden section search method, considering factors contributing to the soil erosion; such as degree of slope, soil texture, slope aspect, the distance far away from water system, topography elevation, and normalized difference vegetation index (NDVI). The distribution map of soil erosion index was developed by this project and used to estimate the rainfall-induced soil losses from erosion plots have been established in the study area since 2008. All results indicated that soil erodibility increases with accumulated rainfall amount regardless of soil characteristics measured in the field. Under the same accumulated rainfall amount, the volume of soil erosion also increases with the degree of slope and soil permeability, but decreases with the shear strength of top soil within 30 cm and the coverage of vegetation. The slope plays more important role than the soil permeability on soil erosion. However, soil losses are not proportional to the hardness of top soil or subsurface soil. The empirical formula integrated with soil erosion index map for evaluating soil erodibility obtained from optimal numerical search method can be used to estimate the soil losses induced by rainfall and runoff erosion on slope land in Taiwan. Keywords: Erosion Test Plot, Soil Erosion, Optimal Numerical Search, Universal Soil Loss Equation.

  7. Lysimeter study to investigate the effect of rainfall patterns on leaching of isoproturon.

    PubMed

    Beulke, Sabine; Brown, Colin D; Fryer, Christopher J; Walker, Allan

    2002-01-01

    The influence of five rainfall treatments on water and solute leaching through two contrasting soil types was investigated. Undisturbed lysimeters (diameter 0.25 m, length 0.5 m) from a sandy loam (Wick series) and a moderately structured clay loam (Hodnet series) received autumn applications of the radio-labelled pesticide isoproturon and bromide tracer. Target rainfall plus irrigation from the end of November 1997 to May 1998 ranged from drier to wetter than average (235 to 414 mm); monthly rainfall was varied according to a pre-selected pattern or kept constant (triplicate lysimeters per regime). Leachate was collected at intervals and concentrations of the solutes were determined. Total flow (0.27-0.94 pore volumes) and losses of bromide (3-80% of applied) increased with increasing inputs of water and were larger from the Wick sandy loam than from the Hodnet clay loam soil. Matrix flow appeared to be the main mechanism for transport of isoproturon through the Wick soil whereas there was a greater influence of preferential flow for the Hodnet lysimeters. The total leached load of isoproturon from the Wick lysimeters was 0.02-0.26% of that applied. There was no clear variation in transport processes between the rainfall treatments investigated for this soil and there was an approximately linear relationship (r2 = 0.81) between leached load and total flow. Losses of isoproturon from the Hodnet soil were 0.03-0.39% of applied and there was evidence of enhanced preferential flow in the driest and wettest treatments. Leaching of isoproturon was best described by an exponential relationship between load and total flow (r2 = 0.62). A 45% increase in flow between the two wettest treatments gave a 100% increase in leaching of isoproturon from the Wick soil. For the Hodnet lysimeters, a 35% increase in flow between the same treatments increased herbicide loss by 325%.

  8. Evidence of climatic effects on soil, vegetation and landform in temperate forests of south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Inbar, Assaf; Nyman, Petter; Lane, Patrick; Sheridan, Gary

    2016-04-01

    Water and radiation are unevenly distributed across the landscape due to variations in topography, which in turn causes water availability differences on the terrain according to elevation and aspect orientation. These differences in water availability can cause differential distribution of vegetation types and indirectly influence the development of soil and even landform, as expressed in hillslope asymmetry. While most of the research on the effects of climate on the vegetation and soil development and landscape evolution has been concentrated in drier semi-arid areas, temperate forested areas has been poorly studied, particularly in South Eastern Australia. This study uses soil profile descriptions and data on soil depth and landform across climatic gradients to explore the degrees to which coevolution of vegetation, soils and landform are controlled by radiative forcing and rainfall. Soil depth measurements were made on polar and equatorial facing hillslopes located at 3 sites along a climatic gradient (mean annual rainfall between 700 - 1800 mm yr-1) in the Victorian Highlands, where forest types range from dry open woodland to closed temperate rainforest. Profile descriptions were taken from soil pits dag on planar hillslopes (50 m from ridge), and samples were taken from each horizon for physical and chemical properties analysis. Hillslope asymmetry in different precipitation regimes of the study region was quantified from Digital Elevation Models (DEMs). Significant vegetation differences between aspects were noted in lower and intermediate rainfall sites, where polar facing aspects expressed higher overall biomass than the drier equatorial slope. Within the study domain, soil depth was strongly correlated with forest type and above ground biomass. Soil depths and chemical properties varied between topographic aspects and along the precipitation gradient, where wetter conditions facilitate deeper and more weathered soils. Furthermore, soil depths showed different patterns as a function of contributing area. While soils on the polar facing slope became deeper, soils on the equatorial facing slope kept a uniform depth with increasing contributing area, pointing to different governing geomorphic processes at work. Using slope-area relationships analysis, polar facing slopes were found to be generally steeper and with longer distance to channel initiation point (if existent) than that of the equatorial facing slopes, strengthening the evidence of climate-affected differential geomorphic processes shaping the hillslope form. The results point out to the effect of climate on the development and coevolution of soil, vegetation and landform in the temperate part of Australia.

  9. Controlling factors for infiltration on undisturbed hillslopes in unmanaged plantation forests

    NASA Astrophysics Data System (ADS)

    Hiraoka, Marino; Onda, Yuichi; Gomi, Takashi; Mizugaki, Shigeru; Nanko, Kazuki; Kato, Hiroaki

    2017-04-01

    Infiltration into the soil is a crucial factor for predicting overland flow generation. Infiltration capacity strongly relates to ground vegetation, soil characteristics, or both. For revealing controlling factors for infiltration capacity, we conducted in-situ rainfall simulation using an oscillating-nozzle type rainfall simulator at 26 plots with different ground cover conditions of unmanaged Japanese cypress (Chamaecyparis obtusa) plantations. For wide-ranging vegetation cover condition (0-100%), infiltration capacity widely varied (5-322 mm/h) and had positive correlations with indices of ground vegetation and ground litter (p < 0.01). For a limited vegetation cover condition (0-20%), the range of infiltration capacity (7-114 mm/h) was associated with ground litter thickness (p < 0.05), and difference in soil organic matter and difference in soil bulk density. Principal component analysis showed that the first and second principal components (70% of total variation) related to changes in above- and below-ground biomass and changes in pores in soil. Our findings showed that development of ground vegetation alters hydrological processes of surface soil through changes in soil characteristics via the propagation of belowground biomass development.

  10. Relationship of climate, geography, and geology to the incidence of Rift Valley fever in Kenya during the 2006-2007 outbreak.

    PubMed

    Hightower, Allen; Kinkade, Carl; Nguku, Patrick M; Anyangu, Amwayi; Mutonga, David; Omolo, Jared; Njenga, M Kariuki; Feikin, Daniel R; Schnabel, David; Ombok, Maurice; Breiman, Robert F

    2012-02-01

    We estimated Rift Valley fever (RVF) incidence as a function of geological, geographical, and climatological factors during the 2006-2007 RVF epidemic in Kenya. Location information was obtained for 214 of 340 (63%) confirmed and probable RVF cases that occurred during an outbreak from November 1, 2006 to February 28, 2007. Locations with subtypes of solonetz, calcisols, solonchaks, and planosols soil types were highly associated with RVF occurrence during the outbreak period. Increased rainfall and higher greenness measures before the outbreak were associated with increased risk. RVF was more likely to occur on plains, in densely bushed areas, at lower elevations, and in the Somalia acacia ecological zone. Cases occurred in three spatial temporal clusters that differed by the date of associated rainfall, soil type, and land usage.

  11. The Earth on the Other Side of Life (Invited)

    NASA Astrophysics Data System (ADS)

    Amundson, R.; Ewing, S. A.; Owen, J. J.

    2010-12-01

    There are important reasons for examining the role of life on Earth surface processes, including better understanding the long term feedbacks between the geosphere and biosphere that maintain Earth habitability, and bracing for the cumulative impact of the Earth’s most invasive species (Homo sapiens) on the earth system. Coming to grips with the importance of life is simply a matter of recognizing the obvious: life mantles most of the planet’s surface and the planet’s climatic boundary conditions would be profoundly different if life on Earth had not evolved. Nearly every process on this planet is mediated in some way by biology . The most difficult aspect of deciphering the exact role of life on Earth surface processes is observationally identifying a “control experiment”- e.g. one where life does not exist. Planetary habitability is linked to the presence of liquid water. Thus, there are two regions on Earth that largely fall outside the rainfall limits of life and that have maintained nearly abiotic conditions for millions of years: the Atacama Desert of northern Chile (warm and very dry) and the Dry Valleys of Antarctica (very cold and dry). Here, we examine the Atacama Desert for the reason that it is the dry end of a continuous decline in rainfall with decreasing latitude in western South America, such that (almost imperceptibly) one eventually crosses a rainfall threshold beyond which most life ceases to exist. The consequence of soil and geomorphic studies along this rainfall gradient have revealed that several important earth surface processes vary montonically with declining rainfall up to the point where vascular plants disappear. At this point, the rates or types of key processes appear to undergo fundamental changes. Geomorphically, soil production/hillslope denudation rates vary within a window of rates over broad ranges in rainfall. However, at the biotic abiotic boundary, erosion rates decline in concert with rainfall. This pattern appears to be related to the feedbacks between soil thickness and soil production rates, and the impact of biology on both reducing surface erosion, and in enhancing the conversion of saprolite to soil. Once plants no longer exist, soil is rapidly stripped as the biological controls are removed. As aridity increases further, soils reappear on the hillslopes due to dust/salt accumulation, but the processes of both soil production and transport shift to slow abiotic mechanisms. Geochemically, N content in soils declines monotonically with rainfall up to the point that plants diappear. At that point, N cycling shifts to entirely abiotic mechanisms, allowing the accumulation of the unusal nitrate deposits that characterize this desert. While the parts of earth without life are unusually dry and/or cold, they offer unique, but also complex, perspectives into the sometimes overwhelming role that life plays on the earth surface. The true challenge to the geosciences is to rapidly acquire this knowledge in order to predict the trajectory of a changing world.

  12. Concentration and spectroscopic characteristics of DOM in surface runoff and fracture flow in a cropland plot of a loamy soil.

    PubMed

    Xian, Qingsong; Li, Penghui; Liu, Chen; Cui, Junfang; Guan, Zhuo; Tang, Xiangyu

    2018-05-01

    Being crucial for predicting the impact of source inputs on a watershed in rainfall events, an understanding of the dynamics and characteristics of dissolved organic matter (DOM) export from the soil under particular land use types, particularly those associated with underground flows is still largely lacking. A field study was carried out using a 1500m 2 slope farmland plot in the hilly area of Sichuan Basin, Southwest China. The discharge of surface runoff and fracture flow was recorded and samples were collected in four representative rainfall events. For DOM characterization, concentration of dissolved organic carbon (DOC) and absorbance/excitation-emission matrix (EEM) fluorescence were analyzed. Soil water potential was also determined using tensiometers for understanding the runoff generation mechanisms. The DOC values for both surface and fracture flow showed significant responses to rainfall, with hydrological path being the primary factor in determining DOM dynamics. EEM-PARAFAC analyses indicated that the soil DOM mainly consisted of two terrestrial humic-like components with peaks located at Ex/Em 270(380)/480nm (C1) and 250(320)/410nm (C2), respectively. Concentrations of these components also responded strongly to rainfall, fluctuating in good agreement with the corresponding DOCs. Although there was no change in the presence of the components themselves, their relative distributions varied during precipitation, with the C1/C2 ratio increasing with the proportion of soil pre-event water. As the dynamic changes of soil DOM characteristics can be successfully captured using spectroscopic techniques, they may serve as a tracer for understanding hydrological paths based on their potential correlations with water source differences during rains. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biophysical response of dryland soils to rainfall: implications for wind erosion

    NASA Astrophysics Data System (ADS)

    Bullard, J. E.; Strong, C. L.; Aubault, H.

    2016-12-01

    Dryland soils can be highly susceptible to wind erosion due to low vegetation cover. The formation of physical and biological soil crusts between vascular plants can exert some control on the soil surface erodibility. The development of these crusts is highly dependent on rainfall which causes sediment compaction and aggregate breakdown, and triggers photosynthetic activity and an increase soil organic matter within biological soil crusts. Using controlled field experiments, this study tests how biological soil crusts in different dryland geomorphic settings respond to various rainfall amounts (0, 5 or 10 mm) and how this in turn affects the resistance of soils to wind erosion. Results show that 10 mm of rainfall triggers more intense photosynthetic activity (high fluorescence) and a greater increase in extracellular polysaccharide content in biological crusts than 5 mm of rainfall but that the duration of photosynthetic activity is comparable for both quantities of rain. These biological responses have little impact on surface resistance, but results show that soils are more susceptible to wind erosion after rainfall events than in their initial dry state. This unexpected result could be explained by the detachment of surface sediments by raindrop impact and overland flow. The study highlights the complexity of soil erodibility at small scale which is driven by rain, wind and crust, and a necessity to understand how the spatial heterogeneity of crust and their ecophysiology alters small scale processes.

  14. The partitioning of litter carbon during litter decomposition under different rainfall patterns: a laboratory study

    NASA Astrophysics Data System (ADS)

    Yang, X.; Szlavecz, K. A.; Langley, J. A.; Pitz, S.; Chang, C. H.

    2017-12-01

    Quantifying litter C into different C fluxes during litter decomposition is necessary to understand carbon cycling under changing climatic conditions. Rainfall patterns are predicted to change in the future, and their effects on the fate of litter carbon are poorly understood. Soils from deciduous forests in Smithsonian Environmental Research Center (SERC) in Maryland, USA were collected to reconstruct soil columns in the lab. 13C labeled tulip poplar leaf litter was used to trace carbon during litter decomposition. Top 1% and the mean of 15-minute historical precipitation data from nearby weather stations were considered as extreme and control rainfall intensity, respectively. Both intensity and frequency of rainfall were manipulated, while the total amount was kept constant. A pulse of CO2 efflux was detected right after each rainfall event in the soil columns with leaf litter. After the first event, CO2 efflux of the control rainfall treatment soils increased to threefold of the CO2 efflux before rain event and that of the extreme treatment soils increased to fivefold. However, in soils without leaf litter, CO2 efflux was suppressed right after rainfall events. After each rainfall event, the leaf litter contribution to CO2 efflux first showed an increase, decreased sharply in the following two days, and then stayed relatively constant. In soil columns with leaf litter, the order of cumulative CO2 efflux was control > extreme > intermediate. The order of cumulative CO2 efflux in the bare soil treatment was extreme > intermediate > control. The order of volume of leachate from different treatments was extreme > intermediate > control. Our initial results suggest that more intense rainfall events result in larger pulses of CO2, which is rarely measured in the field. Additionally, soils with and without leaf litter respond differently to precipitation events. This is important to consider in temperate regions where leaf litter cover changes throughout the year. Including the rainfall pattern as a parameter to the partitioning of litter carbon could help better project soil carbon cycling in the Mid-Atlantic region.

  15. Effect of rainfall seasonality on carbon storage in tropical dry ecosystems

    NASA Astrophysics Data System (ADS)

    Rohr, Tyler; Manzoni, Stefano; Feng, Xue; Menezes, Rômulo S. C.; Porporato, Amilcare

    2013-07-01

    seasonally dry conditions are typical of large areas of the tropics, their biogeochemical responses to seasonal rainfall and soil carbon (C) sequestration potential are not well characterized. Seasonal moisture availability positively affects both productivity and soil respiration, resulting in a delicate balance between C deposition as litterfall and C loss through heterotrophic respiration. To understand how rainfall seasonality (i.e., duration of the wet season and rainfall distribution) affects this balance and to provide estimates of long-term C sequestration, we develop a minimal model linking the seasonal behavior of the ensemble soil moisture, plant productivity, related C inputs through litterfall, and soil C dynamics. A drought-deciduous caatinga ecosystem in northeastern Brazil is used as a case study to parameterize the model. When extended to different patterns of rainfall seasonality, the results indicate that for fixed annual rainfall, both plant productivity and soil C sequestration potential are largely, and nonlinearly, dependent on wet season duration. Moreover, total annual rainfall is a critical driver of this relationship, leading at times to distinct optima in both production and C storage. These theoretical predictions are discussed in the context of parameter uncertainties and possible changes in rainfall regimes in tropical dry ecosystems.

  16. Soil physicochemical properties to evaluate soil degradation under different land use types in a high rainfall tropical region: A case study from South Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Lopulisa, C.; Imran, A. M.; Baja, S.

    2018-05-01

    Intensive cropping in the tropical region always becomes one of important driving forces of soil degradation. The primary aim of this study is to analyze the states and the dynamics of soil physicochemical properties to evaluate soil degradation in the tropical region a high rainfall on agricultural areas in South Sulawesi. A number of soil characteristics were analyzed for physical and chemical properties, and clay minerals with X-ray diffractometer. The degree of soil degradation is determined using Wischmeier and Smith equation. This study reveals that mean annual precipitation in 1979-2016 ranged from 1853.15 to 2981.30 mm/year. For land used for paddy field, palm oil, cacao and coffee plantation, the texture dominated with silt loam-clay loam, cation exchange capacity was 18.63-26.32 cmol+ kg-1, 0.98-2.91% of C-organic, 32-55% of base saturation, 0.1-3.5 cm h-1 of permeability, soil clay minerals were montmorillonite-kaolinite-halloysite, and the index erodibility was 0.3-0.5. Land used for mixed plants and shrubs, the texture dominated with silt loam-sandy clay loam, cation exchange capacity was 18.63-27.12 cmol+ kg-1, 1.09-2.89% of C-organic, 32-55% of base saturation, 0.2-4.9 cm/h of permeability, soil clay minerals were kaolinite-halloysite, and index erodibility was 0.1-0.3. Land use for cultivated in the high intensity of rainfall has changed the physicochemical properties of soils, but cultivated in monoculture has at some degree increased soil erodibility.

  17. Experimental study on soluble chemical transfer to surface runoff from soil.

    PubMed

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  18. Depth-dependent inactivation of Escherichia coli and Enterococcus faecalis in soil after manure application and simulated rainfall

    USDA-ARS?s Scientific Manuscript database

    E.coli and Enterococcus serve as important water quality indicator organisms. Rainfall action on manured fields and pastures releases these organisms into soil with infiltrating water. They can then be released back to runoff during subsequent rainfall or irrigation events as soil solution interacts...

  19. Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin, China.

    PubMed

    Shi, Rongguang; Xu, Mengmeng; Liu, Aifeng; Tian, Yong; Zhao, Zongshan

    2017-10-14

    Rainfall runoff can remove certain amounts of pollutants from contaminated farmland soil and result in a decline in water quality. However, the leaching behaviors of polycyclic aromatic hydrocarbons (PAHs) with rainfall have been rarely reported due to wide variations in the soil compositions, rainfall conditions, and sources of soil PAHs in complex farmland ecosystems. In this paper, the levels, spatial distributions, and composition profiles of PAHs in 30 farmland soil samples and 49 rainfall-runoff samples from the Tianjin region in 2012 were studied to investigate their leaching behaviors caused by rainfall runoff. The contents of the Σ 16 PAHs ranged from 58.53 to 3137.90 μg/kg in the soil and 146.58 to 3636.59 μg/L in the runoff. In total, most of the soil sampling sites (23 of 30) were contaminated, and biomass and petroleum combustion were proposed as the main sources of the soil PAHs. Both the spatial distributions of the soil and the runoff PAHs show a decreasing trend moving away from the downtown, which suggested that the leaching behaviors of PAHs in a larger region during rainfall may be mainly affected by the compounds themselves. In addition, 4- and 5-ring PAHs are the dominant components in farmland soil and 3- and 4-ring PAHs dominate the runoff. Comparisons of the PAH pairs and enrichment ratios showed that acenaphthylene, acenaphthene, benzo[a]anthracene, chrysene, and fluoranthene were more easily transferred into water systems from soil than benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, and indeno[123-cd]pyrene, which indicated that PAHs with low molecular weight are preferentially dissolved due to their higher solubility compared to those with high molecular weight.

  20. Precipitation Regime Shift Enhanced the Rain Pulse Effect on Soil Respiration in a Semi-Arid Steppe

    PubMed Central

    Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi

    2014-01-01

    The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m−2) and 39.6% (61.7 g C m−2) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r 2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953–2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953–2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change. PMID:25093573

  1. Precipitation regime shift enhanced the rain pulse effect on soil respiration in a semi-arid steppe.

    PubMed

    Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi

    2014-01-01

    The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m(-2)) and 39.6% (61.7 g C m(-2)) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953-2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953-2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change.

  2. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards.

    PubMed

    Prosdocimi, Massimo; Burguet, Maria; Di Prima, Simone; Sofia, Giulia; Terol, Enric; Rodrigo Comino, Jesús; Cerdà, Artemi; Tarolli, Paolo

    2017-01-01

    Soil water erosion is a serious problem, especially in agricultural lands. Among these, vineyards deserve attention, because they constitute for the Mediterranean areas a type of land use affected by high soil losses. A significant problem related to the study of soil water erosion in these areas consists in the lack of a standardized procedure of collecting data and reporting results, mainly due to a variability among the measurement methods applied. Given this issue and the seriousness of soil water erosion in Mediterranean vineyards, this works aims to quantify the soil losses caused by simulated rainstorms, and compare them with each other depending on two different methodologies: (i) rainfall simulation and (ii) surface elevation change-based, relying on high-resolution Digital Elevation Models (DEMs) derived from a photogrammetric technique (Structure-from-Motion or SfM). The experiments were carried out in a typical Mediterranean vineyard, located in eastern Spain, at very fine scales. SfM data were obtained from one reflex camera and a smartphone built-in camera. An index of sediment connectivity was also applied to evaluate the potential effect of connectivity within the plots. DEMs derived from the smartphone and the reflex camera were comparable with each other in terms of accuracy and capability of estimating soil loss. Furthermore, soil loss estimated with the surface elevation change-based method resulted to be of the same order of magnitude of that one obtained with rainfall simulation, as long as the sediment connectivity within the plot was considered. High-resolution topography derived from SfM revealed to be essential in the sediment connectivity analysis and, therefore, in the estimation of eroded materials, when comparing them to those derived from the rainfall simulation methodology. The fact that smartphones built-in cameras could produce as much satisfying results as those derived from reflex cameras is a high value added for using SfM. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Climate change impact on soil erosion in the Mandakini River Basin, North India

    NASA Astrophysics Data System (ADS)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  4. Biological soil crust succession impact on soil moisture and temperature in the sub-surface along a rainfall gradient

    NASA Astrophysics Data System (ADS)

    Zaady, E.; Yizhaq, H.; Ashkenazy, Y.

    2012-04-01

    Biological soil crusts produce mucilage sheets of polysaccharides that cover the soil surface. This hydrophobic coating can seal the soil micro-pores and thus cause reduction of water permeability and may influence soil temperature. This study evaluates the impact of crust composition on sub-surface water and temperature over time. We hypothesized that the successional stages of biological soil crusts, affect soil moisture and temperature differently along a rainfall gradient throughout the year. Four experimental sites were established along a rainfall gradient in the western Negev Desert. At each site three treatments; crust removal, pure sand (moving dune) and natural crusted were monitored. Crust successional stage was measured by biophysiological and physical measurements, soil water permeability by field mini-Infiltrometer, soil moisture by neutron scattering probe and temperature by sensors, at different depths. Our main interim conclusions from the ongoing study along the rainfall gradient are: 1. the biogenic crust controls water infiltration into the soil in sand dunes, 2. infiltration was dependent on the composition of the biogenic crust. It was low for higher successional stage crusts composed of lichens and mosses and high with cyanobacterial crust. Thus, infiltration rate controlled by the crust is inverse to the rainfall gradient. Continuous disturbances to the crust increase infiltration rates, 3. despite the different rainfall amounts at the sites, soil moisture content below 50 cm is almost the same. We therefore predict that climate change in areas that are becoming dryer (desertification) will have a positive effect on soil water content and vice versa.

  5. A laboratory rainfall simulator to study the soil erosion and runoff water

    NASA Astrophysics Data System (ADS)

    Cancelo González, Javier; Rial, M. E.; Díaz-Fierros, Francisco

    2010-05-01

    The soil erosion and the runoff water composition in some areas affected by forest fires or submitted to intensive agriculture are an important factor to keep an account, particularly in sensitive areas like estuary and rias that have a high importance in the socioeconomic development of some regions. An understanding of runoff production indicates the processes by which pollutants reach streams and also indicates the management techniques that might be uses to minimize the discharge of these materials into surface waters. One of the most methodology implemented in the soil erosion studies is a rainfall simulation. This method can reproduce the natural soil degradation processes in field or laboratory experiences. With the aim of improve the rainfall-runoff generation, a laboratory rainfall simulator which incorporates a fan-like intermittent water jet system for rainfall generation were modified. The major change made to the rainfall simulator consist in a system to coupling stainless steel boxes, whose dimensions are 12 x 20 x 45 centimeters, and it allows to place soil samples under the rainfall simulator. Previously these boxes were used to take soil samples in field with more of 20 centimeters of depth, causing the minimum disturbance in their properties and structure. These new implementations in the rainfall simulator also allow collect water samples of runoff in two ways: firstly, the rain water that constituted the overland flow or direct runoff and besides the rain water seeps into the soil by the process of infiltration and contributed to the subsurface runoff. Among main the variables controlled in the rainfall simulations were the soil slope and the intensity and duration of rainfall. With the aim of test the prototype, six soil samples were collected in the same sampling point and subjected to rainfall simulations in laboratory with the same intensity and duration. Two samples will constitute the control test, and they were fully undisturbed, and four samples were subjected to controlled burnings with different fire severity: two samples burnt to 250°C and the other two samples burnt to 450°C. Preliminary laboratory data of soil erosion and surface and subsurface runoff were obtained. The water parameters analysed were: pH, electrical conductivity, temperature (in the moment of sampling) and suspended sediments, ammonium, nitrates, total nitrogen (Kjeldahl method), within 24 hours after sampling.

  6. Hydrologic Evaluation of Landfill Performance (HELP) Model

    EPA Pesticide Factsheets

    The program models rainfall, runoff, infiltration, and other water pathways to estimate how much water builds up above each landfill liner. It can incorporate data on vegetation, soil types, geosynthetic materials, initial moisture conditions, slopes, etc.

  7. Poro-mechanical coupling influences on potential for rainfall-induced shallow landslides in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Wu, L. Z.; Selvadurai, A. P. S.; Zhang, L. M.; Huang, R. Q.; Huang, Jinsong

    2016-12-01

    Rainfall-induced landslides are a common occurrence in terrain with steep topography and soils that have degradable strength. Rainfall infiltration into a partially saturated slope of infinite extent can lead to either a decrease or complete elimination of soil suction, compromising the slopes' stability. In this research the rainfall infiltration coupled with deformation of a partially saturated soil slope during rainfall infiltration is analyzed. The limit equilibrium conditions and the shear strength relationship of a partially saturated soil are employed to develop an analytical solution for calculating the stability of an infinite partially saturated slope due to rainfall infiltration. The analytical solutions are able to consider the influence of the coupled effects on the stability of the slope. The factors that affect the safety of a partially saturated slope of infinite extent are discussed. The results indicate that the poro-mechanical coupling of water infiltration and deformation has an important effect on the stability of the infinite unsaturated slope.

  8. Exploring the Role of Soil Moisture Conditions for Rainfall Triggered Landslides on Catchment Scale: the case of the Ialomita Sub Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Bogaard, Thom; Adler, Mary-Jeanne; Steele-Dunne, Susan; Hrachowitz, Markus; Busuioc, Aristita; Sandric, Ionut; Istrate, Alexandru

    2014-05-01

    Like in many parts of the world, landslides represent in Romania recurrent phenomena that produce numerous damages to the infrastructure every few years. The high frequency of landslide events over the world has resulted to the development of many early warning systems that are based on the definition of rainfall thresholds triggering landslides. In Romania in particular, recent studies exploring the temporal occurrence of landslides have revealed that rainfall represents the most important triggering factor for landslides. The presence of low permeability soils and gentle slope degrees in the Ialomita Subcarpathians of Romania makes that cumulated precipitation over variable time interval and the hydraulic response of the soil plays a key role in landslides triggering. In order to identify the slope responses to rainfall events in this particular area we investigate the variability of soil moisture and its relationship to landslide events in three Subcarpathians catchments (Cricovul Dulce, Bizididel and Vulcana) by combining in situ measurements, satellite-based radiometry and hydrological modelling. For the current study, hourly soil moisture measurements from six soil moisture monitoring stations that are fitted with volumetric soil moisture sensors, temperature soil sensors and rain gauges sensors are used. Pedotransfer functions will be applied in order to infer hydraulic soil properties from soil texture sampled from 50 soil profiles. The information about spatial and temporal variability of soil moisture content will be completed with the Level 2 soil moisture products from the Soil Moisture and Ocean Salinity (SMOS) mission. A time series analysis of soil moisture is planned to be integrated to landslide and rainfall time series in order to determine a preliminary rainfall threshold triggering landslides in Ialomita Subcarpathians.

  9. Rainfall erosivity in subtropical catchments and implications for erosion and particle-bound contaminant transfer: a case-study of the Fukushima region

    NASA Astrophysics Data System (ADS)

    Laceby, J. P.; Chartin, C.; Evrard, O.; Onda, Y.; Garcia-Sanchez, L.; Cerdan, O.

    2015-07-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 resulted in a significant fallout of radiocesium over the Fukushima region. After reaching the soil surface, radiocesium is almost irreversibly bound to fine soil particles. Thereafter, rainfall and snow melt run-off events transfer particle-bound radiocesium downstream. Erosion models, such as the Universal Soil Loss Equation (USLE), depict a proportional relationship between rainfall and soil erosion. As radiocesium is tightly bound to fine soil and sediment particles, characterizing the rainfall regime of the fallout-impacted region is fundamental to modelling and predicting radiocesium migration. Accordingly, monthly and annual rainfall data from ~ 60 meteorological stations within a 100 km radius of the FDNPP were analysed. Monthly rainfall erosivity maps were developed for the Fukushima coastal catchments illustrating the spatial heterogeneity of rainfall erosivity in the region. The mean average rainfall in the Fukushima region was 1387 mm yr-1 (σ 230) with the mean rainfall erosivity being 2785 MJ mm ha-1 yr-1 (σ 1359). The results indicate that the majority of rainfall (60 %) and rainfall erosivity (86 %) occurs between June and October. During the year, rainfall erosivity evolves positively from northwest to southeast in the eastern part of the prefecture, whereas a positive gradient from north to south occurs in July and August, the most erosive months of the year. During the typhoon season, the coastal plain and eastern mountainous areas of the Fukushima prefecture, including a large part of the contamination plume, are most impacted by erosive events. Understanding these rainfall patterns, particularly their spatial and temporal variation, is fundamental to managing soil and particle-bound radiocesium transfers in the Fukushima region. Moreover, understanding the impact of typhoons is important for managing sediment transfers in subtropical regions impacted by cyclonic activity.

  10. The impact of soil moisture extremes and their spatiotemporal variability on Zambian maize yields

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Estes, L. D.; Vergopolan, N.

    2017-12-01

    Food security in sub-Saharan Africa is highly sensitive to climate variability. While it is well understood that extreme heat has substantial negative impacts on crop yield, the impacts of precipitation extremes, particularly over large spatial extents, are harder to quantify. There are three primary reasons for this difficulty, which are (1) lack of high quality, high resolution precipitation data, (2) rainfall data provide incomplete information on plant water availability, the variable that most directly affects crop performance, and (3) the type of rainfall extreme that most affects crop yields varies throughout the crop development stage. With respect to the first reason, the spatial and temporal variation of precipitation is much greater than that of temperature, yet the spatial resolution of rainfall data is typically even coarser than it is for temperature, particularly within Africa. Even if there were high-resolution rainfall data, the amount of water available to crops also depends on other physical factors that affect evapotranspiration, which are strongly influenced by heterogeneity in the land surface related to topography, soil properties, and land cover. In this context, soil moisture provides a better measure of crop water availability than rainfall. Furthermore, soil moisture has significantly different influences on crop yield depending on the crop's growth stage. The goal of this study is to understand how the spatiotemporal scales of soil moisture extremes interact with crops, more specifically, the timing and the spatial scales of extreme events like droughts and flooding. In this study, we simulate daily-1km soil moisture using HydroBlocks - a physically based land surface model - and compare it with precipitation and remote sensing derived maize yields between 2000 and 2016 in Zambia. We use a novel combination of the SCYM (scalable satellite-based yield mapper) method with DSSAT crop model, which is a mechanistic model responsive to water stress. Understanding the relationships between soil moisture spatiotemporal variability and yields can help to improve agricultural drought risk assessment and seasonal crop yield forecasting as well as early season warning of potential famines.

  11. Rainfall estimation from soil moisture data: crash test for SM2RAIN algorithm

    NASA Astrophysics Data System (ADS)

    Brocca, Luca; Albergel, Clement; Massari, Christian; Ciabatta, Luca; Moramarco, Tommaso; de Rosnay, Patricia

    2015-04-01

    Soil moisture governs the partitioning of mass and energy fluxes between the land surface and the atmosphere and, hence, it represents a key variable for many applications in hydrology and earth science. In recent years, it was demonstrated that soil moisture observations from ground and satellite sensors contain important information useful for improving rainfall estimation. Indeed, soil moisture data have been used for correcting rainfall estimates from state-of-the-art satellite sensors (e.g. Crow et al., 2011), and also for improving flood prediction through a dual data assimilation approach (e.g. Massari et al., 2014; Chen et al., 2014). Brocca et al. (2013; 2014) developed a simple algorithm, called SM2RAIN, which allows estimating rainfall directly from soil moisture data. SM2RAIN has been applied successfully to in situ and satellite observations. Specifically, by using three satellite soil moisture products from ASCAT (Advanced SCATterometer), AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observation) and SMOS (Soil Moisture and Ocean Salinity); it was found that the SM2RAIN-derived rainfall products are as accurate as state-of-the-art products, e.g., the real-time version of the TRMM (Tropical Rainfall Measuring Mission) product. Notwithstanding these promising results, a detailed study investigating the physical basis of the SM2RAIN algorithm, its range of applicability and its limitations on a global scale has still to be carried out. In this study, we carried out a crash test for SM2RAIN algorithm on a global scale by performing a synthetic experiment. Specifically, modelled soil moisture data are obtained from HTESSEL model (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) forced by ERA-Interim near-surface meteorology. Afterwards, the modelled soil moisture data are used as input into SM2RAIN algorithm for testing weather or not the resulting rainfall estimates are able to reproduce ERA-Interim rainfall data. Correlation, root mean square differences and categorical scores were used to evaluate the goodness of the results. This analysis wants to draw global picture of the performance of SM2RAIN algorithm in absence of errors in soil moisture and rainfall data. First preliminary results over Europe have shown that SM2RAIN performs particularly well over southern Europe (e.g., Spain, Italy and Greece) while its performances diminish by moving towards Northern latitudes (Scandinavia) and over Alps. The results on a global scale will be shown and discussed at the conference session. REFERENCES Brocca, L., Melone, F., Moramarco, T., Wagner, W. (2013). A new method for rainfall estimation through soil moisture observations. Geophysical Research Letters, 40(5), 853-858. Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., Dorigo, W., Wagner, W., Levizzani, V. (2014). Soil as a natural rain gauge: estimating global rainfall from satellite soil moisture data. Journal of Geophysical Research, 119(9), 5128-5141. Chen F, Crow WT, Ryu D. (2014) Dual forcing and state correction via soil moisture assimilation for improved rainfall-runoff modeling. J Hydrometeor, 15, 1832-1848. Crow, W.T., van den Berg, M.J., Huffman, G.J., Pellarin, T. (2011). Correcting rainfall using satellite-based surface soil moisture retrievals: the soil moisture analysis rainfall tool (SMART). Water Resour Res, 47, W08521. Dee, D. P.,et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc., 137, 553-597 Massari, C., Brocca, L., Moramarco, T., Tramblay, Y., Didon Lescot, J.-F. (2014). Potential of soil moisture observations in flood modelling: estimating initial conditions and correcting rainfall. Advances in Water Resources, 74, 44-53.

  12. Soil and surface layer type affect non-rainfall water inputs

    NASA Astrophysics Data System (ADS)

    Agam, Nurit; Berliner, Pedro; Jiang, Anxia

    2017-04-01

    Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted and non-crusted sandy soils often exceeded that between crusted and non-crusted loess soils.

  13. Rainfall limit of the N cycle on Earth

    USGS Publications Warehouse

    Ewing, S.A.; Michalski, G.; Thiemens, M.; Quinn, R.C.; Macalady, J.L.; Kohl, S.; Wankel, Scott D.; Kendall, C.; McKay, C.P.; Amundson, Ronald

    2007-01-01

    In most climates on Earth, biological processes control soil N. In the Atacama Desert of Chile, aridity severely limits biology, and soils accumulate atmospheric NO3-. We examined this apparent transformation of the soil N cycle using a series of ancient Atacama Desert soils (>2 My) that vary in rainfall (21 to <2 mm yr-1). With decreasing rainfall, soil organic C decreases to 0.3 kg C m-2 and biological activity becomes minimal, while soil NO3- and organic N increase to 4 kg N m-2 and 1.4 kg N m-2, respectively. Atmospheric NO3- (??17O = 23.0???) increases from 39% to 80% of total soil NO3- as rainfall decreases. These soils capture the transition from a steady state, biologically mediated soil N cycle to a dominantly abiotic, transient state of slowly accumulating atmospheric N. This transition suggests that oxidized soil N may be present in an even more and and abiotic environment: Mars. Copyright 2007 by the American Geophysical Union.

  14. Climate change and predicting soil loss from rainfall

    NASA Astrophysics Data System (ADS)

    Kinnell, Peter

    2017-04-01

    Conceptually, rainfall has a certain capacity to cause soil loss from an eroding area while soil surfaces have a certain resistance to being eroded by rainfall. The terms "rainfall erosivity' and "soil erodibility" are frequently used to encapsulate the concept and in the Revised Universal Soil Loss Equation (RUSLE), the most widely used soil loss prediction equation in the world, average annual values of the R "erosivity" factor and the K "erodibility" factor provide a basis for accounting for variation in rainfall erosion associated with geographic variations of climate and soils. In many applications of RUSLE, R and K are considered to be independent but in reality they are not. In RUSLE2, provision has been made to take account of the fact that K values determined using soil physical factors have to be adjusted for variations in climate because runoff is not directly included as a factor in determining R. Also, the USLE event erosivity index EI30 is better related to accounting for event sediment concentration than event soil loss. While the USLE-M, a modification of the USLE which includes runoff as a factor in determining the event erosivity index provides better estimates of event soil loss when event runoff is known, runoff prediction provides a challenge to modelling event soil loss as climate changes

  15. On the Non-Uniqueness of Sediment Yield

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ivanov, V. Y.; Fatichi, S.

    2014-12-01

    There has been ample experimental evidence that soil erosion does not necessarily occur at the same rate, given the same amount of rainfall or runoff. Such a non-unique phenomenon has been often referred to in literature as due to 'natural variability'. Our recent study hypothesized that uncertainties in the distribution and properties of a sediment layer can be a potential clue to one of the reasons of the non-unique sediment yield. Specifically, numerical experimentation with a sophisticated two-dimensional model showed that a deposited layer plays two conflicting roles: it can both increase and decrease soil erosion, given the same magnitude of runoff. The difference in erodibilities of the "original, intact soil layer" and the "deposited, loose soil layer" and the composition of soil particles in the underlying layers give rise to the non-uniqueness of the amount of eroded materials. In continuing efforts, we attempt to investigate this phenomenon using a comprehensive the Universal Soil Loss Erosion (USLE) database, that contains data on paired hillslopes that show a high degree of non-uniqueness in the response, even though the hillslopes exhibit the same topography, soil type, rainfall and meteorological forcings, and landuse. An underlying hypothesis of this study is that uncertainties in the distribution of soil substrate prior to a rainfall event lead to low predictability skill, i.e., a stochastically-varying outcome. A large number of simulation cases demonstrating the proposed hypothesis are conducted using a coupled numerical model, tRIBS-VEGGIE-FEaST (Triangulated irregular network - based Real time Integrated Basin Simulator- VEGetation Generator for Interactive Evolution -Flow Erosion and Sediment Transport).

  16. An evaluation of the spatial resolution of soil moisture information

    NASA Technical Reports Server (NTRS)

    Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.

    1981-01-01

    Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of soil moisture information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of soil moisture over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of soil moisture. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of soil moisture. Crop yield models and hydrological models would give improved results if soil moisture information at scales of 10 km was available.

  17. Diagnosing Hydrologic Flow Paths in Forest and Pasture Land Uses within the Panama Canal Watershed Using Simulated Rainfall and Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Mojica, A.; Kempema, E. W.; Briceno, J. C.; Regina, J. A.

    2014-12-01

    Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and use across the Panama Canal Watershed. In this study we used an ARS-type rainfall simulator to apply rainfall rates up to 200 mm per hour over a 2m by 6m area on deep saprolitic soils in forest and pasture land covers. A salinity contrast added to the applied rainwater allowed observation of bulk flow paths and velocities in the subsurface. The observed effects of land cover and land use on hydrological response were striking. In the forest site, we were unable to produce surface runoff even after the application of 600 mm of rainfall in three hours, and observed flow in soils down to approximately 2 m depth, and no downslope macropore flow. In the pasture site, surface runoff was produced, and we measured the permeability of the area with applied rainfall. Observed flow paths were much shallower, less than 1 m depth, with significant macropore flow observed at downslope positions. We hypothesize that land use and land cover have significant impacts on flow paths as they affect creation, connectivity, and function of biologically created macropores in the soil.

  18. Effects of monsoon precipitation variability on the physiological response of two dominant C₄ grasses across a semiarid ecotone.

    PubMed

    Thomey, Michell L; Collins, Scott L; Friggens, Michael T; Brown, Renee F; Pockman, William T

    2014-11-01

    For the southwestern United States, climate models project an increase in extreme precipitation events and prolonged dry periods. While most studies emphasize plant functional type response to precipitation variability, it is also important to understand the physiological characteristics of dominant plant species that define plant community composition and, in part, regulate ecosystem response to climate change. We utilized rainout shelters to alter the magnitude and frequency of rainfall and measured the physiological response of the dominant C4 grasses, Bouteloua eriopoda and Bouteloua gracilis. We hypothesized that: (1) the more drought-adapted B. eriopoda would exhibit faster recovery and higher rates of leaf-level photosynthesis (A(net)) than B. gracilis, (2) A(net) would be greater under the higher average soil water content in plots receiving 30-mm rainfall events, (3) co-dominance of B. eriopoda and B. gracilis in the ecotone would lead to intra-specific differences from the performance of each species at the site where it was dominant. Throughout the study, soil moisture explained 40-70% of the variation in A(net). Consequently, differences in rainfall treatments were not evident from intra-specific physiological function without sufficient divergence in soil moisture. Under low frequency, larger rainfall events B. gracilis exhibited improved water status and longer periods of C gain than B. eriopoda. Results from this study indicate that less frequent and larger rainfall events could provide a competitive advantage to B. gracilis and influence species composition across this arid-semiarid grassland ecotone.

  19. Determination of soil degradation from flooding for estimating ecosystem services in Slovakia

    NASA Astrophysics Data System (ADS)

    Hlavcova, Kamila; Szolgay, Jan; Karabova, Beata; Kohnova, Silvia

    2015-04-01

    Floods as natural hazards are related to soil health, land-use and land management. They not only represent threats on their own, but can also be triggered, controlled and amplified by interactions with other soil threats and soil degradation processes. Among the many direct impacts of flooding on soil health, including soil texture, structure, changes in the soil's chemical properties, deterioration of soil aggregation and water holding capacity, etc., are soil erosion, mudflows, depositions of sediment and debris. Flooding is initiated by a combination of predispositive and triggering factors and apart from climate drivers it is related to the physiographic conditions of the land, state of the soil, land use and land management. Due to the diversity and complexity of their potential interactions, diverse methodologies and approaches are needed for describing a particular type of event in a specific environment, especially in ungauged sites. In engineering studies and also in many rainfall-runoff models, the SCS-CN method has remained widely applied for soil and land use-based estimations of direct runoff and flooding potential. The SCS-CN method is an empirical rainfall-runoff model developed by the USDA Natural Resources Conservation Service (formerly called the Soil Conservation Service or SCS). The runoff curve number (CN) is based on the hydrological soil characteristics, land use, land management and antecedent saturation conditions of soil. Since the method and curve numbers were derived on the basis of an empirical analysis of rainfall-runoff events from small catchments and hillslope plots monitored by the USDA, the use of the method for the conditions of Slovakia raises uncertainty and can cause inaccurate results in determining direct runoff. The objective of the study presented (also within the framework of the EU-FP7 RECARE Project) was to develop the SCS - CN methodology for the flood conditions in Slovakia (and especially for the RECARE pilot site of Myjava), with an emphasis on the determination of soil degradation from flooding for estimating ecosystem services. The parameters of the SCS-CN methodology were regionalised empirically based on actual rainfall and discharge measurements. Since there has been no appropriate methodology provided for the regionalisation of SCS-CN method parameters in Slovakia, such as runoff curve numbers and initial abstraction coefficients (λ), the work presented is important for the correct application of the SCS-CN method in our conditions.

  20. Effect of Erosion on Productivity in Subtropical Red Soil Hilly Region: A Multi-Scale Spatio-Temporal Study by Simulated Rainfall

    PubMed Central

    Li, Zhongwu; Huang, Jinquan; Zeng, Guangming; Nie, Xiaodong; Ma, Wenming; Yu, Wei; Guo, Wang; Zhang, Jiachao

    2013-01-01

    The effects of water erosion (including long-term historical erosion and single erosion event) on soil properties and productivity in different farming systems were investigated. A typical sloping cropland with homogeneous soil properties was designed in 2009 and then protected from other external disturbances except natural water erosion. In 2012, this cropland was divided in three equally sized blocks. Three treatments were performed on these blocks with different simulated rainfall intensities and farming methods: (1) high rainfall intensity (1.5 - 1.7 mm min−1), no-tillage operation; (2) low rainfall intensity (0.5 - 0.7 mm min−1), no-tillage operation; and (3) low rainfall intensity, tillage operation. All of the blocks were divided in five equally sized subplots along the slope to characterize the three-year effects of historical erosion quantitatively. Redundancy analysis showed that the effects of long-term historical erosion significantly caused most of the variations in soil productivity in no-tillage and low rainfall erosion intensity systems. The intensities of the simulated rainfall did not exhibit significant effects on soil productivity in no-tillage systems. By contrast, different farming operations induced a statistical difference in soil productivity at the same single erosion intensity. Soil organic carbon (SOC) was the major limiting variable that influenced soil productivity. Most explanations of long-term historical erosion for the variation in soil productivity arose from its sharing with SOC. SOC, total nitrogen, and total phosphorus were found as the regressors of soil productivity because of tillage operation. In general, this study provided strong evidence that single erosion event could also impose significant constraints on soil productivity by integrating with tillage operation, although single erosion is not the dominant effect relative to the long-term historical erosion. Our study demonstrated that an effective management of organic carbon pool should be the preferred option to maintain soil productivity in subtropical red soil hilly region. PMID:24147090

  1. Effects of Rainfall-Induced Topsoil Structure Changes on Root-Zone Moisture Regime during the Dry Period

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Chen, Jiazhou; Lin, Lirong

    2018-01-01

    Rainfall erosion and subsequent intermittent drought are serious barriers for agricultural production in the subtropical red soil region of China. Although it is widely recognized that rainfall-induced soil structure degradation reduced soil water storage and water-holding capacity, the effects of variation of the rainfall-induced topsoil structure on the subsequent soil water regime during the dry period is still rarely considered. The objective of this study was to ascertain the way of rainfall-induced topsoil structure changes on the subsequent soil water regime during the dry period. In a three-year-long experiment, six practices (CK, only crop; SM, straw mulching; PAM, polyacrylamide surface application; B, contour Bahia-grass strip; SPAM, straw mulching and polyacrylamide surface application; and BPAM, contour Bahia-grass strip and polyacrylamide surface application) were conducted at an 8° farmland with planting summer maize resulting in different topsoil structure and root-zone moisture, to establish and reveal the quantitatively relationship between the factors of topsoil structure and soil drought. Rainfall erosion significantly increased the soil crust coverage, and decreased the WSA 0.25, 0-30 mm soil porosity and mean pore size. There was no significant difference during the raining stage of root-zone water storage between CK and other practices. An index of soil drought intensity ( I) and degree ( D) was established using soil water loss rate and soil drought severity. The larger value of I means a higher rate of water loss. The larger value of D means more severe drought. During the dry period, I and D were significantly higher in CK than in other practices. I and D had significantly positively correlation with the crust size and crust coverage, and negatively with WSA 0.25, 15-30 mm soil porosity and mean pore size. Among of soil structure factors, the soil porosity had the largest effect on I and D. The rainfall-induced topsoil structure changes greatly deteriorated the root-zone regime during the dry period mainly due to significant increasing soil water loss but little improving the raining stage of soil water storage. Straw mulching had greater effects than other practices in alleviating rainfall-induced erosion and intermittent drought, and could be a better strategy applied for this region.

  2. Combined effects of short-term rainfall patterns and soil texture on nitrogen cycling -- A Modeling Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, C.; Riley, W.J.

    2009-11-01

    Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less

  3. Temporal and spatial variations of rainfall erosivity in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang

    2014-05-01

    Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.

  4. Global rainfall erosivity assessment based on high-temporal resolution rainfall records

    USDA-ARS?s Scientific Manuscript database

    Rainfall erosivity quantifies the climatic effect on water erosion. In the framework of the Universal Soil Loss Equation, rainfall erosivity, also known as the R-factor, is defined as the mean annual sum of event erosivity values. For a new global soil erosion assessment, also in the broad context...

  5. Why the predictions for monsoon rainfall fail?

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2016-12-01

    To be in line with the Global Land/Atmosphere System Study (GLASS) of the Global Energy and Water Cycle Experiment (GEWEX) international research scheme, this study discusses classical arguments about the feedback mechanisms between land surface and precipitation to improve the predictions of African monsoon rainfall. In order to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, several data sets will be presented. First, in-situ soil moisture field measurements acquired by the AMMA field campaign will be shown together with rain gauge data. This data set will validate various model and satellite data sets such as NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models, SMOS soil moisture. To relate soil moisture with precipitation, two approaches are employed: one approach makes a direct comparison between the spatial distributions of soil moisture as an absolute value and rainfall, while the other measures a temporal evolution of the consecutive dry days (i.e. a relative change within the same soil moisture data set over time) and rainfall occurrences. Consecutive dry days shows consistent results of a negative feedback between soil moisture and rainfall across various data sets, contrary to the direct comparison of soil moisture state. This negative mechanism needs attention, as most climate models usually focus on a positive feedback only. The approach of consecutive dry days takes into account the systematic errors in satellite observations, reminding us that it may cause the misinterpretation to directly compare model with satellite data, due to their difference in data retrievals. This finding is significant, as the climate indices employed by the Intergovernmental Panel on Climate Change (IPCC) modelling archive are based on the atmospheric variable rathr than land.

  6. Effect of rainfall simulator and plot scale on overland flow and phosphorus transport.

    PubMed

    Sharpley, Andrew; Kleinman, Peter

    2003-01-01

    Rainfall simulation experiments are widely used to study erosion and contaminant transport in overland flow. We investigated the use of two rainfall simulators designed to rain on 2-m-long (2-m2) and 10.7-m-long (32.6-m2) plots to estimate overland flow and phosphorus (P) transport in comparison with watershed-scale data. Simulated rainfall (75 mm h(-1)) generated more overland flow from 2-m-long (20 L m2) than from 10.7-m-long (10 L m2) plots established in grass, no-till corn (Zea mays L.), and recently tilled fields, because a relatively greater area of the smaller plots became saturated (>75% of area) during rainfall compared with large plots (<75% area). Although average concentrations of dissolved reactive phosphorus (DRP) in overland flow were greater from 2-m-long (0.50 mg L(-1)) than 10.7-m-long (0.35 mg L(-1)) plots, the relationship between DRP and Mehlich-3 soil P (as defined by regression slope) was similar for both plots and for published watershed data (0.0022 for grassed, 0.0036 for no-till, and 0.0112 for tilled sites). Conversely, sediment, particulate phosphorus (PP), and total phosphorus (TP) concentrations and selective transport of soil fines (<2 microm) were significantly lower from 2- than 10.7-m-long plots. However, slopes of the logarithmic regression between P enrichment ratio and sediment discharge were similar (0.281-0.301) for 2- and 10.7-m-long plots, and published watershed data. While concentrations and loads of P change with plot scales, processes governing DRP and PP transport in overland flow are consistent, supporting the limited use of small plots and rainfall simulators to assess the relationship between soil P and overland flow P as a function of soil type and management.

  7. Relationship of Climate, Geography, and Geology to the Incidence of Rift Valley Fever in Kenya during the 2006–2007 Outbreak

    PubMed Central

    Hightower, Allen; Kinkade, Carl; Nguku, Patrick M.; Anyangu, Amwayi; Mutonga, David; Omolo, Jared; Njenga, M. Kariuki; Feikin, Daniel R.; Schnabel, David; Ombok, Maurice; Breiman, Robert F.

    2012-01-01

    We estimated Rift Valley fever (RVF) incidence as a function of geological, geographical, and climatological factors during the 2006–2007 RVF epidemic in Kenya. Location information was obtained for 214 of 340 (63%) confirmed and probable RVF cases that occurred during an outbreak from November 1, 2006 to February 28, 2007. Locations with subtypes of solonetz, calcisols, solonchaks, and planosols soil types were highly associated with RVF occurrence during the outbreak period. Increased rainfall and higher greenness measures before the outbreak were associated with increased risk. RVF was more likely to occur on plains, in densely bushed areas, at lower elevations, and in the Somalia acacia ecological zone. Cases occurred in three spatial temporal clusters that differed by the date of associated rainfall, soil type, and land usage. PMID:22302875

  8. Rainfall estimation over-land using SMOS soil moisture observations: SM2RAIN, LMAA and SMART algorithms

    NASA Astrophysics Data System (ADS)

    Massari, Christian; Brocca, Luca; Pellarin, Thierry; Kerr, Yann; Crow, Wade; Cascon, Carlos; Ciabatta, Luca

    2016-04-01

    Recent advancements in the measurement of precipitation from space have provided estimates at scales that are commensurate with the needs of the hydrological and land-surface model communities. However, as demonstrated in a number of studies (Ebert et al. 2007, Tian et al. 2007, Stampoulis et al. 2012) satellite rainfall estimates are characterized by low accuracy in certain conditions and still suffer from a number of issues (e.g., bias) that may limit their utility in over-land applications (Serrat-Capdevila et al. 2014). In recent years many studies have demonstrated that soil moisture observations from ground and satellite sensors can be used for correcting satellite precipitation estimates (e.g. Crow et al., 2011; Pellarin et al., 2013), or directly estimating rainfall (SM2RAIN, Brocca et al., 2014). In this study, we carried out a detailed scientific analysis in which these three different methods are used for: i) estimating rainfall through satellite soil moisture observations (SM2RAIN, Brocca et al., 2014); ii) correcting rainfall through a Land surface Model Assimilation Algorithm (LMAA) (an improvement of a previous work of Crow et al. 2011 and Pellarin et al. 2013) and through the Soil Moisture Analysis Rainfall Tool (SMART, Crow et al. 2011). The analysis is carried within the ESA project "SMOS plus Rainfall" and involves 9 sites in Europe, Australia, Africa and USA containing high-quality hydrometeorological and soil moisture observations. Satellite soil moisture data from Soil Moisture and Ocean Salinity (SMOS) mission are employed for testing their potential in deriving a cumulated rainfall product at different temporal resolutions. The applicability and accuracy of the three algorithms is investigated also as a function of climatic and soil/land use conditions. A particular attention is paid to assess the expected limitations soil moisture based rainfall estimates such as soil saturation, freezing/snow conditions, SMOS RFI, irrigated areas, contribution of surface runoff and evapotranspiration, vegetation coverage, temporal sampling, and the assimilation/modelling approach. The 9 selected sites gather such potential problems which are shown and discussed at the conference. REFERENCES Ebert, E. E.; Janowiak, J. E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47-64. Tian, Y.; Peters-Lidard, C. D.; Choudhury, B. J.; Garcia, M. Multitemporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications. J. Hydrometeorol. 2007, 8, 1165-1183. Stampoulis, D.; Anagnostou, E. N. Evaluation of Global Satellite Rainfall Products over Continental Europe. J. Hydrometeorol. 2012, 13, 588-603. Serrat-Capdevila, A.; Valdes, J. B.; Stakhiv, E. Z. Water Management Applications for Satellite Precipitation Products: Synthesis and Recommendations. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 509-525. Crow, W. T.; van den Berg, M. J.; Huffman, G. J.; Pellarin, T. Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART). Water Resour. Res. 2011, 47, W08521. Pellarin, T.; Louvet, S.; Gruhier, C.; Quantin, G.; Legout, C. A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ. 2013, 136, 28-36. Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128-5141.

  9. Assessing soil erosion using USLE model and MODIS data in the Guangdong, China

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Wang, Yunpeng; Yang, Jingxue

    2017-07-01

    In this study, soil erosion in the Guangdong, China during 2012 was quantitatively assessed using Universal Soil Loss Equation (USLE). The parameters of the model were calculated using GIS and MODIS data. The spatial distribution of the average annual soil loss on grid basis was mapped. The estimated average annual soil erosion in Guangdong in 2012 is about 2294.47t/ (km2.a). Four high sensitive area of soil erosion in Guangdong in 2012 was found. The key factors of these four high sensitive areas of soil erosion were significantly contributed to the land cover types, rainfall and Economic development and human activities.

  10. The relative importance of different grass components in controlling runoff and erosion on a hillslope under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Li, Changjia; Pan, Chengzhong

    2018-03-01

    The effects of vegetation cover on overland flow and erosion processes on hillslopes vary with vegetation type and spatial distribution and the different vegetation components, including the above- and below-ground biomass. However, few attempts have been made to quantify how these factors affect erosion processes. Field experimental plots (5 m × 2 m) with a slope of approximately 25° were constructed and simulated rainfall (60 mm hr-1) (Rainfall) and simulated rainfall combined with upslope overland flow (20 L min-1) (Rainfall + Flow) were applied. Three grass species were planted, specifically Astragalus adsurgens (A. adsurgens), Medicago sativa (M. sativa) and Cosmos bipinnatus (C. bipinnatus). To isolate and quantify the relative contributions of the above-ground grass parts (stems, litter cover and leaves) and the roots to reducing surface runoff and erosion, each of the three grass species was subjected to three treatments: intact grass control (IG), no litter or leaves (only the grass stems and roots were reserved) (NLL), and only roots remaining (OR). The results showed that planting grass significantly reduced overland flow rate and velocity and sediment yield, and the mean reductions were 21.8%, 29.1% and 67.1%, respectively. M. sativa performed the best in controlling water and soil losses due to its thick canopy and dense, fine roots. Grasses reduced soil erosion mainly during the early stage of overland flow generation. The above-ground grass parts primarily contributed to reducing overland flow rate and velocity, with mean relative contributions of 64% and 86%, respectively. The roots played a predominant role in reducing soil erosion, with mean contribution of 84%. Due to the impact of upslope inflow, overland flow rate and velocity and sediment yield increased under the Rainfall + Flow conditions. The results suggest that grass species on downslope parts of semi-arid hillslopes performed better in reducing water and soil losses. This study is beneficial for forage selection, allocation and management practices, such as forage harvesting, when implementing restoration strategies to control soil and water losses.

  11. [Deuterium isotope characteristics of precipitation infiltrated in the West Ordos Desert of Inner Mongolia, China].

    PubMed

    Chen, Jie; Xu, Qing; Gao, De Qiang; Ma, Ying Bin; Zhang, Bei Bei; Hao, Yu Guang

    2017-07-18

    Understanding the soil-profile temporal and spatial distribution of rainwater in arid and semiarid regions provides a scientific basis for the restoration and maintenance of degraded desert ecosystems in the West Ordos Desert of Inner Mongolia, China. In this study, the deuterium isotope (δD) value of rainwater, soil water, and groundwater were examined in the West Ordos Desert. The contribution of precipitation to soil water in each layer of the soil profile was calculated with two-end linear mixed model. In addition, the temporal and spatial distribution of δD of soil water in the soil profile was analyzed under different-intensity precipitation. The results showed that small rainfall events (0-10 mm) affected the soil moisture and the δD value of soil water in surface soil (0-10 cm). About 30.3% to 87.9% of rainwater was kept in surface soil for nine days following the rainfall event. Medium rainfall events (10-20 mm) influenced the soil moisture and the δD value of soil water at soil depth of 0-40 cm. About 28.2% to 80.8% of rainwater was kept in soil layer of 0-40 cm for nine days following the medium rainfall event. Large (20-30 mm) and extremely large (>30 mm) rainfall events considerably influenced the soil moisture and δD value of soil water in each of the soil layers, except for the 100-150 cm layer. The δD value of soil water was between those δD values of rainwater and groundwater, which suggested that precipitation and groundwater were the sources of soil water in the West Ordos Desert. Under the same intensity rainfall, the δD value of surface soil water (0-10 cm) was directly affected by δD of rainwater. With increasing soil depth, the variation of soil water δD decreased, and the soil water of 100-150 cm kept stable. With increasing intensity of precipitation, the influence of precipitation on soil water δD lasted for a longer duration and occurred at a deeper soil depth.

  12. Historical Contingencies in Microbial Responses to Drought

    NASA Astrophysics Data System (ADS)

    Hawkes, C.; Waring, B.; Rocca, J.; Kivlin, S.; Giauque, H.; Averill, C.

    2014-12-01

    Although water is a primary controller of microbial function and we expect climate change to alter water availability in the future, our understanding of how microbial communities respond to a change in moisture and what that means for soil carbon cycling remain poorly understood. In part, this uncertainty arises from a lack of understanding of microbial response mechanisms and how those lead to aggregate soil function. Environmental tracking would be facilitated if microbial communities respond to new climatic conditions via rapid physiological acclimatization, shifts in community composition, or adaptation. In contrast, historical contingencies could be created by dispersal limitation or local adaptation to previous conditions. To address environmental tracking vs. legacies, we examined how soil microbial communities were affected by precipitation at multiple scales and asked whether rainfall was a primary driver of the observed responses. We leveraged a local steep rainfall gradient with field surveys, lab incubations, reciprocal transplants, and rainfall manipulations to approach this problem. Across a steep rainfall gradient, we found that soil microbial communities were strongly associated with historical rainfall, with two-thirds of the variation in community composition explained by mean annual precipitation. In 12-month experimental lab manipulations of soil moisture, soil functional responses were constrained by historical rainfall, with greater activity in soils subjected to their original moisture condition. The constraints of historical rainfall held even after 18 months in reciprocal transplant common gardens along the rainfall gradient and with manipulated dispersal of regional microbial communities. Yet, when water was manipulated at a single site over 4 years, legacies did not develop. Overall, these findings are consistent with long-term rainfall acting as a strong habitat filter and resulting in a legacy of both microbial community composition and physiological capacity that can affect soil carbon cycling. Placing the ecological and evolutionary dynamics of microbial communities in the context of historical and future environmental variation may thus provide us with a framework for improving prediction of ecosystem responses to climate change.

  13. Evaluating the effect of different vegetative filter strip designs on sediment movement in an agricultural watershed using LISEM, Iowa, USA

    NASA Astrophysics Data System (ADS)

    Luquin Oroz, Eduardo; Cruse, Rick; Baartman, Jantiene; Keesstra, Saskia

    2016-04-01

    Although restoration of native vegetation in vulnerable areas would decrease soil loss, this approach is not feasible in communities that base their income on agriculture. However, an alternative exists: strategically placing a small percentage of vegetative filter strips (VFS) within agriculture fields for erosion control. Factors influencing their effectiveness are shallow conditions, vegetation type, filter strip width, slope, soil type, and rainfall characteristics. Generally, the first few meters of the strip are where most sediments deposit. For slopes higher than 10%, effectiveness decreases with increasing slope gradient. Usually, high rainfall intensity and sediment load in overland flow decrease vegetative filter strips' effectiveness. Nowadays, Iowa (USA), experiences increasingly stronger rainstorms; climate change is expected to increase rainfall erosive forces between 16 to 58%. Thus, there is a need to obtain new insights about strip design and its influence on sediment dynamics. Therefore, the objective of this study is to analyze strip design (width) impact on soil and water movement. To do so, different strip widths (no strips, 1.5, 3, 5, 7.5 and 10 meters wide) were analyzed under four rainfall intensities (increments of 10, 25, 50 and 75%) The event-based, hydrological and soil erosion model LISEM was used to simulate different scenarios. The model has been calibrated with data from 3-ha 'Interim 1' watershed, which is part of Walnut Creek (Iowa, USA). During a single event with sediment load, on July 18th 2010, intensities reached up to 80 mm/h. Two different land covers exist: (i) perennial vegetation, which has prairie vegetation covering patches and strips; and (ii) row crop agriculture where corn and soybeans are the main two crops in the area. Based on the different combination of widths and intensities, 24 scenarios were generated. At the moment, the model is on the final part of the calibration; scenario results will be presented on the poster.

  14. Analysis of hydrological and geotechnical aspects related to landslides caused by rainfall infiltration

    NASA Astrophysics Data System (ADS)

    Capparelli, Giovanna; La Sala, Gabriella; Vena, Mirko; Donato, Antonio

    2015-04-01

    A landslide is defined as a perceptible downward and outward movement of slope-forming soil, rock, and vegetation under the influence of gravity. Landslides can be triggered by both natural and human-induced changes in the environment. However rainfall is recognized as a major precursor for many types of slope movements. As a result of rainfall events and subsequent infiltration into the subsoil, the soil moisture can be significantly changed with a decrease in matric suction in unsaturated soil layers and/or increase in pore-water pressure in saturated layers. As a consequence, in these cases, the shear strength can be reduced enough to trigger the failure. An effective way to develop such an understanding is by means of computer simulation using numerical model. As part of the project PON "Integrated Early Warning System" our main objective was just to develop a numerical models that was able to consider the relation between rainfall, pore pressure and slope stability taking into account several components, including specific site conditions, mechanical, hydraulic and physical soil properties, local seepage conditions, and the contribution of these to soil strength. In this work the mechanism behind rainfall-triggered landslides is modeled by using combined infiltration, seepage and stability analyses. This method allows the evaluation of the terrain and its response based on geological, physical, hydrogeological and mechanical characteristics. The model is based on the combined use of two modules: an hydraulic module, to analyze the subsoil water circulation due to the rainfall infiltration under transient conditions and a geotechnical module, which provides indications regarding the slope stability. With regard to hydraulic module, variably saturated porous media flows have been modeled by the classical nonlinear Richards equation; in the geotechnical module the differential equilibrium equations have been solved taking into account the linear constitutive equations (plane stress) and strain-displacement relationship. By means of the model it is possible to analyze subsoil water circulation, safety factor of the slope subjected to gravity loading and to the pore pressure calculated from hydraulic module, displacement, strain and stress under the effect of rainfall infiltration. As an application case, the analysis and the representative results obtained for the Torre Orsaia landslide (Campania region - Southern Italy) are described.

  15. Estimation of Rainfall Erosivity via 1-Minute to Hourly Rainfall Data from Taipei, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Yin; Yang, Ssu-Yao; Jan, Chyan-Deng

    2017-04-01

    Soil erosion is a natural process on hillslopes that threats people's life and properties, having a considerable environmental and economic implications for soil degradation, agricultural activity and water quality. The rainfall erosivity factor (R-factor) in the Universal Soil Loss Equation (USLE), composed of total kinetic energy (E) and the maximum 30-min rainfall intensity (I30), is widely used as an indicator to measure the potential risks of soil loss caused by rainfall at a regional scale. This R factor can represent the detachment and entrainment involved in climate conditions on hillslopes, but lack of 30-min rainfall intensity data usually lead to apply this factor more difficult in many regions. In recent years, fixed-interval, hourly rainfall data is readily available and widely used due to the development of automatic weather stations. Here we assess the estimations of R, E, and I30 based on 1-, 5-, 10-, 15-, 30-, 60-minute rainfall data, and hourly rainfall data obtained from Taipei weather station during 2004 to 2010. Results show that there is a strong correlation among R-factors estimated from different interval rainfall data. Moreover, the shorter time-interval rainfall data (e.g., 1-min) yields larger value of R-factor. The conversion factors of rainfall erosivity (ratio of values estimated from the resolution lower than 30-min rainfall data to those estimated from 60-min and hourly rainfall data, respectively) range from 1.85 to 1.40 (resp. from 1.89 to 1.02) for 60-min (resp. hourly) rainfall data as the time resolution increasing from 30-min to 1-min. This paper provides useful information on estimating R-factor when hourly rainfall data is only available.

  16. Response of transpiration to rain pulses for two tree species in a semiarid plantation.

    PubMed

    Chen, Lixin; Zhang, Zhiqiang; Zeppel, Melanie; Liu, Caifeng; Guo, Junting; Zhu, Jinzhao; Zhang, Xuepei; Zhang, Jianjun; Zha, Tonggang

    2014-09-01

    Responses of transpiration (Ec) to rain pulses are presented for two semiarid tree species in a stand of Pinus tabulaeformis and Robinia pseudoacacia. Our objectives are to investigate (1) the environmental control over the stand transpiration after rainfall by analyzing the effect of vapor pressure deficit (VPD), soil water condition, and rainfall on the post-rainfall Ec development and recovery rate, and (2) the species responses to rain pulses and implications on vegetation coverage under a changing rainfall regime. Results showed that the sensitivity of canopy conductance (Gc) to VPD varied under different incident radiation and soil water conditions, and the two species exhibited the same hydraulic control (-dG c/dlnVPD to Gcref ratio) over transpiration. Strengthened physiological control and low sapwood area of the stand contributed to low Ec. VPD after rainfall significantly influenced the magnitude and time series of post-rainfall stand Ec. The fluctuation of post-rainfall VPD in comparison with the pre-rainfall influenced the Ec recovery. Further, the stand Ec was significantly related to monthly rainfall, but the recovery was independent of the rainfall event size. Ec enhanced with cumulative soil moisture change (ΔVWC) within each dry-wet cycle, yet still was limited in large rainfall months. The two species had different response patterns of post-rainfall Ec recovery. Ec recovery of P. tabulaeformis was influenced by the pre- and post-rainfall VPD differences and the duration of rainless interval. R. pseudoacacia showed a larger immediate post-rainfall Ec increase than P. tabulaeformis did. We, therefore, concluded that concentrated rainfall events do not trigger significant increase of transpiration unless large events penetrate the deep soil and the species differences of Ec in response to pulses of rain may shape the composition of semiarid woodlands under future rainfall regimes.

  17. Distribution of Pb-210 in Spanish Soils: Study of the Atmospheric Contribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, M.; Romero, M. L.; Valino, F.

    The vertical distribution of activity and inventories of atmospheric Pb-210 is being studied in Spanish soils, aiming to establish the reference levels in the zone, based on the type of soil and the annual rainfall. A homogeneous distribution grid (approx. 150x150 km each cell) has been established covering the peninsular land, trying to combine the varying soil types (remaining undisturbed for the last 50 years) and the closeness to meteorological stations. Sampling has been performed by extracting undisturbed soil cylinders of 6 cm diameter and 120 cm length, with an impact penetrometer, and the soil cores have been sectioned inmore » slices of 3 cm thick. The analysis of Pb-210 has been performed using a gamma spectrometry system with coaxial HPGe detector sensitive at low energies (46.5 keV emission). The geometry of measured samples is thin enough (approx. 2 cm) to minimize self-absorption corrections. The work presents the results obtained so far. The Pb-210 activity profiles exhibit the characteristic decreasing shape with depth, showing maximum levels at the surface, and reaching the equilibrium activity with Ra-226 at a maximum depth depending on different environmental conditions. The unsupported Pb-210 inventory values are in the usual range (1000-5000 Bq/m{sup 2}), showing a positive correlation with the averaged annual rainfall. These reference levels could be used in posterior studies of anthropogenic alteration of soils, evaluation of erosion and desertification processes.« less

  18. Analysis of shallow landslides and soil erosion induced by rainfall over large areas

    NASA Astrophysics Data System (ADS)

    Cuomo, Sabatino; Della Sala, Maria

    2014-05-01

    Due to heavy rainstorms, steep hillslopes may be affected by either shallow landslides or soil superficial erosion (Acharya et al., 2011), which originate different flow-like mass movements in adjacent or overlapping source areas (Cascini et al., 2013). Triggering analysis (Cascini et al., 2011) is a relevant issue for hazard assessment that is, in turn, the first step of risk analysis procedures (Fell et al., 2008). Nevertheless, the available approaches separately consider shallow landslides and soil erosion. Specifically, quantitative models for landslides triggering analysis allow simulating the physical processes leading to failure such as pore water pressure increase and soil shear mobilization and provide estimates of the amount of material potentially involved; however, success of quantitative methods must be carefully evaluated in complex geological setting as recently outlined (Sorbino et al., 2010) and further applications to real case histories are straightforward. On the other hand, a wide range of models exist for soil erosion analysis, which differ in terms of complexity, processes considered and data required for the model calibration and practical applications; in particular, quantitative models can estimate the source areas and the amount of eroded soil through empirical relationships or mathematical equations describing the main physical processes governing soil erosion (Merritt et al., 2003). In this work a spatially distributed analysis is proposed for testing the potentialities of two available models to respectively investigate the spatial occurrence of first-time shallow landslides and superficial soil erosion repeatedly occurring in a large test area of the Southern Italy. Both analyses take into account the seasonal variation of soil suction, rainfall characteristics and soil cover use (Cuomo and Della Sala, 2013). The achieved results show that the source areas of shallow landslides strongly depend on rainfall intensity and duration and soil initial suction. On the other hand, the source areas for erosion phenomena depend on rainfall characteristics and soil cover, with simulated eroded areas larger in autumn season. In addition, for a past event, the simulated source areas of shallow landslides are smaller than those observed in the field while the simulated eroded areas with thickness greater than 5 cm are comparable with the in-situ evidences if the analysis takes into account high rainfall intensity and a spatially variable soil cover use, thus providing a consistent interpretation of the event. References Acharya, G., Cochrane, T., Davies, T., Bowman, E. (2011). Quantifying and modeling postfailure sediment yields from laboratory-scale soil erosion and shallow landslide experiments with silty loess. Geomorphology 129, 49-58. Cascini L., Cuomo S., Della Sala M. (2011). Spatial and temporal occurrence of rainfall-induced shallow landslides of flow type: A case of Sarno-Quindici, Italy. Geomorphology, 126(1-2), 148-158. Cascini, L., Sorbino, G., Cuomo, S., Ferlisi, S. (2013). Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern Italy). Landslides, 1-14, DOI: 10.1007/s10346-013-0395-3. Cuomo S., Della Sala M. (2013). Spatially distributed analysis of shallow landslides and soil erosion induced by rainfall. (submitted to Natural Hazards). Fell, R., Corominas J., Bonnard, C., Cascini, L., Leroi E., Savage, W.Z., on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geolology, 102(3-4):85-98. Merritt, W.S., Latcher, R.A., Jakeman, A.J. (2003). A review of erosion and sediment transport models. Environmental Modelling and Software 18, 761- 799. Sorbino G., Sica C., Cascini L. (2010). Susceptibility analysis of shallow landslides source areas using physically based models. Natural Hazards, 53(2), 313-332.

  19. Evaluation of Rainfall-Runoff Models for Mediterranean Subcatchments

    NASA Astrophysics Data System (ADS)

    Cilek, A.; Berberoglu, S.; Donmez, C.

    2016-06-01

    The development and the application of rainfall-runoff models have been a corner-stone of hydrological research for many decades. The amount of rainfall and its intensity and variability control the generation of runoff and the erosional processes operating at different scales. These interactions can be greatly variable in Mediterranean catchments with marked hydrological fluctuations. The aim of the study was to evaluate the performance of rainfall-runoff model, for rainfall-runoff simulation in a Mediterranean subcatchment. The Pan-European Soil Erosion Risk Assessment (PESERA), a simplified hydrological process-based approach, was used in this study to combine hydrological surface runoff factors. In total 128 input layers derived from data set includes; climate, topography, land use, crop type, planting date, and soil characteristics, are required to run the model. Initial ground cover was estimated from the Landsat ETM data provided by ESA. This hydrological model was evaluated in terms of their performance in Goksu River Watershed, Turkey. It is located at the Central Eastern Mediterranean Basin of Turkey. The area is approximately 2000 km2. The landscape is dominated by bare ground, agricultural and forests. The average annual rainfall is 636.4mm. This study has a significant importance to evaluate different model performances in a complex Mediterranean basin. The results provided comprehensive insight including advantages and limitations of modelling approaches in the Mediterranean environment.

  20. Relationships between slope erosion processes and aggregate stability of Ultisols from subtropical China during rainstorms

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Xiao, Hai; Liu, Puling

    2017-04-01

    Soil aggregates, being a key soil structural unit, influence several soil physical properties such as water infiltration, runoff and erosion. The relationship between soil aggregate stability and interrill and rill erodibility is unclear but critical to process-based erosion prediction models. One obvious reason is that it is hard to distinguish between interrill and rill-eroded sediment during the erosion process. This study was designed to partition interrill and rill erosion rates and relates them to the aggregate stability of Ultisols in subtropical China. Six kinds of rare earth element (REE) were applied as tracers mixed with two cultivated soils derived from the Quaternary red clay soil and the shale soil at six slope positions. Soil aggregate stability was determined by the Le Bissonnais (LB)-method. Simulated rainfall with three intensities (60, 90 and 120 mm/h) were applied to a soil plot (2.25 m long, 0.5 m wide, 0.2 m deep) at three slope gradients (10°, 20° and 30°) with duration of 30 min after runoff initiation. The results indicated that interrill and rill erosion increased with increasing rainfall intensity and slope gradient for both types of soil. Rill and interrill erosion rates of the shale soil were much higher than those of the Quaternary red clay soil. Rill erosion contribution enhanced with increasing rainfall intensity and slope gradient for both soils. Percentage of the downslope area erosion to total erosion was the largest, followed by the mid-slope area and then upslope area. Equations using an aggregate stability index As to replace the erodibility factor of interrill and rill erosion in the Water Erosion Prediction Project (WEPP) model were constructed after analyzing the relationships between estimated and measured rill and interrill erosion data. It was shown that these equations based on the stability index, As, have the potential to improve methods for assessing interrill and rill erosion erodibility synchronously for the subtropical Ultisols by using REE tracing method.

  1. SMAP soil moisture drying more rapid than observed in situ following rainfall events

    USDA-ARS?s Scientific Manuscript database

    We examine soil drying rates by comparing observations from the NASA Soil Moisture Active Passive (SMAP) mission to surface soil moisture from in situ probes during drydown periods at SMAP validation sites. SMAP and in situ probes record different soil drying dynamics after rainfall. We modeled this...

  2. A comparison of methods for determining soil water availability in two sites in Panama with similar rainfall but distinct tree communities

    Treesearch

    Thomas A. Kursar; Bettina M. J. Engelbrecht; Melvin T. Tyree

    2005-01-01

    Plant productivity, distribution and diversity in tropical rain forests correlate with water availability. Water availability is determined by rainfall and also by the available water capacity of the soil. However, while rainfall is recognized as important, linkages between plant distribution and differences among soils in available water capacity have not been...

  3. Effects of shifting seasonal rainfall patterns on net primary productivity and carbon storage in tropical seasonally dry ecosystems

    NASA Astrophysics Data System (ADS)

    Rohr, T.; Manzoni, S.; Feng, X.; Menezes, R.; Porporato, A. M.

    2013-12-01

    Although seasonally dry ecosystems (SDEs), identified by prolonged drought followed by a short, but intense, rainy season, cover large regions of the tropics, their biogeochemical response to seasonal rainfall and soil carbon (C) sequestration potential are not well characterized. Both productivity and soil respiration are positively affected by seasonal soil moisture availability, creating a delicate balance between C deposition through litterfall and C losses through heterotrophic respiration. As climate change projections for the tropics predict decreased annual rainfall and increased dry season length, it is critical to understand how variations in seasonal rainfall distributions control this balance. To address this question, we develop a minimal model linking the seasonal behavior of the ensemble soil moisture, plant productivity, the related soil C inputs through litterfall, and soil C dynamics. The model is parameterized for a case study from a drought-deciduous caatinga ecosystem in northeastern Brazil. Results indicate that when altering the seasonal rainfall patterns for a fixed annual rainfall, both plant productivity and soil C sequestration potential are largely, and nonlinearly, dependent on wet season duration. Moreover, total annual rainfall plays a dominant role in describing this relationship, leading at times to the emergence of distinct optima in both primary production and C sequestration. Examining these results in the context of climate-driven changes to wet season duration and mean annual precipitation indicate that the initial hydroclimatic regime of a particular ecosystem is an important factor to predict both the magnitude and direction of the effects of shifting seasonal distributions on productivity and C storage. Although highly productive ecosystems will likely experience declining C storage with predicted climate shifts, those currently operating well below peak production can potentially see improved C stocks with the onset of declining rainfall due to reduced soil respiration. a) Annual average net primary productivity and b) the temporally averaged ensemble soil carbon concentration <(C_yr )> are plotted against the length of the wet season T_W, for six annual rainfall rates (m yr-1).

  4. Integrated Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) for Soil Erosion Measurement in basin of Asap river, Central Vietnam

    NASA Astrophysics Data System (ADS)

    Pham Gia, Tung; Degener, Jan; Kappas, Martin

    2017-04-01

    The study was conducted in Asap river basin, A Luoi district, Thua Thien Hue Province, Vietnam, using the Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) to determine the soil erosion status. The results show strong effect of the heavy rainfall and high slope on the erosion level in the research area. More than 40% of land area lost over 10 tons/ha/year. The natural forest land lost the most by averagely is 38.4 tons/ha/year, while the agricultural land showed less with 2.79 tons for paddy rice land use type and 7.58 tons for upland crops yearly. Comparison between some places of Vietnam and the Southeast Asia showed that soil erosion in watersheds of Asap is more serious. We have been proposed a recommendation on changing the classification system of land use type in Vietnam for more accurate in soil erosion measurement. Keywords: Land use type, Soil erosion, USLE, Central Vietnam.

  5. The effects of more extreme rainfall patterns on nitrogen leaching from a field crop system in the upper Midwest, USA

    NASA Astrophysics Data System (ADS)

    Hess, L.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2016-12-01

    As global surface temperatures rise, the proportion of total rainfall that falls in heavy storm events is increasing in many areas, in particular the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for ecosystem nutrient losses, especially from agricultural ecosystems. We conducted a multi-year rainfall manipulation experiment to examine how more extreme rainfall patterns affect nitrogen (N) leaching from row-crop ecosystems in the upper Midwest, and to what extent tillage may moderate these effects. 5x5m rainout shelters were installed in April 2015 to impose control and extreme rainfall patterns in replicated plots under conventional tillage and no-till management at the Kellogg Biological Station LTER site. Plots exposed to the control rainfall treatment received ambient rainfall, and those exposed to the extreme rainfall treatment received the same total amount of water but applied once every 2 weeks, to simulate larger, less frequent storms. N leaching was calculated as the product of measured soil water N concentrations and modeled soil water drainage at 1.2m depth using HYDRUS-1D. Based on data to date, more N has been leached from both tilled and no-till soils exposed to the extreme rainfall treatment compared to the control rainfall treatment. Results thus far suggest that greater soil water drainage is a primary driver of this increase, and changes in within-system nitrogen cycling - such as net N mineralization and crop N uptake - may also play a role. The experiment is ongoing, and our results so far suggest that intensifying precipitation patterns may exacerbate N leaching from agricultural soils, with potentially negative consequences for receiving ground- and surface waters, as well as for farmers.

  6. A relook at NEH-4 curve number data and antecedent moisture condition criteria

    NASA Astrophysics Data System (ADS)

    Mishra, Surendra Kumar; Singh, Vijay P.

    2006-08-01

    This paper investigates the variation of the popular curve number (CN) values given in the National Engineering Hand Book-Section 4 (NEH-4) of the Soil Conservation Service (SCS) with antecedent moisture condition (AMC) and soil type. Using the volumetric concept, involving soil, water, and air, a significant condensation of the NEH-4 tables is achieved. This leads to a procedure for determination of CN for gauged as well as ungauged watersheds. The rainfall-runoff events derived from daily data of four Indian watersheds exhibited a power relation between the potential maximum retention or CN and the 5-day antecedent rainfall amount. Including this power relation, the SCS-CN method was modified. This modification also eliminates the problem of sudden jumps from one AMC level to the other. The runoff values predicted using the modified method and the existing method utilizing the NEH-4 AMC criteria yielded similar results.

  7. Upper-soil moisture inter-comparison from SMOS's products and land surface models over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Polcher, Jan; Barella-Ortiz, Anaïs; Aires, Filipe; Balsamo, Gianpaolo; Gelati, Emiliano; Rodríguez-Fernández, Nemesio

    2015-04-01

    Soil moisture is a key state variable of the hydrological cycle. It conditions runoff, infiltration and evaporation over continental surfaces, and is key for forecasting droughts and floods. It plays thus an important role in surface-atmosphere interactions. Surface Soil Moisture (SSM) can be measured by in situ measurements, by satellite observations or modelled using land surface models. As a complementary tool, data assimilation can be used to combine both modelling and satellite observations. The work presented here is an inter-comparison of retrieved and modelled SSM data, for the 2010 - 2012 period, over the Iberian Peninsula. The region has been chosen because its vegetation cover is not very dense and includes strong contrasts in the rainfall regimes and thus a diversity of behaviours for SSM. Furthermore this semi-arid region is strongly dependent on a good management of its water resources. Satellite observations correspond to the Soil Moisture and Ocean Salinity (SMOS) retrievals: the L2 product from an optimal interpolation retrieval, and 3 other products using Neural Network retrievals with different input information: SMOS time indexes, purely SMOS data, or addition of the European Advanced Scaterometer (ASCAT) backscattering, and the Moderate-Resolution Imaging Spectrometer (MODIS) surface temperature information. The modelled soil moistures have been taken from the ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEms) and the HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) land surface models. Both models are forced with the same atmospheric conditions (as part of the Earth2Observe FP7 project) over the period but they represent the surface soil moisture with very different degrees of complexity. ORCHIDEE has 5 levels in the top 5 centimetres of soil while in HTESSEL this variable is part of the top soil moisture level. The two types of SMOS retrievals are compared to the model outputs in their spatial and temporal characteristics. The comparison with the model helps to identify which retrieval configuration is most consistent with our understanding of surface soil moisture in this region. In particular we have determined how each of the soil moisture products is related to the spatio-temporal variations of rainfall. In large parts of the Iberian Peninsula the co-variance of remote sensed SSM and rainfall is consistent with that of the models. But for some regions questions are raised. The variability of SSM observed by SMOS in the North West of the Iberian Peninsula is similar to that of rainfall, at least this relation of SSM and rainfall is closer than suggested by the two models.

  8. Ecohydrology of managed ecosystems: Linking rainfall unpredictability, agronomic performance, and sustainable water use

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2014-05-01

    The field of ecohydrology, traditionally focusing on natural ecosystems, can offer the necessary quantitative tools to assess and compare the sustainability of agriculture across climates, soil types, crops, and irrigation strategies, including rainfall unpredictability. In particular, irrigation is one of the main strategies to enhance and stabilize agricultural productivity, but represents a cost in terms of often scarce water resources. Here, the sustainability of irrigated and rainfed agriculture is assessed by means of water productivity (defined as the ratio between yield and total supplied water), yields, water requirements, and their variability. These indicators are quantified using a probabilistic description of the soil water balance and crop development. Employing this framework, we interpret changes in water productivity as total water input is altered, in two staple crops (maize and wheat) grown under different soils, climates, and irrigation strategies. Climate change scenarios are explored by using the same approach and altering the rainfall statistics. For a given irrigation strategy, intermediate rainfall inputs leads to the highest variability in yield and irrigation water requirement - it is under these conditions that water management is most problematic. When considering the contrasting needs of limiting water requirements while ensuring adequate yields, micro-irrigation emerges as the most sustainable strategy at the field level, although consideration should be given to its profitability and long-term environmental implications.

  9. Symbiotic soil fungi enhance ecosystem resilience to climate change.

    PubMed

    Martínez-García, Laura B; De Deyn, Gerlinde B; Pugnaire, Francisco I; Kothamasi, David; van der Heijden, Marcel G A

    2017-12-01

    Substantial amounts of nutrients are lost from soils through leaching. These losses can be environmentally damaging, causing groundwater eutrophication and also comprise an economic burden in terms of lost agricultural production. More intense precipitation events caused by climate change will likely aggravate this problem. So far it is unresolved to which extent soil biota can make ecosystems more resilient to climate change and reduce nutrient leaching losses when rainfall intensity increases. In this study, we focused on arbuscular mycorrhizal (AM) fungi, common soil fungi that form symbiotic associations with most land plants and which increase plant nutrient uptake. We hypothesized that AM fungi mitigate nutrient losses following intensive precipitation events (higher amount of precipitation and rain events frequency). To test this, we manipulated the presence of AM fungi in model grassland communities subjected to two rainfall scenarios: moderate and high rainfall intensity. The total amount of nutrients lost through leaching increased substantially with higher rainfall intensity. The presence of AM fungi reduced phosphorus losses by 50% under both rainfall scenarios and nitrogen losses by 40% under high rainfall intensity. Thus, the presence of AM fungi enhanced the nutrient interception ability of soils, and AM fungi reduced the nutrient leaching risk when rainfall intensity increases. These findings are especially relevant in areas with high rainfall intensity (e.g., such as the tropics) and for ecosystems that will experience increased rainfall due to climate change. Overall, this work demonstrates that soil biota such as AM fungi can enhance ecosystem resilience and reduce the negative impact of increased precipitation on nutrient losses. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  10. Post-fire soil functionality and microbial community structure in a Mediterranean shrubland subjected to experimental drought.

    PubMed

    Hinojosa, M Belén; Parra, Antonio; Laudicina, Vito Armando; Moreno, José M

    2016-12-15

    Fire may cause significant alterations in soil properties. Post-fire soil dynamics can vary depending, among other factors, on rainfall patterns. However, little is known regarding variations in response to post-fire drought. This is relevant in arid and semiarid areas with poor soils, like much of the western Mediterranean. Furthermore, climate change projections in such areas anticipate reduced precipitation and longer annual drought periods, together with an increase in fire severity and frequency. This research evaluates the effects of experimental drought after fire on soil dynamics of a Cistus-Erica shrubland (Central Spain). A replicated (n=4) field experiment was conducted in which the total rainfall and its patterns were manipulated by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (average rainfall, 2months drought), moderate drought (25% reduction of historical control, 5months drought) and severe drought (45% reduction, 7months drought). After one growing season under these rainfall treatments, the plots were burned. One set of unburned plots under natural rainfall served as an additional control. Soils were collected seasonally. Fire increased soil P and N availability. Post-fire drought treatments reduced available soil P but increased N concentration (mainly nitrate). Fire reduced available K irrespective of drought treatments. Fire reduced enzyme activities and carbon mineralization rate, a reduction that was higher in post-fire drought-treated soils. Fire decreased soil microbial biomass and the proportion of fungi, while that of actinomycetes increased. Post-fire drought decreased soil total microbial biomass and fungi, with bacteria becoming more abundant. Our results support that increasing drought after fire could compromise the resilience of Mediterranean ecosystems to fire. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The influence of conservation tillage methods on soil water regimes in semi-arid southern Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mupangwa, W.; Twomlow, S.; Walker, S.

    Planting basins and ripper tillage practices are major components of the recently introduced conservation agriculture package that is being extensively promoted for smallholder farming in Zimbabwe. Besides preparing land for crop planting, these two technologies also help in collecting and using rainwater more efficiently in semi-arid areas. The basin tillage is being targeted for households with limited or no access to draught animals while ripping is meant for smallholder farmers with some draught animal power. Trials were established at four farms in Gwanda and Insiza in southern Zimbabwe to determine soil water contributions and runoff water losses from plots under four different tillage treatments. The tillage treatments were hand-dug planting basins, ripping, conventional spring and double ploughing using animal-drawn implements. The initial intention was to measure soil water changes and runoff losses from cropped plots under the four tillage practices. However, due to total crop failure, only soil water and runoff were measured from bare plots between December 2006 and April 2007. Runoff losses were highest under conventional ploughing. Planting basins retained most of the rainwater that fell during each rainfall event. The amount of rainfall received at each farm significantly influenced the volume of runoff water measured. Runoff water volume increased with increase in the amount of rainfall received at each farm. Soil water content was consistently higher under basin tillage than the other three tillage treatments. Significant differences in soil water content were observed across the farms according to soil types from sand to loamy sand. The basin tillage method gives a better control of water losses from the farmers’ fields. The planting basin tillage method has a greater potential for providing soil water to crops than ripper, double and single conventional ploughing practices.

  12. Controls on carbon storage and weathering in volcanic ash soils across a climate gradient on Mauna Kea, Hawaii

    NASA Astrophysics Data System (ADS)

    Kramer, M. G.; Chadwick, O.

    2017-12-01

    Volcanic ash soils retain the largest and most persistent soil carbon pools of any ecosystem. However, the mechanisms governing soil carbon accumulation and weathering during initial phases of weathering are not well understood. We examined soil organic matter dynamics and weathering across a high altitude (3563 - 3013 m) 20 ky climate gradient on Mauna Kea in Hawaii. Four elevation sites were selected ( 250-500 mm rainfall) which range from arid-periglacial to sites which contain a mix of shrubs and grasses. At each site, between 2-3 pits were dug and major diagnostic horizons down to bedrock (in-tact lava) were sampled. Soils were analyzed for particle size, organic C and N, soil pH, exchangeable cations, base saturation, NaF pH, phosphorous sorption and bulk elements. Mass loss and pedogenic metal accumulation (hydroxlamine Fe, Al and Si extractions) were used to measure extent of weathering, leaching, changes in soil mineralogy and carbon accumulation with the short-range-ordered (SRO) minerals. Reactive-phase (SRO) minerals show a general trend of increasing abundance through the soil depth profile with increasing rainfall. However carbon accumulation patterns across the climate gradient are largely decoupled from these trends. The results suggest that after 20ky, pedogenic processes have altered the nature and composition of the volcanic ash such that it is capable of retaining soil C even where organic acid influences from plant material and leaching from rainfall is severely limited. Comparisons with lower elevation soils on Mauna Kea and other moist mesic (2500mm rainfall) sites on Hawaii suggest that these soils have reached only between 1-15 % of their capacity to retain carbon. Our results suggest that in low rainfall and a cold climate, after 20ky, weathering has advanced but is decoupled from soil carbon accumulation patterns and the associated influence of vegetation on soil development. Changes in soil carbon composition and amount across the entire (250-2500mm rainfall) Mauna Kea climate gradient indicate that the rate of carbon supply to the subsoil (driven by coupling of rainfall above ground plant production) is a governing factor of forms and amount of soil organic matter accumulation, while soil mineralogy remained relatively uniform.

  13. Flood and landslide warning based on rainfall thresholds and soil moisture indexes: the HEWS (Hydrohazards Early Warning System) for Sicily

    NASA Astrophysics Data System (ADS)

    Brigandì, Giuseppina; Tito Aronica, Giuseppe; Bonaccorso, Brunella; Gueli, Roberto; Basile, Giuseppe

    2017-09-01

    The main focus of the paper is to present a flood and landslide early warning system, named HEWS (Hydrohazards Early Warning System), specifically developed for the Civil Protection Department of Sicily, based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF). The warning system is referred to 9 different Alert Zones in which Sicily has been divided into and based on a threshold system of three different increasing critical levels: ordinary, moderate and high. In this system, for early flood warning, a Soil Moisture Accounting (SMA) model provides daily soil moisture conditions, which allow to select a specific set of three rainfall thresholds, one for each critical level considered, to be used for issue the alert bulletin. Wetness indexes, representative of the soil moisture conditions of a catchment, are calculated using a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method, and on the unit hydrograph approach, that require daily observed and/or predicted rainfall, and temperature data as input. For the calibration of this model daily continuous time series of rainfall, streamflow and air temperature data are used. An event based lumped rainfall-runoff model has been, instead, used for the derivation of the rainfall thresholds for each catchment in Sicily characterised by an area larger than 50 km2. In particular, a Kinematic Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall was developed for this purpose. For rainfall-induced shallow landslide warning, empirical rainfall thresholds provided by Gariano et al. (2015) have been included in the system. They were derived on an empirical basis starting from a catalogue of 265 shallow landslides in Sicily in the period 2002-2012. Finally, Delft-FEWS operational forecasting platform has been applied to link input data, SMA model and rainfall threshold models to produce warning on a daily basis for the entire region.

  14. Modelling soil erosion in rainfed vineyards of northeast of Spain under climate change: effects of increasing rainfall intensity

    NASA Astrophysics Data System (ADS)

    Concepción Ramos, Maria

    2017-04-01

    This aim of the research was to analyse the effect of rainfall distribution and intensity on soil erosion in vines cultivated in the Mediterranean under the projected climate change scenario. The simulations were done at plot scale using the WEPP model. Climatic data for the period 1996-2014 were obtained from a meteorological station located 6km far from the plot. Soil characteristics such as texture, organic matter content, water retention capacity and infiltration were analysed. Runoff and soil losses were measured at four locations within the plot during 4 years and used to calibrate and validate the model. According to evidences recorded in the area, changes of rainfall intensities of 10 and 20% were considered for different rainfall distributions. The simulations were extended to the predicted changes for 2030, 2050 and 2070 based on the HadGEM2-CC under the Representative Concentration Pathways (RCPs) 8.5 scenario. WEPP model provided a suitable prediction of the seasonal runoff and erosion as simulated relatively well the runoff and erosion of the most important events although some deficiencies were found for those events that produced low runoff. The simulation confirmed the contribution of the extreme events to annual erosion rates in 70%, on average. The model responded to changes in precipitation predicted under a climate change scenario with a decrease of runoff and erosion, and with higher erosion rates for an increase in rainfall intensity. A 10% increase may imply erosion rates up to 22% greater for the scenario 2030, and despite the predicted decrease in precipitation for the scenario 2050, soil losses may be up to 40% greater than at present for some rainfall distributions and intensity rainfall increases of 20%. These findings show the need of considering rainfall intensity as one of the main driven factors when soil erosion rates under climate change are predicted. Keywords: extreme events, rainfall distribution, runoff, soil losses, wines, WEPP.

  15. Bioengineering Technology to Control River Soil Erosion using Vetiver (Vetiveria Zizaniodes)

    NASA Astrophysics Data System (ADS)

    Sriwati, M.; Pallu, S.; Selintung, M.; Lopa, R.

    2018-04-01

    Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock or dissolved material from one location on the earth’s crust, and then transport it away to another location. Bioengineering is an attempt to maximise the use of vegetation components along riverbanks to cope with landslides and erosion of river cliffs and another riverbank damage. This study aims to analyze the bioengineering of Vetiver as a surface layer for soil erosion control using slope of 100, 200, and 300. This study is conducted with 3 variations of rain intensity (I), at 103 mm/hour, 107 mm/hour, and 130 mm/hour by using rainfall simulator tool. In addition, the USLE (Universal Soil Loss Equation) method is used in order to measure the rate of soil erosion. In this study, there are few USLE model parameters were used such as rainfall erosivity factor, soil erodibility factor, length-loss slope and stepness factor, cover management factor, and support practise factor. The results demonstrated that average of reduction of erosion rate using Vetiver, under 3 various rainfalls, namely rainfall intensity 103 mm/hr had reduced 84.971%, rainfall intensity 107 mm/hr had reduced 86.583 %, rainfall intensity 130 mm/hr had reduced 65.851%.

  16. The consecutive dry days to trigger rainfall over West Africa

    NASA Astrophysics Data System (ADS)

    Lee, J. H.

    2018-01-01

    In order to resolve contradictions in addressing a soil moisture-precipitation feedback mechanism over West Africa and to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, we first validated various data sets (SMOS satellite soil moisture observations, NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models) with the Analyses Multidisciplinaires de la Mousson Africaine (AMMA) field campaign data. Based on this analysis, it was suggested that biases of data sets might cause contradictions in studying mechanisms. Thus, by taking into account uncertainties in data, it was found that the approach of consecutive dry days (i.e. a relative comparison of time-series) showed consistency across various data sets, while the direct comparison approach for soil moisture state and rainfall did not. Thus, it was discussed that it may be difficult to directly relate rain with soil moisture as the absolute value, however, it may be reasonable to compare a temporal progress of the variables. Based upon the results consistently showing a positive relationship between the consecutive dry days and rainfall, this study supports a negative feedback often neglected by climate model structure. This approach is less sensitive to interpretation errors arising from systematic errors in data sets, as this measures a temporal gradient of soil moisture state.

  17. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    NASA Astrophysics Data System (ADS)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  18. Design and application of a drip-type rainfall simulator adapted to steep topography and low intensity-rainfall characteristics in the Coastal Range of Southern Chile

    NASA Astrophysics Data System (ADS)

    Mohr, Christian; Anton, Huber

    2010-05-01

    Besides being adaptable for measuring infiltration, overland flow and sediment transport simultaneously, rainfall simulator systems allow the observation of the processes of runoff generation and soil erosion, too. This enables the assimilation of additional qualitative data and makes a rainfall simulator system a very valid method in the investigation of soil-hydrological response to precipitation events. In the present study a cheap, handy, transportable and easy to set up rainfall simulator applicable for the steep terrain conditions of the Southern Chilean Coastal range was designed based on Bowyer-Bower & Burt (1989). The used drip-type rainfall simulator had to fulfill two main requirements: adaptive to steep topography and little in water consumption. The used simulator is set up by a dismountable rectangular metal rack of 0.5x1.0m basal surface and 2.5m height. The metallic structure enables the attachment of plastic boards for wind protection. Fixable telescopic extensions allow a firm adjustment to slopes up to 45°. Horizontal metallic frames at different heights increase the stability of the structure and carry the devices of the rainfall simulator. On the uppermost frame, two containers provided with calibrated scales spend the water to a fast reacting receptacle assuring constant water supply and pressure by the Mariotte's principle. The rainfall intensity is adjusted by a control-panel according to the Bernoulli principle. This guarantees a constant water flow which was verified by the water-volume leaving the calibrated containers on top. Interchangeable glass-tubes of different diameters in the control-panel permit the generation of various precipitation intensities (4-60 mm/h; SD =0.16mm). The frame beneath carries an acrylic glass box with approx. 600 drop-formers (fishing line inside a 0.76mm Tygon-tube) at its bottom. 20 cm below, a framed 5mm-spacing-mesh serves as a raindrop randomizer. At the base of the simulator sheet metals avoid lateral leakage of overland flow leading the runoff to a cemented trough. The experiments were conducted until a steady state infiltration rate was observed or the runoff ceased. The runoff samples are taken manually in intervals of 5 or 10 min depending on the simulated intensity and amount of runoff. All bottled samples were filtered to determine the sediment concentration. To test the system's effectiveness a pilot-study was conducted in a granitic soil catchment. The obtained values of the infiltration rate indicate that soil physical properties in this area facilitate rapid infiltration and slope did not show main influence. The sediment concentration showed high variability due to heterogeneity of surface and soil characteristics. In a succeeding study 36 rainfall simulations prior to clear-cuts during dry summer-season and rainy winter-season were carried out to determine the effect of both silvicultural practices on micro-scale. Soil hydrological response showed preferential flow patterns and variable infiltration-rates due to topsoil disturbance in the course of previous timber-harvests and differences in soil depth, hydrophobic organic layers and imbedded rocks. Maximum steady state infiltration rates ranged between 7.3 and 32.3 mm/h. In contrast to the expected results, maximum infiltration occurred at steep slopes. Only little sediment transport was measured. Only under high precipitation on steep slopes a moderate sediment transport (0.074 g/l) was documented. Post clear-cut infiltration experiments will be conducted in Jan.-March 2010. Furthermore, a modified tipping-bucket-device will be installed as a runoff collector-device to gain better temporal resolution.

  19. Rainfall erosivity in the Fukushima Prefecture: implications for radiocesium mobilization and migration

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick; Chartin, Caroline; Degan, Francesca; Onda, Yuichi; Evrard, Olivier; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 led to the fallout of predominantly radiocesium (137Cs and 134Cs) on soils of the Fukushima Prefecture. This radiocesium was primarily fixated to fine soil particles. Subsequently, rainfall and snow melt run-off events result in significant quantities of radiocesium being eroded and transported throughout the coastal catchments and ultimately exported to the Pacific Ocean. Erosion models, such as the Universal Soil Loss Equation (USLE), relate rainfall directly to soil erosion in that an increase in rainfall one month will directly result in a proportional increase in sediment generation. Understanding the rainfall regime of the region is therefore fundamental to modelling and predicting long-term radiocesium export. Here, we analyze rainfall data for ~40 stations within a 100 km radius of the FDNPP. First we present general information on the rainfall regime in the region based on monthly and annual rainfall totals. Second we present general information on rainfall erosivity, the R-factor of the USLE equation and its relationship to the general rainfall data. Third we examine rainfall trends over the last 100 years at several of the rainfall stations to understand temporal trends and whether ~20 years of data is sufficient to calculate the R-factor for USLE models. Fourth we present monthly R-factor maps for the Fukushima coastal catchments impacted by the FDNPP accident. The variability of the rainfall in the region, particularly during the typhoon season, is likely resulting in a similar variability in the transfer and migration of radiocesium throughout the coastal catchments of the Fukushima Prefecture. Characterizing the region's rainfall variability is fundamental to modelling sediment and the concomitant radiocesium migration and transfer throughout these catchments and ultimately to the Pacific Ocean.

  20. Chemical and biological relationships relevant to the effect of acid rainfall on the soil-plant system

    Treesearch

    Marvin Nyborg

    1976-01-01

    This paper deals with problems of measuring acidity in rainfall and the interpretation of these measurements in terms of effects on the soil-plant system. Theoretical relationships of the carbon-dioxide-bicarbonate equalibria and its effect on rainfall acidity measurements are given. The relationship of a cation-anion balance model of acidity in rainfall to plant...

  1. Different rates of soil drying after rainfall are observed by the SMOS satellite and the South Fork In Situ Soil Moisture Network

    USDA-ARS?s Scientific Manuscript database

    Soil moisture affects the spatial variation of land–atmosphere interactions through its in'uence on the balance of latent and sensible heat 'ux. Wetter soils are more prone to 'ooding because a smaller fraction of rainfall can in'ltrate into the soil. The Soil Moisture and Oceanic Salinity (SMOS) sa...

  2. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events.

    PubMed

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Xin; Zhang, Juan; Han, Feng

    2016-08-01

    Soil contamination by mercury (Hg) is a global environmental issue. In watersheds with a significant soil Hg storage, soil erosion during rainfall-runoff events can result in nonpoint source (NPS) Hg pollution and therefore, can extend its environmental risk from soils to aquatic ecosystems. Nonetheless, transport mechanisms of soil-bound Hg in the erosion process have not been explored directly, and how different fractions of soil organic matter (SOM) impact transport is not fully understood. This study investigated transport mechanisms based on rainfall-runoff simulation experiments. The experiments simulated high-intensity and long-duration rainfall conditions, which can produce significant soil erosion and NPS pollution. The enrichment ratio (ER) of total mercury (THg) was the key variable in exploring the mechanisms. The main study findings include the following: First, the ER-sediment flux relationship for Hg depends on soil composition, and no uniform ER-sediment flux function exists for different soils. Second, depending on soil composition, significantly more Hg could be released from a less polluted soil in the early stage of large rainfall events. Third, the heavy fraction of SOM (i.e., the remnant organic matter coating on mineral particles) has a dominant influence on the enrichment behavior and transport mechanisms of Hg, while clay mineral content exhibits a significant, but indirect, influence. The study results imply that it is critical to quantify the SOM composition in addition to total organic carbon (TOC) for different soils in the watershed to adequately model the NPS pollution of Hg and spatially prioritize management actions in a heterogeneous watershed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. SMOS+RAINFALL: Evaluating the ability of different methodologies to improve rainfall estimations using soil moisture data from SMOS

    NASA Astrophysics Data System (ADS)

    Pellarin, Thierry; Brocca, Luca; Crow, Wade; Kerr, Yann; Massari, Christian; Román-Cascón, Carlos; Fernández, Diego

    2017-04-01

    Recent studies have demonstrated the usefulness of soil moisture retrieved from satellite for improving rainfall estimations of satellite based precipitation products (SBPP). The real-time version of these products are known to be biased from the real precipitation observed at the ground. Therefore, the information contained in soil moisture can be used to correct the inaccuracy and uncertainty of these products, since the value and behavior of this soil variable preserve the information of a rain event even for several days. In this work, we take advantage of the soil moisture data from the Soil Moisture and Ocean Salinity (SMOS) satellite, which provides information with a quite appropriate temporal and spatial resolution for correcting rainfall events. Specifically, we test and compare the ability of three different methodologies for this aim: 1) SM2RAIN, which directly relate changes in soil moisture to rainfall quantities; 2) The LMAA methodology, which is based on the assimilation of soil moisture in two models of different complexity (see EGU2017-5324 in this same session); 3) The SMART method, based on the assimilation of soil moisture in a simple hydrological model with a different assimilation/modelling technique. The results are tested for 6 years over 10 sites around the world with different features (land surface, rainfall climatology, orography complexity, etc.). These preliminary and promising results are shown here for the first time to the scientific community, as also the observed limitations of the different methodologies. Specific remarks on the technical configurations, filtering/smoothing of SMOS soil moisture or re-scaling techniques are also provided from the results of different sensitivity experiments.

  4. Rainfall and Sheet Power Equation for Interrill Erosion on Steep Hillslope

    NASA Astrophysics Data System (ADS)

    Shin, S.; Park, S.; Pierson, F. B.; Al-Hamdan, O. Z.; Williams, C. J.

    2012-12-01

    Splash and sheet erosion processes dominate on most undisturbed hillslopes of rangeland. Interrill soil erosion should consider the influence of both raindrop and sheet flow to work of soil particles detached by raindrop impact and transported by rainfall-disturbed sheet flow. Interrill erosion equations that combine the influence of both rainfall and runoff have been proposed by several researchers. However most approaches to modeling interrill erosion have been based on statistical relationships given the inherent complexity in derivation of broadly-applicable physically-based erosion parameters. In this study, a rainfall and sheet power equation to evaluate interrill sediment yields (Qs) was derived from the sum of rainfall power and sheet power expressed by rainfall intensity: Qs=a(cosθ/L){α sinθ ∑ I(t)^(11/9)+β tanθ^(1/2) ∑ (1-fr(t))^(5/3) I(t)^(5/3)}^b, where I(t) is rainfall intensity, θ is slope angle, fr(t) is infiltration rate, a, b, α, and β are coefficients, sinθ I(t)^(11/9) is the rainfall power term, and tanθ^(1/2) (1-fr(t))^(5/3) I(t)^(5/3) is the sheet power term. The rainfall power ratio and sheet power ratio decreased and increased with increased rainfall intensity, respectively. The sheet power term depended greatly on infiltration rate controlled by rainfall intensity, vegetation cover, and soil condition. The rainfall and sheet power equation assuming that α and β is 0 was evaluated using field data from plots on steep hillslopes and showed the better correlation with sediment yields than rainfall kinetic energy, runoff discharge, or interrill equations based on rainfall intensity and runoff discharge founded in the literature. This equation successfully explained physical processes for soil erosion that rainfall power is dominant under low rainfall and sheet power is dominant under heavy rainfall. Additional experimental data is needed to assess coefficients of the power equation to determine the relative quantities of rainfall power and sheet power and to evaluate the erosion efficiency of interactions between raindrop impact and sheet flow and soil erodibility. Acknowledgements: This work was supported by a grant (Code#'08 RTIP B-01) from Regional Technology Innovation Program funded by Ministry of Land, Transport and Maritime Affairs of Korean government.;

  5. What are the most important factors determining different vegetation types in the Chapada Diamantina, Brazil?

    PubMed

    Neves, S P S; Funch, R; Conceição, A A; Miranda, L A P; Funch, L S

    2016-06-01

    A transect was used to examine the environmental and biological descriptors of a compact vegetation mosaic in the Chapada Diamantina in northeastern Brazil, including the floristic composition, spectrum of plant life forms, rainfall, and soil properties that defined areas of cerrado (Brazilian savanna), caatinga (seasonally dry tropical forest thorny, deciduous shrub/arboreal vegetation) and cerrado-caatinga transition vegetation. The floristic survey was made monthly from April/2009 to March/2012. A dendrogram of similarity was generated using the Jaccard Index based on a matrix of the species that occurred in at least two of the vegetation types examined. The proportions of life forms in each vegetation type were compared using the chi-square test. Composite soil samples were analyzed by simple variance (ANOVA) to examine relationships between soil parameters of each vegetation type and the transition area. The monthly precipitation levels in each vegetation type were measured and compared using the chi-square test. A total of 323 species of angiosperms were collected distributed in 193 genera and 54 families. The dendrogram demonstrated strong difference between the floristic compositions of the cerrado and caatinga, sharing 2% similarity. The chi-square test did not demonstrate any significant statistical differences between the monthly values of recorded rainfall. The organic matter and clay contents of the soilsin the caatinga increased while sand decreased, and the proportions of therophyte, hemicryptophyte, and chamaephyte life forms decreased and phanerophytes increased. We can therefore conclude that the floristic composition and the spectrum of life forms combined to define the cerrado and caatinga vegetation along the transect examined, with soil being the principal conditioning factor determining the different vegetation types, independent of precipitation levels.

  6. Forty years experience in developing and using rainfall simulators under tropical and Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso; Nacci, Silvana

    2010-05-01

    Rainfall simulation has been used as a practical tool for evaluating the interaction of falling water drops on the soil surface, to measure both stability of soil aggregates to drop impact and water infiltration rates. In both cases it is tried to simulate the effects of natural rainfall, which usually occurs at very different, variable and erratic rates and intensities. One of the main arguments against the use of rainfall simulators is the difficulty to reproduce the size, final velocity and kinetic energy of the drops in natural rainfall. Since the early 70´s we have been developing and using different kinds of rainfall simulators, both at laboratory and field levels, and under tropical and Mediterranean soil and climate conditions, in flat and sloping lands. They have been mainly used to evaluate the relative effects of different land use and management, including different cropping systems, tillage practices, surface soil conditioning, surface covers, etc. on soil water infiltration, on runoff and on erosion. Our experience is that in any case it is impossible to reproduce the variable size distribution and terminal velocity of raindrops, and the variable changes in intensity of natural storms, under a particular climate condition. In spite of this, with the use of rainfall simulators it is possible to obtain very good information, which if it is properly interpreted in relation to each particular condition (land and crop management, rainfall characteristics, measurement conditions, etc.) may be used as one of the parameters for deducing and modelling soil water balance and soil moisture regime under different land use and management and variable climate conditions. Due to the possibility for a better control of the intensity of simulated rainfall and of the size of water drops, and the possibility to make more repeated measurements under very variable soil and land conditions, both in the laboratory and specially in the field, the better results have been obtained with small size 500-1000 cm2, easily dismantled, drop former simulators, than with larger, nozzle, or more sophisticated equipments. In this contribution there are presented some of the rainfall simulators developed and used by the main author, and some of the results obtained in different studies of practical problems under tropical and Mediterranean conditions. References Pla, I.,G.Campero, y R.Useche.1974.Physical degradación of agricultural soils in the Western Plains of Venezuela. "Trans.10th Int.Cong.Soil.Sci.Soc". 1:231-240. .Moscú Pla, I. 1975.Effects of bitumen emulsion and polyacrilamide on some physical properties of Venezuelan soils. En "Soil Sci. Soc. Am. Special Publication"• 7. 35-46. Madison. Wisconsin . (USA). Pla, I. 1977.Aggregate size and erosion control on sloping land treated with hydrophobic bitumen emulsion."Soil Conservation and Management in the Humid Tropics".109-115. John Wiley & Sons. Pla, I.1981.Simuladores de lluvia para el estudio de relaciones suelo-agua bajo agricultura de secano en los trópicos. Rev. Fac. Agron. XII(1-2):81-93.Maracay (Venezuela) Pla, I. 1986.A routine laboratory index to predict the effects of soil sealing on soil and water conservation. En "Assesment of Soil Surface Sealing and Crusting". 154-162.State Univ. of Ghent.Gante (Bélgica Pla, I., M.C. Ramos, S. Nacci, F. Fonseca y X. Abreu. 2005. Soil moisture regime in dryland vineyards of Catalunya (Spain) as influenced by climate, soil and land management. "Integrated Soil and Water Management for Orchard Development". FAO Land and Water Bulletin 10. 41-49. Roma (Italia).

  7. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  8. Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Fang, Xuening; Zhao, Wenwu; Wang, Lixin; Feng, Qiang; Ding, Jingyi; Liu, Yuanxin; Zhang, Xiao

    2016-08-01

    Soil moisture in deep soil layers is a relatively stable water resource for vegetation growth in the semi-arid Loess Plateau of China. Characterizing the variations in deep soil moisture and its influencing factors at a moderate watershed scale is important to ensure the sustainability of vegetation restoration efforts. In this study, we focus on analyzing the variations and factors that influence the deep soil moisture (DSM) in 80-500 cm soil layers based on a soil moisture survey of the Ansai watershed in Yan'an in Shanxi Province. Our results can be divided into four main findings. (1) At the watershed scale, higher variations in the DSM occurred at 120-140 and 480-500 cm in the vertical direction. At the comparable depths, the variation in the DSM under native vegetation was much lower than that in human-managed vegetation and introduced vegetation. (2) The DSM in native vegetation and human-managed vegetation was significantly higher than that in introduced vegetation, and different degrees of soil desiccation occurred under all the introduced vegetation types. Caragana korshinskii and black locust caused the most serious desiccation. (3) Taking the DSM conditions of native vegetation as a reference, the DSM in this watershed could be divided into three layers: (i) a rainfall transpiration layer (80-220 cm); (ii) a transition layer (220-400 cm); and (iii) a stable layer (400-500 cm). (4) The factors influencing DSM at the watershed scale varied with vegetation types. The main local controls of the DSM variations were the soil particle composition and mean annual rainfall; human agricultural management measures can alter the soil bulk density, which contributes to higher DSM in farmland and apple orchards. The plant growth conditions, planting density, and litter water holding capacity of introduced vegetation showed significant relationships with the DSM. The results of this study are of practical significance for vegetation restoration strategies, especially for the choice of vegetation types, planting zones, and proper human management measures.

  9. Soil slip/debris flow localized by site attributes and wind-driven rain in the San Francisco Bay region storm of January 1982

    USGS Publications Warehouse

    Pike, R.J.; Sobieszczyk, S.

    2008-01-01

    GIS analysis at 30-m resolution reveals that effectiveness of slope-destabilizing processes in the San Francisco Bay area varies with compass direction. Nearly half the soil slip/debris flows mapped after the catastrophic rainstorm of 3-5 January 1982 occurred on slopes that face S to WSW, whereas fewer than one-quarter have a northerly aspect. Azimuthal analysis of hillside properties for susceptible terrain near the city of Oakland suggests that the skewed aspect of these landslides primarily reflects vegetation type, ridge and valley alignment, and storm-wind direction. Bedrock geology, soil expansivity, and terrain height and gradient also were influential but less so; the role of surface curvature is not wholly resolved. Normalising soil-slip aspect by that of the region's NNW-striking topography shifts the modal azimuth of soil-slip aspect from SW to SE, the direction of origin of winds during the 1982 storm-but opposite that of the prevailing WNW winds. Wind from a constant direction increases rainfall on windward slopes while diminishing it on leeward slopes, generating a modelled difference in hydrologically effective rainfall of up to 2:1 on steep hillsides in the Oakland area. This contrast is consistent with numerical simulations of wind-driven rain and with rainfall thresholds for debris-flow activity. We conclude that storm winds from the SE in January 1982 raised the vulnerability of the Bay region's many S-facing hillsides, most of which are covered in shallow-rooted shrub and grass that offer minimal resistance to soil slip. Wind-driven rainfall also appears to have controlled debris-flow location in a major 1998 storm and probably others. Incorporating this overlooked influence into GIS models of debris-flow likelihood would improve predictions of the hazard in central California and elsewhere.

  10. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community and species levels, which can have significant implications for the ecosystem functioning of SDTF under increasing levels of disturbance, climate change and soil nutrient depletion.

  11. A flash flood early warning system based on rainfall thresholds and daily soil moisture indexes

    NASA Astrophysics Data System (ADS)

    Brigandì, Giuseppina; Tito Aronica, Giuseppe

    2015-04-01

    Main focus of the paper is to present a flash flood early warning system, developed for Civil Protection Agency for the Sicily Region, for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds and soil moisture indexes. As matter of fact, flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. In this context, some kind of hydrological precursors can be considered to improve the effectiveness of the emergency actions (i.e. early flood warning). Now, it is well known how soil moisture is an important factor in flood formation, because the runoff generation is strongly influenced by the antecedent soil moisture conditions of the catchment. The basic idea of the work here presented is to use soil moisture indexes derived in a continuous form to define a first alert phase in a flash flood forecasting chain and then define a unique rainfall threshold for a given day for the subsequent alarm phases activation, derived as a function of the soil moisture conditions at the beginning of the day. Daily soil moisture indexes, representative of the moisture condition of the catchment, were derived by using a parsimonious and simply to use approach based on the IHACRES model application in a modified form developed by the authors. It is a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method and on the unit hydrograph approach that requires only rainfall, streamflow and air temperature data. It consists of two modules. In the first a non linear loss model, based on the SCS-CN method, was used to transform total rainfall into effective rainfall. In the second, a linear convolution of effective rainfall was performed using a total unit hydrograph with a configuration of one parallel channel and reservoir, thereby corresponding to 'quick' and 'slow' components of runoff. In the non linear model a wetness/soil moisture index, varying from 0 to 1, was derived to define daily soil moisture catchment conditions and then conveniently linked to a corresponding CN value to use as input to derive the corresponding rainfall threshold for a given day. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. Application of the proposed methodology was carried out with reference to a river basin in Sicily, Italy.

  12. An experimental operative system for shallow landslide and flash flood warning based on rainfall thresholds and soil moisture modelling

    NASA Astrophysics Data System (ADS)

    Brigandı, G.; Aronica, G. T.; Basile, G.; Pasotti, L.; Panebianco, M.

    2012-04-01

    On November 2011 a thunderstorms became almost exceptional over the North-East part of the Sicily Region (Italy) producing local heavy rainfall, mud-debris flow and flash flooding. The storm was concentrated on the Tyrrhenian sea coast near the city of Barcellona within the Longano catchment. Main focus of the paper is to present an experimental operative system for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds, soil moisture indexes and quantitative precipitation forecasting. As matter of fact, shallow landslide and flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. It is well known how the triggering of shallow landslides is strongly influenced by the initial soil moisture conditions of catchments. Therefore, the early warning system here applied is based on the combined use of rainfall thresholds, derived both for flash flood and for landslide, and soil moisture conditions; the system is composed of several basic component related to antecedent soil moisture conditions, real-time rainfall monitoring and antecedent rainfall. Soil moisture conditions were estimated using an Antecedent Precipitation Index (API), similar to this widely used for defining soil moisture conditions via Antecedent Moisture conditions index AMC. Rainfall threshold for landslides were derived using historical and statistical analysis. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. After the implementation and calibration of the model, a testing phase was carried out by using real data collected for the November 2001 event in the Longano catchment. Moreover, in order to test the capability of the system to forecast thise event, Quantitative Precipitation Forecasting provided by the SILAM (Sicily Limited Area Model), a meteorological model run by SIAS (Sicilian Agrometeorological Service) with a forecast horizon up to 144 hours, have been used to run the system.

  13. Watershed Scale Stable Isotope Distribution and Implications on Soil Organic Carbon Loss Monitoring under Hydrologic Uncertainty

    NASA Astrophysics Data System (ADS)

    Ahmed, I.; Karim, A.; Boutton, T. W.; Strom, K.; Fox, J.

    2013-12-01

    The thematic focus of this 3-year period multidisciplinary USDA-CBG collaborative applied research is integrated monitoring of soil organic carbon (SOC) loss from multi-use lands using state-of-the-art stable isotope science under uncertain hydrologic influences. In this study, SOC loss and water runoff are being monitored on a 150 square kilometer watershed in Houston, Texas, using natural rainfall events, and total organic carbon/nitrogen concentration (TOC/TN) and stable isotope ratio (δ13C, δ15N) measurements with different land-use types. The work presents the interdisciplinary research results to uncover statistically valid and scientifically sound ways to monitor SOC loss by (i) application of Bayesian Markov Chain Monte Carlo statistical models to assess the relationship between rainfall-runoff and SOC release during soil erosion in space and time, (ii) capturing the episodic nature of rainfall events and its role in the spatial distribution of SOC loss from water erosion, (iii) stable isotope composition guided fingerprinting (source and quantity) of SOC by considering various types of erosion processes common in a heterogeneous watershed, to be able to tell what percentage of SOC is lost from various land-use types (Fox and Papanicolaou, 2008), (iv) creating an integrated watershed scale statistical soil loss monitoring model driven by spatial and temporal correlation of flow and stable isotope composition (Ahmed et. al., 2013a,b), and (v) creation of an integrated decision support system (DSS) for sustainable management of SOC under hydrologic uncertainty to assist the end users. References: Ahmed, I., Karim, A., Boutton, T.W., and Strom, K.B. (2013a). 'Monitoring Soil Organic Carbon Loss from Erosion Using Stable Isotopes.' Proc., Soil Carbon Sequestration, International Conference, May 26-29, Reykjavik, Iceland. Ahmed, I, Bouttom, T.W., Strom, K. B., Karim, A., and Irvin-Smith, N. (2013b). 'Soil carbon distribution and loss monitoring in the urbanized Buffalo Bayou watershed, Houston, Texas.' Proc., 4th Annual All Investigators Meeting of the North American Carbon Program, February 4-7, Albuquerque, NM. Fox, J.F. and Papanicolaou, A.N. (2008). An un-mixing model to study watershed erosion processes. Advances in Water Resources, 31, 96-108. ______________________________ * Corresponding author';s e-mail: ifahmed@pvamu.edu

  14. Ecohydrological controls of watershed response to land use change in the montane cloud forest zone in Mexico

    NASA Astrophysics Data System (ADS)

    Asbjornsen, H.; Alvarado-Barrientos, M. S.; Bruijnzeel, L. A.; Dawson, T. E.; Geissert, D. R.; Goldsmith, G. R.; Gomez-Cardenas, M.; Gomez-Tagle, A.; Gotsch, S.; Holwerda, F.; McDonnell, J. J.; Munoz Villers, L. E.; Tobon, C.

    2012-12-01

    Land use conversion and climate change threaten the hydrological services from tropical montane cloud forest (TMCFs) regions, but knowledge about the ecohydrological mechanisms controlling catchment response is limited. This project traced the hydrologic sources, fluxes and flowpaths across the atmosphere-plant-soil-stream continuum under different land cover types (degraded pasture, regenerating forest, mature forest, pine reforestation) in a seasonally dry TMCF in Veracruz, Mexico. We used hydrological (cloud water interception, CWI; streamflow) and ecophysiological measurements (transpiration, E; foliar uptake, FU) in combination with stable isotope techniques to identify the key ecohydrological processes of each land cover and quantify the hydrological effects of TMCF conversion. Results revealed that CWI was only ≤2% of total annual rainfall due to low fog occurrence and wind speeds. Fog without rainfall reduced E by a factor of 4-5 relative to sunny conditions and by a factor of 2 relative to overcast conditions, whereas the water 'gained' from the fog suppression effect was ~80-100mm year-1 relative to sunny conditions. At the canopy scale, FU resulted in the recovery of 9% of total E, suggesting a crucial role in alleviating plant water deficit; nevertheless, it was not sufficient to compensate for the 17% water loss from nighttime E. Trees primarily utilized water from 30-50cm soil depth, while water reaching the stream was derived from deep, 'old' water that was distinct from both 'new' rainwater and water accessed by plants. These findings suggest that plants mainly access a more tightly bound soil water pool that does not actively mix with the more mobile water recharging deep soil and groundwater pools. Soils had high porosity, saturated conductivity, infiltration rates, and water storage capacity, which contributed to the relatively low rainfall-runoff responses, mainly generated from deep subsurface flowpaths. Results showed that conversion of mature forest to pasture or forest regeneration on former TMCF increased annual water yield by 600mm and 300mm, respectively, while planting pine on degraded pastures reduced water yield by 365mm. Differences in water yield mainly reflect differences in rainfall interception loss. Runoff behavior was similar among land cover types, except for very high intensity storms when pasture showed higher surface runoff. Our results suggest that the ecophysiological effects of fog via suppressed E and FU has a greater impact on water yield than direct inputs from CWI in this TMCF. Rapid vertical rainfall percolation and recharge result in a largely groundwater driven system whereby streamflow dynamics is uncoupled from plant water uptake, and water storage capacity and buffering potential are exceptionally high. These factors, combined with the soil properties, resulted in reduced dry season flows due to land use conversion to pasture only being detected towards the end of the dry season. Projected lifting of the cloud base associated with regional climate change combined with declining rainfall may significantly alter ecohydrological functions of these TMCFs.

  15. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff.

    Treesearch

    L.R. Ahuja; S. A. El-Swaify

    1979-01-01

    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  16. A model of nitrous oxide evolution from soil driven by rainfall events. I - Model structure and sensitivity. II - Model applications

    NASA Technical Reports Server (NTRS)

    Changsheng, LI; Frolking, Steve; Frolking, Tod A.

    1992-01-01

    Simulations of N2O and CO2 emissions from soils were conducted with a rain-event driven, process-oriented model (DNDC) of nitrogen and carbon cycling processes in soils. The magnitude and trends of simulated N2O (or N2O + N2) and CO2 emissions were consistent with the results obtained in field experiments. The successful simulation of these emissions from the range of soil types examined demonstrates that the DNDC will be a useful tool for the study of linkages among climate, soil-atmosphere interactions, land use, and trace gas fluxes.

  17. Rainfall simulations to study the types of groundcover on surface runoff and soil erosion in Champagne vineyards in France

    NASA Astrophysics Data System (ADS)

    Xavier, Morvan; Christophe, Naisse; Issa Oumarou, Malam; Jean-François, Desprats; Anne, Combaud; Olivier, Cerdan

    2015-04-01

    In the literature, grass cover is often considered to be one of the best methods of limiting runoff in the vineyards; But results can vary, especially when the plot area is <2 m². However, in any study to our knowledge, the way grass cover is structured in the inter-row is taken into account to explain the variability of runoff and soil loss. The objective of this study, conducted in Champagne vineyards in France, was to quantify the influence of the cultivation practices in the inter-rows of vines and determine the influence of the density of the grass cover in the wheel tracks on the surface runoff and soil erosion in experimental plots of 0.25 m2 under simulated rainfall. Three types of ground cover were studied. In the bark-and-vine-prunings plots, the runoff coefficient ranged from 1.3 to 4.0% and soil losses were <1 g/m²/h. In the bare soil plot, the highest runoff coefficient of the study was found (80.0%) and soil losses reached 7.4 g/m²/h. In the grass cover plots, the runoff coefficient and amount of eroded soil were highly variable: the runoff coefficients ranged from 0.4 to 77.0%, and soil losses were between less than 1 and 13.4 g/m²/h. Soil type, soil moisture, slope and agricultural practices did not account for the variability. In fact, the density of grass cover in the wheel tracks explained a portion of this variability. The lack of grass in the centre of the inter-row allowed for a preferential flow and created an erosion line in the wheel tracks where the soil was compacted. This study showed that grass cover in a vineyard was not necessarily sufficient to reduce surface runoff and prevent soil erosion. To be effective, the grass cover must be dense enough in the wheel tracks of agricultural machinery to avoid runoff coefficients close to those achieved with bare soil.

  18. Response of transpiration to rain pulses for two tree species in a semiarid plantation

    NASA Astrophysics Data System (ADS)

    Chen, Lixin; Zhang, Zhiqiang; Zeppel, Melanie; Liu, Caifeng; Guo, Junting; Zhu, Jinzhao; Zhang, Xuepei; Zhang, Jianjun; Zha, Tonggang

    2014-09-01

    Responses of transpiration ( E c) to rain pulses are presented for two semiarid tree species in a stand of Pinus tabulaeformis and Robinia pseudoacacia. Our objectives are to investigate (1) the environmental control over the stand transpiration after rainfall by analyzing the effect of vapor pressure deficit (VPD), soil water condition, and rainfall on the post-rainfall E c development and recovery rate, and (2) the species responses to rain pulses and implications on vegetation coverage under a changing rainfall regime. Results showed that the sensitivity of canopy conductance ( G c) to VPD varied under different incident radiation and soil water conditions, and the two species exhibited the same hydraulic control (-d G c/dlnVPD to G cref ratio) over transpiration. Strengthened physiological control and low sapwood area of the stand contributed to low E c. VPD after rainfall significantly influenced the magnitude and time series of post-rainfall stand E c. The fluctuation of post-rainfall VPD in comparison with the pre-rainfall influenced the E c recovery. Further, the stand E c was significantly related to monthly rainfall, but the recovery was independent of the rainfall event size. E c enhanced with cumulative soil moisture change (ΔVWC) within each dry-wet cycle, yet still was limited in large rainfall months. The two species had different response patterns of post-rainfall E c recovery. E c recovery of P. tabulaeformis was influenced by the pre- and post-rainfall VPD differences and the duration of rainless interval. R. pseudoacacia showed a larger immediate post-rainfall E c increase than P. tabulaeformis did. We, therefore, concluded that concentrated rainfall events do not trigger significant increase of transpiration unless large events penetrate the deep soil and the species differences of E c in response to pulses of rain may shape the composition of semiarid woodlands under future rainfall regimes.

  19. Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii.

    PubMed

    Kramer, Marc G; Chadwick, Oliver A

    2016-09-01

    Volcanic ash soils retain the largest and most persistent soil carbon pools of any ecosystem. However, the mechanisms governing soil carbon accumulation and weathering during initial phases of ecosystem development are not well understood. We examined soil organic matter dynamics and soil development across a high-altitude (3,560-3,030 m) 20-kyr climate gradient on Mauna Kea in Hawaii. Four elevation sites were selected (~250-500 mm rainfall), which range from sparsely vegetated to sites that contain a mix of shrubs and grasses. At each site, two or three pits were dug and major diagnostic horizons down to bedrock (intact lava) were sampled. Soils were analyzed for particle size, organic C and N, soil pH, exchangeable cations, base saturation, NaF pH, phosphorous sorption, and major elements. Mass loss and pedogenic metal accumulation (hydroxlamine Fe, Al, and Si extractions) were used to measure extent of weathering, leaching, changes in soil mineralogy and carbon accumulation. Reactive-phase (SRO) minerals show a general trend of increasing abundance with increasing rainfall. However carbon accumulation patterns across the climate gradient are largely decoupled from these trends. The results suggest that after 20 kyr, pedogenic processes have altered the nature and composition of the volcanic ash such that it is capable of retaining soil C even where organic acid influences from plant material and leaching from rainfall are severely limited. Carbon storage comparisons with lower-elevation soils on Mauna Kea and other moist mesic (2,500 mm rainfall) sites on Hawaii suggest that these soils have reached only between 1% and 15% of their capacity to retain carbon. Our results suggest that, after 20 kyr in low rainfall and a cold climate, weathering was decoupled from soil carbon accumulation patterns and the associated influence of vegetation on soil development. Overall, we conclude that the rate of carbon supply to the subsoil (driven by coupling of rainfall above ground plant production) is a governing factor of forms and amount of soil organic matter accumulation, while soil mineralogy remained relatively uniform. © 2016 by the Ecological Society of America.

  20. Stemflow-induced processes of soil water storage

    NASA Astrophysics Data System (ADS)

    Germer, Sonja

    2013-04-01

    Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might partly explain the competitive position of babassu palms on pastures or secondary forests.

  1. Mapping soil erosion risk in Serra de Grândola (Portugal)

    NASA Astrophysics Data System (ADS)

    Neto Paixão, H. M.; Granja Martins, F. M.; Zavala, L. M.; Jordán, A.; Bellinfante, N.

    2012-04-01

    Geomorphological processes can pose environmental risks to people and economical activities. Information and a better knowledge of the genesis of these processes is important for environmental planning, since it allows to model, quantify and classify risks, what can mitigate the threats. The objective of this research is to assess the soil erosion risk in Serra de Grândola, which is a north-south oriented mountain ridge with an altitude of 383 m, located in southwest of Alentejo (southern Portugal). The study area is 675 km2, including the councils of Grândola, Santiago do Cacém and Sines. The process for mapping of erosive status was based on the guidelines for measuring and mapping the processes of erosion of coastal areas of the Mediterranean proposed by PAP/RAC (1997), developed and later modified by other authors in different areas. This method is based on the application of a geographic information system that integrates different types of spatial information inserted into a digital terrain model and in their derivative models. Erosive status are classified using information from soil erodibility, slope, land use and vegetation cover. The rainfall erosivity map was obtained using the modified Fournier index, calculated from the mean monthly rainfall, as recorded in 30 meteorological stations with influence in the study area. Finally, the soil erosion risk map was designed by ovelaying the erosive status map and the rainfall erosivity map.

  2. Uncertainty evaluation of a regional real-time system for rain-induced landslides

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Dalia; Stanley, Thomas; Yatheendradas, Soni

    2015-04-01

    A new prototype regional model and evaluation framework has been developed over Central America and the Caribbean region using satellite-based information including precipitation estimates, modeled soil moisture, topography, soils, as well as regionally available datasets such as road networks and distance to fault zones. The algorithm framework incorporates three static variables: a susceptibility map; a 24-hr rainfall triggering threshold; and an antecedent soil moisture variable threshold, which have been calibrated using historic landslide events. The thresholds are regionally heterogeneous and are based on the percentile distribution of the rainfall or antecedent moisture time series. A simple decision tree algorithm framework integrates all three variables with the rainfall and soil moisture time series and generates a landslide nowcast in real-time based on the previous 24 hours over this region. This system has been evaluated using several available landslide inventories over the Central America and Caribbean region. Spatiotemporal uncertainty and evaluation metrics of the model are presented here based on available landslides reports. This work also presents a probabilistic representation of potential landslide activity over the region which can be used to further refine and improve the real-time landslide hazard assessment system as well as better identify and characterize the uncertainties inherent in this type of regional approach. The landslide algorithm provides a flexible framework to improve hazard estimation and reduce uncertainty at any spatial and temporal scale.

  3. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau.

    PubMed

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Zhou, Huakun; Ganjurjav, Hasbagan; Wang, Xuexia

    2016-08-15

    Alpine ecosystems are known to be sensitive to climate change and human disturbances. However, the knowledge about the changes of their underground microbial communities is inadequate. We explored the diversity and structure of soil bacterial and fungal communities using Ilumina MiSeq sequencing in native alpine grasslands (i.e. the alpine meadow, alpine steppe) and cultivated grassland of the Qinghai-Tibetan Plateau (QTP) under three-year treatments of overgrazing, warming and enhanced rainfall. Enhanced rainfall rather than warming significantly reduced soil microbial diversity in native alpine grasslands. Variable warming significantly reduced it in the cultivated grassland. Over 20% and 40% variations of microbial diversity could be explained by soil nutrients and moisture in the alpine meadow and cultivated grassland, separately. Soil microbial communities could be clustered into different groups according to different treatments in the alpine meadow and cultivated grassland. For the alpine steppe, with the lowest soil nutrients and moistures, <10% variations of microbial diversity was explained by soil properties; and the soil microbial communities among different treatments were similar. The soil microbial community in the cultivated grassland was varied from it in native grasslands. Over 50% variations of soil microbial communities among different treatments were explained by soil nutrients and moisture in each grassland type. Our results suggest that climate change and human activities strongly affected soil microbial communities by changing soil nutrients and moistures in alpine grassland ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mobility Studies of (14)C-Chlorpyrifos in Malaysian Oil Palm Soils.

    PubMed

    Halimah, Muhamad; Ismail, B Sahid; Nashriyah, Mat; Maznah, Zainol

    2016-01-01

    The mobility of (14)C-chlorpyrifos using soil TLC was investigated in this study. It was found that chlorpyrifos was not mobile in clay, clay loam and peat soil. The mobility of (14)C-chlorpyrifos and non-labelled chlorpyrifos was also tested with silica gel TLC using three types of developing solvent hexane (100%), hexane:ethyl acetate (95:5, v/v); and hexane:ethyl acetate (98:2, v/v). The study showed that both the (14)C-labelled and non-labelled chlorpyrifos have the same Retardation Factor (Rf) for different developing solvent systems. From the soil column study on mobility of chlorpyrifos, it was observed that no chlorpyrifos residue was found below 5 cm depth in three types of soil at simulation rainfall of 20, 50 and 100 mm. Therefore, the soil column and TLC studies have shown similar findings in the mobility of chlorpyrifos.

  5. Estimating root-zone soil moisture in the West Africa Sahel using remotely sensed rainfall and vegetation

    NASA Astrophysics Data System (ADS)

    McNally, Amy L.

    Agricultural drought is characterized by shortages in precipitation, large differences between actual and potential evapotranspiration, and soil water deficits that impact crop growth and pasture productivity. Rainfall and other agrometeorological gauge networks in Sub-Saharan Africa are inadequate for drought early warning systems and hence, satellite-based estimates of rainfall and vegetation greenness provide the main sources of information. While a number of studies have described the empirical relationship between rainfall and vegetation greenness, these studies lack a process based approach that includes soil moisture storage. In Chapters I and II, I modeled soil moisture using satellite rainfall inputs and developed a new method for estimating soil moisture with NDVI calibrated to in situ and microwave soil moisture observations. By transforming both NDVI and rainfall into estimates of soil moisture I was able to easily compare these two datasets in a physically meaningful way. In Chapter II, I also show how the new NDVI derived soil moisture can be assimilated into a water balance model that calculates an index of crop water stress. Compared to the analogous rainfall derived estimates of soil moisture and crop stress the NDVI derived estimates were better correlated with millet yields. In Chapter III, I developed a metric for defining growing season drought events that negatively impact millet yields. This metric is based on the data and models used in the Chapters I and II. I then use this metric to evaluate the ability of a sophisticated land surface model to detect drought events. The analysis showed that this particular land surface model's soil moisture estimates do have the potential to benefit the food security and drought early warning communities. With a focus on soil moisture, this dissertation introduced new methods that utilized a variety of data and models for agricultural drought monitoring applications. These new methods facilitate a more quantitative, transparent `convergence of evidence' approach to identifying agricultural drought events that lead to food insecurity. Ideally, these new methods will contribute to better famine early warning and the timely delivery of food aid to reduce the human suffering caused by drought.

  6. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil.

    PubMed

    Wu, Lei; Peng, Mengling; Qiao, Shanshan; Ma, Xiao-Yi

    2018-02-01

    Soil erosion is a universal phenomenon on the Loess Plateau but it exhibits complex and typical mechanism which makes it difficult to understand soil loss laws on slopes. We design artificial simulated rainfall experiments including six rainfall intensities (45, 60, 75, 90, 105, 120 mm/h) and five slopes (5°, 10°, 15°, 20°, 25°) to reveal the fundamental changing trends of runoff and sediment yield on bare loess soil. Here, we show that the runoff yield within the initial 15 min increased rapidly and its trend gradually became stable. Trends of sediment yield under different rainfall intensities are various. The linear correlation between runoff and rainfall intensity is obvious for different slopes, but the correlations between sediment yield and rainfall intensity are weak. Runoff and sediment yield on the slope surface both presents an increasing trend when the rainfall intensity increases from 45 mm/h to 120 mm/h, but the increasing trend of runoff yield is higher than that of sediment yield. The sediment yield also has an overall increasing trend when the slope changes from 5° to 25°, but the trend of runoff yield is not obvious. Our results may provide data support and underlying insights needed to guide the management of soil conservation planning on the Loess Plateau.

  7. Effect of simulated rainfall on leaching and efficacy of fenamiphos.

    PubMed

    Johnson, A W; Wauchope, R D; Burgoa, B

    1995-12-01

    There is increasing concern in the United States about the pesticide movement in soil, groundwater contamination, and pesticide residue in food. The objective of this study was to determine the efficacy, degradation, and movement of fenamiphos (Nemacur 15G) in the soil and residues in squash fruit as influenced by four simulated rainfall treatments (2.5 or 5.0 cm each applied 1 or 3 days after nematicide application) under field conditions. In 1990, concentrations of fenamiphos were greater in the top 15 cm of soil in plots with no rainfall than in those treated with rainfall. Eighty to 95 % of the fenamiphos recovered from treated plots was found in the 0-15-cm soil layer. The concentration of fenamiphos recovered from the 0-15-cm soil layer in 1991 was approximately one-half the concentration recovered in 1990, but greater concentrations of fenamiphos sulfoxide (an oxidation product of fenamiphos) were recovered in 1991 than in 1990. Concentrations of fenamiphos, fenamiphos sulfoxide, and fenamiphos sulfone were near or below detectable levels (0.002 mg/kg soil) below the 0-15-cm soil layer. Rainfall treatments did not affect the efficacy of the nematicide against Meloidogyne incognita race 1. The concentration of fenamiphos in squash fruit in 1991 was below the detectable level (0.01 mg/kg).

  8. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    NASA Astrophysics Data System (ADS)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  9. Towards a Quasi-global precipitation-induced Landslide Detection System using Remote Sensing Information

    NASA Astrophysics Data System (ADS)

    Adler, B.; Hong, Y.; Huffman, G.; Negri, A.; Pando, M.

    2006-05-01

    Landslides and debris flows are one of the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage per year. Currently, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides. In this study, global landslide susceptibility is mapped using USGS GTOPO30 Digital Elevation, hydrological derivatives (slopes and wetness index etc.) from HYDRO1k data, soil type information downscaled from Digital Soil Map of the World (Sand, Loam, Silt, or Clay etc.), and MODIS land cover/use classification data. These variables are then combined with empirical landslide inventory data, if available, to derive a global landslide susceptibility map at elemental resolution of 1 x 1 km. This map can then be overlain with the driving force, namely rainfall estimates from the TRMM-based Multiple-satellite Precipitation Analysis to identify when areas with significant landslide potential receive heavy rainfall. The relations between rainfall intensity and rainstorm duration are regionally specific and often take the form of a power-law relation. Several empirical landslide-triggering Rainfall Intensity-Duration thresholds are implemented regionally using the 8-year TRMM-based precipitation with or without the global landslide susceptibility map at continuous space and time domain. Finally, the effectiveness of this system is validated by studying several recent deadly landslide/mudslide events. This study aims to build up a prototype quasi-global potential landslide warning system. Spatially-distributed landslide susceptibility maps and regional empirical rainfall intensity-duration thresholds, in combination with real-time rainfall measurements from space and rainfall forecasts from models, will be the basis for this experimental system.

  10. Evaluating the Effect of Rainfall Infiltration on the Slope Stability of T16 tower of Taipei Mao-kong Gondola by Numerical Methods

    NASA Astrophysics Data System (ADS)

    RUNG, J.

    2013-12-01

    In this study, a series of rainfall-stability analyses were performed to simulate the failure mechanism and the function of remediation works of the down slope of T-16 tower pier, Mao-Kong gondola (or T-16 Slope) at the hillside of Taipei City using two-dimensional finite element method. The failure mechanism of T-16 Slope was simulated using the rainfall hyetograph of Jang-Mi typhoon in 2008 based on the field investigation data, monitoring data, soil/rock mechanical testing data and detail design plots of remediation works. Eventually, the numerical procedures and various input parameters in the analysis were verified by comparing the numerical results with the field observations. In addition, 48 hrs design rainfalls corresponding to 5, 10, 25 and 50 years return periods were prepared using the 20 years rainfall data of Mu-Zha rainfall observation station, Central Weather Bureau for the rainfall-stability analyses of T-16 Slope to inspect the effect of the compound stabilization works on the overall stability of the slope. At T-16 Slope, without considering the longitudinal and transverse drainages on the ground surface, there totally 4 types of stabilization works were installed to stabilize the slope. From the slope top to the slope toe, the stabilization works of T-16 Slope consists of RC-retaining wall with micro-pile foundation at the up-segment, earth anchor at the up-middle-segment, soil nailing at the middle-segment and retaining pile at the down-segment of the slope. The effect of each individual stabilization work on the slope stability under rainfall condition was examined and evaluated by raising field groundwater level.

  11. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.

    1994-01-01

    Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.

  12. Efficient Meshfree Large Deformation Simulation of Rainfall Induced Soil Slope Failure

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Li, Ling

    2010-05-01

    An efficient Lagrangian Galerkin meshfree framework is presented for large deformation simulation of rainfall-induced soil slope failure. Detailed coupled soil-rainfall seepage equations are given for the proposed formulation. This nonlinear meshfree formulation is featured by the Lagrangian stabilized conforming nodal integration method where the low cost nature of nodal integration approach is kept and at the same time the numerical stability is maintained. The initiation and evolution of progressive failure in the soil slope is modeled by the coupled constitutive equations of isotropic damage and Drucker-Prager pressure-dependent plasticity. The gradient smoothing in the stabilized conforming integration also serves as a non-local regularization of material instability and consequently the present method is capable of effectively capture the shear band failure. The efficacy of the present method is demonstrated by simulating the rainfall-induced failure of two typical soil slopes.

  13. Modulation of SSM/I microwave soil radiances by rainfall

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Fulton, Richard

    1992-01-01

    The feasibility of using SSM/I satellite data for estimating the soil moisture content was investigated by correlating the rainfall and soil moisture data with values of the SSM/I microwave brightness temperature obtained for the lower Great Plains in the United States during 1987. It was found that the areas of lowest brightness temperatures coincided with regions of bare soil which had received significant rainfall. The time-history plots of the brightness temperature and the antecedent precipitation index during an extremely large rain event indicated a slow recovery period (about 15 days) back to the dry soil state. However, regions covered with vegetation showed smaller temperature drops and much weaker correlation with rain events, questioning the feasibility of using SSM/I measurements for estimations of soil moisture in regions containing vegetation-covered soil.

  14. The International year of soils: thoughts on future directions for experiments in soil erosion research

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2015-04-01

    The 2015 UN Year of Soils (IYS), implemented by the FAO, aims to increase awareness and understanding of the importance of soil for food security and essential ecosystem functions. The IYS has six specific objectives, ranging from raising the awareness among civil society and decision makers about the profound importance of soils, to the development of policies supporting the sustainable use of the non-renewable soil resource. For scientists and academic teachers using experiments to study soil erosion processes, two objectives appear of particular relevance. First is need for the rapid capacity enhancement for soil information collection and monitoring at all levels (global, regional and national). While at first glance, this objective appears to relate mostly to traditional mapping, sampling and monitoring, the threat of large-scale soil loss, at least with regards to their ecosystem services, illustrates the need for approaches of studying soils that avoids such irreversible destruction. Relying on often limited data and their extrapolation does not cover this need for soil information because rapid change of the drivers of change itself carry the risk of unprecedented soil reactions not covered by existing data sets. Experiments, on the other hand, offer the possibility to simulate and analyze future soil change in great detail. Furthermore, carefully designed experiments may also limit the actual effort involved in collecting the specific required information, e.g. by applying tests designed to study soil system behavior under controlled conditions, compared to field monitoring. For rainfall simulation, experiments should therefore involve the detailed study of erosion processes and include detailed recording and reporting of soil and rainfall properties. The development of a set of standardised rainfall simulations would widen the use data collected by such experiments. A second major area for rainfall simulation lies in the the education of the public about the crucial role soil plays in food security, climate change adaptation and mitigation, essential ecosystem services, poverty alleviation and sustainable development. While erosion monitoring and modeling, as well as erosion risk assessment maps provide a solid foundation for decision makers, the attention of the public for "dirt" is often much easier to achieve by setting up a rainfall simulation experiment that illustrates the connection between a process, such as rainfall and runoff observed in daily life, and its causes and consequences. Exploring the potential of rainfall simulation experiments as an outreach tool should therefore be part of the soil science, geomorphology and hydrology community during the IYS 2015 and beyond.

  15. Historical climate controls soil respiration responses to current soil moisture.

    PubMed

    Hawkes, Christine V; Waring, Bonnie G; Rocca, Jennifer D; Kivlin, Stephanie N

    2017-06-13

    Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40-70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration-moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall.

  16. [Rainfall and soil moisture redistribution induced by xerophytic shrubs in an arid desert ecosystem].

    PubMed

    Wang, Zheng Ning; Wang, Xin Ping; Liu, Bo

    2016-03-01

    Rainfall partitioning by desert shrub canopy modifies the redistribution of incident rainfall under the canopy, and may affect the distribution pattern of soil moisture around the plant. This study examined the distribution of rainfall and the response of soil moisture beneath the canopy of two dominant desert shrubs, Caragana korshinskii and Artemisia ordosica, in the revegetation area at the southeastern edge of the Tengger Desert. The results showed that throughfall and stemflow ave-ragely occupied 74.4%, 11.3% and 61.8%, 5.5% of the gross precipitation for C. korshinskii and A. ordosica, respectively. The mean coefficients of variation (CV) of throughfall were 0.25 and 0.30, respectively. C. korshinski were more efficient than A. ordosica on stemflow generation. The depth of soil wetting front around the stem area was greater than other areas under shrub canopy for C. korshinski, and it was only significantly greater under bigger rain events for A. ordosica. The shrub canopy could cause the unevenness of soil wetting front under the canopy in consequence of rainfall redistribution induced by xerophytic shrub.

  17. STEP-TRAMM - A modeling interface for simulating localized rainfall induced shallow landslides and debris flow runout pathways

    NASA Astrophysics Data System (ADS)

    von Ruette, Jonas; Lehmann, Peter; Fan, Linfeng; Bickel, Samuel; Or, Dani

    2017-04-01

    Landslides and subsequent debris-flows initiated by rainfall represent a ubiquitous natural hazard in steep mountainous regions. We integrated a landslide hydro-mechanical triggering model and associated debris flow runout pathways with a graphical user interface (GUI) to represent these natural hazards in a wide range of catchments over the globe. The STEP-TRAMM GUI provides process-based locations and sizes of landslides patterns using digital elevation models (DEM) from SRTM database (30 m resolution) linked with soil maps from global database SoilGrids (250 m resolution) and satellite based information on rainfall statistics for the selected region. In a preprocessing step STEP-TRAMM models soil depth distribution and complements soil information that jointly capture key hydrological and mechanical properties relevant to local soil failure representation. In the presentation we will discuss feature of this publicly available platform and compare landslide and debris flow patterns for different regions considering representative intense rainfall events. Model outcomes will be compared for different spatial and temporal resolutions to test applicability of web-based information on elevation and rainfall for hazard assessment.

  18. Determining the influence of rainfall patterns and carbendazim on the surface activity of the earthworm Lumbricus terrestris.

    PubMed

    Ellis, Sian R; Hodson, Mark E; Wege, Phil

    2010-08-01

    Carbendazim is highly toxic to earthworms and is used as a standard control substance when running field-based trials of pesticides, but results using carbendazim are highly variable. In the present study, impacts of timing of rainfall events following carbendazim application on earthworms were investigated. Lumbricus terrestris were maintained in soil columns to which carbendazim and then deionized water (a rainfall substitute) were applied. Carbendazim was applied at 4 kg/ha, the rate recommended in pesticide field trials. Three rainfall regimes were investigated: initial and delayed heavy rainfall 24 h and 6 d after carbendazim application, and frequent rainfall every 48 h. Earthworm mortality and movement of carbendazim through the soil was assessed 14 d after carbendazim application. No detectable movement of carbendazim occurred through the soil in any of the treatments or controls. Mortality in the initial heavy and frequent rainfall was significantly higher (approximately 55%) than in the delayed rainfall treatment (approximately 25%). This was due to reduced bioavailability of carbendazim in the latter treatment due to a prolonged period of sorption of carbendazim to soil particles before rainfall events. The impact of carbendazim application on earthworm surface activity was assessed using video cameras. Carbendazim applications significantly reduced surface activity due to avoidance behavior of the earthworms. Surface activity reductions were least in the delayed rainfall treatment due to the reduced bioavailability of the carbendazim. The nature of rainfall events' impacts on the response of earthworms to carbendazim applications, and details of rainfall events preceding and following applications during field trials should be made at a higher level of resolution than is currently practiced according to standard International Organization for Standardization protocols. Copyright 2010 SETAC

  19. Interpretation of the impact of different managements and the rainfall variability on the soil erosion in a Mediterranean olive orchard microcatchment

    NASA Astrophysics Data System (ADS)

    Taguas, E. V.; Burguet, M.; Pérez, R.; Ayuso, J. L.; Gómez, J. A.

    2012-04-01

    The microcatchment is a spatial scale which allows to evaluate and to quantify the erosive processes under conditions close to those perceived by farmers. In this work, soil erosion and runoff over six hydrological years (2005 and 2011) were monitored in an olive orchard microcatchment of 6.4 ha, where different management types were applied. The aim was to evaluate the impact of the management and the rainfall regime variability. Non-tillage was applied during the years 2005-2007, tillage operations were carried in April in the period 2007-2010 while in the year 2010-2011, the tillage was applied in January and mulches (olives leaves and branches) were established for reducing the soil losses, mainly generated from rills. At the annual scale, the variation ranges of the cumulative rainfall depth and of the erosivity were between 600 and 1000 mm and between 600 and 1500 MJ mm ha-1 h-1, respectively. Although there are some gaps in the data series, the annual runoff coefficients calculated were smaller than 5% and the total sediment load range was between less than 1 t ha-1 year-1and more than 20 t ha-1 year-1. During these years olive yield also showed a high degree of variability, between 5000 kg ha-1 year-1and 10000 kg ha-1 year-1, typical of the alternate bearing of this crop, without correlation with annual rainfall. The annual rainfall depth explained significantly the sediment load and the runoff in spite of the different managements applied. At the event scale, rainfall depth was correlated with runoff, however, sediment load was very sensible to management. The high variability of the hydrological regime (inter and intra-annual) and the importance of the precedent hydrological years determine complex interpretations of the impact of the management on the soil losses and the olive yield by the farmers, so the continuity of the data analysis is essential for supporting the suitable taking decisions about the overall farm management.

  20. Influence factors and prediction of stormwater runoff of urban green space in Tianjin, China: laboratory experiment and quantitative theory model.

    PubMed

    Yang, Xu; You, Xue-Yi; Ji, Min; Nima, Ciren

    2013-01-01

    The effects of limiting factors such as rainfall intensity, rainfall duration, grass type and vegetation coverage on the stormwater runoff of urban green space was investigated in Tianjin. The prediction equation of stormwater runoff was established by the quantitative theory with the lab experimental data of soil columns. It was validated by three field experiments and the relative errors between predicted and measured stormwater runoff are 1.41, 1.52 and 7.35%, respectively. The results implied that the prediction equation could be used to forecast the stormwater runoff of urban green space. The results of range and variance analysis indicated the sequence order of limiting factors is rainfall intensity > grass type > rainfall duration > vegetation coverage. The least runoff of green land in the present study is the combination of rainfall intensity 60.0 mm/h, duration 60.0 min, grass Festuca arundinacea and vegetation coverage 90.0%. When the intensity and duration of rainfall are 60.0 mm/h and 90.0 min, the predicted volumetric runoff coefficient is 0.23 with Festuca arundinacea of 90.0% vegetation coverage. The present approach indicated that green space is an effective method to reduce stormwater runoff and the conclusions are mainly applicable to Tianjin and the semi-arid areas with main summer precipitation and long-time interval rainfalls.

  1. Impact of the rainfall pattern on synthetic pesticides and copper runoff from a vineyard catchment

    NASA Astrophysics Data System (ADS)

    Payraudeau, Sylvain; Meite, Fatima; Wiegert, Charline; Imfeld, Gwenaël

    2017-04-01

    Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticide is rarely evaluated at the catchment scale. Here, we evaluate the influence of rainfall pattern on the mobilization of synthetic pesticides and copper fungicides in runoff from a small vineyard catchment, both at the plot and catchment scales. During two vineyard growing seasons in 2015 and 2016 (from March to October), we monitored rainfall, runoff, and concentrations of copper and 20 fungicides and herbicides applied by winegrowers at the Rouffach vineyard catchment (France, Alsace; 42.5 ha). Rainfall data were recorded within the catchment while runoff measurement and flow-proportional water sampling were carried out at the outlet of the plot (1486 m2; 87.5 × 17 m) and the catchment. In total, discharges of the 14 runoff events were continuously monitored between March and October 2015 using bubbler flow modules combined with Venturi channels. Detailed and distributed dataset on pesticide applications were extracted from survey (copper formulations and type of pesticides, amount and application dates). Pools of copper and synthetic pesticides were quantified weekly in the topsoil (0-3 cm) by systematic sampling across the catchment. The concentrations of copper (10 mg.kg-1 dried soil) and synthetic pesticides (close to the quantification limit, i.e. 0.05 µg.L-1) available in the top soil for off-site transport largely differed over time. Between March and October, an accumulation of copper of 10% was observed in the top-soil while pesticide concentration decreased below the quantification limits after a few days or weeks following application, depending of the compounds. The average runoff generated at the plot scale was very low (0.13% ± 0.30). The maximum runoff reached 1.37% during the storm of July 22, 2015. Synthetic pesticides exported by runoff was less than 1‰ of the applications. The copper mass exported represented about 1% (i.e. 2,085 g at the plot's scale) of the seasonal input, and mainly occurred during the major storm event. Copper were mainly exported in association with suspended particulate matter (SPM) (>80% of the total load). The partitioning between dissolved and SPM phases differs for the synthetic pesticides as expected by their properties. The rainfall pattern influences concentrations and loads of copper and the pesticides. Dissolved pesticide loads normalized by the pesticide mass in soil varied with larger rainfall intensities, runoff discharges and volumes. Contrasted relationships between rainfall characteristics (i.e. intensity, duration and total amount) and the load exported suggest that mechanisms of contaminant delivery from the vineyard soil differs among the pesticides and for copper. The results support the idea that, even in small catchment areas, the rainfall pattern (i.e. rainfall intensity and duration) partly controls the transport of pesticide and copper loads in runoff. Though other factors, such as the chemical characteristics and the amount and timing of applications, are important drivers for pesticide runoff, the rainfall patterns also determine the transport of pesticides from catchment to downstream aquatic ecosystems, and thus the ecotoxicological risk.

  2. Modelling rainfall erosion resulting from climate change

    NASA Astrophysics Data System (ADS)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  3. The Temporal Dynamics of Spatial Patterns of Observed Soil Moisture Interpreted Using the Hydrus 1-D Model

    NASA Astrophysics Data System (ADS)

    Chen, M.; Willgoose, G. R.; Saco, P. M.

    2009-12-01

    This paper investigates the soil moisture dynamics over two subcatchments (Stanley and Krui) in the Goulburn River in NSW during a three year period (2005-2007) using the Hydrus 1-D unsaturated soil water flow model. The model was calibrated to the seven Stanley microcatchment sites (1 sqkm site) using continuous time surface 30cm and full profile soil moisture measurements. Soil type, leaf area index and soil depth were found to be the key parameters changing model fit to the soil moisture time series. They either shifted the time series up or down, changed the steepness of dry-down recessions or determined the lowest point of soil moisture dry-down respectively. Good correlations were obtained between observed and simulated soil water storage (R=0.8-0.9) when calibrated parameters for one site were applied to the other sites. Soil type was also found to be the main determinant (after rainfall) of the mean of modelled soil moisture time series. Simulations of top 30cm were better than those of the whole soil profile. Within the Stanley microcatchment excellent soil moisture matches could be generated simply by adjusting the mean of soil moisture up or down slightly. Only minor modification of soil properties from site to site enable good fits for all of the Stanley sites. We extended the predictions of soil moisture to a larger spatial scale of the Krui catchment (sites up to 30km distant from Stanley) using soil and vegetation parameters from Stanley but the locally recorded rainfall at the soil moisture measurement site. The results were encouraging (R=0.7~0.8). These results show that it is possible to use a calibrated soil moisture model to extrapolate the soil moisture to other sites for a catchment with an area of up to 1000km2. This paper demonstrates the potential usefulness of continuous time, point scale soil moisture (typical of that measured by permanently installed TDR probes) in predicting the soil wetness status over a catchment of significant size.

  4. Rainfall estimation by inverting SMOS soil moisture estimates: A comparison of different methods over Australia

    NASA Astrophysics Data System (ADS)

    Brocca, Luca; Pellarin, Thierry; Crow, Wade T.; Ciabatta, Luca; Massari, Christian; Ryu, Dongryeol; Su, Chun-Hsu; Rüdiger, Christoph; Kerr, Yann

    2016-10-01

    Remote sensing of soil moisture has reached a level of maturity and accuracy for which the retrieved products can be used to improve hydrological and meteorological applications. In this study, the soil moisture product from the Soil Moisture and Ocean Salinity (SMOS) satellite is used for improving satellite rainfall estimates obtained from the Tropical Rainfall Measuring Mission multisatellite precipitation analysis product (TMPA) using three different "bottom up" techniques: SM2RAIN, Soil Moisture Analysis Rainfall Tool, and Antecedent Precipitation Index Modification. The implementation of these techniques aims at improving the well-known "top down" rainfall estimate derived from TMPA products (version 7) available in near real time. Ground observations provided by the Australian Water Availability Project are considered as a separate validation data set. The three algorithms are calibrated against the gauge-corrected TMPA reanalysis product, 3B42, and used for adjusting the TMPA real-time product, 3B42RT, using SMOS soil moisture data. The study area covers the entire Australian continent, and the analysis period ranges from January 2010 to November 2013. Results show that all the SMOS-based rainfall products improve the performance of 3B42RT, even at daily time scale (differently from previous investigations). The major improvements are obtained in terms of estimation of accumulated rainfall with a reduction of the root-mean-square error of more than 25%. Also, in terms of temporal dynamic (correlation) and rainfall detection (categorical scores) the SMOS-based products provide slightly better results with respect to 3B42RT, even though the relative performance between the methods is not always the same. The strengths and weaknesses of each algorithm and the spatial variability of their performances are identified in order to indicate the ways forward for this promising research activity. Results show that the integration of bottom up and top down approaches has the potential to improve the quality of near-real-time rainfall estimates from remote sensing in the near future.

  5. A method for predicting the factor of safety of an infinite slope based on the depth ratio of the wetting front induced by rainfall infiltration

    NASA Astrophysics Data System (ADS)

    Chae, B.-G.; Lee, J.-H.; Park, H.-J.; Choi, J.

    2015-08-01

    Most landslides in Korea are classified as shallow landslides with an average depth of less than 2 m. These shallow landslides are associated with the advance of a wetting front in the unsaturated soil due to rainfall infiltration, which results in an increase in water content and a reduction in the matric suction in the soil. Therefore, this study presents a modified equation of infinite slope stability analysis based on the concept of the saturation depth ratio to analyze the slope stability change associated with the rainfall on a slope. A rainfall infiltration test in unsaturated soil was performed using a column to develop an understanding of the effect of the saturation depth ratio following rainfall infiltration. The results indicated that the rainfall infiltration velocity due to the increase in rainfall in the soil layer was faster when the rainfall intensity increased. In addition, the rainfall infiltration velocity tends to decrease with increases in the unit weight of soil. The proposed model was applied to assess its feasibility and to develop a regional landslide susceptibility map using a geographic information system (GIS). For that purpose, spatial databases for input parameters were constructed and landslide locations were obtained. In order to validate the proposed approach, the results of the proposed approach were compared with the landslide inventory using a ROC (receiver operating characteristics) graph. In addition, the results of the proposed approach were compared with the previous approach used: a steady-state hydrological model. Consequently, the approach proposed in this study displayed satisfactory performance in classifying landslide susceptibility and showed better performance than the steady-state approach.

  6. Investigating the legacy effect of drought on microbial responses to drying and rewetting along a Texan precipitation gradient

    NASA Astrophysics Data System (ADS)

    Hicks, Lettice; Leizeaga, Ainara; Hawkes, Christine; Rousk, Johannes

    2017-04-01

    Hydrological regimes will intensify due to climate change, thus increasing the duration and intensity of drought and rainfall events. Rewetting of dry soil is known to stimulate dramatic CO2 releases. A clear understanding of the mechanisms that determine the dynamics of CO2 loss upon rewetting is therefore required to characterise ecosystem C-budgets and predict responses to climate change. Laboratory studies have identified two distinct responses upon rewetting; bacterial growth either increases linearly immediately, with maximal respiration also occurring immediately and decreasing exponentially with time ("Type 1"), or bacterial growth increases exponentially after a period of near-zero growth, with a sustained period of elevated respiration, sometimes followed by a secondary increase in respiration coinciding with the onset of bacterial growth ("Type 2"). A shift from a Type 1 to a Type 2 response has been observed with increasing duration and intensity of drying prior to rewetting. The size of the surviving microbial community after drying, relative to resources available after rewetting, is suggested to dictate whether a Type 1 or 2 response occurs, with more 'harsh' (i.e. longer or more severe) drying reducing microbial biomass such that carbon available upon rewetting is sufficient to support exponential growth (leading to Type 2 response). However, this is yet to be tested in intact ecosystems. We investigated the legacy of drought on microbial responses to drying and rewetting using grassland soils from a natural precipitation gradient in Texas. Mean annual precipitation spanned a 500 mm range (400-900 mm year-1) across the 400 km gradient, while mean annual temperature was constant. Soil properties (pH, SOM) did not vary systematically across the gradient, with differences reflecting land-use history rather than rainfall. Air dried soils from 18 sites were rewetted to 50 % water holding capacity with bacterial growth, fungal growth and respiration measured at high temporal resolution over 7 days. We predicted that there would be a shift in the type of response to rewetting (Type 1 to Type 2) across the gradient, as a consequence of exposure to harsher drying. Further, given the lack of systematic variation in other factors with rainfall, we expected levels of maximal growth and respiration as well as the level of steady state growth and respiration to be similar across the gradient. All soils exhibited a Type 1 response, with respiration, bacterial and fungal growth increasing immediately upon rewetting and typically stabilising after c. 20 hours. There were, however, differences in the magnitude of CO2 release and microbial growth among soils, whereby rewetting of historically wetter soils stimulated higher rates of microbial growth and a greater release of CO2, compared to rewetting of historically drier soils. Contrary to expectations, there was no difference in the type of microbial response to rewetting, but instead a systematic dependence of overall microbial rates, depending on the legacy of drought. This contrasted with previous laboratory studies, suggesting that exposure to drought across the natural gradient was not perceived as 'harsh' by the microbial communities. This may be explained by either (i) differences in resource availability (i.e. plant input) mitigating the microbial susceptibility to drought in intact ecosystems or (ii) microbial tolerance to drought.

  7. Characterizing Satellite Rainfall Errors based on Land Use and Land Cover and Tracing Error Source in Hydrologic Model Simulation

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, A. S.; Peters-Lidard, C. D.; Tian, Y.; Hossain, F.

    2011-12-01

    Hydrologic modeling has benefited from operational production of high resolution satellite rainfall products. The global coverage, near-real time availability, spatial and temporal sampling resolutions have advanced the application of physically based semi-distributed and distributed hydrologic models for wide range of environmental decision making processes. Despite these successes, the existence of uncertainties due to indirect way of satellite rainfall estimates and hydrologic models themselves remain a challenge in making meaningful and more evocative predictions. This study comprises breaking down of total satellite rainfall error into three independent components (hit bias, missed precipitation and false alarm), characterizing them as function of land use and land cover (LULC), and tracing back the source of simulated soil moisture and runoff error in physically based distributed hydrologic model. Here, we asked "on what way the three independent total bias components, hit bias, missed, and false precipitation, affect the estimation of soil moisture and runoff in physically based hydrologic models?" To understand the clear picture of the outlined question above, we implemented a systematic approach by characterizing and decomposing the total satellite rainfall error as a function of land use and land cover in Mississippi basin. This will help us to understand the major source of soil moisture and runoff errors in hydrologic model simulation and trace back the information to algorithm development and sensor type which ultimately helps to improve algorithms better and will improve application and data assimilation in future for GPM. For forest and woodland and human land use system, the soil moisture was mainly dictated by the total bias for 3B42-RT, CMORPH, and PERSIANN products. On the other side, runoff error was largely dominated by hit bias than the total bias. This difference occurred due to the presence of missed precipitation which is a major contributor to the total bias both during the summer and winter seasons. Missed precipitation, most likely light rain and rain over snow cover, has significant effect on soil moisture and are less capable of producing runoff that results runoff dependency on the hit bias only.

  8. Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: sensitivity of future changes to projected climate changes and soil type

    NASA Astrophysics Data System (ADS)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; O'Leary, Garry; Macadam, Ian; Yang, Yonghui

    2016-02-01

    Wheat production is expected to be affected by climate change through changing components of the crop water balance such as rainfall, evapotranspiration (ET), runoff and drainage. We used the Agricultural Production Systems Simulator (APSIM)-wheat model to simulate the potential impact of climate change on field water balance, ET and water use efficiency (WUE) under the SRES A2 emissions scenario. We ran APSIM with daily climate data statistically downscaled from 18 Global Circulation Models (GCMs). Twelve soil types of varying plant available water holding capacity (PAWC) at six sites across semi-arid southeastern Australia were considered. Biases in the GCM-simulated climate data were bias-corrected against observations for the 1961-1999 baseline period. However, biases in the APSIM output data relative to APSIM simulations forced with climate observations remained. A secondary bias correction was therefore performed on the APSIM outputs. Bias-corrected APSIM outputs for a future period (2021-2040) were compared with APSIM outputs generated using observations for the baseline period to obtain future changes. The results show that effective rainfall was decreased over all sites due to decreased growing season rainfall. ET was decreased through reduced soil evaporation and crop transpiration. There were no significant changes in runoff at any site. The variation in deep drainage between sites was much greater than for runoff, ranging from less than a few millimetres at the drier sites to over 100 mm at the wetter. However, in general, the averaged drainage over different soil types were not significantly different between the baseline (1961-1999) and future period of 2021-2040 ( P > 0.05). For the wetter sites, the variations in the future changes in drainage and runoff between the 18 GCMs were larger than those of the drier sites. At the dry sites, the variation in drainage decreased as PAWC increased. Overall, water use efficiency based on transpiration (WUE_T) and ET (WUE_ET) increased by 1.1 to 1.6 and 0.7 to 1.3 kg ha-1 mm-1, respectively, over the baseline historical climate. Significant relationships between changes in wheat yield and PAWC were only seen at three sites. At the dry sites, the impact of a future climate under a soil of high PAWC was less than that under one of low PAWC. Conversely, the opposite response was seen at two wetter sites, highlighting the importance of PAWC and rainfall in determining the interactive response of crops to primary components of the water balance.

  9. A new field method to characterise the runoff generation potential of burned hillslopes

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; Lane, Patrick; Langhans, Christoph

    2016-04-01

    The prediction of post fire runoff generation is critical for the estimation of post fire erosion processes and rates. Typical field measures for determining infiltration model parameters include ring infiltrometers, tension infiltrometers, rainfall simulators and natural runoff plots. However predicting the runoff generating potential of post-fire hillslopes is difficult due to the high spatial variability of soil properties relative to the size of the measurement method, the poorly understood relationship between water repellence and runoff generation, known scaling issues with all the above hydraulic measurements, and logistical limitations for measurements in remote environments. In this study we tested a new field method for characterizing surface runoff generation potential that overcomes these limitations and is quick, simple and cheap to apply in the field. The new field method involves the manual application of a 40mm depth of Brilliant Blue FCF food dye along a 10cm wide and 5m long transect along the contour under slightly-ponded conditions. After 24 hours the transect is excavated to a depth of 10cm and the percentage dyed area within the soil profile recorded manually. The dyed area is an index of infiltration potential of the soil during intense rainfall events, and captures both spatial variability and water repellence effects. The dye measurements were made adjacent to long term instrumented post fire rainfall-runoff plots on 7 contrasting soil types over a 6 month period, and the results show surprisingly strong correlations (r2 = 0.9) between the runoff-ratio from the plots and the dyed area. The results are used to develop an initial conceptual model that links the dye index with an infiltration model and parameters suited to burnt hillslopes. The capacity of this method to provide a simple, and reliable indicator of post fire runoff potential from different fire severities, soil types and treatments is explored in this presentation.

  10. Effects on run-off water quantity and quality of urban organic wastes applied in a degraded semi-arid ecosystem.

    PubMed

    Martínez, F; Casermeiro, M A; Morales, D; Cuevas, G; Walter, Ingrid

    2003-04-15

    Biosolids and composted municipal solid wastes were surface-applied (0 and 80 Mg ha(-1)) to a degraded soil in a semi-arid environment to determine their effects on the quantity and quality of run-off water. Three and 4 years after application, a simulated rainfall was performed (intensity=942.5 ml min(-1) and kinetic energy=3.92 J m(-2)) on 0.078 m(2) plots using a portable rainfall simulator. The run-off from the different treatment plots was collected and analysed. The type of treatment was highly related to infiltration, run-off and sediment production. The biosolid-treated plots showed the minimum value of total run-off, maximum time to the beginning of run-off and maximum run-off ratio (the relationship between total rainfall and run-off). The MSW-treated plots showed values intermediate between biosolid-treated plots and control plots. Soil losses were also closely related to treatment type. Control plots showed the maximum sediment yield, MSW-treated plots showed intermediate values, and biosolid plots the minimum values for washout. The concentrations of NH(4)-N and PO(4)-P in the run-off water were significantly higher in the treated plots than in control plots. The highest PO(4)-P value, 0.73 mg l(-1), was obtained in the soil treated with biosolids; NO(3)-N concentration also increased significantly with respect to the control and MSW treatments. NH(4)-N concentrations of 15.6 and 15.0 mg l(-1) were recorded in the soils treated with biosolids and MSW, respectively, values approximately five times higher than those obtained in run-off water from untreated soil. However, the concentrations of all these constituents were lower than threshold limits cited in water quality standards for agricultural use. With the exception of Cu, all trace metals analysed in the run-off water were below detection limits.

  11. Impacts of climate variability and extreme events on soil hydrological processes

    NASA Astrophysics Data System (ADS)

    Ramos, M. C.; Mulligan, M.

    2003-04-01

    The Mediterranean climate (dry subhumid), characterised by a high variability, produces in many situations an insufficient water supply to support stable agriculture. Not only is there insufficient rainfall, but its occurrence is also highly variable between years, during the year, and spatially, during a single rainfall event. One of the main climatic characteristics affecting the vulnerability of the Mediterranean region is the high intensity rainfalls which fall after a very dry summer and the high degree of climatic fluctuation in the short and long term, especially in rainfall quantity. In addition, the rainwater penetration and storage of water in the soil are conditioned by the soil characteristics, in some cases modified by changes in land use and with new management practices. The aim of this study was to evaluate the impact of this high variability, from year to year and through the year, on soil hydrological processes, in fields resulted of the mechanisation works in vineyards in a Mediterranean environment. The PATTERNlight model, a simplified two-dimensional version of the hydrological and growth PATTERN model (Mulligan, 1996) is used here to simulate the water balance for three situations: normal, wet and dry years. Ssignificant differences in soil moisture and recharge were observed under vine culture from year to year, giving rise very often, to critical situations for the development of the crops. The distribution of the rainfall through the year together with the intensity of the recorded rainfalls is much very significant for soil hydrology than the total annual rainfall. Very low soil moisture conditions are raised when spring rainfall is scarce, which contribute to exhaustion of profile soil water over the summer, especially if the antecedent soil moisture is low. This low soil moisture has a significant effect on the development of the vine crop. The simulations of leaf and root biomass carried out with the PATTERNLIGHT model indicate the differences in the development of the leaf biomass between wet and dry conditions, especially with dry springs. Wet conditions favour the development of root and leaf biomass in a significant way. Mulligan, M., 1996. Modelling the hydrology of vegetation competition in a degrade semiarid environment. PhD Theses. Department of Geography, King's College London, University of London.

  12. Simulation of filter strips influence on runoff and soil and nutrient losses under different rainfall patterns in a small vineyard catchment

    NASA Astrophysics Data System (ADS)

    Ramos, Maria C.; Benito, Carolina

    2014-05-01

    This work presents the analysis of the influence of filter strips on soil and water losses in a small catchment, whose main land use is grape vines. The watershed was located in the municipality of Piera (Barcelona, Spain). Other crops like olive trees, winter barley and alfalfa were also found, as well as some residential areas. Soil and water losses were simulated using the Soil and Water Assessment Tool (SWAT). The model was calibrated and validated using soil water and runoff data collected in the field during the period May 2010- May 2012. Then, the model was run for the period 2000-2011, which included years with different rainfall amounts and characteristics. Soil losses with and without that soil conservation measure was compared. The annual rainfall recorded during the analysed years ranged from 329.8 to 785 mm with different rainfall distributions within the year. Runoff rates ranged from 17 to 141 mm, which represented respectively 4.7 and 21% of total precipitation. Both extreme situations were recorded in the driest years of the series, with precipitation below the average. Soil losses ranged between 0.31 Mg/ha in the driest year and 13.9 Mg/ha, in the wettest. The simulation of soil losses with the introduction of filter strips 3m width in the vineyards resulted in a reduction of soil losses up to 68% in relation to the situation without that soil conservation measure. This soil loss decrease represented an additional nutrient loss reduction (up to 66% for N_organic, up to 64% of P_organic and between 6.5 and 40% of N_nitrate, depending on rainfall characteristics).

  13. Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan.

    NASA Astrophysics Data System (ADS)

    Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey

    2017-04-01

    Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this research. Hopefully, all results developed from this research can be used as a warning system for Predicting Large Scale Landslides in the southern Taiwan. Keywords:Heavy Rainfall, Large Scale, landslides, Critical Rainfall Value

  14. Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores

    NASA Astrophysics Data System (ADS)

    Pot, V.; Šimůnek, J.; Benoit, P.; Coquet, Y.; Yra, A.; Martínez-Cordón, M.-J.

    2005-12-01

    Two series of displacement experiments with isoproturon and metribuzin herbicides were performed on two undisturbed grassed filter strip soil cores, under unsaturated steady-state flow conditions. Several rainfall intensities (0.070, 0.147, 0.161, 0.308 and 0.326 cm h - 1 ) were used. A water tracer (bromide) was simultaneously injected in each displacement experiment. A descriptive analysis of experimental breakthrough curves of bromide and herbicides combined with a modeling analysis showed an impact of rainfall intensity on the solute transport. Two contrasting physical non-equilibrium transport processes occurred. Multiple (three) porosity domains contributed to flow at the highest rainfall intensities, including preferential flow through macropore pathways. Macropores were not active any longer at intermediate and lowest velocities, and the observed preferential transport was described using dual-porosity-type models with a zero or low flow in the matrix domain. Chemical non-equilibrium transport of herbicides was found at all rainfall intensities. Significantly higher estimated values of degradation rate parameters as compared to batch data were correlated with the degree of non-equilibrium sorption. Experimental breakthrough curves were analyzed using different physical and chemical equilibrium and non-equilibrium transport models: convective-dispersive model (CDE), dual-porosity model (MIM), dual-permeability model (DP), triple-porosity, dual permeability model (DP-MIM); each combined with both chemical instantaneous and kinetic sorption.

  15. Set-up and calibration of an outdoor nozzle-type rainfall simulator for soil erosion studies at the Masse experimental station (central Italy)

    NASA Astrophysics Data System (ADS)

    Vergni, Lorenzo; Todisco, Francesca

    2016-04-01

    This contribution describes the technical characteristics and the preliminary calibration of a rainfall simulator recently installed by the Department of Agricultural, Food and Environmental Sciences (Perugia University) at the Masse experimental station located 20 km south of Perugia, in the region of Umbria (central Italy). The site includes some USLE plots of different length λ = 11 and 22 m and width w = 2, 4 and 8 m, oriented parallel to a 16 % slope and kept free of vegetation by frequent ploughing. Since 2008, the station enabled to collect data from more than 80 erosive events, that were mainly used to investigate the relationship between rainfall characteristics and soil loss. The relevant soil loss variability that characterizes erosive storm events with similar overall characteristics (duration and/or depth) can be explained by the different rainfall profile of erosive storms and by the different antecedent soil aggregate stability. To analyse in more detail these aspects, recently, the Masse experimental station has been equipped with a semi-portable rainfall simulator placed over two micro-plots of 1x1 m each, having the same topographic and pedologic conditions of the adjacent USLE plots. The rainfall simulator consists of four full-cone spray nozzles for each micro-plot, placed at the angles of a 0.18-m square, centred over the plot at a height of 2.7 m above the ground. The operating pressure is regulated by pressure regulating valves and checked by pressure gauges mounted in correspondence of each nozzle. An electronic control unit regulates the start and stop of the inlet solenoid valves. A range of rainfall intensities can be achieved, by activating different combinations of nozzles (15 different intensities) also during the same simulation trial. The particular design of the plots allows to collect separately the runoff volume deriving from the plots and the water volume fallen outside of the plot. In this way it is possible to derive, by difference, the actual infiltration volume. The experiments are carried out simultaneously on the two adjacent micro-plots. In particular, this contribution reports the results of the first experimental trials aimed to assess the uniformity attainable by single nozzles and its reproducibility (between plots and in time). The interferences between adjacent nozzles (when they work simultaneously) were also evaluated.

  16. Linking crop structure, throughfall, soil surface conditions, runoff and soil detachment: 10 land uses analyzed in Northern Laos.

    PubMed

    Lacombe, Guillaume; Valentin, Christian; Sounyafong, Phabvilay; de Rouw, Anneke; Soulileuth, Bounsamai; Silvera, Norbert; Pierret, Alain; Sengtaheuanghoung, Oloth; Ribolzi, Olivier

    2018-03-01

    In Montane Southeast Asia, deforestation and unsuitable combinations of crops and agricultural practices degrade soils at an unprecedented rate. Typically, smallholder farmers gain income from "available" land by replacing fallow or secondary forest by perennial crops. We aimed to understand how these practices increase or reduce soil erosion. Ten land uses were monitored in Northern Laos during the 2015 monsoon, using local farmers' fields. Experiments included plots of the conventional system (food crops and fallow), and land uses corresponding to new market opportunities (e.g. commercial tree plantations). Land uses were characterized by measuring plant cover and plant mean height per vegetation layer. Recorded meteorological variables included rainfall intensity, throughfall amount, throughfall kinetic energy (TKE), and raindrop size. Runoff coefficient, soil loss, and the percentage areas of soil surface types (free aggregates and gravel; crusts; macro-faunal, vegetal and pedestal features; plant litter) were derived from observations and measurements in 1-m 2 micro-plots. Relationships between these variables were explored with multiple regression analyses. Our results indicate that TKE induces soil crusting and soil loss. By reducing rainfall infiltration, crusted area enhances runoff, which removes and transports soil particles detached by splash over non-crusted areas. TKE is lower under land uses reducing the velocity of raindrops and/or preventing an increase in their size. Optimal vegetation structures combine minimum height of the lowest layer (to reduce drop velocity at ground level) and maximum coverage (to intercept the largest amount of rainfall), as exemplified by broom grass (Thysanolaena latifolia). In contrast, high canopies with large leaves will increase TKE by enlarging raindrops, as exemplified by teak trees (Tectona grandis), unless a protective understorey exists under the trees. Policies that ban the burning of multi-layered vegetation structure under tree plantations should be enforced. Shade-tolerant shrubs and grasses with potential economic return could be promoted as understorey. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Runoff and Leaching of Metolachlor from Mississippi River Alluvial Soil during Seasons of Average and Below-Average Rainfall

    USDA-ARS?s Scientific Manuscript database

    The movement of metolachlor via runoff and leaching from plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a six-year period, 1995-2000. The first three years were characterized by normal rainfall volume, the second three years by reduced rainfall. The ...

  18. Biocrusts modulate warming and rainfall exclusion effects on soil respiration in a semi-arid grassland

    PubMed Central

    Escolar, Cristina; Maestre, Fernando T.; Rey, Ana

    2015-01-01

    Soil surface communities composed of cyanobacteria, algae, mosses, liverworts, fungi, bacteria and lichens (biocrusts) largely affect soil respiration in dryland ecosystems. Climate change is expected to have large effects on biocrusts and associated ecosystem processes. However, few studies so far have experimentally assessed how expected changes in temperature and rainfall will affect soil respiration in biocrust-dominated ecosystems. We evaluated the impacts of biocrust development, increased air temperature and decreased precipitation on soil respiration dynamics during dry (2009) and wet (2010) years, and investigated the relative importance of soil temperature and moisture as environmental drivers of soil respiration, in a semiarid grassland from central Spain. Soil respiration rates were significantly lower in the dry than during the wet year, regardless of biocrust cover. Warming increased soil respiration rates, but this response was only significant in biocrust-dominated areas (> 50% biocrust cover). Warming also increased the temperature sensitivity (Q10 values) of soil respiration in biocrust-dominated areas, particularly during the wet year. The combination of warming and rainfall exclusion had similar effects in low biocrust cover areas. Our results highlight the importance of biocrusts as a modulator of soil respiration responses to both warming and rainfall exclusion, and indicate that they must be explicitly considered when evaluating soil respiration responses to climate change in drylands. PMID:25914428

  19. Efficacy of Natural Polymer Derivatives on Soil Physical Properties and Erosion on an Experimental Loess Hillslope.

    PubMed

    Liu, Jun'e; Wang, Zhanli; Li, Yuanyuan

    2017-12-22

    Raindrops disperse large soil aggregates into smaller particles, which can clog soil pores, cause soil crusting, reduce rainfall infiltration and increase soil loss. It was found that natural polymer derivatives were effective in improving soil physical properties and decreasing soil erosion on an experimental loess hillslope. This study investigated the effect of new natural polymer derivatives (Jag S and Jag C162) on soil properties, rainfall infiltration and sediment yield at four rates of sprayed polymers (0, 1, 3 and 5 g/m²), three rainfall intensities (1, 1.5 and 2 mm/min) and a slope gradient of 15° with a silt loam soil through simulated rain. The results showed that both Jag S and Jag C162 significantly increased the shear strength and improved the aggregates composition of the soil surface. The water-stable soil aggregates >0.25 mm increased from 9% to 50% with increasing rates of Jag S and Jag C162. Jag S and Jag C162 also effectively increased rainfall infiltration and final infiltration rate, and reduced erosion compared to controls without natural polymer derivatives added. However, higher rates of Jag S produced lower infiltration rates. Although both Jag S and Jag C162 effectively influenced soil physical properties and erosion, the effect of Jag C162 was more significant than that of Jag S.

  20. Erodibility of waste (Loess) soils from construction sites under water and wind erosional forces.

    PubMed

    Tanner, Smadar; Katra, Itzhak; Argaman, Eli; Ben-Hur, Meni

    2018-03-01

    Excess soils from construction sites (waste soils) become a problem when exposed to soil erosion by water or wind. Understanding waste soil erodibility can contribute to its proper reuse for various surface applications. The general objective of the study was to provide a better understanding of the effects of soil properties on erodibility of waste soils excavated from various depths in a semiarid region under rainfall and wind erosive forces. Soil samples excavated from the topsoil (0-0.3m) and subsoil layers (0.3-0.9 and >1m depths) were subjected to simulated rainfall and wind. Under rainfall erosive forces, the subsoils were more erodible than the topsoil, in contrast to the results obtained under wind erosive forces. Exchangeable sodium percentage was the main factor controlling soil erodibility (K i ) under rainfall, and a significant logarithmic regression line was found between these two parameters. In addition, a significant, linear regression was found between K i and slaking values for the studied soil samples, suggesting that the former can be predicted from the latter. Soil erodibility under wind erosion force was controlled mainly by the dry aggregate characteristics (mean weight diameter and aggregate density): their higher values in the subsoil layers resulted in lower soil erodibility compared to the topsoil. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Efficacy of Natural Polymer Derivatives on Soil Physical Properties and Erosion on an Experimental Loess Hillslope

    PubMed Central

    Liu, Jun’e; Wang, Zhanli; Li, Yuanyuan

    2017-01-01

    Raindrops disperse large soil aggregates into smaller particles, which can clog soil pores, cause soil crusting, reduce rainfall infiltration and increase soil loss. It was found that natural polymer derivatives were effective in improving soil physical properties and decreasing soil erosion on an experimental loess hillslope. This study investigated the effect of new natural polymer derivatives (Jag S and Jag C162) on soil properties, rainfall infiltration and sediment yield at four rates of sprayed polymers (0, 1, 3 and 5 g/m2), three rainfall intensities (1, 1.5 and 2 mm/min) and a slope gradient of 15° with a silt loam soil through simulated rain. The results showed that both Jag S and Jag C162 significantly increased the shear strength and improved the aggregates composition of the soil surface. The water-stable soil aggregates >0.25 mm increased from 9% to 50% with increasing rates of Jag S and Jag C162. Jag S and Jag C162 also effectively increased rainfall infiltration and final infiltration rate, and reduced erosion compared to controls without natural polymer derivatives added. However, higher rates of Jag S produced lower infiltration rates. Although both Jag S and Jag C162 effectively influenced soil physical properties and erosion, the effect of Jag C162 was more significant than that of Jag S. PMID:29271899

  2. Sensitivity of convective precipitation to soil moisture and vegetation during break spell of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Sandeep, S.; Vinodkumar; Nhaloor, Sreejith

    2017-07-01

    Indian summer monsoon rainfall is characterized by large intra-seasonal fluctuations in the form of active and break spells in rainfall. This study investigates the role of soil moisture and vegetation on 30-h precipitation forecasts during the break monsoon period using Weather Research and Forecast (WRF) model. The working hypothesis is that reduced rainfall, clear skies, and wet soil condition during the break monsoon period enhance land-atmosphere coupling over central India. Sensitivity experiments are conducted with modified initial soil moisture and vegetation. The results suggest that an increase in antecedent soil moisture would lead to an increase in precipitation, in general. The precipitation over the core monsoon region has increased by enhancing forest cover in the model simulations. Parameters such as Lifting Condensation Level, Level of Free Convection, and Convective Available Potential Energy indicate favorable atmospheric conditions for convection over forests, when wet soil conditions prevail. On spatial scales, the precipitation is more sensitive to soil moisture conditions over northeastern parts of India. Strong horizontal gradient in soil moisture and orographic uplift along the upslopes of Himalaya enhanced rainfall over the east of Indian subcontinent.

  3. A protocol for conducting rainfall simulation to study soil runoff

    USDA-ARS?s Scientific Manuscript database

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial ur...

  4. Throughfall chemistry beneath Quercus rubra: atmospheric, foliar, and soil chemistry considerations

    Treesearch

    Theodor D. Leininger; W.E. Winner

    1988-01-01

    Concentrations of inorganic ions were measured in bulk rainfall and bulk throughfall collected beneath northern red oak (Quercus rubra L.) trees growing in fertile, limestone-derived soil and less fertile sandstone/shale-derived soil. Rainfall passing through the crowns at both sites was enriched with SO2-4...

  5. Precontact vegetation and soil nutrient status in the shadow of Kohala Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Chadwick, Oliver A.; Kelly, Eugene F.; Hotchkiss, Sara C.; Vitousek, Peter M.

    2007-09-01

    Humans colonized Hawaii about 1200 years ago and have progressively modified vegetation, particularly in mesic to dry tropical forests. We use δ 13C to evaluate the contribution of C 3 and C 4 plants to deep soil organic matter to reconstruct pre-human contact vegetation patterns along a wet to dry climate transect on Kohala Mountain, Hawaii Island. Precontact vegetation assemblages fall into three distinct zones: a wet C 3 dominated closed canopy forest where annual rainfall is > 2000 mm, a dry C 4 dominated grassland with annual rainfall < 500 mm, and a broad transition zone between these communities characterized by either C 3 trees with higher water-use efficiency than the rainforest trees or C 3 trees with a small amount of C 4 grasses intermixed. The likelihood of C 4 grass understory decreases with increasing rainfall. We show that the total concentration of rock-derived nutrients in the < 2-mm soil fraction differs in each of these vegetation zones. Nutrient losses are driven by leaching at high rainfall and by plant cycling and wind erosion at low rainfall. By contrast, nutrients are best preserved in surface soils of the intermediate rainfall zone, where rainfall supports abundant plant growth but does not contribute large amounts of water in excess of evapotranspiration. Polynesian farmers exploited these naturally enriched soils as they intensified their upland agricultural systems during the last three centuries before European contact.

  6. Preferential flow dynamics in agricultural soils in Navarre (Spain): an experimental approach to gain insight into water connectivity

    NASA Astrophysics Data System (ADS)

    Iturria, Iban; Zubieta, Elena; Giménez, Rafael; Ángel Campo-Bescós, Miguel

    2017-04-01

    To address studies on soil erosion and water quality it is essential to understand and quantify water movements through the soil. The estimation of this movement is usually based on soil texture and structure since it is assumed that the water moves across soil matrix. However, soils prone to the formation of cracks or macropores could trigger rapid flow paths, capable of drastically changing the movement of the water and, therefore, its connectivity across the soil. This would have important consequences both for runoff -and thus for erosion- and for groundwater quality. Local preliminary studies have shown that in many agrarian soils in Navarre (Spain), infiltration rate was mainly determined by this type of preferential flow. On the other hand, the formation of these cracks basically responded to expansion/contraction processes of clays due to changes in soil moisture content caused by rainfall. The aim of this work was to quantify in agricultural soil the presence of cracks/macropores responsible for preferential flow and their temporal variation compared to different soil moisture contents. The work was carried out in experimental plots (150 m2) of the UPNA with different type of conventional tillage: (i) mouldboard plough: (ii) chisel and (iii) mouldboard+Molon rake. Each plot was divided into two halves or subplots. On half was submitted to the action of 4 simulated rainfall (5 days passing between each event); whereas in the other half, no rain was applied. Six subplots were thus defined. After each of the 4 rainfall, and once the 5 days had passed, the following experiments were conducted in each of the 6 subplots. In microplots (0.5 m2) a colourant (aqueous solution of bromide) was applied (Lu and Wu, 2003). To be specific, 8 mm of this solution was applied as intense rain with a sprinkler, but avoiding any waterlogging. Then, vertical cuts of 50-60 cm were made where the cracks/macropores were evidenced by the colourant. Photographs of the profiles were obtained. From these, binary images were obtained: soil matrix vs macropores/cracks. Statistical analysis was performed to characterize the macropore/crack distribution pattern. First results indicated clear differences between the different tillage in the crack/macropores distribution. For example, in treatments in which the mouldboard plough was used, (i and iii), a greater presence of macropores was observed in the upper 20 cm. However, with the treatment with chisel (ii), macropores were evident in the whole soil profile; this was due to the chisel making cracks in the plow sole thus promoting water flow. Also, this pattern was affected by rainfall (and therefore in soil moisture) but information is still scarce for any greater precisions. The extrapolation of these results would serve, for instance to (i) gain a better understanding of water movement and its connectivity in the soil and, thus, of the hydrological behaviour of typical agrarian catchments in Navarre; (ii) to improve the performance of hydrological models for land management, and (iii) optimize irrigation design and soil management practices. Reference Lu, J., Wu, L. 2003. Visualizing bromide and iodide water tracer in soil profiles by spray methods. Journal of Environmental Quality 32(1): 363-367

  7. Relationship soil-water-plant after the dry season in dry Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Hueso-González, P.; Jiménez-Donaire, V.; Ruiz-Sinoga, J. D.

    2012-04-01

    Preliminary studies have determined the existence of a pluviometric gradient around Mediterranean system, which varies from 240 to 1 100 mm mean annual rainfall. This gradient has an incidence in the physical, chemical and hydrological properties in soils with the same litology. Empiric results conclude that humid eco-geomorphological systems are controlled by biotic processes, whereas in arid eco-geomorphological systems, are abiotic factors which have more importance in soil degradation processes. The study area of the present work is located in Málaga (Andalusia, Spain), in the southern part of the Natural Park "Sierra Tejeda, Almijara y Alhama". There, the mean annual temperature is around 18 °C and the mean rainfall is 650 mm. Predominant vegetation corresponds to the termomediterranean serie Smilaci Mauritanicae-Querceto Rotundifoliae Sigmetum, typical of basic soils. The aim of this study is to analyse the immediate hydrological response of the soil under different vegetation covers, through the analysis of certain properties, all this, under subhumid ombrotipe. A random choice of ten representative plants has been done. These plants, with different sizes, were located in the same Southern slope. The soil samples were taken right beside the plant log, and also within a distance of 0.4 to 1 metre from them, depending on the plant size. The sampling was carried out between the end of the dry season and the beginning of the wet one, after a 20% of the mean annual rainfall had rained. The physical, chemical and hydrological analyzes -both in the field and the laboratory- were: exchange-base, total carbon, cation exchange capacity, soil infiltration capacity, salt content, hydrophobia, organic matter, soil organic carbon, total nitrogen, wetting profile in bared soil, wetting profile under vegetation cover (shrubland), and p.H. Literature reveals that rainfall affects significantly the edafogenetic factors, regarding the pluviometric gradient level. In the present study, from a 20% accumulated rainfall of the total mean, not considerable incidences can be found. Furthermore, after the dry season, rainfall event higher than 0.5 mm are necessary in order to observe changes in soil wetting profile. However, for intense rainfall episodes, the hydrological soil response -observe by its wetting profile- in bare soil is 24 hours, and 48 hours in soils vegetation cover. Secondly, soil hydraulic conductivity - measured with a minidisc infiltrometer at different distances from the selected plants- shows that soil infiltration capacity does not follow a determined patter. This could be due to the significant stony character of the studied area soil/presence of stones in of the studied area soil. Finally, not major differences regarding soil organic matter have been observed, either at species level or temporal level, from the selected plant.

  8. Rainfall erosivity factor estimation in Republic of Moldova

    NASA Astrophysics Data System (ADS)

    Castraveš, Tudor; Kuhn, Nikolaus

    2017-04-01

    Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.

  9. Analysis of the runoff generation mechanism for the investigation of the SCS-CN method applicability to a partial area experimental watershed

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.; Dercas, N.; Londra, P. A.

    2009-01-01

    The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils with high hydraulic conductivities, whereas a smaller part is covered with medium textured soils and impervious surfaces. The analysis indicated that the SCS-CN method fails to predict runoff for the storm events studied, and that there is a strong correlation between the CN values obtained from measured runoff and the rainfall depth. The hypothesis that this correlation could be attributed to the existence of an impermeable part in a very permeable watershed was examined in depth, by developing a numerical simulation water flow model for predicting surface runoff generated from each of the three soil types of the watershed. Numerical runs were performed using the HYDRUS-1D code. The results support the validity of this hypothesis for most of the events examined where the linear runoff formula provides better results than the SCS-CN method. The runoff coefficient of this formula can be taken equal to the percentage of the impervious area. However, the linear formula should be applied with caution in case of extreme events with very high rainfall intensities. In this case, the medium textured soils may significantly contribute to the total runoff and the linear formula may significantly underestimate the runoff produced.

  10. Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.; Dercas, N.; Londra, P. A.

    2009-05-01

    The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the direct runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils with high hydraulic conductivities, whereas a smaller part is covered with medium textured soils and impervious surfaces. The analysis indicated that the SCS-CN method fails to predict runoff for the storm events studied, and that there is a strong correlation between the CN values obtained from measured runoff and the rainfall depth. The hypothesis that this correlation could be attributed to the existence of an impermeable part in a very permeable watershed was examined in depth, by developing a numerical simulation water flow model for predicting surface runoff generated from each of the three soil types of the watershed. Numerical runs were performed using the HYDRUS-1D code. The results support the validity of this hypothesis for most of the events examined where the linear runoff formula provides better results than the SCS-CN method. The runoff coefficient of this formula can be taken equal to the percentage of the impervious area. However, the linear formula should be applied with caution in case of extreme events with very high rainfall intensities. In this case, the medium textured soils may significantly contribute to the total runoff and the linear formula may significantly underestimate the runoff produced.

  11. Tracer and hydrometric study of preferential flow in large undisturbed soil cores from the Georgia Piedmont, USA

    USGS Publications Warehouse

    McIntosh, Janice; McDonnell, Jeffrey J.; Peters, Norman E.

    1999-01-01

    We studied the temporal patterns of tracer throughput in the outflow of large (30 cm diameter by 38 cm long) undisturbed cores from the Panola Mountain Research Watershed, Georgia. Tracer breakthrough was affected by soil structure and rainfall intensity. Two rainfall intensities (20 and 40 mm hr-1) for separate Cl- and Br- amended solutions were applied to two cores (one extracted from a hillslope soil and one extracted from a residual clay soil on the ridge). For both low and high rainfall intensity experiments, preferential flow occurred in the clay core, but not in the hillslope core. The preferential flow is attributed to well-developed interpedal macrochannels that are commonly found in structured clay soils, characteristic of the ridge site. However, each rainfall intensity exceeded the matrix infiltration capacity at the top of the hillslope core, but did not exceed the matrix infiltration capacity at the middle and bottom of the hillslope core and at all levels in the clay core. Localized zones of saturation created when rainfall intensity exceeds the matrix infiltration capacity may cause water and tracer to overflow from the matrix into macrochannels, where preferential flow occurs to depth in otherwise unsaturated soil. Copyright © 1999 John Wiley & Sons, Ltd.

  12. Mediterranean shrub vegetation: soil protection vs. water availability

    NASA Astrophysics Data System (ADS)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by at least 45% and soil loss by at least 59% in relation to an abandoned and degraded soil (bare soil) (Garcia-Estringana et al., 2010a). D. pentaphyllum, M. strasseri and C. arborescens were more effective in reducing runoff and soil loss (at least 83% and 97% respectively) than R. sphaerocarpa (45% and 59% respectively). Pisctacia Lentiscus L reduced the soil losses in 87% and the runoff rates (68%) meanwhile Quercus coccifera L reached a larger reduction (95% and 88 %) in comparison to herbicide treated agriculture soil. So, all shrub species protected the soil, but not in the same way. In relation to rainfall reaching the soil surface, great differences were observed among species, with interception losses varying between 10% for R. sphaerocarpa to greater than 36% for D. pentaphyllum and M. strasseri, and with stemflow percentages changing between less than 11% for D. pentaphyllum and M. strasseri and 20% for R. sphaerocarpa (Garcia-Estringana et al., 2010b). Rainfall interception on Pistacia Lentiscus and Quercus coccifera were 24% and 34% respectively for the two years of measurements. The integration of the effects of Mediterranean shrub vegetation on soil protection and rainfall partitioning fluxes facilitates understanding the effects of changes in vegetation type on soil and water resources. From this perspective, the interesting protective effect of D. pentpahyllum and M. strasseri, reducing intensely runoff and soil loss contrasts with the dangerous reduction in rainfall reaching the soil surface. Soil protection is essential in semiarid and arid environments, but a proper assessment of the effects on water availability is critical because of water is a scant resource in these kinds of environments. Pistacia Lentiscus and Quercus coccifera shown both a high capacity to intercept rainfall, increase infiltration and reduce the soil losses. We suggest to apply similar research programs into recently fire affected land as the role of vegetation after the fire is very dynamic (Cerdà 1998b). Acknowledgements The research projects 07 M/0077/1998, 07 M/0023/2000 and RTA01-078-C2- 2, GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 project 603498 supported this research. References Belmonte Serrato, F., Romero Díaz, A., López Bermúdez, F., Hernández Laguna, E. 1999. Óptimo de cobertura vegetal en relación a las pérdidas de suelo por erosión hídrica y las pérdidas de lluvia por interceptación. Papeles de Geografía 30, 5-15. Cammeraat, E., Cerdà, A., Imeson, A.C. 2010. Ecohydrological adaptation of soils following land abandonment in a semiarid environment. Ecohydrology, 3: 421-430. 10.1002/eco.161 Cerdà, A. 1997a. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. Journal of Arid Environments, 36, 37-51. Cerdà, A. 1998. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78, 321-330. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A.1997b. Soil erosion after land abandonment in a semiarid environment of Southeastern Spain. Arid Soil Research and Rehabilitation, 11, 163-176. Garcia-Estringana, P., Alonso-Blázquez, N., Alegre, J. 2010b. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. Journal of Hydrology 389, 363-372. Garcia-Estringana, P., Alonso-Blázquez, N., Marques, M.J., Bienes, R., Alegre, J. 2010a. Direct and indirect effects of Mediterranean vegetation on runoff and soil loss. European Journal of Soil Science 61, 174-185. García-Ruiz, J.M. 2010. The effects of land uses on soil erosion in Spain: a review. Catena 81, 1-11. Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., and Moeyersons, J. 2013. Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM in Northern Ethiopia. Land Degradation & Development, 24: 188- 204. DOI 10.1002/ldr.1121 Kakembo, V., Ndlela, S., and Cammeraat, E. 2012. Trends in vegetation patchiness loss and implications for landscape function: the case of Pteronia incana invasion in the Eastern Cape Province, South Africa. Land Degradation & Development, 23: 548- 556. DOI 10.1002/ldr.2175 Kargar Chigani, H., Khajeddin, S. J. and Karimzadeh, H. R. 2012. Soil relationships of three arid land plant species and their use in rehabilitating degraded sites. Land Degradation & Development, 23: 92- 101. DOI 10.1002/ldr.1057 Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. DOI 10.1002/ldr.2246 Ziadat, F. M., and Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24: 582- 590. DOI 10.1002/ldr.2239

  13. Conservation strategies on citrus plantation in eastern Spain. Catch crops, geotextiles and mulches

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Dominguez, Alfons; Giménez Morera, Antonio

    2010-05-01

    Tillage (6 %), and herbicides (89 %) are the most widespread soil management methods in eastern Spain citrus orchards. The bare soils, the high intensity thunderstorms and the steep slopes result in high erosion rates. Over the last 3 years an experimental station has been developed at Montesa municipality in order to determine the effect of different types of mulch, geotextiles and catch crops. Rainfall simulation experiments on 20 m2 plots shown that soil losses can be control by catch crops (85 %), chipped pruned branches (89 %), straw mulch (97 %) and geotextiles (99 %). Then, vegetation can contribute to control the soil and water losses on the highly erodible soil of Mediterranean orchards.

  14. Experimental Investigation of Rainfall Impact on Overland Flow Driven Erosion Processes and Flow Hydrodynamics on a Steep Hillslope

    NASA Astrophysics Data System (ADS)

    Tian, P.; Xu, X.; Pan, C.; Hsu, K. L.; Yang, T.

    2016-12-01

    Few attempts have been made to investigate the quantitative effects of rainfall on overland flow driven erosion processes and flow hydrodynamics on steep hillslopes under field conditions. Field experiments were performed in flows for six inflow rates (q: 6-36 Lmin-1m-1) with and without rainfall (60 mm h-1) on a steep slope (26°) to investigate: (1) the quantitative effects of rainfall on runoff and sediment yield processes, and flow hydrodynamics; (2) the effect of interaction between rainfall and overland flow on soil loss. Results showed that the rainfall increased runoff coefficients and the fluctuation of temporal variations in runoff. The rainfall significantly increased soil loss (10.6-68.0%), but this increment declined as q increased. When the interrill erosion dominated (q=6 Lmin-1m-1), the increment in the rill erosion was 1.5 times that in the interrill erosion, and the effect of the interaction on soil loss was negative. When the rill erosion dominated (q=6-36 Lmin-1m-1), the increment in the interrill erosion was 1.7-8.8 times that in the rill erosion, and the effect of the interaction on soil loss became positive. The rainfall was conducive to the development of rills especially for low inflow rates. The rainfall always decreased interrill flow velocity, decreased rill flow velocity (q=6-24 Lmin-1m-1), and enhanced the spatial uniformity of the velocity distribution. Under rainfall disturbance, flow depth, Reynolds number (Re) and resistance were increased but Froude number was reduced, and lower Re was needed to transform a laminar flow to turbulent flow. The rainfall significantly increased flow shear stress (τ) and stream power (φ), with the most sensitive parameters to sediment yield being τ (R2=0.994) and φ (R2=0.993), respectively, for non-rainfall and rainfall conditions. Compared to non-rainfall conditions, there was a reduction in the critical hydrodynamic parameters of mean flow velocity, τ, and φ by the rainfall. These findings provide a better understanding on the influence mechanism of rainfall impact on hillslope erosion processes.

  15. Historical climate controls soil respiration responses to current soil moisture

    PubMed Central

    Waring, Bonnie G.; Rocca, Jennifer D.; Kivlin, Stephanie N.

    2017-01-01

    Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40–70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration–moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall. PMID:28559315

  16. The PRESSCA operational early warning system for landslide forecasting: the 11-12 November 2013 rainfall event in Central Italy.

    NASA Astrophysics Data System (ADS)

    Ciabatta, Luca; Brocca, Luca; Ponziani, Francesco; Berni, Nicola; Stelluti, Marco; Moramarco, Tommaso

    2014-05-01

    The Umbria Region, located in Central Italy, is one of the most landslide risk prone area in Italy, almost yearly affected by landslides events at different spatial scales. For early warning procedures aimed at the assessment of the hydrogeological risk, the rainfall thresholds represent the main tool for the Italian Civil Protection System. As shown in previous studies, soil moisture plays a key-role in landslides triggering. In fact, acting on the pore water pressure, soil moisture influences the rainfall amount needed for activating a landslide. In this work, an operational physically-based early warning system, named PRESSCA, that takes into account soil moisture for the definition of rainfall thresholds is presented. Specifically, the soil moisture conditions are evaluated in PRESSCA by using a distributed soil water balance model that is recently coupled with near real-time satellite soil moisture product obtained from ASCAT (Advanced SCATterometer) and from in-situ monitoring data. The integration of three different sources of soil moisture information allows to estimate the most accurate possible soil moisture condition. Then, both observed and forecasted rainfall data are compared with the soil moisture-based thresholds in order to obtain risk indicators over a grid of ~ 5 km. These indicators are then used for the daily hydrogeological risk evaluation and management by the Civil Protection regional service, through the sharing/delivering of near real-time landslide risk scenarios (also through an open source web platform: www.cfumbria.it). On the 11th-12th November, 2013, Umbria Region was hit by an exceptional rainfall event with up to 430mm/72hours that resulted in significant economic damages, but fortunately no casualties among the population. In this study, the results during the rainfall event of PRESSCA system are described, by underlining the model capability to reproduce, two days in advance, landslide risk scenarios in good spatial and temporal agreement with the occurred actual conditions. High-resolution risk scenarios (100mx100m), obtained by coupling PRESSCA forecasts with susceptibility and vulnerability layers, are also produced. The results show good relationship between the PRESSCA forecast and the reported landslides to the Civil Protection Service during the rainfall event, confirming the system robustness. The good forecasts of PRESSCA system have surely contributed to start well in advance the Civil Protection operations (alerting local authorities and population).

  17. Soil and sediment concentrations of chromium, copper, and arsenic adjacent to a chromated copper arsenate-treated wetland boardwalk

    Treesearch

    Stan Lebow; Daniel Foster

    2010-01-01

    Environmental accumulation of preservative adjacent to a chromated copper arsenate (type C)–treated wetland boardwalk was evaluated. The site is considered a realistic ‘‘worst case’’ because of the large volume of treated wood, low current speeds, high annual rainfall, and environmental sensitivity. Soil and sediment samples were collected before construction and 0.5,...

  18. The influence of anisotropy on preferential flow in landslides

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; Barontini, Stefano; Bogaard, Thom A.; Shao, Wei

    2015-04-01

    Infiltration is one of the most important landslides triggering mechanisms and it is controlled by the hydraulic characteristics of the soil, which depends on the degree of saturation, the existence of preferential flow paths and by anisotropy. Many soils, indeed, exhibit a certain degree of anisotropy due to the stratification associated with soil forming process. Recently, various authors investigated the effect of rainfall in layered soils and its effect on rainfall triggered landslides by means of experimental, conceptual, numerical and theoretical approaches. However, the combined effect of anisotropy and preferential flow on infiltration process and related to rainfall induced landslides has, according to the authors best knowledge, not been studied yet. Aiming at better understanding the soil hydrological processes which take place during an infiltration process, the stability of a synthetic hill slope is numerically investigated. The geometry we considered for the model is a slope with two different layers: the upper soil layer consists of sandy loam, while the lower soil layer is made out of clay. The geometry was studied using both a single permeability and a dual permeability model. In the first case the hydraulic conductivity at saturation was considered isotropic, equal in all directions. Then the vertical component of the hydraulic conductivity tensor at saturation was reduced, while in the third scenario the horizontal component was reduced. In this way the anisotropy effects on both the principal directions were studied. In the dual permeability model, the influence of the anisotropy was considered only in the preferential flow domain, and the hydraulic conductivity at saturation of the soil matrix domain was defined as being isotropic. In order to evaluate also the effects of rainfall intensity on the slope, two different rainfall events were studied: a low intensity rainfall with a long time duration (2 mmh-1,150 h) and an high intensity rainfall with a short duration (20 mmh-1,15 h). The results show that the anisotropy facilitates the saturation process in the slope and that the vertical component of the soil water flow is set especially in the soil matrix domain, while the lateral component dominates in the preferential flow domain. In some scenarios the patterns of the water content in the unsaturated soil layers suggest the possibility of the onset of a perched water table.

  19. An Experimental Global Monitoring System for Rainfall-triggered Landslides using Satellite Remote Sensing Information

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2006-01-01

    Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of extensive ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing an experimental real-time monitoring system to detect rainfall-triggered landslides is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.aov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a GIs weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide risks at areas with high susceptibility. A major outcome of this work is the availability of a first-time global assessment of landslide risk, which is only possible because of the utilization of global satellite remote sensing products. This experimental system can be updated continuously due to the availability of new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and risk mitigation activities across the world.

  20. Computation of groundwater resources and recharge in Chithar River Basin, South India.

    PubMed

    Subramani, T; Babu, Savithri; Elango, L

    2013-01-01

    Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km(2) have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m(3)). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10% to 15%.

  1. Antecedent wetness conditions based on ERS scatterometer data

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.

    2009-01-01

    SummarySoil moisture is widely recognized as a key parameter in environmental processes mainly for the role of rainfall partitioning into runoff and infiltration. Therefore, for storm rainfall-runoff modeling the estimation of the antecedent wetness conditions ( AWC) is one of the most important aspect. In this context, this study investigates the potential of scatterometer on board of the ERS satellites for the assessment of wetness conditions in three Tiber sub-catchments (Central Italy), of which one includes an experimental area for soil moisture monitoring. The satellite soil moisture data are taken from the ERS/METOP soil moisture archive. First, the scatterometer-derived soil wetness index ( SWI) data are compared with two on-site soil moisture data sets acquired by different methodologies on areas of different extension ranging from 0.01 km 2 to ˜60 km 2. Moreover, the reliability of SWI to estimate the AWC at a catchment scale is investigated considering the relationship between SWI and the soil potential maximum retention parameter, S, of the Soil Conservation Service-Curve Number (SCS-CN) method for abstraction. Several flood events occurred from 1992 to 2005 are selected for this purpose. Specifically, the performance of the SWI for S estimation is compared with two antecedent precipitation indices ( API) and one base flow index ( BFI). The S values obtained through the observed direct runoff volume and rainfall depth are used as benchmark. Results show the great reliability of the SWI for the estimation of wetness conditions both at the plot and catchment scale despite the complex orography of the investigated areas. As far as the comparison with on site soil moisture data set is concerned, the SWI is found quite reliable in representing the soil moisture at layer depth of 15 cm, with a mean correlation coefficient equal to 0.81. The characteristic time length parameter variations, as expected, is depended on soil type, with values in accordance with previous studies. In terms of AWC assessment at catchment scale, based on selected flood events, the SWI is found highly correlated with the observed maximum potential retention of the SCS-CN method with a correlation coefficient R equal to -0.90. Besides, SWI in representing the AWC of the three investigated catchments, outperformed both API indices, poorly representative of AWC, and BFI. Finally, the classical SCS-CN method applied for direct runoff depth estimation, where S is assessed by SWI, provided good performance with a percentage error not exceeding ˜25% for 80% of investigated rainfall-runoff events.

  2. Hydrologic behavior of model slopes with synthetic water repellent soils

    NASA Astrophysics Data System (ADS)

    Zheng, Shuang; Lourenço, Sérgio D. N.; Cleall, Peter J.; Chui, Ting Fong May; Ng, Angel K. Y.; Millis, Stuart W.

    2017-11-01

    In the natural environment, soil water repellency decreases infiltration, increases runoff, and increases erosion in slopes. In the built environment, soil water repellency offers the opportunity to develop granular materials with controllable wettability for slope stabilization. In this paper, the influence of soil water repellency on the hydrological response of slopes is investigated. Twenty-four flume tests were carried out in model slopes under artificial rainfall; soils with various wettability levels were tested, including wettable (Contact Angle, CA < 90°), subcritical water repellent (CA ∼ 90°) and water repellent (CA > 90°). Various rainfall intensities (30 mm/h and 70 mm/h), slope angles (20° and 40°) and relative compactions (70% and 90%) were applied to model the response of natural and man-made slopes to rainfall. To quantitatively assess the hydrological response, a number of measurements were made: runoff rate, effective rainfall rate, time to ponding, time to steady state, runoff acceleration, total water storage and wetting front rate. Overall, an increase in soil water repellency reduces infiltration and shortens the time for runoff generation, with the effects amplified for high rainfall intensity. Comparatively, the slope angle and relative compaction had only a minor contribution to the slope hydrology. The subcritical water repellent soils sustained infiltration for longer than both the wettable and water repellent soils, which presents an added advantage if they are to be used in the built environment as barriers. This study revealed substantial impacts of man-made or synthetically induced soil water repellency on the hydrological behavior of model slopes in controlled conditions. The results shed light on our understanding of hydrological processes in environments where the occurrence of natural soil water repellency is likely, such as slopes subjected to wildfires and in agricultural and forested slopes.

  3. Rainfall simulation experiments and Water Drop Penetration Time measurements shed light on the impact of water repellency on soils under organic farming management in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; González, Óscar; León, Javier; Jordán, Antonio

    2015-04-01

    Water repellency is a well-know soil property since the research of professor Stefan Helmut Doerr recovered and powered the research developed by professor DeBano (Atanassova and Doerr, 2011; ; Jordán et al., 2011; Bodí et al., 2012; González Peñaloza et al., 2012 Bodí et al., 2013; García Moreno et al., 2013; Jordán et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2013; Jiménez Morillo et al., 2015). However, little is known about the impact of water repellency in surface runoff generation, although usually is accepted that when more soil water repellent is a soil, higher will be the surface runoff discharge (Stoff et al., 2011; Madsen et al., 2011; León et al., 2013; Lozano et al., 2013; Mataix-Solera et al., 2013; Santos et al., 2015). And the impact of the water repellency and then the higher surface wash discharge can trigger high erosion rates (Kröpfl et al., 2013; Mandal and Sharda 2013; Zhao et al., 2013). However these relationships were not demonstrated as the most water repellent soils are the one with high organic contents, and those soils do not have soil losses, probably due to the high infiltration rates due to the macropore flow. Rainfall simulation experiments can shed light in the runoff generation mechanism as they can control the rainfall intensity (Bodí et al., 2012; Iserloh et al., 2012; Iserloh et al., 2013), and inform about the main mechanism of the soil erosion process Cerdà and Jurgensen, 2011; Daugherty et al., 2011; Podwojewski et al., 2011; Dunkerley, 2012; Garel et al., 2012; Jouquet et al., 2012; Kibet et al., 2013; Butzen et al., 2014; Ma et al., 2014; Martínez Murillo et al., 2013). To determine the relationship between surface runoff generated under simulated rainfall (Cerdà, 1988a; 1988b; Cerdà et al., 1998; Ziadat and Taimeh, 2013) with a small rainfall simulator (0.25 m2) and water repellency measurements with the Water Drop Penetration time methods were done (Bodí et al., 2012). The results show that the most water repellent soils generate a fast surface runoff that use to be infiltrate in macropores (cracks and fauna) and that runoff at plot scales was negligible in water repellent soils. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Atanassova, I., Doerr, S. H. 2011. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62(4), 516-532. Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., & Martí-Dalmau, C. 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire. Geoderma, 213, 400-407. Bodí, M. B., Doerr, S. H., Cerdà, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 191, 14-23. Bodí, M.B. Doerr, S.H., Cerdà, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. http://dx.doi.org/10.1016/j.geoderma.2012.01.006 Bodí, M.B., Muñoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A. 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, 108, 14-24. http://dx.doi.org/10.1016/j.catena.2012.04.002 Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., Ries, J. B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena, 113, 202-212. Cerdà, A. 1998a. Effect of climate on surface flow along a climatological gradient in Israel. A field rainfall simulation approach. Journal of Arid Environments, 38, 145-159. Cerdà, A. 1998b. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78, 321-330. Cerdà, A., Jurgensen, M. F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena, 85(3), 231-236. Dougherty, W. J., Mason, S. D., Burkitt, L. L., Milham, P. J. 2011. Relationship between phosphorus concentration in surface runoff and a novel soil phosphorus test procedure (DGT) under simulated rainfall. Soil Research, 49(6), 523-528. Dunkerley, D. 2012. Effects of rainfall intensity fluctuations on infiltration and runoff: rainfall simulation on dryland soils, Fowlers Gap, Australia. Hydrological Processes, 26(15), 2211-2224. García-Moreno, J., Gordillo-Rivero, Á. J., Zavala, L. M., Jordán, A., & Pereira, P. 2013. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil and Tillage Research, 130, 62-68. Garel, E., Marc, V., Ruy, S., Cognard-Plancq, A. L., Klotz, S., Emblanch, C., Simler, R. 2012. Large scale rainfall simulation to investigate infiltration processes in a small landslide under dry initial conditions: the Draix hillslope experiment. Hydrological Processes, 26(14), 2171-2186. González-Peñaloza, F.A., Cerdà, A., Zavala, L.M., Jordán, A., Giménez-Morera, A., Arcenegui, V. 2012. Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil and Tillage Research, 124, 233-239. http://dx.doi.org/10.1016/j.still.2012.06.015 Granged, A. J., Jordán, A., Zavala, L. M., Bárcenas, G. (2011): Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrological Processes, 25: 1614-1629. Iserloh, T., Ries, J.B., Arnaez, J., Boix Fayos, C., Butzen, V., Cerdà, A., Echeverría, M.T., Fernández-Gálvez, J., Fister, W., Geißler, C., Gómez, J.A., Gómez-Macpherson, H., Kuhn, N.J., Lázaro, R., León, F.J., Martínez-Mena, M., Martínez-Murillo, J.F., Marzen, M., Mingorance, M.D., Ortigosa, L., Peters, P., Regüés, D., Ruiz-Sinoga, J.D., Scholten, T., Seeger, M., Solé-Benet, A., Wengel, R., Wirtz, S. 2013. European small portable rainfall simulators: a comparison of rainfall characteristics. Catena, 110, 100-112. Doi: 10.1016/j.catena.2013.05.013 Iserloh, T., Ries, J.B., Cerdà, A., Echeverría, M.T., Fister, W., Geißler, C., Kuhn, N.J., León, F.J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., Seeger, M. (2012): Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift für Geomorphologie, 57, 193-201. DOI: 10.1127/0372-8854/2012/S-00118. Jiménez-Morillo, N. T., González-Pérez, J. A., Jordán, A., Zavala, L. M., Rosa, J. M., Jiménez-González, M. A., & González-Vila, F. J. (2014). Organic matter fractions controlling soil water repellency in Sandy soils from the Doñana National Park (Southwestern Spain). Land Degradation & Development.| DOI: 10.1002/ldr.2314 Jordán, A., García-Moreno, J., Gordillo-Rivero, Á. J., Zavala, L. M., Cerdà, A. 2014. Organic carbon, water repellency and soil stability to slaking under different crops and managements: a case study at aggregate and intra-aggregate scales. SOIL Discussions, 1(1), 295-325. Jordán, A., Zavala, L. M., Mataix-Solera, J., Doerr, S. H. 2013. Soil water repellency: origin, assessment and geomorphological consequences. Catena, 108, 1-5. Jordán, A., Zavala, L. M., Mataix-Solera, J., Nava, A. L., & Alanís, N. 2011. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84(3), 136-147. Jouquet, P., Janeau, J. L., Pisano, A., Sy, H. T., Orange, D., Minh, L. T. N., Valentin, C. 2012. Influence of earthworms and termites on runoff and erosion in a tropical steep slope fallow in Vietnam: A rainfall simulation experiment. Applied Soil Ecology, 61, 161-168. Kibet, L. C., Saporito, L. S., Allen, A. L., May, E. B., Kleinman, P. J., Hashem, F. M., Bryant, R. B. 2013. A protocol for conducting rainfall simulation to study soil runoff. Journal of visualized experiments: JoVE, (86). Kröpfl, A. I., Cecchi, G. A., Villasuso, N. M., Distel, R. A. 2013. Degradation and recovery processes in Semi-Arid patchy rangelands of northern Patagonia, Argentina. Land Degradation & Development, 24: 393- 399. DOI 10.1002/ldr.1145 Cerdà, A., Schnabel, S., Gómez-Amelia, D. & Ceballos, A. 1998. Soil hydrological Response under simulated rainfall in the Dehesa ecosystem, Extremadura, SW, Spain. Earth Surface Processes and Landforms, 23, 195- 209 León, J. Bodí, M.B., Cerdà, A., Badía, D. 2013. The contrasted response of ash to wetting. The effects of ash type, thickness and rainfall events. Geoderma, 209-210, 143-152. http://dx.doi.org/10.1016/j.geoderma.2012.01.006 Lozano, E., Jiménez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Bárcenas, G. M., González-Pérez, J. A., Mataix- Beneyto, J. 2013. Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma, 207, 212-220. Ma, W., Li, Z., Ding, K., Huang, J., Nie, X., Zeng, G., Liu, G. (2014). Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation. Geomorphology, 226, 217-225. Madsen, M. D., Zvirzdin, D. L., Petersen, S. L., Hopkins, B. G., Roundy, B. A., Chandler, D. G. 2011. Soil water repellency within a burned piñon-juniper woodland: Spatial distribution, severity, and ecohydrologic implications. Soil Science Society of America Journal, 75(4), 1543-1553. Mandal, D., Sharda, V. N. Appraisal of soil erosion risk in the Eastern Himalayan region of India for soil conservation planning. Land Degradation & Development, 24: 430-437. 2013. DOI 10.1002/ldr.1139 Martínez-Murillo, J. F., Nadal-Romero, E., Regüés, D., Cerdà, A., Poesen, J. 2013. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena, 106, 101-112. Mataix-Solera, J., Arcenegui, V., Tessler, N., Zornoza, R., Wittenberg, L., Martínez, C., Jordán, M. M. 2013. Soil properties as key factors controlling water repellency in fire-affected areas: evidences from burned sites in Spain and Israel. Catena, 108, 6-13. Podwojewski, P., Janeau, J. L., Grellier, S., Valentin, C., Lorentz, S., Chaplot, V. 2011. Influence of grass soil cover on water runoff and soil detachment under rainfall simulation in a sub-humid South African degraded rangeland. Earth Surface Processes and Landforms, 36(7), 911-922. Santos, J. M., Verheijen, F. G., Tavares Wahren, F., Wahren, A., Feger, K. H., Bernard-Jannin, L., Nunes, J. P. (2015). Soil water repellency dynamics in pine and eucalupt plantation in Portugal - a high- resolution series. Land Degradation & Development. DOI: 10.1002/ldr.2251 Stoof, C. R., Moore, D., Ritsema, C. J., Dekker, L. W. 2011. Natural and fire-induced soil water repellency in a Portuguese shrubland. Soil Science Society of America Journal, 75(6), 2283-2295. Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. DOI 10.1002/ldr.2246 Ziadat, F. M., Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24: 582- 590. DOI 10.1002/ldr.2239

  4. Rainfall Driven Sorting of Soils and Manure in Beef Feedlot Pens, Implications for Steroid Hormone Transport

    NASA Astrophysics Data System (ADS)

    Bryson, R.; Harter, T.

    2009-12-01

    Previous research has documented elevated estrogenic and androgenic activity in surface waters receiving cattle feedlot effluent, while current research shows that significant concentrations of hydrophobic steroid hormones are transported in the solid phase of feedlot pen surface runoff. Accumulated manure in beef feedlot pens includes organic matter ranging from colloidal particles to partially digested feed, forming a complex soil-manure conglomerate at the pen surface. We hypothesized that the transport of solid phase particles in rainfall runoff on beef feedlots would be influenced but not limited by shield layer development. Soils and manure at a beef feedlot were evaluated before and after rainfall-runoff events to determine changes in soil composition and structure. Runoff samples were also collected during an hour of runoff and analyzed for suspended solids. Results indicate that rainfall actively sorts the soil and manure components through raindrop impact, depression storage and runoff. However, transport of solid phase constituents was found to be elevated throughout the hydrograph. This suggests that the surface shield layer conceptualization applied to other soils should be modified before application to the soil-manure conglomerate found in beef feedlot pens.

  5. [Characteristics of soil phosphorus runoff under different rainfall intensities in the typical vegetable plot of Taihu Basin].

    PubMed

    Yang, Li-Xia; Yang, Gui-Shan; Yuan, Shao-Feng; Wu, Ye

    2007-08-01

    Experiments of field runoff plots, which were conducted at vegetable plots in Hongsheng town of Wuxi city--the typical region of Taihu Basin, were designed to assess the effects of different rainfall intensities on soil phosphorus runoff loss from vegetable plots by artificial rainfall simulations. Results showed that there was a relationship of power function between initial runoff-generation time and rainfall intensity. Runoff amount slowly increased under small rainfall intensity, but rapidly increased with rainfall intensity increase. The concentrations of total phosphorus (TP) and particulate phosphorus (PP) were higher at the early stage, then gradually decreased with time and finally reached a comparative steady stage under 0.83, 1.17 and 1.67 mm x min(-1). However they indicated no obvious trend except wavy undulation under 2.50 mm x min(-1). In the course of rainfall-runoff, dissolved phosphorus (DP) gently varied and accounted for 20% - 32% of TP. PP was 68% - 80% of TP and its change trend was consistent with TP. Therefore, PP was main loss form of soil phosphorus runoff. Comparison of different phosphorous loss rate under different rainfall intensities suggested that loss rate of TP and DP under 2.50 mm x min(-1) was 20 times and 33 times higher than that under 0.83 mm x min(-1), which showed that loss rate of PP and DP increased with the increase of rainfall intensities. Results indicated that lots of inorganic dissolved phosphorus (DIP) of phosphorous fertilizer was discharged into water environment by using fertilizer in soil surface before rainfall, which increased loss of DP and greatly aggravated degree of water eutrophication.

  6. Difference infiltrometer: a method to measure temporally variable infiltration rates during rainstorms

    USGS Publications Warehouse

    Moody, John A.; Ebel, Brian A.

    2012-01-01

    We developed a difference infiltrometer to measure time series of non-steady infiltration rates during rainstorms at the point scale. The infiltrometer uses two, tipping bucket rain gages. One gage measures rainfall onto, and the other measures runoff from, a small circular plot about 0.5-m in diameter. The small size allows the infiltration rate to be computed as the difference of the cumulative rainfall and cumulative runoff without having to route water through a large plot. Difference infiltrometers were deployed in an area burned by the 2010 Fourmile Canyon Fire near Boulder, Colorado, USA, and data were collected during the summer of 2011. The difference infiltrometer demonstrated the capability to capture different magnitudes of infiltration rates and temporal variability associated with convective (high intensity, short duration) and cyclonic (low intensity, long duration) rainstorms. Data from the difference infiltrometer were used to estimate saturated hydraulic conductivity of soil affected by the heat from a wildfire. The difference infiltrometer is portable and can be deployed in rugged, steep terrain and does not require the transport of water, as many rainfall simulators require, because it uses natural rainfall. It can be used to assess infiltration models, determine runoff coefficients, identify rainfall depth or rainfall intensity thresholds to initiate runoff, estimate parameters for infiltration models, and compare remediation treatments on disturbed landscapes. The difference infiltrometer can be linked with other types of soil monitoring equipment in long-term studies for detecting temporal and spatial variability at multiple time scales and in nested designs where it can be linked to hillslope and basin-scale runoff responses.

  7. From plot to regional scales: Effect of land use and soil type on soil erosion in the southern Amazon

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2015-04-01

    The corridor along the Brazilian Highway 163 in the Southern Amazon is affected by radical changes in land use patterns. In order to enable a model based assessment of erosion risks on different land use and soil types a transportable disc type rainfall simulator is applied to identify the most important infiltration and erosion parameters of the EROSION 3D model. Since particle detachment highly depends on experimental plot length, a combined runoff supply is used for the virtually extension of the plot length to more than 20 m. Simulations were conducted on the most common regional land use, soil management and soil types for dry and wet runs. The experiments are characterized by high final infiltration rates (0.3 - 2.5 mm*min^-1), low sediment concentrations (0.2-6.5 g*L^-1) and accordingly low soil loss rates (0.002-50 Kg*m^-2), strongly related to land use, applied management and soil type. Ploughed pastures and clear cuts reveal highest soil losses whereas croplands are less affected. Due to higher aggregate stabilities Ferrasols are less endangered than Acrisols. Derived model parameters are plausible, comparable to existing data bases and reproduce the effects of land use and soil management on soil loss. Thus it is possible to apply the EROSION 3D soil loss model in Southern Amazonia for erosion risk assessment and scenario simulation under changing climate and land use conditions.

  8. Modeling the roles of damage accumulation and mechanical healing on rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2014-05-01

    The abrupt release of rainfall-induced shallow landslides is preceded by local failures that may abruptly coalesce and form a continuous failure plane within a hillslope. The mechanical status of hillslopes reflects a competition between the extent of severity of accumulated local damage during prior rainfall events and the rates of mechanically healing (i.e. regaining of strength) by closure of micro-cracks, regrowth of roots, etc. The interplay of these processes affects the initial conditions for landslide modeling and shapes potential failure patterns during future rainfall events. We incorporated these competing mechanical processes in a hydro-mechanical landslide triggering model subjected to a sequence of rainfall scenarios. The model employs the Fiber Bundle Model (FBM) with bonds (fiber bundle) with prescribed threshold linking adjacent soil columns and soil to bedrock. Prior damage was represented by a fraction of broken fibers during previous rainfall events, and the healing of broken fibers was described by strength regaining models for soil and roots at different characteristic time scales. Results show that prior damage and healing introduce highly nonlinear response to landslide triggering. For small prior damage, mechanical bonds at soil-bedrock interface may fail early in next rainfall event but lead to small perturbations onto lateral bonds without triggering a landslide. For more severe damage weakening lateral bonds, excess load due to failure at soil-bedrock interface accumulates at downslope soil columns resulting in early soil failure with patterns strongly correlated with prior damage distribution. Increasing prior damage over the hillslope decreases the volume of first landslide and prolongs the time needed to trigger the second landslide due to mechanical relaxation of the system. The mechanical healing of fibers diminishes effects of prior damage on the time of failure, and shortens waiting time between the first and second landslides. These findings highlight the need to improve definition of initial conditions and the shortcomings of assuming pristine hillslopes.

  9. Verification and completion of a soil data base for process based erosion model applications in Mato Grosso/Brazil

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Schultze, Nico; Schönke, Daniela; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2014-05-01

    The study area of central Mato Grosso is subjected to severe soil erosion. Continuous erosion leads to massive losses of top soil and related organic carbon. Consequently agricultural soil soils suffer a drop in soil fertility which only can be balanced by mineral fertilization. In order to control soil degradation and organic carbon losses of Mato Grosso cropland soils a process based soil loss and deposition model is used. Applying the model it will be possible to: - identify the main areas affected by soil erosion or deposition in different scales under present and future climate and socio-economic conditions - estimate the related nutrient and organic carbon losses/yields - figure out site-related causes of soil mobilization/deposition - locate sediment and sediment related nutrient and organic matter pass over points into surface water bodies - estimate the impacts of climate and land use changes on the losses of top soil, sediment bound nutrients and organic carbon. Model input parameters include digital elevation data, precipitation characteristics and standard soil properties as particle size distribution, total organic carbon (TOC) and bulk density. The effects of different types of land use and agricultural management practices are accounted for by varying site-specific parameters predominantly related to soil surface properties such as erosional resistance, hydraulic roughness and percentage ground cover. In this context the existing EROSION 3D soil parameter data base deducted from large scale rainfall simulations in Germany is verified for application in the study area, using small scale disc type rainfall simulator with an additional runoff reflux approach. Thus it's possible to enlarge virtual plot length up to at least 10 m. Experimental plots are located in Cuiabá region of central Mato Grosso in order to cover the most relevant land use variants and tillage practices in the region. Results show that derived model parameters are highly influenced by soil management. This indicates a high importance of tillage impact on resistance to erosion, mulch cover and TOC. The measured parameter ranges can generally be confirmed by the existing data base, which only need to be completed due to changed phenological stages in Mato Grosso compared to German conditions.

  10. Rainfall Induced Landslides in Puerto Rico (Invited)

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Kamal, S.; Arnone, E.; Noto, V.; Shanahan, P.; Bras, R. L.

    2009-12-01

    Landslides are a major geologic hazard in the United States, typically triggered by rainfall, earthquakes, volcanoes and human activity. Rainfall-induced landslides are the most common type in the island of Puerto Rico, with one or two large events per year. We performed an island-wide determination of static landslide susceptibility and hazard assessment as well as dynamic modeling of rainfall-induced shallow landslides in a particular hydrologic basin. Based on statistical analysis of past landslides, we determined that reliable prediction of the susceptibility to landslides is strongly dependent on the resolution of the digital elevation model (DEM) employed and the reliability of the rainfall data. A distributed hydrology model capable of simulating landslides, tRIBS-VEGGIE, has been implemented for the first time in a humid tropical environment like Puerto Rico. The Mameyes basin, located in the Luquillo Experimental Forest in Puerto Rico, was selected for modeling based on the availability of soil, vegetation, topographical, meteorological and historic landslide data. .Application of the model yields a temporal and spatial distribution of predicted rainfall-induced landslides, which is used to predict the dynamic susceptibility of the basin to landslides.

  11. Rainfall erosivity and sediment load over the Poyang Lake Basin under variable climate and human activities since the 1960s

    NASA Astrophysics Data System (ADS)

    Gu, Chaojun; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Sun, Wenyi; Yu, Qiang

    2018-03-01

    Accelerated soil erosion exerts adverse effects on water and soil resources. Rainfall erosivity reflects soil erosion potential driven by rainfall, which is essential for soil erosive risk assessment. This study investigated the spatiotemporal variation of rainfall erosivity and its impacts on sediment load over the largest freshwater lake basin of China (the Poyang Lake Basin, abbreviate to PYLB). The spatiotemporal variations of rainfall erosivity from 1961 to 2014 based on 57 meteorological stations were detected using the Mann-Kendall test, linear regression, and kriging interpolation method. The sequential t test analysis of regime shift (STARS) was employed to identify the abrupt changes of sediment load, and the modified double mass curve was used to assess the impacts of rainfall erosivity variability on sediment load. It was found that there was significant increase (P < 0.05) in rainfall erosivity in winter due to the significant increase in January over the last 54 years, whereas no trend in year and other seasons. Annual sediment load into the Poyang Lake (PYL) decreased significantly (P < 0.01) between 1961 and 2014, and the change-points were identified in both 1985 and 2003. It was found that take annual rainfall erosivity as the explanatory variables of the double mass curves is more reasonable than annual rainfall and erosive rainfall. The estimation via the modified double mass curve demonstrated that compared with the period before change-point (1961-1984), the changes of rainfall erosivity increased 8.0 and 2.1% of sediment load during 1985-2002 and 2003-2014, respectively. Human activities decreased 50.2 and 69.7% of sediment load during the last two periods, which indicated effects of human activities on sediment load change was much larger than that of rainfall erosivity variability in the PYLB.

  12. Thirty-one years of debris-flow observation and monitoring near La Honda, California, USA

    USGS Publications Warehouse

    Wieczorek, G.F.; Wilson, R.C.; Ellen, S.D.; Reid, M.E.; Jayko, A.S.

    2007-01-01

    From 1975 until 2006,18 intense storms triggered at least 248 debris flows within 10 km2 northwest of the town of La Honda within the Santa Cruz Mountains, California. In addition to mapping debris flows and other types of landslides, studies included soil sampling and geologic mapping, piezometric and tensiometer monitoring, and rainfall measurement and recording. From 1985 until 1995, a system with radio telemetered rain gages and piezometers within the La Honda region was used for issuing six debris-flow warnings within the San Francisco Bay region through the NOAA ALERT system. Depending upon the relative intensity of rainfall during storms, debris flows were generated from deep slumps, shallow slumps, shallow slides in colluvium and shallow slides over bedrock. Analysis shows the storms with abundant antecedent rainfall followed by several days of steady heavy intense rainfall triggered the most abundant debris flows. ?? 2007 millpress.

  13. Unexprected Changes in Soil Phosphorus Dynamics Following Tropical Deforestation to Cattle Pasture

    NASA Technical Reports Server (NTRS)

    Townsend, Alan R.; Asner, Gregory P.; Cleveland, Cory C.; Lefer, Margaret E.; Bustamante, Mercedes M. C.

    2001-01-01

    Phosphorus (P) is widely believed to limit plant growth and organic matter storage in a large fraction of the world's lowland tropical rainforests. We investigated how the most common land use change in such forests, conversion to cattle pasture, affects soil P fractions along forest to pasture chronosequences in the central Brazilian Amazon and in southwestern Costa Rica. Our sites represent a broad range in rainfall, soil type, management strategies, and total soil P (45.2 - 1228.0 microng P / g soil), yet we found some unexpected and at times strikingly similar changes in soil P in all sites. In the Brazilian sites, where rainfall is relatively low and pasture management is more intense than in the Costa Rican sites, significant losses in total soil P and soil organic carbon (SOC) were seen with pasture age on both fine-textured oxisol and highly sandy entisol soils. However, P losses were largely from occluded, inorganic soil P fractions, while organic forms of soil P remained constant or increased with pasture age, despite the declines in SOC. In Costa Rica, SOC remained constant across the oxisol sites and increased from forest to pasture on the mollisols, while total soil P increased with pasture age in both sequences. The increases in total soil P were largely due to changes in organic P; occluded soil P increased only slightly in the mollisols, and remained unchanged in the older oxisols. We suggest that changes in the composition and/or the primary limiting resources of the soil microbial community may drive the changes in organic P. We also present a new conceptual model for changes in soil P following deforestation to cattle pasture.

  14. Requirements for future development of small scale rainfall simulators

    NASA Astrophysics Data System (ADS)

    Iserloh, Thomas; Ries, Johannes B.; Seeger, Manuel

    2013-04-01

    Rainfall simulation with small scale simulators is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. Following the outcomes of the project "Comparability of simulation results of different rainfall simulators as input data for soil erosion modelling (Deutsche Forschungsgemeinschaft - DFG, Project No. Ri 835/6-1)" and the "International Rainfall Simulator Workshop 2011" in Trier, the necessity for further technical improvements of simulators and strategies towards an adaption of designs and methods becomes obvious. Uniform measurements of artificially generated rainfall and comparative measurements on a prepared bare fallow with rainfall simulators used by European research groups showed limitations of the comparability of the results. The following requirements, essential for small portable rainfall simulators, were identified: (I) Low and efficient water consumption for use in areas with water shortage, (II) easy handling and control of test conditions, (III) homogeneous spatial rainfall distribution, (IV) best possible drop spectrum (physically), (V) reproducibility and knowledge of spatial distribution and drop spectrum, (VI) easy and fast training of operators to obtain reproducible experiments and (VII) good mobility and easy installation for use in remote areas and in regions where highly erosive rainfall events are rare or irregular. The presentation discusses possibilities for a common use of identical plot designs, rainfall intensities and nozzles.

  15. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Long, Xiaoyong; Ji, Junfeng; Barrón, Vidal; Torrent, José

    2016-10-01

    Iron oxides are widely distributed across the surface of the Earth as a result of the aerobic weathering of primary Fe-bearing minerals. Pedogenic iron oxides which consist mainly of hematite (Hm), goethite (Gt), maghemite (Mgh), are often concentrated synchronously in aerobic soils under low to moderate rainfall regimes. Magnetic susceptibility (χ) and redness, which respectively reflect the content of Mgh and Hm in soils, are considered reasonable pedogenic and climatic indicators in soil taxonomy and paleorainfall reconstruction. However, under high rainfall regimes, the grain growth of Mgh and transformation to Hm, combined with the prior formation of Gt under conditions of high relative humidity (RH), can result in magnetic reduction and dramatic yellowing of soils and sediments, which explains the existence of rainfall thresholds for Mgh and Hm at a large scale even before the pedogenic environment turns anaerobic. In order to capture the rainfall thresholds for Mgh and Hm occurring under aerobic conditions, we explored a tropical transect across a granitic region where the soil color turned from red to yellow under a wide rainfall range of 900-2200 mm/yr and a corresponding mean annual RH range of 77%-85%. We observed a lower rainfall threshold of ∼1500 mm/yr and a corresponding RH ∼80% for Mgh and Hm along this transect, as well as a higher rainfall threshold of ∼1700 mm/yr and a corresponding RH of ∼81% for Gt and total pedogenic iron oxides (citrate/bicarbonate/dithionite-extractable Fe, Fed). Cross-referencing with comparable studies in temperate and subtropical regions, we noted that the rainfall or RH thresholds for Fed and Hm or Mgh likewise increase with temperature. Moreover, the different thresholds for total and individual iron oxide phase indicates that a negative correlation between chemical weathering intensity and redness or χ in sediment sequences can occur under the prevalent climate regime just between their thresholds. Finally, we developed an integrated model to interpret the sequential formation of rainfall thresholds for different pedogenic iron oxides in soils and sediments with conditions from aerobic to anaerobic.

  16. Insights into Meteoric 10Be Dynamics and Climate Stability along the Hawaiian Kohala Climosequence

    NASA Astrophysics Data System (ADS)

    Dixon, J. L.; Chadwick, O.

    2017-12-01

    We measure meteoric 10Be in soils across a well-studied climate gradient spanning Kohala, Hawaii to provide new understanding of the isotope behavior in soils and constraints on nuclide delivery rates to Earth's surface. Annual rainfall across the Kohala climogradient varies from 16 - 300 cm, with Hawaiian soils reflecting evolution over the past 150 ka, the nominal age of the volcanic parent material. We analyzed a sequence of nine soil profiles for meteoric 10Be and compared with previously measured data on soil chemistry and dust fluxes. In the Kohala system, soil inventories of 10Be span 40-300 x 109 atom/cm2 and generally increase linearly with rainfall, consistent with precipitation-driven fluxes and the high retention of 10Be in clay-rich soil horizons. However, nuclide inventories dramatically decrease for soils at rainfall >140 cm/y. The observed decrease corresponds with other strong changes in weathering intensity across the climate gradient, associated with previously studied and recognized pedogenic thresholds. These thresholds represent abrupt transitions in soil chemistry related to increased throughflow of soil solutions, decreases in base saturation and pH, and the destruction of phyllosilicates and replacement with amorphous oxyhydroxides. Meteoric-derived ages, based on 10Be-flux estimates and measured inventories are uniform for dry soils ( 60ka), but far less than the known substrate age (150ka), indicating that actual delivery rates are lower than predicted from current models in this region. Despite the offset in predicted and substrate ages, the consistency in pattern suggests that the rainfall gradient over the 150 thousand years of soil development has not deviated significantly from its present structure. Furthermore, based on clear 10Be losses in soils with high moisture availability, our results indicate meteoric 10Be may not be a robust tracer of soil age and movement in systems with high rainfall and weathering intensity and low soil pH. Our data provide new insights into how meteoric 10Be in soils reflects the complex competing controls of spatially variable meteoric delivery and soil weathering intensity.

  17. Effects of rainfall spatial variability and intermittency on shallow landslide triggering patterns at a catchment scale

    NASA Astrophysics Data System (ADS)

    von Ruette, J.; Lehmann, P.; Or, D.

    2014-10-01

    The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.

  18. Application of geotechnical and geophysical field measurements in an active alpine environment

    NASA Astrophysics Data System (ADS)

    Lucas, D. R.; Fankhauser, K.; Springman, S. M.

    2015-09-01

    Rainfall can trigger landslides, rockfalls and debris flow events. When rainfall infiltrates into the soil, the suction (if there is any) is reduced, until positive water pressure can be developed, decreasing the effective stresses and leading to a potential failure. A challenging site for the study of mass movement is the Meretschibach catchment, a location in the Swiss Alps in the vicinity of Agarn, Canton of Valais. To study the effect of rainfall on slope stabilities, the soil characterization provides valuable insight on soil properties, necessary to establish a realistic ground model. This model, together with an effective long term-field monitoring, deliver the essential information and boundary conditions for predicting and validating rainfall- induced slope instabilities using numerical and physical modelling. Geotechnical monitoring, including soil temperature and volumetric water content measurements, has been performed on the study site together with geophysical measurements (ERT) to study the effect of rainfall on the (potential) triggering of landslides on a scree slope composed of a surficial layer of gravelly soil. These techniques were combined to provide information on the soil characteristics and depth to the bedrock. Seasonal changes of precipitation and temperature were reflected in corresponding trends in all measurements. A comparison of volumetric water content records was obtained from decagons, time domain reflectometry (TDR) and electrical resistivity tomography (ERT) conducted throughout the spring and summer months of 2014, yielding a reasonable agreement.

  19. Impact of carbonaceous materials in soil on the transport of soil-bound PAHs during rainfall-runoff events.

    PubMed

    Luo, Xiaolin; Zheng, Yi; Wu, Bin; Lin, Zhongrong; Han, Feng; Zhang, Wei; Wang, Xuejun

    2013-11-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported from contaminated soils by surface runoff pose significant risk for aquatic ecosystems. Based on a rainfall-runoff simulation experiment, this study investigated the impact of carbonaceous materials (CMs) in soil, identified by organic petrology analysis, on the transport of soil-bound PAHs under rainfall conditions. The hypothesis that composition of soil organic matter significantly impacts the enrichment and transport of PAHs was proved. CMs in soil, varying significantly in content, mobility and adsorption capacity, act differently on the transport of PAHs. Anthropogenic CMs like black carbon (BC) largely control the transport, as PAHs may be preferentially attached to them. Eventually, this study led to a rethink of the traditional enrichment theory. An important implication is that CMs in soil have to be explicitly considered to appropriately model the nonpoint source pollution of PAHs (possibly other hydrophobic chemicals as well) and assess its environmental risk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar.

    PubMed

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Harchegani, Mahboobeh Kiani

    2016-01-15

    Many different amendments, stabilizers, and conditioners are usually applied for soil and water conservation. Biochar is a carbon-enriched substance produced by thermal decomposition of organic material in the absence of oxygen with the goal to be used as a soil amendment. Biochar can be produced from a wide range of biomass sources including straw, wood, manure, and other organic wastes. Biochar has been demonstrated to restore soil fertility and crop production under many conditions, but less is known about the effects of its application on soil erosion and runoff control. Therefore, a rainfall simulation study, as a pioneer research, was conducted to evaluate the performance of the application of vinasse-produced biochar on the soil erosion control of a sandy clay loam soil packed in small-sized runoff 0.25-m(2) plots with 3 replicates. The treatments were (i) no biochar (control), (ii) biochar (8 tha(-1)) application at 24h before the rainfall simulation and (iii) biochar (8 tha(-1)) application at 48 h before the rainfall simulation. Rainfall was applied at 50 mm h(-1) for 15 min. The mean change of effectiveness in time to runoff could be found in biochar application at 24 and 48 h before simulation treatment with rate of +55.10% and +71.73%, respectively. In addition, the mean runoff volume 24 and 48 h before simulation treatments decreased by 98.46% and 46.39%, respectively. The least soil loss (1.12 ± 0.57 g) and sediment concentration (1.44 ± 0.48 gl(-1)) occurred in the biochar-amended soil treated 48 h before the rainfall simulation. In conclusion, the application of vinasse-produced biochar could effectively control runoff and soil loss. This study provided a new insight into the effects of biochar on runoff, soil loss, and sediment control due to water erosion in sandy clay loam soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Rainfall simulation experiments in the southwestern USA using the Walnut Gulch Rainfall Simulator

    NASA Astrophysics Data System (ADS)

    Polyakov, Viktor; Stone, Jeffry; Holifield Collins, Chandra; Nearing, Mark A.; Paige, Ginger; Buono, Jared; Gomez-Pond, Rae-Landa

    2018-01-01

    This dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semiarid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30 % of the plots, simulations were conducted up to five times during the decade of study. The rainfall was generated using the Walnut Gulch Rainfall Simulator on 2 m by 6 m plots. Simulation sites included brush and grassland areas with various degrees of disturbance by grazing, wildfire, or brush removal. This dataset advances our understanding of basic hydrological and biological processes that drive soil erosion on arid rangelands. It can be used to estimate runoff, infiltration, and erosion rates at a variety of ecological sites in the Southwestern USA. The inclusion of wildfire and brush treatment locations combined with long-term observations makes it important for studying vegetation recovery, ecological transitions, and the effect of management. It is also a valuable resource for erosion model parameterization and validation. The dataset is available from the National Agricultural Library at https://data.nal.usda.gov/search/type/dataset (DOI: https://doi.org/10.15482/USDA.ADC/1358583).

  2. Using the raindrop size distribution to quantify the soil detachment rate at the laboratory scale

    NASA Astrophysics Data System (ADS)

    Jomaa, S.; Jaffrain, J.; Barry, D. A.; Berne, A.; Sander, G. C.

    2010-05-01

    Rainfall simulators are beneficial tools for studying soil erosion processes and sediment transport for different circumstances and scales. They are useful to better understand soil erosion mechanisms and, therefore, to develop and validate process-based erosion models. Simulators permit experimental replicates for both simple and complex configurations. The 2 m × 6 m EPFL erosion flume is equipped with a hydraulic slope control and a sprinkling system located on oscillating bars 3 m above the surface. It provides a near-uniform spatial rainfall distribution. The intensity of the precipitation can be adjusted by changing the oscillation interval. The flume is filled to a depth of 0.32 m with an agricultural loamy soil. Raindrop detachment is an important process in interrill erosion, the latter varying with the soil properties as well as the raindrop size distribution and drop velocity. Since the soil detachment varies with the kinetic energy of raindrops, an accurate characterization of drop size distribution (DSD, measured, e.g., using a laser disdrometer) can potentially support erosion calculations. Here, a laser disdrometer was used at different rainfall intensities in the EPFL flume to quantify the rainfall event in terms of number of drops, diameter and velocity. At the same time, soil particle motion was measured locally using splash cups. These cups measured the detached material rates into upslope and downslope compartments. In contrast to previously reported splash cup experiments, the cups used in this study were equipped at the top with upside-down funnels, the upper part having the same diameter as the soil sampled at the bottom. This ensured that the soil detached and captured by the device was not re-exposed to rainfall. The experimental data were used to quantify the relationship between the raindrop distribution and the splash-driven sediment transport.

  3. Modelling evapotranspiration during precipitation deficits: Identifying critical processes in a land surface model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukkola, Anna M.; Pitman, Andy J.; Decker, Mark

    Surface fluxes from land surface models (LSMs) have traditionally been evaluated against monthly, seasonal or annual mean states. The limited ability of LSMs to reproduce observed evaporative fluxes under water-stressed conditions has been previously noted, but very few studies have systematically evaluated these models during rainfall deficits. We evaluated latent heat fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLE) LSM across 20 flux tower sites at sub-annual to inter-annual timescales, in particular focusing on model performance during seasonal-scale rainfall deficits. The importance of key model processes in capturing the latent heat flux was explored by employing alternative representations of hydrology, leafmore » area index, soil properties and stomatal conductance. We found that the representation of hydrological processes was critical for capturing observed declines in latent heat during rainfall deficits. By contrast, the effects of soil properties, LAI and stomatal conductance were highly site-specific. Whilst the standard model performs reasonably well at annual scales as measured by common metrics, it grossly underestimates latent heat during rainfall deficits. A new version of CABLE, with a more physically consistent representation of hydrology, captures the variation in the latent heat flux during seasonal-scale rainfall deficits better than earlier versions, but remaining biases point to future research needs. Lastly, our results highlight the importance of evaluating LSMs under water-stressed conditions and across multiple plant functional types and climate regimes.« less

  4. Modelling evapotranspiration during precipitation deficits: Identifying critical processes in a land surface model

    DOE PAGES

    Ukkola, Anna M.; Pitman, Andy J.; Decker, Mark; ...

    2016-06-21

    Surface fluxes from land surface models (LSMs) have traditionally been evaluated against monthly, seasonal or annual mean states. The limited ability of LSMs to reproduce observed evaporative fluxes under water-stressed conditions has been previously noted, but very few studies have systematically evaluated these models during rainfall deficits. We evaluated latent heat fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLE) LSM across 20 flux tower sites at sub-annual to inter-annual timescales, in particular focusing on model performance during seasonal-scale rainfall deficits. The importance of key model processes in capturing the latent heat flux was explored by employing alternative representations of hydrology, leafmore » area index, soil properties and stomatal conductance. We found that the representation of hydrological processes was critical for capturing observed declines in latent heat during rainfall deficits. By contrast, the effects of soil properties, LAI and stomatal conductance were highly site-specific. Whilst the standard model performs reasonably well at annual scales as measured by common metrics, it grossly underestimates latent heat during rainfall deficits. A new version of CABLE, with a more physically consistent representation of hydrology, captures the variation in the latent heat flux during seasonal-scale rainfall deficits better than earlier versions, but remaining biases point to future research needs. Lastly, our results highlight the importance of evaluating LSMs under water-stressed conditions and across multiple plant functional types and climate regimes.« less

  5. The application of GEOtop for catchment scale hydrology in Ireland

    NASA Astrophysics Data System (ADS)

    Lewis, C.; Xu, X.; Albertson, J.; Kiely, G.

    2009-04-01

    GEOtop represents the new generation of distributed hydrological model driven by geospatial data (e.g. topography, soils, vegetation, land cover). It estimates rainfall-runoff, evapotranspiration and provides spatially distributed outputs as well as routing water and sediment flows through stream and river networks. The original version of GEOtop designed in Italy, includes a rigorous treatment of the core hydrological processes (e.g. unsaturated and saturated flow and transport, surface energy balances, and streamflow generation/routing). Recently GEOtop was extended to include treatment of shallow landslides. The GEOtop model is built on an open-source programming framework, which makes it well suited for adaptation and extension. GEOtop has been run very successfully in a number of alpine catchments (such as Brenta) but has not been used on Irish catchments before. The cell size used for the spatially distributed inputs varies from catchment to catchment. In smaller catchments (less than 2000ha) 50 by 50m cells have been used and 200 by 200 for larger catchments. Smaller cell sizes have been found to significantly increase the computational time so a larger cell size is used providing it does not significantly affect the performance of the model. Digital elevation model, drainage direction, landuse and soil type maps are the minimum spatial requirements with precipitation, radiation, temperature, atmospheric pressure and wind speed been the minimum meteorological requirements for a successful run. The soil type maps must also contain information regarding texture and hydraulic conductivity. The first trial of GEOtop in Ireland was on a small 1524 ha catchment in the south of Ireland. The catchment ranges from 50 to just over 200m, the land use is predominately agricultural grassland and it receives on average 1400mm of rain per year. Within this catchment there is a meteorological tower which provides the meteorological inputs, soil moisture is also recorded at this location. GEOtop was run from the end of April 2006 to December 2007. A comparison of measured and simulated values of soil moisture showed some good results and proved that the model could be successfully be used in Ireland. Following initial success in modelling soil moisture in a small catchment GEOtop was then used in the much larger 115,000 ha Blackwater catchment. The variation of soil type within the catchment was obtained from a national soils database while Landuse data was obtained from the national Corrine Land use database. Hydraulic properties were estimated by carrying out on site infiltration experiments. As GEOtop can accept multiple rainfall inputs and it was known that the rainfall varies substantially within in the catchment it was decided to make use of a rainfall study on the Blackwater catchment. A total of 21 rain gauges were deployed around the catchment for year 2006. The data from these 21 rain gauges were then added to the inputs which GEOtop interpolated the rainfall using the kriging method. Continuous flow is recorded at the outlet of the Blackwater catchment and as GEOtop simulates stream flows we were able to see how well GEOtop modelled the hydrology of the catchment. Comparisons of simulated versus real flow showed that GEOtop was providing us with satisfactory results. Once we were satisfied that GEOtop was successfully modelling the catchment we were able to see the effects of varying rain fall and land use on many different hydraulic parameters such stream flow, soil suction potential, soil moisture content etc. When this process has been carried out for other parts of the country it is planned to use GEOtop study potential threats to soil quality such as erosion, surface sealing, compaction, landslides and loss of organic matter. New modules will be develop for GEOtop to help understand and quantify these threats. The model will also be used to help understand the interactions between soil hydrology, land use and climate change (with climate projections from the IPCC fourth assessment). These outputs will be combined with Irish geo-spatial data to develop a GIS-based risk assessment tool to predict impacts on soil quality based on hydrology, land use and climate change.

  6. Radar Detected Rainfall Intensity As An Input For Shallow Landslides Slope Stability Model

    NASA Astrophysics Data System (ADS)

    Leoni, L.; Rossi, G.; Catani, F.; Righini, G.; Rudari, R.

    2008-12-01

    The term "shallow landslides" is widely used in literature to describe a slope movement of limited size that mainly develops in soils up to a maximum of a few meters. Shallow landslides are usually triggered by heavy rainfall because, as the water starts to infiltrate in the soil, the pore-water pressure increases so that the shear strength of the soil is reduced leading to slope failure. For this work we have developed a distributed hydrological-geotechnical model for the forecasting of the temporal and spatial distribution of shallow landslide to be used as a warning system for civil protection purpose. The main goal of this work is the use of radar detected rainfall intensity as the input for the hydrological simulation of the infiltration. Using the rainfall pattern detected by the radar is in fact possible to dynamically control the redistribution of groundwater pressure associated with transient infiltration of rain so as to infer the slope stability of the studied area. The model deals with both saturated and unsaturated conditions. Two pilot sites have been chosen to develop and test this model: the Armea basin (Liguria, Italy) and the Ischia Island (Campania, Italy). In recent years several severe rainstorms have occurred in both these areas. In at least two cases these have triggered numerous shallow landslides that have caused victims and damaged roads, buildings and agricultural activities. In its current stage the basic basin-scale model applied for predicting the probable location of shallow landslides involves several stand-alone components. A module for estimating the groundwater pressure head distribution according to radar detected rainfall intensity, a soil depth prediction scheme and a limit-equilibrium infinite slope stability algorithm which produces a factor of safety (FS). The additional ancillary data required have been collected during the field work. The single components are seamlessly integrated into a system that automatically publishes constantly updated FS values to a WebGIS in near-real- time so that local administrators responsible for public safety can access and download the data from the internet. This system has been running for a few months and is now being validated. Several types of problems hinder a correct validation of the system. One major obstacle was overcome when major storms triggered several tens of soil slips in December 2006 for the Armea basin and in April 2006 for Ischia. This events provided both the necessary rainfall data for the soil saturation component, which until then for previous occurred landslides was lacking, and a new landslide inventory for comparison with the FS produced by the slope stability model for the same event. The inventory was derived from a newly acquired VHR satellite image. Another important aspect of the research being performed regards the assessment of the relative importance of the different parameters involved in the limit-equilibrium infinite slope stability model. This statistical sensitivity analysis has the aim of determining which errors in the input variables slope gradient, soil depth, soil saturation, cohesion and angle of internal friction produce the largest errors in the output FS values. Preliminary results indicate the importance of topographic attributes and of soil depth.

  7. Modifications to the Soil-Vegetation-Atmosphere Continuum by Hedgerows - Observations from a field site in Northern England

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian

    2016-04-01

    UK farming practices have changed significantly over the past 100 years. This is evident in arable fields, where the use of larger machinery has led to the removal of hedgerows. In the River Skell catchment, in Yorkshire, UK this has led to a doubling in field size since 1892. The national-wide change is responsible for longer slope lengths, increased runoff velocities and greater potential for connectivity, which may be responsible for an increase in flood risk at the catchment scale. However there is a lack of physical evidence to support this theory. Hedgerows are a widespread, man-made boundary feature in the rural UK landscape. They play an important ecological role in providing shelter, changing the local climate, reducing erosion and have a strong influence on local soil properties. Their impact on hydrology has not been widely studied but it is hypothesised that their presence could alter soil moisture levels and the soil structure, therefore affecting runoff. This paper presents observations of a hedgerow on the Soil-Vegetation-Atmosphere Continuum, through 15 months field monitoring conducted in the River Skell catchment. Firstly, to assess soil moisture levels TDR probes were installed at different depths and distances from the hedgerow. To assess the soil quality and therefore its infiltration capacity, soil cores were collected to determine soil horizons and root density. Also, laboratory tests were undertaken to determine the soil type and the porosity. Secondly, to assess the physical impact of the hedgerow plant on the partitioning of rainfall, gauges were installed to capture the spatial distribution of rainfall, along a transect perpendicular to the hedgerow, as well as stemflow. Throughfall gauges were also installed within the hedgerow and leaf area index calculated. Thirdly, to assess the impact of the hedgerow on the micro-climate, temperature sensors and four leaf wetness sensors were installed to determine evapotranspiration and interception rates. Results from the TDR probes show that soil moisture levels next to the hedgerow rise earlier and fall quicker, than the probes further from the hedgerow, where levels rise gradually and fall slowly. Higher soil porosity (5-15%) next to the hedgerow, compared to 1-10m away from the hedgerow and roots extending 1m horizontally from the structure help the soil to drain better. Throughfall experiments along the hedgerow length showed large variations in leaf area index (4.5-0.8) correlating with 33-94% total rainfall capture. Results from the leaf wetness sensors show that the interception of rainfall occurs 10-30 minutes later on leaves inside the hedgerow, in comparison to leaves on the perimeter and that leaves dry much quicker (2-3 hours) inside the hedgerow.

  8. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan

    2017-04-01

    Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.

  9. A hydro-mechanical framework for early warning of rainfall-induced landslides (Invited)

    NASA Astrophysics Data System (ADS)

    Godt, J.; Lu, N.; Baum, R. L.

    2013-12-01

    Landslide early warning requires an estimate of the location, timing, and magnitude of initial movement, and the change in volume and momentum of material as it travels down a slope or channel. In many locations advance assessment of landslide location, volume, and momentum is possible, but prediction of landslide timing entails understanding the evolution of rainfall and soil-water conditions, and consequent effects on slope stability in real time. Existing schemes for landslide prediction generally rely on empirical relations between landslide occurrence and rainfall amount and duration, however, these relations do not account for temporally variable rainfall nor the variably saturated processes that control the hydro-mechanical response of hillside materials to rainfall. Although limited by the resolution and accuracy of rainfall forecasts and now-casts in complex terrain and by the inherent difficulty in adequately characterizing subsurface materials, physics-based models provide a general means to quantitatively link rainfall and landslide occurrence. To obtain quantitative estimates of landslide potential from physics-based models using observed or forecasted rainfall requires explicit consideration of the changes in effective stress that result from changes in soil moisture and pore-water pressures. The physics that control soil-water conditions are transient, nonlinear, hysteretic, and dependent on material composition and history. In order to examine the physical processes that control infiltration and effective stress in variably saturated materials, we present field and laboratory results describing intrinsic relations among soil water and mechanical properties of hillside materials. At the REV (representative elementary volume) scale, the interaction between pore fluids and solid grains can be effectively described by the relation between soil suction, soil water content, hydraulic conductivity, and suction stress. We show that these relations can be obtained independently from outflow, shear strength, and deformation tests for a wide range of earth materials. We then compare laboratory results with measurements of pore pressure and moisture content from landslide-prone settings and demonstrate that laboratory results obtained for hillside materials are representative of field conditions. These fundamental relations provide a basis to combine observed or forecasted rainfall with in-situ measurements of soil water conditions using hydro-mechanical models that simulate transient variably saturated flow and slope stability. We conclude that early warning using an approach in which in-situ observations are used to establish initial conditions for hydro-mechanical models is feasible in areas of high landslide risk where laboratory characterization of materials is practical and accurate rainfall information can be obtained. Analogous to weather and climate forecasting, such models could then be applied in an ensemble fashion to obtain quantitative estimates of landslide probability and error. Application to broader regions likely awaits breakthroughs in the development of remotely sensed proxies of soil properties and subsurface moisture conditions.

  10. Transpiration Response and Growth in Pearl Millet Parental Lines and Hybrids Bred for Contrasting Rainfall Environments

    PubMed Central

    Medina, Susan; Gupta, S. K.; Vadez, Vincent

    2017-01-01

    Under conditions of high vapor pressure deficit (VPD) and soil drying, restricting transpiration is an important avenue to gain efficiency in water use. The question we raise in this article is whether breeding for agro-ecological environments that differ for the rainfall have selected for traits that control plant water use. These are measured in pearl millet materials bred for zones varying in rainfall (8 combinations of parent and F1-hybrids, 18 F1-hybrids and then 40 F1-hybrids). In all cases, we found an agro-ecological variation in the slope of the transpiration response to increasing VPD, and parental line variation in the transpiration response to soil drying within hybrids/parent combinations. The hybrids adapted to lower rainfall had higher transpiration response curves than those from the highest rainfall zones, but showed no variation in how transpiration responded to soil drying. The genotypes bred for lower rainfall zones showed lower leaf area, dry matter, thicker leaves, root development, and exudation, than the ones bred for high rainfall zone when grown in the low VPD environment of the greenhouse, but there was no difference in their root length neither on the root/shoot index in these genotypes. By contrast, when grown under high VPD conditions outdoors, the lower rainfall hybrids had the highest leaf, tiller, and biomass development. Finally, under soil drying the genotypes from the lower rainfall accumulated less biomass than the ones from higher rainfall zone, and so did the parental lines compared to the hybrids. These differences in the transpiration response and growth clearly showed that breeding for different agro-ecological zones also bred for different genotype strategies in relation to traits related to plant water use. Highlights: • Variation in transpiration response reflected breeding for agro-ecological zones • Different growth strategies depended on the environmental conditions • Different ideotypes reflected rainfall levels in specific agro-ecological zones PMID:29163578

  11. Transpiration Response and Growth in Pearl Millet Parental Lines and Hybrids Bred for Contrasting Rainfall Environments.

    PubMed

    Medina, Susan; Gupta, S K; Vadez, Vincent

    2017-01-01

    Under conditions of high vapor pressure deficit (VPD) and soil drying, restricting transpiration is an important avenue to gain efficiency in water use. The question we raise in this article is whether breeding for agro-ecological environments that differ for the rainfall have selected for traits that control plant water use. These are measured in pearl millet materials bred for zones varying in rainfall (8 combinations of parent and F 1 -hybrids, 18 F 1 -hybrids and then 40 F 1 -hybrids). In all cases, we found an agro-ecological variation in the slope of the transpiration response to increasing VPD, and parental line variation in the transpiration response to soil drying within hybrids/parent combinations. The hybrids adapted to lower rainfall had higher transpiration response curves than those from the highest rainfall zones, but showed no variation in how transpiration responded to soil drying. The genotypes bred for lower rainfall zones showed lower leaf area, dry matter, thicker leaves, root development, and exudation, than the ones bred for high rainfall zone when grown in the low VPD environment of the greenhouse, but there was no difference in their root length neither on the root/shoot index in these genotypes. By contrast, when grown under high VPD conditions outdoors, the lower rainfall hybrids had the highest leaf, tiller, and biomass development. Finally, under soil drying the genotypes from the lower rainfall accumulated less biomass than the ones from higher rainfall zone, and so did the parental lines compared to the hybrids. These differences in the transpiration response and growth clearly showed that breeding for different agro-ecological zones also bred for different genotype strategies in relation to traits related to plant water use. Highlights : • Variation in transpiration response reflected breeding for agro-ecological zones • Different growth strategies depended on the environmental conditions • Different ideotypes reflected rainfall levels in specific agro-ecological zones.

  12. Estimating soil moisture exceedance probability from antecedent rainfall

    NASA Astrophysics Data System (ADS)

    Cronkite-Ratcliff, C.; Kalansky, J.; Stock, J. D.; Collins, B. D.

    2016-12-01

    The first storms of the rainy season in coastal California, USA, add moisture to soils but rarely trigger landslides. Previous workers proposed that antecedent rainfall, the cumulative seasonal rain from October 1 onwards, had to exceed specific amounts in order to trigger landsliding. Recent monitoring of soil moisture upslope of historic landslides in the San Francisco Bay Area shows that storms can cause positive pressure heads once soil moisture values exceed a threshold of volumetric water content (VWC). We propose that antecedent rainfall could be used to estimate the probability that VWC exceeds this threshold. A major challenge to estimating the probability of exceedance is that rain gauge records are frequently incomplete. We developed a stochastic model to impute (infill) missing hourly precipitation data. This model uses nearest neighbor-based conditional resampling of the gauge record using data from nearby rain gauges. Using co-located VWC measurements, imputed data can be used to estimate the probability that VWC exceeds a specific threshold for a given antecedent rainfall. The stochastic imputation model can also provide an estimate of uncertainty in the exceedance probability curve. Here we demonstrate the method using soil moisture and precipitation data from several sites located throughout Northern California. Results show a significant variability between sites in the sensitivity of VWC exceedance probability to antecedent rainfall.

  13. Physically-based quantitative analysis of soil erosion induced by heavy rainfall on steep slopes

    NASA Astrophysics Data System (ADS)

    Della Sala, Maria; Cuomo, Sabatino; Novità, Antonio

    2014-05-01

    Heavy rainstorms cause either shallow landslides or soil superficial erosion in steep hillslopes covered by coarse unsaturated soils (Cascini et al., 2013), even over large areas (Cuomo and Della Sala, 2013a). The triggering stage of both phenomena is related to ground infiltration, runoff and overland flow (Cuomo and Della Sala, 2013), which are key processes to be investigated. In addition, the mobilization of solid particles deserves a proper physical-based modeling whether a quantitative estimation of solid particles discharge at the outlet of mountain basin is required. In this work, the approaches for soil superficial erosion analysis are firstly reviewed; then, a relevant case study of two medium-sized mountain basins, affected by flow-like phenomena with huge consequences (Cascini et al., 2009) is presented, which motivates a parametric numerical analysis with a physically-based model carried out for a wide class of soil properties and rainfall scenarios (Cuomo et al., 2013b). The achieved results outline that the peak discharge of water and solid particles driven by overland flow depends on rainfall intensity while volumetric solid concentration within the washout is related to the morphometric features of the whole mountain basin. Furthermore, soil suction is outlined as a key factor for the spatial-temporal evolution of infiltration and runoff in the basin, also affecting the discharge of water and solid particles at the outlet of the basin. Based on these insights, selected cases are analyzed aimed to provide a wide class of possible slope erosion scenarios. It is shown that, provided the same amount of cumulated rainfall, the sequence of high and low intensity rainfall events strongly affects the time-discharge at the outlet of the basin without significant variations of the maximum volumetric solid concentration. References Cascini, L., Cuomo, S., Ferlisi, S., Sorbino, G. (2009). Detection of mechanisms for destructive landslides in Campania region-southern Italy. Proc. of the first Italian Workshop on Landslides, 8-10 June 2009 Naples, Italy, vol 1. Studio Editoriale Doppiavoce, Naples, pp 43-51. Cascini, L., Sorbino, G., Cuomo, S., Ferlisi, S. (2013). Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern Italy). Landslides, 1-14, DOI: 10.1007/s10346-013-0395-3. Cuomo S., Della Sala M. (2013a). Spatially distributed analysis of shallow landslides and soil erosion induced by rainfall. (submitted to Natural Hazards). Cuomo, S., Della Sala, M. (2013b). Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow soil deposits. Engineering Geology. 162, 118-127. Cuomo, S., Della Sala, M., Novità A. (2013). Physically-based modeling of soil erosion induced by rainfall on steep slopes. (submitted to Geomorphology).

  14. Rainfall and sheet power model for interrill erosion in steep slope

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun

    2015-04-01

    The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).

  15. Influence of biochar and terra preta substrates on wettability and erodibility of soils

    NASA Astrophysics Data System (ADS)

    Smetanova, A.; Dotterweich, M.; Diehl, D.; Ulrich, U.; Fohrer, N.

    2012-04-01

    Biochar (BC) and terra preta substrates (TPS) have recently been promoted as soil amendments suitable for soil stabilization, soil amelioration and long-term carbon sequestration. BC is a carbon-enriched substance produced by thermal decomposition of organic material. TPS is composed of liquid and solid organic matter, including BC, altered by acid-lactic fermentation. Their effect on wettability, soil erodibility and nutrient discharge through overland flow was studied by laboratory experiments. At water contents between 0 and 100% BC is water repellent, while TPS changes from a wettable into a repellent state. The 5 and 10 vol % mixtures of BC and 10 and 20 vol% mixtures of TPS with sand remain mainly wettable during drying but repellency maxima are shifted to higher water contents with respect to pure sand and are mainly of subcritical nature. The runoff response was dominated by infiltration properties of the substrates rather than their wettability.Only one mixtures (20% TPS) produced more runoff than sandy-loamy soil on a 15% slope at an intensity of 25 mm•h-1. The 10% BC decreased runoff by up to 40%. At higher rainfall intensities (45 and 55 mm•h-1) the 10% TPS7 was up to 35% less erodible than 10% BC. Despite the TPS containing more nutrients, nutrient discharge varied between types of nutrients, slopes, rainfall intensities and mixtures. The application of a 1 cm layer onto the soil surface instead of 10% mixtures is not recommended due to high nutrient concentrations in the runoff and the wettability of pure substrates. The usage of 10% BC in lowland areas with low frequency and low-intensity precipitation and 10% TPS7 in areas with higher rainfall intensities appears to be appropriate and commendable according to current results. However, together with reversibility of repellency, it needs to undergo further examination in the field under different environmental and land use conditions Key words: biochar, terra preta substrate, wettability, erodibility, nutrient discharge

  16. Comparison of rainfall and stemflow peak intensities and infiltration patterns for a mature coastal forest in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    van Meerveld, Ilja; Spencer, Sheena

    2017-04-01

    Most studies on stemflow have focused on the amount of stemflow in different forests or for different rainfall events. So far, few studies have looked at how stemflow intensity varies during rainfall events and how peak stemflow intensities compare to peak rainfall intensities. High stemflow intensities at the base of the tree, where roots and other preferential flow pathways are prevalent, may lead to faster and deeper infiltration of stemflow than rainfall and thus affect soil moisture dynamics and potentially also subsurface stormflow generation. We measured stemflow intensities for three Western hemlock, two Western red cedar, two Douglas-fir and one Birch tree in a mature coniferous forest in coastal British Columbia to determine how stemflow intensities were related to rainfall intensity. We sprayed a blue dye tracer on two Western hemlock trees (29 and 52 cm diameter at breast height (DBH)) to determine how stemflow water flows through the soil and to what depth it infiltrates. We also applied the blue dye tracer to an area between the trees to compare infiltration of stemflow with rainfall. Stemflow increased linearly with event total precipitation for all trees. The larger trees almost exclusively had funneling ratios (i.e. the volume of stemflow per unit basal area divided by the rainfall) smaller than one, regardless of species and event size. The funneling ratios for the small trees were generally larger for larger events (up to a funneling ratio of 20) but there was considerable scatter in this relation. Trees with a DBH <35 cm, which represent 24% of the total basal area of the study site, contributed 72% of the estimated total stemflow amount. Stemflow intensities (volume of stemflow per unit basal area per hour) often increased in a stepwise manner. When there were two precipitation bursts, stemflow intensity was usually highest during the second precipitation burst. However, when there were several hours of very low rainfall intensity between consecutive precipitation bursts, stemflow intensity was lower during the first burst after the break in rainfall. Peak stemflow intensities were higher than the maximum precipitation intensity. The blue dye that was applied to the tree stems was found more frequently at depth than near the soil surface. Stemflow flowed primarily through the 10 cm organic rich upper layer of the soil around the tree before flowing between or along live and dead roots, inside dead roots, around rocks and boulders deeper into the soil. Lateral flow was observed above a dense clay layer but where roots were able to penetrate the clay layer, the infiltrating water flowed deeper into the soil and (almost) reached the soil-bedrock interface. Stemflow appeared to infiltrate deeper (122 cm) than rainfall (85 cm) but this difference was in part due to variations in maximum soil depth. These results suggest that even though stemflow is only a minor component of the water balance, the double funnelling of stemflow may significantly affect soil moisture, recharge and runoff generation.

  17. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions

    USDA-ARS?s Scientific Manuscript database

    Rainfall erosivity is the power of rainfall to cause soil erosion by water. The rainfall erosivity index for a rainfall event, EI30, is calculated from the total kinetic energy and maximum 30 minute intensity of individual events. However, these data are often unavailable in many areas of the worl...

  18. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Treesearch

    Eric A. Dubinsky; Whendee L. Silver; Mary K. Firestone

    2010-01-01

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500–5000 mm/yr) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally...

  19. The Effect of Land Use on Soil Erosion in the Guadiana Watershed in Puerto Rico

    Treesearch

    TANIA DEL MAR LÓPEZ; T. MITCHELL AIDE; SCATENA F. N.

    1998-01-01

    The Revised Universal Soil Loss Equation (RUSLE) was used in conjunction with a Geographic Information System to determine the influence of land use and other environmental factors on soil erosion in the Guadiana watershed in Puerto Rico. Mean annual erosion, suspended sediment discharge, and the rainfall-erosion factor of the RUSLE increased with annual rainfall....

  20. Rainfall Threshold for Flash Flood Early Warning Based on Rational Equation: A Case Study of Zuojiao Watershed in Yunnan Province

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wang, Y. L.; Li, H. C.; Zhang, M.; Li, C. Z.; Chen, X.

    2017-12-01

    Rainfall threshold plays an important role in flash flood warning. A simple and easy method, using Rational Equation to calculate rainfall threshold, was proposed in this study. The critical rainfall equation was deduced from the Rational Equation. On the basis of the Manning equation and the results of Chinese Flash Flood Survey and Evaluation (CFFSE) Project, the critical flow was obtained, and the net rainfall was calculated. Three aspects of the rainfall losses, i.e. depression storage, vegetation interception, and soil infiltration were considered. The critical rainfall was the sum of the net rainfall and the rainfall losses. Rainfall threshold was estimated after considering the watershed soil moisture using the critical rainfall. In order to demonstrate this method, Zuojiao watershed in Yunnan Province was chosen as study area. The results showed the rainfall thresholds calculated by the Rational Equation method were approximated to the rainfall thresholds obtained from CFFSE, and were in accordance with the observed rainfall during flash flood events. Thus the calculated results are reasonable and the method is effective. This study provided a quick and convenient way to calculated rainfall threshold of flash flood warning for the grass root staffs and offered technical support for estimating rainfall threshold.

  1. Prediction of sedimentation using integration of RS, RUSLE model and GIS in Cameron Highlands, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Ghani, A. H. A.; Lihan, T.; Rahim, S. A.; Musthapha, M. A.; Idris, W. M. R.; Rahman, Z. A.

    2013-11-01

    Soil erosion and sediment yield are strongly affected by land use change. Spatially distributed erosion models are of great interest to predict soil erosion loss and sediment yield. Hence, the objective of this study was to determine sediment yield using Revised Universal Soil Loss Equation (RUSLE) model in Geographical Information System (GIS) environment at Cameron Highlands, Pahang, Malaysia. Sediment yield at the study area was determined using RUSLE model in GIS environment The RUSLE factors were computed by utilizing information on rainfall erosivity (R) using interpolation of rainfall data, soil erodibility (K) using soil map and field measurement, vegetation cover (C) using satellite images, length and steepness (LS) using contour map and conservation practices using satellite images based on land use/land cover. Field observations were also done to verify the predicted sediment yield. The results indicated that the rate of sediment yield in the study area ranged from very low to extremely high. The higher SY value can be found at middle and lower catchments of Cameron Highland. Meanwhile, the lower SY value can be found at the north part of the study area. Sediment yield value turned out to be higher close to the river due to the topographic characteristic, vegetation type and density, climate and land use within the drainage basin.

  2. Aspect-dependent soil saturation and insight into debris-flow initiation during extreme rainfall in the Colorado Front Range

    USGS Publications Warehouse

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2015-01-01

    Hydrologic processes during extreme rainfall events are poorly characterized because of the rarity of measurements. Improved understanding of hydrologic controls on natural hazards is needed because of the potential for substantial risk during extreme precipitation events. We present field measurements of the degree of soil saturation and estimates of available soil-water storage during the September 2013 Colorado extreme rainfall event at burned (wildfire in 2010) and unburned hillslopes with north- and south-facing slope aspects. Soil saturation was more strongly correlated with slope aspect than with recent fire history; south-facing hillslopes became fully saturated while north-facing hillslopes did not. Our results suggest multiple explanations for why aspect-dependent hydrologic controls favor saturation development on south-facing slopes, causing reductions in effective stress and triggering of slope failures during extreme rainfall. Aspect-dependent hydrologic behavior may result from (1) a larger gravel and stone fraction, and hence lower soil-water storage capacity, on south-facing slopes, and (2) lower weathered-bedrock permeability on south-facing slopes, because of lower tree density and associated deep roots penetrating bedrock as well as less intense weathering, inhibiting soil drainage.

  3. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.

  4. [Infiltration characteristics of soil water on loess slope land under intermittent and repetitive rainfall conditions].

    PubMed

    Li, Yi; Shao, Ming-An

    2008-07-01

    Based on the experiments of controlled intermittent and repetitive rainfall on slope land, the infiltration and distribution characteristics of soil water on loess slope land were studied. The results showed that under the condition of intermittent rainfall, the cumulative runoff during two rainfall events increased linearly with time, and the wetting front also increased with time. In the interval of the two rainfall events, the wetting front increased slowly, and the infiltration rate was smaller on steeper slope than on flat surface. During the second rainfall event, there was an obvious decreasing trend of infiltration rate with time. The cumulative infiltration on 15 degrees slope land was larger than that of 25 degrees slope land, being 178 mm and 88 mm, respectively. Under the condition of repetitive rainfall, the initial infiltration rate during each rainfall event was relatively large, and during the first rainfall, both the infiltration rate and the cumulative infiltration at various stages were larger than those during the other three rainfall events. However, after the first rainfall, there were no obvious differences in the infiltration rate among the next three rainfall events. The more the rainfall event, the deeper the wetting front advanced.

  5. Methodology for application of field rainfall simulator to revise c-factor database for conditions of the Czech Republic

    NASA Astrophysics Data System (ADS)

    Neumann, Martin; Dostál, Tomáš; Krása, Josef; Kavka, Petr; Davidová, Tereza; Brant, Václav; Kroulík, Milan; Mistr, Martin; Novotný, Ivan

    2016-04-01

    The presentation will introduce a methodology of determination of crop and cover management factor (C-faktor) for the universal soil loss equation (USLE) using field rainfall simulator. The aim of the project is to determine the C-factor value for the different phenophases of the main crops of the central-european region, while also taking into account the different agrotechnical methods. By using the field rainfall simulator, it is possible to perform the measurements in specific phenophases, which is otherwise difficult to execute due to the variability and fortuity of the natural rainfall. Due to the number of measurements needed, two identical simulators will be used, operated by two independent teams, with coordinated methodology. The methodology will mainly specify the length of simulation, the rainfall intensity, and the sampling technique. The presentation includes a more detailed account of the methods selected. Due to the wide range of variable crops and soils, it is not possible to execute the measurements for all possible combinations. We therefore decided to perform the measurements for previously selected combinations of soils,crops and agrotechnologies that are the most common in the Czech Republic. During the experiments, the volume of the surface runoff and amount of sediment will be measured in their temporal distribution, as well as several other important parameters. The key values of the 3D matrix of the combinations of the crop, agrotechnique and soil will be determined experimentally. The remaining values will be determined by interpolation or by a model analogy. There are several methods used for C-factor calculation from measured experimental data. Some of these are not suitable to be used considering the type of data gathered. The presentation will discuss the benefits and drawbacks of these methods, as well as the final design of the method used. The problems concerning the selection of a relevant measurement method as well as the final method of simulation and C-factor determination for the gathered data will be discussed in more detail. The presentation was supported by research projects QJ1530181 and SGS14/180/OHK1/3T/11.

  6. Biological soil crust as a bio-mediator alters hydrological processes in stabilized dune system of the Tengger Desert, China

    NASA Astrophysics Data System (ADS)

    Li, Xinrong

    2016-04-01

    Biological soil crust (BSC) is a vital component in the stabilized sand dunes with a living cover up to more than 70% of the total, which has been considered as a bio-mediator that directly influences and regulates the sand dune ecosystem processes. However, its influences on soil hydrological processes have been long neglected in Chinese deserts. In this study, BSCs of different successional stages were chose to test their influence on the hydrological processes of stabilized dune, where the groundwater deep exceeds 30m, further to explore why occur the sand-binding vegetation replacement between shrubs and herbs. Our long-term observation (60 years) shows that cyanobacteria crust has been colonized and developed after 3 years since the sand-binding vegetation has been established and dune fixation using planted xerophytic shrubs and made sand barrier (straw-checkerboard) on shifting dune surface, lichen and moss crust occurred after 20 years, and the cover of moss dominated crust could reach 70 % after 50 years. The colonization and development of BSC altered the initial soil water balance of revegetated areas by influencing rainfall infiltration, soil evaporation and dew water entrapment. The results show that BSC obviously reduced the infiltration that occurred during most rainfall events (80%), when rainfall was greater than 5 mm or less than 20 mm. The presence of BSC reduced evaporation of topsoil after small rainfall (<5 mm) because its high proportion of finer particles slowed the evaporation rate, thus keeping the water in the soil surface longer, and crust facilitated topsoil evaporation when rainfall reached 10 mm. The amount of dew entrapment increases with the succession of BSC. Moreover, the effect of the later successional BSC to dew entrapment, rainfall infiltration and evaporation was more obvious than the early successional BSC on stabilized dunes. In general, BSC reduced the amount of rainfall water that reached deeper soil (0.4-3m), which is where the roots of shrubs are primarily distributed. These changes in the soil moisture pattern induced shifting of sand-binding vegetation from initial planted xerophytic shrub communities with higher coverage (35%) to complex communities dominated by shallow-rooted herbaceous species with low shrub coverage (9%). In correspondence with these changes, soil water balance of the initial vegetation systems (mean soil water kept 3.5%) was turned into a new balance of current vegetation (mean soil water maintains 1.5%). Above findings provide an important enlightenment for future desertification control and sand hazards prevention by revegetation.

  7. Rainfall, evapotranspiration, total soil-water potential, and soil-water content at a sagebrush site and a replacement-vegetation site near Fort Defiance, Arizona, 1989-91

    USGS Publications Warehouse

    Thomas, C.L.

    1994-01-01

    The Navajo Nation Forestry Department established a growth of four species of native grasses and two species of native shrubs on formerly sagebrush- covered land about 6 miles north of Fort Defiance, Arizona. The native grasses and shrubs grew under conditions of natural precipitation and soil fertility. This provided alternate grazing areas for tribal livestock. Tribal livestock previously had been grazed on timber-producing land, killing seedlings planted for reforestation. Rainfall, evapotranspiration, total soil-water potential, and soil-water content at a sagebrush site and a site planted with grasses and shrubs north Fort Defiance, Arizona were monitored to document hydrologic conditions during the experiment. Daily rainfall during the April through November 1989- 91 data-collection period ranged from 0 to 1.21 inches (0 to 30.7 millimeters). Evapotranspiration during the data-collection period generally ranged from about 0.5 to 2 millimeters per day (0.02 to 0.08 inch per day), increasing to 2 to 5 millimeters per day (0.08 to 0.20 inch per day) after rainfall. The total soil-water content ranged from 5.7 to 65.9 percent. Soils were wetter during the April data-collection period than during the November data-collection periods.

  8. Protection from wintertime rainfall reduces nutrient losses and greenhouse gas emissions during the decomposition of poultry and horse manure-based amendments.

    PubMed

    Maltais-Landry, Gabriel; Neufeld, Katarina; Poon, David; Grant, Nicholas; Nesic, Zoran; Smukler, Sean

    2018-04-01

    Manure-based soil amendments (herein "amendments") are important fertility sources, but differences among amendment types and management can significantly affect their nutrient value and environmental impacts. A 6-month in situ decomposition experiment was conducted to determine how protection from wintertime rainfall affected nutrient losses and greenhouse gas (GHG) emissions in poultry (broiler chicken and turkey) and horse amendments. Changes in total nutrient concentration were measured every 3 months, changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations every month, and GHG emissions of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) every 7-14 days. Poultry amendments maintained higher nutrient concentrations (except for K), higher emissions of CO 2 and N 2 O, and lower CH 4 emissions than horse amendments. Exposing amendments to rainfall increased total N and NH 4 + losses in poultry amendments, P losses in turkey and horse amendments, and K losses and cumulative N 2 O emissions for all amendments. However, it did not affect CO 2 or CH 4 emissions. Overall, rainfall exposure would decrease total N inputs by 37% (horse), 59% (broiler chicken), or 74% (turkey) for a given application rate (wet weight basis) after 6 months of decomposition, with similar losses for NH 4 + (69-96%), P (41-73%), and K (91-97%). This study confirms the benefits of facilities protected from rainfall to reduce nutrient losses and GHG emissions during amendment decomposition. The impact of rainfall protection on nutrient losses and GHG emissions was monitored during the decomposition of broiler chicken, turkey, and horse manure-based soil amendments. Amendments exposed to rainfall had large ammonium and potassium losses, resulting in a 37-74% decrease in N inputs when compared with amendments protected from rainfall. Nitrous oxide emissions were also higher with rainfall exposure, although it had no effect on carbon dioxide and methane emissions. Overall, this work highlights the benefits of rainfall protection during amendment decomposition to reduce nutrient losses and GHG emissions.

  9. The Effects of Different Tillage Systems on Soil Hydrology and Erosion in Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Bertolino, A. V. F. A.; Fernandes, N. F.; Souza, A. P.; Miranda, J. P.; Rocha, M. L.

    2009-04-01

    Conventional tillage usually imposes a variety of modifications on soil properties that can lead to important changes in the type and magnitude of the hydrological processes that take place at the upper portion of the soil profile. Plough pan formation, for example, is considered to be an important consequence of conventional tillage practices in southeastern Brazil, decreasing infiltration rates and contributing to soil erosion, especially in steep slopes. In order to characterize the changes in soil properties and soil hydrology due to the plough pan formation we carried out detailed investigations in two experimental plots in Paty do Alferes region, located in the hilly landscape of Serra do Mar in southeastern Brazil, close to Rio de Janeiro city. Farming activities are very important in this area, in particular the ones related to the tomato production. The local hilly topography with short and steep hillslopes, as well as an average annual rainfall of almost 2000 mm, favor surface runoff and the evolution of rill and gully erosion. The two runoff plots are 22m long by 4m wide and were installed side by side along a representative hillslope, both in terms of soil (Oxisol) and steepness. At the lower portion of each plot there is a collecting trough connected by a PVC pipe to a 500 and 1000 liters sediment storage boxes. Soil tillage treatments used in the two plots were: Conventional Tillage (CT), with one plowing using disc-type plow (about 18 cm depth) and one downhill tractor leveling, in addition to burning residues from previous planting; and Minimum Tillage (MT), which did not allow burning residues from previous planting and preserved a vegetative cover between plantation lines. Runoff and soil erosion measurements were carried out in both plots immediately after each rainfall event. In order to characterize soil water movements under the two tillage systems (CT and MT), 06 nests of tensiometers and 04 nests of Watermark sensors were installed in each plot. Based on previous studies in this area, suggesting that the plough pan develop at about 20cm depth, the soil water potential (SWP) sensors were installed, in each nest, at 15, 30 and 80 cm depths. Continuously readings in the 30 SWP sensors were made both at a daily and event basis (during some rainfall events) for 25 months. Rainfall was continuously measured in the area by an automatic rain-gauge (tipping bucket) installed close to the plots. In order to characterize changes is soil porosity, both total pore space and pore inter-connections, undisturbed soil blocks were collected for micromorphological analyses (0-10cm, 12-22cm and 25-35cm depths) at small trenches located at the upper parts of each plot. The results attested that soil under CT developed a plough pan layer at about 20 cm depth, showing a 44% decrease in total pore space from 0-10cm to 12-22cm depths, with a predominant network of isolated pores. In the MT plot, soil porosity is more homogeneous with depth, with a predominant network of larger and better connected pores. The results related to soil hydrology show that in many moments, both CT and MT, stay very close to saturation, both at 15 and 30 cm depth. Above the plough pan under CT, soils tend to saturate faster and to have a slower drainage rate than the ones under MT. Detailed SWP analyses made during rain events suggest that CT may favors lateral flows while soils under MT are draining. Soil erosion rates measured for individual events at CT are about four times greater than the ones observed at MT. The results observed in this study attest that conventional tillage (CT) in this area imposed important changes in soil structure, pore-size distribution and connectivity, as well as in soil infiltration, drainage and erosion.

  10. A "simulation chain" to define a Multidisciplinary Decision Support System for landslide risk management in pyroclastic soils

    NASA Astrophysics Data System (ADS)

    Damiano, E.; Mercogliano, P.; Netti, N.; Olivares, L.

    2012-04-01

    This paper proposes a Multidisciplinary Decision Support System (MDSS) as an approach to manage rainfall-induced shallow landslides of the flow type (flowslides) in pyroclastic deposits. We stress the need to combine information from the fields of meteorology, geology, hydrology, geotechnics and economics to support the agencies engaged in land monitoring and management. The MDSS consists of a "simulation chain" to link rainfall to effects in terms of infiltration, slope stability and vulnerability. This "simulation chain" was developed at the Euro-Mediterranean Centre for Climate Change (CMCC) (meteorological aspects), at the Geotechnical Laboratory of the Second University of Naples (hydrological and geotechnical aspects) and at the Department of Economics of the University of Naples "Federico II" (economic aspects). The results obtained from the application of this simulation chain in the Cervinara area during eleven years of research allowed in-depth analysis of the mechanisms underlying a flowslide in pyroclastic soil.

  11. Soil hydrological and soil property changes resulting from termite activity on agricultural fields in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Mettrop, I.; Cammeraat, L. H.; Verbeeten, E.

    2009-04-01

    Termites are important ecosystem-engineers in subtropical and tropical regions. The effect of termite activity affecting soil infiltration is well documented in the Sahelian region. Most studies find increased infiltration rates on surfaces that are affected by termite activity in comparison to crusted areas showing non-termite presence. Crusted agricultural fields in the Sanmatenga region in Burkina Faso with clear termite activity were compared to control fields without visual ground dwelling termite activity. Fine scale rainfall simulations were carried out on crusted termite affected and control sites. Furthermore soil moisture change, bulk density, soil organic matter as well as general soil characteristics were studied. The top soils in the study area were strongly crusted (structural crust) after the summer rainfall and harvest of millet. They have a loamy sand texture underlain by a shallow sandy loam Bt horizon. The initial soil moisture conditions were significantly higher on the termite plots when compared to control sites. It was found that the amount of runoff produced on the termite plots was significantly higher, and also the volumetric soil moisture content after the experiments was significantly lower if compared to the control plots. Bulk density showed no difference whereas soil organic matter was significantly higher under termite affected areas, in comparison to the control plots. Lab tests showed no significant difference in hydrophobic behavior of the topsoil and crust material. Micro and macro-structural properties of the topsoil did not differ significantly between the termite sites and the control sites. The texture of the top 5 cm of the soil was also found to be not significantly different. The infiltration results are contradictory to the general literature, which reports increased infiltration rates after prolonged termite activity although mostly under different initial conditions. The number of nest entrances was clearly higher in the termite areas, but apparently did not significantly affect infiltration. The increased soil organic matter contents in the termite affected areas however, are as expected from literature, but did not improve soil aggregation which would be expected given the importance of organic matter in soil aggregation in this type of soils. One of the explanations for the reduced infiltration rates might be that termites bring clay from the finer textured subsoil to the surface to build casts over the organic material on the surface (mainly millet stems). It is speculated that the excavated clay material could be involved in crust formation, only present is in the upper 0.5 cm of the soil crust, which is enough to block pores in the crust surface, hampering infiltration. The topsoil aggregates are slaking under the summer rainfall and the increase in fine textured material, excavated by the termites, could be incorporated into the crust and reduce infiltration. Furthermore this specific effect might also be related to the type of termite involved, as impacts from ecosystem engineers on their environment is highly dependent on the specific species involved.

  12. [Effects of soil crusts on surface hydrology in the semiarid Loess hilly area].

    PubMed

    Wei, Wei; Wen, Zhi; Chen, Li-Ding; Chen, Jin; Wu, Dong-Ping

    2012-11-01

    Soil crusts are distributed extensively in the Chinese Loess Plateau and play key roles in surface hydrological processes. In this study, a typical loess hilly region in Anjiagou catchment, Dingxi city, Gansu province was selected as the study region, and soil crusts in the catchment were investigated. Then, the hydrological effect of soil crusts was studied by using multi-sampling and hydrological monitoring experiments. Several key results were shown as follows. Firstly, compared with bared soil without crust cover, soil crusts can greatly reduce the bulk density, improve the porosity of soil, and raise the holding capacity of soil moisture which ranges from 1.4 to 1.9 times of that of bared soil. Secondly, the role of soil crust on rainfall interception was very significant. Moss crust was found to be strongest on rainfall interception, followed by synantectic crusts and lichen crusts. Bared soil without covering crusts was poorest in resisting rainfall splash. Thirdly, hydrological simulation experiments indicate that soil crusts play a certain positive role in promoting the water infiltration capacity, and the mean infiltration rate of the crusted soil was 2 times higher than that of the no-crust covered soils. While the accumulated infiltrated water amounts was also far higher than that of the bared soil.

  13. Optimal designs of bioretention cells in shallow groundwater

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Chui, T. F. M.

    2017-12-01

    Bioretention cells, as one representative low impact development practices, have been proved to be effective in controlling surface runoff, removing pollutants and recharging groundwater. However, they are often not recommended in shallow groundwater areas due to potential groundwater pollution, reduction in runoff control performance and groundwater drainage through the underdrain. Most design guidelines only require a minimum distance between bioretention cell bottom and seasonal high groundwater table without guiding the design of bioretention cells to mitigate the problem of shallow groundwater. This study therefore proposed some design recommendations of bioretention cells for different rainfall runoff loads, native soil types and initial water table depths. A variably saturated flow model was employed to conduct event-based simulations on one single hypothetical bioretention cell in shallow groundwater, which was calibrated using experimental and simulation data of an on-site bioretention cell. A wide range of climatic and geophysical factors (i.e. initial groundwater depths, native soils, rainfall runoff loads) and bioretention designs (i.e. media soil types and underdrain sizes) were considered. Surface runoff reduction, time before groundwater mound formation, as well as maximum height of groundwater mound were evaluated. Less-permeable media types (i.e. sandy loam) are recommended in areas with many extreme rainfall events (i.e. 40 - 70 mm/h or larger) and of shallower groundwater, which can better protect groundwater from mounding and possibly contamination although may slightly compromise the runoff control performance. For areas having seasonal high groundwater table of 0 - 1 m below bioretention bottom, underdrain is recommended to maintain good infiltration capacity without draining groundwater. However, underdrain is not recommended for areas of groundwater table always near or above the bioretention bottom, only if an impermeable sheet is added. Generally, groundwater interference is a concern only when groundwater table is above 1 - 2.5 m below bioretention bottom and runoff loads are very high. The results of this study overall could benefit the implementation of bioretention cells in shallow groundwater areas, and the establishment of relevant design guidelines.

  14. Controls of nitrogen cycling evaluated along a well-characterized climate gradient.

    PubMed

    von Sperber, Christian; Chadwick, Oliver A; Casciotti, Karen L; Peay, Kabir G; Francis, Christopher A; Kim, Amy E; Vitousek, Peter M

    2017-04-01

    The supply of nitrogen (N) constrains primary productivity in many ecosystems, raising the question "what controls the availability and cycling of N"? As a step toward answering this question, we evaluated N cycling processes and aspects of their regulation on a climate gradient on Kohala Volcano, Hawaii, USA. The gradient extends from sites receiving <300 mm/yr of rain to those receiving >3,000 mm/yr, and the pedology and dynamics of rock-derived nutrients in soils on the gradient are well understood. In particular, there is a soil process domain at intermediate rainfall within which ongoing weathering and biological uplift have enriched total and available pools of rock-derived nutrients substantially; sites at higher rainfall than this domain are acid and infertile as a consequence of depletion of rock-derived nutrients, while sites at lower rainfall are unproductive and subject to wind erosion. We found elevated rates of potential net N mineralization in the domain where rock-derived nutrients are enriched. Higher-rainfall sites have low rates of potential net N mineralization and high rates of microbial N immobilization, despite relatively high rates of gross N mineralization. Lower-rainfall sites have moderately low potential net N mineralization, relatively low rates of gross N mineralization, and rates of microbial N immobilization sufficient to sequester almost all the mineral N produced. Bulk soil δ 15 N also varied along the gradient, from +4‰ at high rainfall sites to +14‰ at low rainfall sites, indicating differences in the sources and dynamics of soil N. Our analysis shows that there is a strong association between N cycling and soil process domains that are defined using soil characteristics independent of N along this gradient, and that short-term controls of N cycling can be understood in terms of the supply of and demand for N. © 2017 by the Ecological Society of America.

  15. Bare soil erosion modelling with rainfall simulations: experiments on crop and recently burned areas

    NASA Astrophysics Data System (ADS)

    Catani, F.; Menci, S.; Moretti, S.; Keizer, J.

    2006-12-01

    The use of numerical models is of fundamental importance in the comprehension and prediction of soil erosion. At the very basis of the calibration process of the numerical models are the direct measurements of the governing parameters, carried out during field or laboratory tests. To measure and model soil erosion rainfall simulations can be used, that allow the reproduction of project rainfall having chosen characteristics of intensity and duration. The main parameters that rainfall simulators can measure are hydraulic conductivity, parameters of soil erodibility, rate and features of splash erosion, discharge coefficient and sediment yield. Other important parameters can be estimated during the rainfall simulations through the use of photogrammetric instruments able to memorize high definition stereographic models of the soil plot under analysis at different time steps. In this research rainfall simulator experiments (rse) were conducted to measure and quantify runoff and erosion processes on selected bare soil plots. The selected plots are located in some vineyards, olive groves and crops in central Italy and in some recently burned areas in north-central Portugal, affected by a wildfire during early July 2005 and, at the time, largely covered by commercial eucalypt plantations. On the Italian crops the choice of the rainfall intensities and durations were performed on the basis of the previous knowledge of the selected test areas. The procedure was based on an initial phase of soil wetting and a following phase of 3 erosion cycles. The first should reproduce the effects of a normal rainfall with a return time of 2 years (23 mm/h). The second should represent a serious episode with a return time of 10 years (34 mm/h). The third has the objective to reproduce and understand the effects of an intense precipitation event, with a return time of 50 years (41 mm/h). During vineyards experiments some photogrammetric surveys were carried out as well. In the Portugal burned areas, to measure the influence of rain intensities, two rainfall simulations have been carried out simultaneously, one with an intensity of 45 mm/h and one with 85 mm/h. In both cases, before the experiments, soil and vegetation cover description have been made and soil samples have been taken. During the simulations soil samples leaving the parcels were taken at suitable time intervals to measure the sediment yield and the runoff. The rse data have been thought to provide a sufficient basis for erosion modelling at the small-plot scale and, through upscaling, for predicting erosion rates at the slope scale. For this purpose two soil erosion models, WEPP and MEFIDIS, have been selected and then compared. The comparison has shown a certain degree of uncertainty in numeric erosion prediction, due to the non linearity of the overland erosion processes, and to technical and conceptual difficulties, including the data collection. In the following laboratory phase high resolution (2 by 2 mm) DEMs of the vineyards plot are being produced for each meaningful processing phase. The digital elevation models will then be analysed to asses calibration parameters such as soil roughness (expressed by standard deviation of elevations, fractal dimension and local relief energy), soil and sediment transfer (hypsometric curves, local elevation and volume differences) and rill network evolution (Horton ordering, stream lengths, contributing area, drainage density, Hack's law)

  16. Optimal traits of plant hydraulic capacitance as an adaptation to hydroclimatic variability

    NASA Astrophysics Data System (ADS)

    Hartzell, S. R.; Bartlett, M. S., Jr.; Porporato, A. M.

    2016-12-01

    Hydraulic capacitance allows plants to uptake and store water when it is abundant. This stored water is utilized during periods of water stress, decreasing tissue damage and increasing carbon assimilation. By providing a more consistent and readily accessible water supply, it buffers water stress variability across daily and seasonal timescales. The rate of plant water storage and withdrawal varies widely between plant species and is principally governed by several plant hydraulic parameters, principally the hydraulic capacitance, the total water storage capacity, and the conductance between xylem and water storage tissue. The timescale of the plant response to changes in environmental conditions may be related to the timescale of relevant environmental variability. For example, the Baobab tree (Adansonia), which grows in an environment with very strong seasonal rainfall variability, has a relatively long timescale of hydraulic response, while an evergreen tree such as Pinus taeda, which mainly contends with daily and inter-rainfall moisture variability, has a much shorter timescale of hydraulic response. Here a model of hydraulic capacitance is coupled to a resistance model of soil-plant-atmosphere continuum. We force this model with stochastic rainfall and examine plant responses to moisture variability at various timescales. Optimal plant hydraulic properties are examined as a function of mean soil moisture (daily variability), mean period between rainfall events (inter-rainfall variability), and seasonal rainfall variability, and the relative importance of each type of variability in shaping plant water use strategies is assessed. Results are compared to typical hydraulic parameters of plants growing under specific environmental conditions. Values of hydraulic traits which optimize carbon assimilation and water use efficiency are found; these values are dependent on mean environmental conditions as well as the timescale of environmental variability.

  17. Real-Time Application of Multi-Satellite Precipitation Analysis for Floods and Landslides

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Hong, Yang; Huffman, George

    2007-01-01

    Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets-- both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers, In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described indicating general agreement with landslide occurrences.

  18. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2016-03-01

    Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.

  19. Erosion measurements at various scales in a semi arid mountainous catchment - case of the Rheraya watershed, High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Cheggour, A.; Simonneaux, V.; Roose, E.

    2009-04-01

    Erosion is a critical phenomenon in North Africa, under the combined effects of aggressive rainfall and soil fragility, increased by the grazing pressure on rangelands. However measurements of actual erosion rates are rare, especially in mountainous areas. Siltation of dams is estimated at more than 60 million m3 annually in Morocco, which corresponds to a decrease of 0.5% of the storage capacity. The Rheraya watershed (225 km2) is located in a semi-arid climat, in the High Atlas of Morocco. In order to assess erosion processes at various scales, three types of measurements were achieved on this area, namely rainfall simulation tests one square meter, erosion plots on 150 m2, and catchment's discharge and associated sediments measurements. Rainfall simulation experiments were achieved on 27 sites, measuring runoff and sediment charge. The turbidity was correctly measured thanks to the development of a new runoff collector which doesn't disturb the soil. In the scope of spatial extrapolation, we searched for indicators obtained from ground description variables and/or by laboratory tests on soil samples, which were well correlated with infiltration and turbidity of the simulations. For the various soils present in the study area, the results show a large variability of infiltration (from 1 to 70 mm h-1) and turbidity (from 3 to 325 g.l-1). Analysis showed that infiltration is correlated mainly with texture and soil surface opening, and that turbidity is related to the surface of bare soil exposed to runoff. Six erosion plots of about 150 m2, located on various soil and land cover conditions, were measured during four years. The observations showed very rare runoff events in the main part of the watershed, producing a low sediment load (between 0.015 and 2.5 t.ha1.year1). Conversely, runoff was much more frequent on silty badlands, producing about 95% of the watershed sediment (350 t.ha-1.year-1) despite their area was only 1% of the watershed. There was a significant linear relation between simulation turbidity and erosion plot turbidity. However, there was a great difference between infiltration estimates from the two types of measurements. Plot infiltrations estimates were only between 3 and 5 mm/h, but they were significantly correlated to the one from test, through an exponential relation. Finally, an estimate of the overall erosion at catchment's scale was achieved from plots values extrapolated using a soil map, and gave about 3 to 4 t.ha-1.year-1. A good correlation was found between this watershed scale estimate and the catchment's exportation, indirectly validating the significance of both measurements. Moreover, both estimates were about the same, showing a sediment delivery ratio around one. Keywords: erosion, rainfall simulation, erosion plot, sediment exportation

  20. Effects of Afforestation and Natural Revegetation on Soil Moisture Dynamics in Paired Watersheds in the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Guo, L.; Lin, H.; Wang, Y.; Chu, G.

    2017-12-01

    In this study, a paired of small watersheds, which are artificial forestland and natural grassland, respectively, were selected. The two watersheds have been set up since 1954 and the time of revegetation is more than 60 years. Their differences in event and seasonal dynamics of soil moisture were investigated and the effects of vegetation and landform were analyzed. Results showed that consecutive small events higher than 22 mm and single events higher than 16.6 mm could recharge the soil moisture of the two watersheds, but no rainfall event was observed to recharge the soil moisture of 100 cm within 2 weeks after rainfall initiation. Moreover, the two contrasting watersheds showed no difference in rainfall threshold for effective soil moisture replenishment and also had similar patterns of soil water increment with the increase of initial soil water content and rainfall intensity. The changing vegetation cover and coverage at different landforms (uphill slope land and downhill gully) showed the most significant impact on event and seasonal dynamics of soil moisture. The strong interception, evaporation and transpiration of tree canopy and understory vegetation in the gully of the forestland showed the most negative impacts on soil moisture replenishment. Moreover, dense surface grass biomass (living and dead) in the grassland also showed negative impacts on effective soil moisture recharge. Landform itself showed no significant impact on event soil moisture dynamics through changing the initial soil water content and soil texture, while site differences in slope gradient and soil temperature could affect the seasonal soil water content. During the growing season of May-October, the forestland showed 1.3% higher soil water content than that of the grassland in the landform of uphill slope land; while in the landform of downhill gully, the grassland showed 4.3% higher soil water content than that of the forestland. Many studies have predicted that there will be more extreme precipitation in the global and local dry regions in the 21st century, and thus the threshold and mechanisms of effective rainfall replenishment should be strengthened. Keywords: Soil water monitoring; paired watersheds; afforestation; natural recovery; landform Corresponding author: Prof. Dr. Zhao Jin, jinzhao@ieecas.cn

  1. Rainfall intensity effects on removal of fecal indicator bacteria from solid dairy manure applied over grass-covered soil

    USDA-ARS?s Scientific Manuscript database

    The rainfall-induced removal of pathogens and microbial indicators from land-applied manure with runoff and infiltration greatly contributes to the impairment of surface and groundwater resources. It has been assumed that rainfall intensity and changes in rainfall intensity during a rainfall event d...

  2. Raindrop Impact, Disaggregation & CO2 emissions

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Wang, Rui; Hu, Yaxian; Guo, Shengli

    2017-04-01

    On the Chinese Loess Plateau, heave storms often occur from July to September, which happens to be fallow season. Without protections from crop coverage, soil surface is completely exposed to rainfalls, receives much more enhanced raindrop impact, thus potentially experience advanced disaggregation. After breaking into smaller fragments, and exposing those previously encapsulated soil organic carbon (SOC), soil surface is very likely to release additional CO2 emissions. However, the possible addition of CO2 emissions from fallow season on the Chinese Loess Plateau, and its potential contribution to local carbon balances, have not yet been systematically investigated. In order to compare the effects of raindrop impacts to CO2 emissions on bare soil during fallow season, two erosion plots (100 cm * 40 cm *35 cm) were set up. Both plots were filled with the loess soil. One plot was covered with two meshes (1 mm * 1mm)overlapping each other, to simulate crop coverage; the other plot was directly exposed to raindrops. Both plots were placed underneath simulated rainfalls (intensity of 90 mm h-1), for 5 min and 10 min. After 24 hours post rainfalls, soil moisture and CO2 emissions from both plots were measured every day for one week. Soil particle size distributions from surface soil were also determined to compare the changes of soil composition. Our results show that raindrop impacted soil in general released more CO2 emissions than the covered soil, and this pattern was more pronounced after experiencing longer period of rainfall events (20.6% more after 5 min; 48.3% more after 10 min). This agreed well with the increase of soil particles < 0.01 mm observed on the raindrop impacted soil surface.

  3. Statistical Determination of Rainfall-Runoff Erosivity Indices for Single Storms in the Chinese Loess Plateau

    PubMed Central

    Zheng, Mingguo; Chen, Xiaoan

    2015-01-01

    Correlation analysis is popular in erosion- or earth-related studies, however, few studies compare correlations on a basis of statistical testing, which should be conducted to determine the statistical significance of the observed sample difference. This study aims to statistically determine the erosivity index of single storms, which requires comparison of a large number of dependent correlations between rainfall-runoff factors and soil loss, in the Chinese Loess Plateau. Data observed at four gauging stations and five runoff experimental plots were presented. Based on the Meng’s tests, which is widely used for comparing correlations between a dependent variable and a set of independent variables, two methods were proposed. The first method removes factors that are poorly correlated with soil loss from consideration in a stepwise way, while the second method performs pairwise comparisons that are adjusted using the Bonferroni correction. Among 12 rainfall factors, I 30 (the maximum 30-minute rainfall intensity) has been suggested for use as the rainfall erosivity index, although I 30 is equally correlated with soil loss as factors of I 20, EI 10 (the product of the rainfall kinetic energy, E, and I 10), EI 20 and EI 30 are. Runoff depth (total runoff volume normalized to drainage area) is more correlated with soil loss than all other examined rainfall-runoff factors, including I 30, peak discharge and many combined factors. Moreover, sediment concentrations of major sediment-producing events are independent of all examined rainfall-runoff factors. As a result, introducing additional factors adds little to the prediction accuracy of the single factor of runoff depth. Hence, runoff depth should be the best erosivity index at scales from plots to watersheds. Our findings can facilitate predictions of soil erosion in the Loess Plateau. Our methods provide a valuable tool while determining the predictor among a number of variables in terms of correlations. PMID:25781173

  4. Evaluating spatial and temporal variations of rainfall erosivity, case of Central Rift Valley of Ethiopia

    NASA Astrophysics Data System (ADS)

    Meshesha, Derege Tsegaye; Tsunekawa, Atsushi; Tsubo, Mitsuru; Haregeweyn, Nigussie; Adgo, Enyew

    2015-02-01

    Land degradation in many Ethiopian highlands occurs mainly due to high rainfall erosivity and poor soil conservation practices. Rainfall erosivity is an indicator of the precipitation energy and ability to cause soil erosion. In Central Rift Valley (CRV) of Ethiopia, where the climate is characterized as arid and semiarid, rainfall is the main driver of soil erosion that in turn causes a serious expansion in land degradation. In order to evaluate the spatial and temporal variability of rainfall erosivity and its impact on soil erosion, long-term rainfall data (1980-2010) was used, and the monthly Fournier index (FI) and the annual modified Fournier index (MFI) were applied. Student's t test analysis was performed particularly to examine statistical significances of differences in average monthly and annual erosivity values. The result indicated that, in a similar spatial pattern with elevation and rainfall amount, average annual erosivity is also found being higher in western highlands of the valley and gradually decreased towards the east. The long-term average annual erosivity (MFI) showed a general decreasing trend in recent 10 years (2000-2010) as compared to previous 20 years (1980-1999). In most of the stations, average erosivity of main rainy months (May, June, July, and August) showed a decreasing trend, whereby some of them (about 33.3 %) are statically significant at 90 and 95 % confidence intervals but with high variation in spatial pattern of changes. The overall result of the study showed that rainfall aggression (erosivity) in the region has a general decreasing trend in the recent decade as compared to previous decades, especially in the western highlands of the valley. Hence, it implies that anthropogenic factors such as land use change being coupled with topography (steep slope) have largely contributed to increased soil erosion rate in the region.

  5. Statistical determination of rainfall-runoff erosivity indices for single storms in the Chinese Loess Plateau.

    PubMed

    Zheng, Mingguo; Chen, Xiaoan

    2015-01-01

    Correlation analysis is popular in erosion- or earth-related studies, however, few studies compare correlations on a basis of statistical testing, which should be conducted to determine the statistical significance of the observed sample difference. This study aims to statistically determine the erosivity index of single storms, which requires comparison of a large number of dependent correlations between rainfall-runoff factors and soil loss, in the Chinese Loess Plateau. Data observed at four gauging stations and five runoff experimental plots were presented. Based on the Meng's tests, which is widely used for comparing correlations between a dependent variable and a set of independent variables, two methods were proposed. The first method removes factors that are poorly correlated with soil loss from consideration in a stepwise way, while the second method performs pairwise comparisons that are adjusted using the Bonferroni correction. Among 12 rainfall factors, I30 (the maximum 30-minute rainfall intensity) has been suggested for use as the rainfall erosivity index, although I30 is equally correlated with soil loss as factors of I20, EI10 (the product of the rainfall kinetic energy, E, and I10), EI20 and EI30 are. Runoff depth (total runoff volume normalized to drainage area) is more correlated with soil loss than all other examined rainfall-runoff factors, including I30, peak discharge and many combined factors. Moreover, sediment concentrations of major sediment-producing events are independent of all examined rainfall-runoff factors. As a result, introducing additional factors adds little to the prediction accuracy of the single factor of runoff depth. Hence, runoff depth should be the best erosivity index at scales from plots to watersheds. Our findings can facilitate predictions of soil erosion in the Loess Plateau. Our methods provide a valuable tool while determining the predictor among a number of variables in terms of correlations.

  6. Hydrological Components of a Young Loblolly Pine Plantation on a Sandy Soil with Estimates of Water Use and Loss

    Treesearch

    Deborah A. Abrahamson; Phillip M. Dougherty; Stanley J. Zarnoch

    1998-01-01

    Fertilizer and irrigation treatments were applied in a 7- to l0-year-old loblolly pine (Pinus taeda L.) plantation on a sandy soil near Laurinburg, North Carolina. Rainfall, throughfall, stemflow, and soil water content were measured throughout the study period. Monthly interception losses ranged from 4 to 15% of rainfall. Stemflow ranged from 0.2...

  7. Climate Change, Growth, and Poverty in Ethiopia

    DTIC Science & Technology

    2013-06-01

    agricultural effects of global warming, reflecting their disadvantaged geographic location Higher evaporation and reduced soil moisture can damage crops...Ringler (2007) 5 Temperature, radiation, rainfall, soil moisture , and carbon dioxide (CO2) concentration are important variables that can proxy...iii) rainfall can affect other proxies of climate change in the literature such as soil moisture 6 This is based on FAOstat database 7 According to

  8. The Sensitivity of Soil Moisture in Western U.S. Mountains to Changes in Snowmelt

    NASA Astrophysics Data System (ADS)

    Harpold, A. A.

    2014-12-01

    Snowmelt is the primary water source for human needs and ecosystems services in much of the Western U.S. Regional warming is expected to hasten snow disappearance and reduce snowpacks. The soil water budget strongly mediates the effects of changing snowmelt patterns by storing water and altering is partitioning to evaporation, transpiration, and runoff. This study therefore asked the research question, "Under what conditions was soil water availability coupled to snowmelt magnitudes and timing across Western U.S. mountains?" We posed three potential hypotheses to explain decoupling between soil water availability and snowmelt: 1. Contributions from post-snowmelt rainfall, 2. Longer growing season length and/or greater water demand, and/or 3. Insufficient soil water storage. Using 259 Snow Telemetry (SNOTEL) stations, we showed that the timing of Peak Soil Moisture (PSM) was strongly explained by snow disappearance (Pearson r-value of 0.62). However, differences in the coupling of PSM with DSD were dependent on soil and bedrock type, with well-drained areas having earlier PSM relative to DSD. A second analysis focused on 48 SNOTEL and Soil Climate Analysis Network (SCAN) stations in the Northwest and Intermountain Western U.S. where detailed soil hydraulic properties existed. We found the timing of snow disappearance was a strong influence (p<0.01) on the number of days per year that soil moisture was below wilting point at individual stations, whereas summer precipitation was a weaker predictor. We develop a framework to classify stations into three classes: 1. stations that were not subject to water stress from changing snowmelt patterns over the historical records, 2. stations subject to water stress during poor snowmelt years, and 3. stations that relied on rainfall to avoid water stress across historical records. Our combined results demonstrate that snow disappearance timing is a first-order control on soil water availability across many Western U.S. mountain ecosystems. However, soils properties could make areas more/less sensitive to changing snowpacks depending on seasonal precipitation patterns. This type of simple framework could be used to identify areas at risk of changing snowpacks and help constrain vegetation distributions as a consequence of climate change.

  9. Biostimulation and rainfall infiltration: influence on retention of biodiesel in residual clayey soil.

    PubMed

    Thomé, Antônio; Cecchin, Iziquiel; Reginatto, Cleomar; Colla, Luciane M; Reddy, Krishna R

    2017-04-01

    This study investigates the retention of biodiesel in residual clayey soil during biostimulation by nutrients (nitrogen, phosphorus, and potassium) under conditions of rainfall infiltration. Several column tests were conducted in a laboratory under different void ratios (1.14, 1.24, and 1.34), varying moisture contents (15, 25, and 35%), and in both the presence and absence of biostimulation. The volume of biodiesel (which was equivalent to the volume of voids in the soil) was placed atop the soil and allowed to percolate for a period of 15 days. The soil was subjected to different rainfall infiltration conditions (0.30 or 60 mm). The greatest reductions in residual contaminants occurred after 60 mm of rain simulation, at values of up to 74% less than in samples with the same conditions but no precipitation. However, the residual contamination decay rate was greater with 0-30 mm (0.29 g/mm) of precipitation than with 30-60 mm (0.075 g/mm). Statistical assessment revealed that increased moisture and the presence of nutrients were the factors with the most powerful effect on contaminant retention in the soil. The residual contaminant level was 21 g/kg at a moisture content of 15% and no precipitation, decreasing to 12 g/kg at 35% moisture and no precipitation. Accordingly, it is possible to conclude that biostimulation and rainfall infiltration conditions can decrease the retention of contaminants in soil and allow a greater leaching or spreading of the contamination. All of these phenomena are worthy of careful examination for the in situ bioremediation of organic contamination. • The higher moisture in the soil, due to a high initial moisture content and/or infiltration of rainfall, can reduce contaminant retention, • The use of biostimulation through the addition of nutrients to accelerate the biodegradation of toxic organic contaminants may induce inadvertent undesirable interactions between the soil and the contaminant. • When adopting biostimulation for bioremediation, the effects of rainfall should be addressed; ideally, it should be prevented from entering the affected site, in order to avoid increased contaminant leaching and potential spreading.

  10. The response of the soil microbial food web to extreme rainfall under different plant systems

    NASA Astrophysics Data System (ADS)

    Sun, Feng; Pan, Kaiwen; Tariq, Akash; Zhang, Lin; Sun, Xiaoming; Li, Zilong; Wang, Sizhong; Xiong, Qinli; Song, Dagang; Olatunji, Olusanya Abiodun

    2016-11-01

    An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors.

  11. The response of the soil microbial food web to extreme rainfall under different plant systems

    PubMed Central

    Sun, Feng; Pan, Kaiwen; Tariq, Akash; Zhang, Lin; Sun, Xiaoming; Li, Zilong; Wang, Sizhong; Xiong, Qinli; Song, Dagang; Olatunji, Olusanya Abiodun

    2016-01-01

    An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors. PMID:27874081

  12. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment.

    PubMed

    Lovelock, Catherine E; Andersen, Kelly; Morton, Joseph B

    2003-04-01

    Arbuscular mycorrhizal (AM) fungi are mutualists with plant roots that are proposed to enhance plant community diversity. Models indicate that AM fungal communities could maintain plant diversity in forests if functionally different communities are spatially separated. In this study we assess the spatial and temporal distribution of the AM fungal community in a wet tropical rainforest in Costa Rica. We test whether distinct fungal communities correlate with variation in tree life history characteristics, with host tree species, and the relative importance of soil type, seasonality and rainfall. Host tree species differ in their associated AM fungal communities, but differences in the AM community between hosts could not be generalized over life history groupings of hosts. Changes in the relative abundance of a few common AM fungal species were the cause of differences in AM fungal communities for different host tree species instead of differences in the presence and absence of AM fungal species. Thus, AM fungal communities are spatially distinguishable in the forest, even though all species are widespread. Soil fertility ranging between 5 and 9 Mg/ha phosphorus did not affect composition of AM fungal communities, although sporulation was more abundant in lower fertility soils. Sampling soils over seasons revealed that some AM fungal species sporulate profusely in the dry season compared to the rainy season. On one host tree species sampled at two sites with vastly different rainfall, relative abundance of spores from Acaulospora was lower and that of Glomus was relatively higher at the site with lower and more seasonal rainfall.

  13. Infiltration and runoff generation processes in fire-affected soils

    USGS Publications Warehouse

    Moody, John A.; Ebel, Brian A.

    2014-01-01

    Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall),  tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of  tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that  tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.

  14. Experimental drought induces short-term changes in soil functionality and microbial community structure after fire in a Mediterranean shrubland

    NASA Astrophysics Data System (ADS)

    Hinojosa, M. B.; Parra, A.; Laudicina, V. A.; Moreno, J. M.

    2014-10-01

    Fire is a major ecosystem driver, causing significant changes in soil nutrients and microbial community structure and functionality. Post-fire soil dynamics can vary depending on rainfall patterns, although variations in response to drought are poorly known. This is particularly important in areas with poor soils and limited rainfall, like arid and semiarid ones. Furthermore, climate change projections in many such areas anticipate reduced precipitation and longer drought, together with an increase in fire severity. The effects of experimental drought and fire were studied on soils in a Mediterranean Cistus-Erica shrubland in Central Spain. A replicated (n = 4) field experiment was carried out in which four levels of rainfall pattern were implemented by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (long-term average rainfall, 2 months drought), moderate drought (25% reduction of historical control, 5 months drought) and severe drought (45% reduction, 7 months drought). After one growing season, the plots were burned with high fire intensity, except a set of unburned plots that served as control. Soils were collected seasonally during one year and variables related to soil nutrient availability and microbial community structure and functionality were studied. Burned soils increased nutrient availability (P, N, K) with respect to unburned ones, but drought reduced such an increase in P, while it further increased N and K. Such changes in available soil nutrients were short-lived. Drought caused a further decrease of enzyme activities, carbon mineralization rate and microbial biomass. Fire decreased the relative abundance of fungi and actinomycetes. However, fire and drought caused a further reduction in fungi, with bacteria becoming relatively more abundant. Arguably, increasing drought and fires due to climate change will likely shift soil recovery after fire.

  15. A new concept to study the effect of climate change on different flood types

    NASA Astrophysics Data System (ADS)

    Nissen, Katrin; Nied, Manuela; Pardowitz, Tobias; Ulbrich, Uwe; Merz, Bruno

    2014-05-01

    Flooding is triggered by the interaction of various processes. Especially important are the hydrological conditions prior to the event (e.g. soil saturation, snow cover) and the meteorological conditions during flood development (e.g. rainfall, temperature). Depending on these (pre-) conditions different flood types may develop such as long-rain floods, short-rain floods, flash floods, snowmelt floods and rain-on-snow floods. A new concept taking these factors into account is introduced and applied to flooding in the Elbe River basin. During the period September 1957 to August 2002, 82 flood events are identified and classified according to their flood type. The hydrological and meteorological conditions at each day during the analysis period are detemined. In case of the hydrological conditions, a soil moisture pattern classification is carried out. Soil moisture is simulated with a rainfall-runoff model driven by atmospheric observations. Days of similar soil moisture patterns are identified by a principle component analysis and a subsequent cluster analysis on the leading principal components. The meteorological conditions are identified by applying a cluster analysis to the geopotential height, temperature and humidity fields of the ERA40 reanalysis data set using the SANDRA cluster algorithm. We are able to identify specific pattern combinations of hydrological pre-conditions and meteorological conditions which favour different flood types. Based on these results it is possible to analyse the effect of climate change on different flood types. As an example we show first results obtained using an ensemble of climate scenario simulations of ECHAM5 MPIOM model, taking only the changes in the meteorological conditions into account. According to the simulations, the frequency of the meteorological patterns favouring long-rain, short-rain and flash floods will not change significantly under future climate conditions. A significant increase is, however, predicted for the amount of precipitation associated with many of the relevant meteorological patterns. The increase varies between 12 and 67% depending on the weather pattern.

  16. Rainwater runoff retention on an aged intensive green roof.

    PubMed

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2013-09-01

    Urban areas are characterised by large proportions of impervious surfaces which increases rainwater runoff and the potential for surface water flooding. Increased precipitation is predicted under current climate change projections, which will put further pressure on urban populations and infrastructure. Roof greening can be used within flood mitigation schemes to restore the urban hydrological balance of cities. Intensive green roofs, with their deeper substrates and higher plant biomass, are able to retain greater quantities of runoff, and there is a need for more studies on this less common type of green roof which also investigate the effect of factors such as age and vegetation composition. Runoff quantities from an aged intensive green roof in Manchester, UK, were analysed for 69 rainfall events, and compared to those on an adjacent paved roof. Average retention was 65.7% on the green roof and 33.6% on the bare roof. A comprehensive soil classification revealed the substrate, a mineral soil, to be in good general condition and also high in organic matter content which can increase the water holding capacity of soils. Large variation in the retention data made the use of predictive regression models unfeasible. This variation arose from complex interactions between Antecedant Dry Weather Period (ADWP), season, monthly weather trends, and rainfall duration, quantity and peak intensity. However, significantly lower retention was seen for high rainfall events, and in autumn, which had above average rainfall. The study period only covers one unusually wet year, so a longer study may uncover relationships to factors which can be applied to intensive roofs elsewhere. Annual rainfall retention for Manchester city centre could be increased by 2.3% by a 10% increase in intensive green roof construction. The results of this study will be of particular interest to practitioners implementing greenspace adaptation in temperate and cool maritime climates. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Calculating crop water requirement satisfaction in the West Africa Sahel with remotely sensed soil moisture

    USGS Publications Warehouse

    McNally, Amy; Gregory J. Husak,; Molly Brown,; Carroll, Mark L.; Funk, Christopher C.; Soni Yatheendradas,; Kristi Arsenault,; Christa Peters-Lidard,; Verdin, James

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission will provide soil moisture data with unprecedented accuracy, resolution, and coverage, enabling models to better track agricultural drought and estimate yields. In turn, this information can be used to shape policy related to food and water from commodity markets to humanitarian relief efforts. New data alone, however, do not translate to improvements in drought and yield forecasts. New tools will be needed to transform SMAP data into agriculturally meaningful products. The objective of this study is to evaluate the possibility and efficiency of replacing the rainfall-derived soil moisture component of a crop water stress index with SMAP data. The approach is demonstrated with 0.1°-resolution, ~10-day microwave soil moisture from the European Space Agency and simulated soil moisture from the Famine Early Warning Systems Network Land Data Assimilation System. Over a West Africa domain, the approach is evaluated by comparing the different soil moisture estimates and their resulting Water Requirement Satisfaction Index values from 2000 to 2010. This study highlights how the ensemble of indices performs during wet versus dry years, over different land-cover types, and the correlation with national-level millet yields. The new approach is a feasible and useful way to quantitatively assess how satellite-derived rainfall and soil moisture track agricultural water deficits. Given the importance of soil moisture in many applications, ranging from agriculture to public health to fire, this study should inspire other modeling communities to reformulate existing tools to take advantage of SMAP data.

  18. Methods, quality assurance, and data for assessing atmospheric deposition of pesticides in the Central Valley of California

    USGS Publications Warehouse

    Zamora, Celia; Majewski, Michael S.; Foreman, William T.

    2013-01-01

    The U.S. Geological Survey monitored atmospheric deposition of pesticides in the Central Valley of California during two studies in 2001 and 2002–04. The 2001 study sampled wet deposition (rain) and storm-drain runoff in the Modesto, California, area during the orchard dormant-spray season to examine the contribution of pesticide concentrations to storm runoff from rainfall. In the 2002–04 study, the number and extent of collection sites in the Central Valley were increased to determine the areal distribution of organophosphate insecticides and other pesticides, and also five more sample types were collected. These were dry deposition, bulk deposition, and three sample types collected from a soil box: aqueous phase in runoff, suspended sediment in runoff, and surficial-soil samples. This report provides concentration data and describes methods and quality assurance of sample collection and laboratory analysis for pesticide compounds in all samples collected from 16 sites. Each sample was analyzed for 41 currently used pesticides and 23 pesticide degradates, including oxygen analogs (oxons) of 9 organophosphate insecticides. Analytical results are presented by sample type and study period. The median concentrations of both chloryprifos and diazinon sampled at four urban (0.067 micrograms per liter [μg/L] and 0.515 μg/L, respectively) and four agricultural sites (0.079 μg/L and 0.583 μg/L, respectively) during a January 2001 storm event in and around Modesto, Calif., were nearly identical, indicating that the overall atmospheric burden in the region appeared to be fairly similar during the sampling event. Comparisons of median concentrations in the rainfall to those in the McHenry storm-drain runoff showed that, for some compounds, rainfall contributed a substantial percentage of the concentration in the runoff; for other compounds, the concentrations in rainfall were much greater than in the runoff. For example, diazinon concentrations in rainfall were about 70 percent of the diazinon concentration in the runoff, whereas the chlorpyrifos concentration in the rain was 1.8 times greater than in the runoff. The more water-soluble pesticides—carbaryl, metolachlor, napropamide, and simazine—followed the same pattern as diazinon and had lower concentrations in rain compared to runoff. Similar to chlorpyrifos,compounds with low water solubilities and higher soil-organic carbon partition coefficients, including dacthal, pendimethalin, and trifluralin, were found to have higher concentrations in rain than in runoff water and were presumed to partition to the suspended sediments and organic matter on the ground. During the 2002–04 study period, the herbicide dacthal had the highest detection frequencies for all sample types collected from the Central Valley sites (67–100 percent). The most frequently detected compounds in the wet-deposition samples were dacthal, diazinon, chlorpyrifos, and simazine (greater than 90 percent). The median wet-deposition amounts for these compounds were 0.044 micrograms per square meter per day (μg/m2/day), 0.209 μg/m2/day, 0.079 μg/m2/day, and 0.172 μg/m2/day, respectively. For the dry-deposition samples, detection frequencies were greater than 73 percent for the compounds dacthal, metolachor, and chlorpyrifos, and median deposition amounts were an order of magnitude less than for wet deposition. The differences between wet deposition and dry deposition appeared to be closely related to the Henry’s Law (H) constant of each compound, although the mass deposited by dry deposition takes place over a much longer time frame. Pesticides detected in rainfall usually were detected in the aqueous phase of the soil-box runoff water, and the runoff concentrations were generally similar to those in the rainfall. For compounds detected in the aqueous phase and suspended-sediment samples of soil-box runoff, concentrations of pesticides in the aqueous phase generally were detected in low concentrations and had few corresponding detections in the suspended- sediment samples. Dacthal, diazinon, chlorpyrifos, and simazine were the most frequently detected pesticides (greater than 83 percent) in the aqueous-phase samples, with median concentrations of 0.010 μg/L, 0.045 μg/L, 0.016 μg/L, and 0.077 μg/L, respectively. Simazine was the most frequently detected compound in the suspended-sediment samples (69 percent), with a median concentration of 0.232 μg/L. Results for compounds detected in the surficial-soil samples collected throughout the study period showed that there was an increase in concentration for some compounds, indicating atmospheric deposition of these compounds onto the soil-box surface. In the San Joaquin Valley, the compounds chlorpyrifos, dacthal, and iprodione were detected at higher concentrations (between 1.4 and 2 times greater) than were found in the background samples collected from the San Joaquin Valley soil-box sites. In the Sacramento Valley, the compounds chlorpyrifos, dacthal, iprodione, parathionmethyl, and its oxygen analog, paraoxon-methyl, were detected in samples collected during the study period in low concentrations, but were not detected in the background concentration of the Sacramento Valley soil mix.

  19. Study on the response of unsaturated soil slope based on the effects of rainfall intensity and slope angle

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza

    2017-07-01

    Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.

  20. [Hydrological characteristics of calcareous soil with contrasting architecture on dolomite slope of Northwest Guangxi].

    PubMed

    Zhang, Xing; Wang, Ke Lin; Fu, Zhi Yong; Chen, Hong Song; Zhang, Wei; Shi, Zhi Hua

    2017-07-18

    The traditional hydrology method, stable hydrogen and oxygen isotope technology, and rainfall simulation method were combined to investigate the hydrological function of small experimental plots (2 m×1.2 m) of contrasting architecture in Northwest Guangxi dolomite area. There were four typical catenary soils along the dolomite peak-cluster slope, which were the whole-sand, up-loam and down-sand, the whole loam, up-clay and down-sand soil types, respectively. All the experimental plots generated little amounts of overland runoff and had a high surface infiltration rate, ranging from 41 to 48 mm·h -1 , and the interflow and deep percolation were the dominant hydrological progress. The interflow was classified into interflow in soil clay A and C according to soil genetic layers. For interflow in soil clay A, matrix flow was generated from the whole-sand, up-loam and down-sand, up-clay and down-sand soil types, but preferential flow dominated in the whole-loam soil type. As for interflow in soil clay C, preferential flow dominated in the whole-loam, up-clay and down-sand, up-loam and down-sand soil types. The soils were shallow yet continuously distributed along the dolomite slope. The difference of hydrological characteristics in soil types with different architectures mainly existed in the runoff generation progress of each interface underground. It proved that the a 3-D perspective was needed to study the soil hydrological functions on dolomite slope of Northwest Guangxi, and a new way paying more attention on underground hydrological progress should be explored to fully reveal the near-surface hydrological processes on karst slope.

  1. A High Space-Time Resolution Dataset Linking Meteorological Forcing and Hydro-Sedimentary Response in a Mesoscale Mediterranean Catchment (Auzon) of the Ardèche Region, France

    NASA Astrophysics Data System (ADS)

    Nord, G.; Braud, I.; Boudevillain, B.; Gérard, S.; Molinié, G.; Vandervaere, J. P.; Huza, J.; Le Coz, J.; Dramais, G.; Legout, C.; Berne, A.; Grazioli, J.; Raupach, T.; Van Baelen, J.; Wijbrans, A.; Delrieu, G.; Andrieu, J.; Caliano, M.; Aubert, C.; Teuling, R.; Le Boursicaud, R.; Branger, F.; Vincendon, B.; Horner, I.

    2014-12-01

    A comprehensive hydrometeorological dataset is presented spanning the period 1 Jan 2011-31 Dec 2014 to improve the understanding and simulation of the hydrological processes leading to flash floods in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. The specificity of the dataset is its high space-time resolution, especially concerning rainfall and the hydrological response which is particularly adapted to the highly spatially variable rainfall events that may occur in this region. This type of dataset is rare in scientific literature because of the quantity and type of sensors for meteorology and surface hydrology. Rainfall data include continuous precipitation measured by rain-gages (5 min time step for the research network of 21 rain-gages and 1h time step for the operational network of 9 rain-gages), S-band Doppler dual-polarization radar (1 km2, 5 min resolution), and disdrometers (11 sensors working at 1 min time step). During the special observation period (SOP-1) and enhanced observation period (Sep-Dec 2012, Sep-Dec 2013) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). Meteorological data are taken from the operational surface weather observation stations of Meteo France at the hourly time resolution (6 stations in the region of interest). The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations measure water discharge and additional physico-chemical variables at a 2-10 min time resolution. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 gauges continuously measures water level and temperature in headwater subcatchments at a time resolution of 2-5 min. A network of soil moisture sensors enable the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, opportunistic observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. The data are appropriate for understanding rainfall variability, improving areal rainfall estimations and progress in distributed hydrological modelling.

  2. A High Space-Time Resolution Dataset Linking Meteorological Forcing and Hydro-Sedimentary Response in a Mesoscale Mediterranean Catchment (Auzon) of the Ardèche Region, France

    NASA Astrophysics Data System (ADS)

    Nord, G.; Braud, I.; Boudevillain, B.; Gérard, S.; Molinié, G.; Vandervaere, J. P.; Huza, J.; Le Coz, J.; Dramais, G.; Legout, C.; Berne, A.; Grazioli, J.; Raupach, T.; Van Baelen, J.; Wijbrans, A.; Delrieu, G.; Andrieu, J.; Caliano, M.; Aubert, C.; Teuling, R.; Le Boursicaud, R.; Branger, F.; Vincendon, B.; Horner, I.

    2015-12-01

    A comprehensive hydrometeorological dataset is presented spanning the period 1 Jan 2011-31 Dec 2014 to improve the understanding and simulation of the hydrological processes leading to flash floods in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. The specificity of the dataset is its high space-time resolution, especially concerning rainfall and the hydrological response which is particularly adapted to the highly spatially variable rainfall events that may occur in this region. This type of dataset is rare in scientific literature because of the quantity and type of sensors for meteorology and surface hydrology. Rainfall data include continuous precipitation measured by rain-gages (5 min time step for the research network of 21 rain-gages and 1h time step for the operational network of 9 rain-gages), S-band Doppler dual-polarization radar (1 km2, 5 min resolution), and disdrometers (11 sensors working at 1 min time step). During the special observation period (SOP-1) and enhanced observation period (Sep-Dec 2012, Sep-Dec 2013) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). Meteorological data are taken from the operational surface weather observation stations of Meteo France at the hourly time resolution (6 stations in the region of interest). The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations measure water discharge and additional physico-chemical variables at a 2-10 min time resolution. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 gauges continuously measures water level and temperature in headwater subcatchments at a time resolution of 2-5 min. A network of soil moisture sensors enable the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, opportunistic observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. The data are appropriate for understanding rainfall variability, improving areal rainfall estimations and progress in distributed hydrological modelling.

  3. Potential effects of vinasse as a soil amendment to control runoff and soil loss

    NASA Astrophysics Data System (ADS)

    Hazbavi, Z.; Sadeghi, S. H. R.

    2016-02-01

    Application of organic materials are well known as environmental practices in soil restoration, preserving soil organic matter and recovering degraded soils of arid and semiarid lands. Therefore, the present research focused on evaluating the effectiveness of vinasse, a byproduct mainly of the sugar-ethanol industry, on soil conservation under simulated rainfall. Vinasse can be recycled as a soil amendment due to its organic matter content. Accordingly, the laboratory experiments were conducted by using 0.25 m2 experimental plots at 20 % slope and rainfall intensity of 72 mm h-1 with 0.5 h duration. The effect of vinasse was investigated on runoff and soil loss control. Experiments were set up as a control (with no amendment) and three treated plots with doses of 0.5, 1, and 1.5 L m-2 of vinasse subjected to simulated rainfall. Laboratory results indicated that vinasse at different levels could not significantly (P > 0.05) decrease the runoff amount and soil loss rate in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m-2 level of vinasse application.

  4. Rainfall and sheet power equation for interrill erosion on steep hillslope

    USDA-ARS?s Scientific Manuscript database

    Splash and sheet erosion processes dominate on most undisturbed hillslopes of rangeland. Interrill soil erosion should consider the influence of both raindrop and sheet flow to work of soil particles detached by raindrop impact and transported by rainfall-disturbed sheet flow. Interrill erosion equa...

  5. Precipitation pulse dynamics of carbon sequestration and efflux in highly weatherable soils

    NASA Astrophysics Data System (ADS)

    Barron-Gafford, G.; Minor, R.; Van Haren, J. L.; Dontsova, K.; Troch, P. A.

    2013-12-01

    Soils are the primary pool for terrestrial carbon on Earth, and loss of that carbon to the atmosphere or hydrosphere represents a significant efflux that can impact a host of other downstream processes. Soil respiration (Rsoil), the efflux of CO2 to the atmosphere, represents the major pathway by which carbon is lost from the soil system in more weathered soils. However, in newly formed soils, chemical weathering can significantly deplete soil CO2 concentrations. As vegetation colonizes these soils, multiple interacting and contradictory pathways evolve such that soil CO2 concentrations increase in response to plant inputs but are decreased through chemical reactions. Furthermore, abiotic drivers of soil temperature and moisture likely differentially affect these processes. Understanding the bio-geo-chemical drivers and feedbacks associated with soil CO2 production and efflux in the critical zone necessitates an integrated science approach, drawing on input from plant physiologists, bio- and geochemists, and hydrologists. Here, we created a series of 1-meter deep mesocosms filled with granular basalt that supported either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Use of multiple plant functional types allowed us to explore the impacts of plant structure (primarily rooting profiles) on critical zone function in terms of water and carbon exchange surrounding precipitation pulse dynamics. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 efflux in response to rainfall events of varying magnitude and intervening periods of drought. Five replicates of each were maintained under current ambient or projected (+4oC) air temperatures. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall and confirm differences among plant types and collected soils solution samples to quantify dissolved inorganic carbon (DIC), pH, and other solute concentrations. Importantly, we found Rsoil dynamics to be nearly in direct contrast to our classic understanding of patterns of soil CO2 efflux after rain events. Rsoil rates declined immediately upon wetting and gradually increased to pre-rain rates as the soils dried. Investigation into soil CO2 profile data showed that CO2 concentrations just below the surface declined significantly from near-ambient levels to near ~50ppm, which would directly impact rates of Rsoil. We detected differences among plant functional types in terms of rooting depth, water use, photosynthetic uptake, base rates of Rsoil, the time required to return to pre-rain rates of Rsoil, and the rates of soil weathering. Combining aboveground measurements of carbon uptake with these belowground estimates of carbon pools and efflux will allow us to make much more informed projections of carbon dynamics within highly weatherable soils across a range of global climate change projections and plant functional types.

  6. Projecting changes in Everglades soil biogeochemistry for carbon and other key elements, to possible 2060 climate and hydrologic scenarios.

    PubMed

    Orem, William; Newman, Susan; Osborne, Todd Z; Reddy, K Ramesh

    2015-04-01

    Based on previously published studies of elemental cycling in Everglades soils, we projected how soil biogeochemistry, specifically carbon, nitrogen, phosphorus, sulfur, and mercury might respond to climate change scenarios projected for 2060 by the South Florida Water Management Model. Water budgets and stage hydrographs from this model with future scenarios of a 10% increased or decreased rainfall, a 1.5 °C rise in temperature and associated increase in evapotranspiration (ET) and a 0.5 m rise in sea level were used to predict resulting effects on soil biogeochemistry. Precipitation is a much stronger driver of soil biogeochemical processes than temperature, because of links among water cover, redox conditions, and organic carbon accumulation in soils. Under the 10% reduced rainfall scenario, large portions of the Everglades will experience dry down, organic soil oxidation, and shifts in soil redox that may dramatically alter biogeochemical processes. Lowering organic soil surface elevation may make portions of the Everglades more vulnerable to sea level rise. The 10% increased rainfall scenario, while potentially increasing phosphorus, sulfur, and mercury loading to the ecosystem, would maintain organic soil integrity and redox conditions conducive to normal wetland biogeochemical element cycling. Effects of increased ET will be similar to those of decreased precipitation. Temperature increases would have the effect of increasing microbial processes driving biogeochemical element cycling, but the effect would be much less than that of precipitation. The combined effects of decreased rainfall and increased ET suggest catastrophic losses in carbon- and organic-associated elements throughout the peat-based Everglades.

  7. Hydrologic behavior of a steep forested slope prone to shallow landsliding

    NASA Astrophysics Data System (ADS)

    Berti, Matteo; Simoni, Alessandro

    2015-04-01

    Over the past ten years, the frequency of debris flows in the Northern Apennines of Italy has significantly increased. Gravitational movements in the area are dominated by slow-moving landslides involving fine-grained soils and, to a lesser extent, by shallow slips in weathered arenaceous rocks. During the past 5 years, at least 20 debris flow events were triggered by exceptional rainfall events. Although no fatalities of injuries resulted from these landslides, the appearance of this new danger generated great concern among local communities. The Civil Protection Agency of the Emilia-Romagna region therefore decided to produce a debris flow susceptibility map to target high-risk zones and to help local authorities in emergency planning. This task, however, is particularly difficult due to the lack of historical data required to apply heuristic or statistical methods. In this context we installed a monitoring system on a representative slope in order to investigate the hydrologic response to rainfall and to support the choice of a suitable deterministic model. The selected slope is close to the village of Porretta Terme (Province of Bologna, Italy) at an elevation of 510 m asl. The slope has an inclination of about 30° and consists of a thin soil cover (0.5-1 thickness) lying over a fractured arenaceous bedrock. The soil is a well-graded sand with silt, gravel, cobbles, and weathered rock blocks. The slope is densely vegetated with grass, shrubs and mature trees. Part of the slope failed on the 30th November 2008 after a rainfall of 140 mm in 24 hours. A shallow slide of the soil mantle rapidly mobilized into debris flow leaving the bedrock exposed in the source area. The monitoring system is located on an unfailed slope close to the initiation area. The system consists of three stations aligned along the maximum slope at a distance of 15-20 m. Each station is equipped with: i) an open-standpipe piezometer installed near the soil-rock interface (1 m deep); ii) three tensiometers installed in the soil cover at different depths (0.2, 0.5 and 0.8 m); iii) three soil moisture capacitance sensors installed beside the tensiometer probes. The uphill station also includes an ultrasonic sensor for measuring snow depth and a barometric/temperature sensor. A tipping-bucket rain gage is installed in an area free of tree vegetation located 50 m further uphill. All the data are recorded every 10 minutes and stored on site. The monitoring system was installed in September 2012 and the first two years of data provide a consistent picture of slope hydrology. During all the dry season (from June to September) the sandy soil is essentially dry with strong negative pore pressures (less than -80 kPa). Occasional summer rainfall causes the infiltration of water into the unsaturated soil but the soil never approaches the saturation, nor groundwater is accumulated at the soil-rock interface. With the start of the wet season (around October) the soil water content progressively increases and the pore pressure rises to values detectable by the tensiometers (higher than 80 kPa). The soil, however, remains generally unsaturated with negative pore pressures in the order of -20/-30 kPa. Full saturation is temporarily reached in response to intense rainfall events. Rainfall water induce fast, transient pore pressure increases in the soil mantle and moves vertically toward the soil-rock interface, eventually leading to the development of a transient perched water table during the heaviest rainfall events. The thickness of the perched water table is clearly related to rainfall intensity (very intense rainfall may saturate up to 80% of the soil profile) while the contribution of lateral flow is less evident probably because it is dominated by macropores or because because bedrock fractures favour deeper circulation.

  8. Brief communication: Using averaged soil moisture estimates to improve the performances of a regional-scale landslide early warning system

    NASA Astrophysics Data System (ADS)

    Segoni, Samuele; Rosi, Ascanio; Lagomarsino, Daniela; Fanti, Riccardo; Casagli, Nicola

    2018-03-01

    We communicate the results of a preliminary investigation aimed at improving a state-of-the-art RSLEWS (regional-scale landslide early warning system) based on rainfall thresholds by integrating mean soil moisture values averaged over the territorial units of the system. We tested two approaches. The simplest can be easily applied to improve other RSLEWS: it is based on a soil moisture threshold value under which rainfall thresholds are not used because landslides are not expected to occur. Another approach deeply modifies the original RSLEWS: thresholds based on antecedent rainfall accumulated over long periods are substituted with soil moisture thresholds. A back analysis demonstrated that both approaches consistently reduced false alarms, while the second approach reduced missed alarms as well.

  9. Relationship among soil surface properties, hydrology and nitrogen cycling along a climatological gradient in drylands

    NASA Astrophysics Data System (ADS)

    Zaady, E.; Segoli, M.; Eldridge, D. J.; Groffman, P. M.; Boeken, B.; Shachak, M.

    2009-04-01

    Primary production and nutrient cycling in dryland systems are limited by water supply. There are two groups of primary producers, high biomass production plants and low biomass producing organisms found in biological soil crusts (BSC's), which control energy flow, nutrient cycling and hydrology. Biological or biogenic soil crusts are common in the world's drylands, from dry sub-humid to hyper-arid systems. The crusts are formed by communities of microphytes, mainly cyanobacteria, green algae, mosses, and lichens. The extracellular polysaccharide materials produced by the crust organisms attach soil particles, creating a solid horizontal layer of crust. Biological soil crusts modify soil quality by (1) aggregating soil particles, thereby reducing wind and water erosion; (2) reducing water infiltration, causing overland water run-off; and (3) N fixation and C sequestration. Dryland landscapes are two phase mosaic composed of BSC and high production patches. Development or loss of BSC may trigger changes in the spatial distribution of the patch types and therefore transitions between functional and degraded ecosystem states. We present a conceptual model depicting the function of each patch type and the link between them. Taking into account the contrast between low and high vegetation cover of dryland systems and their role in controlling soil nitrogen and water flows. The model describes the functioning of dryland systems with low biomass producing crust organisms cover, low rainfall, low top soil water and production, which cause low infiltration rate, low N uptake, nitrate accumulation, high evaporation and runoff. This leads to leaching of nitrates, oxygen depletion with high anaerobic conditions, high denitrification rates and N loss, resulting in low plant cover and soil organic matter i.e., degraded soil. It also depicts the functioning of the high production plants under low rainfall regimes resulting in low rates of N and energy flows. The model shows that when the two patches are combined into a source-sink system there is a synergetic effect increasing productivity and diversity, and N cycling and hydrology. The strength of the synergism depends on the climatological gradient. Correspondence to: Eli Zaady (Email: zaadye@volcani.agri.gov.il).

  10. Soil Water Balance and Vegetation Dynamics in two Water-limited Mediterranean Ecosystem on Sardinia under past and future climate change

    NASA Astrophysics Data System (ADS)

    Corona, R.; Montaldo, N.; Albertson, J. D.

    2016-12-01

    Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Historical human influences (e.g., deforestation, urbanization) further altered these ecosystems. Sardinia island is a representative region of Mediterranean ecosystems. It is low urbanized except some plan areas close to the main cities where main agricultural activities are concentrated. Two contrasting case study sites are within the Flumendosa river basin (1700 km2). The first site is a typical grassland on an alluvial plan valley (soil depth > 2m) while the second is a patchy mixture of Mediterranean vegetation species (mainly wild olive trees and C3 herbaceous) that grow in a soil bounded from below by a rocky layer of basalt, partially fractured (soil depth 15 - 40 cm). In both sites land-surface fluxes and CO2 fluxes are estimated by the eddy correlation technique while soil moisture was continuously estimated with water content reflectometers, and periodically leaf area index (LAI) was estimated. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics; 3) evaluate the impact of past and future climate change scenarios on the two contrasting ecosystems. For reaching the objectives an ecohydrologic model that couples a vegetation dynamic model (VDM), and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM) has been used. Historical meteorological data are available from 1922 and hydro-meteorological scenarios are then generated using a weather generator. The VDM-LSM model predict soil water balance and vegetation dynamics for the generated hydrometeorological scenarios in the two contrasting ecosystems. Results demonstrate that vegetation dynamics are influenced by the inter-annual variability of atmospheric forcing, with vegetation density changing significantly according to seasonal rainfall amount. At the same time the vegetation dynamics affect the soil water balance.

  11. Soil degradation in wooded rangelands of southwest Spain

    NASA Astrophysics Data System (ADS)

    Schnabel, S.; Lavado Contador, J. F.; Gómez Gutiérrez, Á.

    2009-04-01

    The paper presents a review on soil degradation studies carried out since 1990 in wooded rangelands in Extremadura. In the semiarid and subhumid parts of the south-western Iberian Peninsula open evergreen woodlands dominated by Quercus species are widespread (dehesas and montados). They are composed of grasslands with a varying degree of tree cover, ranging from treeless to more than 80 individuals per hectare. In some areas shrubs form a third component of the vegetation. Dehesas are subject to a complex exploitation system with agro-silvo-pastoral land use. The dominant soil degradation phenomena include different forms of water erosion and physical and biological degradation. Regarding soil erosion and surface hydrology, research has been carried out at different spatial scales. Sheetwash and overland flow were investigated along hillslopes and in microplots, whereas gully erosion and runoff production were monitored in small experimental catchments. Recently, physical and biological degradation has been studied in a large number of farms, representing the most important types of rangelands in the region of Extremadura. This included a rapid appraisal of degradation features, the determination of soil properties and a study on the distribution and activity of gullies. Soil degradation varies strongly with regard to the natural factors, but also with respect to land use and management. Sheetwash (interrill erosion) is the dominant process on hillslopes, with a mean soil loss rate of 0.63 t ha-1. However rainfall variation and land management, especially livestock density, produce changes in soil cover. With low to moderate livestock densities and during prolonged periods with low rainfall (droughts), the vegetation cover may be strongly reduced, provoking high soil losses, whereas during normal or humid periods interrill erosion is low. Excessive stocking rates may exacerbate sheetwash, producing severe soil degradation, regardless of rainfall conditions. In Extremadura, gullies are localized and permanent features, representing only a small fraction of the total land and are mainly located in valley bottoms with an alluvial sediment fill. Individual gullies may present high soil losses, constitute an obstacle for traffic and enhance drainage of subsurface flow (valley bottoms probably dry up more quickly). They are more frequent on schist and greywacke than on granites, the dominant rock types in SW Spain. Monitoring of a gully system during a period of 7 years has shown that a strong relationship exists between catchment hydrology (rainfall and runoff) and erosion in the channel. However, a study of the same gully system for the period from 1947 until 2002 has shown increases of erosion during a period when large parts of the catchment were cultivated and when livestock numbers were increased. The latter is mainly related with animal trampling in the vicinity and along the margins of the gully. Rill erosion is not a frequent phenomenon in dehesa, limited mainly to areas which are ploughed for cultivation or shrub cleaning. Very high erosion may occur when tillage practice immediately precedes exceptional rainstorms. Other soil degradation processes important in wooded rangelands are soil compaction, reduction of organic matter content, biological activity, plant available water and infiltration capacity. The few quantitative data available to date show that in large parts of the region soils are degraded (shallow, low organic matter content and high bulk density, etc.). This can be the result of centuries of agrosilvopastoral land use but is certainly also the consequence of inadequate land management in many areas at present. The large spatial variation of factors (vegetation, soils, relief, climate, land use and land management) is a characteristic feature of wooded rangelands in the Iberian Peninsula, and together with the temporal changes of these factors, makes it very difficult to discriminate the causes of soil degradation which are related with land management. The latter constitutes however an important task in order to be able to propose soil conservation measures. To achieve this research is presently carried out on the development of an evaluation system based on soil degradation indicators.

  12. Soil compartment is a major determinant of the impact of simulated rainfall on desert microbiota.

    PubMed

    Aslam, Shazia N; Dumbrell, Alex J; Sabir, Jamal S; Mutwakil, Mohammed H Z; Baeshen, Mohammed M N; Abo-Aba, Salah E M; Clark, Dave R; Yates, Steven A; Baeshen, Nabih A; Underwood, Graham J C; McGenity, Terry J

    2016-12-01

    Although desert soils support functionally important microbial communities that affect plant growth and influence many biogeochemical processes, the impact of future changes in precipitation patterns on the microbiota and their activities is largely unknown. We performed in-situ experiments to investigate the effect of simulated rainfall on bacterial communities associated with the widespread perennial shrub, Rhazya stricta in Arabian desert soils. The bacterial community composition was distinct between three different soil compartments: surface biological crust, root-attached, and the broader rhizosphere. Simulated rainfall had no significant effect on the overall bacterial community composition, but some population-level responses were observed, especially in soil crusts where Betaproteobacteria, Sphingobacteria, and Bacilli became more abundant. Bacterial biomass in the nutrient-rich crust increased three-fold one week after watering, whereas it did not change in the rhizosphere, despite its much higher water retention. These findings indicate that between rainfall events, desert-soil microbial communities enter into stasis, with limited species turnover, and reactivate rapidly and relatively uniformly when water becomes available. However, microbiota in the crust, which was relatively enriched in nutrients and organic matter, were primarily water-limited, compared with the rhizosphere microbiota that were co-limited by nutrients and water. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Rainfall erosivity: An overview of methodologies and applications

    USDA-ARS?s Scientific Manuscript database

    The rainfall erosivity factor (R-factor) is one of six erosion factors in the Universal Soil Loss Equation (USLE), together which reflect the combined effects that cause soil loss by rill and interrill erosion on hillslopes by precipitation. It is defined as the summation of event EI30 (the product ...

  14. Biochars impact on soil moisture storage in an Ultisol and two Aridisols

    USDA-ARS?s Scientific Manuscript database

    Droughts associated with low or erratic rainfall distribution can cause detrimental crop moisture stress. This problem is exacerbated in the USA’s arid western and southeastern Coastal Plain due to poor rainfall distribution, poor soil water storage, or poorly-aggregated, subsurface hard layers that...

  15. On the non-uniqueness of sediment yield

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ivanov, V. Y.; Katopodes, N.

    2012-12-01

    Estimation of sediment yield at the catchment scale plays an important role for optimal design of hydraulic structures, such as bridges, culverts, reservoirs, and detention basins, as well as making informed decisions in environmental management. Many experimental studies focused on obtaining flow and sediment data in search of unique relationships between runoff (specifically, volume and peak) and sediment characteristics. These relationships were employed to predict sediment yield from flow information. However, despite the same flow volume, the actual sediment yield produced by river basins can vary significantly depending on several conditions: (i) the catchment size, (ii) land use, topography, and soil type, (iii) climatic variations or characteristics , and (iv) initial conditions of soil moisture and soil surface . Additionally, shield formation by relatively larger particles can be one of the possible controllers of erosion and net sediment transport. Smaller particles have low settling velocities and tend to move far from their original position of detachment. Conversely, larger particles can settle quickly near their original locations. Eventually, such particles can form a shield on soil bed and protect underlying soil from rainfall detachment and runoff entrainment. The shield formation and temporal development can be influenced by rainfall intensity, frequency, and volume. Rainfall influences the generation of runoff leading to different conditions of flow depth and velocity that can perturb intact soil into a loose condition. In this study, we numerically investigate the effects of precipitation patterns on the generation of sediment yield. In particular, we address reasons of non-uniqueness of basin sediment yield for the same runoff volume as well as causes of unsteady phenomena in erosion processes under steady state flow conditions. For numerical simulations, the two-dimensional Hairsine-Rose model coupled with a fully distributed hydrology and hydraulics model (tRIBS-OFM: Triangulated irregular network - based Real time Integrated Basin Simulator-Overland Flow Model) is used.

  16. Skylab

    NASA Image and Video Library

    1970-01-01

    This 1970 photograph shows Skylab's Microwave Radiometer/Scatterometer and Altimeter, one of the major components for an Earth Resources Experiment Package (EREP). It was designed to study varying ocean surface, soil erosion, sea and lake ice, snow cover, seasonal vegetational changes, flooding, rainfall and soil types. The overall purpose of the EREP was to test the use of sensors that operated in the visible, infrared, and microwave portions of the electromagnetic spectrum to monitor and study Earth resources. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  17. Infiltration and Runoff Measurements on Steep Burned Hillslopes Using a Rainfall Simulator with Variable Rain Intensities

    USGS Publications Warehouse

    Kinner, David A.; Moody, John A.

    2008-01-01

    Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities (about 20 millimeters per hour [mm/h], 35 mm/h, and 50 mm/h), were conducted on four plots. Measurements during and after the simulations included runoff, rainfall, suspended-sediment concentrations, surface ash layer thickness, soil moisture, soil grain size, soil lost on ignition, and plot topography. Runoff discharge reached a steady state within 7 to 26 minutes. Steady infiltration rates with the 50-mm/h application rainfall intensity approached 20?35 mm/h. If these rates are projected to rainfall application intensities used in many studies of burned area runoff production (about 80 mm/h), the steady discharge rates are on the lower end of measurements from other studies. Experiments using multiple rainfall intensities (three) suggest that runoff begins at rainfall intensities around 20 mm/h at the 1-square-meter scale, an observation consistent with a 10-mm/h rainfall intensity threshold needed for runoff initiation that has been reported in the literature.

  18. Biotic context and soil properties modulate native plant responses to enhanced rainfall.

    PubMed

    Eskelinen, Anu; Harrison, Susan

    2015-11-01

    The environmental and biotic context within which plants grow have a great potential to modify responses to climatic changes, yet few studies have addressed both the direct effects of climate and the modulating roles played by variation in the biotic (e.g. competitors) and abiotic (e.g. soils) environment. In a grassland with highly heterogeneous soils and community composition, small seedlings of two native plants, Lasthenia californica and Calycadenia pauciflora, were transplanted into factorially watered and fertilized plots. Measurements were made to test how the effect of climatic variability (mimicked by the watering treatment) on the survival, growth and seed production of these species was modulated by above-ground competition and by edaphic variables. Increased competition outweighed the direct positive impacts of enhanced rainfall on most fitness measures for both species, resulting in no net effect of enhanced rainfall. Both species benefitted from enhanced rainfall when the absence of competitors was accompanied by high soil water retention capacity. Fertilization did not amplify the watering effects; rather, plants benefitted from enhanced rainfall or competitor removal only in ambient nutrient conditions with high soil water retention capacity. The findings show that the direct effects of climatic variability on plant fitness may be reversed or neutralized by competition and, in addition, may be strongly modulated by soil variation. Specifically, coarse soil texture was identified as a factor that may limit plant responsiveness to altered water availability. These results highlight the importance of considering the abiotic as well as biotic context when making future climate change forecasts. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Thermal and water regime of green roof segments filled with Technosol

    NASA Astrophysics Data System (ADS)

    Jelínková, Vladimíra; Šácha, Jan; Dohnal, Michal; Skala, Vojtěch

    2016-04-01

    Artificial soil systems and structures comprise appreciable part of the urban areas and are considered to be perspective for number of reasons. One of the most important lies in contribution of green roofs and facades to the heat island effect mitigation, air quality improvement, storm water reduction, etc. The aim of the presented study is to evaluate thermal and water regime of the anthropogenic soil systems during the first months of the construction life cycle. Green roof test segments filled with two different anthropogenic soils were built to investigate the benefits of such systems in the temperate climate. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the soil substrates provided basis for detailed analysis of thermal and hydrological regime. Water balance of green roof segments was calculated for available vegetation seasons and individual rainfall events. On the basis of an analysis of individual rainfall events rainfall-runoff dependency was found for green roof segments. The difference between measured actual evapotranspiration and calculated potential evapotranspiration was discussed on period with contrasting conditions in terms of the moisture stress. Thermal characteristics of soil substrates resulted in highly contrasting diurnal variation of soils temperatures. Green roof systems under study were able to reduce heat load of the roof construction when comparing with a concrete roof construction. Similarly, received rainfall was significantly reduced. The extent of the rainfall reduction mainly depends on soil, vegetation status and experienced weather patterns. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  20. Characteristics and functions of semi-desert soils in the Negev (Israel) depending on precipitation, relief and vegetation

    NASA Astrophysics Data System (ADS)

    Felde, V.; Drahorad, S.; Felix-Henningsen, P.

    2009-04-01

    The Negev desert in south western Israel has been the subject of several investigations concerning soil forming processes and matter fluxes in desert soils. In order to investigate the influence of the ‘global change' on semi-desert ecosystems, study sites along a steep rainfall gradient are of great advantage. The study site "Nizzana 69", which is in the focus of this study, lies about 25 km south of the Mediterranean Sea near the border between Israel and Egypt. The area has an annual rainfall of approximately 170 mm * a-1. A catena consisting of six profiles, three under the legume Retama raetam and three in the bare interspace between shrubs was investigated in order to show the impact of this perennial plant and the relief on soil properties. The results show a strong influence of the shrub due to accumulation of nutrients, carbonates and soluble salts, which were precipitated with dust and rainfall, or which derive from mineralisation of plant litter. The interspace between the plants is covered by a biological soil crust, which also strongly influences the matter fluxes by creating runoff, nitrogen-fixation and stabilizing the soil surface and protecting it against deflation. The distribution of salts and carbonates in the profiles indicate leaching processes. All soils of the study site "Nizzana 69" are weekly developed Arenosols without horizons of carbonate or salt enrichment to a depth of 1 m. The comparison with other areas along the rainfall gradient shows higher inputs of soluble salts with increasing precipitation due to wet deposition, while carbonate contents increase with decreasing precipitation due to deposition of dust, which was generated in the lime stone Negev. On the other hand leaching of soluble soil constituents decreases and accumulation in the upper soil horizon increases with decreasing annual precipitation. Furthermore the importance of local relief aspects for plant growth decreases with increasing rainfall.

  1. Characteristics of pulsed runoff-erosion events under typical rainstorms in a small watershed on the Loess Plateau of China.

    PubMed

    Wu, Lei; Jiang, Jun; Li, Gou-Xia; Ma, Xiao-Yi

    2018-02-27

    The pulsed events of rainstorm erosion on the Loess Plateau are well-known, but little information is available concerning the characteristics of superficial soil erosion processes caused by heavy rainstorms at the watershed scale. This study statistically evaluated characteristics of pulsed runoff-erosion events based on 17 observed rainstorms from 1997-2010 in a small loess watershed on the Loess Plateau of China. Results show that: 1) Rainfall is the fundamental driving force of soil erosion on hillslopes, but the correlations of rainfall-runoff and rainfall-sediment in different rainstorms are often scattered due to infiltration-excess runoff and soil conservation measures. 2) Relationships between runoff and sediment for each rainstorm event can be regressed by linear, power, logarithmic and exponential functions. Cluster Analysis is helpful in classifying runoff-erosion events and formulating soil conservation strategies for rainstorm erosion. 3) Response characteristics of sediment yield are different in different levels of pulsed runoff-erosion events. Affected by rainfall intensity and duration, large changes may occur in the interactions between flow and sediment for different flood events. Results provide new insights into runoff-erosion processes and will assist soil conservation planning in the loess hilly region.

  2. The soil-water balance simulations of a grassland in response to CO2, rainfall, and biodiversity manipulations at BioCON

    NASA Astrophysics Data System (ADS)

    Flinker, R. H.; Cardenas, M.; Caldwell, T. G.; Rich, R.; Reich, P.

    2013-12-01

    The BioCON (Biodiversity, CO2 and N) experiment has been continuously running since 1997. Operated by the University of Minnesota and located within the Cedar Creek Ecosystem Science Reserve in Minnesota, USA, BioCON is a Free-Air CO2 Enrichment (FACE) experiment that investigates plant community response to three key environmental variables: nitrogen, atmospheric CO2 and biodiversity. More recently rainfall exclusion and temperature manipulation were added to the experiment which amounts to 371 plots. The site attempts to replicate predicted average temperature increases and a northern shift of plant species and any associated consequences. FACE experiments have been conducted for a number of years in different countries, but the focus has generally been on how plant communities, soil respiration and microbes respond. Minimal work has been focused on the hydrologic aspects of these experiments which are potentially valuable for investigating global warming effects on local and plot-scale ecohydrology. Thus, the objective of this work is to characterize and model unsaturated flow for different CO2 and rainfall treatments in order to see how they affect soil moisture dynamics and groundwater recharge on grasslands of central Minnesota. Our study focuses on simulating soil moisture dynamics in eighteen of the BioCON plots: six bare plots with regular rainfall regimes (zero plant species, three plots with elevated atmospheric CO2 levels), six regular rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels) and six reduced rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels). The Simultaneous Heat and Water (SHAW) model, which solves the Richards equation for unsaturated zone water flow coupled to a comprehensive energy balance model, was parameterized with a combination of field and lab estimates of soil properties. Field estimates of saturated hydraulic conductivity using tension infiltrometers ranged from 9.8 x 10-4 to 6.7 x 10-3 cm/s. Soil cores were collected and analyzed for soil hydraulic properties (texture, unsaturated hydraulic conductivity and moisture retention). From the grain size analyzes of soil samples collected every 10 cm until 1m depth, the soil is homogenous and on average 87% sand, 11% silt and 2% clay. We will be presenting results from the simulations and statistical comparisons to observations of soil moisture at four depths in each plot.

  3. [Characteristics of soil phosphorous loss under different ecological planting patterns in hilly red soil regions of southern Hunan Province, China].

    PubMed

    Yuan, Min; Wen, Shi-Lin; Xu, Ming-Gang; Dong, Chun-Hua; Qin, Lin; Zhang, Lu

    2013-11-01

    Taking a large standard runoff plot on a red soil slope in Qiyang County, southern Hunan Province as a case, this paper studied the surface soil phosphorus loss characteristics in the hilly red soil regions of southern Hunan under eight ecological planting patterns. The phosphorus loss from wasteland (T1) was most serious, followed by that from natural sloped cropping patterns (T2 and T3), while the phosphorus loss amount from terrace cropping patterns (T4-T8) was the least, only occupying 9.9%, 37%, 0.7%, 2.3%, and 1.9% of T1, respectively. The ecological planting patterns directly affected the forms of surface-lost soil phosphorus, with the particulate phosphorus (PP) as the main lost form. Under the condition of rainstorm (daily rainfall > 50 mm), rainfall had lesser effects on the phosphorus loss among different planting patterns. However, the phosphorus loss increased with increasing rain intensity. The surface soil phosphorus loss mainly occurred from June to September. Both the rainfall and the rain intensity were the factors directly affected the time distribution of surface soil phosphorus loss in hilly red soil regions of southern Hunan.

  4. Analysing surface runoff and erosion responses to different land uses from the NE of Iberian Peninsula through rainfall simulation

    NASA Astrophysics Data System (ADS)

    Regüés, David; Arnáez, José; Badía, David; Cerdà, Artemi; Echeverría, María Teresa; Gispert, María; Lana-Renault, Noemí; Lasanta, Teodoro; León, Javier; Nadal-Romero, Estela; Pardini, Giovanni

    2014-05-01

    Rainfall simulation experiments are being used by soil scientists, geomorphologists, and hydrologist to study runoff generation and erosion processes. The use of different apparatus with different rainfall intensities and size of the wetted area contribute to determine the most vulnerable soils and land uses (Cerdá, 1998; Cerdà et al., 2009; Nadal-Romero et al., 2011; Martínez-Murillo et al., 2013; León et al., 2014). This research aims to determine the land uses that yield more sediments and water and to know the factors that control the differences. The information from 152 experiments of rainfall simulation was jointly analysed. Experiments were done in 17 land uses (natural forest, tree plantation, burned forest, scrub, meadows, crops and badlands), with contrasted exposition (north-south), and vegetation cover variety and/or density. These situations were selected from four geographic contexts (NE of Catalonia, high and medium lands from the Ebro valley and Southern range of central Pyrenees) with significant altitude variations, between 90 and 1000 meters above sea level, which represent the heterogeneity of the Mediterranean climate. The use of similar rainfall simulation apparatus, with the same spray nozzle, spraying components and plot size, favours the comparison of the results. A wide spectrum of precipitation intensities was applied, in order to reach surface runoff generation in all cases. Results showed significant differences in runoff amounts and erosion rates, which were mainly associated with land uses, even more than precipitation differences. Runoff coefficient shows an inversed exponential relationship with rainfall intensity, which is the opposite what could be previously expected (Ziadat and Taimeh, 2013). This may be only justified by land use characteristics because a direct effect between runoff generation intensity and soil degradation conditions, with respect vegetation covers features and density, was observed. In fact, even though the highest rainfall intensities were applied in the most natural areas with a dense vegetation cover, the most intense responses were produced in the most altered environments (badlands, born forest, vineyard, pasture and stony soils). These results agreed with the cause-effect relationships observed in some antecedent studies, which compare the hydrological and erosive response in different land uses (Badía et al., 2008; García-Ruíz et al., 2008; García-Ruíz and Lana-Renault, 2011). This has been mainly associated with variations of soil chemical, physical and hydrological properties (Pardini et al., 2004, Emran et al., 2012; Regüés et al., 2012). Likewise, this analysis has provided comparable information for various contrasted land uses, allowing estimate proportionality factors between them. This information favours the classification of certain environments according to its relative trends to surface runoff and erosion. References Badía, D.; Martí, C.; Aguirre, J., Echeverría, M.T., Ibarra, P. (2008). Erodibility and hydrology of arid burned soils: soil type and revegetation effects. Arid Land Research and Management, 22: 286-295. Cerdà, A. (1998). The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science 78, 321-330. Cerdà, A., Giménez-Morera, A. y Bodí, M.B. (2009). Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34, 1822-1830. Doi: 10.1002/esp.1889. Emran, M., Gispert, M., Pardini, G. (2012). Comparing measurements method of carbon dioxide fluxes in a soil sequence under land cover change in North Eastern Spain. Geoderma 170, 176-185. Doi. 10.1016/j.geoderma.2011.11.013. García-Ruíz, J.M., Regüés, D., Alvera, B., Lana-Renault, N., Serrano-Muela, P., Nadal-Romero, E., Navas, A., Latron, J., Martí-Bono, C., Arnáez, J. (2008). Flood generation and sediment transport in experimental catchments affectd by land use changes in the central Pyrenees. Journal of Hydrology 359, 245-260. Doi: 10.1016/j.hydrol.2008.04.013. García-Ruíz, J.M. and Lana-Renault, N. (2011): Hydrology and erosive consquences of farmland abandonment in Europe, with special reference to the Mediterranean region-A review. Agriculture, Ecosystems and Environment 140, 317-338. Doi: 10.1016/j.agee.2011.01.003. León, J., Cerdà, A., Seeger, M., Badía, D. (2014). Applications of rainfall simulators to study areas affected by forest fires. Flamma 5 (3), 116-120. Nadal-Romero, E., Lasanta, T., Regüés, D., Lana-Renault, N., Cerdá, A. (2011). Hydrological response and sediment production under different land cover ina abandoned farmland fields ina a Mediterranean mountain environment. Boletín de la Asociación de Geógrafos Españoles 55, 303-323. Martínez Murillo, J.F., Nadal-Romero, E., Regüés, D., Cerdá, A., Poesen, J. (2013). Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena 106, 101-112. Doi: 10.1016/j.catena.2012.06.001. Pardini, G., Gispert, M, Dunjó, G. (2004): Study of soil properties distribution patterns in a rural Mediterranean area of NE Spain. Mountain Research and Development, 24 (1): 44-51. Regüés, D., Serrano-Muela, P., Nadal-Romero, E., Lana-Renault, N. (2012). Análisis de la variabilidad temporal de la infiltración en un gradiente de usos del suelo en el Pirineo central. Cuaternario y Geomorfología 26 (1-2), 9-28. Ziadat F.M. and Taimeh A.Y. (2013). Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development 24 (6), 582-590. Doi: 10.1002/ldr.2239.

  5. SSEM: A model for simulating runoff and erosion of saline-sodic soil slopes under coastal reclamation

    NASA Astrophysics Data System (ADS)

    Liu, Dongdong; She, Dongli

    2018-06-01

    Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.

  6. Anomalous High Rainfall and Soil Saturation as Combined Risk Indicator of Rift Valley Fever Outbreaks, South Africa, 2008-2011.

    PubMed

    Williams, Roy; Malherbe, Johan; Weepener, Harold; Majiwa, Phelix; Swanepoel, Robert

    2016-12-01

    Rift Valley fever (RVF), a zoonotic vectorborne viral disease, causes loss of life among humans and livestock and an adverse effect on the economy of affected countries. Vaccination is the most effective way to protect livestock; however, during protracted interepidemic periods, farmers discontinue vaccination, which leads to loss of herd immunity and heavy losses of livestock when subsequent outbreaks occur. Retrospective analysis of the 2008-2011 RVF epidemics in South Africa revealed a pattern of continuous and widespread seasonal rainfall causing substantial soil saturation followed by explicit rainfall events that flooded dambos (seasonally flooded depressions), triggering outbreaks of disease. Incorporation of rainfall and soil saturation data into a prediction model for major outbreaks of RVF resulted in the correctly identified risk in nearly 90% of instances at least 1 month before outbreaks occurred; all indications are that irrigation is of major importance in the remaining 10% of outbreaks.

  7. Evaluation of compost blankets for erosion control from disturbed lands.

    PubMed

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Uncertain soil moisture feedbacks in model projections of Sahel precipitation

    NASA Astrophysics Data System (ADS)

    Berg, Alexis; Lintner, Benjamin R.; Findell, Kirsten; Giannini, Alessandra

    2017-06-01

    Given the uncertainties in climate model projections of Sahel precipitation, at the northern edge of the West African Monsoon, understanding the factors governing projected precipitation changes in this semiarid region is crucial. This study investigates how long-term soil moisture changes projected under climate change may feedback on projected changes of Sahel rainfall, using simulations with and without soil moisture change from five climate models participating in the Global Land Atmosphere Coupling Experiment-Coupled Model Intercomparison Project phase 5 experiment. In four out of five models analyzed, soil moisture feedbacks significantly influence the projected West African precipitation response to warming; however, the sign of these feedbacks differs across the models. These results demonstrate that reducing uncertainties across model projections of the West African Monsoon requires, among other factors, improved mechanistic understanding and constraint of simulated land-atmosphere feedbacks, even at the large spatial scales considered here.Plain Language SummaryClimate model projections of Sahel rainfall remain notoriously uncertain; understanding the physical processes responsible for this uncertainty is thus crucial. Our study focuses on analyzing the feedbacks of soil moisture changes on model projections of the West African Monsoon under global warming. Soil moisture-atmosphere interactions have been shown in prior studies to play an important role in this region, but the potential feedbacks of long-term soil moisture changes on projected precipitation changes have not been investigated specifically. To isolate these feedbacks, we use targeted simulations from five climate models, with and without soil moisture change. Importantly, we find that climate models exhibit soil moisture-precipitation feedbacks of different sign in this region: in some models soil moisture changes amplify precipitation changes (positive feedback), in others they dampen them (negative feedback). The impact of those feedbacks is in some cases of comparable amplitude to the projected precipitation changes themselves. In other words, we show, over a subset of climate models, how land-atmosphere interactions may be a cause of uncertainty in model projections of precipitation; we emphasize the need to evaluate these processes carefully in current and next-generation climate model simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013HESS...17.4297Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013HESS...17.4297Z"><span>A thermodynamic approach to link self-organization, preferential flow and rainfall-runoff behaviour</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zehe, E.; Ehret, U.; Blume, T.; Kleidon, A.; Scherer, U.; Westhoff, M.</p> <p>2013-11-01</p> <p>This study investigates whether a thermodynamically optimal hillslope structure can, if existent, serve as a first guess for uncalibrated predictions of rainfall-runoff. To this end we propose a thermodynamic framework to link rainfall-runoff processes and dynamics of potential energy, kinetic energy and capillary binding energy in catchments and hillslopes. The starting point is that hydraulic equilibrium in soil corresponds to local thermodynamic equilibrium (LTE), characterized by a local maximum entropy/minimum of free energy of soil water. Deviations from LTE occur either due to evaporative losses, which increase absolute values of negative capillary binding energy of soil water and reduce its potential energy, or due to infiltration of rainfall, which increases potential energy of soil water and reduces the strength of capillary binding energy. The amplitude and relaxation time of these deviations depend on climate, vegetation, soil hydraulic functions, topography and density of macropores. Based on this framework we analysed the free energy balance of hillslopes within numerical experiments that perturbed model structures with respect to the surface density of macropores. These model structures have been previously shown to allow successful long-term simulations of the water balances of the Weiherbach and the Malalcahuello catchments, which are located in distinctly different pedological and climatic settings. Our findings offer a new perspective on different functions of preferential flow paths depending on the pedological setting. Free energy dynamics of soil water in the cohesive soils of the Weiherbach is dominated by dynamics of capillary binding energy. Macropores act as dissipative wetting structures by enlarging water flows against steep gradients in soil water potential after long dry spells. This implies accelerated depletion of these gradients and faster relaxation back towards LTE. We found two local optima in macropore density that maximize reduction rates of free energy of soil water during rainfall-driven conditions. These two optima exist because reduction rates of free energy are, in this case, a second-order polynomial of the wetting rate, which implicitly depends on macroporosity. An uncalibrated long-term simulation of the water balance of the Weiherbach catchment based on the first optimum macroporosity performed almost as well as the best fit when macroporosity was calibrated to match rainfall-runoff. In the Malalcahuello catchment we did not find an apparent optimum density of macropores, because free energy dynamics of soil water during rainfall-driven conditions is dominated by increases of potential energy. Macropores act as dissipative drainage structures by enhancing export of potential energy. No optimum macropore density exists in this case because potential energy change rates scale linearly with the wetting rate. We found, however, a distinguished macroporosity that assures steady-state conditions of the potential energy balance of the soil, in the sense that average storage of potential energy is compensated by average potential energy export. This distinguished macroporosity was close to the value that yielded the best fit of rainfall-runoff behaviour during a calibration exercise and allowed a robust estimate of the annual runoff coefficient. Our findings are promising for predictions in ungauged catchments (PUB) as the optimal/distinguished model structures can serve as a first guess for uncalibrated predictions of rainfall-runoff. They also offer an alternative for classifying catchments according to their similarity of the free energy balance components.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1212204S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1212204S"><span>Soil characteristics of semidesert soils along a precipitation gradient in the Negev (Israel)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steckenmesser, Daniel; Drahorad, Sylvie; Felix-Henningsen, Peter</p> <p>2010-05-01</p> <p>The sand dunes of the north-western Negev desert (Israel) show a unique precipitation gradient on a short distance. This area is build up by the same parent material and suited to investigate the influence of changes in rainfall on soil characteristics in semi-desert ecosystems. The study site is the western extension of the Sinai sand field, the sand dunes are stabilised by biological soil crusts and perennial vegetation like Retama raetam. Along this precipitation gradient the three investigation areas Nizzana South (90mm ^a-), Nizzana 84 (130mm ^a-1) and Nizzana 69 (170mm ^a-1) are situated. At every study site two soil profiles were investigated, each under the legume Retama raetam and in the bare interspace covered by biological soil crusts. The soil samples were taken at the interdune positions at every study site. The soil sampling included the biological soil crust, the topsoil and the subsoil up to 1,5 m. The narrow sampling of 20cm wide steps allow a mapping of the distribution of nutrients, carbonates and soluble salts of in order to show the impact of perennial plants and rainfall on soil properties. Soluble salts and nutrients were measured in a 1:5 water extraction, calcium carbonate was determined according to Scheibler. The data shows a strong influence of perennial shrubs on the deposition of dust and the redistribution of nutrients compared to the bare interspace. The distribution of highly and less soluble salts below the perennial shrub proofs a shallower water infiltration than in the comparable interspace area. The interspace between the plants is covered by a biological soil crust, which also strongly influences the matter fluxes by nutrient-fixation, creation of runoff and stabilization of the soil surface. These biological soil crusts show higher amounts of elements than the subsoils. The comparison of the three areas along the rainfall gradient shows higher inputs of soluble salts with increasing precipitation due to wet deposition, while carbonate contents are negatively correlated with decreasing precipitation. This is related to a higher dust input in the southern study site, which was generated in the lime stone Negev. Higher amounts of rainfall introduce higher element leaching. Perennial plants cover the surface and reduce infiltration. Inputs into the soils through dust have to be evaluated for every location to separate between effects of deposition and rainfall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28895025','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28895025"><span>Leaching variations of heavy metals in chelator-assisted phytoextraction by Zea mays L. exposed to acid rainfall.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lu, Yayin; Luo, Dinggui; Liu, Lirong; Tan, Zicong; Lai, An; Liu, Guowei; Li, Junhui; Long, Jianyou; Huang, Xuexia; Chen, Yongheng</p> <p>2017-11-01</p> <p>Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R 2 ) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg -1 soil, pH 4.5), and rhamnolipid (pH 6.5).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.4053W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.4053W"><span>Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wever, Nander; Comola, Francesco; Bavay, Mathias; Lehning, Michael</p> <p>2017-08-01</p> <p>The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in surface simulations exists and that the runoff dynamics are controlled by only a shallow soil layer. Runoff coefficients (i.e. ratio of rainfall over discharge) based on measurements for high rainfall and snowmelt events were found to be dependent on the simulated initial soil moisture state at the onset of an event, further illustrating the important role of soil moisture for the hydrological processes in the catchment. The runoff coefficients using simulated discharge were found to reproduce this dependency, which shows that the Alpine3D model framework can be successfully applied to assess the predisposition of the catchment to flood risks from both snowmelt and rainfall events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171322','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171322"><span>Rainfall-soil moisture relations in landslide-prone areas of a tropical rain forest, Puerto Rico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Larsen, Matthew C.; Torres-Sanchez, Angel J.; Krishna, J.H.; Quinones-Aponte, Vicente; Gomez-Gomez, Fernando; Morris, G.L.</p> <p>1990-01-01</p> <p>Detailed studies of the relation between rainfall and soil moisture are underway at two forested sites on slopes in the CNF. Soil at the sites is characterized by a layer of silty-clay colluvial soil about 1 m thick, which is underlain by up to 10 m of saprolite, and overlies weathered volcaniclastic or quartz-diorite bedrock. Although considerable surface runoff has been observed at the study sites, data show moderate to rapid increases in pore pressure in repsonse to short duration storm events. Pore-pressure increases are greatest in the lower sections of concave slopes apparently due to convergent flow. It is anticipated that these pore-pressure data will provide a means of assessing rainfall characteristics leading to landslide initiation as well as insight to the mechanics of shallow landslides</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840025818&hterms=water+hydraulics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwater%2Bhydraulics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840025818&hterms=water+hydraulics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwater%2Bhydraulics"><span>Estimating net rainfall, evaporation and water storage of a bare soil from sequential L-band emissivities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stroosnijder, L.; Lascano, R. J.; Newton, R. W.; Vanbavel, C. H. M.</p> <p>1984-01-01</p> <p>A general method to use a time series of L-band emissivities as an input to a hydrological model for continuously monitoring the net rainfall and evaporation as well as the water content over the entire soil profile is proposed. The model requires a sufficiently accurate and general relation between soil emissivity and surface moisture content. A model which requires the soil hydraulic properties as an additional input, but does not need any weather data was developed. The method is shown to be numerically consistent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912433J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912433J"><span>Soil management and green water in sloping rainfed vineyards</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>José Marqués Pérez, María; Ruíz-Colmenero, Marta; García-Díaz, Andrés; Bienes Allas, Ramón</p> <p>2017-04-01</p> <p>Improved crop production in areas with restricted water availability is of particular interest. Farmers need to maximize the water use efficiency when the possibilities of further extension of irrigation are limited and water is becoming scarce and expensive. Water in rainfed crops depends on rainfall depth and soil characteristics such as texture and structure, water holding capacity, previous moisture, infiltration, soil surface conditions, steepness and slope length. Land management practices can be used to maximise water availability. In previous studies the unwillingness of farmers to change their practices towards more sustainable use was mainly due to the worry about water competition. This work is aimed at understanding the influence of management practices in the water partitioning of this land use. This study was conducted in a sloping vineyard in the centre of Spain. A rain gauge recorded rainfall depth and intensity in the area. Three different soil management practices were considered: 1) traditional tillage, 2) permanent cover and 3) mowed cover of cereals, both sown in the strips between vines. Two moisture sensors were buried at 10 and 35 cm depths. Three replicates per management practice were performed. It is expected that the lack of tillage increase the potential for litter to protect the soil surface against raindrop impact and to contribute to increasing soil organic carbon, and the corresponding increase in infiltration and water holding capacity. The analysis of two years of daily records of rainfall, runoff and soil moisture are intended to establish any influence of management practices on the partitioning of water. Particularly, the so-called "green water" was estimated, i.e. the fraction of rainfall that infiltrates into the soil and will be further available to plants. Soil characteristics such as texture, structure, moisture, infiltration were established. In addition simulated rainfalls carried out in summer and winter over bounded plots having different management practices allowed the record of runoff per minute and further influence in soil moisture. After rainfalls soils were at field capacity and progressively dried in undisturbed conditions. Particle size analysis shows that this soil has 58 % sand, 18% silt and 24% clay, corresponding to a Sandy Clay Loam texture. Total porosity in the topsoil ranges from 49 to 51%, although according to previous studies only the 28% is effective to stock water in their micro and mesopores. In the upper 35 cm these soils are able to store from 0.05 to 0.25 m3 of water per m3 of soil depending on the seasons. At the same time, variations of runoff / infiltration were also noticed depending on the seasons and treatments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=253389','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=253389"><span>Effects of rainfall and surface flow on chemical diffusion from soil to runoff water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031549','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031549"><span>Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J.</p> <p>2005-01-01</p> <p>An important factor controlling catchment‐scale water balance is the seasonal variation of climate. The aim of this study is to investigate the effect of the seasonal distributions of water and energy, and their interactions with the soil moisture store, on mean annual water balance in Australia at catchment scales using a stochastic model of soil moisture balance with seasonally varying forcing. The rainfall regime at 262 catchments around Australia was modeled as a Poisson process with the mean storm arrival rate and the mean storm depth varying throughout the year as cosine curves with annual periods. The soil moisture dynamics were represented by use of a single, finite water store having infinite infiltration capacity, and the potential evapotranspiration rate was modeled as an annual cosine curve. The mean annual water budget was calculated numerically using a Monte Carlo simulation. The model predicted that for a given level of climatic aridity the ratio of mean annual evapotranspiration to rainfall was larger where the potential evapotranspiration and rainfall were in phase, that is, in summer‐dominant rainfall catchments, than where they were out of phase. The observed mean annual evapotranspiration ratios have opposite results. As a result, estimates of mean annual evapotranspiration from the model compared poorly with observational data. Because the inclusion of seasonally varying forcing alone was not sufficient to explain variability in the mean annual water balance, other catchment properties may play a role. Further analysis showed that the water balance was highly sensitive to the catchment‐scale soil moisture capacity. Calibrations of this parameter indicated that infiltration‐excess runoff might be an important process, especially for the summer‐dominant rainfall catchments; most similar studies have shown that modeling of infiltration‐excess runoff is not required at the mean annual timescale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28341463','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28341463"><span>Increasing trends in rainfall-runoff erosivity in the Source Region of the Three Rivers, 1961-2012.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yousheng; Cheng, Congcong; Xie, Yun; Liu, Baoyuan; Yin, Shuiqing; Liu, Yingna; Hao, Yanfang</p> <p>2017-08-15</p> <p>As the head source of the two longest rivers in China and the longest river in Southeast Asia, the East Qinghai-Tibetan Plateau (QTP) is experiencing increasing thaw snowmelt and more heavy precipitation events under global warming, which might lead to soil erosion risk. To understand the potential driving force of soil erosion and its relationship with precipitation in the context of climate change, this study analyzed long-term variations in annual rainfall-runoff erosivity, a climatic index of soil erosion, by using the Mann-Kendall statistical test and Theil and Sen's approach in the Source Region of the Three Rivers during 1961-2012. The results showed the followings: (i) increasing annual rainfall-runoff erosivity was observed over the past 52years, with a mean relative trend index (RT 1 ) value of 12.1%. The increasing trend was more obvious for the latest two decades: RT 1 was nearly three times larger than that over the entire period; (ii) more precipitation events and a higher precipitation amount were the major forces for the increasing rainfall-runoff erosivity; (iii) similar rising trends in sediment yields, which corresponded to rainfall-runoff erosivity under slightly increasing vegetation coverage in the study area, implied a large contribution of rainfall-runoff erosivity to the increasing sediment yields; and (iv) high warming rates increased the risk of soil destruction, soil erosion and sediment yields. Conservation measures, such as enclosing grassland, returning grazing land to grassland and rotation grazing since the 1980s, have maintained vegetation coverage and should be continued and strengthened. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2016/5003/sir20165003.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2016/5003/sir20165003.pdf"><span>Estimates of peak flood discharge for 21 sites in the Front Range in Colorado in response to extreme rainfall in September 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moody, John A.</p> <p>2016-03-21</p> <p>Extreme rainfall in September 2013 caused destructive floods in part of the Front Range in Boulder County, Colorado. Erosion from these floods cut roads and isolated mountain communities for several weeks, and large volumes of eroded sediment were deposited downstream, which caused further damage of property and infrastructures. Estimates of peak discharge for these floods and the associated rainfall characteristics will aid land and emergency managers in the future. Several methods (an ensemble) were used to estimate peak discharge at 21 measurement sites, and the ensemble average and standard deviation provided a final estimate of peak discharge and its uncertainty. Because of the substantial erosion and deposition of sediment, an additional estimate of peak discharge was made based on the flow resistance caused by sediment transport effects.Although the synoptic-scale rainfall was extreme (annual exceedance probability greater than 1,000 years, about 450 millimeters in 7 days) for these mountains, the resulting peak discharges were not. Ensemble average peak discharges per unit drainage area (unit peak discharge, [Qu]) for the floods were 1–2 orders of magnitude less than those for the maximum worldwide floods with similar drainage areas and had a wide range of values (0.21–16.2 cubic meters per second per square kilometer [m3 s-1 km-2]). One possible explanation for these differences was that the band of high-accumulation, high-intensity rainfall was narrow (about 50 kilometers wide), oriented nearly perpendicular to the predominant drainage pattern of the mountains, and therefore entire drainage areas were not subjected to the same range of extreme rainfall. A linear relation (coefficient of determination [R2]=0.69) between Qu and the rainfall intensity (ITc, computed for a time interval equal to the time-of-concentration for the drainage area upstream from each site), had the form: Qu=0.26(ITc-8.6), where the coefficient 0.26 can be considered to be an area-averaged peak runoff coefficient for the September 2013 rain storms in Boulder County, and the 8.6 millimeters per hour to be the rainfall intensity corresponding to a soil moisture threshold that controls the soil infiltration rate. Peak discharge estimates based on the sediment transport effects were generally less than the ensemble average and indicated that sediment transport may be a mechanism that limits velocities in these types of mountain streams such that the Froude number fluctuates about 1 suggesting that this type of floodflow can be approximated as critical flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHyd..541.1057D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHyd..541.1057D"><span>Effect of dry spells and soil cracking on runoff generation in a semiarid micro watershed under land use change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>dos Santos, Julio Cesar Neves; de Andrade, Eunice Maia; Guerreiro, Maria João Simas; Medeiros, Pedro Henrique Augusto; de Queiroz Palácio, Helba Araújo; de Araújo Neto, José Ribeiro</p> <p>2016-10-01</p> <p>Soil and water resources effective management and planning in a river basin rely on understanding of runoff generation processes, yield, and their relations to rainfall. This study analyzes the effects of antecedent soil moisture in an expansive soil and the influence of dry spells on soil cracking, runoff generation and yield in a semiarid tropical region in Brazil subject to land use change. Data were collected from 2009 to 2013 in a 2.8 ha watershed, totaling 179 natural rainfall events. In the first year of study (2009), the watershed maintained a typical dry tropical forest cover (arboreal-shrub Caatinga cover). Before the beginning of the second year of study, gamba grass (Andropogon gayanus Kunth) was cultivated after slash and burn of native vegetation. Gamba grass land use was maintained for the rest of the monitoring period. The occurrence of dry spells and the formation of cracks in the Vertisol soil were the most important factors controlling flow generation. Dry spells promoted crack formation in the expansive soil, which acted as preferential flow paths leading to high initial abstractions: average conditions for runoff to be generated included soil moisture content above 20%, rainfall above 70 mm, I30max above 60 mm h-1 and five continuous dry days at the most. The change of vegetation cover in the second year of study did not alter significantly the overall conditions for runoff initiation, showing similar cumulative flow vs. rainfall response, implying that soil conditions, such as humidity and cracks, best explain the flow generation process on the semiarid micro-scale watershed with Vertisol soil.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4404248','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4404248"><span>Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin</p> <p>2015-01-01</p> <p>Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0–40 cm soil depth. Within JTACS, the speed of the wetting front’s downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world. PMID:25893832</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25893832','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25893832"><span>Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin</p> <p>2015-01-01</p> <p>Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0-40 cm soil depth. Within JTACS, the speed of the wetting front's downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=348928','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=348928"><span>Dispersion and Transport of Cryptosporidium Oocysts from Fecal Pats under Simulated Rainfall Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Davies, Cheryl M.; Ferguson, Christobel M.; Kaucner, Christine; Krogh, Martin; Altavilla, Nanda; Deere, Daniel A.; Ashbolt, Nicholas J.</p> <p>2004-01-01</p> <p>The dispersion and initial transport of Cryptosporidium oocysts from fecal pats were investigated during artificial rainfall events on intact soil blocks (1,500 by 900 by 300 mm). Rainfall events of 55 mm h−1 for 30 min and 25 mm h−1 for 180 min were applied to soil plots with artificial fecal pats seeded with approximately 107 oocysts. The soil plots were divided in two, with one side devoid of vegetation and the other left with natural vegetation cover. Each combination of event intensity and duration, vegetation status, and degree of slope (5° and 10°) was evaluated twice. Generally, a fivefold increase (P < 0.05) in runoff volume was generated on bare soil compared to vegetated soil, and significantly more infiltration, although highly variable, occurred through the vegetated soil blocks (P < 0.05). Runoff volume, event conditions (intensity and duration), vegetation status, degree of slope, and their interactions significantly affected the load of oocysts in the runoff. Surface runoff transported from 100.2 oocysts from vegetated loam soil (25-mm h−1, 180-min event on 10° slope) to up to 104.5 oocysts from unvegetated soil (55-mm h−1, 30-min event on 10° slope) over a 1-m distance. Surface soil samples downhill of the fecal pat contained significantly higher concentrations of oocysts on devegetated blocks than on vegetated blocks. Based on these results, there is a need to account for surface soil vegetation coverage as well as slope and rainfall runoff in future assessments of Cryptosporidium transport and when managing pathogen loads from stock grazing near streams within drinking water watersheds. PMID:14766600</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23340898','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23340898"><span>Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schönbrodt-Stitt, Sarah; Bosch, Anna; Behrens, Thorsten; Hartmann, Heike; Shi, Xuezheng; Scholten, Thomas</p> <p>2013-10-01</p> <p>In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1054427-contingency-direction-mechanics-soil-organic-matter-responses-increased-rainfall','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1054427-contingency-direction-mechanics-soil-organic-matter-responses-increased-rainfall"><span>Contingency in the Direction and Mechanics of Soil Organic Matter Responses to Increased Rainfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Berhe, Asmeret A.; Suttle, K. Blake; Burton, Sarah D.</p> <p>2012-09-03</p> <p>Shifts in regional precipitation patterns will be a major component of global climate change. Rainfall will show greater and more variable changes in response to rising earth surface temperatures than most other climatic variables, and will be a major driver of ecosystem change. We studied the consequences of predicted changes in California’s rainy season for storage and stabilization mechanisms of soil organic matter (SOM). In a controlled and replicated experiment, we amended rainfall over large plots of natural grassland in accordance with alternative scenarios of future climate change. Results show that increases in annual rainfall have important consequences for soilmore » C storage, but that the strength and even direction of these effects depend entirely on seasonal timing. Rainfall increases during the winter rainy season led to pronounced C loss from soil while rainfall increases after the typical rainy season increased soil C stocks. Analysis of mineral-OM associations reveals a powerful mechanism underlying this difference: increased winter rainfall vastly diminished the role of Fe and Al oxides in SOM stabilization. Dithionite extractable crystalline Fe oxides explained more than 35 percent of the variability in C storage in ambient control and spring-addition treatments, compared to less than 0.01 percent in the winter-addition treatment. Likewise, poorly crystalline Fe and Al oxides explained more than 25 and 40 percent of the variability in C storage, respectively, in the control and spring-addition treatments compared to less than 5 percent in the -winter-addition treatment. Increases in annual precipitation identical in amount but at three-month offsets produced opposite effects on soil C storage. These results highlight the complexity inherent in biospheric feedbacks to the climate system, and the way that careful experimentation can penetrate that complexity to improve predictions of ecosystem and climatic change.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.128..603S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.128..603S"><span>Synoptic typing: interdisciplinary application methods with three practical hydroclimatological examples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siegert, C. M.; Leathers, D. J.; Levia, D. F.</p> <p>2017-05-01</p> <p>Synoptic classification is a methodology that represents diverse atmospheric variables and allows researchers to relate large-scale atmospheric circulation patterns to regional- and small-scale terrestrial processes. Synoptic classification has often been applied to questions concerning the surface environment. However, full applicability has been under-utilized to date, especially in disciplines such as hydroclimatology, which are intimately linked to atmospheric inputs. This paper aims to (1) outline the development of a daily synoptic calendar for the Mid-Atlantic (USA), (2) define seasonal synoptic patterns occurring in the region, and (3) provide hydroclimatological examples whereby the cascading response of precipitation characteristics, soil moisture, and streamflow are explained by synoptic classification. Together, achievement of these objectives serves as a guide for development and use of a synoptic calendar for hydroclimatological studies. In total 22 unique synoptic types were identified, derived from a combination of 12 types occurring in the winter (DJF), 13 in spring (MAM), 9 in summer (JJA), and 11 in autumn (SON). This includes six low pressure systems, four high pressure systems, one cold front, three north/northwest flow regimes, three south/southwest flow regimes, and five weakly defined regimes. Pairwise comparisons indicated that 84.3 % had significantly different rainfall magnitudes, 86.4 % had different rainfall durations, and 84.7 % had different rainfall intensities. The largest precipitation-producing classifications were not restricted to low pressure systems, but rather to patterns with access to moisture sources from the Atlantic Ocean and easterly (on-shore) winds, which transport moisture inland. These same classifications resulted in comparable rates of soil moisture recharge and streamflow discharge, illustrating the applicability of synoptic classification for a range of hydroclimatological research objectives.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913627D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913627D"><span>Testing the Effect of Cropping Practices on Soil Erosion Rates - Application of Field Rainfall Simulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dostál, Tomáš; Zumr, David; Krása, Josef; Kavka, Petr; Strouhal, Luděk</p> <p>2017-04-01</p> <p>C factor, the protection effect of the vegetation cover, is a key parameter which is introduced in the basic empirical soil erosion relationships (e.g. USLE). The C factor values for various crops in various grow stages are usually estimated based on the catalogue values. As these values often do not fit to the observed data from the plot experiments or do not represent actually grown crops, we decided to validate and extend the database. We present a methodology and primary results of tens of the field rainfall simulation experiments conducted on several agricultural crops with different BBCH. The rainfall simulations were done with the mobile field rainfall simulator of the Czech Technical University. The tested plots of the size 2 x 8,7 m were repeatedly exposed to the artificial rainfalls with intensity of 60 mm/h and duration of 30 to 60 minutes. The experiments were always performed twice on a bare soil and twice on the vegetated plots (to mimic dry and wet initial soil conditions). The tests were done on several slopes in the Czech Republic, the soils were mostly Cambisols with various organic matter content and stoniness. Based on the results we will be able to correct and validate the C factor values for the currently most widely grown crops in the conditions of the Central Europe. The presentation is funded by Ministry of Agriculture of the Czech Republic (research project QJ1530181) and an internal student CTU grant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRF..120.1990F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRF..120.1990F"><span>Effects of hydromechanical loading history and antecedent soil mechanical damage on shallow landslide triggering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, Linfeng; Lehmann, Peter; Or, Dani</p> <p>2015-10-01</p> <p>Evidence suggests that the sudden triggering of rainfall-induced shallow landslides is preceded by accumulation of local internal failures in the soil mantle before their abrupt coalescence into a landslide failure plane. The mechanical status of a hillslope at any given time reflects competition between local damage accumulated during antecedent rainfall events and rates of mechanical healing (e.g., rebonding of microcracks and root regrowth). This dynamic interplay between damage accumulation and healing rates determines the initial mechanical state for landslide modeling. We evaluated the roles of these dynamic processes on landslide characteristics and patterns using a hydromechanical landslide-triggering model for a sequence of rainfall scenarios. The progressive nature of soil failure was represented by the fiber bundle model formalism that considers threshold strength of mechanical bonds linking adjacent soil columns and bedrock. The antecedent damage induced by prior rainfall events was expressed by the fraction of broken fibers that gradually regain strength or mechanically heal at rates specific to soil and roots. Results indicate that antecedent damage accelerates landslide initiation relative to pristine (undamaged) hillslopes. The volumes of first triggered landslides increase with increasing antecedent damage; however, for heavily damaged hillslopes, landslide volumes tend to decrease. Elapsed time between rainfall events allows mechanical healing that reduces the effects of antecedent damage. This study proposed a quantitative framework for systematically incorporating hydromechanical loading history and information on precursor events (e.g., such as recorded by acoustic emissions) into shallow landslide hazard assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5817I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5817I"><span>Rainfall simulation experiments: Influence of water temperature, water quality and plot design on soil erosion and runoff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iserloh, Thomas; Pegoraro, Dominique; Schlösser, Angelika; Thesing, Hannah; Seeger, Manuel; Ries, Johannes B.</p> <p>2015-04-01</p> <p>Field rainfall simulators are designed to study soil erosion processes and provide urgently needed data for various geomorphological, hydrological and pedological issues. Due to the different conditions and technologies applied, there are several methodological aspects under review of the scientific community, particularly concerning design, procedures and conditions of measurement for infiltration, runoff and soil erosion. This study aims at contributing fundamental data for understanding rainfall simulations in depth by studying the effect of the following parameters on the measurement results: 1. Plot design - round or rectangular plot: Can we identify differences in amount of runoff and erosion? 2. Water quality: What is the influence of the water's salt load on interrill erosion and infiltration as measured by rainfall experiments? 3. Water temperature: How much are the results conditioned by the temperature of water, which is subject to changes due to environmental conditions during the experiments? Preliminary results show a moderate increase of soil erosion with the water's salt load while runoff stays almost on the same level. With increasing water temperature, runoff increases continuously. At very high temperatures, soil erosion is clearly increased. A first comparison between round and rectangular plot indicates the rectangular plot to be the most suitable plot shape, but ambiguous results make further research necessary. The analysis of these three factors concerning their influence on runoff and erosion shows that clear methodological standards are necessary in order to make rainfall simulation experiments comparable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H43D1062S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H43D1062S"><span>Simulation of Dynamic Soil Crusting Processes and Vegetative Feedbacks in Semi-Arid Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sivandran, G.; Bras, R. L.</p> <p>2009-12-01</p> <p>Many soils, especially those in arid and semi-arid regions, develop compacted surface layers with hydrologic properties different to those of the underlying layers. These layers, referred to as soil crusts when dry and soil seals when wet, may be only a few millimeters thick but can have a significant impact by altering the partitioning of rainfall, increasing surface runoff and reducing infiltration. This reduces the quantity of water entering the root zone, limiting the amount of water available for primary productivity, while increasing erosion and negatively impacting seedling establishment and growth. Vegetation significantly alters soil hydraulic properties in the immediate vicinity of a vegetation patch. Root action has been shown to create macropores, increasing infiltration capacity around the base of vegetation. Shading protects the soil from evaporation and the formation of soil seals/crusts. Experiments have confirmed large variations in infiltration rates in below canopy and bare soil patches. It is believed that a positive feedback may occur between seals/crusts and vegetation patches resulting in systems that exhibit ‘islands of fertility’. The bare soil patches act to increase the micro-catchment area of the vegetation patch, thereby collecting moisture from a far greater area than the immediate footprint of its rooting system. Vegetation then alters the soil conditions directly beneath it, allowing for increased infiltration of this extra moisture. A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was used to explore the role of dynamic soil properties on hydrologic and energy fluxes. Rather than assigning the hydraulic properties of the surface soils a priori, soil seals/crusts were allowed to develop in the model depending on vegetation cover, soil type and rainfall intensity. The effects of plant shading and root action on infiltration in the immediate vicinity of vegetation patches were also included. These changes introduced both spatial and temporal heterogeneity into soil hydraulic properties and allowed for simulation of plant-soil feedbacks. The semi-arid Lucky Hills basin in the Walnut Gulch Experimental Watershed in Arizona was used as a case study to investigate the role of dynamic soil properties, which occur at patch scales, on the larger basin scale hydrologic and energy fluxes (sensible and latent heats, net radiation and rainfall partitioning). The model was used to test the contribution of dynamic soil properties to the establishment of a positive feedback between vegetation and soils that leads to the ‘islands of fertility’ that have been observed in many semi-arid systems. The model was also used to investigate the role that plant-soil interactions play in providing both stability to the larger system during periods of consistent climate forcing and some resilience to disturbance during climate perturbations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B43E0543W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B43E0543W"><span>Nitrogen transformations in response to temperature and rainfall manipulation in oak savanna: A global change experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wellman, R. L.; Boutton, T. W.; Tjoelker, M. G.; Volder, A.; Briske, D. D.</p> <p>2013-12-01</p> <p>Increasing concentrations of greenhouse gases are projected to elevate global surface air temperatures by 1.1 to 6.4°C by the end of the century, and potentially magnify the intensity and variability of seasonal precipitation distribution. The mid-latitude grasslands of North America are predicted to experience substantial modification in precipitation regimes, with a shift towards drier summers and wetter spring and fall seasons. Despite these predictions, little is known concerning the effects of these global climate change drivers or their potential interactive effects on nitrogen (N) cycling processes. The purpose of this study is to quantify seasonal variation in rates of N-mineralization, nitrification, and N-losses via leaching in soil subjected to experimental warming and rainfall manipulation. Research was conducted at the Texas A&M Warming and Rainfall Manipulation (WaRM) Site in College Station where eight 9x18m rainout shelters and two unsheltered controls were established in post oak savanna in 2003. Replicate annual rainfall redistribution treatments (n = 4) are applied at the shelter level (long term mean vs. 40% of summer redistributed to fall and spring with same annual total). Warming treatments (ambient vs. 24-hr IR canopy warming of 1-3°C) were applied to planted monocultures of juniper and little bluestem, and a juniper-grass combination. Both juniper and little bluestem are key species within the post oak savanna region. Plots were sampled from the full factorial design during years six and seven of the WaRM experiment. Soil N-mineralization, nitrification, and N-losses via leaching were assessed quarterly for two years using the resin core incubation method. Rainfall, species composition, and time interacted significantly to influence both ammonification and nitrification. Highest rates of ammonification (0.115 mg NH4+ -N/ kg soil/day) occurred in grass monocultures during summer in the control rainfall plots, whereas highest rates of nitrification (1.581 mg NO2-/NO3- -N/ kg soil/day) were in juniper monocultures during fall and spring in redistributed rainfall treatments. Lowest rates of ammonification (0.002 mg NH4+ -N/ kg soil/day) occurred under grass during fall and winter in redistributed rainfall plots, while lowest rates of nitrification (-0.016 mg NO2-/NO3- -N/ kg soil/day) were in juniper-grass mixtures during fall and winter in redistributed rainfall plots. Losses of N through leaching were highest in the same treatment combinations that had high rates of nitrification. Results indicate that while rainfall redistribution interacted strongly with other experimental treatments to influence rates of N-transformations, warming had little effect. These changes in rates of N-transformations and leaching losses in response to global change drivers may have important implications for net primary production, soil fertility, carbon storage, trace gas fluxes, water quality, interspecific interactions, and vegetation dynamics in the oak savanna region of North America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19178284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19178284"><span>Runoff and leaching of metolachlor from Mississippi River alluvial soil during seasons of average and below-average rainfall.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Southwick, Lloyd M; Appelboom, Timothy W; Fouss, James L</p> <p>2009-02-25</p> <p>The movement of the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] via runoff and leaching from 0.21 ha plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a 6-year period, 1995-2000. The first three years received normal rainfall (30 year average); the second three years experienced reduced rainfall. The 4-month periods prior to application plus the following 4 months after application were characterized by 1039 +/- 148 mm of rainfall for 1995-1997 and by 674 +/- 108 mm for 1998-2000. During the normal rainfall years 216 +/- 150 mm of runoff occurred during the study seasons (4 months following herbicide application), accompanied by 76.9 +/- 38.9 mm of leachate. For the low-rainfall years these amounts were 16.2 +/- 18.2 mm of runoff (92% less than the normal years) and 45.1 +/- 25.5 mm of leachate (41% less than the normal seasons). Runoff of metolachlor during the normal-rainfall seasons was 4.5-6.1% of application, whereas leaching was 0.10-0.18%. For the below-normal periods, these losses were 0.07-0.37% of application in runoff and 0.22-0.27% in leachate. When averages over the three normal and the three less-than-normal seasons were taken, a 35% reduction in rainfall was characterized by a 97% reduction in runoff loss and a 71% increase in leachate loss of metolachlor on a percent of application basis. The data indicate an increase in preferential flow in the leaching movement of metolachlor from the surface soil layer during the reduced rainfall periods. Even with increased preferential flow through the soil during the below-average rainfall seasons, leachate loss (percent of application) of the herbicide remained below 0.3%. Compared to the average rainfall seasons of 1995-1997, the below-normal seasons of 1998-2000 were characterized by a 79% reduction in total runoff and leachate flow and by a 93% reduction in corresponding metolachlor movement via these routes. An added observation in the study was that neither runoff of rainfall nor runoff loss of metolachlor was influenced by the presence of subsurface drains, compared to the results from plots without such drains that were described in an earlier paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28676175','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28676175"><span>Watershed soil Cd loss after long-term agricultural practice and biochar amendment under four rainfall levels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ouyang, Wei; Huang, Weijia; Hao, Xin; Tysklind, Mats; Haglund, Peter; Hao, Fanghua</p> <p>2017-10-01</p> <p>Some heavy metals in farmland soil can be transported into the waterbody, affecting the water quality and sediment at the watershed outlet, which can be used to determine the historical loss pattern. Cd is a typical heavy metal leached from farmland that is related to phosphate fertilizers and carries serious environmental risk. The spatial-vertical pattern of Cd in soil and the vertical trend of Cd in the river sediment core were analyzed, which showed the migration and accumulation of Cd in the watershed. To prevent watershed Cd loss, biochar was employed, and leaching experiments were conducted to investigate the Cd loss from soil depending on the initial concentration. Four rainfall intensities, 1.25 mm/h, 2.50 mm/h, 5.00 mm/h, and 10.00 mm/h, were used to simulate typical rainfall scenarios for the study area. Biochar was prepared from corn straw after pretreatment with ammonium dihydrogen phosphate (ADP) and pyrolysis at 400 °C under anoxic conditions. To identify the effects of biochar amendment on Cd migration, the biochar was mixed with soil for 90 days at concentrations of 0%, 0.5%, 1.0%, 3.0%, and 5.0% soil by weight. The results showed that the Cd leaching load increased as the initial load and rainfall intensity increased and that eluviation caused surface Cd to diffuse to the deep soils. The biochar application caused more of the heavy metals to be immobilized in the amended soil rather than transported into the waterbody. The sorption efficiency of the biochar for Cd increased as the addition level increased to 3%, which showed better performance than the 5% addition level under some initial concentration and rainfall conditions. The research indicated that biochar is a potential material to prevent diffuse heavy metal pollution and that a lower addition makes the application more feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1455F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1455F"><span>Soil organic carbon sequestration and tillage systems in Mediterranean environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta</p> <p>2016-04-01</p> <p>Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H41I1555G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H41I1555G"><span>More Soil, Less Storage: The Influence of Soil Characteristics on Rainfall-Runoff Responses Across High to Low Relief Landscapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gannon, J. P.; Zimmer, M. A.</p> <p>2017-12-01</p> <p>The balance between surficial watershed properties (e.g. topography) and subsurface watershed properties (e.g. soil depth, horizonation) as drivers of runoff characteristics is not well understood. We addressed this knowledge gap by investigating long-term ( 20 years) daily discharge and precipitation for 74 USGS in-stream gaging sites across the Appalachian Mountain and Piedmont regions of North Carolina, USA. Gaging sites included in this analysis had <10% developed land and ranged in size from 14.1 - 4390 km2. Thirty-five sites were located in the Piedmont Region, which is typically classified as a low relief landscape with deep, highly weathered soils and shallow, clay-rich soil horizons. Thirty-nine sites were located in the Appalachian Mountains, which are typically classified as a steeper landscape with comparatively shallow, highly weathered soils. We calculated an annual baseflow index (BFI) for each site to investigate the changes in stormflow generation in each gaged watershed. We also conducted a stepwise multiple linear regression analysis to identify which landscape and climate characteristics contributed to individual watershed runoff responses. Our results showed that watersheds in the Appalachian Mountain region had BFIs that were generally higher and less dependent on the rainfall of the corresponding year, as compared to the Piedmont region. This suggests that while the Appalachian Mountain region is steeper with comparatively shallower soils, the effective storage is higher than watersheds in the Piedmont. In contrast, while the Piedmont region has deep soils, the shallow soil horizon impeding layers produce flashier runoff responses and a shorter watershed memory. More work is needed to further understand the balance between critical zone structure and watershed structure on runoff responses across a range of landscape types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29516427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29516427"><span>Coupling loss characteristics of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi</p> <p>2018-05-01</p> <p>Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our results provide the underlying insights needed to guide the control of nitrogen and phosphorus loss on loess hills.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912383M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912383M"><span>Merging bottom-up and top-down precipitation products using a stochastic error model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maggioni, Viviana; Massari, Christian; Brocca, Luca; Ciabatta, Luca</p> <p>2017-04-01</p> <p>Accurate quantitative precipitation estimation is of great importance for water resources management, agricultural planning, and forecasting and monitoring of natural hazards such as flash floods and landslides. In situ observations are limited around the Earth, especially in remote areas (e.g., complex terrain, dense vegetation), but currently available satellite precipitation products are able to provide global precipitation estimates with an accuracy that depends upon many factors (e.g., type of storms, temporal sampling, season etc…). Recently, Brocca et al. (2014) have proposed an alternative approach (i.e., SM2RAIN) that allows to estimate rainfall from space by using satellite soil moisture observations. In contrast with classical satellite precipitation products which sense the cloud properties to retrieve the instantaneous precipitation, this new bottom-up approach makes use of two consecutive soil moisture measurements for obtaining an estimate of the fallen precipitation within the interval between two satellite passes. As a result, the nature of the measurement is different and complementary to the one of classical precipitation products and could provide a different valid perspective to improve current satellite rainfall estimates via appropriate integration between the products (i.e., SM2RAIN plus a classical satellite rainfall product). However, whether SM2RAIN is able or not to improve the performance of any state-of-the-art satellite rainfall product is much dependent upon an adequate quantification and characterization of the relative errors of the products. In this study, the stochastic rainfall error model SREM2D (Hossain et al. 2006) is used for characterizing the retrieval error of both SM2RAIN and a state-of-the-art satellite precipitation product (i.e., 3B42RT). The error characterization serves for an optimal integration between SM2RAIN and 3B42RT for enhancing the capability of the resulting integrated product (i.e. SM2RAIN+3B42RT) in operational hydrology. The study, conducted in Italy for a 5-yr period (2010-2014) using a dense network of raingauges (about 3000) as a benchmark, demonstrates that the integration is able to enhance the correlation and the root mean squared error of SM2RAIN+3B42RT with respect to the parent products. This suggests a potential benefit of merging SM2RAIN derived rainfall with state-of-the-art satellite precipitation estimates for creating a product characterized by higher accuracy and better performance when used in the contest of operational hydrology. REFERENCES 1. Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128-5141. 2. Hossain, F.; Anagnostou, E. N. A two-dimensional satellite rainfall error model. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1511-1522.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26785548','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26785548"><span>[Runoff and sediment yielding processes on red soil engineering accumulation containing gravels by a simulated rainfall experiment].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Qian-hua; Wang, Wen-long; Guo, Ming-ming; Bai, Yun; Deng, Li-qiang; Li, Jian-ming; Li, Yao-lin</p> <p>2015-09-01</p> <p>Engineering accumulation formed in production and construction projects is characterized by unique structure and complex material composition. Characteristics of soil erosion on the engineering accumulation significantly differ from those on farmland. An artificially simulated rainfall experiment was carried out to investigate the effects of rainfall intensity on the processes of runoff and sediment yielding on the engineering accumulation of different gravel contents (0%, 10%, 20% and 30%) in red soil regions. Results showed that the initial time of runoff generation decreased with increases in rainfall intensity and gravel content, the decreased amplitudes being about 48.5%-77.9% and 4.2%-34.2%, respectively. The initial time was found to be a power function of rainfall intensity. Both runoff velocity and runoff rate manifested a trend of first rising and then in a steady state with runoff duration. Rainfall intensity was found to be the main factor influencing runoff velocity and runoff rate, whereas the influence of gravel content was not significant. About 10% of gravel content was determined to be a critical value in the influence of gravel content on runoff volume. For the underlying surface of 10% gravel content, the runoff volume was least at rainfall intensity of 1.0 mm · min(-1) and maximum at rainfall intensity of greater than 1.0 mm · min(-1). The runoff volume in- creased 10%-60% with increase in rainfall intensity. Sediment concentration showed a sharp decline in first 6 min and then in a stable state in rest of time. Influence of rainfall intensity on sediment concentration decreased as gravel content increased. Gravels could reduce sediment yield significantly at rainfall intensity of greater than 1.0 mm · min(-1). Sediment yield was found to be a linear function of rainfall intensity and gravel content.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25381585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25381585"><span>Adsorption and leaching behaviour of bispyribac-sodium in soils.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Singh, Neera; Singh, S B</p> <p>2015-01-01</p> <p>Adsorption-desorption of the herbicide bispyribac-sodium was studied in four Indian soil types. Bispyribac-sodium was poorly adsorbed in the four soils and adsorption decreased with an increase in the herbicide concentration in solution. Freundlich adsorption coefficient (Kf) values for bispyribac-sodium ranged between 0.37 and 0.87. Slope (1/n) values varied from 0.2 to 0.31 suggesting that bispyribac-sodium adsorption was highly dependent on its initial concentration in solution. Bispyribac-sodium adsorption showed a positive correlation with soil pH (r = 0.809) and clay content (r = 0.699) while no correlation was observed with the organic carbon (r = 0.063) content. Sorbed herbicide was completely desorbed during a single desorption step suggesting that the herbicide was bound by weak adsorptive forces. Leaching studies of herbicide in soil 1 packed column indicated complete loss of soil applied herbicide under a simulated rainfall equivalent to 162 mm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5061A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5061A"><span>Rainfall simulation experiments in ecological and conventional vineyards.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adrian, Alexander; Brings, Christine; Rodrigo Comino, Jesús; Iserloh, Thomas; Ries, Johannes B.</p> <p>2015-04-01</p> <p>In October 2014, the Trier University started a measurement series, which defines, compares and evaluates the behavior of runoff and soil erosion with different farming productions in vineyards. The research area is located in Kanzem, a traditional wine village in the Saar Valley (Rheinland-Palatinate, Germany). The test fields show different cultivation methods: ecological (with natural vegetation cover under and around the vines) and conventional cultivated rows of wine. By using the small portable rainfall simulator of Trier University it shall be proved if the assumption that there is more runoff and soil erosion in the conventional part than in the ecological part of the tillage system. Rainfall simulations assess the generation of overland flow, soil erosion and infiltration. So, a trend of soil erosion and runoff of the different cultivation techniques are noted. The objective of this work is to compare the geomorphological dynamics of two different tillage systems. Therefore, 30 rainfall simulations plots were evenly distributed on a west exposition hillside with different slope angels (8-25°), vegetation- and stone-covers. In concrete, the plot surface reaches from strongly covered soil across lithoidal surfaces to bare soil often with compacted lanes of typical using machines. In addition, by using the collected substrate, an estimation and distribution of the grain size of the eroded material shall be given. The eroded substrate is compared to soil samples of the test plots. The first results have shown that there is slightly more runoff and soil erosion in the ecological area than on the conventional part of the vineyard.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PCE....35..686M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PCE....35..686M"><span>Extrapolating effects of conservation tillage on yield, soil moisture and dry spell mitigation using simulation modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mkoga, Z. J.; Tumbo, S. D.; Kihupi, N.; Semoka, J.</p> <p></p> <p>There is big effort to disseminate conservation tillage practices in Tanzania. Despite wide spread field demonstrations there has been some field experiments meant to assess and verify suitability of the tillage options in local areas. Much of the experiments are short lived and thus long term effects of the tillage options are unknown. Experiments to study long term effects of the tillage options are lacking because they are expensive and cannot be easily managed. Crop simulation models have the ability to use long term weather data and the local soil parameters to assess long term effects of the tillage practices. The Agricultural Production Systems Simulator (APSIM) crop simulation model; was used to simulate long term production series of soil moisture and grain yield based on the soil and weather conditions in Mkoji sub-catchment of the great Ruaha river basin in Tanzania. A 24 year simulated maize yield series based on conventional tillage with ox-plough, without surface crop residues (CT) treatment was compared with similar yield series based on conservation tillage (ox-ripping, with surface crop residues (RR)). Results showed that predicted yield averages were significantly higher in conservation tillage than in conventional tillage ( P < 0.001). Long term analysis, using APSIM simulation model, showed that average soil moisture in the conservation tillage was significantly higher ( P < 0.05) (about 0.29 mm/mm) than in conventional tillage (0.22 mm/mm) treatment during the seasons which received rainfall between 468 and 770 mm. Similarly the conservation tillage treatment recorded significantly higher yields (4.4 t/ha) ( P < 0.01) than the conventional tillage (3.6 t/ha) treatment in the same range of seasonal rainfall. On the other hand there was no significant difference in soil moisture for the seasons which received rainfall above 770 mm. In these seasons grain yield in conservation tillage treatment was significantly lower (3.1 kg/ha) than in the conventional tillage treatment (4.8 kg/ha) ( P < 0.05). Results also indicated a probability of 0.5 of getting higher yield in conservation than in conventional tillage practice. The conservation tillage treatment had the ability to even-out the acute and long intra-seasonal dry spells. For example a 36-days agricultural dry spell which occurred between 85th and 130th day after planting in the 1989/1990 season (in the CT treatment) was mitigated to zero days in the RR treatment by maintaining soil moisture above the critical point. Critical soil moisture for maize was measured at 0.55 of maximum soil moisture that can be depleted crop (0.55 D). It is concluded that conservation tillage practice where ripping and surface crop residues is used is much more effective in mitigating dry spells and increase productivity in a seasonal rainfall range of between 460 and 770 mm. It is recommended that farmers in the area adopt that type of conservation tillage because rainfall was in this range (460-770 mm) in 12 out of the past 24 years, indicating possibility of yield losses once in every 2 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH41D..03O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH41D..03O"><span>STEP-TRAMM - A modeling interface for simulating localized rainfall induced shallow landslides and debris flow runout pathways</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Or, D.; von Ruette, J.; Lehmann, P.</p> <p>2017-12-01</p> <p>Landslides and subsequent debris-flows initiated by rainfall represent a common natural hazard in mountainous regions. We integrated a landslide hydro-mechanical triggering model with a simple model for debris flow runout pathways and developed a graphical user interface (GUI) to represent these natural hazards at catchment scale at any location. The STEP-TRAMM GUI provides process-based estimates of the initiation locations and sizes of landslides patterns based on digital elevation models (SRTM) linked with high resolution global soil maps (SoilGrids 250 m resolution) and satellite based information on rainfall statistics for the selected region. In the preprocessing phase the STEP-TRAMM model estimates soil depth distribution to supplement other soil information for delineating key hydrological and mechanical properties relevant to representing local soil failure. We will illustrate this publicly available GUI and modeling platform to simulate effects of deforestation on landslide hazards in several regions and compare model outcome with satellite based information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187153','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187153"><span>Effect of hydraulic hysteresis on the stability of infinite slopes under steady infiltration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chen, Pan; Mirus, Benjamin B.; Lu, Ning; Godt, Jonathan W.</p> <p>2017-01-01</p> <p>Hydraulic hysteresis, including capillary soil water retention (SWR), air entrapment SWR, and hydraulic conductivity, is a common phenomenon in unsaturated soils. However, the influence of hydraulic hysteresis on suction stress, and subsequently slope stability, is generally ignored. This paper examines the influence of each of these three types of hysteresis on slope stability using an infinite slope stability analysis under steady infiltration conditions. First, hypothetical slopes for representative silty and sandy soils are examined. Then a monitored hillslope in the San Francisco Bay Area, California is assessed, using observed rainfall conditions and measured hydraulic and geotechnical properties of the colluvial soil. Results show that profiles of suction stress and the corresponding factor of safety are generally strongly affected by hydraulic hysteresis. Results suggest that each of the three types of hydraulic hysteresis may play a major role in the occurrence of slope failure, indicating that ignoring hydraulic hysteresis will likely lead to underestimates of failure potential and hence to inaccurate slope stability analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43K1786A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43K1786A"><span>Dynamic Water Storage during Flash Flood Events in the Mountainous Area of Rio de Janeiro/Brazil - Case study: Piabanha River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Araujo, L.; Silva, F. P. D.; Moreira, D. M.; Vásquez P, I. L.; Justi da Silva, M. G. A.; Fernandes, N.; Rotunno Filho, O. C.</p> <p>2017-12-01</p> <p>Flash floods are characterized by a rapid rise in water levels, high flow rates and large amounts of debris. Several factors have relevance to the occurrence of these phenomena, including high precipitation rates, terrain slope, soil saturation degree, vegetation cover, soil type, among others. In general, the greater the precipitation intensity, the more likely is the occurrence of a significant increase in flow rate. Particularly on steep and rocky plains or heavily urbanized areas, relatively small rain rates can trigger a flash flood event. In addition, high rain rates in short time intervals can temporarily saturate the surface soil layer acting as waterproofing and favoring the occurrence of greater runoff rates due to non-infiltration of rainwater into the soil. Thus, although precipitation is considered the most important factor for flooding, the interaction between rainfall and the soil can sometimes be of greater importance. In this context, this work investigates the dynamic storage of water associated with flash flood events for Quitandinha river watershed, a tributary of Piabanha river, occurred between 2013 and 2014, by means of water balance analyses applied to three watersheds of varying magnitudes (9.25 km², 260 km² and 429 km²) along the rainy season under different time steps (hourly and daily) using remotely sensed and observational precipitation data. The research work is driven by the hypothesis of a hydrologically active bedrock layer, as the watershed is located in a humid region, having intemperate (fractured) rock layer, just below a shallow soil layer, in the higher part of the basin where steep slopes prevail. The results showed a delay of the variation of the dynamic storage in relation to rainfall peaks and water levels. Such behavior indicates that the surface soil layer, which is not very thick in the region, becomes rapidly saturated along rainfall events. Subsequently, the water infiltrates into the rocky layer and the water storage in the fractured bedrock assumes significant role due to its corresponding release to streams as storm flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PIAHS.366..200P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PIAHS.366..200P"><span>Soil erosion assessment of a Himalayan river basin using TRMM data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.</p> <p>2015-04-01</p> <p>In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970021687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970021687"><span>The Aggregate Description of Semi-Arid Vegetation with Precipitation-Generated Soil Moisture Heterogeneity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James</p> <p>1997-01-01</p> <p>Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.aaai.org/Conferences/AAAI/aaai16.php','USGSPUBS'); return false;" href="http://www.aaai.org/Conferences/AAAI/aaai16.php"><span>Wetting and drying of soil in response to precipitation: Data analysis, modeling, and forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Basak, Aniruddha; Kulkarni, Chinmay; Schmidt, Kevin M.; Mengshoel, Ole</p> <p>2016-01-01</p> <p>This paper investigates methods to analyze and forecast soil moisture time series. We extend an existing Antecedent Water Index (AWI) model, which expresses soil moisture as a function of time and rainfall. Unfortunately, the existing AWI model does not forecast effectively for time periods beyond a few hours. To overcome this limitation, we develop a novel AWI-based model. Our model accumulates rainfall over a time interval and can fit a diverse range of wetting and drying curves. In addition, parameters in our model reflect hydrologic redistribution processes of gravity and suction.We validate our models using experimental soil moisture and rainfall time series data collected from steep gradient post-wildfire sites in Southern California, where rapid landscape change was observed in response to small to moderate rain storms. We found that our novel model fits the data for three distinct soil textures, occurring at different depths below the ground surface (5, 15, and 30 cm). Our model also successfully forecasts soil moisture trends, such as drying and wetting rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/35498','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/35498"><span>Natural variability of the Keetch-Byram Drought Index in the Hawaiian Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Klaus Dolling; Pao-Shin Chu; Francis Fujioka</p> <p>2009-01-01</p> <p>The Hawaiian Islands experience damaging wildfires on a yearly basis. Soil moisture or lack thereof influences the amount and flammability of vegetation. Incorporating daily maximum temperatures and daily rainfall amounts, the Keetch–Byram Drought Index (KBDI) estimates the amount of soil moisture by tracking daily maximum temperatures and rainfall. A previous study...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.2916G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.2916G"><span>Effects of rainfall partitioning in the seasonal and spatial variability of soil water content in a Mediterranean downy oak forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia-Estringana, P.; Latron, J.; Molina, A. J.; Llorens, P.</p> <p>2012-04-01</p> <p>Rainfall partitioning fluxes (throughfall and stemflow) have a large degree of temporal and spatial variability and may consequently lead to significant changes in the volume and composition of water that reach the understory and the soil. The objective of this work is to study the effect of rainfall partitioning on the seasonal and spatial variability of the soil water content in a Mediterranean downy oak forest (Quercus pubescens), located in the Vallcebre research catchments (42° 12'N, 1° 49'E). The monitoring design, started on July 2011, consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. One hundred hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover, in leaf and leafless periods, as well as biometric characteristics of the plot, are also regularly measured. This work presents the first results describing throughfall and soil moisture spatial variability during both the leaf and leafless periods. The main drivers of throughfall variability, as canopy structure and meteorological conditions are also analysed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037094','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037094"><span>Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cleveland, C.C.; Wieder, W.R.; Reed, S.C.; Townsend, A.R.</p> <p>2010-01-01</p> <p>Climate models predict precipitation changes for much of the humid tropics, yet few studies have investigated the potential consequences of drought on soil carbon (C) cycling in this important biome. In wet tropical forests, drought could stimulate soil respiration via overall reductions in soil anoxia, but previous research suggests that litter decomposition is positively correlated with high rainfall fluxes that move large quantities of dissolved organic matter (DOM) from the litter layer to the soil surface. Thus, reduced rainfall could also limit C delivery to the soil surface, reducing respiration rates. We conducted a throughfall manipulation experiment to investigate how 25% and 50% reductions in rainfall altered both C movement into soils and the effects of those DOM fluxes on soil respiration rates. In response to the experimental drought, soil respiration rates increased in both the -25% and -50% treatments. Throughfall fluxes were reduced by 26% and 55% in the-25% and-50% treatments, respectively. However, total DOM fluxes leached from the litter did not vary between treatments, because the concentrations of leached DOM reaching the soil surface increased in response to the simulated drought. Annual DOM concentrations averaged 7.7 ?? 0.8, 11.2 ?? 0.9, and 15.8 ?? 1.2 mg C/L in the control, -25%, and -50% plots, respectively, and DOM concentrations were positively correlated with soil respiration rates. A laboratory incubation experiment confirmed the potential importance of DOM concentration on soil respiration rates, suggesting that this mechanism could contribute to the increase in CO2 fluxes observed in the reduced rainfall plots. Across all plots, the data suggested that soil CO2 fluxes were partially regulated by the magnitude and concentration of soluble C delivered to the soil, but also by soil moisture and soil oxygen availability. Together, our data suggest that declines in precipitation in tropical rain forests could drive higher CO2 fluxes to the atmosphere both via increased soil O2 availability and through responses to elevated DOM concentrations. ?? 2010 by the Ecological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.cfc.umt.edu/biogeochemistry/Pdfs/Cleveland_Ecology_2010.pdf','USGSPUBS'); return false;" href="http://www.cfc.umt.edu/biogeochemistry/Pdfs/Cleveland_Ecology_2010.pdf"><span>Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cleveland, Cory C.; Wieder, William R.; Reed, Sasha C.; Townsend, Alan R.</p> <p>2010-01-01</p> <p>Climate models predict precipitation changes for much of the humid tropics, yet few studies have investigated the potential consequences of drought on soil carbon (C) cycling in this important biome. In wet tropical forests, drought could stimulate soil respiration via overall reductions in soil anoxia, but previous research suggests that litter decomposition is positively correlated with high rainfall fluxes that move large quantities of dissolved organic matter (DOM) from the litter layer to the soil surface. Thus, reduced rainfall could also limit C delivery to the soil surface, reducing respiration rates. We conducted a throughfall manipulation experiment to investigate how 25% and 50% reductions in rainfall altered both C movement into soils and the effects of those DOM fluxes on soil respiration rates. In response to the experimental drought, soil respiration rates increased in both the -25% and -50% treatments. Throughfall fluxes were reduced by 26% and 55% in the -25% and -50% treatments, respectively. However, total DOM fluxes leached from the litter did not vary between treatments, because the concentrations of leached DOM reaching the soil surface increased in response to the simulated drought. Annual DOM concentrations averaged 7.7 ± 0.8, 11.2 ± 0.9, and 15.8 ± 1.2 mg C/L in the control, -25%, and -50% plots, respectively, and DOM concentrations were positively correlated with soil respiration rates. A laboratory incubation experiment confirmed the potential importance of DOM concentration on soil respiration rates, suggesting that this mechanism could contribute to the increase in CO2 fluxes observed in the reduced rainfall plots. Across all plots, the data suggested that soil CO2 fluxes were partially regulated by the magnitude and concentration of soluble C delivered to the soil, but also by soil moisture and soil oxygen availability. Together, our data suggest that declines in precipitation in tropical rain forests could drive higher CO2 fluxes to the atmosphere both via increased soil O2 availability and through responses to elevated DOM concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27997835','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27997835"><span>Synthetic rainfall vibrations evoke toad emergence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Márquez, Rafael; Beltrán, Juan F; Llusia, Diego; Penna, Mario; Narins, Peter M</p> <p>2016-12-19</p> <p>Toads occupy underground refugia during periods of daily or seasonal inactivity, emerging only during rainfall [1]. We test the hypothesis that rainfall-induced vibrations in soil are the cues that trigger the emergence of toads from underground. Using playback experiments in the absence of natural rainfall in native habitats, we observed that two Iberian toad species (Pelobates cultripes and Bufo calamita) emerged significantly earlier than controls when exposed to low-frequency soil vibrations that closely mimic those of rainfall. Our results suggest that detection of abiotic seismic events are biologically relevant and widespread in arid-zone anurans. These findings provide insights into the evolutionary role played by the two low-frequency-tuned inner-ear organs in anuran amphibians - the amphibian papilla and sacculus, both detectors of weak environmental vibrational cues. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16847616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16847616"><span>Fire season and intensity affect shrub recruitment in temperate sclerophyllous woodlands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Knox, K J E; Clarke, P J</p> <p>2006-10-01</p> <p>The season in which a fire occurs may regulate plant seedling recruitment because of: (1) the interaction of season and intensity of fire and the temperature requirements for seed release, germination and growth; (2) post-fire rainfall and temperature patterns affecting germination; (3) the interaction of post-fire germination conditions and competition from surrounding vegetation; and (4) the interaction of post-fire germination conditions and seed predators and/or seedling herbivores. This study examined the effects of different fire intensities and fire seasons on the emergence and survival of shrubs representing a range of fire response syndromes from a summer rainfall cool climate region. Replicated experimental burns were conducted in two seasons (spring and autumn) in 2 consecutive years and fuel loads were increased to examine the effects of fire intensity (low intensity and moderate intensity). Post-fire watering treatments partitioned the effects of seasonal temperature from soil moisture. Higher intensity fires resulted in enhanced seedling emergence for hard-seeded species but rarely influenced survival. Spring fires enhanced seedling emergence across all functional groups. Reduced autumn recruitment was related to seasonal temperature inhibiting germination rather than a lack of soil moisture or competition. In Mediterranean-type climate regions, seedling emergence has been related to post-fire rainfall and exposure of seeds to seed predators. We think a similar model may operate in temperate summer rainfall regions where cold-induced dormancy over winter exposes seeds to predators for a longer time and subsequently results in recruitment failure. Our results support the theory that the effect of fire season is more predictable where there are strong seasonal patterns in climate. In this study seasonal temperature rather than rainfall appears to be more influential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027677','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027677"><span>Rainfall-runoff in the Albuquerque, New Mexico, area: Measurements, analyses and comparisons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Anderson, C.E.; Ward, T.J.; Kelly, T.; ,</p> <p>2005-01-01</p> <p>Albuquerque, New Mexico, has experienced significant growth over the last 20 years like many other cities in the Southwestern United States. While the US population grew by 37% between the 1970 and 2000 censuses, the growth for Albuquerque was 83%. More people mean more development and increased problems of managing runoff from urbanizing watersheds. The U.S. Geological Survey (USGS) in cooperation with the Albuquerque Arroyo Metropolitan Flood Control Authority (AMAFCA) and the City of Albuquerque has maintained a rainfall-runoff data collection program since 1976. The data from measured precipitation events can be used to verify hydrologic modeling. In this presentation, data from a representative gaged watershed is analyzed and discussed to set the overall framework for the rainfall-runoff process in the Albuquerque area. Of particular interest are the basic relationships between rainfall and watershed runoff response and an analysis of curve numbers as an indicator of runoff function. In urbanized areas, four land treatment types (natural, irrigated lawns, compacted soil, and impervious) are used to define surface infiltration conditions. Rainfall and runoff gage data are used to compare curve number (CN) and initial abstraction/uniform infiltration (IA/INF) techniques in an Albuquerque watershed. The IA/INF method appears to produce superior results over the CN method for the measured rainfall events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=342523','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=342523"><span>Correcting satellite-based precipitation products through SMOS soil moisture data assimilation in two land-surface models of different complexity: API and SURFEX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Real-time rainfall accumulation estimates at the global scale is useful for many applications. However, the real-time versions of satellite-based rainfall products are known to contain errors relative to real rainfall observed in situ. Recent studies have demonstrated how information about rainfall ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28646132','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28646132"><span>Global rainfall erosivity assessment based on high-temporal resolution rainfall records.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Yu, Bofu; Klik, Andreas; Jae Lim, Kyoung; Yang, Jae E; Ni, Jinren; Miao, Chiyuan; Chattopadhyay, Nabansu; Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Zabihi, Mohsen; Larionov, Gennady A; Krasnov, Sergey F; Gorobets, Andrey V; Levi, Yoav; Erpul, Gunay; Birkel, Christian; Hoyos, Natalia; Naipal, Victoria; Oliveira, Paulo Tarso S; Bonilla, Carlos A; Meddi, Mohamed; Nel, Werner; Al Dashti, Hassan; Boni, Martino; Diodato, Nazzareno; Van Oost, Kristof; Nearing, Mark; Ballabio, Cristiano</p> <p>2017-06-23</p> <p>The exposure of the Earth's surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(<30 min) and high fidelity rainfall recordings. We present the results of an extensive global data collection effort whereby we estimated rainfall erosivity for 3,625 stations covering 63 countries. This first ever Global Rainfall Erosivity Database was used to develop a global erosivity map at 30 arc-seconds(~1 km) based on a Gaussian Process Regression(GPR). Globally, the mean rainfall erosivity was estimated to be 2,190 MJ mm ha -1 h -1 yr -1 , with the highest values in South America and the Caribbean countries, Central east Africa and South east Asia. The lowest values are mainly found in Canada, the Russian Federation, Northern Europe, Northern Africa and the Middle East. The tropical climate zone has the highest mean rainfall erosivity followed by the temperate whereas the lowest mean was estimated in the cold climate zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H51E0826S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H51E0826S"><span>Quantifying the Spatial Distribution of Hill Slope Erosion Using a 3-D Laser Scanner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scholl, B. N.; Bogonko, M.; He, Y.; Beighley, R. E.; Milberg, C. T.</p> <p>2007-12-01</p> <p>Soil erosion is a complicated process involving many interdependent variables including rainfall intensity and duration, drop size, soil characteristics, ground cover, and surface slope. The interplay of these variables produces differing spatial patterns of rill versus inter-rill erosion by changing the effective energy from rain drop impacts and the quantities and timing of sheet and shallow, concentrated flow. The objective of this research is to characterize the spatial patterns of rill and inter-rill erosion produced from simulated rainfall on different soil densities and surface slopes using a 3-D laser scanner. The soil used in this study is a sandy loam with bulk density due to compaction ranging from 1.25-1.65 g/cm3. The surface slopes selected for this study are 25, 33, and 50 percent and represent common slopes used for grading on construction sites. The spatial patterns of soil erosion are measured using a Trimble GX DR 200+ 3D Laser Scanner which employs a time of flight calculation averaged over 4 points using a class 2, pulsed, 532 nm, green laser at a distance of 2 to 11 m from the surface. The scanner measures point locations on an approximately 5 mm grid. The pre- and post-erosion scan surfaces are compared to calculate the change in volume and the dimensions of rills and inter-rill areas. The erosion experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University. SERL experiments utilize a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters. Rainfall is applied to the soil surface using two overhead Norton ladder rainfall simulators, which produce realistic rain drop diameters (median = 2.25 mm) and impact velocities. Simulated storm events used in this study consist of rainfall intensities ranging from 5, 10 to 15 cm/hr for durations of 20 to 30 minutes. Preliminary results are presented that illustrate a change in runoff processes and erosion patterns as soil density increases and reduces infiltration characteristics. Total soil loss measured from the bottom of the erosion bed is compared to the volume of soil loss determined using the laser scanner. Due to soil consolidation during the experiment, the accuracy of measured soil loss from the laser scanner increases with increasing soil density. Ratios of rill and inter-rill erosions for each experiment are also presented. URL: http://spatialhydro.sdsu.edu</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H53K..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H53K..06R"><span>Development of an analytical solution for the Budyko watershed parameter in terms of catchment physical features</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reaver, N.; Kaplan, D. A.; Jawitz, J. W.</p> <p>2017-12-01</p> <p>The Budyko hypothesis states that a catchment's long-term water and energy balances are dependent on two relatively easy to measure quantities: rainfall depth and potential evaporation. This hypothesis is expressed as a simple function, the Budyko equation, which allows for the prediction of a catchment's actual evapotranspiration and discharge from measured rainfall depth and potential evaporation, data which are widely available. However, the two main analytically derived forms of the Budyko equation contain a single unknown watershed parameter, whose value varies across catchments; variation in this parameter has been used to explain the hydrological behavior of different catchments. The watershed parameter is generally thought of as a lumped quantity that represents the influence of all catchment biophysical features (e.g. soil type and depth, vegetation type, timing of rainfall, etc). Previous work has shown that the parameter is statistically correlated with catchment properties, but an explicit expression has been elusive. While the watershed parameter can be determined empirically by fitting the Budyko equation to measured data in gauged catchments where actual evapotranspiration can be estimated, this limits the utility of the framework for predicting impacts to catchment hydrology due to changing climate and land use. In this study, we developed an analytical solution for the lumped catchment parameter for both forms of the Budyko equation. We combined these solutions with a statistical soil moisture model to obtain analytical solutions for the Budyko equation parameter as a function of measurable catchment physical features, including rooting depth, soil porosity, and soil wilting point. We tested the predictive power of these solutions using the U.S. catchments in the MOPEX database. We also compared the Budyko equation parameter estimates generated from our analytical solutions (i.e. predicted parameters) with those obtained through the calibration of the Budyko equation to discharge data (i.e. empirical parameters), and found good agreement. These results suggest that it is possible to predict the Budyko equation watershed parameter directly from physical features, even for ungauged catchments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710579D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710579D"><span>Comparison of different types of medium scale field rainfall simulators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dostál, Tomáš; Strauss, Peter; Schindewolf, Marcus; Kavka, Petr; Schmidt, Jürgen; Bauer, Miroslav; Neumann, Martin; Kaiser, Andreas; Iserloh, Thomas</p> <p>2015-04-01</p> <p>Rainfall simulators are used in numerous experiments to study runoff and soil erosion characteristics. However, they usually differ in their construction details, rainfall generation, plot size and other technical parameters. As field experiments using medium to large scale rainfall simulators (plot length 3 - 8 m) are very much time and labor consuming, close cooperation of individual teams and comparability of results is highly desirable to enlarge the database of results. Two experimental campaigns were organized to compare three field rainfall simulators of similar scale (plot size), but with different technical parameters. The results were then compared, to identify parameters that are crucial for soil loss and surface runoff formation and test if results from individual devices can be reliably compared. The rainfall simulators compared were: field rainfall simulator of CTU Prague (the Czech Republic) (Kavka et al., 2012; EGU2015-11025), field simulator of BAW (Austria) (Strauss et al., 2002) and field simulator of TU Bergakademie Freiberg (Germany) (Schindewolf & Schmidt 2012). The device of CTU Prague is usually applied to a plot size of 9,5 x 2 m employing 4 nozzles SS Full Jet 40WSQ mounted on folding arm, working pressure is 0.8 bar, height of nozzles is 2.65 m. The intensity of rainfall is regulated electronically, which leaves the nozzle opened only for certain time. The rainfall simulator of BAW is constructed as a modular system, which is usually applied for a length of 5 m (area 2 x 5 m), using 6 nozzles SS Full Jet 40WSQ. Usual working pressure is 0.25 bar. Elevation of nozzles is 2.6 m. The intensity of rainfall is regulated electronically, which leaves the nozzle opened only for certain time. The device of TU Bergakademie Freiberg is also standard modular system, working usually with a plot size of 3 x 1 m, using 3 oscillating VeeJet 80/100 nozzles with an usual operating pressure of 0.5 bar. Intensity is regulated by the frequency of sweeps above the experimental plot. Comparison was done during two independent campaigns, where always two devices were present. Rainfall intensity for the experiments varied between 40 to 60 mm/h. Mutual comparison was carried out between the CTU Prague and TU Freiberg RSs at plot size of 3 x 1 m and Between CTU Prague and BAW RSs at plot size of 5 x 2 m. In general, the experiments revealed a significant effect of potential heterogeneities at the experimental plots and an effect of raindrop energy on both surface runoff formation and mainly soil loss. Therefore, coordination of methodology of the experiments and careful control of initial conditions seem to be a crucial point for comparability of results from individual devices. Detailed results will be presented on the poster. The research has been supported by the research grants SGS14/180/OHK1/3T/11, QJ1230056 and 7AMB14AT020. References Kavka, P., Davidová, T., Janotová, B., Bauer, M. a Dostál, T. 2012. Mobilní dešťový simulátor.(in Czech), Stavební obzor. 8, 2012. Schindewolf, M. & J. Schmidt (2012): Parameterization of the EROSION 2D/3D soil erosion model using a small-scale rainfall simulator and upstream runoff simulation, Catena 91, pp. 47-55, DOI: 10.1016/j.catena.2011.01.007 Strauss P., J.Pitty, M.Pfeffer, A. Mentler (2000): Rainfall Simulation for Outdoor Experiments. In: P. Jamet, J. Cornejo(eds.): Current research methods to assess the environmental fate of pesticides. pp. 329-333, INRA Editions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28944475','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28944475"><span>The effect of consumer pressure and abiotic stress on positive plant interactions are mediated by extreme climatic events.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Filazzola, Alessandro; Liczner, Amanda Rae; Westphal, Michael; Lortie, Christopher J</p> <p>2018-01-01</p> <p>Environmental extremes resulting from a changing climate can have profound implications for plant interactions in desert communities. Positive interactions can buffer plant communities from abiotic stress and consumer pressure caused by climatic extremes, but limited research has explored this empirically. We tested the hypothesis that the mechanism of shrub facilitation on an annual plant community can change with precipitation extremes in deserts. During years of extreme drought and above-average rainfall in a desert, we measured plant interactions and biomass while manipulating a soil moisture gradient and reducing consumer pressure. Shrubs facilitated the annual plant community at all levels of soil moisture through reductions in microclimatic stress in both years and herbivore protection in the wet year only. Shrub facilitation and the high rainfall year contributed to the dominance of a competitive annual species in the plant community. Precipitation patterns in deserts determine the magnitude and type of facilitation mechanisms. Moreover, shrub facilitation mediates the interspecific competition within the associated annual community between years with different rainfall amounts. Examining multiple drivers during extreme climate events is a challenging area of research, but it is a necessary consideration given forecasts predicting that these events will increase in frequency and magnitude. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610305L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610305L"><span>Coupling of rainfall-induced landslide triggering model with predictions of debris flow runout distances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehmann, Peter; von Ruette, Jonas; Fan, Linfeng; Or, Dani</p> <p>2014-05-01</p> <p>Rapid debris flows initiated by rainfall induced shallow landslides present a highly destructive natural hazard in steep terrain. The impact and run-out paths of debris flows depend on the volume, composition and initiation zone of released material and are requirements to make accurate debris flow predictions and hazard maps. For that purpose we couple the mechanistic 'Catchment-scale Hydro-mechanical Landslide Triggering (CHLT)' model to compute timing, location, and landslide volume with simple approaches to estimate debris flow runout distances. The runout models were tested using two landslide inventories obtained in the Swiss Alps following prolonged rainfall events. The predicted runout distances were in good agreement with observations, confirming the utility of such simple models for landscape scale estimates. In a next step debris flow paths were computed for landslides predicted with the CHLT model for a certain range of soil properties to explore its effect on runout distances. This combined approach offers a more complete spatial picture of shallow landslide and subsequent debris flow hazards. The additional information provided by CHLT model concerning location, shape, soil type and water content of the released mass may also be incorporated into more advanced models of runout to improve predictability and impact of such abruptly-released mass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817261C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817261C"><span>Long-term changes in soil erosion due to forest fires. A rainfall simulation approach in Eastern Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cerdà, Artemi; Keesstra, Saskia; Pereira, Paulo; Matrix-Solera, Jorge; Giménez-Morera, Antonio; Úbeda, Xavier; Francos, Marcos; Alcañiz, Meritxell; Jordán, Antonio</p> <p>2016-04-01</p> <p>Soils are affected by the impacts of wildfires (Dlapa et al., 2013; Pereira et al., 2014; Tsibart et al., 2014; Dlapa et al., 2015, Hedo et al., 2015; Tessler et al., 2015). Soil erosion rates are highly affected by forest fires due to the removal of the above ground vegetation, the heat impact on the soil, the reduction of the organic matter, the ash cover, and the changes introduced by the rainfall on the soil surface (Lasanta and Cerdà, 2005; Mataix-Solera et al., 2011; Novara et al., 2011; Novara et al., 2013; Keesstra et al., 2014; Hedo et al., 2015; Pereira, 2015). Most of the research carried out on forest fire affected land paid attention to the "window of disturbance", which is the period that the soil losses are higher than before the forest fire and that last for few years (Cerdà, 1998a; Cerdà 1998b, Pérez-Cabello et al., 2011; Bodí et al., 2011; Bodí et al., 2012; Pereira et al., 2013: Pereira et al., 2015). However, the spatial and temporal variability of soil erosion is very high as a result of the uneven temporal and spatial distribution of the rainfall (Novara et al., 2011; Bisantino et al., 2015; Gessesse et al., 2015; Ochoa et al., 2015), and the window of disturbance cannot be easily found under natural rainfall. In order to understand the evolution of soil erosion after forest fires it is necessary to monitor fire affected sites over a long period of time, which will enable the assessment of the period affected by the window of disturbance (see Cerdà and Doerr, 2005). However, it is also possible to do measurements and experiments in areas with a different fire history. This will give us information about the temporal changes in soil erosion after forest fire. To reduce the spatial variability of rainfall we can use simulated rainfall that can be applied at multiple site with the same rainfall intensity and duration. For this purpose rainfall simulation can be of great help, in the laboratory (Moreno et al., 2014; Sadegui et al., 2015; Carvalho et al., 2015; Lassu et al., 2015) or in the field (Cerdà et al., 1998c; Jordán et al., 2009; Prosdocimi et al., 2016). In order to determine how fire and post-fire changes change soil erosion rates we selected 12 research sites at the study area of the Massís del Caroig, Eastern Spain, which suffered different fires in the last century. The parent material is limestone in all study sites and the mean annual rainfall ranges from 480 to 550 mm per year in average. The vegetation consists of scrubland (Maquia) with different species. In the years after the fire Brachypodium retusum, Thymus vulgaris, Fumana Ericoides, Cistus Albidus, Ulex parviflorus or Rosmarinus officinalis regenerated, but after some years dense shrub cover develops with typical species such as Quercus coccifera, Quercus ilex, Pistacia lentiscus and Junyperus oxycedurs. Soils are shallow (0-30 cm depth) and distributed in pockets of soil mixed with rock outcrops. All the selected plots were located on the middle tram of the slopes to avoid differences, although previous studies showed no differences in infiltration rates, overland flow and soil erosion on the different trams of the slopes on limestone (Cerdà, 1998d). Each site was selected upon the last fire registered: 0, 1, 2, 3, 5, 9, 16, 24, 33, 44, 51, and 63 years after the last fire. The measurements were carried out in August 2013 by means of a portable rainfall simulator (Cerdà et al., 2009; Iserloh et al., 2013). Ten plots of 0.25 m2 were selected at each site. Rainfall simulation at 55 mm h-1 during one hour was applied. The results show that immediately after the wildfires the soil erosion was negligible due to the ash cover, which acted as mulch, meanwhile after few months (1 year after the fire) the highest soil losses were measured. After 5 years the soil losses had reduced significantly and after 16 years were negligible. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project) and by the Spanish Government with the research Project CGL2013- 47862-C2-1-R. References Bisantino T., Bingner R., Chouaib W., Gentile F., Trisorio Liuzzi G. 2015. Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size mediterranean watershed using the annagnps model. Land Degradation and Development, 26 (4), 340-355. DOI: 10. 1002/ldr. 2213 Bodí, M.B., Doerr, S.H., Cerdà, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 191, 14-23. DOI: 10.1016/j.geoderma.2012.01.006 Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdà, A. 2011. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type,burn severity and total organic carbon content. Geoderma, 160 (3-4), 599-607. Carvalho, S.C.P., de Lima, J.L.M.P., de Lima, M.I.P. 2015. Increasing the Rainfall Kinetic Energy of Spray Nozzles by using Meshes. Land Degradation and Development, DOI: 10.1002/ldr.2349 Cerdà, A. 1998a.The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78 (2), 321-330. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12 (7), 1031-1042. Cerdà, A. 1998c. Post-fire dynamics of erosional processes under Mediterranean climatic conditions(1998) Zeitschrift fur Geomorphologie, 42 (3), 373-398. Cerdà, A. 1998d. The influence of geomorphological position and vegetation cover on the erosional and hydrological processes on a Mediterranean hillslope. Hydrological Processes, 12 (4), 661-671. Cerdà, A., Doerr, S.H. 2005.Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation International Journal of Wildland Fire, 14 (4), 423-437. DOI: 10.1071/WF05044 Cerdà, A., Jurgensen, M.F., Bodi, M.B. 2009. Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. Biologia, 64 (3), 527-531. DOI: 10.2478/s11756-009-0114-7 Dlapa P., Bodí M.B., Mataix-Solera J., Cerdà A., Doerr S.H. 2015. Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests. Catena, 135, 369-376. DOI: 10.1016/j.catena.2014.06.018 Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H. 2013. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena, 108, 35-43. DOI: 10.1016/j.catena.2012.02.011 Gessesse B., Bewket W., Bräuning A. 2015. Model-Based Characterization and Monitoring of Runoff and Soil Erosion in Response to Land Use/land Cover Changes in the Modjo Watershed, Ethiopia. (2015) Land Degradation and Development, 26 (7), 711-724.. DOI: 10. 1002/ldr. 2276 Hedo J., Lucas-Borja M. E., Wic C., Andrés-Abellán M., De Las Heras J. 2015. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands. Solid Earth, 6 (1), 243-252. DOI: 10. 5194/se-6-243-2015 Hedo de Santiago, J., Lucas-Borja, M.E., Wic-Baena, C., Andrés-Abellán, M., de las Heras, J. 2015. Effects of thinning and induced drought on microbiological soil properties and plant species diversity at dry and semiarid locations. Land Degradation and Development, DOI: 10.1002/ldr.2361 Iserloh, T., Ries, B.J., Cerdà, A., Echeverría, M.T., Fister, W., Geißler, C., Kuhn, N.J., León, F.J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., Seeger, M. 2013. Comparative measurements with seven rainfall s simulators on uniform bare fallow land. Zeitschrift fur Geomorphologie, 57 (1 SUPPL. 1), 1-10. DOI: 10.1127/0372-8854/2012/S-00085 Jordán-López, A., Martínez-Zavala, L., Bellinfante, N. 2009. Impact of different parts of unpaved forest roads on runoff and sediment yield in a Mediterranean area. Science of the total environment, 407(2), 937-944. Keesstra, S.D., Maroulis, J., Argaman, E., Voogt, A., Wittenberg, L, 2014. Effects of controlled fire on hydrology and erosion under simulated rainfall. Cuadernos de Investigación Geográfica 40, 269-293. DOI: 10.18172/cig.2532 Lasanta, T., Cerdà, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 2. Solute reléase. Catena, 60 (1), 81-100. DOI: 10.1016/j.catena.2004.09.005 Lassu, T., Seeger, M., Peters, P., Keesstra, S.D. 2015. The Wageningen Rainfall Simulator: Set-up and Calibration of an Indoor Nozzle-Type Rainfall Simulator for Soil Erosion Studies. Land Degradation and Development, 26 (6), 604-612. DOI: 10.1002/ldr.2360 Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M. 2011. Fire effects on soil aggregation: A review. Earth-Science Reviews, 109 (1-2), 44-60. DOI: 10.1016/j.earscirev.2011.08.002 Moreno-Ramón, H., Quizembe, S.J., Ibáñez-Asensio, S. 2014. Coffee husk mulch on soil erosion and runoff: Experiences under rainfall simulation experiment. Solid Earth, 5 (2), 851-862. DOI: 10.5194/se-5-851-2014 Novara A., Gristina L., Rühl J., Pasta S., D'Angelo G., La Mantia T., Pereira P. 2013. Grassland fire effect on soil organic carbon reservoirs in a semiarid environment. Solid Earth, 4 (2), 381-385.. DOI: 10. 5194/se-4-381-2013 Novara, A., Gristina, L., Bodì, M.B., Cerdà, A. 2011. The impact of fire on redistribution of soil organic matter on a Mediterranean hillslope under maquia vegetation type Land Degradation and Development, 22 (6), 530-536. DOI: 10.1002/ldr.1027 Novara, A., Gristina, L., Saladino, S.S., Santoro, A., Cerdà, A. 2011. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil and Tillage Research, 117, 140-147. DOI: 10.1016/j.still.2011.09.007 Ochoa-Cueva P., Fries A., Montesinos P., Rodríguez-Díaz J. A., Boll J. 2015. Spatial Estimation of Soil Erosion Risk by Land-cover Change in the Andes OF Southern Ecuador. Land Degradation and Development, 26 (6), 565-573DOI: 10. 1002/ldr. 2219 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Arcenegui, V., Zavala, L.M. 2015. Modelling the Impacts of Wildfire on Ash Thickness in a Short-Term Period. Land Degradation and Development, 26 (2), 180-192. DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Martin, D., Jordán, A., Burguet, M. 2013. Spatial models for monitoring the spatio-temporal evolution of ashes after fire and ash; A case study of a burnt grassland in Lithuania. Solid Earth, 4 (1), 153-165 DOI: 10.5194/se-4-153-2013 Pereira, P., Jordán, A., Cerdà, A., Martin, D. 2015. Editorial: The role of ash in fire-affected ecosystem. Catena, . DOI: 10.1016/j.catena.2014.11.016 Pereira, P., Úbeda, X., Mataix-Solera, J., Oliva, M., Novara, A.Short-term changes in soil Munsell colour value, organic matter content and soil water repellency after a spring grassland fire in Lithuania (2014) Solid Earth, 5 (1), 209-225. DOI: 10.5194/se-5-209-2014 Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M.T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio, R., Palacios, V. 2012. Micro-scale post-fire surface cover changes monitored using high spatial resolution photography in a semiarid environment: A useful tool in the study of post-fire soil erosion processes. Journal of Arid Environments, 76 (1), 88-96. DOI: 10.1016/j.jaridenv.2011.08.007 Prosdocimi,M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà, A. 2016. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547, 15 ,323-330, doi:10.1016/j.scitotenv.2015.12.076 Sadeghi, S.H.R., Gholami, L., Sharifi, E., Khaledi Darvishan, A., Homaee, M. 2015. Scale effect on runoff and soil loss control using rice mulch under laboratory conditions. Solid Earth, 6 (1), 1-8. DOI: 10.5194/se-6-1-2015 Tessler, N., Sapir, Y., Wittenberg, L., Greenbaum, N. 2015. Recovery of Mediterranean Vegetation after Recurrent Forest Fires: Insight from the 2010 Forest Fire on Mount Carmel, Israel. Land Degradation and Development, DOI: 10.1002/ldr.2419 Tsibart, A., Gennadiev, A., Koshovskii, T., Watts, A. 2014. Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia). Solid Earth, 5 (2), 1305-1317. DOI: 10.5194/se-5-1305-2014 Wang, C., Wang, G., Wang, Y., Rafique, R., Ma, L., Hu, L., Luo, Y. 2015. Fire Alters Vegetation and Soil Microbial Community in Alpine Meadow. Land Degradation and Development, . DOI: 10.1002/ldr.2367</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19603632','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19603632"><span>Origins and transport of aquatic dioxins in the Japanese watershed: soil contamination, land use, and soil runoff events.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kanematsu, Masakazu; Shimizu, Yoshihisa; Sato, Keisuke; Kim, Suejin; Suzuki, Tasuma; Park, Baeksoo; Saino, Reiko; Nakamura, Masafumi</p> <p>2009-06-15</p> <p>Significant dioxins accumulations in Japanese forests and paddy fields have been observed, and surface soil runoff caused by rainfall and irrigation (i.e., soil puddling in paddy fields) results in dioxins input into the aquatic environment. An extensive investigation into the origins and transport of aquatic dioxins in the Yasu watershed, Japan was conducted considering surface soil contamination level, land use, and type of soil runoff event (i.e., irrigation runoff [IR], rainfall runoff [RR], and base flow [BF]). Combined use of the chemically activated luciferase expression (CALUX) assay together with high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS) efficiently enabled this study, so that origins, transport, and dynamic movement of aquatic dioxins in the watershed were revealed. The particulate organic carbon normalized particulate-dioxins WHO-toxic equivalent (TEQ) concentration predicted by the CALUX assay (Spar) was found to be a convenient molecular marker to indicate origins of aquatic dioxins and clearly reflect surface soil contamination level, land use, and soil runoff events. Using experimental results and theoretical modeling, the annual loading amount of dioxins at the middle reach of the river was estimated to be 0.458 mg WHO-TEQ in 2004. More than 96.6% of the annual loading amount was attributed to RR and derived almost evenly from forest and paddy fields at the study location. Because the annual loading amount at the middle reach is less than 0.5% of the total dioxins accumulated in the upper basin, dioxins runoff from the Japanese watershed will continue. This study shows that the combined use of the bioassay with HRGC/HRMS can provide new insights into dioxins transport and fate in the environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2951S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2951S"><span>Soil aggregate stability and rainfall-induced sediment transport on field plots as affected by amendment with organic matter inputs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer</p> <p>2017-04-01</p> <p>Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (<20 µm) than from the un-amended plots, indicating a more size-selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport. The results show that a single application of organic matter can already cause a large difference in aggregate breakdown, surface sealing, and lateral sediment-associated matter transfer under rainfall impact. Furthermore, we will present terrestrial laser scanning data showing the treatment effects on soil surface structure, as well as data on carbon, phosphorus and heavy metal export associated with the translocation of the sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22834892','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22834892"><span>Predicting water table response to rainfall events, central Florida.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Gaalen, J F; Kruse, S; Lafrenz, W B; Burroughs, S M</p> <p>2013-01-01</p> <p>A rise in water table in response to a rainfall event is a complex function of permeability, specific yield, antecedent soil-water conditions, water table level, evapotranspiration, vegetation, lateral groundwater flow, and rainfall volume and intensity. Predictions of water table response, however, commonly assume a linear relationship between response and rainfall based on cumulative analysis of water level and rainfall logs. By identifying individual rainfall events and responses, we examine how the response/rainfall ratio varies as a function of antecedent water table level (stage) and rainfall event size. For wells in wetlands and uplands in central Florida, incorporating stage and event size improves forecasting of water table rise by more than 30%, based on 10 years of data. At the 11 sites studied, the water table is generally least responsive to rainfall at smallest and largest rainfall event sizes and at lower stages. At most sites the minimum amount of rainfall required to induce a rise in water table is fairly uniform when the water table is within 50 to 100 cm of land surface. Below this depth, the minimum typically gradually increases with depth. These observations can be qualitatively explained by unsaturated zone flow processes. Overall, response/rainfall ratios are higher in wetlands and lower in uplands, presumably reflecting lower specific yields and greater lateral influx in wetland sites. Pronounced depth variations in rainfall/response ratios appear to correlate with soil layer boundaries, where corroborating data are available. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70179439','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70179439"><span>Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.</p> <p>2016-01-01</p> <p>Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., <1 ha) in Colorado, USA that had previously been burned by a wildfire in 2010. We compared measurements of soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993AtmEn..27.1369H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993AtmEn..27.1369H"><span>The soiling of materials in the ambient atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamilton, R. S.; Mansfield, T. A.</p> <p></p> <p>Models describing the rate of soiling of exposed surfaces due to the deposition and accumulation of particulate matter from the atmosphere are reviewed. Samples of white painted wood were exposed for 110 days in the ambient atmosphere. Separate samples were sheltered and unsheltered from rainfall. Reflectance was measured daily. Results are compared with recently published studies in the U.S.A. (samples in the ambient atmosphere) and the U.K. (samples in a road tunnel). Experimental soiling rates were compared with predicted values. Existing models were satisfactory for predicting soiling in a tunnel but underestimated soiling in an ambient situation; a revised formulation is proposed for this situation. Rainfall generally produced a cleaning effect but redistribution of washed-off material could produce enhanced soiling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/50865','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/50865"><span>Synthesis of 10-years of Ecohydrologic studies on Turkey Creek watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Devendra Amatya; Timothy Callahan; Carl Trettin</p> <p>2016-01-01</p> <p>Since the establishment of a collaborative study 10 years ago, research on the third-order, 5240 ha forested Turkey Creek watershed in South Carolina’s coastal plain has advanced the understanding of rainfall-runoff relationships, stream hydrograph characteristics, and water table dynamics for dominant soil types. Surface water dynamics were shown to be regulated...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/23607','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/23607"><span>Sediment production from forest roads with wheel ruts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Randy B. Foltz; Edward R. Burroughs</p> <p>1990-01-01</p> <p>Artificial rainfall was applied to two sets of paired plots 30.5 m long by 1.52 m wide, each set on a different soil type. One plot in each set contained a wheel rut while the other did not. Measurements of water and sediment yield on rutted plots showed sediment production declined with cumulative runoff while unrutted plots did not show a significant sediment...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5189125','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5189125"><span>Anomalous High Rainfall and Soil Saturation as Combined Risk Indicator of Rift Valley Fever Outbreaks, South Africa, 2008–2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Malherbe, Johan; Weepener, Harold; Majiwa, Phelix; Swanepoel, Robert</p> <p>2016-01-01</p> <p>Rift Valley fever (RVF), a zoonotic vectorborne viral disease, causes loss of life among humans and livestock and an adverse effect on the economy of affected countries. Vaccination is the most effective way to protect livestock; however, during protracted interepidemic periods, farmers discontinue vaccination, which leads to loss of herd immunity and heavy losses of livestock when subsequent outbreaks occur. Retrospective analysis of the 2008–2011 RVF epidemics in South Africa revealed a pattern of continuous and widespread seasonal rainfall causing substantial soil saturation followed by explicit rainfall events that flooded dambos (seasonally flooded depressions), triggering outbreaks of disease. Incorporation of rainfall and soil saturation data into a prediction model for major outbreaks of RVF resulted in the correctly identified risk in nearly 90% of instances at least 1 month before outbreaks occurred; all indications are that irrigation is of major importance in the remaining 10% of outbreaks. PMID:27403563</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/1050/ds1050.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/1050/ds1050.pdf"><span>Results of hydrologic monitoring of a landslide-prone hillslope in Portland’s West Hills, Oregon, 2006–2017</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, Joel B.; Godt, Jonathan W.; Baum, Rex L.; Coe, Jeffrey A.; Ellis, William L.; Jones, Eric S.; Burns, Scott F.</p> <p>2017-09-15</p> <p>The West Hills of Portland, in the southern Tualatin Mountains, trend northwest along the west side of Portland, Oregon. These silt-mantled mountains receive significant wet-season precipitation and are prone to sliding during wet conditions, occasionally resulting in property damage or casualties. In an effort to develop a baseline for interpretive analysis of the groundwater response to rainfall, an automated monitoring system was installed in 2006 to measure rainfall, pore-water pressure, soil suction, soil-water potential, and volumetric water content at 15-minute intervals. The data show a cyclical pattern of groundwater and moisture content levels—wet from October to May and dry between June and September. Saturated soil conditions tend to last throughout the wet season. These data show the hydrologic response of the monitored area to rainfall and provide insight into the dynamics of rainfall-initiated landsliding. This report details the monitoring methods and presents data collected from January 10, 2006, through January 23, 2017.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B43F0621F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B43F0621F"><span>Study Variability of Seasonal Soil Moisture in Ensemble of CMIP5 Models Over South Asia During 1950-2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fahim, A. M.; Shen, R.; Yue, Z.; Di, W.; Mushtaq Shah, S.</p> <p>2015-12-01</p> <p>Moisture in the upper most layer of soil column from 14 different models under Coupled Model Intercomparison Project Phase-5 (CMIP5) project were analyzed for four seasons of the year. Aim of this study was to explore variability in soil moisture over south Asia using multi model ensemble and relationship between summer rainfall and soil moisture for spring and summer season. GLDAS (Global Land Data Assimilation System) dataset set was used for comparing CMIP5 ensemble mean soil moisture in different season. Ensemble mean represents soil moisture well in accordance with the geographical features; prominent arid regions are indicated profoundly. Empirical Orthogonal Function (EOF) analysis was applied to study the variability. First component of EOF explains 17%, 16%, 11% and 11% variability for spring, summer, autumn and winter season respectively. Analysis reveal increasing trend in soil moisture over most parts of Afghanistan, Central and north western parts of Pakistan, northern India and eastern to south eastern parts of China, in spring season. During summer, south western part of India exhibits highest negative trend while rest of the study area show minute trend (increasing or decreasing). In autumn, south west of India is under highest negative loadings. During winter season, north western parts of study area show decreasing trend. Summer rainfall has very week (negative or positive) spatial correlation, with spring soil moisture, while possess higher correlation with summer soil moisture. Our studies have significant contribution to understand complex nature of land - atmosphere interactions, as soil moisture prediction plays an important role in the cycle of sink and source of many air pollutants. Next level of research should be on filling the gaps between accurately measuring the soil moisture using satellite remote sensing and land surface modelling. Impact of soil moisture in tracking down different types of pollutant will also be studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26846293','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26846293"><span>Spatial and temporal estimation of soil loss for the sustainable management of a wet semi-arid watershed cluster.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rejani, R; Rao, K V; Osman, M; Srinivasa Rao, Ch; Reddy, K Sammi; Chary, G R; Pushpanjali; Samuel, Josily</p> <p>2016-03-01</p> <p>The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha(-1) h(-1) year(-1). Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3% of the cluster has soil loss below 20 t ha(-1) year(-1). The soil loss from crop land varied from 2.9 to 3.6 t ha(-1) year(-1) in low rainfall years to 31.8 to 34.7 t ha(-1) year(-1) in high rainfall years with a mean annual soil loss of 12.2 t ha(-1) year(-1). The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha(-1) year(-1) in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3% of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water using farm ponds and percolation tanks. This methodology can be adopted for estimating the soil loss from similar ungauged watersheds with deficient data and for planning suitable soil and water conservation interventions for the sustainable management of the watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4085067','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4085067"><span>Dryland Soil Hydrological Processes and Their Impacts on the Nitrogen Balance in a Soil-Maize System of a Freeze-Thawing Agricultural Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ouyang, Wei; Chen, Siyang; Cai, Guanqing; Hao, Fanghua</p> <p>2014-01-01</p> <p>Understanding the fates of soil hydrological processes and nitrogen (N) is essential for optimizing the water and N in a dryland crop system with the goal of obtaining a maximum yield. Few investigations have addressed the dynamics of dryland N and its association with the soil hydrological process in a freeze-thawing agricultural area. With the daily monitoring of soil water content and acquisition rates at 15, 30, 60 and 90 cm depths, the soil hydrological process with the influence of rainfall was identified. The temporal-vertical soil water storage analysis indicated the local albic soil texture provided a stable soil water condition for maize growth with the rainfall as the only water source. Soil storage water averages at 0–20, 20–40 and 40–60 cm were observed to be 490.2, 593.8, and 358 m3 ha−1, respectively, during the growing season. The evapo-transpiration (ET), rainfall, and water loss analysis demonstrated that these factors increased in same temporal pattern and provided necessary water conditions for maize growth in a short period. The dry weight and N concentration of maize organs (root, leaf, stem, tassel, and grain) demonstrated the N accumulation increased to a peak in the maturity period and that grain had the most N. The maximum N accumulative rate reached about 500 mg m−2d−1 in leaves and grain. Over the entire growing season, the soil nitrate N decreased by amounts ranging from 48.9 kg N ha−1 to 65.3 kg N ha−1 over the 90 cm profile and the loss of ammonia-N ranged from 9.79 to 12.69 kg N ha−1. With soil water loss and N balance calculation, the N usage efficiency (NUE) over the 0–90 cm soil profile was 43%. The soil hydrological process due to special soil texture and the temporal features of rainfall determined the maize growth in the freeze-thawing agricultural area. PMID:25000400</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25000400','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25000400"><span>Dryland soil hydrological processes and their impacts on the nitrogen balance in a soil-maize system of a freeze-thawing agricultural area.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ouyang, Wei; Chen, Siyang; Cai, Guanqing; Hao, Fanghua</p> <p>2014-01-01</p> <p>Understanding the fates of soil hydrological processes and nitrogen (N) is essential for optimizing the water and N in a dryland crop system with the goal of obtaining a maximum yield. Few investigations have addressed the dynamics of dryland N and its association with the soil hydrological process in a freeze-thawing agricultural area. With the daily monitoring of soil water content and acquisition rates at 15, 30, 60 and 90 cm depths, the soil hydrological process with the influence of rainfall was identified. The temporal-vertical soil water storage analysis indicated the local albic soil texture provided a stable soil water condition for maize growth with the rainfall as the only water source. Soil storage water averages at 0-20, 20-40 and 40-60 cm were observed to be 490.2, 593.8, and 358 m3 ha-1, respectively, during the growing season. The evapo-transpiration (ET), rainfall, and water loss analysis demonstrated that these factors increased in same temporal pattern and provided necessary water conditions for maize growth in a short period. The dry weight and N concentration of maize organs (root, leaf, stem, tassel, and grain) demonstrated the N accumulation increased to a peak in the maturity period and that grain had the most N. The maximum N accumulative rate reached about 500 mg m-2d-1 in leaves and grain. Over the entire growing season, the soil nitrate N decreased by amounts ranging from 48.9 kg N ha-1 to 65.3 kg N ha-1 over the 90 cm profile and the loss of ammonia-N ranged from 9.79 to 12.69 kg N ha-1. With soil water loss and N balance calculation, the N usage efficiency (NUE) over the 0-90 cm soil profile was 43%. The soil hydrological process due to special soil texture and the temporal features of rainfall determined the maize growth in the freeze-thawing agricultural area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H11E1101C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H11E1101C"><span>Convective and nonconvective rainfall partitioning over a mixed Sudanian Savanna Agriculture Catchment: Use of a distributed sensor network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Repetti, A.; Yacouba, H.; Tyler, S. W.; Parlange, M. B.</p> <p>2011-12-01</p> <p>A hydro-meteorological field campaign (joint EPFL-2iE) in a mixed agricultural and forest region in the southern Burkina Faso Savanna aims to identify and understand convective rainfall processes and the link to soil moisture. A simple slab Mixed Layer and Lifting Condensation Level model is implemented to separate convective and nonconvective rainfall. Data for this research were acquired during the 2010 rainy season using an array of wireless weather stations (SensorScope) as well as surface energy balance stations that based upon eddy correlation heat flux measurements. The precipitation was found to be variable over the basin with some 200 mm of difference in total seasonal rainfall between agricultural fields and savanna forest. Convective rainfall represents more than 30% of the total rainfall. The convective rainfall events are short (less than hour), intense (greater than 3 mm/minute) and occur both in the early morning and in the afternoons. These events can have an important impact on soil erosion, which we discuss in more detail along with seasonal stream-aquifer interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.7501A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.7501A"><span>An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anagnostopoulos, Grigorios G.; Fatichi, Simone; Burlando, Paolo</p> <p>2015-09-01</p> <p>Extreme rainfall events are the major driver of shallow landslide occurrences in mountainous and steep terrain regions around the world. Subsurface hydrology has a dominant role on the initiation of rainfall-induced shallow landslides, since changes in the soil water content affect significantly the soil shear strength. Rainfall infiltration produces an increase of soil water potential, which is followed by a rapid drop in apparent cohesion. Especially on steep slopes of shallow soils, this loss of shear strength can lead to failure even in unsaturated conditions before positive water pressures are developed. We present HYDROlisthisis, a process-based model, fully distributed in space with fine time resolution, in order to investigate the interactions between surface and subsurface hydrology and shallow landslides initiation. Fundamental elements of the approach are the dependence of shear strength on the three-dimensional (3-D) field of soil water potential, as well as the temporal evolution of soil water potential during the wetting and drying phases. Specifically, 3-D variably saturated flow conditions, including soil hydraulic hysteresis and preferential flow phenomena, are simulated for the subsurface flow, coupled with a surface runoff routine based on the kinematic wave approximation. The geotechnical component of the model is based on a multidimensional limit equilibrium analysis, which takes into account the basic principles of unsaturated soil mechanics. A series of numerical simulations were carried out with various boundary conditions and using different hydrological and geotechnical components. Boundary conditions in terms of distributed soil depth were generated using both empirical and process-based models. The effect of including preferential flow and soil hydraulic hysteresis was tested together with the replacement of the infinite slope assumption with the multidimensional limit equilibrium analysis. The results show that boundary conditions play a crucial role in the model performance and that the introduced hydrological (preferential flow and soil hydraulic hysteresis) and geotechnical components (multidimensional limit equilibrium analysis) significantly improve predictive capabilities in the presented case study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=329396','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=329396"><span>Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Research to measure soil erosion rates in the United States from natural rainfall runoff plots began in the early 1900’s. In Brazil, the first experimental study at the plot-scale was conducted in the 1940’s; however, the monitoring process and the creation of new experimental field plots have not c...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/31247','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/31247"><span>Rainfall, soil moisture, and runoff dynamics in New Mexico pinon-juniper woodland watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Carlos Ochoa; Alexander Fernald; Vincent Tidwell</p> <p>2008-01-01</p> <p>Clearing trees in pinon-juniper woodlands may increase grass cover and infiltration, leading to reduced surface runoff and erosion. This study was conducted to evaluate pinon-juniper hydrology conditions during baseline data collection in a paired watershed study. We instrumented six 1.0 to 1.3 ha experimental watersheds near Santa Fe, NM to collect rainfall, soil...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.7170T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.7170T"><span>Shrub invasion of desert grassland increases the strength of system feedbacks through enhanced flow-path connectivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turnbull, L.; Wainwright, J.</p> <p>2012-04-01</p> <p>The invasion of desert grasslands by shrubs is a process that is associated with strong ecohydrological feedbacks. As shrubs invade into grasslands, runoff-generating areas become more connected, due to changes in vegetation cover and distribution. Previous field-based experimentation has demonstrated that runoff-generating areas over grassland can become highly connected, but only under extremely large rainfall events that tend to occur infrequently. In contrast, on shrub-dominated hillslopes, it has been observed that bare areas become connected even under relatively small rainfall events. In this study we carry out a scenario-based modelling analysis, using Model for Assessing Hillslope to Landscape Erosion, Runofff, And Nutrients (MAHLERAN), to investigate changes in hydrological connectivity at over a trajectory of shrub invasion, from a grassland end member to a shrubland end member under different rainfall and antecedent soil-moisture conditions. We hypothesize that (i) as shrubs invade into grasslands the connectivity of flow paths will increase, transporting water, sediment and nutrients over greater distances leading to an increased loss of essential resources from hillslopes and (ii) the extent to which flow paths become connected will be sensitive to antecedent soil-moisture conditions, and therefore that the timing as well as magnitude of runoff events will be important, but less so with increasing levels of shrub encroachment. We quantify hydrological connectivity by using a metric to calculate the maximum length of runoff-generating cells contributing flow to a point, to quantify the connectivity of runoff and entrained sediment. The metric is normalized relative to the maximum potential flow-path length to enable standardized comparisons between plots of different types. Results show that there are critical thresholds for large flow- and sediment-production events, which are a function of both rainfall type and antecedent moisture. The implication is that the pattern of rainfall events throughout a monsoon season in the US Southwest can be critical in reinforcing feedbacks that lead to desertification by producing enhanced connectivity of flow and erosion processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..656G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..656G"><span>Hydrological Modeling of Rainfall-Watershed-Bioretention System with EPA SWMM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>gülbaz, sezar; melek kazezyılmaz-alhan, cevza</p> <p>2016-04-01</p> <p>Water resources should be protected for the sustainability of water supply and water quality. Human activities such as high urbanization with lack of infrastructure system and uncontrolled agricultural facilities adversely affect the water resources. Therefore, recent techniques should be investigated in detail to avoid present and future problems like flood, drought and water pollution. Low Impact Development-Best Management Practice (LID-BMP) is such a technique to manage storm water runoff and quality. There are several LID storm water BMPs such as bioretention facilities, rain gardens, storm water wetlands, vegetated rooftops, rain barrels, vegetative swales and permeable pavements. Bioretention is a type of Low Impact Developments (LIDs) implemented to diminish adverse effects of urbanization by reducing peak flows over the surface and improving surface water quality simultaneously. Different soil types in different ratios are considered in bioretention design which affects the performance of bioretention systems. Therefore, in this study, a hydrologic model for bioretention is developed by using Environmental Protection Agency Storm Water Management Model (EPA SWMM). Part of the input data is supplied to the hydrologic model by experimental setup called Rainfall-Watershed-Bioretention (RWB). RWB System is developed to investigate the relation among rainfall, watershed and bioretention. This setup consists of three main parts which are artificial rainfall system, drainage area and four bioretention columns with different soil mixture. EPA SWMM is a dynamic simulation model for the surface runoff which develops on a watershed during a rainfall event. The model is commonly used to plan, analyze, and control storm water runoff, to design drainage system components and to evaluate watershed management of both urban and rural areas. Furthermore, EPA SWMM is a well-known program to model LID-Bioretention in the literature. Therefore, EPA SWMM is employed in drainage and bioretention modeling. Calibration of hydrologic model is made using part of the measured data in RWB System for drainage area and for each bioretention column separately. Finally, performance of the model is evaluated by comparing the model results with the experimental data collected in RWB system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004HyPr...18.3323M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004HyPr...18.3323M"><span>Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishra, Surendra Kumar; Singh, Vijay P.</p> <p>2004-12-01</p> <p>A criterion is developed for determining the validity of the Soil Conservation Service curve number (SCS-CN) method. According to this criterion, the existing SCS-CN method is found to be applicable when the potential maximum retention, S, is less than or equal to twice the total rainfall amount. The criterion is tested using published data of two watersheds. Separating the steady infiltration from capillary infiltration, the method is extended for predicting infiltration and rainfall-excess rates. The extended SCS-CN method is tested using 55 sets of laboratory infiltration data on soils varying from Plainfield sand to Yolo light clay, and the computed and observed infiltration and rainfall-excess rates are found to be in good agreement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5031441','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5031441"><span>Spatial Heterogeneity of Habitat Suitability for Rift Valley Fever Occurrence in Tanzania: An Ecological Niche Modelling Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sindato, Calvin; Stevens, Kim B.; Karimuribo, Esron D.; Mboera, Leonard E. G.; Paweska, Janusz T.; Pfeiffer, Dirk U.</p> <p>2016-01-01</p> <p>Background Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Materials and Methods Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Principal Findings Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). Conclusion/Significance The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics. PMID:27654268</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24889286','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24889286"><span>Short-term precipitation exclusion alters microbial responses to soil moisture in a wet tropical forest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Waring, Bonnie G; Hawkes, Christine V</p> <p>2015-05-01</p> <p>Many wet tropical forests, which contain a quarter of global terrestrial biomass carbon stocks, will experience changes in precipitation regime over the next century. Soil microbial responses to altered rainfall are likely to be an important feedback on ecosystem carbon cycling, but the ecological mechanisms underpinning these responses are poorly understood. We examined how reduced rainfall affected soil microbial abundance, activity, and community composition using a 6-month precipitation exclusion experiment at La Selva Biological Station, Costa Rica. Thereafter, we addressed the persistent effects of field moisture treatments by exposing soils to a controlled soil moisture gradient in the lab for 4 weeks. In the field, compositional and functional responses to reduced rainfall were dependent on initial conditions, consistent with a large degree of spatial heterogeneity in tropical forests. However, the precipitation manipulation significantly altered microbial functional responses to soil moisture. Communities with prior drought exposure exhibited higher respiration rates per unit microbial biomass under all conditions and respired significantly more CO2 than control soils at low soil moisture. These functional patterns suggest that changes in microbial physiology may drive positive feedbacks to rising atmospheric CO2 concentrations if wet tropical forests experience longer or more intense dry seasons in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080039327&hterms=runoff+precipitation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drunoff%2Bprecipitation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080039327&hterms=runoff+precipitation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drunoff%2Bprecipitation"><span>Application of Multi-Satellite Precipitation Analysis to Floods and Landslides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Adler, Robert; Hong, Yang; Huffman, George</p> <p>2007-01-01</p> <p>Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers. In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described indicating general agreement with landslide occurrences. However, difficulties in comparing landslide event information (mostly from news reports) with the satellite-based forecasts are analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016WRR....52.4608B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016WRR....52.4608B"><span>Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.</p> <p>2016-06-01</p> <p>Since its introduction in 1954, the Soil Conservation Service curve number (SCS-CN) method has become the standard tool, in practice, for estimating an event-based rainfall-runoff response. However, because of its empirical origins, the SCS-CN method is restricted to certain geographic regions and land use types. Moreover, it does not describe the spatial variability of runoff. To move beyond these limitations, we present a new theoretical framework for spatially lumped, event-based rainfall-runoff modeling. In this framework, we describe the spatially lumped runoff model as a point description of runoff that is upscaled to a watershed area based on probability distributions that are representative of watershed heterogeneities. The framework accommodates different runoff concepts and distributions of heterogeneities, and in doing so, it provides an implicit spatial description of runoff variability. Heterogeneity in storage capacity and soil moisture are the basis for upscaling a point runoff response and linking ecohydrological processes to runoff modeling. For the framework, we consider two different runoff responses for fractions of the watershed area: "prethreshold" and "threshold-excess" runoff. These occur before and after infiltration exceeds a storage capacity threshold. Our application of the framework results in a new model (called SCS-CNx) that extends the SCS-CN method with the prethreshold and threshold-excess runoff mechanisms and an implicit spatial description of runoff. We show proof of concept in four forested watersheds and further that the resulting model may better represent geographic regions and site types that previously have been beyond the scope of the traditional SCS-CN method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B41F0504C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B41F0504C"><span>Tropical Soil Carbon Stocks do not Reflect Aboveground Forest Biomass Across Geological and Rainfall Gradients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cusack, D. F.; Markesteijn, L.; Turner, B. L.</p> <p>2016-12-01</p> <p>Soil organic carbon (C) dynamics present a large source of uncertainty in global C cycle models, and inhibit our ability to predict effects of climate change. Tropical wet and seasonal forests exert a disproportionate influence on the global C cycle relative to their land area because they are the most C-rich ecosystems on Earth, containing 25-40% of global terrestrial C stocks. While significant advances have been made to map aboveground C stocks in tropical forests, determining soil C stocks using remote sensing technology is still not possible for closed-canopy forests. It is unclear to what extent aboveground C stocks can be used to predict soil C stocks across tropical forests. Here we present 1-m-deep soil organic C stocks for 42 tropical forest sites across rainfall and geological gradients in Panama. We show that soil C stocks do not correspond to aboveground plant biomass or to litterfall productivity in these humid tropical forests. Rather, soil C stocks were strongly and positively predicted by fine root biomass, soil clay content, and rainfall (R2 = 0.47, p < 0.05). Fine root biomass, in turn, was most strongly predicted by total extractable soil base cations (R2 = 0.24, p < 0.05, negative relationship). Our measures of tropical soil C and its relationships with climatic and soil chemical characteristics form an important basis for improving model estimates of soil C stocks and predictions of climate change effects on tropical C storage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51K..06P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51K..06P"><span>Attributing Asymmetric Productivity Responses to Internal Ecosystem Dynamics and External Drivers Using Probabilistic Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parolari, A.; Goulden, M.</p> <p>2017-12-01</p> <p>A major challenge to interpreting asymmetric changes in ecosystem productivity is the attribution of these changes to external climate forcing or to internal ecophysiological processes that respond to these drivers (e.g., photosynthesis response to drying soil). For example, positive asymmetry in productivity can result from either positive skewness in the distribution of annual rainfall amount or from negative curvature in the productivity response to annual rainfall. To analyze the relative influences of climate and ecosystem dynamics on both positive and negative asymmetry in multi-year ANPP experiments, we use a multi-scale coupled ecosystem water-carbon model to interpret field experimental results that span gradients of rainfall skewness and ANPP response curvature. The model integrates rainfall variability, soil moisture dynamics, and net carbon assimilation from the daily to inter-annual scales. From the underlying physical basis of the model, we compute the joint probability distribution of the minimum and maximum ANPP for an annual ANPP experiment of N years. The distribution is used to estimate the likelihood that either positive or negative asymmetry will be observed in an experiment, given the annual rainfall distribution and the ANPP response curve. We estimate the total asymmetry as the mode of this joint distribution and the relative contribution attributable to rainfall skewness as the mode for a linear ANPP response curve. Applied to data from several long-term ANPP experiments, we find that there is a wide range of observed ANPP asymmetry (positive and negative) and a spectrum of contributions from internal and external factors. We identify the soil water holding capacity relative to the mean rain event depth as a critical ecosystem characteristic that controls the non-linearity of the ANPP response and positive curvature at high rainfall. Further, the seasonal distribution of rainfall is shown to control the presence or absence of negative curvature at low rainfall. Therefore, a combination of rooting depth, soil texture, and climate seasonality contribute to ANPP response curvature and its contribution to overall observed asymmetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714831V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714831V"><span>Large-scale assessment of soil erosion in Africa: satellites help to jointly account for dynamic rainfall and vegetation cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn</p> <p>2015-04-01</p> <p>Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917018N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917018N"><span>Soil erosion and sediment delivery issues in a large hydro-electric power reservoir catchment, Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nebiyu, Amsalu; Dume, Bayu; Bode, Samuel; Ram, Hari; Boeckx, Pascal</p> <p>2017-04-01</p> <p>Land degradation and associated processes such as gullying, flooding and sedimentation, are among the developmental challenges in many countries and HEP reservoirs in the Gilgel Gibe catchment, Ethiopia, are under threat from siltation. Soil erosion is one of the biggest global environmental problems resulting in both on-site and offsite effects which have economic implications and an essential actor in assessing ecosystem health and function. Sediment supply in a catchment is heterogeneous in time and space depending on climate, land use and a number of landscape characteristics such as slope, topography, soil type, vegetation and drainage conditions. In the Ethiopian highlands, sediment delivery depends on discharge, the onset of rainfall, land use and land cover, which varies between rainfall seasons. There is also a variation among catchments in suspended sediment concentration due to the variation in the catchments characteristics in Ethiopia. Rainfall-runoff relationship, sediment production and delivery to rivers or dams is variable and poorly understood; due to heterogeneous lithology; various climatic conditions across small spatial scales; land use and land management practices in Ethiopia. Spatial variation in sediment yield in Africa varies to differences in seismic activity, topography, vegetation cover and annual runoff depth. In the Gilgel-Gibe catchment, the annual sediment load of the Gilgel-Gibe River has been estimated to be about 4.5×107 tons taking the contribution of sheet erosion alone. Also, the suspended sediment yield of the tributaries in Gilgel-Gibe catchment has been estimated to be in the range of 0.4-132.1 tons per hectare per year. The soil loss due to landslide alone in the past 20 years in the catchment was about 11 t/ha/yr. Heavy rainfall, bank erosion and river incisions have been indicated as the main triggering factors for landslides and the associated sediment delivery in the Gilgel-Gibe catchment. Approaches for catchment restoration and reduction of sediment flux are considered. The long term sustainability of HEP power generation in Ethiopia is evaluated in this context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.3239A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.3239A"><span>Patterns in woody vegetation structure across African savannas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Axelsson, Christoffer R.; Hanan, Niall P.</p> <p>2017-07-01</p> <p>Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal savanna tree sizes do not occur in either coarse sands or heavy clays. When examining the occurrence of PVPs, we found that the same factors that contribute to the formation of PVPs also correlate with higher levels of woody plant aggregation elsewhere in savannas and that rainfall seasonality plays a key role for the underlying processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..548..251P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..548..251P"><span>Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale</p> <p>2017-05-01</p> <p>The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28649140','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28649140"><span>Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale</p> <p>2017-05-01</p> <p>The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha -1  h -1  yr -1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4751486','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4751486"><span>Impacts of manure application on soil environment, rainfall use efficiency and crop biomass under dryland farming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Xiaojuan; Jia, Zhikuan; Liang, Lianyou; Yang, Baoping; Ding, Ruixia; Nie, Junfeng; Wang, Junpeng</p> <p>2016-01-01</p> <p>Because of inadequate nutrient and water supply, soils are often unproductive in Northwest China. We studied the effects of manure application at low (LM 7.5  t ha–1), medium (MM 15 t ha–1), and high (HM 22.5 t ha–1) rates combined with fixed levels of chemical fertilizers on maize growth and rainfall use efficiency compared with chemical fertilizers (CK) under semi-arid conditions over a three-year period. HM and MM treatments could significantly increase soil water storage (0–120 cm) at tasseling stage of maize compared with LM treatment and CK (P < 0.05). Dry matter accumulation and rainfall use efficiency increased as manure application rate increasing (P < 0.05). HM treatment significantly increased rainfall use efficiency by 6.5–12.7% at big trumpeting – tasseling stage compared with LM and MM treatments. HM and MM treatments increased rainfall use efficiency by 8.6–18.1% at tasseling – grain filling stage compared with CK. There was no significant difference on biomass between HM and MM treatments at grain filling and maturity stages of maize in 2009 and 2010. PMID:26869520</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005HyPr...19.4093O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005HyPr...19.4093O"><span>Should Bouchet's hypothesis be taken into account in rainfall-runoff modelling? An assessment over 308 catchments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oudin, Ludovic; Michel, Claude; Andréassian, Vazken; Anctil, François; Loumagne, Cécile</p> <p>2005-12-01</p> <p>An implementation of the complementary relationship hypothesis (Bouchet's hypothesis) for estimating regional evapotranspiration within two rainfall-runoff models is proposed and evaluated in terms of streamflow simulation efficiency over a large sample of 308 catchments located in Australia, France and the USA. Complementary relationship models are attractive approaches to estimating actual evapotranspiration because they rely solely on climatic variables. They are even more interesting since they are supported by a conceptual description underlying the interactions between the evapotranspirating surface and the atmospheric boundary layer, which was highlighted by Bouchet (1963). However, these approaches appear to be in contradiction with the methods prevailing in rainfall-runoff models, which compute actual evapotranspiration using soil moisture accounting procedures. The approach adopted in this article is to introduce the estimation of actual evapotranspiration provided by complementary relationship models (complementary relationship for areal evapotranspiration and advection aridity) into two rainfall-runoff models. Results show that directly using the complementary relationship approach to estimate actual evapotranspiration does not give better results than the soil moisture accounting procedures. Finally, we discuss feedback mechanisms between potential evapotranspiration and soil water availability, and their possible impact on rainfall-runoff modelling. Copyright</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26869520','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26869520"><span>Impacts of manure application on soil environment, rainfall use efficiency and crop biomass under dryland farming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xiaojuan; Jia, Zhikuan; Liang, Lianyou; Yang, Baoping; Ding, Ruixia; Nie, Junfeng; Wang, Junpeng</p> <p>2016-02-12</p> <p>Because of inadequate nutrient and water supply, soils are often unproductive in Northwest China. We studied the effects of manure application at low (LM 7.5  t ha(-1)), medium (MM 15 t ha(-1)), and high (HM 22.5 t ha(-1)) rates combined with fixed levels of chemical fertilizers on maize growth and rainfall use efficiency compared with chemical fertilizers (CK) under semi-arid conditions over a three-year period. HM and MM treatments could significantly increase soil water storage (0-120 cm) at tasseling stage of maize compared with LM treatment and CK (P < 0.05). Dry matter accumulation and rainfall use efficiency increased as manure application rate increasing (P < 0.05). HM treatment significantly increased rainfall use efficiency by 6.5-12.7% at big trumpeting - tasseling stage compared with LM and MM treatments. HM and MM treatments increased rainfall use efficiency by 8.6-18.1% at tasseling - grain filling stage compared with CK. There was no significant difference on biomass between HM and MM treatments at grain filling and maturity stages of maize in 2009 and 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC12A..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC12A..02T"><span>Rainfall intensity and groundwater recharge: evidence from ground-based observations in East Africa (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, R. G.; Owor, M.; Kaponda, A.</p> <p>2013-12-01</p> <p>Global greenhouse-gas emissions serve to warm Africa more rapidly than the rest of the world. The intensification of precipitation that is associated with this warming, strongly influences terrestrial water budgets. This shift toward fewer but heavier rainfall events is expected to lead to more frequent and intense floods as well as more variable and lower soil moisture. However, its impact on groundwater recharge is unclear and in dispute. We review evidence from long (1 to 5 decades) time series of groundwater levels recorded in deeply weathered crystalline rock aquifers systems underlying land surfaces of low relief in Uganda and Tanzania. Borehole hydrographs consistently demonstrate a non-linear relationship between rainfall and recharge wherein heavy rainfalls exceeding a threshold contribute disproportionately to the recharge flux. Rapid responses observed in groundwater levels to rainfall events attest further to the importance of preferential pathways in enabling rain-fed recharge via soil macro-pores. Our results suggest that, in these environments, increased use of groundwater to offset periods of low surface flow and to supplement soil moisture through irrigation may prove a logical strategy to enhance regional water and food security.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H43C1213S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H43C1213S"><span>The Soil Moisture Dependence of TRMM Microwave Imager Rainfall Estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seyyedi, H.; Anagnostou, E. N.</p> <p>2011-12-01</p> <p>This study presents an in-depth analysis of the dependence of overland rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) on the soil moisture conditions at the land surface. TMI retrievals are verified against rainfall fields derived from a high resolution rain-gauge network (MESONET) covering Oklahoma. Soil moisture (SOM) patterns are extracted based on recorded data from 2000-2007 with 30 minutes temporal resolution. The area is divided into wet and dry regions based on normalized SOM (Nsom) values. Statistical comparison between two groups is conducted based on recorded ground station measurements and the corresponding passive microwave retrievals from TMI overpasses at the respective MESONET station location and time. The zero order error statistics show that the Probability of Detection (POD) for the wet regions (higher Nsom values) is higher than the dry regions. The Falls Alarm Ratio (FAR) and volumetric FAR is lower for the wet regions. The volumetric missed rain for the wet region is lower than dry region. Analysis of the MESONET-to-TMI ratio values shows that TMI tends to overestimate for surface rainfall intensities less than 12 (mm/h), however the magnitude of the overestimation over the wet regions is lower than the dry regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1110474V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1110474V"><span>Effect of tillage system and cumulative rainfall on multifractal parameters of soil surface microrelief</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vidal Vázquez, E.; Miranda, J. G. V.; Mirás-Avalos, J. M.; Díaz, M. C.; Paz-Ferreiro, J.</p> <p>2009-04-01</p> <p>Mathematical description of the spatial characteristics of soil surface microrelief still remains a challenge. Soil surface roughness parameters are required for modelling overland flow and erosion. The objective of this work was to evaluate the potential of multifractal for analyzing the decay of initial surface roughness induced by natural rainfall under different soil tillage systems. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil). Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. In each plot soil surface microrelief was measured for times, with increasing amounts of natural rainfall using a pinmeter. The sampling scheme was a square grid with 25 x 25 mm point spacing and the plot size was 1350 x 1350 mm, so that each data set consisted of 3025 individual elevation points. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental data sets. All the investigated microrelief data sets exhibited, in general, scale properties, and the degree of multifractality showed wide differences between them. Multifractal analysis distinguishes two different patterns of soil surface microrelief, the first one has features close to monofractal spectra and the second clearly indicates multifractal behavior. Both, singularity spectra and generalized dimension spectra allow differentiating between soil tillage systems. In general, changes in values of multifractal parameters under simulated rainfall showed no or little correspondence with the evolution of the vertical microrelief component described by indices such as the standard deviation of the point height measurements. Multifractal parameters provided valuable information for chararacterizing the spatial features of soil surface microrelief as they were able to discriminate data sets with similar values for the vertical component of roughness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EurSS..50.1494Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EurSS..50.1494Z"><span>Identifying the Tillage Effects on Phosphorus Export from Phaeozems-Dominated Agricultural Watershed: a Plot-Scale Rainfall-Runoff Study in Northeast China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Yuyan; Xu, Y. Jun; Xiao, Weihua; Wang, Jianhua; Hao, Cailian; Zhou, Pu; Shi, Min</p> <p>2017-12-01</p> <p>Evaluating tillage effects on soil phosphorus (P) loss at the plot-scale has significant implication for developing best management practices (BMPs) to protect water quality and soil productivity management in agricultural watersheds. This paper aims to quantify P loss from tilled soils under different rainfall patterns in a Phaeozems-dominated agricultural watershed. Eleven rainfall events were monitored at three experimental sites growing corns with conventional till, conservational till, and no-till during a growing season from July to August in 2013. Mean event mean concentration of dissolved phosphorus was 0.130, 0.213 and 0.614 mg L-1 and mean particulate phosphorus transfer rate was 103.502, 33.359 and 27.127 g ha-1 hr-1, respectively for three tillage practices. Results showed that less tillage practices could significantly reduce sediment runoff and PP loss, accompanied with a moderate reduction of runoff yield. While the proportion of PP has been cut down, the proportion of DP could account for the majority. Hydrological factors, including antecedent soil moisture and rainfall variables, could exert various effects on DP, PP and sediment losses under different tillage conditions. Further, the results of this study imply that the soil P loss management and water quality protection in black soil region of Northeast China should take consideration of diverse effects of tillage on phosphorus loss and the dynamics of P between different forms.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H53F0924K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H53F0924K"><span>Strategy for introduction of rainwater management facility considering rainfall event applied on new apartment complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>KIM, H.; Lee, D. K.; Yoo, S.</p> <p>2014-12-01</p> <p>As regional torrential rains become frequent due to climate change, urban flooding happens very often. That is why it is necessary to prepare for integrated measures against a wide range of rainfall. This study proposes introduction of effective rainwater management facilities to maximize the rainwater runoff reductions and recover natural water circulation for unpredictable extreme rainfall in apartment complex scale. The study site is new apartment complex in Hanam located in east of Seoul, Korea. It has an area of 7.28ha and is analysed using the EPA-SWMM and STORM model. First, it is analyzed that green infrastructure(GI) had efficiency of flood reduction at the various rainfall events and soil characteristics, and then the most effective value of variables are derived. In case of rainfall event, Last 10 years data of 15 minutes were used for analysis. A comparison between A(686mm rainfall during 22days) and B(661mm/4days) knew that soil infiltration of A is 17.08% and B is 5.48% of the rainfall. Reduction of runoff after introduction of the GI of A is 24.76% and B is 6.56%. These results mean that GI is effective to small rainfall intensity, and artificial rainwater retarding reservoir is needed at extreme rainfall. Second, set of target year is conducted for the recovery of hydrological cycle at the predevelopment. And an amount of infiltration, evaporation, surface runoff of the target year and now is analysed on the basis of land coverage, and an arrangement of LID facilities. Third, rainwater management scenarios are established and simulated by the SWMM-LID. Rainwater management facilities include GI(green roof, porous pavement, vegetative swale, ecological pond, and raingarden), and artificial rainwater. Design scenarios are categorized five type: 1)no GI, 2)conventional GI design(current design), 3)intensive GI design, 4)GI design+rainwater retarding reservoir 5)maximized rainwater retarding reservoir. Intensive GI design is to have attribute value to obtain the maximum efficiency for each GI facility with in-depth experts interviews. Climate change scenario is also used to set the capacity of the rainwater management facilities considering the extreme precipitation. These all scenarios are not only simulated for calculating the hydrological balance but analysed the cost for each scenarios effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26152508','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26152508"><span>Climate change and soil salinity: The case of coastal Bangladesh.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dasgupta, Susmita; Hossain, Md Moqbul; Huq, Mainul; Wheeler, David</p> <p>2015-12-01</p> <p>This paper estimates location-specific soil salinity in coastal Bangladesh for 2050. The analysis was conducted in two stages: First, changes in soil salinity for the period 2001-2009 were assessed using information recorded at 41 soil monitoring stations by the Soil Research Development Institute. Using these data, a spatial econometric model was estimated linking soil salinity with the salinity of nearby rivers, land elevation, temperature, and rainfall. Second, future soil salinity for 69 coastal sub-districts was projected from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region. The findings indicate that climate change poses a major soil salinization risk in coastal Bangladesh. Across 41 monitoring stations, the annual median projected change in soil salinity is 39 % by 2050. Above the median, 25 % of all stations have projected changes of 51 % or higher.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3646940','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3646940"><span>Factors Contributing to the Off-Target Transport of Pyrethroid Insecticides From Urban Surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jorgenson, Brant C.; Wissel-Tyson, Christopher; Young, Thomas M.</p> <p>2013-01-01</p> <p>Pyrethroid insecticides used in an urban and suburban context have been found in urban creek sediments and associated with toxicity in aquatic bioassays. The objectives of this study were to evaluate the main factors contributing to the off-target transport of pyrethroid insecticides from surfaces typical of residential landscapes. Controlled rainfall simulations over concrete, bare soil, and turf plots treated individually with pyrethroid insecticides in a suspension concentrate, an emulsifiable concentrate, or a granule formulation were conducted at different rainfall intensities and different product set-time intervals. Pyrethroid mass washoff varied by several orders of magnitude between experimental treatments. Suspension concentrate product application to concrete yielded significantly greater washoff than any other treatment; granule product application to turf yielded the least washoff. Fractional losses at 10 L of runoff ranged from 25.9% to 0.011% of pyrethroid mass applied and 10 L nominal mass losses ranged from 3,970 to 0.18 μg. Mass washoff depended principally on formulation and surface type combination and to a lesser degree set-time interval and rainfall intensity. Treatment effects were analyzed by ANOVA on main factors of formulation, surface type, and set time. Factor effects were not purely additive; a significant interaction between formulation and surface type was noted. PMID:22784034</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750008878','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750008878"><span>Soil moisture detection by Skylab's microwave sensors. [radiometer/scatterometer measurements of Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, R. K.; Ulaby, F. T. (Principal Investigator); Barr, J. C.; Sobti, A.</p> <p>1974-01-01</p> <p>The author has identified the following significant results. Terrain microwave backscatter and emission response to soil moisture variations were investigated using Skylab's 13.9 GHz RADSCAT (radiometer/scatterometer) system. Data acquired on June 5, 1973, over a test site in west-central Texas indicated a fair degree of correlation with composite rainfall. The scan made was cross-track contiguous (CTC) with a pitch of 29.4 deg and no roll effect. Vertical polarization was employed with both radiometer and scatterometer. The composite rainfall was computed according to the flood prediction technique using rainfall data supplied by weather reporting stations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712179T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712179T"><span>Coupling rainfall observations and satellite soil moisture for predicting event soil loss in Central Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Todisco, Francesca; Brocca, Luca; Termite, Loris Francesco; Wagner, Wolfgang</p> <p>2015-04-01</p> <p>The accuracy of water soil loss prediction depends on the ability of the model to account for effects of the physical phenomena causing the output and the accuracy by which the parameters have been determined. The process based models require considerable effort to obtain appropriate parameter values and their failure to produce better results than achieved using the USLE/RUSLE model, encourages the use of the USLE/RUSLE model in roles of which it was not designed. In particular it is widely used in watershed models even at the event temporal scale. At hillslope scale, spatial variability in soil and vegetation result in spatial variations in soil moisture and consequently in runoff within the area for which soil loss estimation is required, so the modeling approach required to produce those estimates needs to be sensitive to those spatial variations in runoff. Some models include explicit consideration of runoff in determining the erosive stresses but this increases the uncertainty of the prediction due to the difficulty in parameterising the models also because the direct measures of surface runoff are rare. The same remarks are effective also for the USLE/RUSLE models including direct consideration of runoff in the erosivity factor (i.e. USLE-M by Kinnell and Risse, 1998, and USLE-MM by Bagarello et al., 2008). Moreover actually most of the rainfall-runoff models are based on the knowledge of the pre-event soil moisture that is a fundamental variable in the rainfall-runoff transformation. In addiction soil moisture is a readily available datum being possible to have easily direct pre-event measures of soil moisture using in situ sensors or satellite observations at larger spatial scale; it is also possible to derive the antecedent water content with soil moisture simulation models. The attempt made in the study is to use the pre-event soil moisture to account for the spatial variation in runoff within the area for which the soil loss estimates are required. More specifically the analysis was focused on the evaluation of the effectiveness of coupling modeled or satellite-derived soil moisture with USLE-derived models in predicting event unit soil loss at the plot scale in a silty-clay soil in Central Italy. To this end was used the database of the Masse experimental station developed considering for a given erosive event (an event yielding a measurable soil loss) the simultaneous measures of the total runoff amount, Qe (mm), and soil loss per unit area, Ae (Mg-ha-1) at plot scale and of the rainfall data required to derive the erosivity factor Re according to Wischmeiser and Smith (1978), with a MIT=6 h (Bagarello et al., 2013; Todisco et al., 2012). To the purpose of this investigation only data collected on the λ = 22 m long plots were considered: 63 erosive events in the period 2008-2013, 18 occurred during the dry period (from June to September) and the other 45 in the complementary period (wet period). The models tested are the USLE/RUSLE and some USLE-derived formulations in which the event erosivity factor, Re, is corrected by the antecedent soil moisture, θ, and powered to an exponent α > 0 (α =1: linear model; α ≠ 1: power model). Both soil moisture data the satellite retrieved (θ = θsat) and the estimates (θ = θest) of Soil Water Balance model (Brocca et al., 2011) were tested. The results have been compared with those obtained by the USLE/RUSLE, USLE-M and USLE-MM models coupled with a parsimonious rainfall-runoff model, MILc, (Brocca et al. 2011) for the prediction of runoff volume (that in these models is the term used to correct the erosivity factor Re). The results showed that: including direct consideration of antecedent soil moisture and runoff in the event rainfall-runoff factor of the RUSLE/USLE enhanced the capacity of the model to account for variations in event soil loss when soil moisture and runoff volume are measured or predicted reasonably well; the accuracy of the original USLE/RUSLE model was always the lowest; the accuracy in estimating the event soil loss of a models with erosivity factor that includes the estimated runoff is always overcome by at least one model that uses the antecedent soil moisture θ in the erosivity index; the power models generally, at Masse, work better than the linear. The more accurate models are that with the estimated antecedent soil moisture, θest, when all the database is used and with the satellite retrieved soil moisture, θsat, when only the wet periods' events are considered. In fact it was also verified that much of the inaccuracy of the tested models is due to summer rainfall events, probably because of the particular characteristics that the soil assumes in the dry period (superficial crusts causing higher runoff): in this cases, high soil losses are observed in association to low values of soil moisture, while the simulated runoff assume low values too, since they are based on the antecedent wetness conditions. Thus, the analyses were repeated excluding the summer events. As expected, the performance of all the models increases, but still the use of θ provides the best results. The results of the analysis open interesting scenarios in the use of USLE-derived models for the unit event soil loss estimation at large scale. In particular the use of the soil moisture to correct the rainfall erosivity factor acquires a great practical importance, since it is a relatively simple measurable data and moreover because remote sensing soil moisture data are widely available and useful in large-scale erosion assessment. Bagarello, V., Di Piazza, G. V., Ferro, V., Giordano, G., 2008. Predicting unit soil loss in Sicily, south Italy. Hydrol. Process. 22, 586-595. Bagarello, V., Ferro, V., Giordano, G., Mannocchi, F., Todisco, F., Vergni, L., 2013. Predicting event soil loss form bare plots at two Italian sites. Catena 109, 96-102. Brocca, L., Melone, F., Moramarco, T., 2011. Distributed rainfall-runoff modeling for flood frequency estimation and flood forecasting. Hydrol. Process. 25, 2801-2813. Kinnell, P. I. A., Risse, L. M., 1998. USLE-M: empirical modeling rainfall erosion through runoff and sediment concentration. Soil Sci. Soc. Am. J. 62, 1667-1672. Todisco, F., Vergni, L., Mannocchi, F., Bomba, C., 2012. Calibration of the soil loss measurement at the Masse experimental station. Catena 91, 4-9. Wischmeier, W. H., Smith, D. D., 1978. Predicting rainfall-erosion losses - A guide to conservation planning. Agriculture Handbook 537, United Stated Department of Agriculture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9438P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9438P"><span>Hydrological modelling in sandstone rocks watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ponížilová, Iva; Unucka, Jan</p> <p>2015-04-01</p> <p>The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of this extreme event. The increase of the baseflow runoff is slower and remains constant after reaching a certain level. The rise of the baseflow runoff is showed in a descending part of the hydrograph. The recession method in this case shows almost 20 hours delay. Results from the HEC-HMS prove availability of both methods for the runoff modeling in this type of catchment. When simulating extreme short-term rainfall-runoff episodes, the influence of geological subsurface is not significant, but it is manifested. Using more relevant rainfall events would bring more satisfactory results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.1014F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.1014F"><span>The role of forest in runoff generation in a suburban catchment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferreira, C. S. S.; Soares, D.; Soares, A. J. D.; Coelho, C. O. A.; Steenhuis, T. S.; Keizer, J. J.; Walsh, R. P. D.</p> <p>2012-04-01</p> <p>Forests play an important role in the water cycle, particularly through their influence on infiltration and evapotranspiration processes. Removing forest for urban growth will affect the hydrological cycle, but to what degree is not known. To improve the knowledge about the role of forest areas in the catchment surface runoff, a total of nine runoff plots (16m2) was installed in the three predominant woodland types found in the small Ribeira dos Covões catchment (620ha), located in a rapid urbanizing area in central Portugal. The three representative study sites comprised: (i) a dense eucalyptus stand on a sandy-loam soil overlying sandstone; (ii) a open eucalyptus stand dominated by dense shrub vegetation, also on a sandy-loam soil overlying sandstone; (iii) a Mediterranean oak stand on a loamy soil overlying limestone. The three plots at each site were bounded by metal sheets and their outlets were connected to a modified Gerlach through for sediments retention and, subsequently, a tipping-bucket device and a tank for recording and collecting the runoff. The overland flow generated by the plots was monitored for almost one year. In addition, soil moisture content was measured automatically at 0-2, 5-10 and 15-20cm soil depth using 5 sensors per plot. Furthermore, soil water repellency was repeatedly measured on the field, through ethanol percentage method. In the dense eucalyptus forest the soil is hydrophobic during most of the year, just vanished after severe rainfall events. This reflects on low soil moisture content that reached 37% during wet periods. In this area, with an average slope of 20°±5°, the runoff coefficient ranged between 0.0% (for a 3mm rainfall event) and 2.2% (for a 23mm rainfall during hydrophobic conditions). In general, the runoff was higher when the soil was extremely repellent, but it also increased with soil moisture rise when the repellence was absent (reaching 0.6%). In the open eucalyptus forest, hydrophobicity is also presented but it is absent for a longer period comparing with the dense eucalyptus. Nonetheless, the soil moisture content is always lower, with a maximum of 26%. Despite the higher slope (27°±1°), this is thought to be a consequence of the very dense shrub cover, which can explain the lower runoff coefficients (maximum of 0.5%). In these plots, runoff increases with soil moisture. On the other hand, in oak forest the soil is mostly hydrophilic, this indicates the role of vegetation type on water repellence. The soil moisture is higher along the year (35% - 66%), not only due to hydrophobicity nonexistence but also with lower slope (17°±5°). On this forest, overland-flow is almost absent (attaining 0.3%) and increases with soil moisture. The low runoff coefficients show that even when the soil is hydrophobic, water is able to infiltrate to the subsurface through preferential flows. The results confirm the widespread notion that forest areas increase infiltration and, thereby, reduce flood risk. Nonetheless, eucalyptus stand is little suitable as forest cover, comparing with natural oak forest, to promote water infiltration. This knowledge can aid decision-makers dealing with urban planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24115607','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24115607"><span>Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bell, Colin W; Tissue, David T; Loik, Michael E; Wallenstein, Matthew D; Acosta-Martinez, Veronica; Erickson, Richard A; Zak, John C</p> <p>2014-05-01</p> <p>Soil microbial communities in Chihuahuan Desert grasslands generally experience highly variable spatiotemporal rainfall patterns. Changes in precipitation regimes can affect belowground ecosystem processes such as decomposition and nutrient cycling by altering soil microbial community structure and function. The objective of this study was to determine if increased seasonal precipitation frequency and magnitude over a 7-year period would generate a persistent shift in microbial community characteristics and soil nutrient availability. We supplemented natural rainfall with large events (one/winter and three/summer) to simulate increased precipitation based on climate model predictions for this region. We observed a 2-year delay in microbial responses to supplemental precipitation treatments. In years 3-5, higher microbial biomass, arbuscular mycorrhizae abundance, and soil enzyme C and P acquisition activities were observed in the supplemental water plots even during extended drought periods. In years 5-7, available soil P was consistently lower in the watered plots compared to control plots. Shifts in soil P corresponded to higher fungal abundances, microbial C utilization activity, and soil pH. This study demonstrated that 25% shifts in seasonal rainfall can significantly influence soil microbial and nutrient properties, which in turn may have long-term effects on nutrient cycling and plant P uptake in this desert grassland. © 2013 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHyd..541..285C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHyd..541..285C"><span>Assessing the impact of climate-change scenarios on landslide occurrence in Umbria Region, Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ciabatta, L.; Camici, S.; Brocca, L.; Ponziani, F.; Stelluti, M.; Berni, N.; Moramarco, T.</p> <p>2016-10-01</p> <p>Landslides are frequent and widespread geomorphological phenomena causing loss of human life and damage to property. The main tool for assessing landslide risk relies on rainfall thresholds and thus, many countries established early warning systems aimed to landslide hazard assessment. The Umbria Region Civil Protection Centre developed an operational early warning system for landslide risk assessment, named PRESSCA, based on the soil saturation conditions to identify rainfall thresholds. These thresholds, currently used by the Civil Protection operators for the day-by-day landslide hazard assessment, provided satisfactory results with more than 86% of the landslides events correctly identified during the period 1990-2013. In this study, the PRESSCA system was employed for the assessment of climate change impact on landslide hazard in Central Italy. The outputs of five different Global Circulation Models (GCMs) were downscaled and weather generators were used for obtaining hourly rainfall and temperature time series from daily GCMs projection. Then, PRESSCA system was employed to estimate the number of landslide occurrence per year. By comparing results obtained for three different periods (1990-2013 (baseline), 2040-2069 and 2070-2099), for the Umbria territory a general increase in events occurrence was expected (up to more than 40%) in the future period, mainly during the winter season. The results also revealed that the effect of climate change on landslides was not straightforward to identify and the close interaction between rainfall magnitude/intensity, temperature and soil moisture should be analysed in depth. Overall, soil moisture was projected to decrease throughout the year but during the wet season the variations with respect to the present period were very small. Specifically, it was found that during the warm-dry season, due to the strong decrease of soil moisture, even for a sensible increase in rainfall intensity, the landslide occurrence was unchanged. Conversely, during the cold-wet season, the number of landslide events increased considerably if a positive variation in rainfall amount, more significant than rainfall intensity, was coupled with small negative variations in soil moisture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=241139','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=241139"><span>Sorption of polyphenolics (tannins) to natural soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Tannins enter soil systems via rainfall through the leaf canopy, leaf litter decomposition, and root exudation and decomposition. For tannins released into soils, the relative importance of sorption to soil; chemical reactions with soil minerals; and biological decomposition is unknown. Determinin...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711025K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711025K"><span>A medium scale mobile rainfall simulator for experiments on soil erosion and soil hydrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kavka, Petr; Dostál, Tomáš; Iserloh, Thomas; Davidová, Tereza; Krása, Josef; David, Václav; Vopravil, Jan; Khel, Tomáš; Bauer, Miroslav</p> <p>2015-04-01</p> <p>Numerous types of rainfall simulators (RS) have been used to the study the behaviour of surface runoff and sediment transport caused by rainfall. It has been documented, that reproducibility and the knowledge of test conditions are essential for gathering necessary and comparable data. Therefore medium, to large scale field rainfall simulators are very desirable. Such devices are nevertheless very much time and laboratory consuming and their weakness is especially a high water consumption. A new, compact and mobile medium scale rainfall simulator has been developed under close cooperation of CTU Prague and Research Institute of Soil Conservation. The main idea was to develop a device, which is easily to handle by 4 persons, transportable with trailer behind an off-road car and independent of additional water sources and energy. Therefore, a special construction fixed on a standard trailer has been developed. It consists of an aggregate to produce power, an electric pump and a water tank with a capacity up to 1000 l. The pump can work in reverse mode, what allows filling the water tank from any source, including stream or pond. The capacity of the tank is normally sufficient for experiments with duration up to 30 minutes. The RS itself consist of a folding arm, which carries 4 nozzles (SS Full Jet 40WSQ), controlled by electromagnetic valves, which allow to set up desired rainfall intensity by opening intervals. A simple logical unit allows programming various schemes of operation of individual nozzles, to keep low pressure fluctuation in the system. The arm is first unfolded into total length of 9.6 m and then lifted up, using simple crab to its operation position which is 2.3 - 2.65 m above terrain surface. The distance between individual nozzles had been optimized based on number of calibrating experiments on 2.4 m. There is also special space at the trailer for transportation of metal sheets and collector (for experimental plot), additional equipment, tools and measurement devices. To prevent the wind effect, whole construction can be easily covered by tarpaulin. The experimental plot has a basic size of 9.5 x 2 m, however, we usually use only 8 x 2 m. The nozzles are fed with a water pressure of about 0.8 bars. Various schemes of opened nozzles allow varying rainfall intensities between 40 and 80 mm.h-1. Rainfall collectors were used to measure spatial rainfall distribution. The spatial rainfall distribution on the entire plot is higher than 80% (Christiansen-Uniformity Coefficient). Drop size distribution and drop fall velocities were analyzed by means of a Laser Precipitation Monitor (by Thies) with satisfactory results. The mean drop sizes ranging between 0.75 - 2.00 mm depending on applied intensity. Resulting kinetic energies ranging from 188 - 582 J m-2 mm-1. The measured rainfall variables show low fluctuations throughout the tests and are therefore reproducible in field investigations. The research has been supported by the research projects SGS14/180/OHK1/3T/11 and QJ330118.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612753L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612753L"><span>Impact of repeated dry-wet cycles on soil greenhouse gas emissions, extracellular enzyme activity and nutrient cycling in a temperate forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leitner, Sonja; Zimmermann, Michael; Bockholt, Jan; Schartner, Markus; Brugner, Paul; Holtermann, Christian; Zechmeister-Boltenstern, Sophie</p> <p>2014-05-01</p> <p>Climate change research predicts that both frequency and intensity of weather extremes such as long drought periods and heavy rainfall events will increase in mid Europe over the next decades. Soil moisture is one of the major factors controlling microbial soil processes, and it has been widely agreed that feedback effects between altered precipitation and changed soil fluxes of the greenhouse gases CO2, CH4 and N2O could intensify climate change. In a field experiment in an Austrian beech forest, we established a precipitation manipulation experiment, which will be conducted for 3 years. We use roofs to exclude rainfall from reaching the forest soil and simulate drought periods, and a sprinkler system to simulate heavy rainfall events. We applied repeated dry-wet cycles in two intensities: one treatment received 6 cycles of 1 month drought followed by 75mm irrigation within 2 hours, and a parallel treatment received 3 cycles of 2 months drought followed by 150mm irrigation within 3 hours. We took soil samples 1 day before, 1 day after and 1 week after rewetting events and analyzed them for soil nutrients and extracellular enzyme activities. Soil fluxes of CO2, N2O and CH4 were constantly monitored with an automated flux chamber system, and environmental parameters were recorded via dataloggers. In addition, we determined fluxes and nutrient concentrations of bulk precipitation, throughfall, stemflow, litter percolate and soil water. Next we plan to analyze soil microbial community composition via PLFAs to investigate microbial stress resistance and resilience, and we will use ultrasonication to measure soil aggregate stability and protection of soil organic matter in stressed and control plots. The results of the first year show that experimental rainfall manipulation has influenced soil extracellular enzymes. Potential phenoloxidase activity was significantly reduced in stressed treatments compared to control plots. All measured hydrolytic enzymes (cellulase, chitinase, phosphatase and protease) and phenoloxidase responded strongly to rewetting events with significantly increased activities. Furthermore, we observed a pulsed release of inorganic nitrogen which resulted in high concentrations of NH4 and NO3 in the first 24h after soil rewetting, especially in summer when soil temperatures were high. Emissions of CO2 were increased in the first 24 to 48h after rewetting, and then slowly decreased again. Overall, our results indicate that repeated dry-wet cycles strongly influence microbial soil processes, even in the first year of experimental rainfall manipulation. The next 2 years will show whether these changes are permanent, or if the system adapts to the new precipitation regime.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914251H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914251H"><span>Enhanced agricultural drought monitoring using a soil water anomaly-based drought index in south-west India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hochstöger, Simon; Pfeil, Isabella; Amarnath, Giriraj; Pani, Peejush; Enenkel, Markus; Wagner, Wolfgang</p> <p>2017-04-01</p> <p>In India, agriculture accounts for roughly 17% of the GDP and employs around 50% of the total workforce. Especially in the western part of India, most of the agricultural fields are non-irrigated. Hence, agriculture is highly dependent on the monsoon in these areas. However, the absence of rainfall during the monsoon season increases the occurrence of drought periods, which is the main environmental factor affecting agricultural productivity. Rainfall is often not accessible to plants due to runoff or increased rates of evapotranspiration. Therefore, knowledge of the soil moisture state in the root zone of the soil is of great interest in the field of agricultural drought monitoring and operational decision-support. By introducing soil moisture, retrieved via active or passive microwave remote sensors, the gap between rainfall and the subsequent response of vegetation can be closed. Agricultural droughts are strongly influenced by a lack of water availability in the root zone of the soil, making anomalies of the Advanced Scatterometer (ASCAT) soil water index (SWI), representing the water content in lower soil layers, a suitable measure to estimate the water deficit in the soil. These anomalies describe the difference of the actual soil moisture value to the long-term average calculated for the same period. The objective of the study is to investigate the usability of soil moisture anomalies for developing an indicator that is based on critical thresholds, which finally results in a classification with different drought severity levels. In order to evaluate the performance of the drought index, it is compared to the Integrated Drought Severity Index (IDSI), which is developed at the International Water Management Institute in Colombo, Sri Lanka and to rainfall data from the Indian Meteorological Department (IMD). Overall, first analyses show a high potential of using SWI anomalies for agricultural drought monitoring. Most of the drought events detected by negative SWI anomalies correspond to IDSI drought events and also to reduced precipitation during that time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18799251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18799251"><span>Size distributions of manure particles released under simulated rainfall.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pachepsky, Yakov A; Guber, Andrey K; Shelton, Daniel R; McCarty, Gregory W</p> <p>2009-03-01</p> <p>Manure and animal waste deposited on cropland and grazing lands serve as a source of microorganisms, some of which may be pathogenic. These microorganisms are released along with particles of dissolved manure during rainfall events. Relatively little if anything is known about the amounts and sizes of manure particles released during rainfall, that subsequently may serve as carriers, abode, and nutritional source for microorganisms. The objective of this work was to obtain and present the first experimental data on sizes of bovine manure particles released to runoff during simulated rainfall and leached through soil during subsequent infiltration. Experiments were conducted using 200 cm long boxes containing turfgrass soil sod; the boxes were designed so that rates of manure dissolution and subsequent infiltration and runoff could be monitored independently. Dairy manure was applied on the upper portion of boxes. Simulated rainfall (ca. 32.4 mm h(-1)) was applied for 90 min on boxes with stands of either live or dead grass. Electrical conductivity, turbidity, and particle size distributions obtained from laser diffractometry were determined in manure runoff and soil leachate samples. Turbidity of leachates and manure runoff samples decreased exponentially. Turbidity of manure runoff samples was on average 20% less than turbidity of soil leachate samples. Turbidity of leachate samples from boxes with dead grass was on average 30% less than from boxes with live grass. Particle size distributions in manure runoff and leachate suspensions remained remarkably stable after 15 min of runoff initiation, although the turbidity continued to decrease. Particles had the median diameter of 3.8 microm, and 90% of particles were between 0.6 and 17.8 microm. The particle size distributions were not affected by the grass status. Because manure particles are known to affect transport and retention of microbial pathogens in soil, more information needs to be collected about the concurrent release of pathogens and manure particles during rainfall events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/966125','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/966125"><span>Downscaled climate change impacts on agricultural water resources in Puerto Rico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Harmsen, E.W.; Miller, N.L.; Schlegel, N.J.</p> <p>2009-04-01</p> <p>The purpose of this study is to estimate reference evapotranspiration (ET{sub o}), rainfall deficit (rainfall - ET{sub o}) and relative crop yield reduction for a generic crop under climate change conditions for three locations in Puerto Rico: Adjuntas, Mayaguez, and Lajas. Reference evapotranspiration is estimated by the Penman-Monteith method. Rainfall and temperature data were statistically downscaled and evaluated using the DOE/NCAR PCM global circulation model projections for the B1 (low), A2 (mid-high) and A1fi (high) emission scenarios of the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios. Relative crop yield reductions were estimated from a function dependent watermore » stress factor, which is a function of soil moisture content. Average soil moisture content for the three locations was determined by means of a simple water balance approach. Results from the analysis indicate that the rainy season will become wetter and the dry season will become drier. The 20-year mean 1990-2010 September rainfall excess (i.e., rainfall - ET{sub o} > 0) increased for all scenarios and locations from 149.8 to 356.4 mm for 2080-2100. Similarly, the 20-year average February rainfall deficit (i.e., rainfall - ET{sub o} < 0) decreased from a -26.1 mm for 1990-2010 to -72.1 mm for the year 2080-2100. The results suggest that additional water could be saved during the wet months to offset increased irrigation requirements during the dry months. Relative crop yield reduction did not change significantly under the B1 projected emissions scenario, but increased by approximately 20% during the summer months under the A1fi emissions scenario. Components of the annual water balance for the three climate change scenarios are rainfall, evapotranspiration (adjusted for soil moisture), surface runoff, aquifer recharge and change in soil moisture storage. Under the A1fi scenario, for all locations, annual evapotranspiration decreased owing to lower soil moisture, surface runoff decreased, and aquifer recharge increased. Aquifer recharge increased at all three locations because the majority of recharge occurs during the wet season and the wet season became wetter. This is good news from a groundwater production standpoint. Increasing aquifer recharge also suggests that groundwater levels may increase and this may help to minimize saltwater intrusion near the coasts as sea levels increase, provided that groundwater use is not over-subscribed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159783','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159783"><span>Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Napolitano, E.; Fusco, F; Baum, Rex L.; Godt, Jonathan W.; De Vita, P.</p> <p>2016-01-01</p> <p>Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfallinduced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity- Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall triggering events. Going from winter to summer conditions requires a strong increase of intensity and/or duration to induce landslides. The results identify an approach to account for different hazard conditions related to seasonality of hydrological processes inside the ash-fall pyroclastic soil mantle. Moreover, they highlight another important factor of uncertainty that potentially affects rainfall thresholds triggering shallow landslides reconstructed by empirical approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4176W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4176W"><span>Rainfall recharge estimation on a nation-wide scale using satellite information in New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Westerhoff, Rogier; White, Paul; Moore, Catherine</p> <p>2015-04-01</p> <p>Models of rainfall recharge to groundwater are challenged by the need to combine uncertain estimates of rainfall, evapotranspiration, terrain slope, and unsaturated zone parameters (e.g., soil drainage and hydraulic conductivity of the subsurface). Therefore, rainfall recharge is easiest to estimate on a local scale in well-drained plains, where it is known that rainfall directly recharges groundwater. In New Zealand, this simplified approach works in the policy framework of regional councils, who manage water allocation at the aquifer and sub-catchment scales. However, a consistent overview of rainfall recharge is difficult to obtain at catchment and national scale: in addition to data uncertainties, data formats are inconsistent between catchments; the density of ground observations, where these exist, differs across regions; each region typically uses different local models for estimating recharge components; and different methods and ground observations are used for calibration and validation of these models. The research described in this paper therefore presents a nation-wide approach to estimate rainfall recharge in New Zealand. The method used is a soil water balance approach, with input data from national rainfall and soil and geology databases. Satellite data (i.e., evapotranspiration, soil moisture, and terrain) aid in the improved calculation of rainfall recharge, especially in data-sparse areas. A first version of the model has been implemented on a 1 km x 1 km and monthly scale between 2000 and 2013. A further version will include a quantification of recharge estimate uncertainty: with both "top down" input error propagation methods and catchment-wide "bottom up" assessments of integrated uncertainty being adopted. Using one nation-wide methodology opens up new possibilities: it can, for example, help in more consistent estimation of water budgets, groundwater fluxes, or other hydrological parameters. Since recharge is estimated for the entire land surface, and not only the known aquifers, the model also identifies other zones that could potentially recharge aquifers, including large areas (e.g., mountains) that are currently regarded as impervious. The resulting rainfall recharge data have also been downscaled in a 200 m x 200 m calculation of a national monthly water table. This will lead to better estimation of hydraulic conductivity, which holds considerable potential for further research in unconfined aquifers in New Zealand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGD.....7.6847I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGD.....7.6847I"><span>Temporal and spatial variations of soil carbon dioxide, methane, and nitrous oxide fluxes in a Southeast Asian tropical rainforest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.</p> <p>2010-09-01</p> <p>To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the temporal variations of soil CO2 flux, CH4 uptake, and N2O emission. The soil water condition associated with soil hydraulic properties was also the important controlling factor of the spatial distributions of these gas fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012HESS...16.1001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012HESS...16.1001S"><span>SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds - the two-CN system approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soulis, K. X.; Valiantzas, J. D.</p> <p>2012-03-01</p> <p>The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN parameter values corresponding to various soil, land cover, and land management conditions can be selected from tables, but it is preferable to estimate the CN value from measured rainfall-runoff data if available. However, previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. Hence, they suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of soils and land cover spatial variability on its hydrologic response is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behaviour of the CN-rainfall function produced by the simplified two-CN system is approached theoretically, it is analysed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous methods based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8466P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8466P"><span>Seasonal variation and climate change impact in Rainfall Erosivity across Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano</p> <p>2017-04-01</p> <p>Rainfall erosivity quantifies the climatic effect on water erosion and is of high importance for soil scientists, land use planners, agronomists, hydrologists and environmental scientists in general. The rainfall erosivity combines the influence of rainfall duration, magnitude, frequency and intensity. Rainfall erosivity is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minute rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years). The European Commission's Joint Research Centr(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,675 stations. The interpolation of those point erosivity values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511: 801-815). In 2016, REDES extended with a monthly component, which allowed developing monthly and seasonal erosivity maps and assessing rainfall erosivity both spatially and temporally for European Union and Switzerland. The monthly erosivity maps have been used to develop composite indicators that map both intra-annual variability and concentration of erosive events (Science of the Total Environment, 579: 1298-1315). Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Finally, the identification of the most erosive month allows recommending certain agricultural management practices (crop residues, reduced tillage) in regions with high erosivity. Besides soil erosion mapping, the intra-annual analysis of rainfall erosivity is an important step towards flood prevention, hazard mitigation, ecosystem services, land use change and agricultural production. The application of REDES in combination with moderate climate change scenarios scenario (HadGEM RCP 4.5) resulted in predictions of erosivity in 2050. The overall increase of rainfall erosivity in Europe by 18% until 2050 are in line with projected increases of 17% for the U.S.A. The predicted mean rise of erosivity is also expected to increase the threat of soil erosion in Europe. The most noticeable increase of erosivity is projected for North-Central Europe, the English Channel, The Netherlands and Northern France. On the contrary, the Mediterranean basin show mixed trends. The success story with the compilation of REDES and first rainfall erosivity map of Europe was a driver to implement a Global Rainfall Erosivity Database (GloREDa). During the last 3 years, JRC was leading an effort to collect high temporal resolution rainfall data worldwide. In collaboration with 50 scientists worldwide and 100+ Meteorological and environmental Organisations, we have developed a Global Erosivity Database. In this database, we managed to include calculated erosivity values for 3,625 stations covering 63 countries worldwide.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>