Science.gov

Sample records for rainfed lowland rice

  1. Weed communities of rain-fed lowland rice vary with infestation by Rhamphicarpa fistulosa

    NASA Astrophysics Data System (ADS)

    Houngbédji, Tossimidé; Dessaint, Fabrice; Nicolardot, Bernard; Shykoff, Jacqui A.; Gibot-Leclerc, Stéphanie

    2016-11-01

    The facultative hemiparasitic plant Rhamphicarpa fistulosa (Orobanchaceae) thrives in seasonally wet soils in sub-Saharan Africa, mainly in marginal lowland rice growing environments where weeds are already a major constraint for rice production. Because lowland rice production is increasing in tropical Africa, it is important to ascertain the influence of R. fistulosa on weed plant communities in these rice-growing habitats. We investigated weed plant community richness and composition at four different levels of R. fistulosa infestation across two years of surveys from lowland rice fields in northern Togo (West Africa). Despite a lack of significant differences in community richness among sites with different R. fistulosa infestation levels, there were significant differences in community composition, both when estimated from presence-absence data and from relative abundance data, after controlling statistically for geographic proximity among sites. Rhamphicarpa fistulosa infestation, therefore, may influence the competitive balance between rice and its weeds and shape weed community structure. However, experimental studies are required to elucidate the weed host range of R. fistulosa and the direct and indirect effects of this hemiparasite in rice fields in order to predict its net impact on rice and its weed species.

  2. Comparison of Sub1 markers and their combinations for submergence tolerance and analysis of adaptation strategies of rice in rainfed lowland ecology.

    PubMed

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Jayashree; Pandit, Elssa; Nayak, Deepak Kumar; Pani, Dipti Ranjan; Anandan, Annamalai

    2015-10-01

    Ninety lowland rice cultivars of the eastern region of India were collected and screened for submergence and water logging tolerance and further used for validating the efficiency of molecular markers and their combinations for submergence tolerance. Submergence tolerance and elongation ability of the tested genotypes were measured in screening tanks along with tolerant and susceptible checks. The genotypes FR13A, Khoda, CR Dhan 300, Savitri Sub1, IR64 Sub1, IC-568009 and IC-568842 exhibited high submergence tolerance may be used as donor in the breeding program. Landrace 'Khoda' showed tolerance to submergence with moderate elongation ability for adaption. Boitalpakhia, Gayatri, Atiranga, Aghonibora, Chakaakhi, Moti, IC-567993 and IC-568921 possessed both characters of moderate elongation ability and moderate tolerance to submergence. Both of these traits are required for lowland varieties of eastern India to survive under flash flood and accumulated stagnant water conditions. RM8300, Sub1A203, AEX, Sub1BC2 and Sub1C173 were employed for molecular screening to identify the submergence-tolerant genotypes. Sub1A203 was capable of differentiating the tolerant and susceptible genotypes into groups. RM8300 and Sub1BC2 could also differentiate the genotypes with inclusion of some susceptible genotypes. The AEX and Sub1C173 marker could not show discrimination among the genotypes with respect to the traits. Using Sub1A203+Sub1BC2 was better amongst the combinations studied. The results of the study indicated a trend toward a negative association of Sub1BC2 with submergence tolerance while AEX and Sub1C marker did not show any significant association. The donors identified can be useful as parental lines while the molecular markers can be used for marker-assisted breeding work.

  3. Mosquito (Diptera: Culicidae) and predator abundance in irrigated and rain-fed rice fields in north Sulawesi, Indonesia.

    PubMed

    Mogi, M; Memah, V; Miyagi, I; Toma, T; Sembel, D T

    1995-05-01

    Immature mosquito species composition and abundance were studied in irrigated and rain-fed rice fields of North Sulawesi, Indonesia. Irrigated rice fields were characterized by the prevalence of aquatic macrophytes and cyprinodont larvivorous fish, Aplocheilus panchax (Hamilton), but abundance per dip of most aquatic insect predators was lower than that in rain-fed rice fields. Anopheles peditaeniatus (Leicester), Culex vishnui Theobald, and Culex tritaeniorhynchus Giles, were dominant in both irrigated and rain-fed fields, but the abundance of the Culex species was lower in irrigated fields. The effect of irrigation system introduction on regional mosquito abundance cannot be evaluated by the enlarged surface water area alone. Changes in habitat quality, expressed as the abundance per dip (index of density per unit water area), also need to be considered.

  4. Traits and QTLs for development of dry direct-seeded rainfed rice varieties

    PubMed Central

    Sandhu, Nitika; Torres, Rolando O.; Sta Cruz, Ma. Teresa; Maturan, Paul Cornelio; Jain, Rajinder; Kumar, Arvind; Henry, Amelia

    2015-01-01

    The development of rice varieties for dry direct-seeded conditions can be accelerated by selecting suitable traits. In the present investigation, traits hypothesized to be important for direct-seeded conditions in rainfed systems, including seedling emergence, early vegetative vigour, nutrient uptake, nodal root number, and root hair length and density, were characterized to study the genetic control of these traits and their relationship with grain yield under seedling- and reproductive-stage drought stress. Two BC2F4 mapping populations derived from crosses of Aus276, a drought-tolerant aus variety, with MTU1010 and IR64, high-yielding indica mega-varieties, were developed and studied to identify quantitative trait loci (QTLs) that showed large and consistent effects. A total of 26 QTLs associated with 23 traits and 20 QTLs associated with 13 traits were mapped in the Aus276/3*IR64 and Aus276/3*MTU1010 populations, respectively. qGY6.1, qGY10.1, qGY1.1, and qEVV9.1 were found to be effective in both populations under a wide range of conditions. QTLs for several seedling-stage traits co-located with QTLs for grain yield, including early vegetative vigour and root hair length. On chromosome 5, several QTLs for nutrient uptake co-located with QTLs for root hair density and nematode gall rating. Six lines were selected from both populations based on grain yield and the presence of QTLs, and these lines typically showed improved seedling-stage traits (nodal root number, dry shoot weight, and root hair length and density). The co-located QTLs identified here can be used in research aimed at increasing the yield and adaptability of rainfed rice to direct-seeded conditions. PMID:25336682

  5. Human energy expenditure in lowland rice cultivation in Malaysia.

    PubMed

    Nawi, N M; Yahya, A; Chen, G; Bockari-Gevao, S M; Maraseni, T N

    2012-01-01

    A study was undertaken to evaluate the human energy consumption of various field operations involved in lowland rice cultivation in Malaysia. Based on recorded average heart rates, fertilizing was found to be the most strenuous operation, with an average heart rate of 138 beats min(-1). There were no significant differences in the average heart rates of the subjects among the individual tasks within the first plowing, second plowing, and harvesting operations, with the average heart rates for these three tasks being 116, 106, and 106 beats min(-1), respectively. The corresponding energy expenditures were 3.90, 3.43, and 3.35 kcal min(-1). Loading the seed into the blower tank and broadcasting the seed were the most critical tasks for the seed broadcasting operation, with average heart rates of 124 and 136 beats min(-1), respectively. The highest energy expenditure of 418.38 kcal ha(-1) was observed for seed broadcasting, and the lowest energy expenditure of 127.96 kcal ha(-1) was for second plowing. The total seasonal human energy expenditure for rice cultivation was estimated to be 5810.71 kcal ha(-1), 55.7% of which was spent on pesticide spraying. Although the sample size in this study was relatively small, the results indicated that human energy expenditure per unit area (kcal ha(-1)) was positively linked to the average heart rate of the subjects and negatively linked to the field capacity. Thus, mechanization of certain tasks could decrease worker physical effort and fatigue and increase production.

  6. Phosphorus and Iron Deficiencies Influences Rice Shoot Growth in an Oxygen Dependent Manner: Insight from Upland and Lowland Rice.

    PubMed

    Mongon, Jenjira; Chaiwong, Nanthana; Bouain, Nadia; Prom-U-Thai, Chanakan; Secco, David; Rouached, Hatem

    2017-03-10

    Rice is the main staple crop for one-third of the world population. To maximize yields, large quantities and constant input of fertilizers containing essential nutrients such as phosphorus (P) and iron (Fe) are added. Rice can germinate in both aerobic and anaerobic conditions, but the crosstalk between oxygen (O₂) and nutrients such as P and Fe on plant growth remains obscure. The aim of this work was to test whether such interactions exist, and, if so, if they are conserved between up- and lowland rice varieties. To do so, we assessed shoot and root biomass as well as inorganic phosphate (Pi) accumulation in four rice varieties, including two lowland rice varieties Nipponbare and Suphanburi 1 (SPR1) (adapted to non-aerated condition) and two upland rice varieties CMU122 and Sew Mae Jun (SMJ) (adapted to aerated condition) under various conditions of Pi and/or Fe deficiencies, in aerated and non-areated solution. Under these different experimental conditions, our results revealed that the altered shoot biomass in Nipponbare and SPR1 was O₂-dependent but to a lesser extent in CMU122 and SMJ cultivars. In this perspective, discovering the biological significance and molecular basis of these mineral elements and O₂ signal interaction is needed to fully appreciate the performance of plants to multiple environmental changes.

  7. Phosphorus and Iron Deficiencies Influences Rice Shoot Growth in an Oxygen Dependent Manner: Insight from Upland and Lowland Rice

    PubMed Central

    Mongon, Jenjira; Chaiwong, Nanthana; Bouain, Nadia; Prom-u-thai, Chanakan; Secco, David; Rouached, Hatem

    2017-01-01

    Rice is the main staple crop for one-third of the world population. To maximize yields, large quantities and constant input of fertilizers containing essential nutrients such as phosphorus (P) and iron (Fe) are added. Rice can germinate in both aerobic and anaerobic conditions, but the crosstalk between oxygen (O2) and nutrients such as P and Fe on plant growth remains obscure. The aim of this work was to test whether such interactions exist, and, if so, if they are conserved between up- and lowland rice varieties. To do so, we assessed shoot and root biomass as well as inorganic phosphate (Pi) accumulation in four rice varieties, including two lowland rice varieties Nipponbare and Suphanburi 1 (SPR1) (adapted to non-aerated condition) and two upland rice varieties CMU122 and Sew Mae Jun (SMJ) (adapted to aerated condition) under various conditions of Pi and/or Fe deficiencies, in aerated and non-areated solution. Under these different experimental conditions, our results revealed that the altered shoot biomass in Nipponbare and SPR1 was O2-dependent but to a lesser extent in CMU122 and SMJ cultivars. In this perspective, discovering the biological significance and molecular basis of these mineral elements and O2 signal interaction is needed to fully appreciate the performance of plants to multiple environmental changes. PMID:28287426

  8. Municipal waste compost as an alternative to cattle manure for supplying potassium to lowland rice.

    PubMed

    Bhattacharyya, P; Chakrabarti, K; Chakraborty, A; Nayak, D C; Tripathy, S; Powell, M A

    2007-01-01

    The importance of the use of potassium in agriculture is increasing in South Asia for making most productive use of the nutrient in terms of economic returns. Nutrient supply traditionally by cattle manure is constrained by its insufficient availability. Municipal waste compost may be an alternative source of nutrient supplements. Field experiments were conducted at the Experimental Farm of Calcutta University, West Bengal, India during the wet seasons of 1997, 1998 and 1999 on flooded lowland rice. Potassium fractions in municipal waste compost and cattle manure were determined by sequential extraction and also the potassium uptake by rice to compare the effectiveness of municipal waste compost with traditional manure. Potassium was significantly bound to the organic matter in municipal waste compost. Potassium uptake by rice grain and straw increased significantly with the combined application of organics and fertilizers and it was higher in grain than in straw. Water-soluble and non-exchangeable potassium contents of municipal waste compost and cattle manure were highly correlated with the uptake of potassium by straw and grain. Exchangeable and residual potassium were also significantly correlated with the uptake of potassium by straw and grain of rice. Much higher uptake of K in rice straw and rain resulted from applying the manures in conjunction with fertilizers than when applied singly.

  9. Suitability Evaluation for Lowland Rice in Inland Valleys in West Africa

    NASA Astrophysics Data System (ADS)

    Hideto, Fujii; Muralikrishna, Gumma; Prasad, Thenkabail; Regassa, Namara

    A GIS based model developed by the authors are applied for selecting suitable rice cultivation area in inland valleys that has high potential for rice production in West Africa where rice consumption is increasing very rapidly. The model has the following features. 1) The model is to evaluate the suitability of the land for lowland rice based on score distribution maps respectively made by the data of 29 evaluation parameters. 2) The parameters are classified into 4 categories; bio-physical, technical, socio-economic and health-environmental parameters. 3) Each scored map (layer) is integrated to obtain total scores by multiplying a weight which is determined by the importance of parameters. The suitability for rice in two study sites was evaluated using the model. Mankran and Jolo-Kwaha watershed selected as the study sites from different agro-ecological zone in Ghana. Applying the data of 12 parameters acquired in the study sites to the model, “very suitable” or “suitable” occupies around 30% in Mankran study site and around 60% in Jolo-Kwaha study site.

  10. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    PubMed

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  11. Characterization of rice (Oryza sativa L.) genotypes on the basis of morpho-physiological and biochemical traits grown under aerobic situation in rainfed ecosystem .

    PubMed

    Kumar, Santosh; Dwivedi, Sharad Kumar; Singh, S S; Kumar, Sanjeev; Sundaram, R K; Shivani; Mall, A K

    2015-07-01

    The objective of the present study was to examine the effect of aerobic situation on yield, physiological and biochemical traits of advanced breeding lines of rice. Experiment was conducted with two set of rice genotypes under two water regimes (aerobic and irrigated), during three consecutive wet seasons 2010-2012. Significant decrease in yield was observed in rice genotypes grown under aerobic situation as compared to the irrigated ones. Promising rice genotypes having the ability to maintain high plant biomass, harvest index, early vegetative vigour, improved physiological and biochemical traits in terms of relative water content (RWC), leaf area index (LAI), total soluble sugar, starch, protien and proline content help to sustain higher grain yield under aerobic situation. The yield gap between aerobic and irrigated rice ranged between 24% to 68%. Grain yield showed positive correlation with harvest index (0.434), test weight (0.647), plant biomass (0.411) and effective tiller numbers (0.473), whereas spikelet sterility was negative associated (-0.380). The current study suggested that promising genotypes viz., IR77298-14-1-2-130-2, IR84899-B-182-3-1-1-2, IR84887-B-157-38-1-1-3 and IR 84899-B-179-1-1-1-2 for aerobic situation, showing yield advantage due to better performance of physiological and biochemical traits, might be adopted in large area of rainfed ecosystem as well as in irrigated areas where water scarcity was a major problem.

  12. Optimizing tillage schedule for maintaining activity of the arbuscular mycorrhizal fungal population in a rainfed upland rice (Oryza sativa L.) agro-ecosystem.

    PubMed

    Maiti, D; Variar, M; Singh, R K

    2011-04-01

    Rainfed uplands in India are predominantly mono-cropped with rice (Oryza sativa L.) in the wet season (June/July to September/October) and grown under aerobic soil conditions. The remaining fallow period (winter followed by summer) of about 8-9 months leads to natural crash in the population of native arbuscular mycorrhizal fungi (AMF) in the soil. Attempts have been made to minimize this population crash by reducing soil disturbance-induced deleterious effects on native AMF activity of improperly scheduled off-season tillage, an agronomic recommendation for weed and disease (soil-borne) management, practiced by the upland farmers. On-farm (farmers' field) evaluation of effects of all suitable off-season tillage schedule combinations on rice during wet seasons of 2004, 2005, and 2006 revealed that a maximum of two off-season tillage schedules with a minimum gap of 13 weeks between them minimized the population crash of native AMF with a concomitant increase in phosphorus (P) uptake and grain yield of upland rice (variety "Vandana").

  13. Economy of fertilizer nitrogen through organic sources in rain-fed rice-legume cropping systems in West Bengal, India.

    PubMed

    Puste, A M; Bandyopadhyay, S; Das, D K

    2001-12-11

    Field experiments were conducted at a farmers" plot adjacent to the Regional Research Station, red and laterite zone, Sub-center Sekhampur (Birbhum district) of West Bengal, India, situated 23 degrees 24' N latitude, 87 degrees 24' E longitude, to study the effect of different bio- and organic sources of nutrients instead of total fertilizer N in terms of crop productivity in the sequence and building up of soil fertility. During the wet seasons of 1997 and 1998, 12 combinations of bio- and organic sources (crop residues, well decomposed cow dung, dhanicha as green manure) were substituted for 25-50% of N fertilizer applied on transplanted rice (Cv. IR 36). Subsequently, during the winters of 1997-1998 and 1998-1999, leguminous pulse crops like lentil (Lens culinaris [L.] Medic.), gram ( Cicer arietinum L.) and lathyrus (Lathyrus sativus L.) were grown with and without inoculation of Rhizobium. Results revealed that the application of inorganic N in combination with organic sources exhibited a significant increase in rice yield (3.60-3.84 t ha(-1) ) compared to the yield from sole application of N (3.19-3.26 t ha(-1) ). The study showed that about 25% of total applied N was saved without significant yield reduction with simultaneous improvement of soil physical properties (pH, organic matter, available N, P, K, and CEC). Seed yield of pulses (lentil, gram, and lathyrus) were more pronounced in the treatment inoculated with Rhizobium, with a saving of 42.6-48.4 kg N ha(-1). Therefore, the results suggest that the combined application of inorganic and organic N sources in a 75:25 ratio is a superior N-management practice with regards to crop yields as well as improvement of soil fertility.

  14. Seasonal assessment of greenhouse gas emission from irrigated lowland rice field under infrared warming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice fields are considered as one of the major sources of methane (CH4), and they also emit nitrous oxide (N2O). A field experiment was conducted at the International Rice Research Institute, Philippines, in 2010 – 2011 using a temperature free-air controlled enhancement (T-FACE) system. Our object...

  15. Effect of timing of joint application of hydroquinone and dicyandiamide on nitrous oxide emission from irrigated lowland rice paddy field.

    PubMed

    Li, Xianglan; Zhang, Guangbin; Xu, Hua; Cai, Zucong; Yagi, Kazuyuki

    2009-06-01

    A field experiment was conducted to study the effect of timing of joint application of urease inhibitor hydroquinone (HQ) and nitrification inhibitor dicyandiamide (DCD) on N(2)O emission from irrigated lowland rice paddy field. Four treatments including Treatment CK (the control with urea alone), HQ/DCD-1 (application of HQ and DCD together with fertilizer before transplanting), HQ/DCD-2 (HQ and DCD with fertilizer at tillering stage) and HQ/DCD-3 (HQ and DCD with fertilizer at panicle initiation stage) were designed and implemented separately during rice growth period. Seasonal peaks of N(2)O flux occurred during midseason drainage and significant negative correlation between N(2)O flux and water layer depth was observed (r=-0.69 to -0.75, P<0.01). Mean N(2)O flux was the highest in the control with urea alone, while joint addition of HQ and DCD with urea lowered mean N(2)O flux considerably (P<0.05). Total N(2)O emission during rice growth season in Treatment CK, HQ/DCD-1, HQ/DCD-2 and HQ/DCD-3 was 3.90, 2.98, 1.73 and 3.23kgN(2)O-N ha(-1), respectively. Application of HQ and DCD together with basal fertilizer, tillering fertilizer and panicle initiation fertilizer decreased the total N(2)O emission by 24%, 56% and 17%, respectively, while increased grain yield by 10%, 18% and 6%, respectively. Effect of application of inhibitors on N(2)O emission during the continuous period from incorporation of HQ and DCD to rice harvest was also studied, where results indicating that the highest inhibiting efficiency of inhibitors on N(2)O emission was recorded when HQ and DCD applied with fertilizer at tillering stage.

  16. Improving salt tolerance of lowland rice cultivar 'Rassi' through marker-aided backcross breeding in West Africa.

    PubMed

    Bimpong, Isaac Kofi; Manneh, Baboucarr; Sock, Mamadou; Diaw, Faty; Amoah, Nana Kofi Abaka; Ismail, Abdelbagi M; Gregorio, Glenn; Singh, Rakesh Kumar; Wopereis, Marco

    2016-01-01

    Salt stress affects about 25% of the 4.4 million ha of irrigated and lowland systems for rice cultivation in West Africa (WA). A major quantitative trait locus (QTLs) on chromosome 1 (Saltol) that enhances tolerance to salt stress at the vegetative stage has enabled the use of marker-assisted selection (MAS) to develop salt-tolerant rice cultivar(s) in WA. We used 3 cycles of backcrossing with selection based on DNA markers and field-testing using 'FL478' as tolerant donor and the widely grown 'Rassi' as recurrent parent. In the BC3F2 stage, salt-tolerant lines with over 80% Rassi alleles except in the region around Saltol segment were selected. 429 introgression lines (Saltol-ILs) were identified as tolerant at vegetative stage, of which 116 were field-tested for four seasons at the reproductive stage. Sixteen Saltol-ILs had less yield loss (3-26% relative to control trials), and 8 Saltol-ILs showed high yield potential under stress and non-stress conditions. The 16 Saltol-ILs had been included for further African-wide testing prior to release in 6 WA countries. MAS reduced the time for germplasm improvement from at least 7 to about 4 years. Our objective is to combine different genes/QTLs conferring tolerance to stresses under one genetic background using MAS.

  17. Localized Flux Maxima of Arsenic, Lead, and Iron around Root Apices in Flooded Lowland Rice

    PubMed Central

    2014-01-01

    In wetland-adapted plants, such as rice, it is typically root apexes, sites of rapid entry for water/nutrients, where radial oxygen losses (ROLs) are highest. Nutrient/toxic metal uptake therefore largely occurs through oxidized zones and pH microgradients. However, the processes controlling the acquisition of trace elements in rice have been difficult to explore experimentally because of a lack of techniques for simultaneously measuring labile trace elements and O2/pH. Here, we use new diffusive gradients in thin films (DGT)/planar optode sandwich sensors deployed in situ on rice roots to demonstrate a new geochemical niche of greatly enhanced As, Pb, and Fe(II) mobilization into solution immediately adjacent to the root tips characterized by O2 enrichment and low pH. Fe(II) mobilization was congruent to that of the peripheral edge of the aerobic root zone, demonstrating that the Fe(II) mobilization maximum only developed in a narrow O2 range as the oxidation front penetrates the reducing soil. The Fe flux to the DGT resin at the root apexes was 3-fold higher than the anaerobic bulk soil and 27 times greater than the aerobic rooting zone. These results provide new evidence for the importance of coupled diffusion and oxidation of Fe in modulating trace metal solubilization, dispersion, and plant uptake. PMID:24967508

  18. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  19. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  20. Origin, dispersal, cultivation and variation of rice.

    PubMed

    Khush, G S

    1997-09-01

    There are two cultivated and twenty-one wild species of genus Oryza. O. sativa, the Asian cultivated rice is grown all over the world. The African cultivated rice, O. glaberrima is grown on a small scale in West Africa. The genus Oryza probably originated about 130 million years ago in Gondwanaland and different species got distributed into different continents with the breakup of Gondwanaland. The cultivated species originated from a common ancestor with AA genome. Perennial and annual ancestors of O. sativa are O. rufipogon and O. nivara and those of O. glaberrima are O. longistaminata, O. breviligulata and O. glaberrima probably domesticated in Niger river delta. Varieties of O. sativa are classified into six groups on the basis of genetic affinity. Widely known indica rices correspond to group I and japonicas to group VI. The so called javanica rices also belong to group VI and are designated as tropical japonicas in contrast to temperate japonicas grown in temperate climate. Indica and japonica rices had a polyphyletic origin. Indicas were probably domesticated in the foothills of Himalayas in Eastern India and japonicas somewhere in South China. The indica rices dispersed throughout the tropics and subtropics from India. The japonica rices moved northward from South China and became the temperate ecotype. They also moved southward to Southeast Asia and from there to West Africa and Brazil and became tropical ecotype. Rice is now grown between 55 degrees N and 36 degrees S latitudes. It is grown under diverse growing conditions such as irrigated, rainfed lowland, rainfed upland and floodprone ecosystems. Human selection and adaptation to diverse environments has resulted in numerous cultivars. It is estimated that about 120,000 varieties of rice exist in the world. After the establishment of International Rice Research Institute in 1960, rice varietal improvement was intensified and high yielding varieties were developed. These varieties are now planted to 70

  1. Rainfed Areas and Animal Agriculture in Asia: The Wanting Agenda for Transforming Productivity Growth and Rural Poverty

    PubMed Central

    Devendra, C.

    2012-01-01

    The importance of rainfed areas and animal agriculture on productivity enhancement and food security for economic rural growth in Asia is discussed in the context of opportunities for increasing potential contribution from them. The extent of the rainfed area of about 223 million hectares and the biophysical attributes are described. They have been variously referred to inter alia as fragile, marginal, dry, waste, problem, threatened, range, less favoured, low potential lands, forests and woodlands, including lowlands and uplands. Of these, the terms less favoured areas (LFAs), and low or high potential are quite widely used. The LFAs are characterised by four key features: i) very variable biophysical elements, notably poor soil quality, rainfall, length of growing season and dry periods, ii) extreme poverty and very poor people who continuously face hunger and vulnerability, iii) presence of large populations of ruminant animals (buffaloes, cattle, goats and sheep), and iv) have had minimum development attention and an unfinished wanting agenda. The rainfed humid/sub-humid areas found mainly in South East Asia (99 million ha), and arid/semi-arid tropical systems found in South Asia (116 million ha) are priority agro-ecological zones (AEZs). In India for example, the ecosystem occupies 68% of the total cultivated area and supports 40% of the human and 65% of the livestock populations. The area also produces 4% of food requirements. The biophysical and typical household characteristics, agricultural diversification, patterns of mixed farming and cropping systems are also described. Concerning animals, their role and economic importance, relevance of ownership, nomadic movements, and more importantly their potential value as the entry point for the development of LFAs is discussed. Two examples of demonstrated success concern increasing buffalo production for milk and their expanded use in semi-arid AEZs in India, and the integration of cattle and goats with oil

  2. Rainfed areas and animal agriculture in Asia: the wanting agenda for transforming productivity growth and rural poverty.

    PubMed

    Devendra, C

    2012-01-01

    The importance of rainfed areas and animal agriculture on productivity enhancement and food security for economic rural growth in Asia is discussed in the context of opportunities for increasing potential contribution from them. The extent of the rainfed area of about 223 million hectares and the biophysical attributes are described. They have been variously referred to inter alia as fragile, marginal, dry, waste, problem, threatened, range, less favoured, low potential lands, forests and woodlands, including lowlands and uplands. Of these, the terms less favoured areas (LFAs), and low or high potential are quite widely used. The LFAs are characterised by four key features: i) very variable biophysical elements, notably poor soil quality, rainfall, length of growing season and dry periods, ii) extreme poverty and very poor people who continuously face hunger and vulnerability, iii) presence of large populations of ruminant animals (buffaloes, cattle, goats and sheep), and iv) have had minimum development attention and an unfinished wanting agenda. The rainfed humid/sub-humid areas found mainly in South East Asia (99 million ha), and arid/semi-arid tropical systems found in South Asia (116 million ha) are priority agro-ecological zones (AEZs). In India for example, the ecosystem occupies 68% of the total cultivated area and supports 40% of the human and 65% of the livestock populations. The area also produces 4% of food requirements. The biophysical and typical household characteristics, agricultural diversification, patterns of mixed farming and cropping systems are also described. Concerning animals, their role and economic importance, relevance of ownership, nomadic movements, and more importantly their potential value as the entry point for the development of LFAs is discussed. Two examples of demonstrated success concern increasing buffalo production for milk and their expanded use in semi-arid AEZs in India, and the integration of cattle and goats with oil

  3. Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment

    PubMed Central

    Ismail, Abdelbagi M.; Johnson, David E.; Ella, Evangelina S.; Vergara, Georgina V.; Baltazar, Aurora M.

    2012-01-01

    Background and aims Direct seeding of rice is being adopted in rainfed and irrigated lowland ecosystems because it reduces labour costs in addition to other benefits. However, early flooding due to uneven fields or rainfall slows down seed germination and hinders crop establishment. Conversely, early flooding helps suppress weeds and reduces the costs of manual weeding and/or dependence on herbicides; however, numerous weed species are adapted to lowlands and present challenges for the use of flooding to control weeds. Advancing knowledge on the mechanisms of tolerance of flooding during germination and early growth in rice and weeds could facilitate the development of improved rice varieties and effective weed management practices for direct-seeded rice. Principal results Rice genotypes with a greater ability to germinate and establish in flooded soils were identified, providing opportunities to develop varieties suitable for direct seeding in flooded soils. Tolerance of flooding in these genotypes was mostly attributed to traits associated with better ability to mobilize stored carbohydrates and anaerobic metabolism. Limited studies were undertaken in weeds associated with lowland rice systems. Remaining studies compared rice and weeds and related weed species such as Echinochloa crus-galli and E. colona or compared ecotypes of the same species of Cyperus rotundus adapted to either aerobic or flooded soils. Conclusions Tolerant weeds and rice genotypes mostly developed similar adaptive traits that allow them to establish in flooded fields, including the ability to germinate and elongate faster under hypoxia, mobilize stored starch reserves and generate energy through fermentation pathways. Remarkably, some weeds developed additional traits such as larger storage tubers that enlarge further in deeper flooded soils (C. rotundus). Unravelling the mechanisms involved in adaptation to flooding will help design management options that will allow tolerant rice genotypes

  4. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    PubMed

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  5. LANDSCAPE CHANGES IN A LOWLAND IN BENIN: ECOLOGICAL IMPACT ON PESTS AND NATURAL ENEMIES.

    PubMed

    Boucher, A; Silvie, P; Menozzi, P; Adda, C; Auzoux, S; Jean, J; Huat, J

    2015-01-01

    Habitat management involving conservative biological control could be a good crop pest management option in poor African countries. A survey was conducted from August 2013 to July 2014 in a rainfed lowland region near Pélébina, northern Benin, in order to characterize spatiotemporal landscape changes and investigate their influence on the main crop pests and their associated natural enemies. The area was mapped mainly regarding crop fields and fallows. Visual observations were recorded and a database was compiled. Major landscape composition changes were noted between rainy and dry seasons, which affected the presence of both pests and natural enemies. Cereals (rice, maize and sorghum) and cotton were grown in the humid season, and then okra (Abelmoschus esculentus) was the dominant vegetable crop in dry season. These modifications impacted fallow abundance throughout the lowland. Different cotton (e.g. Helicoverpa armigera, Dysdercus sp., Zonocerus variegatus) or rice (e.g. Diopsis longicornis, D. apicalis) pests were observed during dry season in okra crops. Dry season surveys of Poaceae in two types of fallows ('humid', 'dry') revealed the presence of very few stem borers: only 0.04% of stems sampled were infested by stem borers, with a mean of 1.13 larvae per stem. Known cereal stem borer species such as Busseola fusco, Coniesta ignefusalis, Sesamia calamistis were not clearly identified among these larvae because of their diapausing stage and white color. Unexpected pollinators (Hymenoptera Apidae, genus Braunsapis, Ceratina and Xylocopa) and predators (Crabronidae, genus Dasyproctus) were found in the stems. Sweep-net collection of insects in humid fallows allowed us to describe for the first time in Benin seven Diopsidae species (23% of adults bearing Laboulbeniomycetes ectoparasitic fungi). Some of these species were captured in rice fields during rainy season. Parasitoids (adult Chalcidoidae and Ichneumonoidae) were observed during both seasons but their

  6. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress

    PubMed Central

    Hussain, Saddam; Yin, Hanqi; Peng, Shaobing; Khan, Faheem A.; Khan, Fahad; Sameeullah, Muhammad; Hussain, Hafiz A.; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2016-01-01

    Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants. PMID:27516766

  7. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China.

    PubMed

    Xu, Ying; Ge, Junzhu; Tian, Shaoyang; Li, Shuya; Nguy-Robertson, Anthony L; Zhan, Ming; Cao, Cougui

    2015-02-01

    As pressure on water resources increases, alternative practices to conserve water in paddies have been developed. Few studies have simultaneously examined the effectiveness of different water regimes on conserving water, mitigating greenhouse gases (GHG), and maintaining yields in rice production. This study, which was conducted during the drought of 2013, examined all three factors using a split-plot experiment with two rice varieties in a no-till paddy managed under three different water regimes: 1) continuous flooding (CF), 2) flooded and wet intermittent irrigation (FWI), and 3) flooded and dry intermittent irrigation (FDI). The Methane (CH₄) and nitrous oxide (N₂O) emissions were measured using static chamber-gas measurements, and the carbon dioxide (CO₂) emissions were monitored using a soil CO₂ flux system (LI-8100). Compared with CF, FWI and FDI irrigation strategies reduced CH₄ emissions by 60% and 83%, respectively. In contrast, CO₂ and N₂O fluxes increased by 65% and 9%, respectively, under FWI watering regime and by 104% and 11%, respectively, under FDI managed plots. Although CO₂ and N₂O emissions increased, the global warming potential (GWP) and greenhouse gas intensity (GHGI) of all three GHG decreased by up to 25% and 29% (p<0.01), respectively, using water-saving irrigation strategies. The rice variety also affected yields and GHG emissions in response to different water regimes. The drought-resistance rice variety (HY3) was observed to maintain yields, conserve water, and reduce GHG under the FWI irrigation management compared with the typical variety (FYY299) planted in the region. The FYY299 only had significantly lower GWP and GHGI when the yield was reduced under FDI water regime. In conclusion, FWI irrigation strategy could be an effective option for simultaneously saving water and mitigating GWP without reducing rice yields using drought-resistant rice varieties, such as HY3.

  8. Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice

    PubMed Central

    Diedhiou, Abdala Gamby; Mbaye, Fatou Kine; Mbodj, Daouda; Faye, Mathieu Ndigue; Pignoly, Sarah; Ndoye, Ibrahima; Djaman, Koffi; Gaye, Souleymane; Kane, Aboubacry; Laplaze, Laurent; Manneh, Baboucarr; Champion, Antony

    2016-01-01

    The overuse of agricultural chemicals such as fertilizer and pesticides aimed at increasing crop yield results in environmental damage, particularly in the Sahelian zone where soils are fragile. Crop inoculation with beneficial soil microbes appears as a good alternative for reducing agricultural chemical needs, especially for small farmers. This, however, requires selecting optimal combinations of crop varieties and beneficial microbes tested in field conditions. In this study, we investigated the response of rice plants to inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth promoting bacteria (PGPB) under screenhouse and field conditions in two consecutive seasons in Senegal. Evaluation of single and mixed inoculations with AMF and PGPB was conducted on rice (Oryza sativa) variety Sahel 202, on sterile soil under screenhouse conditions. We observed that inoculated plants, especially plants treated with AMF, grew taller, matured earlier and had higher grain yield than the non-inoculated plants. Mixed inoculation trials with two AMF strains were then conducted under irrigated field conditions with four O. sativa varieties, two O. glaberrima varieties and two interspecific NERICA varieties, belonging to 3 ecotypes (upland, irrigated, and rainfed lowland). We observed that the upland varieties had the best responses to inoculation, especially with regards to grain yield, harvest index and spikelet fertility. These results show the potential of using AMF to improve rice production with less chemical fertilizers and present new opportunities for the genetic improvement in rice to transfer the ability of forming beneficial rice-microbe associations into high yielding varieties in order to increase further rice yield potentials. PMID:27907023

  9. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.)

    PubMed Central

    Miro, Berta; Ismail, Abdelbagi M.

    2013-01-01

    Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops

  10. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India.

    PubMed

    Mandal, S; Choudhury, B U; Satpati, L N

    2015-12-01

    In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant (p < 0.05) increasing trend (at 0.22 days year(-1)) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning

  11. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Choudhury, B. U.; Satpati, L. N.

    2015-12-01

    In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant ( p < 0.05) increasing trend (at 0.22 days year-1) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning including abiotic stress

  12. Rain-fed fig yield as affected by rainfall distribution

    NASA Astrophysics Data System (ADS)

    Bagheri, Ensieh; Sepaskhah, Ali Reza

    2014-08-01

    Variable annual rainfall and its uneven distribution are the major uncontrolled inputs in rain-fed fig production and possibly the main cause of yield fluctuation in Istahban region of Fars Province, I.R. of Iran. This introduces a considerable risk in rain-fed fig production. The objective of this study was to find relationships between seasonal rainfall distribution and rain-fed fig production in Istahban region to determine the critical rainfall periods for rain-fed fig production and supplementary irrigation water application. Further, economic analysis for rain-fed fig production was considered in this region to control the risk of production. It is concluded that the monthly, seasonal and annual rainfall indices are able to show the effects of rainfall and its distribution on the rain-fed fig yield. Fig yield with frequent occurrence of 80 % is 374 kg ha-1. The internal rates of return for interest rate of 4, 8 and 12 % are 21, 58 and 146 %, respectively, that are economically feasible. It is concluded that the rainfall in spring especially in April and in December has negatively affected fig yield due to its interference with the life cycle of Blastophaga bees for pollination. Further, it is concluded that when the rainfall is limited, supplementary irrigation can be scheduled in March.

  13. Soil carbon sequestration in rainfed production systems in the semiarid tropics of India.

    PubMed

    Srinivasarao, Ch; Lal, Rattan; Kundu, Sumanta; Babu, M B B Prasad; Venkateswarlu, B; Singh, Anil Kumar

    2014-07-15

    Severe soil organic carbon (SOC) depletion is a major constraint in rainfed agroecosystems in India because it directly influences soil quality, crop productivity and sustainability. The magnitude of soil organic, inorganic and total carbon stocks in the semi-arid bioclimate is estimated at 2.9, 1.9 and 4.8 Pg respectively. Sorghum, finger millet, pearl millet, maize, rice, groundnut, soybean, cotton, food legumes etc. are predominant crop production systems with a little, if any, recycling of organic matter. Data from the long term experiments on major rainfed production systems in India show that higher amount of crop residue C input (Mg/ha/y) return back to soil in soybean-safflower (3.37) system practiced in Vertisol region of central India. Long term addition of chemical fertilizer and organic amendments improved the SOC stock. For every Mg/ha increase in SOC stock in the root zone, there occurs an increase in grain yield (kg/ha) of 13, 101, 90, 170, 145, 18 and 160 for groundnut, finger millet, sorghum, pearl millet, soybean and rice, respectively. Long-term cropping without using any organic amendment and/or mineral fertilizers can severely deplete the SOC stock which is the highest in groundnut-finger millet system (0.92 Mg C/ha/y) in Alfisols. Some agroforestry systems also have a huge potential of C sequestration to the extent of 10Mg/ha/y in short rotation eucalyptus and Leucaena plantations. The critical level of C input requirements for maintaining SOC at the antecedent level ranges from 1.1 to 3.5 Mg C/ha/y and differs among soil type and production systems. National level policy interventions needed to promote sustainable use of soil and water resources include prohibiting residue burning, reducing deforestation, promoting integrated farming systems and facilitating payments for ecosystem services. A wide spread adoption of these measures can improve soil quality through increase in SOC sequestration and improvement in agronomic productivity of

  14. Genome-Wide Association Mapping of Root Traits in a Japonica Rice Panel

    PubMed Central

    Courtois, Brigitte; Audebert, Alain; Dardou, Audrey; Roques, Sandrine; Ghneim- Herrera, Thaura; Droc, Gaëtan; Frouin, Julien; Rouan, Lauriane; Gozé, Eric; Kilian, Andrzej; Ahmadi, Nourollah; Dingkuhn, Michael

    2013-01-01

    Rice is a crop prone to drought stress in upland and rainfed lowland ecosystems. A deep root system is recognized as the best drought avoidance mechanism. Genome-wide association mapping offers higher resolution for locating quantitative trait loci (QTLs) than QTL mapping in biparental populations. We performed an association mapping study for root traits using a panel of 167 japonica accessions, mostly of tropical origin. The panel was genotyped at an average density of one marker per 22.5 kb using genotyping by sequencing technology. The linkage disequilibrium in the panel was high (r2>0.6, on average, for 20 kb mean distances between markers). The plants were grown in transparent 50 cm × 20 cm × 2 cm Plexiglas nailboard sandwiches filled with 1.5 mm glass beads through which a nutrient solution was circulated. Root system architecture and biomass traits were measured in 30-day-old plants. The panel showed a moderate to high diversity in the various traits, particularly for deep (below 30 cm depth) root mass and the number of deep roots. Association analyses were conducted using a mixed model involving both population structure and kinship to control for false positives. Nineteen associations were significant at P<1e-05, and 78 were significant at P<1e-04. The greatest numbers of significant associations were detected for deep root mass and the number of deep roots, whereas no significant associations were found for total root biomass or deep root proportion. Because several QTLs for different traits were co-localized, 51 unique loci were detected; several co-localized with meta-QTLs for root traits, but none co-localized with rice genes known to be involved in root growth. Several likely candidate genes were found in close proximity to these loci. Additional work is necessary to assess whether these markers are relevant in other backgrounds and whether the genes identified are robust candidates. PMID:24223758

  15. Identification of Striga hermonthica-Resistant Upland Rice Varieties in Sudan and Their Resistance Phenotypes

    PubMed Central

    Samejima, Hiroaki; Babiker, Abdel G.; Mustafa, Ahmed; Sugimoto, Yukihiro

    2016-01-01

    Rice has become a major staple cereal in sub-Saharan Africa. Currently, upland rice cultivation is expanding particularly in rainfed areas where the root parasitic weed Striga hermonthica, a major constraint to cereal production, is endemic. Laboratory, pot, and semi-controlled open air experiments were performed to evaluate resistance of selected rice varieties in Sudan to a resident S. hermonthica population. In the laboratory, 27 varieties were screened for post-attachment resistance using the rhizotron technique. Varieties displaying high post-attachment resistance, Umgar, NERICA5, and NERICA13 together with NERICA4, NERICA18, and Nipponbare, a lowland rice variety, were further evaluated for performance and Striga resistance in pot and semi-controlled open air experiments and for germination inducing activity in a laboratory. In addition, comparative studies on reaction of Umgar, Kosti1 and Kosti2, released varieties for commercial production in Sudan, to the parasite were performed in two pot experiments. In the pot experiments Umgar and NERICA5, consistently, sustained the lowest Striga emergence (<2.2 Striga plants per pot), while NERICA13 and NERICA4 supported 1.8–5.7 and 8.7–16.4 Striga plants per pot, respectively. In an artificially Striga-infested field, number of emergent Striga plants per 10 rice hills, at harvest, was 2.0, 2.0, 4.8, 13.5, 13.3, and 18.3 on Umgar, NERICA5, NERICA13, NERICA4, NERICA18, and Nipponbare, respectively. Striga had no adverse effects on total above-ground parts and panicle dry weight in Umgar and NERICA5. Germination-inducing activity of root exudates, at 14 days after sowing onward, was markedly lower for Umgar than for NERICA5, NERICA13, NERICA4, and NERICA18. Based on these findings, Umgar has both pre and post-attachment resistance to a resident Striga population in Sudan. Kosti1 and Kosti2 did not exhibit Striga-resistance at the same level as Umgar. Further the resistance of NERICA5, a variety reported to be

  16. Identification of Striga hermonthica-Resistant Upland Rice Varieties in Sudan and Their Resistance Phenotypes.

    PubMed

    Samejima, Hiroaki; Babiker, Abdel G; Mustafa, Ahmed; Sugimoto, Yukihiro

    2016-01-01

    Rice has become a major staple cereal in sub-Saharan Africa. Currently, upland rice cultivation is expanding particularly in rainfed areas where the root parasitic weed Striga hermonthica, a major constraint to cereal production, is endemic. Laboratory, pot, and semi-controlled open air experiments were performed to evaluate resistance of selected rice varieties in Sudan to a resident S. hermonthica population. In the laboratory, 27 varieties were screened for post-attachment resistance using the rhizotron technique. Varieties displaying high post-attachment resistance, Umgar, NERICA5, and NERICA13 together with NERICA4, NERICA18, and Nipponbare, a lowland rice variety, were further evaluated for performance and Striga resistance in pot and semi-controlled open air experiments and for germination inducing activity in a laboratory. In addition, comparative studies on reaction of Umgar, Kosti1 and Kosti2, released varieties for commercial production in Sudan, to the parasite were performed in two pot experiments. In the pot experiments Umgar and NERICA5, consistently, sustained the lowest Striga emergence (<2.2 Striga plants per pot), while NERICA13 and NERICA4 supported 1.8-5.7 and 8.7-16.4 Striga plants per pot, respectively. In an artificially Striga-infested field, number of emergent Striga plants per 10 rice hills, at harvest, was 2.0, 2.0, 4.8, 13.5, 13.3, and 18.3 on Umgar, NERICA5, NERICA13, NERICA4, NERICA18, and Nipponbare, respectively. Striga had no adverse effects on total above-ground parts and panicle dry weight in Umgar and NERICA5. Germination-inducing activity of root exudates, at 14 days after sowing onward, was markedly lower for Umgar than for NERICA5, NERICA13, NERICA4, and NERICA18. Based on these findings, Umgar has both pre and post-attachment resistance to a resident Striga population in Sudan. Kosti1 and Kosti2 did not exhibit Striga-resistance at the same level as Umgar. Further the resistance of NERICA5, a variety reported to be endowed

  17. Remote sensing based change analysis of rice environments in Odisha, India.

    PubMed

    Gumma, Murali Krishna; Mohanty, Samarendu; Nelson, Andrew; Arnel, Rala; Mohammed, Irshad A; Das, Satya Ranjan

    2015-01-15

    The rainfed rice-growing environment is perhaps one of the most vulnerable to water stress such as drought and floods. It is important to determine the spatial extent of the stress-prone areas to effectively and efficiently promote proper technologies (e.g., stress-tolerant varieties) to tackle the problem of sustainable food production. This study was conducted in Odisha state located in eastern India. Odisha is predominantly a rainfed rice ecosystem (71% rainfed and 29% canal irrigated during kharif-monsoon season), where rice is the major crop and staple food of the people. However, rice productivity in Odisha is one of the lowest in India and a significant decline (9%) in rice cultivated area was observed in 2002 (a drought year). The present study analyzed the temporal rice cropping pattern in various ecosystems and identified the stress-prone areas due to submergence (flooding) and water shortage. The spatial distribution of rice areas was mapped using MODIS (MOD09Q1) 250-m 8-day time-series data (2000-2010) and spectral matching techniques. The mapped rice areas were strongly correlated (R(2) = 90%) with district-level statistics. Also the class accuracy based on field-plot data was 84.8%. The area under the rainfed rice ecosystem continues to dominate, recording the largest share among rice classes across all the years. The use of remote-sensing techniques is rapid, cost-effective, and reliable to monitor changes in rice cultivated area over long periods of time and estimate the reduction in area cultivated due to abiotic stress such as water stress and submergence. Agricultural research institutes and line departments in the government can use these techniques for better planning, regular monitoring of land-use changes, and dissemination of appropriate technologies.

  18. Calibration of Daycent biogeochemical model for rice paddies in three agro-ecological zones in Peninsular India to optimize cropping practices and predict GHG emissions

    NASA Astrophysics Data System (ADS)

    Rajan, S.; Kritee, K.; Keough, C.; Parton, W. J.; Ogle, S. M.

    2014-12-01

    Rice is a staple for nearly half of the world population with irrigated and rainfed lowland rice accounting for about 80% of the worldwide harvested rice area. Increased atmospheric CO2 and rising temperatures are expected to adversely affect rice yields by the end of the 21st century. In addition, different crop management practices affect methane and nitrous oxide emissions from rice paddies antagonistically warranting a review of crop management practices such that farmers can adapt to the changing climate and also help mitigate climate change. The Daily DayCent is a biogeochemical model that operates on a daily time step, driven by four ecological drivers, i.e. climate, soil, vegetation, and management practices. The model is widely used to simulate daily fluxes of various gases, plant productivity, nutrient availability, and other ecosystem parameters in response to changes in land management and climate. We employed the DayCent model as a tool to optimize rice cropping practices in Peninsular India so as to develop a set of farming recommendations to ensure a triple win (i.e. higher yield, higher profit and lower GHG emissions). We applied the model to simulate both N2O and CH4 emissions, and crop yields from four rice paddies in three different agro-ecological zones under different management practices, and compared them with measured GHG and yield data from these plots. We found that, like all process based models, the biggest constraint in using the model was input data acquisition. Lack of accurate documentation of historic land use and management practices, missing historical daily weather data, and difficulty in obtaining digital records of soil and crop/vegetation parameters related to our experimental plots came in the way of our execution of this model. We will discuss utilization of estimates based on available literature, or knowledge-based values in lieu of missing measured parameters in our simulations with DayCent which could prove to be a

  19. Postcolonial Hybrids in "The Lowland"

    ERIC Educational Resources Information Center

    Ghoreishi, Seyedeh Zahra; Bordbari, Zahra

    2016-01-01

    This paper delves into Jhumpa Lahiri's 2013 novel, "The Lowland", to analyze the diasporic experience of the Indianborn characters. Homi Bhabha's postcolonial approach is utilized to demonstrate the ways in which the characters perceive the immigration experience, and to unravel the causes of their despair, the disintegration of their…

  20. Natural leaf senescence: probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars.

    PubMed

    Panda, Debabrata; Sarkar, Ramani Kumar

    2013-01-01

    Natural leaf senescence was investigated in four rainfed lowland rice cultivars, FR 13A (tolerant to submergence), Sabita and Sarala (adapted to medium depth, 0-50 cm stagnant flooding) and Dengi (conventional farmers' cultivar). Changes in the levels of pigment content, CO2 photosynthetic rate, photosystem II photochemistry and anti-oxidant enzyme activities of flag leaves during grain-filling stage were investigated. Chlorophyll content, photochemical efficiency of photosystem II and CO2 photosynthetic rate decreased significantly with the progress of grain-filling. Likely, the activities of antioxidant enzymes namely, superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase decreased with progress of grain-filling. A substantial difference was observed among the four cultivars for the sustainability index (SI) of different photosynthetic parameters and antioxidant enzyme activities; SIs of those parameters, in general, were lower in low yielding cultivar FR 13A compared to the other three cultivars. Among the four cultivars Sabita gave maximum grain yield. Yet, SI of Pn was greater in Sarala and Dengi compared to the Sabita. SIs of electron transport (ETo/CS), maximal photochemical efficiency (Fv/Fm), area above Fo and Fm, catalase and ascorbate peroxidase were also greater in Sarala and Dengi. The data showed that among the different Chl a fluorescence parameters, PI could be used with greater accuracy to distinguish slow and fast senescence rice cultivars during grain-filling period. It was concluded that maintaining the vitality of rice plants during grain-filling gave guarantee to synthesize carbohydrate, however greater yield could be realized provided superior yield attributing parameters are present.

  1. How can varieties and rain-fed production environments affect malting quality in spring barley?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rain-fed barley production environments can be highly variable across a region and across years. Almost all malting barley production in Washington State is under rain-fed conditions. The industry has noticed that in some cases malt beta-glucan levels and other malting quality parameters have been u...

  2. The role of aquaporin RWC3 in drought avoidance in rice.

    PubMed

    Lian, Hong-Li; Yu, Xin; Ye, Qin; Ding, Xiaodong; Kitagawa, Yoshichika; Kwak, Sang-Soo; Su, Wei-Ai; Tang, Zhang-Cheng; Ding, Xiao-Song

    2004-04-01

    Although the discovery of aquaporins in plants has resulted in a paradigm shift in the understanding of plant water relations, the relationship between aquaporins and drought resistance still remains elusive. From an agronomic viewpoint, upland rice is traditionally considered as showing drought avoidance. In the investigation of different morphological and physiological responses of upland rice (Oryza sativa L. spp indica cv. Zhonghan 3) and lowland rice (O. sativa L. spp japonica cv. Xiushui 63) to water deficit, we observed young leaf rolling and the remarkable decline of cumulative transpiration in the upland rice. The expression of water channel protein RWC3 mRNA was increased in upland rice at the early response (up to 4 h) to the 20% polyethylene glycol (PEG) 6000 treatment, whereas there was no significant expression changes in lowland rice. Protein levels were increased in upland rice and decreased in lowland rice at 10 h after the water deficit. The up-regulation of RWC3 in upland rice fits well with the knowledge that upland rice adopts the mechanism of drought avoidance. The physiological significance of this RWC3 up-regulation was then explored with the over-expression of RWC3 in transgenic lowland rice (O. sativa L. spp japonica cv. Zhonghua 11) controlled by a stress-inducible SWPA2 promoter. Compared to the wild-type plant, the transgenic lowland rice exhibited higher root osmotic hydraulic conductivity (Lp), leaf water potential and relative cumulative transpiration at the end of 10 h PEG treatment. These results indicated that RWC3 probably played a role in drought avoidance in rice.

  3. From Water Dynamics to Rainfed Landscapes with GRASS GIS

    NASA Astrophysics Data System (ADS)

    Chemin, Yann; van Brakel, Martin; Johnston, Robyn; Curnow, Jayne

    2014-05-01

    Variability in water availability is a key determinant of risk and constraint to productivity in rainfed agricultural systems. Understanding the dynamics of water availability across both spatial and temporal scales is essential to managing water and optimize production. This research proposes to look at both the physical measurement of water availability and water user perceptions of landscapes and water availability. Evapotranspiration makes up about three quarters of the transiting water in a landscape, it is composed of evaporation (water bodies, soil) and transpiration, the vegetation biomass growing quantity. This work will develop a methodology for defining landscapes based on water dynamics to be used at the interface of WLE research. The GRASS GIS Imagery, Landscape and Temporal toolkits form the basis of the methodological development, from evapotranspiration modeling and landscape analysis to spatio-temporal analysis.

  4. Stabilized nitrogen fertilizers and application rate influence nitrogen losses under rainfed spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) losses associated with fertilizer application have negative economic and environmental consequences, but urease and nitrification inhibitors have potential to reduce N losses. The effectiveness of these inhibitors has been studied extensively in irrigated but not rainfed systems. Theref...

  5. Abandoned Rice Fields Make Streams Go Dry in Upland Landscapes

    NASA Astrophysics Data System (ADS)

    Jayawickreme, D.

    2015-12-01

    In South Asia, new economic realities are driving many rural rice farmers out of agriculture. With increasing neglect, abandonment, and rising conversions of centuries old rice fields into other uses, ecological and environmental consequences of these transitions are becoming progressively clear. Field observations in Sri Lanka's central highlands suggest that small shifts in rice to non-rice land uses in headwater watersheds can have a domino effect on the productivity and viability of rice fields and other ecological systems downstream by inflicting groundwater recharge reductions, lowering groundwater yields, and causing other hydrological changes. Preliminary analysis shows that although rice itself is a very water intensive crop, the presence of rain-fed upland rice-fields is hugely beneficial to the watersheds they reside. In particular, water benefits of rice appear to be derived from ponded conditions (3-5 inches of standing water) in which rice is grown, and the contribution rice fields makes to enhance water retention and storage capacity of their watersheds during the monsoon season that coincide with the cropping season. In the absence of well managed rice-fields, hilly upland landscapes produce more runoff and retain little rainwater during the wet season. Furthermore, after centuries of intensive use, much of South Asia's rice fields are nutrient poor and minimally productive without fertilizer applications and other interventions. Consequently, when abandoned, soil erosion and other impacts that affect aquatic ecosystems and watershed health also emerge. Despite these multiple concerns however, little research is currently done to better understand the environmental significance of rice cultivations that are a dominant land-use in many South Asian landscapes. The aim of this presentation is to stir interest among the scientific community to engage more broadly in rice, water, and environmental change research in the face of new economic realities in

  6. Physiological mechanisms contributing to the QTL-combination effects on improved performance of IR64 rice NILs under drought

    PubMed Central

    Henry, Amelia; Swamy, B. P. Mallikarjuna; Dixit, Shalabh; Torres, Rolando D.; Batoto, Tristram C.; Manalili, Mervin; Anantha, M. S.; Mandal, N. P.; Kumar, Arvind

    2015-01-01

    Characterizing the physiological mechanisms behind major-effect drought-yield quantitative trait loci (QTLs) can provide an understanding of the function of the QTLs—as well as plant responses to drought in general. In this study, we characterized rice (Oryza sativa L.) genotypes with QTLs derived from drought-tolerant traditional variety AdaySel that were introgressed into drought-susceptible high-yielding variety IR64, one of the most popular megavarieties in South Asian rainfed lowland systems. Of the different combinations of the four QTLs evaluated, genotypes with two QTLs (qDTY 2.2 + qDTY 4.1) showed the greatest degree of improvement under drought compared with IR64 in terms of yield, canopy temperature, and normalized difference vegetation index (NDVI). Furthermore, qDTY 2.2 and qDTY 4.1 showed a potential for complementarity in that they were each most effective under different severities of drought stress. Multiple drought-response mechanisms were observed to be conferred in the genotypes with the two-QTL combination: higher root hydraulic conductivity and in some cases greater root growth at depth. As evidenced by multiple leaf water status and plant growth indicators, these traits affected transpiration but not transpiration efficiency or harvest index. The results from this study highlight the complex interactions among major-effect drought-yield QTLs and the drought-response traits they confer, and the need to evaluate the optimal combinations of QTLs that complement each other when present in a common genetic background. PMID:25680791

  7. The water budget of rainfed maize and bean intercrop

    NASA Astrophysics Data System (ADS)

    Walker, S.; Ogindo, H. O.

    Food production in the South African Development Community (SADC) region is predominantly under rainfed conditions and therefore experiences annual fluctuations due to the rainfall variability. Although the staple food of maize ( Zea mays) is commonly grown in the same field as dry beans ( Phaseolus vulgaris) little work has been done to characterize the soil water budget of this intercropping system. The evapotranspiration can theoretically be divided into transpiration from the leaves and evaporation from the soil surface. However, it is difficult to separate the components in field studies. In this paper the Ritchie model is used to estimate the soil surface evaporation using the fractional radiation interception which depends on the crop leaf area. The intercropping system has higher leaf area than the sole crops of both maize and beans in all seasons. Therefore, the soil surface is shaded and the canopy is more dense resulting in a lower soil surface evaporation. The water budget thus gives a higher value of transpiration for the intercrop during each of the four growing seasons. This appears to be due to the complimentary use of the water resources by the maize and bean plants in the intercropping system. This illustrates the ability of the intercrop to use the available soil water in a semi-arid environment more productively. Thus the experience of the small-holder farmers in the SADC region is based on sound physical principles of water use by the two crops.

  8. Simulating soybean productivity under rainfed conditions for major soil types using APEX model in East Central Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because soybean is commonly grown under rainfed conditions in Mississippi, and farmers recognize benefits of installing irrigation, knowledge of rainfed soybean productivity and yield difference of different soil types is needed for deciding where irrigation may be most effective. This research empl...

  9. Variation in tolerance of rice to long-term stagnant flooding that submerges most of the shoot will aid in breeding tolerant cultivars

    PubMed Central

    Vergara, Georgina V.; Nugraha, Yudhistira; Esguerra, Manuel Q.; Mackill, David J.; Ismail, Abdelbagi M.

    2014-01-01

    Stagnant flooding (SF) is a major problem in rainfed lowlands where floodwater of 25–50 cm stagnates in the field for most of the season. We aimed to establish a system for phenotyping SF tolerance and identifying tolerant germplasm through screening of landraces. A total of 626 rice accessions were evaluated over 3 years under control conditions and two levels of SF. Floodwater was raised to 20 cm at 25 or 30 days after transplanting (DAT). In one trial, the depth was increased subsequently by 5 cm a week and in another (severe stress), it was increased to 40 cm at 37 DAT and to 50 cm at 42 DAT. In both trials, water depth was maintained at 50–60 cm until maturity. In all cases, no plant was completely submerged. Plant height, elongation rate and yield were measured at maturity. Genotypes best suited to SF showed moderate elongation of 1.3–2.3 cm day−1 under SF. In contrast, semi-dwarf and fast-elongating types performed poorly. Subsequent trials using 18 genotypes, including six pairs of near isogenic lines (NILs) with or without SUB1 showed that all SUB1 NILs were sensitive to SF. Five of the other six genotypes contained SUB1 and were SF tolerant, suggesting the possibility of combining tolerances to complete submergence (SUB1) and SF. Stem starch and soluble sugar concentrations were similar under control conditions among the 18 genotypes, but starch was depleted by 37 % under SF, with less depletion in tolerant genotypes. SUB1 NILs contained similar concentrations of starch and sugars under SF. We conclude that survival and yield under SF are dependent on moderate elongation, high tillering, lesser carbohydrate depletion and higher fertility. The tolerant genotypes identified here performed strongly in both wet and dry seasons and will be used to identify tolerance mechanisms and alleles for use in marker-assisted breeding. PMID:25202124

  10. Methane Emissions From Global Paddy Rice Agriculture - a New Estimate Based on DNDC Model Simulations

    NASA Astrophysics Data System (ADS)

    Hagen, S. C.; Li, C.; Salas, W.; Ingraham, P.; Li, J.; Beach, R.; Frolking, S.

    2012-12-01

    Roughly one-quarter of global methane emissions to the atmosphere come from the agricultural sector. Agricultural emissions are dominated by livestock (ruminants) and paddy-rice agriculture. We report on a new estimate of global methane emissions from paddy rice c.2010, based on DNDC model simulations of rice cropping around the world. We first generated a global map of rice cropping at 0.5°-resolution, based on existing global crop maps and various other published data. For each 0.5° grid cell that has rice agriculture, we simulated all rice cropping systems that our mapping indicated to be occurring there - irrigated and/or rainfed; single-rice, double-rice, triple-rice, and/or rice-rotated with other upland crops - under local climate and soil conditions, with assumptions about crop management (e.g., fertilizer type and amount, irrigation, flooding frequency and duration, manure application, tillage, crop residue management). We estimate global paddy rice emissions at 23 Tg CH4/yr from 120 Mha of rice paddies (land area) and 160 Mha of rice cropping (harvested area) for the baseline management scenario. We also report on the spatial distribution of these emissions, and the impacts of various management alternatives (flooding methods, fertilizer types, crop residue incorporation etc.) on yield, soil carbon sequestration and emissions of methane and nitrous oxide. For example, simulations with continuous flooding on all paddies increased simulated global paddy rice emissions to 33 Tg CH4/yr, while simulations where all fertilizer was applied as ammonium sulfate reduced simulated global paddy rice emissions to about 19 Tg CH4/yr. Simulated global paddy rice yield was about 320 Tg C in grain.

  11. Nitrous oxide emissions with enhanced efficiency nitrogen fertilizers in rainfed system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of enhanced efficiency nitrogen (N) fertilizers can increase crop N utilization and lead to lower emissions of the greenhouse gas nitrous oxide (N2O). To determine potential benefit of four enhanced efficiency fertilizers with rain-fed corn production in central Pennsylvania, USA, N2O emissi...

  12. The archaeobotany of Asian rice expansion and the development of wet-field cultivation

    NASA Astrophysics Data System (ADS)

    Fuller, D.

    2008-12-01

    Archaeobotanical evidence provides direct data on past human diet and agriculture, including a geographical and chronological framework for studying the expansion of rice agriculture. The growth of systematic archaeobotanical sampling in recent years has allowed for the past presence of rice to be seen in relation to cultivation of other crops and associated weeds. The weed flora provides a basis for inferring the nature of cultivation systems, whether rain-fed dry rice or wetland "paddy" rice, a key distinction for considerations of past methane production. Nevertheless, current data is very unevenly distributed. This poster will summarize available evidence for the origins and spread of rice in South Asia (India and Pakistan), and mainland and Island Southeast Asia deriving from an earlier Chinese domestication. Where possible, such as in India or China, the potential of the weed flora remains for distinguishing wetland rice crops will be summarized. In broad terms, although the origins of rice use and cultivation begins by or during the Middle Holocene (6000- 3000 BC), rice cultivation spread outside the regions of the wild progenitor after this time. Two phases of rice expansion can be distinguished. Phase 1, between 3000 and 1500 BC, introduced rice to Southeast Asia, probably under wetland cultivation, and the spread of dry rice over northern India and Pakistan. Phase 2, taking place between 1000 and 0 BC, sees the spread of rice throughout the Southern Indian Peninsula, with weed evidence suggesting irrigated wetland rice. Similarly, this period sees the spread of intensive paddy agriculture through Korea and Japan, but in Southeast Asia is probably related to a spread of rice in upland, dry field systems.

  13. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    PubMed

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress.

  14. Groundwater flood hazards in lowland karst terrains

    NASA Astrophysics Data System (ADS)

    Naughton, Owen; McCormack, Ted

    2016-04-01

    The spatial and temporal complexity of flooding in karst terrains pose unique flood risk management challenges. Lowland karst landscapes can be particularly susceptible to groundwater flooding due to a combination of limited drainage capacity, shallow depth to groundwater and a high level of groundwater-surface water interactions. Historically the worst groundwater flooding to have occurred in the Rep. of Ireland has been centred on the Gort Lowlands, a karst catchment on the western coast of Ireland. Numerous notable flood events have been recorded throughout the 20th century, but flooding during the winters of 2009 and 2015 were the most severe on record, inundating an area in excess of 20km2 and causing widespread and prolonged disruption and damage to property and infrastructure. Effective flood risk management requires an understanding of the recharge, storage and transport mechanisms during flood conditions, but is often hampered by a lack of adequate data. Using information gathered from the 2009 and 2015 events, the main hydrological and geomorphological factors which influence flooding in this complex lowland karst groundwater system under are elucidated. Observed flood mechanisms included backwater flooding of sinks, overland flow caused by the overtopping of sink depressions, high water levels in turlough basins, and surface ponding in local epikarst watersheds. While targeted small-scale flood measures can locally reduce the flood risk associated with some mechanisms, they also have the potential to exacerbate flooding down-catchment and must be assessed in the context of overall catchment hydrology. This study addresses the need to improve our understanding of groundwater flooding in karst terrains, in order to ensure efficient flood prevention and mitigation in future and thus help achieve the aims of the EU Floods Directive.

  15. Linkage Mapping of Stem Saccharification Digestibility in Rice

    PubMed Central

    Hua, Cangmei; Sun, Lili; Ali, Imran; Huang, Linli; Yu, Chunyan; Simister, Rachael; Steele-King, Clare; Gan, Yinbo; McQueen-Mason, Simon J.

    2016-01-01

    Rice is the staple food of almost half of the world population, and in excess 90% of it is grown and consumed in Asia, but the disposal of rice straw poses a problem for farmers, who often burn it in the fields, causing health and environmental problems. However, with increased focus on the development of sustainable biofuel production, rice straw has been recognized as a potential feedstock for non-food derived biofuel production. Currently, the commercial realization of rice as a biofuel feedstock is constrained by the high cost of industrial saccharification processes needed to release sugar for fermentation. This study is focused on the alteration of lignin content, and cell wall chemotypes and structures, and their effects on the saccharification potential of rice lignocellulosic biomass. A recombinant inbred lines (RILs) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 271 molecular markers for quantitative trait SNP (QTS) analyses was used. After association analysis of 271 markers for saccharification potential, 1 locus and 4 pairs of epistatic loci were found to contribute to the enzymatic digestibility phenotype, and an inverse relationship between reducing sugar and lignin content in these recombinant inbred lines was identified. As a result of QTS analyses, several cell-wall associated candidate genes are proposed that may be useful for marker-assisted breeding and may aid breeders to produce potential high saccharification rice varieties. PMID:27415441

  16. Development of a coupled model of a distributed hydrological model and a rice growth model for optimizing irrigation schedule

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Kumiko; Homma, Koki; Koike, Toshio; Ohta, Tetsu

    2013-04-01

    A coupled model of a distributed hydrological model and a rice growth model was developed in this study. The distributed hydrological model used in this study is the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM) developed by Wang et al. (2009). This model includes a modified SiB2 (Simple Biosphere Model, Sellers et al., 1996) and the Geomorphology-Based Hydrological Model (GBHM) and thus it can physically calculate both water and energy fluxes. The rice growth model used in this study is the Simulation Model for Rice-Weather relations (SIMRIW) - rainfed developed by Homma et al. (2009). This is an updated version of the original SIMRIW (Horie et al., 1987) and can calculate rice growth by considering the yield reduction due to water stress. The purpose of the coupling is the integration of hydrology and crop science to develop a tool to support decision making 1) for determining the necessary agricultural water resources and 2) for allocating limited water resources to various sectors. The efficient water use and optimal water allocation in the agricultural sector are necessary to balance supply and demand of limited water resources. In addition, variations in available soil moisture are the main reasons of variations in rice yield. In our model, soil moisture and the Leaf Area Index (LAI) are calculated inside SIMRIW-rainfed so that these variables can be simulated dynamically and more precisely based on the rice than the more general calculations is the original WEB-DHM. At the same time by coupling SIMRIW-rainfed with WEB-DHM, lateral flow of soil water, increases in soil moisture and reduction of river discharge due to the irrigation, and its effects on the rice growth can be calculated. Agricultural information such as planting date, rice cultivar, fertilization amount are given in a fully distributed manner. The coupled model was validated using LAI and soil moisture in a small basin in western Cambodia (Sangker River Basin). This

  17. Interior River Lowland Ecoregion Summary Report

    USGS Publications Warehouse

    Karstensen, Krista A.

    2008-01-01

    ECOREGION DESCRIPTION The Interior River Lowlands ecoregion encompasses 93,200 square kilometers (km2) across southern and western Illinois, southwest Indiana, east-central Missouri, and fractions of northwest Kentucky and southeast Iowa. The ecoregion includes the confluence areas of the Mississippi, Missouri, Ohio, Illinois, and Wabash Rivers, and their tributaries. This ecoregion was formed in non-resident, non-calcareous sedimentary rock (U.S. Environmental Protection Agency, 2006). The unstratified soil deposits present north of the White River in Indiana are evidence that pre-Wisconsinan ice once covered much of the Interior River Lowlands. The geomorphic characteristics of this area also include terraced valleys filled with alluvium as well as outwash, acolian, and lacustrine deposits. Historically, agricultural land use has been a vital economic resource for this region. The drained alluvial soils are farmed for feed grains and soybeans, whereas the valley uplands also are used for forage crops, pasture, woodlots, mixed farming, and livestock (USEPA, 2006). This ecoregion provides a key component of national energy resources as it contains the second largest coal reserve in the United States, and the largest reserve of bituminous coal (Varanka and Shaver, 2007). One of the primary reasons for change in the ecoregion is urbanization.

  18. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi

  19. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa - A review

    NASA Astrophysics Data System (ADS)

    Biazin, Birhanu; Sterk, Geert; Temesgen, Melesse; Abdulkedir, Abdu; Stroosnijder, Leo

    Agricultural water scarcity in the predominantly rainfed agricultural system of sub-Saharan Africa (SSA) is more related to the variability of rainfall and excessive non-productive losses, than the total annual precipitation in the growing season. Less than 15% of the terrestrial precipitation takes the form of productive ‘green’ transpiration. Hence, rainwater harvesting and management (RWHM) technologies hold a significant potential for improving rainwater-use efficiency and sustaining rainfed agriculture in the region. This paper outlines the various RWHM techniques being practiced in SSA, and reviews recent research results on the performance of selected practices. So far, micro-catchment and in situ rainwater harvesting techniques are more common than rainwater irrigation techniques from macro-catchment systems. Depending on rainfall patterns and local soil characteristics, appropriate application of in situ and micro-catchment techniques could improve the soil water content of the rooting zone by up to 30%. Up to sixfold crop yields have been obtained through combinations of rainwater harvesting and fertiliser use, as compared to traditional practices. Supplemental irrigation of rainfed agriculture through rainwater harvesting not only reduces the risk of total crop failure due to dry spells, but also substantially improves water and crop productivity. Depending on the type of crop and the seasonal rainfall pattern, the application of RWHM techniques makes net profits more possible, compared to the meagre profit or net loss of existing systems. Implementation of rainwater harvesting may allow cereal-based smallholder farmers to shift to diversified crops, hence improving household food security, dietary status, and economic return. The much needed green revolution and adaptations to climate change in SSA should blend rainwater harvesting ideals with agronomic principles. More efforts are needed to improve the indigenous practices, and to disseminate best

  20. Root characters of Lucerne (Medicago sativa L.) under rain-fed and irrigated conditions

    NASA Astrophysics Data System (ADS)

    Raza, Amir; Moghaddam, Ali; Loiskandl, Willibald; Friedel, Jürgen K.; Himmelbauer, Margaritta; Bodner, Gernot

    2010-05-01

    In organic farming, only limited use of selected fertilizers is allowed and plants have to meet their nutritional requirements through mobilization of nutrients provided by organic amendments, crop residue input within the rotation, and released from the soil reservoir. The crop varieties used in such systems shall be efficient in nutrient and water uptake. Root length, surface area and depth distribution are important root characters that demonstrate a potential for nutrient and water uptake. Detailed information on these root characters is lacking for Lucerne, one of the most important legume crop widely used in organic farming. A study was designed to compare three lucerne cultivars from different geographical origin viz. Niva, Mohajaren and Sitel for their root characters in two different sets of experiments planted under rain-fed and irrigated conditions in 2007. The irrigated experiment should provide root traits under potential growth conditions while the rain-fed experiment should highlight root characteristics under water limited conditions. The experiments were conducted on fields of the research station Groß Enzersdorf of the University or Natural Resources and Applied Life Sciences(BOKU), Vienna, Austria. Both experiments were laid out in α-lattice design with two replicates. At the end of vegetation period, root samples were taken for every 30 cm soil profile depth till the depth of 90 cm. From each plot, one sample was taken on the row and two samples between the rows using a cylindrical auger for sampling depth of 0 - 30, 30 - 60 and 60 - 90 cm. Root samples were washed out and analyzed with WinRhizo software to determine root length, surface area, root volume and average diameter. Results revealed that cultivars under rain-fed conditions had higher root length density and surface area than under irrigated conditions. The differences in root parameters estimated for each of the Lucerne cultivars are discussed.

  1. Understanding the nature of methane emission from rice ecosystems as basis of mitigation strategies

    SciTech Connect

    Buendia, L.V.; Neue, H.U.; Wassmann, R.

    1996-12-31

    Methane is considered as an important Greenhouse gas and rice fields are one of the major atmospheric methane sources. The paper aims to develop sampling strategies and formulate mitigation options based on diel (day and night) and seasonal pattern of methane emission. The study was conducted in 4 countries to measure methane flux using an automatic closed chamber system. A 24-hour bihourly methane emissions were continuously obtained during the whole growing season. Daily and seasonal pattern of methane fluxes from different rice ecosystems were evaluated. Diel pattern of methane emission from irrigated rice fields, in all sites, displayed similar pattern from planting to flowering. Fluxes at 0600, 1200, and 1800 h were important components of the total diel flux. A proposed sampling frequency to accurately estimate methane emission within the growing season was designed based on the magnitude of daily flux variation. Total methane emission from different ecosystems follow the order: deepwater rice > irrigated rice > rainfed rice. Application of pig manure increased total emission by 10 times of that without manure. Green manure application increased emission by 49% of that applied only with inorganic fertilizer. Removal of floodwater at 10 DAP and 35 DAP, within a period of 4 days, inhibited production and emission of methane. The level of variation in daily methane emission and seasonal emission pattern provides useful information for accurate determination of methane fluxes. Characterization of seasonal emission pattern as to ecologies, fertilizer amendments, and water management gives an idea of where to focus mitigation strategies for sustainable rice production.

  2. Aerobic rice genotypes displayed greater adaptation to water-limited cultivation and tolerance to polyethyleneglycol-6000 induced stress.

    PubMed

    Sandhu, Nitika; Jain, Sunita; Battan, K R; Jain, R K

    2012-01-01

    Water scarcity and drought have seriously threatened traditional rice cultivation practices in several parts of the world including India. In the present investigation, experiments were conducted to see if the water-efficient aerobic rice genotypes developed at UAS, Bangalore (MAS25, MAS26 and MAS109) and IRRI, Philippines (MASARB25 and MASARB868), are endowed with drought tolerance or not. A set of these aerobic and five lowland high-yielding (HKR47 and PAU201, Taraori Basmati, Pusa1121 and Pusa1460) indica rice genotypes were evaluated for: (i) yield and yield components under submerged and aerobic conditions in field, (ii) root morphology and biomass under aerobic conditions in pots in the nethouse, (iii) PEG-6000 (0, -1, -2 and -3 bar) induced drought stress at vegetative stage using a hydroponic culture system and (iv) polymorphism for three SSR markers associated with drought resistance traits. Under submerged conditions, the yield of aerobic rice genotypes declined by 13.4-20.1 % whereas under aerobic conditions the yield of lowland indica/Basmati rice varieties declined by 23-27 %. Under water-limited conditions in pots, aerobic rice genotypes had 54-73.8 % greater root length and 18-60 % higher fresh root biomass compared to lowland indica rice varieties. Notably, root length of MASARB25 was 35 % shorter than MAS25 whereas fresh and dry root biomass of MASARB25 was 10 % and 64 % greater than MAS25. The lowland indica were more sensitive to PEG-stress with a score of 5.9-7.6 for Basmati and 6.1-6.7 for non-aromatic indica rice varieties, than the aerobic rice genotypes (score 2.7-3.3). A set of three microsatellite DNA markers (RM212, RM302 and RM3825) located on chromosome 1 which has been shown to be associated with drought resistance was investigated in the present study. Two of these markers (RM212 and RM302) amplified a specific allele in all the aerobic rice genotypes which were absent in lowland indica rice genotypes.

  3. Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice.

    PubMed

    Jeong, Kwanho; Mattes, Nicolas; Catausan, Sheryl; Chin, Joong Hyoun; Paszkowski, Uta; Heuer, Sigrid

    2015-11-01

    Phosphorus (P) is a major plant nutrient and developing crops with higher P-use efficiency is an important breeding goal. In this context we have conducted a comparative study of irrigated and rainfed rice varieties to assess genotypic differences in colonization with arbuscular mycorrhizal (AM) fungi and expression of different P transporter genes. Plants were grown in three different soil samples from a rice farm in the Philippines. The data show that AM symbiosis in all varieties was established after 4 weeks of growth under aerobic conditions and that, in soil derived from a rice paddy, natural AM populations recovered within 6 weeks. The analysis of AM marker genes (AM1, AM3, AM14) and P transporter genes for the direct Pi uptake (PT2, PT6) and AM-mediated pathway (PT11, PT13) were largely in agreement with the observed root AM colonization providing a useful tool for diversity studies. Interestingly, delayed AM colonization was observed in the aus-type rice varieties which might be due to their different root structure and might confer an advantage for weed competition in the field. The data further showed that P-starvation induced root growth and expression of the high-affinity P transporter PT6 was highest in the irrigated variety IR66 which also maintained grain yield under P-deficient field conditions.

  4. Sustainable land management practices as providers of several ecosystem services under rainfed Mediterranean agroecosystems

    NASA Astrophysics Data System (ADS)

    Almagro, María; de Vente, Joris; Boix-Fayós, Carolina; García-Franco, Noelia; Melgares de Aguilar, Javier; González, David; Solé-Benet, Albert; Martínez-Mena, María

    2015-04-01

    Little is known about the multiple impacts of sustainable land management practices on soil and water conservation, carbon sequestration, mitigation of global warming, and crop yield productivity in semiarid Mediterranean agroecosystems. We hypothesized that a shift from intensive tillage to more conservative tillage management practices (reduced tillage optionally combined with green manure) leads to an improvement in soil structure and quality and will reduce soil erosion and enhance carbon sequestration in semiarid Mediterranean rainfed agroecosystems. To test the hypothesis, we assessed the effects of different tillage treatments (conventional (CT), reduced (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil structure and soil water content, runoff and erosion control, soil CO2 emissions, crop yield and carbon sequestration in two semiarid agroecosystems with organic rainfed almond in the Murcia Region southeast Spain). It was found that reduction and suppression of tillage under almonds led to an increase in soil water content in both agroecosystems. Crop yields ranged from 775 to 1766 kg ha-1 between tillage 18 treatments, but we did not find a clear relation between soil water content and crop yield. RT and RTG treatments showed lower soil erosion rates and higher crop yields of almonds than under CT treatment. Overall, higher soil organic carbon contents and aggregate stability were observed under RTG treatment than under RT or CT treatment. It is concluded that conversion from CT to RTG is suitable to increase carbon inputs without enhancing soil CO2 emissions in semiarid Mediterranean agroecosystems.

  5. Yield and Production Gaps in Rainfed Wheat, Barley, and Canola in Alberta

    PubMed Central

    Chapagain, Tejendra; Good, Allen

    2015-01-01

    Improving crop yields are essential to meet the increasing pressure of global food demands. The loss of high quality land, the slowing in annual yield increases of major cereals, increasing fertilizer use, and the effect of this on the environment all indicate that we need to develop new strategies to increase grain yields with less impact on the environment. One strategy that could help address this concern is by narrowing the yield gaps of major crops using improved genetics and management. The objective of this study was to determine wheat (Triticum spp. L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.) yields and production gaps in Alberta. We used 10 years of data (2005–2014) to understand yield variability and input efficiency at a farmers’ specified level of management, and the yield potential under optimal management to suggest appropriate pathways for closing yield gaps. Significant management gaps were observed between attainable and actual yields of rainfed wheat (24%), barley (25%), and canola (30%). In addition, genetic gaps (i.e., gaps due to genetic selection) in wheat, barley, and canola were 18, 12, and 5%, respectively. Genetic selection with optimal crop management could increase yields of wheat, barley, and canola significantly, with estimated yield gains of 3.42, 1.92, and 1.65 million tons, respectively, each year under rainfed conditions in Alberta. This paper identifies yield gaps and offers suggestions to improve efficiency in crop production. PMID:26635824

  6. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and profitability

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    The optimality of irrigation strategies may be sought with respect to a number of criteria, including water requirements, crop yield, and profitability. To explore the suitability of different demand-based irrigation strategies, we link the probabilistic description of irrigation requirements under stochastic hydro-climatic conditions, provided in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv Water Resour 2011;34(2):263-71], to crop-yield and economic analyses. Water requirements, application efficiency, and investment costs of different irrigation methods, such as surface, sprinkler and drip irrigation systems, are described via a unified conceptual and theoretical approach, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. This allows us to analyze irrigation strategies with respect to sustainability, productivity, and economic return, using the same framework, and quantify them as a function of climate, crop, and soil parameters. We apply our results to corn ( Zea mays), a food staple and biofuel source, which is currently mainly irrigated through surface systems. As our analysis shows, micro-irrigation maximizes water productivity, but more traditional solutions may be more profitable at least in some contexts.

  7. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands

    NASA Astrophysics Data System (ADS)

    Douglas, Peter M. J.; Pagani, Mark; Canuto, Marcello A.; Brenner, Mark; Hodell, David A.; Eglinton, Timothy I.; Curtis, Jason H.

    2015-05-01

    Paleoclimate records indicate a series of severe droughts was associated with societal collapse of the Classic Maya during the Terminal Classic period (∼800-950 C.E.). Evidence for drought largely derives from the drier, less populated northern Maya Lowlands but does not explain more pronounced and earlier societal disruption in the relatively humid southern Maya Lowlands. Here we apply hydrogen and carbon isotope compositions of plant wax lipids in two lake sediment cores to assess changes in water availability and land use in both the northern and southern Maya lowlands. We show that relatively more intense drying occurred in the southern lowlands than in the northern lowlands during the Terminal Classic period, consistent with earlier and more persistent societal decline in the south. Our results also indicate a period of substantial drying in the southern Maya Lowlands from ∼200 C.E. to 500 C.E., during the Terminal Preclassic and Early Classic periods. Plant wax carbon isotope records indicate a decline in C4 plants in both lake catchments during the Early Classic period, interpreted to reflect a shift from extensive agriculture to intensive, water-conservative maize cultivation that was motivated by a drying climate. Our results imply that agricultural adaptations developed in response to earlier droughts were initially successful, but failed under the more severe droughts of the Terminal Classic period.

  8. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands

    PubMed Central

    Douglas, Peter M. J.; Pagani, Mark; Canuto, Marcello A.; Brenner, Mark; Hodell, David A.; Eglinton, Timothy I.; Curtis, Jason H.

    2015-01-01

    Paleoclimate records indicate a series of severe droughts was associated with societal collapse of the Classic Maya during the Terminal Classic period (∼800–950 C.E.). Evidence for drought largely derives from the drier, less populated northern Maya Lowlands but does not explain more pronounced and earlier societal disruption in the relatively humid southern Maya Lowlands. Here we apply hydrogen and carbon isotope compositions of plant wax lipids in two lake sediment cores to assess changes in water availability and land use in both the northern and southern Maya lowlands. We show that relatively more intense drying occurred in the southern lowlands than in the northern lowlands during the Terminal Classic period, consistent with earlier and more persistent societal decline in the south. Our results also indicate a period of substantial drying in the southern Maya Lowlands from ∼200 C.E. to 500 C.E., during the Terminal Preclassic and Early Classic periods. Plant wax carbon isotope records indicate a decline in C4 plants in both lake catchments during the Early Classic period, interpreted to reflect a shift from extensive agriculture to intensive, water-conservative maize cultivation that was motivated by a drying climate. Our results imply that agricultural adaptations developed in response to earlier droughts were initially successful, but failed under the more severe droughts of the Terminal Classic period. PMID:25902508

  9. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands.

    PubMed

    Douglas, Peter M J; Pagani, Mark; Canuto, Marcello A; Brenner, Mark; Hodell, David A; Eglinton, Timothy I; Curtis, Jason H

    2015-05-05

    Paleoclimate records indicate a series of severe droughts was associated with societal collapse of the Classic Maya during the Terminal Classic period (∼800-950 C.E.). Evidence for drought largely derives from the drier, less populated northern Maya Lowlands but does not explain more pronounced and earlier societal disruption in the relatively humid southern Maya Lowlands. Here we apply hydrogen and carbon isotope compositions of plant wax lipids in two lake sediment cores to assess changes in water availability and land use in both the northern and southern Maya lowlands. We show that relatively more intense drying occurred in the southern lowlands than in the northern lowlands during the Terminal Classic period, consistent with earlier and more persistent societal decline in the south. Our results also indicate a period of substantial drying in the southern Maya Lowlands from ∼200 C.E. to 500 C.E., during the Terminal Preclassic and Early Classic periods. Plant wax carbon isotope records indicate a decline in C4 plants in both lake catchments during the Early Classic period, interpreted to reflect a shift from extensive agriculture to intensive, water-conservative maize cultivation that was motivated by a drying climate. Our results imply that agricultural adaptations developed in response to earlier droughts were initially successful, but failed under the more severe droughts of the Terminal Classic period.

  10. Elastic Thickness Estimates for the Northern Lowlands of Mars

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Smrekar, S.

    2005-05-01

    The northern hemisphere lowlands of Mars cover approximately one-third of the surface of the planet. While crustal remnant magnetization is very strong in much of the Martian highlands, in contrast only a few low amplitude anomalies occur in the lowlands [Acuna et al., 1999]. The scarcity of magnetic anomalies in the lowlands remains unexplained. Crater counts for the northern lowlands basement based on analyses of high-resolution MOLA maps show that they are comparable in age to the southern highlands [Frey, 2004]. Since the basement age is so similar, it seems unlikely that the dynamo could have been active during formation of the highlands but not the lowlands. Topography and gravity measured by the Mars Global Surveyor have enabled the determination of elastic thickness (Te) estimates in the highlands [e.g. McGovern et al., 2002]. However, there have been no successful estimates in the Northern lowlands with the exception of Utopia basin [Zuber et al., 2002]. The failure is assumed due to insufficient power in the topography. Although the northern plains have clearly been eroded, we find that for selected Northern lowland regions, the power in the topography is smaller but comparable to areas of the southern highlands, previously used to obtain Te estimates. Previously, inversions based on isostatic response methods using eroded topography yielded incorrect results [Forsyth, 1985]. McKenzie and Fairhead [1997] find that Forsyths method can only be used to estimate Te where the power of the gravity from the uncompensated topography is comparable to that of the observed gravity at short wavelengths. If this condition is not satisfied, because the short-wavelength gravity is dominated by sub-surface loads and not by the topography, the estimated value of Te provides an upper bound. We use a multi-taper approach that has been successful at minimizing this bias for eroded cratons on Earth [Swain & Kirby, 2003]. In this study we perform detailed modeling of the

  11. Wind erosion and PM10 emission affected by tillage in the world’s driest rainfed wheat region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Horse Heaven Hills of south-central Washington is the driest rainfed wheat growing region in the world. Low precipitation, high winds, poorly aggregated soils, sparse residue cover, and a tillage-based winter wheat (Triticum aestivum L.) – summer fallow (WW-SF) cropping system often combine to c...

  12. Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture.

    PubMed Central

    Rockström, Johan

    2003-01-01

    This paper quantifies the eco-hydrological challenge up until 2050 of producing food in balance with goods and services generated by water-dependent ecosystems in nature. Particular focus is given to the savannah zone, covering 40% of the land area in the world, where water scarcity constitutes a serious constraint to sustainable development. The analysis indicates an urgent need for a new green revolution, which focuses on upgrading rain-fed agriculture. Water requirements to produce adequate diets for humans are shown to be relatively generic irrespective of hydro-climate, amounting to a global average of 1,300 m(3) cap(-1) yr(-1). Present food production requires an estimated 6,800 km(3) yr(-1) of consumptive green water (5,000 km(3) yr(-1) in rain-fed agriculture and 1,800 km(3) yr(-1) from irrigated crops). Without considering water productivity gains, an additional 5,800 km(3) yr(-1) of water is needed to feed a growing population in 2,050 and eradicate malnutrition. It is shown that the bulk of this water will be used in rain-fed agriculture. A dynamic analysis of water productivity and management options indicates that large 'crop per drop' improvements can be achieved at the farm level. Vapour shift in favour of productive green water flow as crop transpiration could result in relative water savings of 500 km(3) yr(-1) in semi-arid rain-fed agriculture. PMID:14728794

  13. Growing season variability in carbon dioxide exchange of irrigated and rainfed soybean in the southern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement of carbon dynamics of soybean (Glycine max L.) ecosystems outside Corn Belt of the United States (U.S.) is lacking. This study reports carbon dioxide (CO2) fluxes from a rainfed soybean field in El Reno, Oklahoma and an irrigated soybean field in Stoneville, Mississippi during the 2016 g...

  14. Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US Pacific Northwest (PNW) is a major winter wheat mega-environment characterized by a high latitude and a Mediterranean-like climate. Wheat production is predominantly rain-fed and often subject to low soil moisture. As result, discovery and introgression of drought-adaptive traits in modern cu...

  15. N2O emission characteristics and its affecting factors in rain-fed potato fields in Wuchuan County, China

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Wang, Cheng; Pan, Zhihua; Xu, Hui; Gao, Lin; Zhao, Peiyi; Dong, Zhiqiang; Zhang, Jingting; Cui, Guohui; Wang, Sen; Han, Guolin; Zhao, hui

    2016-12-01

    Representing an important greenhouse gas, nitrous oxide (N2O) emission from cultivated land is a hot topic in current climate change research. This study examined the influences of nitrogen fertilisation, temperature and soil moisture on the ammonia monooxygenase subunit A (amoA) gene copy numbers and N2O emission characteristics. The experimental observation of N2O fluxes was based on the static chamber-gas chromatographic method. The ammonia-oxidising bacteria (AOB) and ammonia-oxidising archaea (AOA) gene copy numbers in different periods were measured by real-time polymerase chain reaction (PCR). The results indicated that rain-fed potato field was a N2O source, and the average annual N2O emission was approximately 0.46 ± 0.06 kgN2O-N/ha/year. N2O emissions increased significantly with increase in fertilisation, temperatures below 19.6 °C and soil volumetric water content under 15%. Crop rotation appreciably decreases N2O emissions by 34.4 to 52.4% compared to continuous cropping in rain-fed potato fields. The significant correlation between N2O fluxes and AOB copy numbers implied that N2O emissions were primarily controlled by AOB in rain-fed potato fields. The research has important theoretical and practical value for understanding N2O emissions from rain-fed dry farmland fields.

  16. Genetic variation of rice (Oryza sativa L.) germplasm in Myanmar based on genomic compositions of DNA markers

    PubMed Central

    Wunna; Watanabe, Kazuo N.; Ohsawa, Ryo; Obara, Mitsuhiro; Yanagihara, Seiji; Aung, Pa Pa; Fukuta, Yoshimichi

    2016-01-01

    The genetic diversity of 175 rice accessions from Myanmar, including landraces and improved types from upland and lowland ecosystems in five different areas—Western (hilly), Northern (mountainous), North and South-eastern (plateau), and Southern (plain)—was evaluated on the basis of polymorphism data for 65 DNA markers and phenol reactions. On the basis of the DNA polymorphism data, high genetic diversity was confirmed to conserve in the accessions from each ecosystem and area. And the accessions were classified into two cluster groups I and II, which corresponded to Indica Group and Japonica Group, respectively. Cluster group I accessions were distributed mainly in upland ecosystems; group II were distributed in lowland in the Southern area, and the distributions of dominant groups differed among areas. Rice germplasm in Myanmar has maintained high genetic diversity among ecosystems and areas. This information will be used for advanced studies in germplasm and rice breeding in Myanmar. PMID:28163592

  17. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing

    USGS Publications Warehouse

    Biradar, C.M.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; Gumma, M.K.; Gangalakunta, O.R.P.; Cai, X.L.; Xiao, X.; Schull, M.A.; Alankara, R.D.; Gunasinghe, S.; Mohideen, S.

    2009-01-01

    The overarching goal of this study was to produce a global map of rainfed cropland areas (GMRCA) and calculate country-by-country rainfed area statistics using remote sensing data. A suite of spatial datasets, methods and protocols for mapping GMRCA were described. These consist of: (a) data fusion and composition of multi-resolution time-series mega-file data-cube (MFDC), (b) image segmentation based on precipitation, temperature, and elevation zones, (c) spectral correlation similarity (SCS), (d) protocols for class identification and labeling through uses of SCS R2-values, bi-spectral plots, space-time spiral curves (ST-SCs), rich source of field-plot data, and zoom-in-views of Google Earth (GE), and (e) techniques for resolving mixed classes by decision tree algorithms, and spatial modeling. The outcome was a 9-class GMRCA from which country-by-country rainfed area statistics were computed for the end of the last millennium. The global rainfed cropland area estimate from the GMRCA 9-class map was 1.13 billion hectares (Bha). The total global cropland areas (rainfed plus irrigated) was 1.53 Bha which was close to national statistics compiled by FAOSTAT (1.51 Bha). The accuracies and errors of GMRCA were assessed using field-plot and Google Earth data points. The accuracy varied between 92 and 98% with kappa value of about 0.76, errors of omission of 2-8%, and the errors of commission of 19-36%. ?? 2008 Elsevier B.V.

  18. AmeriFlux US-Ne3 Mead - rainfed maize-soybean rotation site

    DOE Data Explorer

    Suyker, Andy [University of Nebraska - Lincoln

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ne3 Mead - rainfed maize-soybean rotation site. Site Description - The study site is one of three fields (all located within 1.6 km of each other) at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska. While the other two sites are equipped with irrigation systems, this site relies on rainfall. A tillage operation (disking) was done just prior to the 2001 planting to homogenize the top 0.1 m of soil, incorporate P and K fertilizers, as well as previously accumulated surface residues. Since initiation of the study in 2001, this site has been under no-till management.

  19. Restoration of lowland streams: an introduction

    USGS Publications Warehouse

    Osborne, L.L.; Bayley, P.B.; Higler, L.W.G.; Statzner, B.; Triska, F.; Iverson, T. Moth

    1993-01-01

    1 This paper introduces the Lowland Streams Restoration Workshop that was held in Lund, Sweden in August 1991.2 Attenders at the Workshop participated in working groups which discussed and reported on the state of knowledge of stream restoration and identified critical areas of information need. Currently, most restoration efforts are emission-orientated (i.e. waste-water management), while the imitation of the geomorphology or of the riparian vegetation of a quasi-natural or natural reference channel receives less attention.3 Successful stream restoration requires a multidisciplinary approach within a holistic system framework. Monitoring the outcome of past, existing and future steam-restoration projects is required for information on the feasibility of alternative techniques and approaches.4 It was recommended that systems in pristine condition serve as a point of reference and not as a goal for most stream restoration projects. Restoration goals must be carefully defined so that everyone at every level understands the aim of the project. At the very least, all restoration programmes should consider geomorphic, hydrological, biological, aesthetic, and water quality aspects of the system.5 Restoration programmes should aim to create a system with a stable channel, or a channel in dynamic equilibrium that supports a self-sustaining and functionally diverse community assemblage; it should not concentrate on one species or group, except at the local level. Preserving the terrestrial -aquatic interface by setting aside riparian land corridors is critical to all stages of restoration. Additional information on the temporal and regional variability in important system processes and functions is needed.

  20. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  1. Spatiotemporal rain-fed wheat modeling using a land surface model and a crop stress index

    NASA Astrophysics Data System (ADS)

    Ghazanfari, Sadegh; Alizadeh, Amin; Faridhosseini, Alireza; Pande, Saket

    2013-04-01

    Rain-fed wheat yield estimation is an important issue in crop modeling. Regression and empirical equations are generally used to estimate wheat yields based on effective factors. These equations also need to be calibrated for each study area. Further, employing inaccurate inputs increases prediction uncertainty. Precipitation is the most important input for the rain-fed crops modeling and often interpolated data for areas without rain gauges is used. In this study, the outputs of two precipitation estimation models based on remotely sensed data, PERSIANN and TRMM, are used as alternatives to interpolated data. Results show that the precipitation estimation models outputs are more correlated with observed data than the interpolated precipitation data. Correlation coefficient at a meteorological station in Iran based on Kendall's test is 0.8 for PERSIANN while it is 0.4 and 0.5 for two interpolation methods, Inverse Distance Weighting and Kriging respectively. A simple evaporation/transpiration scheme (SETS), which is a distributed land surface model, has also been developed to estimate actual evaporation and transpiration. Finally a new crop stress index based on actual by potential transpiration (APT) is introduced to model crop yield by using SETS outputs at field scale. Results show that modeling crop yields based on APT, when SETS is forced by local field datasets at 10 sites, can estimate yields reasonably well when compared with other methods. The correlation coefficient with the observed yield data is at least 0.5 and the LSD (Least Significant Difference) test show no significant difference between measured and modeled yields at all sites. Our estimation method performs better than other methods in estimating yields based on the yields predicted by the other methods at the same sites.

  2. Carbon budget of a rainfed spring maize cropland with straw returning on the Loess Plateau, China.

    PubMed

    Gao, Xiang; Gu, Fengxue; Hao, Weiping; Mei, Xurong; Li, Haoru; Gong, Daozhi; Mao, Lili; Zhang, Zuguang

    2017-05-15

    Assessing the carbon budget of rainfed agricultural ecosystems is a vital component in the process of estimating the global carbon balance. We used eddy covariance techniques combined with soil respiration measurements to estimate the carbon budget of a rainfed spring maize field where straw returning was practiced, on the Loess Plateau, China, during 2012-2014. Carbon fluxes and their components (except heterotrophic respiration, Rh) exhibited single-peak seasonal patterns, and linear relationships were found between daily gross primary productivity (GPP) and net ecosystem exchange (NEE), and between daily GPP and ecosystem respiration (Re), with goodness of fit value of 0.96 and 0.85, respectively. The green leaf area index was the most important factor controlling seasonal variations in daily NEE, Re, and GPP during the growing season, followed by photosynthetically active radiation and air temperature (Ta). Daily Re was mainly controlled by air temperature during the non-growing season, when Re accounted for only ~17% of the annual Re due to winter temperatures. Growing season plant respiration (Rp) was the most important source of carbon emissions from the maize field, with aboveground plant respiration being the major part of Rp. Rh accounted for ~60% of total soil respiration. Only ~60% of the annual GPP was lost as Re, resulting in an average annual net CO2 uptake of 509gCm(-2). Taking into account carbon exported (483gCm(-2)) and carbon imported (10gCm(-2)), the average annual net biome productivity was 37gCm(-2), indicating that the spring maize field with straw returning on the Loess Plateau was a weak carbon sink.

  3. Asiatic cotton can generate similar economic benefits to Bt cotton under rainfed conditions.

    PubMed

    Romeu-Dalmau, Carla; Bonsall, Michael B; Willis, Katherine J; Dolan, Liam

    2015-06-01

    American cotton (Gossypium hirsutum L.), transformed with Bacillus thuringiensis Cry genes (Bt G. hirsutum) that confer resistance to lepidopteran pests, is extensively cultivated worldwide. In India, transgenic Bt G. hirsutum was commercially released in 2002 and by 2014 95% of farmers had adopted Bt G. hirsutum(1). The economic benefits of Bt G. hirsutum over non-Bt G. hirsutum are well documented and include increase in yields, increase in farmers' net revenue and reduction in pesticide application against lepidopteran pests(2-9). However, it is unclear to what extent irrigation influences the performance of Bt G. hirsutum on smallholder farming in India, and if, in the absence of irrigation, growing Bt G. hirsutum provides greater economic benefits for Indian smallholder farmers compared with growing the Asiatic cotton Gossypium arboreum L. Here, we compare the economic impact of growing Bt G. hirsutum with growing G. arboreum under rainfed conditions in the Indian state of Maharashtra, and show that G. arboreum can generate similar net revenue, and thus similar economic benefits for smallholder farmers compared with growing Bt G. hirsutum. We also compare the economic impact of growing Bt G. hirsutum under rainfed conditions with growing Bt G. hirsutum under irrigated conditions and show that even though Bt G. hirsutum yields increase with irrigation, the net revenue does not significantly increase because farmers using irrigation spend significantly more than farmers growing Bt G. hirsutum without irrigation. We conclude that our data provide a broader insight into how socio-economic data needs to be incorporated into agro-ecological data when planning strategies to improve cotton farming in India.

  4. A Decision Support System for Climate Change Adaptation in Rainfed Sectors of Agriculture for Central Europe

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Berki, Imre; Drüszler, Áron; Eredics, Attila; Gálos, Borbála; Illés, Gábor; Móricz, Norbert; Rasztovits, Ervin; Czimber, Kornél

    2013-04-01

    • Background and aims: Rainfed sectors of agriculture such as nature-close forestry, non-irrigated agriculture and animal husbandry on nature-close pastures are threatened by projected climate change especially in low-elevation regions in Southeast Europe, where precipitation is the limiting factor of production and ecosystem stability. Therefore the importance of complex, long term management planning and of land use optimization is increasing. The aim of the Decision Support System under development is to raise awareness and initiate preparation for frequency increase of extreme events, disasters and economic losses in the mentioned sectors. • Services provided: The Decision Support System provides GIS-supported information about the most important regional and local risks and mitigation options regarding climate change impacts, projected for reference periods until 2100 (e.g. land cover/use and expectable changes, potential production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.). The projections are referring first of all on biological production (natural produce), but the System includes also social and economic consequences. • Methods: In the raster based system, the latest image processing technology is used. We apply fuzzy membership functions, Support Vector Machine and Maximum Likelihood classifier. The System is developed in the first step for a reference area in SW Hungary (Zala county). • Novelty: The coherent, fine-scale regional system integrates the basic information about present and projected climates, extremes, hydrology and soil conditions and expected production potential for three sectors of agriculture as options for land use and conservation. • Funding: The development of the Decision Support System "Agrárklíma" is supported by TÁMOP-4.2.2.A-11/1/KONV and 4.2.2.B-10/1-2010-0018 "Talentum" joint EU-national research projects. Keywords: climate change

  5. Potential impact of climate change on rainfed agriculture of a semi-arid basin in Jordan

    NASA Astrophysics Data System (ADS)

    Al-Bakri, Jawad; Suleiman, Ayman; Abdulla, Fayez; Ayad, Jamal

    Rainfed agriculture in Jordan is one of the most vulnerable sectors to climate change, as the available water and land resources are limited and most of the country’s land is arid. In this study, a crop simulation model (DSSAT) was used to assess the impact of different climate change scenarios on rainfed wheat and barley in the Yarmouk basin in Jordan. Analysis of observed crop data showed differences between cultivated and harvested areas for both crops in the study area with variations among years. Results from DSSAT model for years showed that it was able to capture the trend of yield over the years realistically well. The model predicted an average yield of wheat of 1176 kg ha -1, which was close to the average (1173 kg ha -1) obtained from the data of department of statistics (DOS), and an average predicted yield of barley was 927 kg ha -1 while the DOS average was 922 kg ha -1, with higher RMSE for barley (476 kg ha -1) than for wheat (319 kg ha -1). Results for predicting future yield of both crops showed that the responses of wheat and barley were different under different climate change scenarios. The reduction of rainfall by 10-20% reduced the expected yield by 4-8% for barley and 10-20% for wheat, respectively. The increase in rainfall by 10-20% increased the expected yield by 3-5% for barley and 9-18% for wheat, respectively. The increase of air temperature by 1, 2, 3 and 4 °C resulted in deviation from expected yield by -14%, -28%, -38% and -46% for barley and -17%, +4%, +43% and +113% for wheat, respectively. These results indicated that barley would be more negatively affected by the climate change scenarios and therefore adaptation plans should prioritize the arid areas cultivated with this crop.

  6. DENTAL LESIONS IN THE LOWLAND TAPIR (TAPIRUS TERRESTRIS).

    PubMed

    Tjørnelund, Karen B; Jonsson, Lena M; Kortegaard, Hanne; Arnbjerg, Jens; Nielsen, Søren S; Bertelsen, Mads F

    2015-06-01

    Dental ailments, mandibular swelling, and dentoalveolar abscesses are common in tapirs, but knowledge about prevalence or etiology of these lesions in the Tapiridae family in general, and in lowland tapirs (Tapirus terrestris) in particular, is scarce. A recent study identified resorptive lesions of unknown etiology as a common problem in the Malayan tapir (Tapirus indicus). In order to investigate the type and prevalence of dental lesions occurring in lowland tapirs, and to compare these with findings with the Malayan tapir, skulls and teeth from 46 deceased lowland tapirs were visually and radiographically examined. The specimens were divided into subpopulations according to age (juveniles, young adults, adults) and origin (free-range or captive). Dental lesions were identified in 24% (11/46) of the study population. The most common pathologic findings were complicated dental fractures with associated periapical reaction (15%) and periapical reactions of various degrees without associated detectable dental pathology (13%). All these lesions likely originated from dental trauma. As in Malayan tapirs, juveniles had significantly fewer lesions than adults. This study shows that dental lesions present frequent problems for lowland tapirs, occurring both in captive and in free-ranging individuals, and indicates that increasing age should be considered a risk factor for the development of these lesions. Notably, the predominant dental problems in lowland tapirs and Malayan tapirs are not the same.

  7. Methods and future directions for paleoclimatology in the Maya Lowlands

    NASA Astrophysics Data System (ADS)

    Douglas, Peter M. J.; Brenner, Mark; Curtis, Jason H.

    2016-03-01

    A growing body of paleoclimate data indicates that periods of severe drought affected the Maya Lowlands of southeastern Mexico and northern Central America, especially during the Terminal Classic period (ca. 800-950 CE), raising the possibility that climate change contributed to the widespread collapse of many Maya polities at that time. A broad range of paleoclimate proxy methods have been applied in the Maya Lowlands and the data derived from these methods are sometimes challenging for archeologists and other non-specialists to interpret. This paper reviews the principal methods used for paleoclimate inference in the region and the rationale for climate proxy interpretation to help researchers working in the Maya Lowlands make sense of paleoclimate datasets. In particular, we focus on analyses of speleothems and lake sediment cores. These two paleoclimate archives have been most widely applied in the Maya Lowlands and have the greatest potential to provide insights into climate change impacts on the ancient Maya. We discuss the development of chronologies for these climate archives, the proxies for past climate change found within them, and how these proxy variables are interpreted. Finally, we present strategies for improving our understanding of proxy paleoclimate data from the Maya Lowlands, including multi-proxy analyses, assessment of spatial variability in past climate change, combined analysis of climate models and proxy data, and the integration of paleoclimatology and archeology.

  8. Hydroecological impacts of climate change modelled for a lowland UK wetland

    NASA Astrophysics Data System (ADS)

    House, Andrew; Acreman, Mike; Sorensen, James; Thompson, Julian

    2015-04-01

    Conservation management of wetlands often rests on modifying hydrological functions to establish or maintain desired flora and fauna. Hence the ability to predict the impacts of climate change is highly beneficial. Here, the physically based, distributed model MIKE SHE was used to simulate hydrology for the Lambourn Observatory at Boxford, UK. This comprises a 10 ha lowland riparian wetland protected for conservation, where the degree of variability in the peat, gravel and chalk geology has clouded hydrological understanding. Notably, a weathered layer on the chalk aquifer surface seals it from overlying deposits, yet is highly spatially heterogeneous. Long-term monitoring yielded observations of groundwater and surface water levels for model calibration and validation. Simulated results were consistent with observed data and reproduced the effects of seasonal fluctuations and in-channel macrophyte growth. The adjacent river and subsidiary channel were found to act as head boundaries, exerting a general control on water levels across the site. Discrete areas of groundwater upwellings caused raised water levels at distinct locations within the wetland. These were concurrent to regions where the weathered chalk layer is absent. To assess impacts of climate change, outputs from the UK Climate Projections 2009 ensemble of global climate models for the 2080s are used to obtain monthly percentage changes in climate variables. Changes in groundwater levels were taken from a regional model of the Chalk aquifer. Values of precipitation and evapotranspiration were seen to increase, whilst groundwater levels decreased, resulting in the greater dominance of precipitation. The discrete areas of groundwater upwelling were seen to diminish or disappear. Simulated water levels were linked to specific requirements of wetland plants using water table depth zone diagrams. Increasing depth of winter and summer groundwater levels leads to a loss of Glyceria maxima and Phragmites

  9. Deforestation scenarios for the Bolivian lowlands.

    PubMed

    Tejada, Graciela; Dalla-Nora, Eloi; Cordoba, Diana; Lafortezza, Raffaele; Ovando, Alex; Assis, Talita; Aguiar, Ana Paula

    2016-01-01

    all Bolivian lowlands reaching 37,944,434 ha and leaves small forest patches in a few PAs. These deforestation scenarios are not meant to predict the future but to show how current and future decisions carried out by the neo-extractivist practices of MAS government could affect deforestation and carbon emission trends. In this perspective, recognizing land use systems as open and dynamic systems is a central challenge in designing efficient land use policies and managing a transition towards sustainable land use.

  10. Water resources of the Southeast Lowlands, Missouri

    USGS Publications Warehouse

    Luckey, R.R.; Fuller, D.L.

    1985-01-01

    The Southeast Lowlands of Missouri occupies 4,000 square miles of prime agricultural land of the Coastal Plain in the extreme southeastern corner of Missouri. Even though this area receives about 4 feet of rainfall per year, there is a rapidly increasing demand for water for irrigation. The purpose of this study was to evaluate the water resources of this area with particular emphasis on the extent of irrigation and the potential of the groundwater system to support further irrigation development. The area is underlain by consolidated aquifers of Paleozoic age and unconsolidated aquifers of Mesozoic and Cenozoic age. The consolidated aquifers, although possessing the potential to yield large quantities of water, generally are not used throughout much of the area because they lie at considerable death and alternate supplies are readily available. The McNairy aquifer, which underlies about three-fourths of the area, ranges from 0 to 600 feet in thickness with the top lying from 0 to more than 2,200 feet below land surface. This system is attractive as a municipal water supply because of its large artesian head and the small iron and hardness concentrations of the water. Although this system is now used exclusively for municipal water supplies, the McNairy may become more important in the future as a heat source. The Wilcox Group (undivided), which underlies more than one-half of the area and almost always lies less than 300 feet below land surface, is as much as 1,400 feet thick. However, usually only the basal 250 to 500 feet of this group is used as an aquifer. This system, which in some areas is capable of yielding as much as 1,500 gallons per minute to properly constructed wells, is now primarily used for municipal supplies. The alluvial aquifer underlies most of the area and is locally capable of yielding more than 3,000 gallons per minute. This aquifer generally is 100 to 200 feet thick, but in several places more than 250 feet of alluvium has been reported

  11. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  12. Rice ( Oryza) hemoglobins.

    PubMed

    Arredondo-Peter, Raúl; Moran, Jose F; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs.

  13. Elastic Thickness Estimates for the Northern Lowlands of Mars

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Smrekar, S. E.

    2006-05-01

    The northern lowlands cover 1/3 of Mars' surface and are a fundamental part of the geologic evolution of Mars. We examine the admittance, (ratio of gravity to topography in the spectral domain), to better constrain the timing of northern lowlands formation. Prior to this study there have been no successful estimates of elastic thickness (Te) in the lowlands (with the exception of Utopia) due to low topographic signal. We use a Cartesian multitaper approach (that has been successful for topographically eroded regions on Earth) to estimate Te for 4 lowland regions. These regions are well resolved in the gravity data, display well constrained lithospheric parameters, and topographic power spectra similar to many highlands regions. We use the latest spherical harmonic gravity field (MGS95J), carried out to degree and order 95. The field is determined globally to degree 70 (~305km), where the noise of the unconstrained solution equals the signal. Spherical harmonic coefficients for the topography were created in the same reference as the gravity. We compare the observed admittance with those predicted from lithospheric flexure models. On the basis of these comparisons, we estimate the Te required to support the observed topographic load since the time of loading. Top and bottom loading models are used to derive Te and crustal thickness or apparent depth of compensation. All 4 regions are best fit by a bottom-loading model. We obtain best fit Te estimates between 10-25km with an acceptable error range of 0-45km. These small estimates are similar to previous studies of the southern highlands and are consistent with formation in the Noachian when heat flow was high. The consistency in Te estimates between the Noachian highlands and lowlands basement suggests that both regions of the crust formed within a short time. The paucity of crustal magnetization in the lowlands is thus more likely a result of demagnetization than formation following shutdown of the dynamo. Most

  14. Genetics, Physiological Mechanisms and Breeding of Flood-Tolerant Rice (Oryza sativa L.).

    PubMed

    Singh, Anuradha; Septiningsih, Endang M; Balyan, Harendra S; Singh, Nagendra K; Rai, Vandna

    2017-01-09

    Flooding of rice fields is a serious problem in the river basins of South and South-East Asia where about 15 Mha of lowland rice cultivation is regularly affected. Flooding creates hypoxic conditions resulting in poor germination and seedling establishment. Flash flooding, where rice plants are completely submerged for 10-15 d during their vegetative stage, causes huge losses. Water stagnation for weeks to months also leads to substantial yield losses when large parts of rice aerial tissues are inundated. The low-yielding traditional varieties and landraces of rice adapted to these flooding conditions have been replaced by flood-sensitive high-yielding rice varieties. The 'FR13A' rice variety and the Submergence 1A (SUB1A) gene were identified for flash flooding and subsequently introgressed to high-yielding rice varieties. The challenge is to find superior alleles of the SUB1A gene, or even new genes that may confer greater tolerance to submergence. Similarly, genes have been identified in tolerant landraces of rice for their ability to survive by rapid stem elongation (SNORKEL1 and SNORKEL2) during deep-water flooding, and for anaerobic germination ability (TPP7). Research on rice genotypes and novel genes that are tolerant to prolonged water stagnation is in progress. These studies will greatly assist in devising more efficient and precise molecular breeding strategies for developing climate-resilient high-yielding rice varieties for flood-prone regions. Here we review the state of our knowledge of flooding tolerance in rice and its application in varietal improvement.

  15. Development and field performance of nitrogen use efficient rice lines for Africa.

    PubMed

    Selvaraj, Michael Gomez; Valencia, Milton Orlando; Ogawa, Satoshi; Lu, Yingzhi; Wu, Liying; Downs, Christopher; Skinner, Wayne; Lu, Zhongjin; Kridl, Jean C; Ishitani, Manabu; van Boxtel, Jos

    2016-11-27

    Nitrogen (N) fertilizers are a major input cost in rice production, and its excess application leads to major environmental pollution. Development of rice varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Here, we report the results of field evaluations of marker-free transgenic NERICA4 (New Rice for Africa 4) rice lines overexpressing barley alanine amino transferase (HvAlaAT) under the control of a rice stress-inducible promoter (pOsAnt1). Field evaluations over three growing seasons and two rice growing ecologies (lowland and upland) revealed that grain yield of pOsAnt1:HvAlaAT transgenic events was significantly higher than sibling nulls and wild-type controls under different N application rates. Our field results clearly demonstrated that this genetic modification can significantly increase the dry biomass and grain yield compared to controls under limited N supply. Increased yield in transgenic events was correlated with increased tiller and panicle number in the field, and evidence of early establishment of a vigorous root system in hydroponic growth. Our results suggest that expression of the HvAlaAT gene can improve NUE in rice without causing undesirable growth phenotypes. The NUE technology described in this article has the potential to significantly reduce the need for N fertilizer and simultaneously improve food security, augment farm economics and mitigate greenhouse gas emissions from the rice ecosystem.

  16. A 2,000-year reconstruction of the rain-fed maize agricultural niche in the US Southwest

    NASA Astrophysics Data System (ADS)

    Bocinsky, R. Kyle; Kohler, Timothy A.

    2014-12-01

    Humans experience, adapt to and influence climate at local scales. Paleoclimate research, however, tends to focus on continental, hemispheric or global scales, making it difficult for archaeologists and paleoecologists to study local effects. Here we introduce a method for high-frequency, local climate-field reconstruction from tree-rings. We reconstruct the rain-fed maize agricultural niche in two regions of the southwestern United States with dense populations of prehispanic farmers. Niche size and stability are highly variable within and between the regions. Prehispanic rain-fed maize farmers tended to live in agricultural refugia—areas most reliably in the niche. The timing and trajectory of the famous thirteenth century Pueblo migration can be understood in terms of relative niche size and stability. Local reconstructions like these illuminate the spectrum of strategies past humans used to adapt to climate change by recasting climate into the distributions of resources on which they depended.

  17. A 2,000-year reconstruction of the rain-fed maize agricultural niche in the US Southwest.

    PubMed

    Bocinsky, R Kyle; Kohler, Timothy A

    2014-12-04

    Humans experience, adapt to and influence climate at local scales. Paleoclimate research, however, tends to focus on continental, hemispheric or global scales, making it difficult for archaeologists and paleoecologists to study local effects. Here we introduce a method for high-frequency, local climate-field reconstruction from tree-rings. We reconstruct the rain-fed maize agricultural niche in two regions of the southwestern United States with dense populations of prehispanic farmers. Niche size and stability are highly variable within and between the regions. Prehispanic rain-fed maize farmers tended to live in agricultural refugia--areas most reliably in the niche. The timing and trajectory of the famous thirteenth century Pueblo migration can be understood in terms of relative niche size and stability. Local reconstructions like these illuminate the spectrum of strategies past humans used to adapt to climate change by recasting climate into the distributions of resources on which they depended.

  18. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data

    NASA Astrophysics Data System (ADS)

    Salmon, J. Meghan; Friedl, Mark A.; Frolking, Steve; Wisser, Dominik; Douglas, Ellen M.

    2015-06-01

    Irrigation accounts for 70% of global water use by humans and 33-40% of global food production comes from irrigated croplands. Accurate and timely information related to global irrigation is therefore needed to manage increasingly scarce water resources and to improve food security in the face of yield gaps, climate change and extreme events such as droughts, floods, and heat waves. Unfortunately, this information is not available for many regions of the world. This study aims to improve characterization of global rain-fed, irrigated and paddy croplands by integrating information from national and sub-national surveys, remote sensing, and gridded climate data sets. To achieve this goal, we used supervised classification of remote sensing, climate, and agricultural inventory data to generate a global map of irrigated, rain-fed, and paddy croplands. We estimate that 314 million hectares (Mha) worldwide were irrigated circa 2005. This includes 66 Mha of irrigated paddy cropland and 249 Mha of irrigated non-paddy cropland. Additionally, we estimate that 1047 Mha of cropland are managed under rain-fed conditions, including 63 Mha of rain-fed paddy cropland and 985 Mha of rain-fed non-paddy cropland. More generally, our results show that global mapping of irrigated, rain-fed, and paddy croplands is possible by combining information from multiple data sources. However, regions with rapidly changing irrigation or complex mixtures of irrigated and non-irrigated crops present significant challenges and require more and better data to support high quality mapping of irrigation.

  19. Agro-ecological variations of sheath rot disease of rice caused by Sarocladium oryzae and DNA fingerprinting of the pathogen's population structure.

    PubMed

    Tajul Islam Chowdhury, M; Salim Mian, M; Taher Mia, M A; Rafii, M Y; Latif, M A

    2015-12-28

    To examine the impact of regional and seasonal variations on the incidence and severity of sheath rot, a major seed-borne disease of rice caused by Sarocladium oryzae, data on incidence and severity were collected from 27 selected fields in the Gazipur, Rangpur, Bogra, Chittagong, Comilla, Gopalgonj, Jessore, Manikgonj, and Bhola districts of Bangladesh in rain-fed and irrigated conditions. Cultural variability of 29 pathogen isolates obtained from 8 different locations was studied on potato dextrose agar (PDA) and genetic variability was determined by DNA fingerprinting using variable number tandem repeat-polymerase chain reaction markers. Overall, disease incidence and severity were higher in irrigated rice. Disease incidence and severity were highest in the Bhola district in rain-fed rice and lowest in irrigated rice. Mycelial growth of 29 representative isolates was found to vary on PDA and the isolates were divided into 6 groups. The range of the overall size of conidia of the selected isolates was 2.40-7.20 x 1.20-2.40 μm. Analysis of the DNA fingerprint types of the 29 isolates of S. oryzae, obtained from the amplification reactions, revealed 10 fingerprinting types (FPTs) that were 80% similar. FPT-1 was the largest group and included 13 isolates (44.8%), while FPT-2 was the third largest group and included 3 isolates. Each of FPT-3, 4, 5, and 6 included only 1 isolate. We observed no relationship between cultural and genetic groupings.

  20. Retroperitoneal abscesses in two western lowland gorillas (Gorilla gorilla gorilla).

    PubMed

    Hahn, Alicia; D'Agostino, Jennifer; Cole, Gretchen A; Raines, Jan

    2014-03-01

    This report describes two cases of retroperitoneal abscesses in female western lowland gorillas (Gorilla gorilla gorilla). Clinical symptoms included perivulvar discharge, lameness, hindlimb paresis, and general malaise. Retroperitoneal abscesses should be considered as part of a complete differential list in female gorillas with similar clinical signs.

  1. Long-term increase in diffuse groundwater recharge following expansion of rainfed cultivation in the Sahel, West Africa

    NASA Astrophysics Data System (ADS)

    Ibrahim, Maïmouna; Favreau, Guillaume; Scanlon, Bridget R.; Seidel, Jean Luc; Le Coz, Mathieu; Demarty, Jérôme; Cappelaere, Bernard

    2014-09-01

    Rapid population growth in sub-Saharan West Africa and related cropland expansion were shown in some places to have increased focused recharge through ponds, raising the water table. To estimate changes in diffuse recharge, the water content and matric potential were monitored during 2009 and 2010, and modeling was performed using the Hydrus-1D code for two field sites in southwest Niger: (1) fallow land and (2) rainfed millet cropland. Monitoring results of the upper 10 m showed increased water content and matric potential to greater depth under rainfed cropland (>2.5 m) than under fallow land (≤1.0 m). Model simulations indicate that conversion from fallow land to rainfed cropland (1) increases vadose-zone water storage and (2) should increase drainage flux (˜25 mm year-1) at 10-m depth after a 30-60 year lag. Therefore, observed regional increases in groundwater storage may increasingly result from diffuse recharge, which could compensate, at least in part, groundwater withdrawal due to observed expansion in irrigated surfaces; and hence, contribute to mitigate food crises in the Sahel.

  2. Thermal and visible remote sensing for estimation of evapotranspiration of rainfed agrosystems and its impact on groundwater in SE Australia

    NASA Astrophysics Data System (ADS)

    Roohi, Rakhshan; Webb, John A.

    2016-05-01

    Rainfed agrosystems are important components of the world's food production system and account for 65-95% of total agriculture. In contrast to irrigated production systems, relatively little attention has been paid to understanding the hydrological interactions between the components of rainfed agrosystems and their impact on water resources, especially groundwater. A new model, the Surface Energy Balance Algorithm for Rainfed Agriculture (SEBARA), has been developed to estimate the spatial pattern of evapotranspiration in these agrosystems using satellite images (thermal, infrared and visible spectra). The model was calibrated for two competing land uses (Eucalyptus globules tree plantations and pastures) in adjacent catchments in western Victoria, southeastern Australia. Using measurements from a flux tower in the pasture catchment and adjusted sapflow measurements in the plantation catchment, an estimation accuracy of 95% was achieved. The tree plantations had higher available net radiation, lower soil heat flux and higher latent heat flux, resulting in 15-20% higher evapotranspirative demand than the pasture, depending upon the age and canopy of plantations. The evapotranspiration rate of plantations declines where groundwater depth is >12m or where shallow groundwater is saline. The shallow root system of the pasture means that it relies solely on soil moisture to meet its water requirements and thus has lower evapotranspiration, which varies according to the pasture species.

  3. Comparing N2O emissions at varying N rates from irrigated and rainfed corn in the US Midwest

    NASA Astrophysics Data System (ADS)

    Millar, N.; Kahmark, K.; Basso, B.; Robertson, G. P.

    2011-12-01

    Global N2O emissions from agriculture are estimated to be ~2.8 Pg CO2e yr-1 accounting for 60% of total anthropogenic emissions. N2O is the largest contributor to the GHG burden of cropping systems in the US, with annual estimated emissions of ~0.5 Tg primarily due to N fertilizer inputs and other soil management activities. Currently 23 million acres of corn, soybean and wheat are irrigated annually in the US with increased N2O emissions due to the practice likely under-reported in GHG inventories. Here we compare N2O emissions and yield from irrigated and rainfed corn at varying N rates between 0 and 246 kg N ha-1 from the Kellogg Biological Station in SW Michigan. Initial results show that N2O emissions increase with increasing N rate and are significantly higher from irrigated corn compared to rainfed corn at the same N rate. At increasing N rates daily emissions following an irrigation event were between 2.4 - 77.5 g N2O-N ha-1 from irrigated corn and 1.6 - 13.0 g N2O-N ha-1 from rainfed corn. Emissions data from automated and static chambers will be presented and trade-offs between N2O emissions, N fertilizer rate, crop yield and irrigation practice will be evaluated from an environmental and economic standpoint.

  4. Constructed wetland attenuation of nitrogen exported in subsurface drainage from irrigated and rain-fed dairy pastures.

    PubMed

    Tanner, C C; Nguyen, M L; Sukias, J P S

    2005-01-01

    Nitrogen removal performance is reported for constructed wetlands treating subsurface drainage from irrigated and rain-fed dairy pastures in North Island, New Zealand. Flow-proportional sampling of inflow and outflow concentrations were combined with continuous flow records to calculate mass balances for the wetlands. Drainage flows from the irrigated catchment were 2.5-4 fold higher and N exports up to 5 fold higher per unit area than for the rain-fed catchment. Hydraulic and associated N loadings to the wetlands were highly pulsed, associated with rainfall, soil water status, and irrigation events. Transient pulses of organic nitrogen were an important form of N loss from the rain-fed landscape in the first year, and were very effectively removed in the wetland (> 90%). Median nitrate concentrations of approximately 10 g m(-3) in the drainage inflows were reduced by 15-67% during passage through the wetlands and annual nitrate-N loads by 16-61% (38-31 7 g N m(-2)y(-1)). Generation in the wetlands of net ammoniacal-N and organic-N (irrigated site) partially negated reduction in nitrate-N loads. The results show that constructed wetlands comprising 1-2% of catchment area can provide moderate reductions in TN export via pastoral drainage, but performance is markedly influenced by variations in seasonal loading and establishment/maturation factors.

  5. Cash cropping, subsistence agriculture, and nutritional status among mothers and children in lowland Papua New Guinea.

    PubMed

    Shack, K W; Grivetti, L E; Dewey, K G

    1990-01-01

    The influence of cash crop income, subsistence agriculture, and purchased foods on nutritional status was examined among three ethnic groups in lowland Papua New Guinea. In their home areas, these groups had been hunter-gatherers, agriculturalists, and hunter-gatherers with limited agriculture. Multiple regression revealed that cash crop income was positively associated with anthropometric status and energy intake among children. Expenditure on food was related to the child's arm circumference but not to nutrient intake. The amount of food planted in the garden was not related to child nutritional status. In contrast, the amount of food planted was positively associated with body mass index of mothers. Consumption of rice and fish was related to food expenditures. Nutritional status was better among families who were agriculturalists prior to resettlement than among hunter-gatherers. The former had more income from cash crops, smaller households, and planted more food in their gardens. Therefore, cash cropping need not decrease nutritional status if home gardens are maintained.

  6. Making the best of climatic variability: options for upgrading rainfed farming in water scarce regions.

    PubMed

    Rockström, J

    2004-01-01

    Coping with climatic variability for livelihood security is part of everyday life for rural communities in semi-arid and dry sub-humid savannas. Water scarcity caused by rainfall fluctuations is common, causing meteorological droughts and dry spells. However, this paper indicates, based on experiences in sub-Saharan Africa and India, that the social impact on rural societies of climatically induced droughts is exaggerated. Instead, water scarcity causing food deficits is more often caused by management induced droughts and dry spells. A conceptual framework to distinguish between manageable and unmanageable droughts is presented. It is suggested that climatic droughts require focus on social resilience building instead of land and water resource management. Focus is then set on the manageable part of climatic variability, namely the almost annual occurrence of dry spells, short 2-4 week periods of no rainfall, affecting farmer yields. On-farm experiences in savannas of sub-Saharan Africa of water harvesting systems for dry spell mitigation are presented. It is shown that bridging dry spells combined with soil fertility management can double and even triple on-farm yield levels. Combined with innovative systems to ensure maximum plant water availability and water uptake capacity, through adoption of soil fertility improvement and conservation tillage systems, there is a clear opportunity to upgrade rainfed farming systems in vulnerable savanna environments, through appropriate local management of climatic variability.

  7. Methane emission from Indonesian rice fields with special references to the effects of yearly and seasonal variations, rice variety, soil type and water management

    NASA Astrophysics Data System (ADS)

    Lumbanraja, Jamalam; Ghani Nugroho, Sutopo; Niswati, Ainin; Sabe Ardjasa, Wayan; Subadiyasa, Netera; Arya, Nyoman; Haraguchi, Hiroki; Kimura, Makoto

    1998-10-01

    Total amounts of CH4 emission from a Sumatra rice field were in the ranges 29·5-48·2 and 43·0-64·6 g CH4 m-2 season-1 for the plots with chemical fertilizer (CF-plot) and those with rice straw application (RS-plot), respectively. Nearly the same amounts of CH4 were emitted in the first and second half of the growth period, irrespective of rice straw application. The increase in the amounts of CH4 emission by rice straw application were from 1·3 to 1·6 times. There was no significant difference in the mean CH4 emission rates between rainy and dry seasons. Rain-fed conditions decreased the CH4 emission by 27-37% compared with continuously flooded conditions. Total amounts of CH4 emission from a rice field growing eight popular modern rice varieties in Indonesia were in the ranges 32·6-41·7 and 51·3-64·6 g CH4 m-2 season-1 for CF- and RS-plots, respectively. Total amounts of CH4 emission from four Sumatra rice fields with different soil types (a Typic Paleudult, a Typic Sulfaquent, a Typic Tropohumult and a Typic Tropopsament) were in the range 22·1 (a Typic Sulfaquent) to 53·4 (a Typic Tropohumult) g CH4 m-2 season-1rice fields with soils of volcanic ash origin were very low; 3·5-7·7 and 5·3-14·3 g CHrice fields showed the specific productivity of grain production, and CHrice fields of volcanic ash origin to 83 and 121 g CHrice field for CF- and RS-plots, respectively. Water management was also an important factor in decreasing the CH

  8. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700-500 BC).

    PubMed

    Deng, Zhenhua; Qin, Ling; Gao, Yu; Weisskopf, Alison Ruth; Zhang, Chi; Fuller, Dorian Q

    2015-01-01

    Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan) and south (Qujialing and Shijiahe) between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds), from systematic flotation of 123 samples (1700 litres), producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa) between 6300-6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato). In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum). Soybean appears on the site in the Shijiahe period (ca.2500 BC) and wheat (Triticum cf. aestivum) in the Late Longshan levels (2200-1800 BC). Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north.

  9. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700–500 BC)

    PubMed Central

    Deng, Zhenhua; Qin, Ling; Gao, Yu; Weisskopf, Alison Ruth; Zhang, Chi; Fuller, Dorian Q.

    2015-01-01

    Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan) and south (Qujialing and Shijiahe) between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds), from systematic flotation of 123 samples (1700 litres), producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa) between 6300–6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato). In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum). Soybean appears on the site in the Shijiahe period (ca.2500 BC) and wheat (Triticum cf. aestivum) in the Late Longshan levels (2200–1800 BC). Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north. PMID:26460975

  10. Predicting economic losses from the continued spread of the Mexican rice borer (Lepidoptera: Crambidae).

    PubMed

    Reay-Jones, F P F; Wilson, L T; Reagan, T E; Legendre, B L; Way, M O

    2008-04-01

    The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), is an invasive species that originated from Mexico, and it is threatening to cause major economic losses to sugarcane, Saccharum spp., and rice, Oryza sativa L., industries in Louisiana. The insect is expected to reach sugarcane and rice production areas in Louisiana by 2008, and infest all of Louisiana sugarcane and rice industries by 2035. When all sugarcane in Louisiana becomes infested, annual yield losses of $220 million would be expected for a cultivar of comparable susceptibility to LCP 85-384 (assuming this cultivar is planted on 100% of the production area). This also assumes the use of the current practice of rainfed production and one application of insecticide, which is presently used by farmers in Louisiana. Irrigation with 30 cm of water is predicted to reduce estimated losses by 29%, whereas four applications of a biorational insecticide such as tebufenozide are expected to reduce the loss in revenue by 53%. The use of the resistant 'HoCP 85-845' would reduce the projected loss in revenue by 24%. Combining all three management tactics on sugarcane, anticipated net loss in revenue would decrease by 66%. The rice industry in Louisiana is projected to suffer from a loss in revenue of $45 million when the entire state is infested. A 77% reduction in loss in revenue is expected with one application of lambda-cyhalothrin. A quarantine on east Texas sugarcane is estimated to save the Louisiana industry between $1.1 billion and $3.2 billion (depending on management) during the time needed for the insect to fully invade the state's sugarcane and rice producing area by natural migration rather than by accidental introduction. The rapid deployment of appropriate management tactics will have a key role in reducing the anticipated economic impact of E. loftini once it becomes a pest in Louisiana sugarcane and rice.

  11. Postconflict behavior in captive western lowland gorillas (Gorilla gorilla gorilla).

    PubMed

    Mallavarapu, S; Stoinski, T S; Bloomsmith, M A; Maple, T L

    2006-08-01

    Postconflict (PC) behaviors, including reconciliation and consolation, have been observed in many primate and several nonprimate species. Using the PC-matched control (MC) method, PC behavior was examined in two groups (n=13) of captive western lowland gorillas, a species for which no conflict resolution data have been published. Analyses of 223 conflicts showed significantly more affiliation between former opponents after a conflict when compared to control periods, indicating reconciliation. Results also showed significantly more affiliation between the victim and a third-party after a conflict, indicating consolation. Both solicited and unsolicited consolation were observed. The majority of the affiliative interactions observed for both reconciliation and consolation were social proximity, which suggests that unlike most nonhuman primates, proximity, rather than physical contact, may be the main mechanism for resolving conflicts in western lowland gorillas. PC behavior was not uniform throughout the groups, but rather varied according to dyad type.

  12. The groundwater exchange rate of the southern Baltic coastal lowland

    NASA Astrophysics Data System (ADS)

    Burzyński, K.; Sadurski, A.

    1990-11-01

    The groundwater of the southern Baltic lowlands usually occurs in particular hydrogeological conditions. The lowland is mostly covered by peats several metres in thickness. Peatbog water is isolated from deeper aquifers and has different chemical composition. Salty, relic groundwater of marine origin from the Atlantic period of the Holocene (Littorina transgression) may have survived in the deeper coastal aquifers in places of sluggish flow. The results of mathematical modelling of groundwater circulation show that the flow rate and local directions of groundwater change during the year, depending on the rate of groundwater recharge by precipitation. We present here an unsteady flow model, which makes it possible to predict the water table fluctuations during a year at any point of the area studied. The calculation of the groundwater exchange rate did not confirm the presence of any places of very sluggish groundwater flow, where salty, young relic water might have survived.

  13. The consequences of pleistocene climate change on lowland neotropical vegetation

    SciTech Connect

    De Oliveira, P.E.; Colinvaux, P.A. )

    1994-06-01

    Palynological reconstructions indicate that lowland tropical America was subject to intense cooling during the last ice-age. The descent of presently montane taxa into the lowlands of Amazonia and Minas Gerais indicate temperature depressions ranging from 5[degrees]C to 9[degrees]C cooler-than-present. The strengthened incursion of southerly airmasses caused a reassortment of vegetation throughout Amazonia. Presently allopatric species are found to have been sympatric as novel forest assemblages and formed and dissolved. Modest drying, perhaps a 20% reduction in precipitation, accounts for all the records that show a Pleistocene expansion of savanna. No evidence is found to support the fragmentation of Amazonian forests during glacial times, and the hypothesis of forest refuges as an explanation of tropical speciation is rejected on empirical grounds.

  14. Synthetic Aperture Radar (SAR)-based paddy rice monitoring system: Development and application in key rice producing areas in Tropical Asia

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.; Holecz, F.; Khan, N. I.; Barbieri, M.; Quicho, E.; Collivignarelli, F.; Maunahan, A.; Gatti, L.; Romuga, G. C.

    2017-01-01

    Reliable and regular rice information is essential part of many countries’ national accounting process but the existing system may not be sufficient to meet the information demand in the context of food security and policy. Synthetic Aperture Radar (SAR) imagery is highly suitable for detecting lowland paddy rice, especially in tropical region where pervasive cloud cover in the rainy seasons limits the use of optical imagery. This study uses multi-temporal X-band and C-band SAR imagery, automated image processing, rule-based classification and field observations to classify rice in multiple locations across Tropical Asia and assimilate the information into ORYZA Crop Growth Simulation model (CGSM) to generate high resolution yield maps. The resulting cultivated rice area maps had classification accuracies above 85% and yield estimates were within 81-93% agreement against district level reported yields. The study sites capture much of the diversity in water management, crop establishment and rice maturity durations and the study demonstrates the feasibility of rice detection, yield monitoring, and damage assessment in case of climate disaster at national and supra-national scales using multi-temporal SAR imagery combined with CGSM and automated methods.

  15. Ammonia emissions from different fertilizing strategies in Mediterranean rainfed winter cereals

    NASA Astrophysics Data System (ADS)

    Bosch-Serra, Àngela D.; Yagüe, María R.; Teira-Esmatges, María R.

    2014-02-01

    Anthropogenic ammonia (NH3) emissions mainly result from agricultural activities where manure spreading plays a significant role. For a Mediterranean rainfed winter cereal system there is a lack of data regarding NH3 emissions. The aim of this work is to provide field data on N losses due to NH3 volatilization as a consequence of the introduction of slurries in fertilization strategies and also, to assess the influence of environmental conditions and slurry characteristics on emissions. The fertilizing strategies include the use of slurry from fattening pigs (PS), sows (PSS) and/or mineral fertilizer (M) as ammonium nitrate. Fertilizers were spread over the calcareous soil at sowing and/or at tillering at rates from 15 to 45 kg NH4+-N ha-1 for M and from 48.8 to 250.3 kg NH4+-N ha-1 for slurries. The NH3 emissions were quantified during three cropping seasons. Average losses from the total ammonium nitrogen applied ranged from 7 to 78% for M and from 6 to 64% for slurries and they were not directly proportional to the amounts of applied ammonium. The best results on NH3 volatilization reduction were registered when soil water content (SWC, 0-30 cm) was below 56% of its field capacity and also, when slurry dry matter (DM) was in the interval of 6.1-9.3% for PS or much lower (0.8%) for PSS. High slurry DM favoured crust formation and the lower rates promoted infiltration, both of which reduced NH3 emissions. Nevertheless, at tillering, the lower DM content was the most effective in controlling emissions (<9 kg NH3-N ha-1) and equalled M fertilizer in cumulative NH3 loss (p > 0.05). A single slurry application at tillering did not negatively affect yield biomass. The combining of recommended timing of applications with slurry DM content and SWC should allow producers to minimize volatilization while maintaining financial benefits.

  16. Assessment of agricultural drought in rainfed cereal production areas of northern China

    NASA Astrophysics Data System (ADS)

    Li, Rui; Tsunekawa, Atsushi; Tsubo, Mitsuru

    2017-02-01

    Agricultural drought assessment is an important tool for water management in water-scarce regions such as Inner Mongolia and northeastern China. Conventional methods have difficulty of clarifying long-term influences of drought on regional agricultural production. To accurately evaluate regional agricultural drought, we assessed the performance of drought indices by constructing a new assessment framework with three components: crop model calibration and validation, drought index calculation, and index assessment (standard period setting, mean value and agreement assessments). The Environmental Policy Integrated Climate (EPIC) model simulated well of county-level wheat and maize yields in the nine investigated counties. We calculated a major crop-specific index yield reduction caused by water stress (WSYR) in the EPIC crop model, by relating potential and rainfed yields. Using 26 agricultural drought cases, we compared WSYR with two meteorological drought indices: precipitation (P) and aridity index (AI). The results showed that WSYR had greater agreement (85 %) than either the precipitation (65 %) or aridity index (68 %). The temporal trend of the indices over the period 1962-2010 was tested using three approaches. The result via WSYR revealed a significant increase in the trend of agricultural drought in drought-prone counties, which could not be shown by the precipitation and aridity indices. Total number of dry year via WSYR from 1990s to 2000s increases more sharply than via P or AI. As shown by WSYR, the number of dry years in northeastern China and Inner Mongolia is generally increasing, particularly after the 2000s, in the western part of the study area. The study reveals the usefulness of the framework for drought index assessment and indicates the potential of WSYR and possible drought cases for drought classification.

  17. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability

    PubMed Central

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K.

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  18. Assessment of agricultural drought in rainfed cereal production areas of northern China

    NASA Astrophysics Data System (ADS)

    Li, Rui; Tsunekawa, Atsushi; Tsubo, Mitsuru

    2015-10-01

    Agricultural drought assessment is an important tool for water management in water-scarce regions such as Inner Mongolia and northeastern China. Conventional methods have difficulty of clarifying long-term influences of drought on regional agricultural production. To accurately evaluate regional agricultural drought, we assessed the performance of drought indices by constructing a new assessment framework with three components: crop model calibration and validation, drought index calculation, and index assessment (standard period setting, mean value and agreement assessments). The Environmental Policy Integrated Climate (EPIC) model simulated well of county-level wheat and maize yields in the nine investigated counties. We calculated a major crop-specific index yield reduction caused by water stress (WSYR) in the EPIC crop model, by relating potential and rainfed yields. Using 26 agricultural drought cases, we compared WSYR with two meteorological drought indices: precipitation (P) and aridity index (AI). The results showed that WSYR had greater agreement (85 %) than either the precipitation (65 %) or aridity index (68 %). The temporal trend of the indices over the period 1962-2010 was tested using three approaches. The result via WSYR revealed a significant increase in the trend of agricultural drought in drought-prone counties, which could not be shown by the precipitation and aridity indices. Total number of dry year via WSYR from 1990s to 2000s increases more sharply than via P or AI. As shown by WSYR, the number of dry years in northeastern China and Inner Mongolia is generally increasing, particularly after the 2000s, in the western part of the study area. The study reveals the usefulness of the framework for drought index assessment and indicates the potential of WSYR and possible drought cases for drought classification.

  19. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    PubMed

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  20. Biological and physical conditions of macroinvertebrates in reference lowland streams

    NASA Astrophysics Data System (ADS)

    de Brouwer, Jan; Eekhout, Joris; Verdonschot, Piet

    2016-04-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Currently, stream restoration measures are being implemented in these degraded lowland streams, where design principles are often based on outdated relationships between biological and physical conditions. Little is known about the reference conditions in these streams. Therefore, the aim of this research is to quantify the relationships between biological and physical conditions of macroinvertebrates in reference lowland streams. The research was conducted in four near-natural lowland streams in Central Poland. Field data were obtained during a field campaign in 2011. The following data were obtained in a 50-m reach in each of the four streams: macroinvertebrate sampling, spatial habitat patterns, bathymetry, and flow-velocity. Furthermore, water level, light sensitivity and temperature sensors were installed to obtain the temporal dynamic of these streams. Macroinvertebrates were sampled in 9 different habitat types, i.e. sand, gravel, fine organic matter, stones, branches, leaves, silt, vegetation, and wood. Macroinvertebrates were determined to the highest taxonomic level possible. Data from the bathymetrical surveys were interpolated on a grid and bathymetrical metrics were determined. Flow velocity measurements were related to habitats and flow velocity metrics were determined. Analysis of the data shows that flow conditions vary among the different habitat, with a gradient from hard substrates towards soft substrates. Furthermore, the data show that stream as a unit best explains species composition, but also specific habitat conditions, such as substrate type and flow velocity, correlate with species composition. More specific, the data shows a strong effect of wood on species composition. These findings may have implications for stream restoration design, which

  1. Morphological Assessment of Reconstructed Lowland Streams in the Netherlands

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Eekhout, J.; de Brouwer, J.; Verdonschot, P.

    2014-12-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Re-meandering is the common practice in restoring these lowland streams. Three lowland streams were monitored during the initial two years after construction of a new channel. The monitoring program included morphological surveys, sediment sampling, habitat pattern surveys, and discharge and water level measurements. Adjustments of the longitudinal bed profile formed the main morphological response. These adjustments were most likely caused by a lack of longitudinal connectivity of the streams as a whole, interrupting transport of sediment at locations of weirs and culverts. Bank erosion was observed only in a limited number of channel bends, and was often related to floodplain heterogeneity. Longitudinal channel bed adjustments and bank erosion were mainly caused by exogenous influences. In channel bends, the cross-sectional shape transformed from trapezoidal to the typical asymmetrical shape as found in meandering rivers. This behaviour can be attributed to an autogenous response to the prevailing flow conditions. Due to the prevailing fine sediment characteristics, bed material is readily set in motion and is being transported during the entire year. The existing design principles fail to address the initial morphological development after reconstruction. An evaluation of pre-set targets to realize water depth and flow velocity ranges shows the current procedures to be deficient. Based on this unfavourable evaluation, and the two-dimensional nature of habitat patterns needed to improve the conditions for stream organisms, we recommend to predict morphological developments as part of the design procedures for lowland stream restoration in the Netherlands.

  2. Flow controls on lowland river macrophytes: a review.

    PubMed

    Franklin, Paul; Dunbar, Michael; Whitehead, Paul

    2008-08-01

    We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised.

  3. Lowland tapir distribution and habitat loss in South America.

    PubMed

    Cordeiro, Jose Luis Passos; Fragoso, José M V; Crawshaw, Danielle; Oliveira, Luiz Flamarion B

    2016-01-01

    The development of species distribution models (SDMs) can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management.

  4. Lowland tapir distribution and habitat loss in South America

    PubMed Central

    Fragoso, José M.V.; Crawshaw, Danielle; Oliveira, Luiz Flamarion B.

    2016-01-01

    The development of species distribution models (SDMs) can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management. PMID:27672509

  5. How Ebola Impacts Genetics of Western Lowland Gorilla Populations

    PubMed Central

    Le Gouar, Pascaline J.; Vallet, Dominique; David, Laetitia; Bermejo, Magdalena; Gatti, Sylvain; Levréro, Florence; Petit, Eric J.; Ménard, Nelly

    2009-01-01

    Background Emerging infectious diseases in wildlife are major threats for both human health and biodiversity conservation. Infectious diseases can have serious consequences for the genetic diversity of populations, which could enhance the species' extinction probability. The Ebola epizootic in western and central Africa induced more than 90% mortality in Western lowland gorilla population. Although mortality rates are very high, the impacts of Ebola on genetic diversity of Western lowland gorilla have never been assessed. Methodology/Principal Findings We carried out long term studies of three populations of Western lowland gorilla in the Republic of the Congo (Odzala-Kokoua National Park, Lossi gorilla sanctuary both affected by Ebola and Lossi's periphery not affected). Using 17 microsatellite loci, we compared genetic diversity and structure of the populations and estimate their effective size before and after Ebola outbreaks. Despite the effective size decline in both populations, we did not detect loss in genetic diversity after the epizootic. We revealed temporal changes in allele frequencies in the smallest population. Conclusions/Significance Immigration and short time elapsed since outbreaks could explain the conservation of genetic diversity after the demographic crash. Temporal changes in allele frequencies could not be explained by genetic drift or random sampling. Immigration from genetically differentiated populations and a non random mortality induced by Ebola, i.e., selective pressure and cost of sociality, are alternative hypotheses. Understanding the influence of Ebola on gorilla genetic dynamics is of paramount importance for human health, primate evolution and conservation biology. PMID:20020045

  6. Effects of Traditional Flood Irrigation on Invertebrates in Lowland Meadows

    PubMed Central

    Schirmel, Jens; Alt, Martin; Rudolph, Isabell; Entling, Martin H.

    2014-01-01

    Lowland meadow irrigation used to be widespread in Central Europe, but has largely been abandoned during the 20th century. As a result of agri-environment schemes and nature conservation efforts, meadow irrigation is now being re-established in some European regions. In the absence of natural flood events, irrigation is expected to favour fauna typical of lowland wet meadows. We analysed the effects of traditional flood irrigation on diversity, densities and species composition of three invertebrate indicator taxa in lowland meadows in Germany. Unexpectedly, alpha diversity (species richness and Simpson diversity) and beta diversity (multivariate homogeneity of group dispersions) of orthopterans, carabids, and spiders were not significantly different between irrigated and non-irrigated meadows. However, spider densities were significantly higher in irrigated meadows. Furthermore, irrigation and elevated humidity affected species composition and shifted assemblages towards moisture-dependent species. The number of species of conservation concern, however, did not differ between irrigated and non-irrigated meadows. More variable and intensive (higher duration and/or frequency) flooding regimes might provide stronger conservation benefits, additional species and enhance habitat heterogeneity on a landscape scale. PMID:25340872

  7. Research in rice fields

    USGS Publications Warehouse

    ,

    2000-01-01

    Between 1987 and 1999, 2.4-3 million acres of rice were planted annually nationwide. Rice fields are a major component of the contemporary landscapes in the Gulf Coastal Plain, the Mississippi Alluvial Valley, and Central Valley of California. In 1998, approximately 600,000 acres of rice were planted in Louisiana. In the Louisiana plant commodities report for 1998, total value for rice was over $350 million; sugarcane was the only plant commodity that exceeded this value. Louisiana has over 2,000 rice farmers supporting over 12,000 jobs in the state. Rice fields in the United States receive high use by wildlife, especially shorebirds, wading birds, and waterfowl. Waterbirds use rice fields for food, shelter, and breeding habitat.

  8. Teleconnections of ENSO and IOD to summer monsoon and rice production potential of India

    NASA Astrophysics Data System (ADS)

    Jha, Somnath; Sehgal, Vinay Kumar; Raghava, Ramesh; Sinha, Mourani

    2016-12-01

    Regional trend of summer monsoon precipitation has been analyzed for broad physical regions of India namely, (i) Indo-Gangetic plain, (ii) Central and East India, (iii) Coastal and Peninsular India and (iv) Western India. A significantly drying trend has been found in the two regions namely, Indo-Gangetic plain and Central and East India with comparative seasonal rate of drying higher in the latter region. A complex relation between the regional trend of summer monsoon precipitation, global teleconnection parameters and rice production of the regions have been studied. El Niño-Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) have a significant role in the precipitation anomaly of Indo-Gangetic plain unlike Central and East India where the ENSO only plays role as global teleconnection parameter. Rice production of Central and East India has been found to be affected adversely during the El Nino years. Central and East India is found to be the worst affected region compared to the Indo-Gangetic plain with respect to its fragile rainfed rice production potential and strong adverse teleconnection of El Nino on the rice production in this zone.

  9. Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery

    NASA Astrophysics Data System (ADS)

    Ozelkan, Emre; Chen, Gang; Ustundag, Burak Berk

    2016-02-01

    Drought is a rapidly rising environmental issue that can cause hardly repaired or unrepaired damages to the nature and socio-economy. This is especially true for a region that features arid/semi-arid climate, including the Turkey's most important agricultural district - Southeast Anatolia. In this area, we examined the uncertainties of applying Landsat 8 Operational Land Imager (OLI) NDVI data to estimate meteorological drought - Standardized Precipitation Index (SPI) - measured from 31 in-situ agro-meteorological monitoring stations during spring and summer of 2013 and 2014. Our analysis was designed to address two important, yet under-examined questions: (i) how does the co-existence of rainfed and irrigated agriculture affect remote sensing drought monitoring in an arid/semi-arid region? (ii) What is the role of spatial scale in drought monitoring using a GEOBIA (geographic object-based image analysis) framework? Results show that spatial scale exerted a higher impact on drought monitoring especially in the drier year 2013, during which small scales were found to outperform large scales in general. In addition, consideration of irrigated and rainfed areas separately ensured a better performance in drought analysis. Compared to the positive correlations between SPI and NDVI over the rainfed areas, negative correlations were determined over the irrigated agricultural areas. Finally, the time lag effect was evident in the study, i.e., strong correlations between spring SPI and summer NDVI in both 2013 and 2014. This reflects the fact that spring watering is crucial for the growth and yield of the major crops (i.e., winter wheat, barley and lentil) cultivated in the region.

  10. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol.

    PubMed

    Zhang, Dengxiao; Pan, Genxing; Wu, Gang; Kibue, Grace Wanjiru; Li, Lianqing; Zhang, Xuhui; Zheng, Jinwei; Zheng, Jufeng; Cheng, Kun; Joseph, Stephen; Liu, Xiaoyu

    2016-01-01

    Maize production plays an important role in global food security, especially in arid and poor-soil regions. Its production is also increasing in China in terms of both planting area and yield. However, maize productivity in rainfed croplands is constrained by low soil fertility and moisture insufficiency. To increase the maize yield, local farmers use NPK fertilizer. However, the fertilization regime (CF) they practice is unbalanced with too much nitrogen in proportion to both phosphorus and potassium, which has led to low fertilizer use efficiency and excessive greenhouse gases emissions. A two-year field experiment was conducted to assess whether a high yielding but low greenhouse gases emission system could be developed by the combination of balanced fertilization (BF) and biochar amendment in a rainfed farmland located in the Northern region of China. Biochar was applied at rates of 0, 20, and 40 t/ha. Results show that BF and biochar increased maize yield and partial nutrient productivity and decreased nitrous oxide (N2O) emission. Under BF the maize yield was 23.7% greater than under CF. N2O emissions under BF were less than half that under CF due to a reduced N fertilizer application rate. Biochar amendment decreased N2O by more than 31% under CF, while it had no effect on N2O emissions under BF. Thus BF was effective at maintaining a high maize yield and reducing greenhouse gases emissions. If combined with biochar amendment, BF would be a good way of sustaining low carbon agriculture in rainfed areas.

  11. Characterizing groundwater contribution to lowland streams using Travel Time Distribution

    NASA Astrophysics Data System (ADS)

    Petrus Kaandorp, Vincentius; Gerardus Bernardus de Louw, Petrus; Kuijper, Martina Johanna Maria; Broers, Hans Peter

    2015-04-01

    In recent years, it has become apparent that European freshwaters will fail to meet the ecological guidelines set for 2015 by the Water Framework Directive. 55 % of European surface water bodies have been reported to have a less than good ecological status, while the goal for 2015 is to have a good status for all water bodies. The deterioration of freshwater aquatic ecosystems is a problem worldwide. The current study, part of the EU FP7 project Managing Aquatic ecosystems and water Resources under multiple Stress (MARS), addresses this issue by focusing on the effect of multiple stressors. Freshwater ecosystems are directly linked to the characteristics of catchments and streams they are located in as this determines the habitats present. One of these characteristics, the groundwater contribution to streams, is important for aquatic ecosystems as it influences (1) river discharge, (2) water quality and (3) temperature and (4) the riparian zone. Groundwater provides streams with sufficient base flow, good quality water and a stable temperature. Compared to hilly slope catchments, the lowland catchments of The Netherlands lack much topography and surface runoff, and as such, virtually all stream water originates from groundwater. Current approaches do not sufficiently address the contribution of groundwater to stream flow in lowland catchments, as existing hydrograph separation methods provide little informative value about the groundwater contribution itself. The amount and quality of groundwater input to streams depends on its flow path and travel time. Especially in lowland catchments the groundwater input in streams is composed of a wide range of travel times which vary in time and space and have different quantitative and qualitative characteristics. Thus in order to successfully manage lowland streams, it is critical to specify the input of groundwater in more detail and take in account the temporal and spatial variability in travel times. We will present an

  12. Carbon Pool of Permafrost in Kolyma-Indigirka Lowland

    NASA Astrophysics Data System (ADS)

    Shmelev, D.; Veremeeva, A.; Kraev, G.; Kholodov, A. L.; Rivkina, E.

    2014-12-01

    The original database of total carbon, bulk density and iciness and new Geological map were compiled for carbon pool permafrost estimating in Quaternary deposits of North East Yakutia. The database was based on original drilling data on the main Quaternary stratigraphic units of Kolyma-Indigirka Lowland (12 key sites, 120 boreholes, 1000 samples). New geological map was created according Landsat-7 Satellite Image (spatial resolution - 30 m), the State Geological map of Quaternary Deposits (2000) and our field investigation for last 30 years in studying region. Studying area was divided into 3 regions according stratigraphy: East of Yana-Indigirka Lowland, Chukochya and Alazeya Rivers basins, East of Kolyma Lowland. Estimating was compiled for upper 25 m thickness.4 main geomorphological levels were selected for calculation: yedoma (12,8% of total area), alasses (48%), river valley (20,9%) and coastal accumulative lowland (16,7%). Our studies shows, that distribution of yedoma was overestimated in 3,5 times by State Geological Map, mainly due to underestimating of allases (increasing area on 60%).According our assessment, inorganic carbon doesn't exceed 10% of total carbon in the studying area. Permafrost stratigraphic units contain 0.6-2.1% of TC, with the highest concentrations found in Cover Layer and Ice Complex (Yedoma). The biggest carbon pool is found in Olyor, which refers to the most widespread sediments studied and high carbon concentration (up to 18 kg*m-3). The TC pool of Yedoma was 1.5-2 times overestimated by previous studies due to less samples and underestimated iciness. The TC pool of Kolyma delta is 5-7 times overestimated because of higher total organic carbon values considered. Taking the morphology into account, the TC pool assessed is 23.4 ± 9.5 Gt at near 95 000 km2 area. Mean specific carbon content is around 9.9 kg*m-3 in Kolyma Lowland permafrost. The stratigraphic unit-based approach used to compile the database and its analysis provides

  13. Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR)

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.; Peach, D.; Binley, A.

    2007-01-01

    This paper reports on a major UK initiative to address deficiencies in understanding the hydro-ecological response of groundwater-dominated lowland catchments. The scope and objectives of this national programme are introduced and focus on one of three sets of research basins - the Pang/Lambourn Chalk catchments, tributaries of the river Thames in southern England. The motivation for the research is the need to support integrated management of river systems that have high ecological value and are subject to pressures that include groundwater abstraction for water supply, diffuse pollution, and land use and climate change. An overview of the research programme is provided together with highlights of some current research findings concerning the hydrological functioning of these catchments. Despite the importance of the Chalk as a major UK aquifer, knowledge of the subsurface movement of water and solutes is poor. Solute transport in the dual porosity unsaturated zone depends on fracture/matrix interactions that are difficult to observe; current experimental and modelling research supports the predominance of matrix flow and suggests that slow migration of a time-history of decades of nutrient loading is occurring. Groundwater flows are complex; catchments vary seasonally and are ill-defined and karst features are locally important. Groundwater flow pathways are being investigated using natural and artificial geochemical tracers based on experimental borehole arrays; stream-aquifer interaction research is using a combination of geophysics, borehole array geochemistry and longitudinal profiles of stream flow and solutes. A complex picture of localised subsurface inflows, linked to geological controls and karst features, and significant longitudinal groundwater flow below the river channel is emerging. Management implications are discussed. Strategies to control surface application of nutrients are expected to have little effect on groundwater quality for several

  14. Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach.

    PubMed

    Bhattacharyya, P; Roy, K S; Das, M; Ray, S; Balachandar, D; Karthikeyan, S; Nayak, A K; Mohapatra, T

    2016-01-15

    Carbon (C) and nitrogen (N) mineralization is one of the key processes of biogeochemical cycling in terrestrial ecosystem in general and rice ecology in particular. Rice rhizosphere is a rich niche of microbial diversity influenced by change in atmospheric temperature and concentration of carbon dioxide (CO2). Structural changes in microbial communities in rhizosphere influence the nutrient cycling. In the present study, the bacterial diversity and population dynamics were studied under ambient CO2 (a-CO2) and elevated CO2+temperature (e-CO2T) in lowland rice rhizosphere using whole genome metagenomic approach. The whole genome metagenomic sequence data of lowland rice exhibited the dominance of bacterial communities including Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria and Planctomycetes. Interestingly, four genera related to methane production namely, Methanobacterium, Methanosphaera, Methanothermus and Methanothermococcus were absent in a-CO2 but noticed under e-CO2T. The acetoclastic pathway was found as the predominant pathway for methanogenesis, whereas, the serine pathway was found as the principal metabolic pathway for CH4 oxidation in lowland rice. The abundances of reads of enzymes in the acetoclastic methanogenesis pathway and serine pathways of methanotrophy were much higher in e-CO2T (328 and 182, respectively) as compared with a-CO2 (118 and 98, respectively). Rice rhizosphere showed higher structural diversities and functional activities in relation to N metabolism involving nitrogen fixation, assimilatory and dissimilatory nitrate reduction and denitrification under e-CO2T than that of a-CO2. Among the three pathways of N metabolism, dissimilarity pathways were predominant in lowland rice rhizosphere and more so under e-CO2T. Consequently, under e-CO2T, CH4 emission, microbial biomass nitrogen (MBN) and dehydrogenase activities were 45%, 20% and 35% higher than a-CO2, respectively. Holistically, a high bacterial diversity and

  15. Towards Global Simulation of Irrigation in a Land Surface Model: Multiple Cropping and Rice Paddy in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Beaudoing, Hiroko Kato; Rodell, Matthew; Ozdogan, Mutlu

    2010-01-01

    Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.

  16. Cooked rice texture and rice flour pasting properties; impacted by rice temperature during milling.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2015-03-01

    Rice milling plays a key factor in determining rice quality and value. Therefore accurate quality assessments are critical to the rice industry. This study was undertaken to assess the effect of exposing rice to elevated temperatures during milling, on cooked rice texture and rice flour pasting properties. Two long (Cybonnett and Francis) and one medium (Jupiter) rice (oryzae sativa L.) cultivars were milled using McGill laboratory mill for 30 and 40 s after warmed up the mill before milling. Four different milling temperatures per milling duration were achieved. Cooked rice texture properties were assessed using a uniaxial compression test and rice flour pasting properties measured using a TA-2000 rheometer. Results of this study showed that exposure of rice to high temperatures during milling significantly decreased cooked rice firmness. An increase in milled rice temperature after milling from 10.0 to 13.3 °C resulted in a 5.4 and 8.1 N decrease in cooked rice firmness. Although not always significant, the increase in milled rice temperature during milling resulted in an increase in cooked rice stickiness. The increase in milling temperature also showed significant increase in rice flour pasting properties. Changes in rice functional characteristics were attributed to the changes occurring to rice chemical constituents due to temperature exposure as indicated by the increase in rice protein hydrophobicity. Proteins are known to affect rice starch water holding capacity and other starch gelatinization properties.

  17. Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches

    PubMed Central

    Kumar, Arvind; Dixit, Shalabh; Ram, T.; Yadaw, R. B.; Mishra, K. K.; Mandal, N. P.

    2014-01-01

    The increased occurrence and severity of drought stress have led to a high yield decline in rice in recent years in drought-affected areas. Drought research at the International Rice Research Institute (IRRI) over the past decade has concentrated on direct selection for grain yield under drought. This approach has led to the successful development and release of 17 high-yielding drought-tolerant rice varieties in South Asia, Southeast Asia, and Africa. In addition to this, 14 quantitative trait loci (QTLs) showing a large effect against high-yielding drought-susceptible popular varieties were identified using grain yield as a selection criterion. Six of these (qDTY 1.1, qDTY 2.2, qDTY 3.1, qDTY 3.2, qDTY 6.1, and qDTY 12.1) showed an effect against two or more high-yielding genetic backgrounds in both the lowland and upland ecosystem, indicating their usefulness in increasing the grain yield of rice under drought. The yield of popular rice varieties IR64 and Vandana has been successfully improved through a well-planned marker-assisted backcross breeding approach, and QTL introgression in several other popular varieties is in progress. The identification of large-effect QTLs for grain yield under drought and the higher yield increase under drought obtained through the use of these QTLs (which has not been reported in other cereals) indicate that rice, because of its continuous cultivation in two diverse ecosystems (upland, drought tolerant, and lowland, drought susceptible), has benefited from the existence of larger genetic variability than in other cereals. This can be successfully exploited using marker-assisted breeding. PMID:25205576

  18. Regional Climate Change Scenarios for Mexico and Potential Impacts on Rainfed Maize Agriculture.

    NASA Astrophysics Data System (ADS)

    Conde, C.; Estrada, F.; Martínez, B.; Sánchez, O.; Monterroso, A.; Rosales, G.; Gay, C.

    2010-03-01

    Regional climate change scenarios that were used to assess the potential impacts on different sectors in Mexico are presented, with an application of those scenarios for the agricultural sector. The results of that research were delivered to the Mexican government for the development of the Mexican Fourth National Communication, which will be presented to the United Nations Framework Convention on Climate Change (UNFCCC). To generate regional climate change scenarios the models and criteria suggested by the Intergovernmental Panel on Climate Change (IPCC) in its Fourth Assessment Report (4AR) were applied. Those criteria are: Consistency with global projections, Physical plausibility, Applicability in impact assessments, Representative of the potential range of changes in the future, Accessibility for the users of impacts assessments. The regional scenarios that were generated focus mainly on the applicability and accessibility criteria. A kick-off meeting was held at the beginning of the research work for the Fourth National Communication, to ensure that those criteria were fulfilled. Specifically, a set of climate change scenarios was generated using the outputs for temperature and precipitation of three General Circulation Models (GCMs): ECHAM5, HADGEM1 y GFDL CM2.0, for the horizons 2030 and 2050, and for the emission scenarios A1B, A2, B2 y B1. Those scenarios can be found in our web page in a low spatial resolution (2.5 º x 2.5º), and with high resolution (5’ x 5’). To assess the potential impacts on rainfed maize agriculture, the changes of the suitability of different regions in the country were evaluated, considering maize temperature and precipitation requirements at its different stages of development. Four categories of suitability (high, moderated, marginal, and no suitable) were characterized for current and future climatic conditions. Using the A2 and B2 emission scenarios, the three GCMs and the horizon 2050, results showed that around 67% of

  19. Mitigation options for methane emissions from rice fields in the Philippines

    SciTech Connect

    Lantin, R.S.; Buendia, L.V.; Wassmann, R.

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  20. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    With vast regions already experiencing water shortages, it is becoming imperative to manage sustainably the available water resources. As agriculture is by far the most important user of freshwater and the role of irrigation is projected to increase in face of climate change and increased food requirements, it is particularly important to develop simple, widely applicable models of irrigation water needs for short- and long-term water resource management. Such models should synthetically provide the key irrigation quantities (volumes, frequencies, etc.) for different irrigation schemes as a function of the main soil, crop, and climatic features, including rainfall unpredictability. Here we consider often-employed irrigation methods (e.g., surface and sprinkler irrigation systems, as well as modern micro-irrigation techniques) and describe them under a unified conceptual and theoretical framework, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. We obtain mostly analytical solutions for the stochastic steady state of soil moisture probability density function with random rainfall timing and amount, and compute water requirements as a function of climate, crop, and soil parameters. These results provide the necessary starting point for a full assessment of irrigation strategies, with reference to sustainability, productivity, and profitability, developed in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and net profit. Adv Water Resour 2011;34(2):272-81].

  1. Development of a decision support system for small reservoir irrigation systems in rainfed and drought prone areas.

    PubMed

    Balderama, Orlando F

    2010-01-01

    An integrated computer program called Cropping System and Water Management Model (CSWM) with a three-step feature (expert system-simulation-optimization) was developed to address a range of decision support for rainfed farming, i.e. crop selection, scheduling and optimisation. The system was used for agricultural planning with emphasis on sustainable agriculture in the rainfed areas through the use of small farm reservoirs for increased production and resource conservation and management. The application of the model was carried out using crop, soil, and climate and water resource data from the Philippines. Primarily, four sets of data representing the different rainfall classification of the country were collected, analysed, and used as input in the model. Simulations were also done on date of planting, probabilities of wet and dry period and with various capacities of the water reservoir used for supplemental irrigation. Through the analysis, useful information was obtained to determine suitable crops in the region, cropping schedule and pattern appropriate to the specific climate conditions. In addition, optimisation of the use of the land and water resources can be achieved in areas partly irrigated by small reservoirs.

  2. How Will Climate Change Impact Water Consumption for Rice Irrigation in Southern Brazil?

    NASA Astrophysics Data System (ADS)

    dos Santos, T. V.; Twine, T. E.

    2015-12-01

    Globally, agricultural water use accounts for most of the water that is withdrawn from surface water and groundwater. Rice, one of the world's leading food crops, requires that fields be continuously flooded to obtain optimal yields. High air temperature and consecutive rainless days in rice-growing areas can significantly reduce rice yields, leading to food scarcity. Climate change is expected to affect water demand for rice via changes in rainfall regime, soil water balance, and evapotranspiration. Higher temperatures and increased variability of precipitation are predicted to increase water demand and could potentially require more irrigation in lowland rice-growing areas. In this study we present the first results from model simulations in which we integrated a rice model into the Agro-IBIS dynamic ecosystem model. We predict the impact of climate change on the water use requirement of rice production in southern Brazil and evaluate changes in irrigation needed to meet minimum water demand to sustain current yields. Brazil is the 9th top rice producer in the world, and southern Brazil accounts for about 80% of the national production. The Agro-IBIS model was driven with historic weather data provided by CRU (1961-90) and with two future climate scenarios from the Coupled Model Intercomparison Project Phase 5 (CMIP5) for 2015-2100 - Representative Concentration Pathways 4.5 (RCP45) and 8.5 (RCP85). On an hourly time step, Agro-IBIS accounts for gains (precipitation) and losses (evaporation, transpiration, infiltration and runoff) of water in each grid cell, and uses rules to irrigate in order to maintain a specific height of standing water on the field. Simulated historic and future amounts of irrigated water needed to maintain this water height will be evaluated to predict future water demand for rice production in southern Brazil.

  3. Morphological assessment of reconstructed lowland streams in the Netherlands

    NASA Astrophysics Data System (ADS)

    Eekhout, Joris P. C.; Hoitink, Antonius J. F.; de Brouwer, Jan H. F.; Verdonschot, Piet F. M.

    2015-07-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Re-meandering is the common practice in restoring these lowland streams. Three reconstructed streams were monitored during the initial two years after construction of a new channel. The monitoring program included morphological surveys, sediment sampling, habitat pattern surveys, and discharge and water level measurements. Adjustments of the longitudinal bed profile formed the main morphological response. These adjustments were most likely caused by a lack of longitudinal connectivity of the streams as a whole, interrupting transport of sediment at locations of weirs and culverts. Bank erosion was observed only in a limited number of channel bends, and was often related to floodplain heterogeneity. Longitudinal channel bed adjustments and bank erosion were mainly caused by exogenous influences. In channel bends, the cross-sectional shape transformed from trapezoidal to the typical asymmetrical shape as found in meandering rivers. This behaviour can be attributed to an autogenous response to the prevailing flow conditions. Due to the prevailing fine sediment characteristics, bed material is readily set in motion and is being transported during the entire year. The existing design principles fail to address the initial morphological development after reconstruction. An evaluation of pre-set targets to realise water depth and flow velocity ranges shows the current procedures to be deficient. Based on this unfavourable evaluation, and the two-dimensional nature of habitat patterns needed to improve the conditions for stream organisms, we recommend to predict morphological developments as part of the design procedures for lowland stream restoration in the Netherlands.

  4. Herbicide contamination and dispersion pattern in lowland springs.

    PubMed

    Laini, Alex; Bartoli, Marco; Lamastra, Lucrezia; Capri, Ettore; Balderacchi, Matteo; Trevisan, Marco

    2012-11-01

    Herbicides reduce the diversity of flora and fauna in freshwater ecosystems and also contaminate groundwater due to leaching. Herbicide contamination can be a serious threat for all groundwater-dependent ecosystems (GDE), altering their chemical and biological quality. Successful management to protect GDE is dependent on detailed knowledge of the hydrogeological and hydrochemical features of the surrounding environment. We consider the possible diffuse contamination by herbicides of groundwater and of GDE as lowland springs, semi-artificial ecosystems with elevated biodiversity. The main objectives of the present work were thus: (1) to map herbicide contamination in lowland springs, (2) to evaluate the potential risk for biota and (3) to quantify the extent of the area from which the herbicide use can affect the water quality of lowland springs. In June and August 2009, nearly 23 springs within the Po River Plain (Northern Italy) were sampled and analyzed for five herbicides used to control weeds in maize. Hydrogeological properties, half-lives of the herbicides and their concentrations in both groundwater and springs were used to quantify the area from which the contamination could originate. Such evaluation was performed by means of GIS techniques. Terbuthylazine were the only herbicide found, together with its metabolite desethylterbuthylazine. In 16 out of 84 measurements, their concentrations were above the threshold for drinking water; however, they were always below the ecotoxicological end-points of aquatic flora and fauna. Spatial analyses reveal that the theoretical area from which herbicides can contaminate spring water is within a distance varying between a few and 1800 m. Our findings indicate that conservation plans should focus on the fields adjacent to or surrounding the springs and should address the optimization of irrigation practices, restoration of buffer strips, crop rotation and in general more sustainable agricultural practices in the

  5. Exchange of nitrous oxide within the Hudson Bay lowland

    NASA Technical Reports Server (NTRS)

    Schiller, C. L.; Hastie, D. R.

    1994-01-01

    The source strength of atmospheric trace gases from natural ecosystems must be quantified in order to assess the effect of such inputs on the background tropospheric chemistry. A static chamber technique and a gas exchange technique were used to determine the emissions of nitrous oxide from five sites within the Hudson Bay Lowland, as part of the Northern Wetland Study. Two mechanisms, one diffusive and the other episodic, were found likely to be responsible for the emissions of nitrous oxide. The annual diffusive flux ranged from -3.8 mg(N2O)/sq m in a treed bog to 7.9 mg(N2O)/sq m in an open fen. The addition of the episodic flux, increased this range to -2.1 mg(N2O)/sq m and 18.5 mg(N2O)/sq m respectively. These episodic emissions occurred in from 2.5% to 16.7% of the samples during the late summer peak emission period. Since the gas exchange rate could not detect the episodic emissions, it was found to be a poor method for water emission rate determination within the wetland. LANDSAT-Thermatic Mapper (TM) imagery was used to scale the emissions, from the chamber level to an integrated average over the entire Hudson Bay Lowland. The total emission rate of N2O from the Hudson Bay Lowland, was determined to be 1.2 Gg(N2O)/year, of which 80% was attributed to episodic emissions.

  6. Determinants for grading Malaysian rice

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Yusoff, Nooraini; Ahmad, Norhayati

    2016-08-01

    Due to un-uniformity of rice grading practices in Malaysia, zones which actively producing rice in Malaysia are using their own way of grading rice. Rice grading is important in determining rice quality and its subsequent price in the market. It is an important process applied in the rice production industry with the purpose of ensuring that the rice produced for the market meets the quality requirements of consumer. Two important aspects that need to be considered in determining rice grades are grading technique and determinants to be used for grading (usually referred as rice attributes). This article proposes the list of determinants to be used in grading Malaysian rice. Determinants were explored through combination of extensive literature review and series of interview with the domain experts and practitioners. The proposed determinants are believed to be beneficial to BERNAS in improving the current Malaysian rice grading process.

  7. Relating raw rice color and composition to cooked rice color.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, the color of milled rice is economically important. The whiter the rice the more it is preferred by consumers and the more value it has in the market place. Little attention has been given to relating raw rice color to cooked milled rice color and, specifically, to determining the i...

  8. The influence of nitrogen fertiliser rate and crop rotation on soil methane flux in rain-fed potato fields in Wuchuan County, China.

    PubMed

    Wang, Liwei; Pan, Zhihua; Xu, Hui; Wang, Cheng; Gao, Lin; Zhao, Peiyi; Dong, Zhiqiang; Zhang, Jingting; Cui, Guohui; Wang, Sen; Han, Guolin; Zhao, Hui

    2015-12-15

    As one of the important greenhouse gases, the characteristics and principles of methane exchange characteristics in cultivated lands have become hot topics in current climate change research. This study examines the influences of nitrogen fertilisation, temperature and soil water content on methane exchange characteristic and methane exchange functional gene-pmoA gene abundance based on experimental observations of methane exchange fluxes using the static chamber-gas chromatographic method and measurements of methanotroph gene copy numbers in three growing periods by real-time PCR in rain-fed potato fields. The results indicate that the rain-fed potato fields were a CH4 sink with an average annual methane absorption (negative emission) of 940.8±103.2 g CH4-C/ha/year. The cumulative methane absorption first exhibited flat and subsequently increasing trend with the increase of nitrogen fertilisation from 0~135 kg N·ha(-1). Methane cumulative absorption significantly increased with the increase of temperature when temperatures were below 19.6 °C. Methane oxidation capacity (methanotroph pmoA gene copy numbers) showed an increasing and subsequently decreasing trend with the increase of soil moisture. Crop rotation was observed to increase the methane absorption in rain-fed potato fields and nearly one time higher than that under continuous cropping. A mechanism concept model of the methane exchange in rain-fed potato fields was advanced in this paper.

  9. Groundwater head controls nitrate export from an agricultural lowland catchment

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Schmidt, Christian; Rode, Michael; Lischeid, Gunnar; Weise, Stephan M.; Fleckenstein, Jan H.

    2016-10-01

    Solute concentration variability is of fundamental importance for the chemical and ecological state of streams. It is often closely related to discharge variability and can be characterized in terms of a solute export regime. Previous studies, especially in lowland catchments, report that nitrate is often exported with an accretion pattern of increasing concentrations with increasing discharge. Several modeling approaches exist to predict the export regime of solutes from the spatial relationship of discharge generating zones with solute availability in the catchment. For a small agriculturally managed lowland catchment in central Germany, we show that this relationship is controlled by the depth to groundwater table and its temporal dynamics. Principal component analysis of groundwater level time series from wells distributed throughout the catchment allowed derivation of a representative groundwater level time series that explained most of the discharge variability. Groundwater sampling revealed consistently decreasing nitrate concentrations with an increasing thickness of the unsaturated zone. The relationships of depth to groundwater table to discharge and to nitrate concentration were parameterized and integrated to successfully model catchment discharge and nitrate export on the basis of groundwater level variations alone. This study shows that intensive and uniform agricultural land use likely results in a clear and consistent concentration-depth relationship of nitrate, which can be utilized in simple approaches to predict stream nitrate export dynamics at the catchment scale.

  10. The puzzling origin of the Martian Northern Lowlands.

    NASA Astrophysics Data System (ADS)

    Altieri, F.; Carrozzo, G.; Carli, C.; Geminale, A.; Bellucci, G.

    Surface studies of the northern lowlands of Mars have shown that this region has undergone a complex history including volcanism, sedimentary deposition and secondary modification by climate change. Despite these analyses, the origin and the evolution of this region are still debated. No clear and definitive evidences have been found so far to conclude whether these plains were formed by a giant impact, were once covered by an ocean or were filled by a large quantity of lavas. In the visible and infrared spectral range, the northern lowlands differ from southern terrains in the NIR negative slope while they exhibit VNIR spectra similar to the southern pyroxene-rich areas (Carrozzo et al., 2012). These observations, combined with both recent detection of mafic minerals at higher spatial resolution by CRISM (Salvatore et al., 2010) and recent results of Horgan and Bell (2012), supports that their mineralogy is linked to weathered basalts with a glassy component. In addition to this, the spectral similarity of Acidalia area with the northern circumpolar sand dunes, apart from the hydration features, suggests that the weathering processes that took place there could be related to past glacial activity, in agreement with superficial morphology showing glacial structures. Aim of this work is to combine the OMEGA mineralogical maps with morphological features (Tanaka et al., 2011) and investigate possible terrestrial analogues in order to give some constrains on the composition and origin of these puzzling Martian terrains.

  11. About climate variabilitiy leading the hydric condition of the soil in the rainfed region of Argentina

    NASA Astrophysics Data System (ADS)

    Pántano, V. C.; Penalba, O. C.

    2013-05-01

    Extreme events of temperature and rainfall have a socio-economic impact in the rainfed agriculture production region in Argentina. The magnitude of the impact can be analyzed through the water balance which integrates the characteristics of the soil and climate conditions. Changes observed in climate variables during the last decades affected the components of the water balance. As a result, a displacement of the agriculture border towards the west was produced, improving the agricultural production of the region. The objective of this work is to analyze how the variability of rainfall and temperature leads the hydric condition of the soil, with special focus on extreme events. The hydric conditions of the soil (HC= Excess- Deficit) were estimated from the monthly water balance (Thornthwaite and Mather method, 1957), using monthly potential evapotranspiration (PET) and monthly accumulated rainfall (R) for 33 stations (period 1970-2006). Information of temperature and rainfall was provided by National Weather Service and the effective capacity of soil water was considered from Forte Lay and Spescha (2001). An agricultural extreme condition occurs when soil moisture and rainfall are inadequate or excessive for the development of the crops. In this study, we define an extreme event when the variable is less (greater) than its 20% and 10% (80% and 90%) percentile. In order to evaluate how sensitive is the HC to water and heat stress in the region, different conditional probabilities were evaluated. There is a weaker response of HC to extreme low PET while extreme low R leads high values of HC. However, this behavior is not always observed, especially in the western region where extreme high and low PET show a stronger influence over the HC. Finally, to analyze the temporal variability of extreme PET and R, leading hydric condition of the soil, the number of stations presenting extreme conditions was computed for each month. As an example, interesting results were

  12. Spatial and temporal heterogeneity of water soil erosion in a Mediterranean rain-fed crop

    NASA Astrophysics Data System (ADS)

    López-Vicente, M.; Quijano, L.; Gaspar, L.; Machín, J.; Navas, A.

    2012-04-01

    Fertile soil loss by raindrop impact and runoff processes in croplands presents significant variations at temporal and spatial scales. The combined use of advanced GIS techniques and detailed databases allows high resolution mapping of runoff and soil erosion processes. In this study the monthly values of soil loss are calculated in a medium size field of rain-fed winter barley and its drainage area located in the Central Spanish Pre-Pyrenees. The field is surrounded by narrow strips of dense Mediterranean vegetation (mainly holm oaks) and grass. Man-made infrastructures (paved trails and drainage ditches) modify the overland flow pathways and the study site appears hydrologically closed in its northern and western boundaries. This area has a continental Mediterranean climate with two humid periods, one in spring and a second in autumn and a dry summer with rainfall events of high intensity from July to October. The average annual rainfall is 495 mm and the average monthly rainfall intensity ranges from 1.1 mm / h in January to 7.4 mm / h in July. The predicted rates were obtained after running the RMMF model (Morgan, 2001) with the enhancements made to this model by Morgan and Duzant (2008) to the topographic module, and by López-Vicente and Navas (2010) to the hydrological module. A total of 613 soil samples were collected and all input and output maps were generated at high spatial resolution (1 x 1 m of cell size) with ArcMapTM 10.0. A map of effective cumulative runoff was calculated for each month of the year with a weighted multiple flow algorithm and four sub-catchments were distinguished within the field. The average soil erosion in the cultivated area is 1.32 Mg / ha yr and the corresponding map shows a high spatial variability (s.d. = 7.52 Mg / ha yr). The highest values of soil erosion appear in those areas where overland flow is concentrated and slope steepness is higher. The unpaved trail present the highest values of soil erosion with an average

  13. Rice (Oryza) hemoglobins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  14. Making rice even healthier!

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is a naturally healthy food, but what if it could be made even healthier? Would Americans eat more rice if it could be advertised to be a 'New and Improved' source of calcium to promote bone growth, or iron to prevent anemia? Grocery stores are full of foods that are vitamin enhanced to attract...

  15. Preliminary Studies of the Performance of Quinoa (Chenopodium quinoa Willd.) Genotypes under Irrigated and Rainfed Conditions of Central Malawi

    PubMed Central

    Maliro, Moses F. A.; Guwela, Veronica F.; Nyaika, Jacinta; Murphy, Kevin M.

    2017-01-01

    The goal of sustainable intensification of agriculture in Malawi has led to the evaluation of innovative, regionally novel or under-utilized crop species. Quinoa (Chenopodium quinoa Willd.) has the potential to provide a drought tolerant, nutritious alternative to maize. We evaluated 11 diverse varieties of quinoa for their yield and agronomic performance at two locations, Bunda and Bembeke, in Malawi. The varieties originated from Ecuador, Chile and Bolivia in South America; the United States and Canada in North America; and, Denmark in Europe, and were chosen based on their variation in morphological and agronomic traits, and their potential for adaptation to the climate of Malawi. Plant height, panicle length, days to maturity, harvest index, and seed yield were recorded for each variety under irrigation at Bunda and Bembeke, and under rainfed conditions at Bunda. Plant height was significantly influenced by both genotype and environment. There were also significant differences between the two locations for panicle length whereas genotype and genotype × environment (G × E) interaction were not significantly different. Differences were found for genotype and G × E interaction for harvest index. Notably, differences for genotype, environment and G × E were found for grain yield. Seed yield was higher at Bunda (237–3019 kg/ha) than Bembeke (62–692 kg/ha) under irrigated conditions. The highest yielding genotype at Bunda was Titicaca (3019 kg/ha) whereas Multi-Hued was the highest (692 kg/ha) at Bembeke. Strong positive correlations between seed yield and (1) plant height (r = 0.74), (2) days to maturity (r = 0.76), and (3) biomass (r = 0.87) were found under irrigated conditions. The rainfed evaluations at Bunda revealed significant differences in seed yield, plant biomass, and seed size among the genotypes. The highest yielding genotype was Black Seeded (2050 kg/ha) followed by Multi-Hued (1603 kg/ha) and Bio-Bio (1446 kg/ha). Ecuadorian (257 kg/ha) was

  16. Preliminary Studies of the Performance of Quinoa (Chenopodium quinoa Willd.) Genotypes under Irrigated and Rainfed Conditions of Central Malawi.

    PubMed

    Maliro, Moses F A; Guwela, Veronica F; Nyaika, Jacinta; Murphy, Kevin M

    2017-01-01

    The goal of sustainable intensification of agriculture in Malawi has led to the evaluation of innovative, regionally novel or under-utilized crop species. Quinoa (Chenopodium quinoa Willd.) has the potential to provide a drought tolerant, nutritious alternative to maize. We evaluated 11 diverse varieties of quinoa for their yield and agronomic performance at two locations, Bunda and Bembeke, in Malawi. The varieties originated from Ecuador, Chile and Bolivia in South America; the United States and Canada in North America; and, Denmark in Europe, and were chosen based on their variation in morphological and agronomic traits, and their potential for adaptation to the climate of Malawi. Plant height, panicle length, days to maturity, harvest index, and seed yield were recorded for each variety under irrigation at Bunda and Bembeke, and under rainfed conditions at Bunda. Plant height was significantly influenced by both genotype and environment. There were also significant differences between the two locations for panicle length whereas genotype and genotype × environment (G × E) interaction were not significantly different. Differences were found for genotype and G × E interaction for harvest index. Notably, differences for genotype, environment and G × E were found for grain yield. Seed yield was higher at Bunda (237-3019 kg/ha) than Bembeke (62-692 kg/ha) under irrigated conditions. The highest yielding genotype at Bunda was Titicaca (3019 kg/ha) whereas Multi-Hued was the highest (692 kg/ha) at Bembeke. Strong positive correlations between seed yield and (1) plant height (r = 0.74), (2) days to maturity (r = 0.76), and (3) biomass (r = 0.87) were found under irrigated conditions. The rainfed evaluations at Bunda revealed significant differences in seed yield, plant biomass, and seed size among the genotypes. The highest yielding genotype was Black Seeded (2050 kg/ha) followed by Multi-Hued (1603 kg/ha) and Bio-Bio (1446 kg/ha). Ecuadorian (257 kg/ha) was the

  17. Prone to fix: Resilience of the active nitrogen-fixing rice root microbiome

    NASA Astrophysics Data System (ADS)

    Hurek, Thomas; Sabale, Mugdha; Sarkar, Abhijit; Pees, Tobias; Reinhold-Hurek, Barbara

    2016-04-01

    Due to water consumption, many lowland rice areas in Asia are undergoing a transition that involves adoption of new management strategies, with crop rotations encompassing a non-flooded crop, including maize. Shifting from flooded to non-flooded cropping is likely to affect microbial nitrogen cycling. For analysis of the root-associated microbiome of rice and maize in response to flooding or nitrogen fertilizer, we combine methods of microbial ecology (Next-Generation sequencing of amplicons), and a reductionist approach with pure cultures of the endophytic diazotroph Azoarus sp.. Field plots of the ICON project (Introducing non-flooded crops in rice-dominated landscapes: Impact on Carbon, nitrogen and water budgets) at the International Rice Research Institute in the Philippines were analyzed. Root-associated activity of nitrogenase gene expression was assessed by quantitative RT-PCR of nifH. For rice, expression levels were surprisingly stable, in response to non-flooded versus flooded conditions, or in response to conventional nitrogen fertilizer applications versus lack of N-fertilizer. In contrast, the active diazotrophic population of maize roots was not resistant to N-fertilization, nifH expression strongly decreased. Concordant changes in the diazotrophic resident or active communities were detected by nifH amplicon sequence analysis, based on bacterial DNA or mRNA, respectively. For high-resolution analyses of the endobiome in gnotobiotic culture, we developed a dual fluorescence reporter system for Azoarcus sp. BH72 which allows to quantify and visualize epi- and endophytic gene expression by concfocal microscopy (CLSM). This allowed us to demonstrate sites of active nitrogen fixation (gene expression) in association with rice roots. We confirmed that at low nitrogen fertilizer levels, endophytic nifH gene expression persisted in rice roots, while it was repressed in maize roots. This supports our observation of remarkable stability of nitrogen fixation

  18. Deposition by the 2011 Tohoku-oki tsunami on coastal lowland controlled by beach ridges near Sendai, Japan

    NASA Astrophysics Data System (ADS)

    Takashimizu, Yasuhiro; Urabe, Atsushi; Suzuki, Koji; Sato, Yoshiki

    2012-12-01

    A study of the 2011 Tohoku-oki tsunami deposits on the coastal lowland of the Sendai Plain, Japan was carried out along a shore-perpendicular survey line in the Arahama area. Field descriptions and tsunami water depth measurements were complemented by sedimentary analyses, including grain size, grain fabric and diatom analysis. The tsunami deposits show a generally fining-inland trend along the 3.4 km long transect. The depositional facies, grain size analysis and grain fabric data suggest that most of the tsunami deposits were laid down during the tsunami inflow, except at one site. These tsunami deposits are characterized by parallel-laminated or massive sand and silt with pieces of woods, fragments of glass, rip-up mud clasts and an erosional base. Minor backwash deposits overlying the inflow sand layer were only observed on one beach ridge and attributed to the topographic high. Marine diatom species comprised only approximately 2% of the diatom assemblage in tsunami deposits and their content decreased landward. In this study, diatom assemblages were similar in the rice field soil and tsunami layers, suggesting that the muddy fraction of the deposits mainly consists of sediments derived from the tsunami-eroded rice field soil. As a result of soil erosion, the tsunami had a high suspended sediment load. Furthermore, after the first tsunami inundation, seawater left by the tsunami did not drain completely to the sea because of the high coastal beach ridge and/or coastal subsidence due to the massive earthquake. Therefore, strong tsunami outflows to the sea did not occur and these areas were covered by mud deposited from stagnant water.

  19. Comparing the water-use-efficiency of maize and biomass sorghum grown in the rain-fed, Midwestern US.

    NASA Astrophysics Data System (ADS)

    Roby, M.; VanLoocke, A. D.; Heaton, E.; Miguez, F.; Salas Fernandez, M.

    2015-12-01

    Uncertainty in the quantity and timing of precipitation in a changing climate, combined with an increased demand for non-grain ethanol feedstock, may necessitate expanding the production of more water-use-efficient and less drought sensitive crops for biofuel applications. Research suggests that biomass sorghum [Sorghum bicolor (L.) Moench] is more drought tolerant and can produce more biomass than maize in water-limiting environments; however, sorghum water use data are scarce for the rain-fed Midwestern US. To address this gap, a replicated (n=3) side-by-side trial was established in Ames, Iowa to determine cumulative water use and water-use-efficiency of maize and biomass sorghum throughout the 2014 and 2015 growing seasons. Latent heat flux was estimated using the residual in the energy balance technique. Continuous micrometeorological measurements were supplemented by periodic measurements of leaf area index (LAI) and above-ground biomass. Water use (WU), aboveground biomass, and water-use-efficiency (WUE) were found to be similar for both crop types in 2014; data from the 2015 growing season are currently being processed. In 2015, leaf gas exchange measurements were made with a portable photosynthesis instrument. Photosynthetic parameters from gas exchange measurements will be implemented in a semi-mechanistic crop model (BioCro) as a method for scaling WUE estimates across the rain-fed Midwestern US driven with future climate projections. This research highlights the importance of understanding the potential effects of expanding biomass sorghum production on the hydrologic cycle of the Midwestern, US.

  20. Land, Water and Society in the Maya Lowlands

    NASA Astrophysics Data System (ADS)

    Murtha, T.; French, K.; Duffy, C.; Webster, D.

    2013-12-01

    This paper reports the results of our project investigating the long-term spatial and temporal dynamics of land use management, agricultural decision-making and patterns of resource availability in the tropical lowlands of Central America. Overall, our project combines diachronic environmental simulation with historic settlement pattern survey to address a series of long-standing questions about the coupled natural and human (CNH) landscape history in the Central Maya lowlands (at the UNESCO world heritage site of Tikal in the Maya Biosphere Reserve). The paper describes the preliminary results of our project, including changing patterns of land, water, settlement and political history using climate, soil and hydrologic modeling and time series spatial analysis of population and settlement patterns. The critical period of the study, 1000 BC until the present, begins with dispersed settlements accompanied by widespread deforestation and soil erosion. Population size and density grows rapidly for 800 years, while deforestation and erosion rates decline; however, there is striking evidence of political evolution during this period, including the construction of monumental architecture, hieroglyphic monuments detailing wars and alliances, and the construction of a defensive earthwork feature, signaling political territories and possibly delineating natural resource boundaries. Population decline and steady reforestation followed until more recent migration into the region, which has impacted the biosphere ecology. Building on our previous research regionally and comparative research completed in Belize and Mexico, we are modeling sample periods the 3,000-year landscape history of the region, comparing land and water availability to population distributions and what we know about political history. Simulations are generated using historic climate and land use data, primarily relying on the Erosion Productivity Impact Calculator (EPIC) and the Penn State Integrated

  1. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China.

    PubMed

    Zong, Y; Chen, Z; Innes, J B; Chen, C; Wang, Z; Wang, H

    2007-09-27

    The adoption of cereal cultivation was one of the most important cultural processes in history, marking the transition from hunting and gathering by Mesolithic foragers to the food-producing economy of Neolithic farmers. In the Lower Yangtze region of China, a centre of rice domestication, the timing and system of initial rice cultivation remain unclear. Here we report detailed evidence from Kuahuqiao that reveals the precise cultural and environmental context of rice cultivation at this earliest known Neolithic site in eastern China, 7,700 calibrated years before present (cal. yr bp). Pollen, algal, fungal spore and micro-charcoal data from sediments demonstrate that these Neolithic communities selected lowland swamps for their rice cultivation and settlement, using fire to clear alder-dominated wetland scrub and prepare the site for occupation, then to maintain wet grassland vegetation of paddy type. Regular flooding by slightly brackish water was probably controlled by 'bunding' to maintain crop yields. The site's exploitation ceased when it was overwhelmed by marine inundation 7,550 cal. yr bp. Our results establish that rice cultivation began in coastal wetlands of eastern China, an ecosystem vulnerable to coastal change but of high fertility and productivity, attractions maximized for about two centuries by sustained high levels of cultural management of the environment.

  2. Crash and rebound of indigenous populations in lowland South America

    NASA Astrophysics Data System (ADS)

    Hamilton, Marcus J.; Walker, Robert S.; Kesler, Dylan C.

    2014-04-01

    Lowland South America has long been a battle-ground between European colonization and indigenous survival. Initial waves of European colonization brought disease epidemics, slavery, and violence that had catastrophic impacts on indigenous cultures. In this paper we focus on the demography of 238 surviving populations in Brazil. We use longitudinal censuses from all known indigenous Brazilian societies to quantify three demographic metrics: 1) effects of European contact on indigenous populations; 2) empirical estimates of minimum viable population sizes; and 3) estimates of post-contact population growth rates. We use this information to conduct population viability analysis (PVA). Our results show that all surviving populations suffered extensive mortality during, and shortly after, contact. However, most surviving populations exhibit positive growth rates within the first decade post-contact. Our findings paint a positive demographic outlook for these indigenous populations, though long-term survival remains subject to powerful externalities, including politics, economics, and the pervasive illegal exploitation of indigenous lands.

  3. Kax and kol: Collapse and resilience in lowland Maya civilization

    PubMed Central

    Dunning, Nicholas P.; Beach, Timothy P.; Luzzadder-Beach, Sheryl

    2012-01-01

    Episodes of population loss and cultural change, including the famous Classic Collapse, punctuated the long course of Maya civilization. In many cases, these downturns in the fortunes of individual sites and entire regions included significant environmental components such as droughts or anthropogenic environmental degradation. Some afflicted areas remained depopulated for long periods, whereas others recovered more quickly. We examine the dynamics of growth and decline in several areas in the Maya Lowlands in terms of both environmental and cultural resilience and with a focus on downturns that occurred in the Terminal Preclassic (second century Common Era) and Terminal Classic (9th and 10th centuries CE) periods. This examination of available data indicates that the elevated interior areas of the Yucatán Peninsula were more susceptible to system collapse and less suitable for resilient recovery than adjacent lower-lying areas. PMID:22371571

  4. Crash and rebound of indigenous populations in lowland South America.

    PubMed

    Hamilton, Marcus J; Walker, Robert S; Kesler, Dylan C

    2014-04-01

    Lowland South America has long been a battle-ground between European colonization and indigenous survival. Initial waves of European colonization brought disease epidemics, slavery, and violence that had catastrophic impacts on indigenous cultures. In this paper we focus on the demography of 238 surviving populations in Brazil. We use longitudinal censuses from all known indigenous Brazilian societies to quantify three demographic metrics: 1) effects of European contact on indigenous populations; 2) empirical estimates of minimum viable population sizes; and 3) estimates of post-contact population growth rates. We use this information to conduct population viability analysis (PVA). Our results show that all surviving populations suffered extensive mortality during, and shortly after, contact. However, most surviving populations exhibit positive growth rates within the first decade post-contact. Our findings paint a positive demographic outlook for these indigenous populations, though long-term survival remains subject to powerful externalities, including politics, economics, and the pervasive illegal exploitation of indigenous lands.

  5. Lowland forest loss in protected areas of Indonesian Borneo.

    PubMed

    Curran, L M; Trigg, S N; McDonald, A K; Astiani, D; Hardiono, Y M; Siregar, P; Caniago, I; Kasischke, E

    2004-02-13

    The ecology of Bornean rainforests is driven by El Niño-induced droughts that trigger synchronous fruiting among trees and bursts of faunal reproduction that sustain vertebrate populations. However, many of these species- and carbon-rich ecosystems have been destroyed by logging and conversion, which increasingly threaten protected areas. Our satellite, Geographic Information System, and field-based analyses show that from 1985 to 2001, Kalimantan's protected lowland forests declined by more than 56% (>29,000 square kilometers). Even uninhabited frontier parks are logged to supply international markets. "Protected" forests have become increasingly isolated and deforested and their buffer zones degraded. Preserving the ecological integrity of Kalimantan's rainforests requires immediate transnational management.

  6. Kax and kol: collapse and resilience in lowland Maya civilization.

    PubMed

    Dunning, Nicholas P; Beach, Timothy P; Luzzadder-Beach, Sheryl

    2012-03-06

    Episodes of population loss and cultural change, including the famous Classic Collapse, punctuated the long course of Maya civilization. In many cases, these downturns in the fortunes of individual sites and entire regions included significant environmental components such as droughts or anthropogenic environmental degradation. Some afflicted areas remained depopulated for long periods, whereas others recovered more quickly. We examine the dynamics of growth and decline in several areas in the Maya Lowlands in terms of both environmental and cultural resilience and with a focus on downturns that occurred in the Terminal Preclassic (second century Common Era) and Terminal Classic (9th and 10th centuries CE) periods. This examination of available data indicates that the elevated interior areas of the Yucatán Peninsula were more susceptible to system collapse and less suitable for resilient recovery than adjacent lower-lying areas.

  7. Perspectives on secondary forest management in tropical humid lowland America.

    PubMed

    Kammesheidt, Ludwig

    2002-05-01

    Secondary forests regrowing on abandoned agricultural land constitute an important, albeit widely overlooked, component in the landscape matrix of tropical lowland America. These 'new' forest resources on private land-holdings derive either from unsustainable cattle-ranching practices of better-off farmers or are part of the crop/fallow system of resource-poor farmers. If previous land use was light, secondary forest management may offer an interesting use option to better-off farmers, providing that subsidies for stand improvement are given. Improved fallow systems using partly the successional vegetation may be a way to establish sustainable small-scale agriculture for resource-poor farmers. Given some technical and financial input, land-use systems based on secondary vegetation could play a vital role both in sustainable landscape management and biodiversity conservation.

  8. A late Holocene tephrochronology for the Maya Lowlands, Central America

    NASA Astrophysics Data System (ADS)

    Nooren, K.; Huizinga, A.; Hoek, W.; Bergen, M. V.; Middelkoop, H.

    2012-12-01

    The Maya Lowlands in southern Mexico, Guatemala and Belize were densely populated for thousands of years, and have been the subject of intensive studies on the interaction between humans and their environment. Accurate radiocarbon dating of proxy records and disrupting events has proved to be difficult due to the lack of organic material in many deposits and the 'old carbon effect' related to the calcareous geology of the Yucatan Peninsula. So far, tephrostratigraphy has hardly been used to define time markers for palynological, limnological and archaeological studies in this region, despite the frequent occurrence of tephra fall. With the objective to fill this gap, we developed a tephrochronology for the Maya Lowlands using sediment cores from a flood basin of the Usumacinta-Grijalva delta in southern Mexico. Tephrostratigraphy and radiocarbon dating were used to estimate the timing of past volcanic eruptions, and chemical compositions of glass shards were used to identify potential sources. At least six tephralayers were deposited since 2000 BC, the most notable representing eruptions of El Chichón volcano in the 5th and 15th century AD. The high sulphur emissions accompanying El Chichón's eruptions allowed testing of our age-depth model through a correlation with volcanic sulphate peaks in ice cores from Greenland and Antarctica. We demonstrate the applicability of the established tephrochronological framework in a detailed chronological reconstruction of the formation of the world's largest late Holocene beach ridge plain in southern Mexico. This plain with over 500 beach ridges is a highly sensitive recorder of combined sea level rise, subsidence, storm activity and changes in climate and upstream land use since the dawn of Olmec and Maya cultures circa 5000 years ago.

  9. Validating Ancient Age of the Buried Floor of the Northern Lowlands, Mars

    NASA Technical Reports Server (NTRS)

    Buczkowski, D. L.; Frey, H. V.; Roark, J. H.; McGill, G. E.

    2004-01-01

    Hesperian and Amazonian plains units cover the northern lowlands but little is known about what this surface covers. Models for the creation of the lowlands and the dichotomy boundary implement mechanisms which vary from internal processes, such as plate tectonics or first-order mantle convection, to external processes, such as a single large impact or multiple impacts. Different models require different time scales for low-land formation; determining the age of the buried low-land surface would help constrain the formation models. The Mars Orbiting Laser Altimeter (MOLA) has yielded a high-precision, topographic gridded data set that reveals the presence of Quasi-Circular Depressions (QCDs) in both the southern highlands and the northern lowlands. Most of these roughly circular depressions have no corresponding visible structural feature on the surface. It is proposed that these QCDs are the surface representation of buried impact craters. Based on this assumption, cumulative number vs. diameter curves were constructed, which placed the age of the buried surface of the northern lowlands in the Early or pre-Noachian. A Noachian basement is supported by the remnants of large craters and multi-ring basins discovered in earlier research, but the QCDs provide the first evidence of this for the entire lowland. Constraining the age of the basement floor to the earliest Noachian, however, would require that the process that formed the northern lowlands either occurred in the early Noachian or involves removal of material from the bottom of the crust without destroying the previously formed craters to achieve the modeled crustal thinning. But can we establish that the QCDs do in fact represent buried impact craters, and thus validate an Early Noachian age for the buried lowland floor?

  10. Lake Tapps tephra: An early Pleistocene stratigraphic marker in the Puget Lowland, Washington

    USGS Publications Warehouse

    Westgate, J.A.; Easterbrook, D.J.; Naeser, N.D.; Carson, R.J.

    1987-01-01

    The rhyolitic Lake Tapps tephra was deposited about 1.0 myr ago, shortly after culmination of the early phase of the Salmon Springs Glaciation in the Puget Lowland. It is contained within sediments that were deposited in ponds or lakes in front of the reteating glacier. An herb-dominated tundra existed in the southern Puget Lowland at that time. Lake Tapps tephra is most likely the product of an eruption that in part was phreatomagmatic. It forms an early Pleistocene stratigraphic marker across the southern sector of the Puget Lowland and provides a link between Puget lobe sediments of the Cordilleran Ice Sheet and sediments deposited by Olympic alpine glaciers. ?? 1987.

  11. Climatic impact of tropical lowland deforestation on nearby montane cloud forests.

    PubMed

    Lawton, R O; Nair, U S; Pielke Sr, R A; Welch, R M

    2001-10-19

    Tropical montane cloud forests (TMCFs) depend on predictable, frequent, and prolonged immersion in cloud. Clearing upwind lowland forest alters surface energy budgets in ways that influence dry season cloud fields and thus the TMCF environment. Landsat and Geostationary Operational Environmental Satellite imagery show that deforested areas of Costa Rica's Caribbean lowlands remain relatively cloud-free when forested regions have well-developed dry season cumulus cloud fields. Further, regional atmospheric simulations show that cloud base heights are higher over pasture than over tropical forest areas under reasonable dry season conditions. These results suggest that land use in tropical lowlands has serious impacts on ecosystems in adjacent mountains.

  12. Assessment of Predictability of Philippine Rice Production with Climate Information

    NASA Astrophysics Data System (ADS)

    Koide, N.; Robertson, A. W.; Qian, J.; Ines, A. M.

    2010-12-01

    El Niño Southern Oscillation is the most influential factor on the Philippine climate and has measurable impacts on rice production. The previous studies suggested potential of climate information for prediction of the rice production. For example, Roberts et al. (2009) showed the statistically significant relationship of dry-season rice production in Luzon with Niño sea surface temperature anomalies (SSTA) averaged over the Niño 3.4 region (5°N-5°S, 120°-170°W) for July to September of the year before the harvest. However, the predictive skills of climate information for rice production have not been previously analyzed yet. Thus, we have conducted the assessment of predictive skills of one uncoupled general circulation models (GCMs) (ECHAM-CA) and two coupled GCMs (ECHAM-MOM, and ECHAM-CFS), as well as those of Niño 3.4 SSTAs and the volume of water warmer than 20°C (WWV) in the equatorial Pacific Ocean (5°N-5°S, 120°E to 80°W), based on cross validation with MLR, PCR, CCA. The result clearly shows high potential of these climate information as a tool for prediction of rice production with sufficient lead time for decision makers. Detailed results are as below. Dry Season Dry season rice production of the Philippines of both irrigation and rainfed systems significantly depend on rainfall in OND of the year before the harvest (same results were found by Roberts et al. (2009)). Two coupled GCMs have high predictive skills for dry-season rice production of the Philippines with six months lead time (six months before the beginning of the harvest). In addition, we found that WWV plus zonal wind anomalies over an equatorial west Pacific also has similar predictive skills to those of these coupled GCMs. On the other hand, the uncoupled GCM has high predictive skills only with a few months lead time similar to predictive skills of Niño 3.4 SSTAs. Predictive skills at regional levels are generally lower than that for the Philippines. Many regions in Mindanao

  13. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress.

    PubMed

    Shukla, Nandani; Awasthi, R P; Rawat, Laxmi; Kumar, J

    2012-05-01

    Rice is one of the most important food crops drastically affected by drought in lowland rice ecosystems. In the present study, the impact of drought tolerant isolates of endophytic fungus Trichoderma harzianum on rice response to drought was investigated. Out of 43 Trichoderma isolates studied, only five isolates viz., Th 56, Th 69, Th 75, Th 82 and Th 89 were selected to be drought tolerant as these were able to colonize well on cow dung at low moisture content of 10-20 percent, though two isolates, Th 56 and Th 75, grew even at 5 percent moisture content. Trichoderma-colonized rice seedlings were slower to wilt in response to drought. Colonization delayed drought induced changes like stomatal conductance, net photosynthesis and leaf greenness. Drought conditions varying from 3 to 9 days of withholding water led to an increase in the concentration of many stress induced metabolites in rice leaves and decrease of MSI, while Trichoderma colonization caused a decrease in proline, MDA and H₂O₂ contents, and increase in phenolics concentration and MSI. Among test isolates, Th 56 induced maximum drought tolerance as treated plants recorded only 20-40 percent wilting even at 9 DDS. With or without exposure to drought, colonization by Trichoderma promoted seedling growth, with Th 56 giving the most consistent effect. The primary direct effect of Trichoderma colonization was promotion of root growth, regardless of water status, which caused delay in the drought responses of rice plants.

  14. Early ceremonial constructions at Ceibal, Guatemala, and the origins of lowland Maya civilization.

    PubMed

    Inomata, Takeshi; Triadan, Daniela; Aoyama, Kazuo; Castillo, Victor; Yonenobu, Hitoshi

    2013-04-26

    The spread of plaza-pyramid complexes across southern Mesoamerica during the early Middle Preclassic period (1000 to 700 BCE) provides critical information regarding the origins of lowland Maya civilization and the role of the Gulf Coast Olmec. Recent excavations at the Maya site of Ceibal, Guatemala, documented the growth of a formal ceremonial space into a plaza-pyramid complex that predated comparable buildings at other lowland Maya sites and major occupations at the Olmec center of La Venta. The development of lowland Maya civilization did not result from one-directional influence from La Venta, but from interregional interactions, involving groups in the southwestern Maya lowlands, Chiapas, the Pacific Coast, and the southern Gulf Coast.

  15. Hydrological behavior of a Vertisol under different soil management systems in a rain-fed olive orchard

    NASA Astrophysics Data System (ADS)

    Cabezas, Jose Manuel; Gómez, Jose Alfonso; Auxiliadora Soriano, María

    2016-04-01

    Soil water availability is a major subject in Mediterranean agricultural systems, mainly due to the limited and highly variable annual rainfall, high evaporative demand, and soil hydrological characteristics. The recent expansion of olive cultivation in the rolling-plains of the Guadalquivir valley, due to the higher profitability of new intensive olive orchards, expanded the presence of olive orchards on Vertisols, soils traditionally used for annual rain-fed crops. These soils have a high content of smectitic clays, which give them a high water storage capacity, and are characterized by vertical and deep shrinkage cracks in the dry season, associated to low soil moisture. Farmers make several tillage passes in these olive groves during the summer, in order to cover the cracks and thus reduce soil water loss by evaporation, which will impact especially in rain-fed in the next olive yield. This tillage practice involves removal of plant residues from the soil surface, as well as burying seeds produced by the plants, so this will remain bared at the beginning of the rainy season, when in the Mediterranean climate is frequent occurrence of high-intensity rainfall, which are ideal conditions for soil loss by water erosion, one of the most serious problems for the sustainability of olive cultivation in Andalusia. Although there are some studies showing that water loss by evaporation from deep horizons of a vertic soil might be elevated (eg. Ritchie and Adams, 1974), the presence of plant residues on the soil surface drastically reduced soil water loss (eg Adams et al., 1969). Thus the aim of this study was to assess of soil moisture dynamics in a rain-fed olive orchard growing on a Vertisol under different soil management practices, in Andalusia (southern Spain). Four different soil management treatments were applied, which combined a cover crop (Bromus rubens L.) or bare soil throughout the year by applying herbicides, with tillage in summer to cover the cracks or non

  16. Cervical necrotizing fasciitis and myositis in a western lowland gorilla (Gorilla gorilla gorilla).

    PubMed

    Allender, M C; McCain, S L; Ramsay, E C; Schumacher, J; Ilha, M R S

    2009-06-01

    A 39-yr-old wild-caught, female western lowland gorilla (Gorilla gorilla gorilla) died during an immobilization to assess swelling and apparent pain of the cervical region. Necropsy revealed a fistulous tract containing plant material in the oropharynx, above the soft palate, communicating with a left-sided cervical necrotizing fasciitis and myositis. Alpha-hemolytic Streptococcus and Prevotella sp. were isolated from the cervical lesion. This is a report of cervical necrotizing fasciitis in a western lowland gorilla.

  17. Mars Crustal Dichotomy: Large Lowland Impact Basins may have Formed in Pre-Thinned Crust

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2008-01-01

    Crater retention ages of large impact basins on Mars suggest most formed in a relatively short time, perhaps in less than 200 million years. Large basins in the lowlands have thinner central regions than similar size basins in the highlands. Large lowland impact basins, which we previously suggested might explain the low topography and thin crust of the northern part of Mars, may have formed in crust already thinned by yet earlier processes.

  18. Shaping a better rice plant.

    PubMed

    Springer, Nathan

    2010-06-01

    Two studies describe how regulatory variation at the rice gene OsSPL14 can lead to altered plant morphology and improve grain yield. These studies support the possibility of improving rice yield through changing plant architecture.

  19. Development of pre-breeding technology for root system study and selection of Kihara Afghan wheat landraces (KAWLR) to enhance wheat breeding in the rain-fed region.

    PubMed

    Haque, Emdadul; Osmani, Aziz Ahmad; Ahmadi, Sayed Hasibullah; Ban, Tomohiro

    2016-12-01

    To enhance a root trait-based selection program for rain-fed wheat breeding in Afghanistan, we simulated an efficient pre-breeding drought system. Plants were grown in 1 m pipes as control or 2 m pipes to simulate drought conditions soaking ground water up by capillary action supplemented by two different life supporting irrigations from top of the pipes (T1 and T2 droughts). T1 was used for studying genetic diversity in 360 Kihara Afghan wheat landraces (KAWLR). Both drought treatments were used to evaluate root traits in 30 selected genotypes. KAWLR showed large root length variations under T1, categorized as long root (>200 cm; LR), medium root (100-150 cm; MR) and short root (20-100 cm; SR) systems. LR genotypes were more drought resistant in terms of greater plant survivability under T1 and T2 compared with other groups and were capable of adjusting their root biomass partitioning at deepest part of the soil profile. Majority of the LR genotypes originated from predominantly rain-fed provinces, and most of their agronomic traits were strongly correlated with root biomass deep in the soil in response to drought. Three LR genotypes, including the longest root genotype LR-871 (KU7604), are recommended for rain-fed wheat breeding in Afghanistan.

  20. Development of pre-breeding technology for root system study and selection of Kihara Afghan wheat landraces (KAWLR) to enhance wheat breeding in the rain-fed region

    PubMed Central

    Haque, Emdadul; Osmani, Aziz Ahmad; Ahmadi, Sayed Hasibullah; Ban, Tomohiro

    2016-01-01

    To enhance a root trait-based selection program for rain-fed wheat breeding in Afghanistan, we simulated an efficient pre-breeding drought system. Plants were grown in 1 m pipes as control or 2 m pipes to simulate drought conditions soaking ground water up by capillary action supplemented by two different life supporting irrigations from top of the pipes (T1 and T2 droughts). T1 was used for studying genetic diversity in 360 Kihara Afghan wheat landraces (KAWLR). Both drought treatments were used to evaluate root traits in 30 selected genotypes. KAWLR showed large root length variations under T1, categorized as long root (>200 cm; LR), medium root (100–150 cm; MR) and short root (20–100 cm; SR) systems. LR genotypes were more drought resistant in terms of greater plant survivability under T1 and T2 compared with other groups and were capable of adjusting their root biomass partitioning at deepest part of the soil profile. Majority of the LR genotypes originated from predominantly rain-fed provinces, and most of their agronomic traits were strongly correlated with root biomass deep in the soil in response to drought. Three LR genotypes, including the longest root genotype LR-871 (KU7604), are recommended for rain-fed wheat breeding in Afghanistan. PMID:28163597

  1. Duration and Frequency Analysis of Lowland Flooding in Western Murfreesboro, Rutherford County, Tennessee, 1998-2000

    USGS Publications Warehouse

    Law, George S.

    2002-01-01

    Periodic flooding occurs at lowlands and sinkholes in and adjacent to the flood plain of the West Fork Stones River in the western part of Murfreesboro, Tennessee. Flooding in this area commonly occurs during the winter months from December through March. The maximum water level that flood waters will reach in a lowland or sinkhole is controlled by the elevation of the land surrounding the site or the overflow outlet. Maximum water levels, independent of overflow from the river, were estimated to be reached in lowlands and sinkholes in the study area every 1 to 4 years. Minor overflow from the West Fork Stones River (less than 1 foot in depth) into the study area has been estimated to occur every 10 to 20 years. Moderate overflow from the river (1 to 2 feet in depth) occurs on average every 20 to 50 years, while major river overflow (in excess of 2 feet in depth) can be expected every 50 years. Rainfall information for the area, and streamflow and water-level measurements from the West Fork Stones River, lowlands, sinkholes, caves, and wells in the study area were used to develop a flood-prone area map, independent of overflow from the river, for the study area. Water-level duration and frequency relations, independent of overflow from the river, were estimated for several lowlands, sinkholes, and wells in the study area. These relations are used to characterize flooding in lowland areas of western Murfreesboro, Rutherford County, Tennessee.

  2. Western lowland gorillas (Gorilla gorilla gorilla) change their activity patterns in response to frugivory.

    PubMed

    Masi, Shelly; Cipolletta, Chloé; Robbins, Martha M

    2009-02-01

    The most important environmental factor explaining interspecies variation in ecology and sociality of the great apes is likely to be variation in resource availability. Relatively little is known about the activity patterns of western lowland gorillas (Gorilla gorilla gorilla), which inhabit a dramatically different environment from the well-studied mountain gorillas (G. beringei beringei). This study aims to provide a detailed quantification of western lowland gorillas' activity budgets using direct observations on one habituated group in Bai Hokou, Central African Republic. We examined how activity patterns of both sexes are shaped by seasonal frugivory. Activity was recorded with 5-min instantaneous sampling between December 2004 and December 2005. During the high-frugivory period the gorillas spent less time feeding and more time traveling than during the low-frugivory period. The silverback spent less time feeding but more time resting than both females and immatures, which likely results from a combination of social and physiological factors. When compared with mountain gorillas, western lowland gorillas spend more time feeding (67 vs. 55%) and traveling (12 vs. 6.5%), but less time resting (21 vs. 34%) and engaging in social/other activities (0.5 vs. 3.6%). This disparity in activity budgets of western lowland gorillas and mountain gorillas may be explained by the more frugivorous diet and the greater dispersion of food resources experienced by western lowland gorillas. Like other apes, western lowland gorillas change their activity patterns in response to changes in the diet.

  3. Combining Limited Multiple Environment Trials Data with Crop Modeling to Identify Widely Adaptable Rice Varieties

    PubMed Central

    Li, Tao; Ali, Jauhar; Franje, Neil Johann; Revilleza, Jastin Edrian; Redoña, Edilberto; Xu, Jianlong

    2016-01-01

    Multi-Environment Trials (MET) are conventionally used to evaluate varietal performance prior to national yield trials, but the accuracy of MET is constrained by the number of test environments. A modeling approach was innovated to evaluate varietal performance in a large number of environments using the rice model ORYZA (v3). Modeled yields representing genotype by environment interactions were used to classify the target population of environments (TPE) and analyze varietal yield and yield stability. Eight Green Super Rice (GSR) and three check varieties were evaluated across 3796 environments and 14 seasons in Southern Asia. Based on drought stress imposed on rainfed rice, environments were classified into nine TPEs. Relative to the check varieties, all GSR varieties performed well except GSR-IR1-5-S14-S2-Y2, with GSR-IR1-1-Y4-Y1, and GSR-IR1-8-S6-S3-Y2 consistently performing better in all TPEs. Varietal evaluation using ORYZA (v3) significantly corresponded to the evaluation based on actual MET data within specific sites, but not with considerably larger environments. ORYZA-based evaluation demonstrated the advantage of GSR varieties in diverse environments. This study substantiated that the modeling approach could be an effective, reliable, and advanced approach to complement MET in the assessment of varietal performance on spatial and temporal scales whenever quality soil and weather information are accessible. With available local weather and soil information, this approach can also be adopted to other rice producing domains or other crops using appropriate crop models. PMID:27723774

  4. Combining Limited Multiple Environment Trials Data with Crop Modeling to Identify Widely Adaptable Rice Varieties.

    PubMed

    Li, Tao; Ali, Jauhar; Marcaida, Manuel; Angeles, Olivyn; Franje, Neil Johann; Revilleza, Jastin Edrian; Manalo, Emmali; Redoña, Edilberto; Xu, Jianlong; Li, Zhikang

    2016-01-01

    Multi-Environment Trials (MET) are conventionally used to evaluate varietal performance prior to national yield trials, but the accuracy of MET is constrained by the number of test environments. A modeling approach was innovated to evaluate varietal performance in a large number of environments using the rice model ORYZA (v3). Modeled yields representing genotype by environment interactions were used to classify the target population of environments (TPE) and analyze varietal yield and yield stability. Eight Green Super Rice (GSR) and three check varieties were evaluated across 3796 environments and 14 seasons in Southern Asia. Based on drought stress imposed on rainfed rice, environments were classified into nine TPEs. Relative to the check varieties, all GSR varieties performed well except GSR-IR1-5-S14-S2-Y2, with GSR-IR1-1-Y4-Y1, and GSR-IR1-8-S6-S3-Y2 consistently performing better in all TPEs. Varietal evaluation using ORYZA (v3) significantly corresponded to the evaluation based on actual MET data within specific sites, but not with considerably larger environments. ORYZA-based evaluation demonstrated the advantage of GSR varieties in diverse environments. This study substantiated that the modeling approach could be an effective, reliable, and advanced approach to complement MET in the assessment of varietal performance on spatial and temporal scales whenever quality soil and weather information are accessible. With available local weather and soil information, this approach can also be adopted to other rice producing domains or other crops using appropriate crop models.

  5. Isotopically exchangeable Al in coastal lowland acid sulfate soils.

    PubMed

    Yvanes-Giuliani, Yliane A M; Fink, D; Rose, J; Waite, T David; Collins, Richard N

    2016-01-15

    Periodic discharges of high concentrations of aluminium (Al) causing fish kills and other adverse effects occur worldwide in waterways affected by coastal lowland acid sulfate soils (CLASS). The exchangeability - a metal's ability to readily transfer between the soil solid- and solution-phases - of Al in these soils is therefore of particular importance as it has implications for metal transport, plant availability and toxicity to living organisms. In the present study, the concentrations of isotopically exchangeable Al (E values) were measured in 27 CLASS and compared with common salt extractions (i.e. KCl and CuCl2) used to estimate exchangeable soil pools of Al. E values of Al were high in the soils, ranging from 357 to 3040 mg·kg(-1). Exchangeable concentrations estimated using 1 M KCl were consistently lower than measured E values, although a reasonable correlation was obtained between the two values (E=1.68×AlKCl, r(2)=0.66, n=25). The addition of a 0.2 M CuCl2 extraction step improved the 1:1 agreement between extractable and isotopically exchangeable Al concentrations, but lead to significant mobilisation of non-isotopically exchangeable Al in surficial 'organic-rich' CLASS having E values<1000 mg·kg(-1). It was concluded that currently used (i.e. 1 M KCl) methodology severely underestimates exchangeable Al and total actual acidity values in CLASS and should be corrected by a factor similar to the one determined here.

  6. Olfactory discrimination in the western lowland gorilla, Gorilla gorilla gorilla.

    PubMed

    Hepper, Peter G; Wells, Deborah L

    2012-04-01

    The olfactory abilities of great apes have been subject to little empirical investigation, save for a few observational reports. This study, using an habituation/dishabituation task, provides experimental evidence for a core olfactory ability, namely, olfactory discrimination, in the gorilla. In Experiment 1, six zoo-housed western lowland gorillas were individually presented with the same odour on four trials, and with a novel odour on the fifth trial. Odours (almond and vanilla) were presented on plastic balls, and behavioural responses of sniffing and chewing/licking the balls were recorded. A second experiment presented the same odour on four trials and no odour on the fifth to examine whether any dishabituation was due to the presence of a new odour or the absence of the familiar odour. Gorillas habituated their behaviour with repeated presentation of the same odour, but dishabituated, i.e. increased sniffing and chewing/licking, when presented with the novel odour. No dishabituation was noted when using water as the stimulus across all trials or when used as the novel odour. Overall, results show that gorillas are able to discriminate between odours.

  7. Quantifying the nutrient flux within a lowland karstic catchment

    NASA Astrophysics Data System (ADS)

    McCormack, T.; Naughton, O.; Johnston, P. M.; Gill, L. W.

    2015-10-01

    Nutrient contamination of surface and groundwaters is an issue of growing importance as the risks associated with agricultural runoff escalate due to increasing demands on global food production. In this study, the nutrient flux occurring within the surface and groundwaters of a lowland karst catchment in western Ireland was investigated with the aid of alkalinity sampling and a hydrological model. Water samples were tested from a variety of rivers, lakes (or turloughs), boreholes and springs at monthly intervals over three years. Alkalinity sampling was used to elucidate the contrasting hydrological functioning between different turloughs. Such disparate hydrological functioning was further investigated with the aid of a hydrological model which allowed for an estimate of allogenic and autogenic derived nutrient loading into the karst system. The model also allowed for an investigation of mixing within the turloughs, comparing observed behaviours with the hypothetical conservative behaviour allowed for by the model. Within the turloughs, nutrient concentrations were found to reduce over the flooded period, even though the turloughs hydrological functioning (and the hydrological model) suggested this should not occur. As such, it was determined that nutrient loss processes were occurring within the system. Denitrification during stable flooded periods (typically 3-4 months per year) was deemed to be the main process reducing nitrogen concentrations within the turloughs whereas phosphorus loss is thought to occur mostly via sedimentation and subsequent soil deposition. The results from this study suggest that, in stable conditions, ephemeral lakes can impart considerable nutrient losses on a karst groundwater system.

  8. Quantifying the nutrient flux within a lowland karstic catchment

    NASA Astrophysics Data System (ADS)

    McCormack, T.; Naughton, O.; Johnston, P. M.; Gill, L. W.

    2015-01-01

    Nutrient contamination of surface and groundwaters is an issue of growing importance as the risks associated with agricultural runoff escalate due to increasing demands on global food production. In this study, the nutrient flux occurring within the surface and groundwaters of a lowland karst catchment in western Ireland was investigated with the aid of alkalinity sampling and a hydrological model. Water samples were collected and tested from a variety of rivers, lakes (or turloughs), boreholes and springs at monthly intervals over a three year period. Alkalinity sampling was used to elucidate the contrasting hydrological functioning between different turloughs. Such disparate hydrological functioning was further investigated with the aid of a hydrological model which allowed for an estimate of allogenic and autogenic derived nutrient loading into the karst system. The model also allowed for an investigation of mixing within the turloughs, comparing observed behaviours with the hypothetical conservative behaviour allowed for by the model. Results indicated that at the system outlet to the sea, autogenic recharge had added approximately 35% to the total flow and approximately 85% to the total N-load. Within some turloughs, nutrient loads were found to reduce over the flooded period, even though the turloughs hydrological functioning (and the hydrological model) suggested this should not occur. As such, it was determined that nutrient loss processes were occurring within the system. Denitrification was deemed to be the main process reducing nitrogen concentrations within the turloughs whereas phosphorus loss is thought to occur mostly within the diffuse/epikarst zone.

  9. Tharsis-triggered Flood Inundations of the Lowlands of Mars

    NASA Technical Reports Server (NTRS)

    Fairen, Alberto G.; Dohm, James M.; Baker, Victor R.; dePablo, Miguel A.

    2003-01-01

    Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems [1], and the extremely flat northern plains topography at the distal reaches of these outflow channel systems.Basing on the ideas of episodic greenhouse atmosphere and water stability on the lowlands of Mars [3], a conceptual scheme for water evolution and associated geomorphologic features on the northern plains can be proposed. This model highlights Tharsis-triggered flood inundations and their direct impact on shaping the northern plains, as well as making possible the existence of fossil and/or extant life.Possible biologic evolution throughout the resulting different climatic and hydrologic conditions would account for very distinct metabolic pathways for hypothesized organisms capable of surviving and perhaps evolving in each aqueous environment, those that existed in the dry and cold periods between the flood inundations, and those organisms that could survive both extremes. Terrestrial microbiota, chemolithotrophic and heterotrophic bacteria, provide exciting analogues for such potential extremophile existence in Mars, especially where long-lived, magmatic-driven hydrothermal activity is indicated [14].

  10. Soil microbial diversity patterns of a lowland spring environment.

    PubMed

    Vasileiadis, Sotirios; Puglisi, Edoardo; Arena, Maria; Cappa, Fabrizio; van Veen, Johannes A; Cocconcelli, Pier S; Trevisan, Marco

    2013-11-01

    The Po river plain lowland springs represent unique paradigms of managed environments. Their current locations used to be swamps that were drained 6-7 centuries ago, and they have been in constant use ever since. Our aims were to identify the effects of land use on the microbial communities of these soils, look for associated diversity drivers, and assess the applicability of ecology theories with respect to identified patterns. We screened the microbial diversity across a land use transect via high-throughput sequencing of partial 16S rrRNA gene amplicons. Land use had a major effect on soil properties and microbial community structures. Total organic carbon and pH were major diversity drivers for Bacteria, and pH was important for Archaea. We identified the potential contribution of soil amendments to the indigenous microbial communities, and also gained insights into potential roles of taxa in the organic carbon turnover. Verrucomicrobia coincided with the higher values of the recalcitrant organic carbon. Actinobacteria and Acidobacteria correlated with the more labile organic carbon. Finally, the higher diversity found in the soils less enzymatically active and relatively poorer in nutrients, may be explained to an extent by niche-based theories such as the resource heterogeneity hypothesis and Connell's intermediate disturbance hypothesis.

  11. Branchfall dominates annual carbon flux across lowland Amazonian forests

    NASA Astrophysics Data System (ADS)

    Marvin, David C.; Asner, Gregory P.

    2016-09-01

    Tropical forests play an important role in the global carbon cycle, but knowledge of interannual variation in the total tropical carbon flux and constituent carbon pools is highly uncertain. One such pool, branchfall, is an ecologically important dynamic with links to nutrient cycling, forest productivity, and drought. Identifying and quantifying branchfall over large areas would reveal the role of branchfall in carbon and nutrient cycling. Using data from repeat airborne light detection and ranging campaigns across a wide array of lowland Amazonian forest landscapes totaling nearly 100 000 ha, we find that upper canopy gaps—driven by branchfall—are pervasive features of every landscape studied, and are seven times more frequent than full tree mortality. Moreover, branchfall comprises a major carbon source on a landscape basis, exceeding that of tree mortality by 21%. On a per hectare basis, branchfall and tree mortality result in 0.65 and 0.72 Mg C ha-1 yr-1 gross source of carbon to the atmosphere, respectively. Reducing uncertainties in annual gross rates of tropical forest carbon flux, for example by incorporating large-scale branchfall dynamics, is crucial for effective policies that foster conservation and restoration of tropical forests. Additionally, large-scale branchfall mapping offers ecologists a new dimension of disturbance monitoring and potential new insights into ecosystem structure and function.

  12. Genetic approaches refine ex situ lowland tapir (Tapirus terrestris) conservation.

    PubMed

    Gonçalves da Silva, Anders; Lalonde, Danielle R; Quse, Viviana; Shoemaker, Alan; Russello, Michael A

    2010-01-01

    Ex situ conservation management remains an important tool in the face of continued habitat loss and global environmental change. Here, we use microsatellite marker variation to evaluate conventional assumptions of pedigree-based ex situ population management and directly inform a captive lowland tapir breeding program within a range country. We found relatively high levels of genetic variation (N(total) = 41; mean H(E) = 0.67 across 10 variable loci) and little evidence for relatedness among founder individuals (N(founders) = 10; mean relatedness = -0.05). Seven of 29 putative parent-offspring relationships were excluded by parentage analysis based on allele sharing, and we identified 2 individuals of high genetic value to the population (mk

  13. An 8700 year paleoclimate reconstruction from the southern Maya lowlands

    USGS Publications Warehouse

    Wahl, David B.; Byrne, Roger; Anderson, Lysanna

    2014-01-01

    Analysis of a sediment core from Lago Puerto Arturo, a closed basin lake in northern Peten, Guatemala, has provided an ∼8700 cal year record of climate change and human activity in the southern Maya lowlands. Stable isotope, magnetic susceptibility, and pollen analyses were used to reconstruct environmental change in the region. Results indicate a relatively wet early to middle Holocene followed by a drier late Holocene, which we interpret as reflecting long-term changes in insolation (precession). Higher frequency variability is more likely attributable to changes in ocean/atmosphere circulation in both the North Atlantic and the Pacific Oceans. Pollen and isotope data show that most of the period of prehispanic agricultural settlement, i.e. ∼5000–1000 cal yr BP, was characterized by drier conditions than previous or subsequent periods. The presence ofZea (corn) pollen through peak aridity during the Terminal Classic period (∼1250–1130 cal yr BP) suggests that drought may not have had as negative an impact as previously proposed. A dramatic negative shift in isotope values indicates an increase in precipitation after ∼950 cal yr BP (hereafter BP).

  14. Flow path and travel time dynamics in a lowland catchment.

    NASA Astrophysics Data System (ADS)

    van der Velde, Ype; de Rooij, Gerrit

    2016-04-01

    The distribution of time it takes water from the moment of precipitation to reach the catchment outlet is widely used as a characteristic for catchment flow path contributions, catchment vulnerability to pollution spreading and pollutant loads from catchments to downstream waters. However, this distribution tends to vary in time driven by variability in precipitation and evapotranspiration. Catchment scale mixing of water controls how dynamics in rainfall and evapotranspiration are translated into dynamics of travel time distributions. In this presentation we use the concept of StorAge selection (SAS) functions, that quantify catchment scale mixing of water, to describe chloride and nitrate flow. We will show how SAS functions relate to the topography and subsurface and how they are effective in describing nitrate and chloride transport. The presented analyses will combine unique datasets of high-frequency discharge and water quality concentrations with conceptual models of water flow and solute transport. Remarkable findings are the large contrasts in travel times between lowland and sloping catchments and the strong relationship between evapotranspiration and stream water nutrient concentration dynamics.

  15. An 8700 year paleoclimate reconstruction from the southern Maya lowlands

    NASA Astrophysics Data System (ADS)

    Wahl, David; Byrne, Roger; Anderson, Lysanna

    2014-11-01

    Analysis of a sediment core from Lago Puerto Arturo, a closed basin lake in northern Peten, Guatemala, has provided an ˜8700 cal year record of climate change and human activity in the southern Maya lowlands. Stable isotope, magnetic susceptibility, and pollen analyses were used to reconstruct environmental change in the region. Results indicate a relatively wet early to middle Holocene followed by a drier late Holocene, which we interpret as reflecting long-term changes in insolation (precession). Higher frequency variability is more likely attributable to changes in ocean/atmosphere circulation in both the North Atlantic and the Pacific Oceans. Pollen and isotope data show that most of the period of prehispanic agricultural settlement, i.e. ˜5000-1000 cal yr BP, was characterized by drier conditions than previous or subsequent periods. The presence of Zea (corn) pollen through peak aridity during the Terminal Classic period (˜1250-1130 cal yr BP) suggests that drought may not have had as negative an impact as previously proposed. A dramatic negative shift in isotope values indicates an increase in precipitation after ˜950 cal yr BP (hereafter BP).

  16. [Effects of limited supplemental irrigation with catchment rainfall on potato growth in rainfed areas of western Loess Plateau].

    PubMed

    Qin, Shu-Hao; Zhang, Jun-Lian; Wang, Di; Pu, Yu-Lin

    2009-11-01

    Field experiments were conducted to study the effects of limited supplemental irrigation with catchment rainfall on the growth of potato cultivars Daxiyang and Tongshu 23 in rainfed areas of western Loess Plateau. Supplemental irrigation with catchment rainfall at seedling stage increased the potato yield significantly, and the increment was higher for Daxiyang than for Tongshu No. 23. Supplemental irrigation at tuber expanding stage increased the yield of Tongshu 23, but decreased the yield of Daxiyang. Low amount of supplemental irrigation (45 mm) increased the water use efficiency (WUE) and irrigation water use efficiency (IWUE) of Tongshu 23. For Daxiyang, its WUE and IWUE were higher when the supplemental irrigation was made at seedling stage than at tuber expanding stage. Supplemental irrigation increased the tuber yield and the percentages of bigger and medium tubers of Tongshu 23, but the percentages of green and blet tubers were also increased. As for Daxiyang, supplemental irrigation increased the percentages of bigger and smaller tubers, as well as the percentage of blet tuber.

  17. Short-term soil loss by eolian erosion in response to different rain-fed agricultural practices

    NASA Astrophysics Data System (ADS)

    Tanner, Smadar; Katra, Itzhak; Zaady, Eli

    2016-04-01

    Eolian (wind) erosion is a widespread process and a major form of soil degradation in arid and semi-arid regions. The present study examined changes in soil properties and eolian soil loss at a field scale in response to different soil treatments in two rain-fed agricultural practices. Field experiments with a boundary-layer wind tunnel and soil analysis were used to obtain the data. Two practices with different soil treatments (after harvest), mechanical tillage and stubble grazing intensities, were applied in the fallow phase of the rotation (dry season). The mechanical tillage and the stubble grazing had an immediate and direct effects on soil aggregation but not on the soil texture, and the contents of soil water, organic matter, and CaCO3. Higher erosion rates, that was measured as fluxes of total eolian sediment and particulate matter <10 μm (PM10), were recorded under mechanical tillage and grazing intensities compared with the undisturbed topsoil of the control plots. The erosion rates were higher in grazing plots than in tillage plots. The calculated soil fluxes in this study indicate potentially rapid soil degradation due to loss of fine particles by wind. The finding may have implications for long-term management of agricultural soils in semi-arid areas.

  18. Sorption, desorption and displacement of ibuprofen, estrone, and 17β estradiol in wastewater irrigated and rainfed agricultural soils.

    PubMed

    Durán-Álvarez, Juan C; Prado, Blanca; Ferroud, Anouck; Juayerk, Narcedalia; Jiménez-Cisneros, Blanca

    2014-03-01

    Sorption and leaching potential of ibuprofen, estrone and 17β estradiol were tested in two agricultural soils: one irrigated using municipal wastewater and the other used in rainfed agriculture. Batch sorption-desorption experiments and undisturbed soil column assays were carried out using both soils to which were added a mixture of the target compounds. The three compounds were sorbed to a different extent by both soils: estrone>17β estradiol>ibuprofen. Higher sorption was observed in the irrigated soil, which was attributed to the accumulation of organic matter caused by wastewater irrigation. Desorption of hormones was hysteretic in the irrigated soil, while ibuprofen showed low hysteresis in both soils. Retardation of the compounds' displacement was consistent with the sorption pattern observed in the batch tests. Retardation factor (RF) was similar for the three compounds in the two tested soils, indicating that the target compounds are much more mobile in the soil columns than would be predicted based on their equilibrium sorption parameters. The results obtained in the experiments clarify the role of wastewater irrigated soils as a filter and degradation media for the target micropollutants.

  19. Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process.

    PubMed

    Contreras, L M; Schelle, H; Sebrango, C R; Pereda, I

    2012-01-01

    Agricultural solid residues are a potential renewable energy source. Rice harvesting and production in Sancti Spíritus province, Cuba, currently generates residues without an environmentally sustainable disposal route. Rice residues (rice straw, rice husk and rice residues from the drying process) are potentially an important carbon source for anaerobic digestion. For this paper, rice residues were placed for 36 days retention time in anaerobic batch reactor environments at both mesophilic (37 °C) and thermophilic (55 °C) conditions. Biogas and methane yield were determined as well as biogas composition. The results showed that rice straw as well as rice residues from the drying process had the highest biogas and methane yield. Temperature played an important role in determining both biogas yield and kinetics. In all cases, rice straw produced the highest yields; under mesophilic conditions the biogas yield was 0.43 m(3) kg(VS)(-1), under thermophilic conditions biogas yield reached 0.52 m(3) kg(VS)(-1). In the case of the rice husk, the biodegradability was very low. Methane content in all batches was kept above 55% vol. All digested material had a high carbon:nitrogen (C:N) ratio, even though significant biodegradation was recorded with the exception of rice husk. A first-order model can be used to describe the rice crop residues fermentation effectively.

  20. Effect of rice variety and nutrient management on rice productivity in organic rice system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demand for organic rice has been increasing for decades. However, the information on sustainable organic rice production systems is still lacking. The objective of this study was to investigate the effects of soil amendment products, nitrogen rate, and variety on rice grain yield, yield components, ...

  1. Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data

    USGS Publications Warehouse

    Gumma, Murali Krishna; Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Rao, Mahesh N.; Mohammed, Irshad A.; Whitbread, Anthony M.

    2016-01-01

    The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia, using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period. Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season (June–October), followed by a fallow during the rabi season (November–February). These cropland areas are not suitable for growing rabi-season rice due to their high water needs, but are suitable for a short -season (≤3 months), low water-consuming grain legumes such as chickpea (Cicer arietinum L.), black gram, green gram, and lentils. Intensification (double-cropping) in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands. Several grain legumes, primarily chickpea, are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region. The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers: (a) rice crop is grown during the primary (kharif) crop growing season or during the north-west monsoon season (June–October); (b) same croplands are left fallow during the second (rabi) season or during the south-east monsoon season (November–February); and (c) ability to support low water-consuming, short-growing season (≤3 months) grain legumes (chickpea, black gram, green gram, and lentils) during rabi season. Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season, because the moisture/water demand of these crops is too high. The

  2. Allele Mining and Selective Patterns of Pi9 Gene in a Set of Rice Landraces from India

    PubMed Central

    Imam, Jahangir; Mandal, Nimai P.; Variar, Mukund; Shukla, Pratyoosh

    2016-01-01

    Allelic variants of the broad-spectrum blast resistance gene, Pi9 (nucleotide binding site-leucine-rich repeat region) have been analyzed in Indian rice landraces. They were selected from the list of 338 rice landraces phenotyped in the rice blast nursery at central Rainfed Upland Rice Research Station, Hazaribag. Six of them were further selected on the basis of their resistance and susceptible pattern for virulence analysis and selective pattern study of Pi9 gene. The sequence analysis and phylogenetic study illustrated that such sequences are vastly homologous and clustered into two groups. All the blast resistance Pi9 alleles were grouped into one cluster, whereas Pi9 alleles of susceptible landraces formed another cluster even though these landraces have a low level of DNA polymorphisms. A total number of 136 polymorphic sites comprising of transitions, transversions, and insertion and deletions (InDels) were identified in the 2.9 kb sequence of Pi9 alleles. Lower variation in the form of mutations (77) (Transition + Transversion), and InDels (59) were observed in the Pi9 alleles isolated from rice landraces studied. The results showed that the Pi9 alleles of the selected rice landraces were less variable, suggesting that the rice landraces would have been exposed to less number of pathotypes across the country. The positive Tajima’s D (0.33580), P > 0.10 (not significant) was observed among the seven rice landraces, which suggests the balancing selection of Pi9 alleles. The value of synonymous substitution (-0.43337) was less than the non-synonymous substitution (0.78808). The greater non-synonymous substitution than the synonymous means that the coding region, mainly the leucine-rich repeat domain was under diversified selection. In this study, the Pi9 gene has been subjected to balancing selection with low nucleotide diversity which is different from the earlier reports, this may be because of the closeness of the rice landraces, cultivated in the same

  3. Stunt or elongate? Two opposite strategies by which rice adapts to floods.

    PubMed

    Nagai, Keisuke; Hattori, Yoko; Ashikari, Motoyuki

    2010-05-01

    Expansion of habitat is important for the perpetuation of species. In particular, plants which are sedentary must evolve specialized functions to adapt itself to new environment. Deepwater rice is cultivated mainly in the lowland areas of South and Southeast Asia that are flooded during the rainy season. The internodes of deepwater rice elongates in response to increasing water level to keep its leaves above the water surface and avoid anoxia. This elongation is stimulated by ethylene-regulated genes, Snorkel1 and Snorkel2. In contrast, when a flash flood occurs at the seedling stage, submergence-tolerant rice, which carries Submergence-1A, remains stunted and survives in water for a few weeks to avoid the energy consumption associated with plant elongation, and restarts its growth using its conserved energy after the water recedes. Interestingly, both Snorkel genes and Submergence-1A encode ethylene-responsive factor-type transcription factor and are connected to gibberellin biosynthesis or signal transduction. However, deepwater and submergence-tolerant rice seem to have opposite flooding response; namely, escape by elongation or remain stunted under water until flood recedes.

  4. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice.

    PubMed

    Fukao, Takeshi; Yeung, Elaine; Bailey-Serres, Julia

    2011-01-01

    Submergence and drought are major constraints to rice (Oryza sativa) production in rain-fed farmlands, both of which can occur sequentially during a single crop cycle. SUB1A, an ERF transcription factor found in limited rice accessions, dampens ethylene production and gibberellic acid responsiveness during submergence, economizing carbohydrate reserves and significantly prolonging endurance. Here, we evaluated the functional role of SUB1A in acclimation to dehydration. Comparative analysis of genotypes with and without SUB1A revealed that SUB1A enhanced recovery from drought at the vegetative stage through reduction of leaf water loss and lipid peroxidation and increased expression of genes associated with acclimation to dehydration. Overexpression of SUB1A augmented ABA responsiveness, thereby activating stress-inducible gene expression. Paradoxically, vegetative tissue undergoes dehydration upon desubmergence even though the soil contains sufficient water, indicating that leaf desiccation occurs in the natural progression of a flooding event. Desubmergence caused the upregulation of gene transcripts associated with acclimation to dehydration, with higher induction in SUB1A genotypes. SUB1A also restrained accumulation of reactive oxygen species (ROS) in aerial tissue during drought and desubmergence. Consistently, SUB1A increased the abundance of transcripts encoding ROS scavenging enzymes, resulting in enhanced tolerance to oxidative stress. Therefore, in addition to providing robust submergence tolerance, SUB1A improves survival of rapid dehydration following desubmergence and water deficit during drought.

  5. Do NERICA rice cultivars express resistance to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze under field conditions?

    PubMed

    Rodenburg, Jonne; Cissoko, Mamadou; Kayeke, Juma; Dieng, Ibnou; Khan, Zeyaur R; Midega, Charles A O; Onyuka, Enos A; Scholes, Julie D

    2015-01-01

    The parasitic weeds Striga asiatica and Striga hermonthica cause high yield losses in rain-fed upland rice in Africa. Two resistance classes (pre- and post-attachment) and several resistant genotypes have been identified among NERICA (New Rice for Africa) cultivars under laboratory conditions (in vitro) previously. However, little is known about expression of this resistance under field conditions. Here we investigated (1) whether resistance exhibited under controlled conditions would express under representative Striga-infested field conditions, and (2) whether NERICA cultivars would achieve relatively good grain yields under Striga-infested conditions. Twenty-five rice cultivars, including all 18 upland NERICA cultivars, were screened in S. asiatica-infested (in Tanzania) and S. hermonthica-infested (in Kenya) fields during two seasons. Additionally, a selection of cultivars was tested in vitro, in mini-rhizotron systems. For the first time, resistance observed under controlled conditions was confirmed in the field for NERICA-2, -5, -10 and -17 (against S. asiatica) and NERICA-1 to -5, -10, -12, -13 and -17 (against S. hermonthica). Despite high Striga-infestation levels, yields of around 1.8 t ha(-1) were obtained with NERICA-1, -9 and -10 (in the S. asiatica-infested field) and around 1.4 t ha(-1) with NERICA-3, -4, -8, -12 and -13 (in the S. hermonthica-infested field). In addition, potential levels of tolerance were identified in vitro, in NERICA-1, -17 and -9 (S. asiatica) and in NERICA-1, -17 and -10 (S. hermonthica). These findings are highly relevant to rice agronomists and breeders and molecular geneticists working on Striga resistance. In addition, cultivars combining broad-spectrum resistance with good grain yields in Striga-infested fields can be recommended to rice farmers in Striga-prone areas.

  6. Organic Rice Production: Challenges and Opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The market demand for organically produced rice has grown steadily with the majority of the acreage now being located in Texas and California. A wide range of organic products are marketed including conventional long and medium grain rice, aromatic or scented rice, rice with colored bran, and rice f...

  7. An 85-ka Paleoclimate Record From Lowland Central America

    NASA Astrophysics Data System (ADS)

    Escobar, J.; Hodell, D. A.; Anselmetti, F. S.; Ariztegui, D.; Brenner, M.; Curtis, J. H.; Gilli, A.; Grzesik, D. A.; Guilderson, T. J.; Müller, A. D.; Bush, M. B.; Correa-Metrio, A.; Kutterolf, S.

    2008-05-01

    Lake sediment cores recovered at seven sites in Lake Peten Itza, northern Guatemala, contain a record of climate change from lowland Central America extending back to ~200 ka. Drill cores at site PI-6 contain a high- resolution record (1 m/ka) for the last ~85 ka. Peten climate generally varied between wetter conditions during interstadials and a drier state during stadials of Marine Isotope Stage (MIS) 3. The most arid periods coincided with Heinrich Events in the North Atlantic and reductions in the strength of meridional overturning circulation. The pattern of clay-gypsum (wet-dry) oscillations during MIS 3 closely resembles the temperature record from Greenland ice cores and North Atlantic marine sediment cores and precipitation proxies from the Cariaco Basin. Previous studies suggested that cool, dry conditions prevailed in the region during the last glacial maximum (LGM) chronozone, ~23 to 18 ka BP. Sedimentologic and palynologic data support a moist climate in the Peten lowlands during this period whenvegetation consisted of a temperate pine-oak forest. This finding contradicts the previous inferences. At the end of the LGM, Peten climate switched abruptly from moist to arid conditions during the so-called "Mystery Period" from 18 to 14.9 ka. Moister conditions prevailed during the warmer Bolling-Allerod (14.7 to 12.8 ka), with the exception of a drier climate, with greater δ18O values between ca. 14.5 and 13.5 ka BP. This drier period in Central America coincided with Meltwater Pulse 1A (14.1- 13.5 ka) (Fairbanks et al., 2005) when a substantial volume of glacial meltwater was introduced to the Gulf of Mexico (e.g. Flower et al., 2004). The greatest δ18O values in Peten Itza occurred at 13.7 ka coinciding with the greatest rate of sea level rise (4.3 cm yr-1) at 13.9 ka. In contrast, sea surface temperature (SST) reconstructions (Lea et al., 2003), color reflectance, and elemental (Fe, Ti) data (Peterson et al., 2000) from Cariaco Basin cores, north of

  8. Echocardiographic parameters of captive western lowland gorillas (Gorilla gorilla gorilla).

    PubMed

    Murphy, Hayley Weston; Dennis, Patricia; Devlin, William; Meehan, Tom; Kutinsky, Ilana

    2011-12-01

    A total of 163 echocardiographic studies on western lowland gorillas (Gorilla gorilla gorilla) were submitted for evaluation; 140 from 99 animals were suitable for analysis. Of these, 81 studies (42 studies from 35 males ranging in age from 11-41+ yr and 39 studies from 31 females ranging in age from 11-41+ yr) are reported here. Three studies from 3 females and 56 studies from 30 males were excluded from this report due to cardiac abnormalities. Cardiac parameters measured were aortic root (Ao Rt) diameter and left atrial (L atrium) size. Left ventricular (LV) measurements included left ventricular internal diameter in systole (LVID(s)) and diastole (LVID(d)) as well as diastolic septal (IVS) and posterior wall thickness (LVPW). Values considered to be normal in females > 11 yr of age were: Ao Rt < 3.5 cm, L atrium < 4.0 cm, LVID(d) < 5.0 cm, IVS < 1.4 cm, LVPW < 1.4 cm, and ejection fraction (EF) > 60%. The data from male gorillas show a separation in animals based on three cardiac parameters: systolic function, LV cavity size, and LV wall thickness. Male gorillas > 11 yr of age fall into two groups; unaffected and affected. Unaffected animals are defined as those with no echocardiographic abnormalities and a consistent Ao Rt of < 4.0 cm, LVID(d) of < 6.0 cm, IVS and LVPW of <1.5 cm, and an EF of > 58%. The affected group consisted of male gorillas that exhibited changes in echocardiographic parameters representing the presence of cardiovascular disease. The results determined in this database, gathered from data collected from 1999-2009, suggest a sex-based difference between males and females with predominantly males demonstrating evidence of cardiac disease. The most striking finding seen in this study is that of progressive LV hypertrophy and depressed LV EF in affected adult male gorillas.

  9. Wild Western Lowland Gorillas Signal Selectively Using Odor

    PubMed Central

    Klailova, Michelle; Lee, Phyllis C.

    2014-01-01

    Mammals communicate socially through visual, auditory and chemical signals. The chemical sense is the oldest sense and is shared by all organisms including bacteria. Despite mounting evidence for social chemo-signaling in humans, the extent to which it modulates behavior is debated and can benefit from comparative models of closely related hominoids. The use of odor cues in wild ape social communication has been only rarely explored. Apart from one study on wild chimpanzee sniffing, our understanding is limited to anecdotes. We present the first study of wild gorilla chemo-communication and the first analysis of olfactory signaling in relation to arousal levels and odor strength in wild apes. If gorilla scent is used as a signaling mechanism instead of only a sign of arousal or stress, odor emission should be context specific and capable of variation as a function of the relationships between the emitter and perceiver(s). Measured through a human pungency scale, we determined the factors that predicted extreme levels of silverback odor for one wild western lowland gorilla (Gorilla gorilla gorilla) group silverback. Extreme silverback odor was predicted by the presence and intensity of inter-unit interactions, silverback anger, distress and long-calling auditory rates, and the absence of close proximity between the silverback and mother of the youngest infant. Odor strength also varied according to the focal silverback's strategic responses during high intensity inter-unit interactions. Silverbacks appear to use odor as a modifiable form of communication; where odor acts as a highly flexible, context dependent signaling mechanism to group members and extra-group units. The importance of olfaction to ape social communication may be especially pertinent in Central African forests where limited visibility may necessitate increased reliance on other senses. PMID:25006973

  10. Wild western lowland gorillas signal selectively using odor.

    PubMed

    Klailova, Michelle; Lee, Phyllis C

    2014-01-01

    Mammals communicate socially through visual, auditory and chemical signals. The chemical sense is the oldest sense and is shared by all organisms including bacteria. Despite mounting evidence for social chemo-signaling in humans, the extent to which it modulates behavior is debated and can benefit from comparative models of closely related hominoids. The use of odor cues in wild ape social communication has been only rarely explored. Apart from one study on wild chimpanzee sniffing, our understanding is limited to anecdotes. We present the first study of wild gorilla chemo-communication and the first analysis of olfactory signaling in relation to arousal levels and odor strength in wild apes. If gorilla scent is used as a signaling mechanism instead of only a sign of arousal or stress, odor emission should be context specific and capable of variation as a function of the relationships between the emitter and perceiver(s). Measured through a human pungency scale, we determined the factors that predicted extreme levels of silverback odor for one wild western lowland gorilla (Gorilla gorilla gorilla) group silverback. Extreme silverback odor was predicted by the presence and intensity of inter-unit interactions, silverback anger, distress and long-calling auditory rates, and the absence of close proximity between the silverback and mother of the youngest infant. Odor strength also varied according to the focal silverback's strategic responses during high intensity inter-unit interactions. Silverbacks appear to use odor as a modifiable form of communication; where odor acts as a highly flexible, context dependent signaling mechanism to group members and extra-group units. The importance of olfaction to ape social communication may be especially pertinent in Central African forests where limited visibility may necessitate increased reliance on other senses.

  11. Excess growing-season water limits lowland black spruce productivity

    NASA Astrophysics Data System (ADS)

    Dymond, S.; Kolka, R. K.; Bolstad, P. V.; Gill, K.; Curzon, M.; D'Amato, A. W.

    2015-12-01

    The annual growth of many tree species is limited by water availability, with growth increasing as water becomes less scarce. In lowland bogs of northern Minnesota, however, black spruce (Picea mariana) is often exposed to excess water via high water table elevations. These trees grow in thick deposits of organic mucky peat and often have shallow rooting systems to avoid the complete submersion of roots in water. While it is generally believed that black spruce decrease growth rates with rising water table elevations, this hypothesis has not been tested in situ. We used a unique, 50-year record of daily bog water table elevations at the Marcell Experimental Forest (MEF) in northern Minnesota to investigate the relationship between climate and black spruce productivity. Nine 1/20th ha circular plots were established in five different bogs and tree height, diameter-at-breast-height (DBH), and crown class were recorded. Additionally, two perpendicular cores were collected on all trees greater than 10 cm diameter-at-breast-height. Tree cores were sanded, mounted, cross-dated, and de-trended according to standard dendrochronological procedures. Ring width measurements were correlated with precipitation, temperature, and water table elevation using package BootRes in R to determine the climatic variables most associated with stand level productivity. Across the different plots, we found that early growing season water table elevation (May and June) was negatively correlated with both individual and stand-level black spruce growth (p < 0.01), while growth was positively correlated with March temperatures (p < 0.01). No significant relationships existed between black spruce growth and monthly precipitation. If summer water table elevations in these peatland ecosystems rise as is anticipated with more extreme precipitation events due to climate change, we could see an overall decrease in the stand level productivity of black spruce.

  12. Satellite Perspectives on Highland - Lowland Human Interaction in Ancient Syria

    NASA Astrophysics Data System (ADS)

    Lönnqvist, M.; Törmä, M.; Lönnqvist, K.; Nuñez, M.

    2012-08-01

    Nowadays we can travel by GoogleEarth 3D to Syria (http://www.worldcountries.info/GoogleEarth/GoogleEarth-Syria.php) and zoom in on the desert landscape of the mountainous region of Jebel Bishri between the Euphrates river and the Syrian Desert. This is the area, where the Finnish archaeological survey and mapping project SYGIS worked in 2000-2010 studying the relationship of humans with their environment from ancient times to the present. What kind of landscape views and visions did the ancients have and how did they utilize them? The present paper focuses on seeking answers for these questions by combining satellite data sources, such as imagery and radar data, with location information of archaeological remains collected on the ground. Landsat as well as QuickBird imagery have been fused with SRTM mission and ASTER DEM data in creating 3D landscape models and fly-over simulations. The oasis of El Kowm on the western piedmont of the mountain seems to have served as a base camp for early huntergatherers and pastoral nomads dwelling seasonally in the region of Jebel Bishri. According to the archaeological finds, the interaction between the lowland and the mountain people already started during the Palaeolithic era but was continued by pastoral nomads of the region from the Neolithic period onwards. The Upper Palaeolithic period meant a clear change in cognitive thinking and obviously in understanding the properties of landscape, visibility and perceiving sceneries in 3D. Mobility of hunter-gatherers and pastoral nomads is based on subsistence economy, but mobility also enhances visions and prospects of phenomena appearing in the horizon.

  13. Site response and attenuation in the Puget Lowland, Washington State

    USGS Publications Warehouse

    Pratt, T.L.; Brocher, T.M.

    2006-01-01

    Simple spectral ratio (SSR) and horizontal-to-vertical (HN) site-response estimates at 47 sites in the Puget Lowland of Washington State document significant attenuation of 1.5- to 20-Hz shear waves within sedimentary basins there. Amplitudes of the horizontal components of shear-wave arrivals from three local earthquakes were used to compute SSRs with respect to the average of two bedrock sites and H/V spectral ratios with respect to the vertical component of the shear-wave arrivals at each site. SSR site-response curves at thick basin sites show peak amplifications of 2 to 6 at frequencies of 3 to 6 Hz, and decreasing spectra amplification with increasing frequency above 6 Hz. SSRs at nonbasin sites show a variety of shapes and larger resonance peaks. We attribute the spectral decay at frequencies above the amplification peak at basin sites to attenuation within the basin strata. Computing the frequency-independent, depth-dependent attenuation factor (Qs,int) from the SSR spectral decay between 2 and 20 Hz gives values of 5 to 40 for shallow sedimentary deposits and about 250 for the deepest sedimentary strata (7 km depth). H/V site responses show less spectral decay than the SSR responses but contain many of the same resonance peaks. We hypothesize that the H/V method yields a flatter response across the frequency spectrum than SSRs because the H/V reference signal (vertical component of the shear-wave arrivals) has undergone a degree of attenuation similar to the horizontal component recordings. Correcting the SSR site responses for attenuation within the basins by removing the spectral decay improves agreement between SSR and H/V estimates.

  14. Specific Vicariance of Two Primeval Lowland Forest Lichen Indicators.

    PubMed

    Kubiak, Dariusz; Osyczka, Piotr

    2017-02-15

    To date, the lichens Chrysothrix candelaris and Varicellaria hemisphaerica have been classified as accurate primeval lowland forest indicators. Both inhabit particularly valuable remnants of oak-hornbeam forests in Europe, but tend toward a specific kind of vicariance on a local scale. The present study was undertaken to determine habitat factors responsible for this phenomenon and verify the indicative and conservation value of these lichens. The main spatial and climatic parameters that, along with forest structure, potentially affect their distribution patterns and abundance were analysed in four complexes with typical oak-hornbeam stands in NE Poland. Fifty plots of 400 m(2) each were chosen for detailed examination of stand structure and epiphytic lichens directly associated with the indicators. The study showed that the localities of the two species barely overlap within the same forest community in a relatively small geographical area. The occurrence of Chrysothrix candelaris depends basically only on microhabitat space provided by old oaks and its role as an indicator of the ecological continuity of habitat is limited. Varicellaria hemisphaerica is not tree specific but a sufficiently high moisture of habitat is essential for the species and it requires forests with high proportion of deciduous trees in a wide landscape scale. Local landscape-level habitat continuity is more important for this species than the current age of forest stand. Regardless of the indicative value, localities of both lichens within oak-hornbeam forests deserve the special protection status since they form unique assemblages of exclusive epiphytes, including those with high conservation value.

  15. Hyperspectral Analysis of Rice Phenological Stages in Northeast China

    NASA Astrophysics Data System (ADS)

    Gnyp, M. L.; Yao, Y.; Yu, K.; Huang, S.; Aasen, H.; Lenz-Wiedemann, V. I. S.; Miao, Y.; Bareth, G.

    2012-07-01

    The objective of this contribution is to monitor rice (Oryza sativa L., irrigated lowland rice) growth with multitemporal hyperspectral data during different phenological stages in Northeast China (Sanjiang Plain). Multitemporal hyperspectral data were measured with field spectroradiometers (ASD Inc.: QualitySpec and FieldSpec3) for two field experiments and nine farmers' fields. The field measurements were carried out together with corresponding measurements of agronomic data (aboveground biomass [AGB], Leaf Area Index [LAI], number of tillers). Eight selected standard hyperspectral vegetation indices (VIs), proved in several studies to be highly correlated with AGB or LAI, were calculated on the measured experimental field data. Additionally, the best two-band combinations for the Normalized Ratio Index (NRI) were determined. The results indicate that the NRI performed better than the selected standard VIs at the stages of stem elongation, booting and heading and also across all stages. Especially during the stem elongation stage (R2 = 0.76) and across all stages (R2 = 0.70), the NRI performed best. When applying the NRI on the farmers' field data, the performance was lower (R2 < 0.60). Overall, the sensitive individual wavelengths (±10 nm) for the best two-band combinations were detected at 711 and 799 nm (for tillering stage), 1575 and 1678 nm (for stem elongation stage), 515 and 695 nm (for booting stage), and 533 and 713 nm (for all stages). The results suggest that hyperspectral-based methods can estimate paddy rice AGB with a satisfying accuracy. In the context of precision agriculture, the findings are useful for future development of new hyperspectral devices such as scanners or cameras which could be fixed on tractors or unmanned aerial vehicles (UAVs).

  16. Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches.

    PubMed

    Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel

    2016-01-01

    Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for

  17. Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches

    PubMed Central

    Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D.; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel

    2016-01-01

    Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for

  18. Rice: chemistry and technology.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice has taken center stage this last decade, not only as an important provider of nourishment for the world’s population, but as a grain now recognized as having many unique nutritional and functional attributes with potential to be captured in a multitude of value-added food and non-food applicati...

  19. Rice bran phytonutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bran layer of the whole grain rice contains potential health-beneficial compounds. These include vitamin E homologs (tocopherols, tocotrienols), oryzanol fractions, simple phenolics and poly-phenolics. These are antioxidants that are believed to provide protection against diseases such as cancer...

  20. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  1. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  2. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  3. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  4. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  5. Stealth quasi-circular depressions (sQCDs) in the northern lowlands of Mars

    NASA Astrophysics Data System (ADS)

    Buczkowski, Debra L.

    While QCDs are quasi-circular depressions revealed in the Mars Orbiter Laser Altimeter (MOLA) gridded data set, "stealth QCDs" (sQCDs) are those QCDs that have no obvious structural representation in visible images of Mars. It has been suggested that sQCDs are surface representations of buried impact craters, and on the basis of this assumption, size-frequency distributions of all QCDs in the northern lowlands have been constructed to date the buried lowland floor. Expanding upon previous studies of stealth QCDs around the Utopia Basin, 446 sQCDs with diameters ranging from 7 to 115 km have been identified in the northern lowlands of Mars. The direct relationship of sQCD surface relief to diameter indicates that stealth QCDs form due to differential compaction of a cover material over buried impact craters. A comparison of sQCD location to the geologic map of the northern lowlands reveals that stealth QCDs are only located in geologic units predicted to be capable of differential compaction, consistent with models of their formation. The slope of the trend of the sQCDs surface relief versus diameter has a coefficient of determination (R2) approaching 1, when sQCDs are evaluated by geologic unit and by regions of inferred comparable cover thickness. Trend-slope analysis also indicates that the lowland cover material is thickest in the Scandia region and the center of the Borealis and Utopia basins and thinnest in Isidis Planitia and north of Arabia Terra.

  6. Herbivory and nutrient limitation protect warming tundra from lowland species' invasion and diversity loss.

    PubMed

    Eskelinen, Anu; Kaarlejärvi, Elina; Olofsson, Johan

    2017-01-01

    Herbivory and nutrient limitation can increase the resistance of temperature-limited systems to invasions under climate warming. We imported seeds of lowland species to tundra under factorial treatments of warming, fertilization, herbivore exclusion and biomass removal. We show that warming alone had little impact on lowland species, while exclusion of native herbivores and relaxation of nutrient limitation greatly benefitted them. In contrast, warming alone benefitted resident tundra species and increased species richness; however, these were canceled by negative effects of herbivore exclusion and fertilization. Dominance of lowland species was associated with low cover of tundra species and resulted in decreased species richness. Our results highlight the critical role of biotic and abiotic filters unrelated to temperature in protecting tundra under warmer climate. While scarcity of soil nutrients and native herbivores act as important agents of resistance to invasions by lowland species, they concurrently promote overall species coexistence. However, when these biotic and abiotic resistances are relaxed, invasion of lowland species can lead to decreased abundance of resident tundra species and diminished diversity.

  7. Impact of climate change on water balance components in Mediterranean rainfed olive orchards under tillage or cover crop soil management

    NASA Astrophysics Data System (ADS)

    Rodríguez-Carretero, María Teresa; Lorite, Ignacio J.; Ruiz-Ramos, Margarita; Dosio, Alessandro; Gómez, José A.

    2013-04-01

    The rainfed olive orchards in Southern Spain constitute the main socioeconomic system of the Mediterranean Spanish agriculture. These systems have an elevated level of complexity and require the accurate characterization of crop, climate and soil components for a correct management. It is common the inclusion of cover crops (usually winter cereals or natural cover) intercalated between the olive rows in order to reduce water erosion. Saving limited available water requires specific management, mowing or killing these cover crops in early spring. Thus, under the semi-arid conditions in Southern Spain the management of the cover crops in rainfed olive orchards is essential to avoid a severe impact to the olive orchards yield through depletion of soil water. In order to characterize this agricultural system, a complete water balance model has been developed, calibrated and validated for the semi-arid conditions of Southern Spain, called WABOL (Abazi et al., 2013). In this complex and fragile system, the climate change constitutes a huge threat for its sustainability, currently limited by the availability of water resources, and its forecasted reduction for Mediterranean environments in Southern Spain. The objective of this study was to simulate the impact of climate change on the different components of the water balance in these representative double cropping systems: transpiration of the olive orchard and cover crop, runoff, deep percolation and soil water content. Four climatic scenarios from the FP6 European Project ENSEMBLES were first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) and, subsequently, used as inputs for the WABOL model for five olive orchard fields located in Southern Spain under different conditions of crop, climate, soils and management, in order to consider as much as possible of the variability detected in the Spanish olive orchards. The first results indicate the significant effect of the cover

  8. Soil moisture changes in two experimental sites in Eastern Spain. Irrigation versus rainfed orchards under organic farming

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, Cesar; Vicente-Serrano, Sergio M.; Cerdà, Artemi

    2013-04-01

    Within the Soil Erosion and Degradation Research Group Experimental Stations, soil moisture is being researched as a key factor of the soil hydrology and soil erosion (Cerdà, 1995; Cerda, 1997; Cerdà 1998). This because under semiarid conditions soil moisture content plays a crucial role for agriculture, forest, groundwater recharge and soil chemistry and scientific improvement is of great interest in agriculture, hydrology and soil sciences. Soil moisture has been seeing as the key factor for plant photosynthesis, respiration and transpiration in orchards (Schneider and Childers, 1941) and plant growth (Veihmeyer and Hendrickson, 1950). Moreover, soil moisture determine the root growth and distribution (Levin et al., 1979) and the soil respiration ( Velerie and Orchard, 1983). Water content is expressed as a ratio, ranging from 0 (dry) to the value of soil porosity at saturation (wet). In this study we present 1-year of soil moisture measurements at two experimental sites in the Valencia region, Eastern Spain: one representing rainfed orchard typical from the Mediterranean mountains (El Teularet-Sierra de Enguera), and a second site corresponding to an irrigated orange crop (Alcoleja). The EC-5 soil moisture smart sensor S-SMC-M005 integrated with the field-proven ECH2O™ Sensor and a 12-bit A/D has been choosen for measuring soil water content providing ±3% accuracy in typical soil conditions. Soil moisture measurements were carried out at 5-minute intervals from January till December 2012. In addition, soil moisture was measured at two depths in each landscape: 2 and 20 cm depth - in order to retrieve a representative vertical cross-section of soil moisture. Readings are provided directly from 0 (dry) to 0.450 m3/m3 (wet) volumetric water content. The soil moisture smart sensor is conected to a HOBO U30 Station - GSM-TCP which also stored 5-minute temperature, relative humidity, dew point, global solar radiation, precipitation, wind speed and wind direction

  9. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance.

    PubMed

    Yao, Nasser; Lee, Cheng-Ruei; Semagn, Kassa; Sow, Mounirou; Nwilene, Francis; Kolade, Olufisayo; Bocco, Roland; Oyetunji, Olumoye; Mitchell-Olds, Thomas; Ndjiondjop, Marie-Noëlle

    2016-01-01

    African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders.

  10. Rice Glycosyltransferase (GT) Phylogenomic Database

    DOE Data Explorer

    Ronald, Pamela

    The Ronald Laboratory staff at the University of California-Davis has a primary research focus on the genes of the rice plant. They study the role that genetics plays in the way rice plants respond to their environment. They created the Rice GT Database in order to integrate functional genomic information for putative rice Glycosyltransferases (GTs). This database contains information on nearly 800 putative rice GTs (gene models) identified by sequence similarity searches based on the Carbohydrate Active enZymes (CAZy) database. The Rice GT Database provides a platform to display user-selected functional genomic data on a phylogenetic tree. This includes sequence information, mutant line information, expression data, etc. An interactive chromosomal map shows the position of all rice GTs, and links to rice annotation databases are included. The format is intended to "facilitate the comparison of closely related GTs within different families, as well as perform global comparisons between sets of related families." [From http://ricephylogenomics.ucdavis.edu/cellwalls/gt/genInfo.shtml] See also the primary paper discussing this work: Peijian Cao, Laura E. Bartley, Ki-Hong Jung and Pamela C. Ronalda. Construction of a Rice Glycosyltransferase Phylogenomic Database and Identification of Rice-Diverged Glycosyltransferases. Molecular Plant, 2008, 1(5): 858-877.

  11. [Effects of different film mulch and ridge-furrow cropping patterns on yield formation and water translocation of rainfed potato].

    PubMed

    Qin, Shu-Hao; Zhang, Jun-Lian; Wang, Di; Pu, Yu-Lin; Du, Quan-Zhong

    2011-02-01

    This paper studied the effects of different film mulch and ridge-furrow cropping patterns on the yield formation and water translocation of rainfed potato in the semi-arid area of west Loess Plateau. Comparing with those under traditional harrowed bedding without film mulch (T1), the potato yield under harrowed bedding with film mulching (T2), completely mulched alternating narrow and wide ridges with furrow planting (T3), completely mulched alternating narrow and wide ridges with ridge planting (T4), mulched raised bedding with furrow planting (T5), and mulched raised bedding with bedding planting (T6) was increased by 50.1%, 75.9%, 86.8%, 69.6%, and 60. 6%, and the water use efficiency (WUE) was increased by 47.0%, 82.7%, 84.0%, 75.2%, and 54.3% respectively, with the increments being the highest under T4 and T3. All the film much and ridge-furrow cropping patterns improved the yield component of potato, and T4 and T3 were most beneficial to the increase of mid and big tubers, tuber number per plant, and tuber yield per plant, and to the decrease of the proportions of green and blet tubers. It was concluded that completely mulched alternating narrow and wide ridges with ridge planting (T4) and completely mulched alternating narrow and wide ridges with furrow planting (T3) were the two better cropping patterns in water-saving and high yielding for potato cultivation in semiarid areas.

  12. Effects of conservation tillage practices on ammonia emissions from Loess Plateau rain-fed winter wheat fields

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Zhou, Chunju; Li, Na; Han, Kun; Meng, Yuan; Tian, Xiaoxiao; Wang, Linquan

    2015-03-01

    Ammonia emissions from agricultural activities contribute to air pollution. For the rain-fed winter wheat system in the Loess Plateau there is a lack of information about ammonia emissions. Current study aimed to provide field data on ammonia emissions affected by conservation tillage practices and nitrogen applications. A two-year field experiment was conducted during 2011-2013 wheat growing seasons followed a split-plot design. Main plots consisted of one conventional tillage (CT, as the control) and five conservation tillage systems, i.e., stalk mulching (SM), film mulching (FM), ridge tillage (RT), ridge tillage with film mulch on the ridge (RTfm), and ridge tillage with film mulch on the ridge and stalk mulch in the furrow (RTfmsm); while subplots consisted of two nitrogen application rates, i.e., 0 and 180 kg N ha-1. Ammonia emissions were measured using an acid trapping method with vented chambers. Results showed ammonia fluxes peaked during the first 10 days after fertilization. On average, nitrogen application increased ammonia emissions by 26.5% (1.31 kg N ha-1) compared with treatments without nitrogen application (P < 0.05). Ammonia fluxes were strongly dependent on soil ammonium, moisture, and temperature. Tillage systems had significant effects on ammonia emissions. On average, conservation tillage practices reduced ammonia emissions by 7.7% (0.46 kg N ha-1) compared with conventional tillage (P < 0.05), with FM most effective. Deep-band application of nitrogen fertilizer, stalk mulches, and film mulches were responsible for reductions in ammonia emissions from nitrogen fertilization in conservation tillage systems, thus they were recommended to reduce ammonia emissions from winter wheat production regions in the southern Loess Plateau.

  13. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat

    PubMed Central

    Rebetzke, G. J.; Bonnett, D. G.; Reynolds, M. P.

    2016-01-01

    Genotypic variation in ear morphology is linked to differences in photosynthetic potential to influence grain yield in winter cereals. Awns contribute to photosynthesis, particularly under water-limited conditions when canopy assimilation is restricted. We assessed performance of up to 45 backcross-derived, awned–awnletted NILs representing four diverse genetic backgrounds in 25 irrigated or rainfed, and droughted environments in Australia and Mexico. Mean environment grain yields were wide-ranging (1.38–7.93 t ha−1) with vegetative and maturity biomass, plant height, anthesis date, spike number, and harvest index all similar (P >0.05) for awned and awnletted NILs. Overall, grain yields of awned–awnletted sister-NILs were equivalent, irrespective of yield potential and genetic background. Awnletted wheats produced significantly more grains per unit area (+4%) and per spike (+5%) reflecting more fertile spikelets and grains in tertiary florets. Increases in grain number were compensated for by significant reductions in grain size (–5%) and increased frequency (+0.8%) of small, shrivelled grains (‘screenings’) to reduce seed-lot quality of awnletted NILs. Post-anthesis canopies of awnletted NILs were marginally warmer over all environments (+0.27 °C) but were not different and were sometimes cooler than awned NILs at cooler air temperatures. Awns develop early and represented up to 40% of total spikelet biomass prior to ear emergence. We hypothesize that the allocation of assimilate to large and rapidly developing awns decreases spikelet number and floret fertility to reduce grain number, particularly in distal florets. Individual grain size is increased to reduce screenings and to increase test weight and milling quality, particularly in droughted environments. Despite the average reduction in grain size, awnless lines could be identified that combined higher grain yield with larger grain size, increased grain protein concentration, and reduced

  14. Fingerprint of Seasonal Relative humidity in Rice (Oryza sativa L.): Potential for Paleoclimate Archive

    NASA Astrophysics Data System (ADS)

    Kaushal, R.; Ghosh, P.

    2015-12-01

    Seasonal variability of relative humidity (RH) condition during southwest monsoon (SWM) is strongly related with availability of moisture for rainfall over the continental region. There are ongoing efforts to reconstruct the past monsoonal condition based on geochemical and isotopic records as proxies [1]. However, limited archives have been successfully retrieved for reconstructing moisture condition during SWM [2]. Potential of plants as climate archives and the mechanism involved in transfer of climate signature to the stable isotope composition of oxygen (δ18O) has been demonstarted successfully [3]. Here we are introducing δ18O of rice grain bulk organic matter (δ18OOM) as a new proxy for precise determination of RH during SWM. Rice is a seasonal crop and widely cultivated over the Indian subcontinent during SWM. Here we present δ18OOM of rice grains collected from 15 locations from different climatic zones over the Indian subcontinent, ranging from semi-arid to humid-perhumid. These samples were collected from the harvest of the crop grown at the time of SWM for the period 2012-2014. Each of these climatic zones are characterized by unique range of RH values, which is expected to leave distinct oxygen isotopic signature in the rice grain OM. We compared the δ18OOM values with δ18O of precipitation water, RH and temperature during the period of cultivation. Precipitation δ18O values were obtained from were obtained from OPIC [4]. Our observations document a significant relationship between δ18OOM and RH (R2 =0.62, p<0.001). When the RH level fluctuated from 65% to 88%, δ18OOM tended to vary between 31.5 ‰ to 15.4‰. However, the humid regions with rainfed crop showed significant relationship between δ18OOM and precipitation δ18O. Remaining stations being fed by the both rain and irrigation from river/ groundwater, dampen the rainfall isotope signature in δ18OOM. This approach can be extended in deriving RH of regions of rice cultivation by

  15. Accelerated Solvent Extraction of Insecticides from Rice Hulls, Rice Bran, and Polished Rice Grains.

    PubMed

    Teló, Gustavo Mack; Senseman, Scott Allen; Marchesan, Enio; Camargo, Edinalvo Rabaioli; Carson, Katherine

    2017-03-01

    Analysis of pesticide residues in irrigated rice grains is important for food security. In this study, we analyzed accelerated solvent extraction (ASE) conditions for the extraction of thiamethoxam and chlorantraniliprole insecticides from rice hulls, rice bran, and polished rice grains. Several variables, including extraction solvent, extraction temperature, extraction pressure, cell size, static extraction time, and sample concentration, were investigated. The average recoveries of the three matrixes were between 89.7 and 109.7% at the fortification level of 0.75 mg/kg. The optimum ASE operating conditions were acetonitrile (100%) as extraction solvent, extraction temperature of 75°C for rice hulls and 100°C for rice bran and polished rice grains, extraction cell pressure of 10.3 MPa, 22 mL cell size, and two extraction cycles. The total extraction time was approximately 25 min. The extracted volume was evaporated to dryness and the residues were redissolved in 2 mL acetonitrile after 1 min of vortex-shaking. Thiamethoxam and chlorantraniliprole were analyzed by ultra-HPLC with tandem MS. In conclusion, ASE in rice hulls, rice bran, and polished rice grains offers the possibility of a fast and simple method for obtaining a quantitative extraction of the studied pesticides.

  16. Early Holocene lake ecosystem development in the southern Baltic lowlands

    NASA Astrophysics Data System (ADS)

    Słowiński, Michał; Ott, Florian; Kramkowski, Mateusz; Noryśkiewicz, Agnieszka M.; Zawiska, Izabela; Dräger, Nadine; Theuerkauf, Martin; Hass, Christoph; Obremska, Milena; Błaszkiewicz, Mirosław; Kordowski, Jarosław; Tjallingii, Rik; Rzodkiewicz, Monika; Schwab, Markus; Brauer, Achim

    2016-04-01

    The first millennia of the Holocene are characterized by gradual and rapid environmental changes following the warming at the beginning of the Holocene superimposed by short-term climatic instability. Landscape evolution during this period occurred at different time scales due to specific response times of landscape compartments like vegetation succession, soil formation and permafrost thawing. As a consequence, a spatiotemporally heterogeneous pattern of changes occurred particularly in regions close to the margins of the continental ice sheets like the Baltic region. Regional atmospheric circulation patterns were affected by cold catabatic winds from the remains of the Fennoscandian ice sheet. The ongoing deglaciation further influenced the regional climate through meltwater release and related changes in the North Atlantic thermohaline circulation. Both effects declined with the progressive ice sheet melt down. Additionally, the land-sea distribution in the North Sea changed drastically during the final melting phase of the glacial ice sheets. The Baltic Sea development is even more complex due to the strong glacio-isostatic adjustments effects that resulted in open and closed water stages affecting the entire Baltic realm. Consequently, the early Holocene interval of sediment records from the southern Baltic lowlands are not considered as straightforward palaeoclimate archives but need to be interpreted in a broader context. We present five partly varved lake records from northern Poland all including an intriguing highly organic-rich interval interrupting biochemical calcite precipitation at about the same time between 10.5 and 10.2 cal kyr BP. These sediment records have been correlated by independent age models based on varve counting, AMS 14C dating, biostratigraphy and tephrochronology. We present multi-proxy records of early Holocene sediments and our preliminary interpretation suggests hydrological processes as the main reason for the intriguing shifts

  17. Spatial Variability of Streambed Hydraulic Conductivity of a Lowland River

    NASA Astrophysics Data System (ADS)

    Schneidewind, Uwe; Thornton, Steven; Van De Vijver, Ellen; Joris, Ingeborg; Seuntjens, Piet

    2015-04-01

    Streambed hydraulic conductivity K is a key physical parameter, which describes flow processes in the hyporheic zone (HZ), i.e. the dynamic interface between aquifers and streams or rivers. Knowledge of the spatial variability of K is also important for the interpretation of contaminant transport processes in the HZ. Streambed K can vary over several magnitudes at small spatial scales. It depends mostly on streambed sediment characteristics (e.g. effective porosity, grain size, packing), streambed processes (e.g. sedimentation, colmation and erosion) and the development of stream channel geometry and streambed morphology (e.g. dunes, anti-dunes, pool-riffle sequences, etc.). Although heterogeneous in natural streambeds, streambed K is often considered to be a constant parameter due to a lack of information on its spatial distribution. Here we show the spatial variability of streambed K for a small section of the River Tern, a lowland river in the UK. Streambed K was determined for more than 120 vertically and horizontally distributed locations from grain size analyses using four empirical approaches (Hazen, Beyer, Kozeny and the USBR model). Additionally, streambed K was estimated from falling head tests in 36 piezometers installed into the streambed on a 4 m by 16 m grid, by applying the Springer-Gelhar Model. For both methods streambed K followed a log-normal distribution. Variogram analysis was used to deduce the spatial variability of the streambed K values within several streambed profiles parallel and perpendicular to the main flow direction in the stream. Hydraulic conductivity Kg estimated from grain size analyses varied between 1 m/d and 155 m/d with standard deviations of 79% to 99% depending on the empirical approach used. Kh estimated from falling head tests varied between 1 m/d and 22 m/d with a standard deviation of about 50%, depending on the degree of anisotropy assumed. After rescaling the data to obtain a common sample support, Pearson correlation

  18. Earth observing data and methods for advancing water harvesting technologies in the semi-arid rain-fed environments of India

    USGS Publications Warehouse

    Sharma, C.; Thenkabail, P.; Sharma, R. R.

    2011-01-01

    The paper develops approaches and methods of modeling and mapping land and water productivity of rain-fed crops in semi-arid environments of India using hyperspectral, hyperspatial, and advanced multispectral remote sensing data and linking the same to field-plot data and climate station data. The overarching goal is to provide information to advance water harvesting technologies in the agricultural croplands of the semi-arid environments of India by conducting research in a representative pilot site in Jodhpur, Rajasthan, India. ?? 2011 IEEE.

  19. A long pollen record from lowland Amazonia: Forest and cooling in glacial times

    SciTech Connect

    Colinvaux, P.A.; Moreno, J.E.; Bush, M.B.

    1996-10-04

    A continuous pollen history of more than 40,000 years was obtained from a lake in the lowland Amazon rain forest. Pollen spectra demonstrate that tropical rain forest occupied the region continuously and that savannas or grasslands were not present during the last glacial maximum. The data suggest that the western Amazon forest was not fragmented into refugia in glacial times and that the lowlands were not a source of dust. Glacial age forests were comparable to modern forests but also included species now restricted to higher evaluations by temperature, suggesting a cooling of the order of 5{degrees} to 6{degrees}C. 23 refs., 22 tabs.

  20. qDTY12.1: a locus with a consistent effect on grain yield under drought in rice

    PubMed Central

    2013-01-01

    Background Selection for grain yield under drought is an efficient criterion for improving the drought tolerance of rice. Recently, some drought-tolerant rice varieties have been developed using this selection criterion and successfully released for cultivation in drought-prone target environments. The process can be made more efficient and rapid through marker-assisted breeding, a well-known fast-track approach in crop improvement. QTLs have been identified for grain yield under drought with large effects against drought-susceptible varieties. Most of the identified QTLs show large QTL × environment or QTL × genetic background interactions. The development of mapping populations in the background of popular high-yielding varieties, screening across environments, including the target environments, and the identification of QTLs with a consistent effect across environments can be a suitable alternative marker-assisted breeding strategy. An IR74371-46-1-1 × Sabitri backcross inbred line population was screened for reproductive-stage drought stress at the International Rice Research Institute, Philippines, and Regional Agricultural Research Station, Nepalgunj, Nepal, in the dry and wet seasons of 2011, respectively. A bulk segregant analysis approach was used to identify markers associated with high grain yield under drought. Results A QTL, qDTY12.1, significantly associated with grain yield under reproductive-stage drought stress was identified on chromosome 12 with a consistent effect in two environments: IRRI, Philippines, and RARS, Nepalgunj, Nepal. This QTL explained phenotypic variance of 23.8% and contributed an additive effect of 45.3% for grain yield under drought. The positive QTL allele for qDTY12.1 was contributed by tolerant parent IR74371-46-1-1. Conclusions In this study, qDTY12.1 showed a consistent effect across environments for high grain yield under lowland reproductive-stage drought stress in the background of popular high

  1. Tissue Localization of a Submergence-Induced 1-Aminocyclopropane-1-Carboxylic Acid Synthase in Rice1

    PubMed Central

    Zhou, Zhongyi; de Almeida Engler, Janice; Rouan, Dominique; Michiels, Frank; Van Montagu, Marc; Van Der Straeten, Dominique

    2002-01-01

    At least two 1-aminocyclopropane-1-carboxylic acid synthase genes (ACS) are implicated in the submergence response of rice (Oryza sativa). Previously, the OS-ACS5 gene has been shown to be induced during short- as well as long-term complete submergence of seedlings and to be controlled by a balance of gibberellin and abscisic acid in both lowland and deepwater rice. This study demonstrates that OS-ACS5 mRNA is localized in specific tissues and cells both during normal development and in response to complete submergence. The temporal and spatial regulation of OS-ACS5 expression is presented by in situ hybridization and histochemical analysis of β-glucuronidase (GUS) activity in transgenic rice carrying an OS-ACS5-gus fusion. Whole-mount in situ hybridization revealed that in air-grown rice seedlings, OS-ACS5 was expressed at a low level in the shoot apex, meristems, leaf, and adventitious root primordia, and in vascular tissues of nonelongated stems and leaf sheaths. In response to complete submergence, the expression in vascular bundles of young stems and leaf sheaths was strongly induced. The results of histochemical GUS assays were consistent with those found by whole-mount in situ hybridization. Our findings suggest that OS-ACS5 plays a role in vegetative growth of rice under normal conditions and is also recruited for enhanced growth upon complete submergence. The possible implication of OS-ACS5 in root-shoot communication during submergence stress and its putative role in aerenchyma formation upon low-oxygen stress are discussed. PMID:12011339

  2. [Characteristics of dry matter and potassium accumulation and distribution in potato plant in semi-arid rainfed areas].

    PubMed

    Lu, Jian-Wu; Qiu, Hui-Zhen; Zhang, Wen-Ming; Wang, Di; Zhang, Jun-Lian; Zhang, Chun-Hong; Hou, Shu-Yin

    2013-02-01

    In 2010, a field experiment with potato (Solanum tuberosum) cultivar 'Xindaping' was conducted at the Dingxi Extension Center of Gansu Province, Northwest China, aimed to understand the accumulation and distribution patterns of dry matter (DM) and potassium (K) in the organs of potato plant in semi-arid rainfed areas. During the whole growth period of the cultivar, the DM accumulation in root, stem, and leaf all showed a unimodal curve, with the DM accumulation rate being leaf > stem > root, whereas the DM accumulation in whole plant and tuber was an S-curve. The maximum DM accumulation rate of the whole plant was higher than that of the tuber, and appeared 17 days earlier. The distribution of DM in different organs showed two turning points, i.e., during the tuber formation (TF) period and the tuber growth (TG) period. During TF period, the DM accumulation was the greatest in leaf, followed by in tuber. The TF period was also the DM balance period, which occurred 90 days after emergence. Before the DM balance period, the DM accumulation in tuber was lesser than that in root, stem, and leaf, and there was a positive correlation between the DM accumulation in tuber and in root, stem, and leaf. However, after the DM balance period, the DM accumulation in tuber was greater than that in root, stem, and leaf, and the correlation was negative. At seedling stage and in TF period, TG period, starch accumulation period, and maturity period, the DM accumulation in whole plant was 5%, 30%, 60%, 4% , and 1%, while that in tuber was 0,18% , 62 , 18% , and 2%, respectively. In the whole growth period, more than 50% of the DM was formed in TG period. The K concentration was the highest in stem and the lowest in tuber, though the K was mostly concentrated in root before the DM balance period. The K accumulation before the DM balance period was mostly in root, stem, and leaf, with the sequence of stem > leaf > root, but after the DM balance period, the K was mainly allocated in

  3. The plot size effect on soil erosion on rainfed agriculture land under different land uses in eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Bodí, M. B.; Burguet, M.; Segura, M.; Jovani, C.

    2009-04-01

    at the smallest plots what demonstrated a relevant contribution of the reinfiltration of the surface runoff. The proportion of rainfall that was transformed into runoff decreased with increasing plot size. There was not a clear variation in sediment concentrations with plot size, but soil erosion rates were generally higher on the smaller plots. Key words: Scale, Soil, Erosion, Spain, Land Management, Slope, Agriculture, Rainfed.

  4. Hazards Associated with High Altitude Rain-Fed Lakes (HARL) in the Overdeepened Deglaciated Region of Hindu Kush and Himalaya

    NASA Astrophysics Data System (ADS)

    Haritashya, U. K.; Hess, T. G.

    2014-12-01

    Mountain regions are changing rapidly as a result of climate change. It has been well established that these mountain regions are experiencing rapid glacier retreat. With accelerated retreat, glacial melt runoff can accumulate in an overdeepened glacier bed left behind by the receding glacier and can be bound by the walls of unstable frontal and lateral moraines to form a hazardous lake. However, when smaller glaciers retreat and downwaste they no longer contain enough ice to sustain the flow of water and maintain level of the lake. Furthermore, some smaller glaciers in the Hindu Kush and Himalayan region are observing extreme downwasting, which are either turning them into a rock glacier or heavily debris covered glacier leading to the reduced ice melt. Consequently, it is important to study these overdeepened beds, which are contained by the unstable mass. This is especially significant considering the great degree of complexity in the mountain weather system and recent examples of high intensity and short duration rainfall in the Hindu Kush region of Afghanistan, Karakoram region of Pakistan, and Central Himalayan region of India and Nepal. A precise understanding of mountain climate system is necessary, but so does these potentially deglaciated overdeepened beds where rain-fed lakes can form and increase systems hydrostatic pressure that can breach moraine containment and flood entire downstream region. Once lake has formed it possesses hydrological characteristics that are similar to the glacial lakes, which are known to put lives and infrastructure in danger. Therefore, in this study we evaluated overdeepened beds that are located in the complex topography and contained by abandoned or unstable lateral moraine using field and remote sensing satellite images. Our results provide degree of failure associated with these lakes based on the complex spatial and topological analysis as well as orographic distribution of the region. Such studies are not common in the

  5. Effect of Sowing Methods and NPK Levels on Growth and Yield of Rainfed Maize (Zea mays L.).

    PubMed

    Gul, Shamim; Khan, M H; Khanday, B A; Nabi, Sabeena

    2015-01-01

    To investigate the response of rainfed maize to sowing methods and NPK levels, an experiment was undertaken during kharif of 2011 and 2012 at Dryland (Kerawa) Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Budgam. The experiment was laid out in a randomized block design with combination of 2 sowing methods (flat sowing, 75 cm apart rows, and ridge sowing, 75 cm apart ridges) and 3 fertility levels (60 : 40 : 20, 75 : 50 : 30, and 90 : 60 : 40 N : P2O5 : K2O kg ha(-1)) with three replications. Various growth characters, namely, plant height, leaf area index, dry matter accumulation, number of days to different phenological stages, and yield, and yield contributing characters namely, cob length, number of grains cob(-1), cob diameter (cm), and 100-seed weight (g), were significantly higher with S2 over S1 during both the years of experimentation. Fertilizer levels F3 (90 : 60 : 40) and F2 (75 : 50 : 30) at par with one another produced significant increase in growth and yield characters, namely, plant height, leaf area index, dry matter production at different growth stages, cob length, number of cobs plant(-1), number of grains cob(-1), and 100-seed weight over F1 (60 : 40 : 20). Significantly higher grain yield was recorded with fertilizer level F3 (90 : 60 : 40) being at par with F2 (75 : 50 : 30) and showed significant increase over F1 (60 : 40 : 20) with superiority of 5.4 and 5.7 per cent during 2011 and 2012, respectively. The findings of the study concluded that ridge method of sowing of maize with NPK levels of 75 : 50 : 30 kg ha(-1) showed better performance of crop in terms of growth, yield, and yield attributes.

  6. Effect of Sowing Methods and NPK Levels on Growth and Yield of Rainfed Maize (Zea mays L.)

    PubMed Central

    2015-01-01

    To investigate the response of rainfed maize to sowing methods and NPK levels, an experiment was undertaken during kharif of 2011 and 2012 at Dryland (Kerawa) Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Budgam. The experiment was laid out in a randomized block design with combination of 2 sowing methods (flat sowing, 75 cm apart rows, and ridge sowing, 75 cm apart ridges) and 3 fertility levels (60 : 40 : 20, 75 : 50 : 30, and 90 : 60 : 40 N : P2O5 : K2O kg ha−1) with three replications. Various growth characters, namely, plant height, leaf area index, dry matter accumulation, number of days to different phenological stages, and yield, and yield contributing characters namely, cob length, number of grains cob−1, cob diameter (cm), and 100-seed weight (g), were significantly higher with S2 over S1 during both the years of experimentation. Fertilizer levels F3 (90 : 60 : 40) and F2 (75 : 50 : 30) at par with one another produced significant increase in growth and yield characters, namely, plant height, leaf area index, dry matter production at different growth stages, cob length, number of cobs plant−1, number of grains cob−1, and 100-seed weight over F1 (60 : 40 : 20). Significantly higher grain yield was recorded with fertilizer level F3 (90 : 60 : 40) being at par with F2 (75 : 50 : 30) and showed significant increase over F1 (60 : 40 : 20) with superiority of 5.4 and 5.7 per cent during 2011 and 2012, respectively. The findings of the study concluded that ridge method of sowing of maize with NPK levels of 75 : 50 : 30 kg ha−1 showed better performance of crop in terms of growth, yield, and yield attributes. PMID:26090269

  7. Alluvial deposits and plant distribution in an Amazonian lowland megafan

    NASA Astrophysics Data System (ADS)

    Zani, H.; Rossetti, D.; Cremon; Cohen, M.; Pessenda, L. C.

    2012-12-01

    more pronounced after de mid-Holocene, suggesting that the open vegetation, represented mostly by C4 land plants, evolved only more recently. Based on our isotope data, a model is proposed taking into account the influence of sedimentary dynamics on the modern pattern of plan distribution. The establishment of open vegetation occurred at different times depending on location over the megafan area, varying from around 3,000 to 6,400 cal yrs BP. As sedimentation took place, areas located far from the surrounding rainforest were prone to inputs of organic matter derived from open vegetation, whereas the contribution of organic matter derived from arboreous vegetation increases toward the areas located closer to the rainforest. In general, open vegetation is constrained to depositional sites that remained active until relatively recent Holocene times, while surrounding areas with a relatively older geological history are covered by dense forest. The results presented here consist in a striking example of the influence of sedimentary processes during the Late Pleistocene-Holocene on the development of modern plants of this Amazonian lowland.

  8. Productivity and sustainability of rainfed wheat-soybean system in the North China Plain: results from a long-term experiment and crop modelling.

    PubMed

    Qin, Wei; Wang, Daozhong; Guo, Xisheng; Yang, Taiming; Oenema, Oene

    2015-12-02

    A quantitative understanding of yield response to water and nutrients is key to improving the productivity and sustainability of rainfed cropping systems. Here, we quantified the effects of rainfall, fertilization (NPK) and soil organic amendments (with straw and manure) on yields of a rainfed wheat-soybean system in the North China Plain (NCP), using 30-years' field experimental data (1982-2012) and the simulation model-AquaCrop. On average, wheat and soybean yields were 5 and 2.5 times higher in the fertilized treatments than in the unfertilized control (CK), respectively. Yields of fertilized treatments increased and yields of CK decreased over time. NPK + manure increased yields more than NPK alone or NPK + straw. The additional effect of manure is likely due to increased availability of K and micronutrients. Wheat yields were limited by rainfall and can be increased through soil mulching (15%) or irrigation (35%). In conclusion, combined applications of fertilizer NPK and manure were more effective in sustaining high crop yields than recommended fertilizer NPK applications. Manure applications led to strong accumulation of NPK and relatively low NPK use efficiencies. Water deficiency in wheat increased over time due to the steady increase in yields, suggesting that the need for soil mulching increases.

  9. Productivity and sustainability of rainfed wheat-soybean system in the North China Plain: results from a long-term experiment and crop modelling

    PubMed Central

    Qin, Wei; Wang, Daozhong; Guo, Xisheng; Yang, Taiming; Oenema, Oene

    2015-01-01

    A quantitative understanding of yield response to water and nutrients is key to improving the productivity and sustainability of rainfed cropping systems. Here, we quantified the effects of rainfall, fertilization (NPK) and soil organic amendments (with straw and manure) on yields of a rainfed wheat-soybean system in the North China Plain (NCP), using 30-years’ field experimental data (1982–2012) and the simulation model-AquaCrop. On average, wheat and soybean yields were 5 and 2.5 times higher in the fertilized treatments than in the unfertilized control (CK), respectively. Yields of fertilized treatments increased and yields of CK decreased over time. NPK + manure increased yields more than NPK alone or NPK + straw. The additional effect of manure is likely due to increased availability of K and micronutrients. Wheat yields were limited by rainfall and can be increased through soil mulching (15%) or irrigation (35%). In conclusion, combined applications of fertilizer NPK and manure were more effective in sustaining high crop yields than recommended fertilizer NPK applications. Manure applications led to strong accumulation of NPK and relatively low NPK use efficiencies. Water deficiency in wheat increased over time due to the steady increase in yields, suggesting that the need for soil mulching increases. PMID:26627707

  10. A modelling approach to evaluate the long-term effect of soil texture on spring wheat productivity under a rain-fed condition.

    PubMed

    He, Yong; Hou, Lingling; Wang, Hong; Hu, Kelin; McConkey, Brian

    2014-07-30

    Soil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat (Triticum aestivum L.) from two soil textures (silt loam and clay) under rain-fed condition were analyzed. Regression analysis showed that wheat grown in silt loam soil is more sensitive to WU than wheat grown in clay soil, indicating that the wheat grown in clay soil has higher drought tolerance than that grown in silt loam. Yield variation can be explained by WU other than by precipitation use (PU). These results demonstrated that the DSSAT-CERES-Wheat model can be used to evaluate the WU of different soil textures and assess the feasibility of wheat production under various conditions. These outcomes can improve our understanding of the long-term effect of soil texture on spring wheat productivity in rain-fed condition.

  11. Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.).

    PubMed

    Kant, Surya; Burch, David; Badenhorst, Pieter; Palanisamy, Rajasekaran; Mason, John; Spangenberg, German

    2015-01-01

    Delay of leaf senescence through genetic modification can potentially improve crop yield, through maintenance of photosynthetically active leaves for a longer period. Plant growth hormones such as cytokinin regulate and delay leaf senescence. Here, the structural gene (IPT) encoding the cytokinin biosynthetic enzyme isopentenyltransferase was fused to a functionally active fragment of the AtMYB32 promoter and was transformed into canola plants. Expression of the AtMYB32xs::IPT gene cassette delayed the leaf senescence in transgenic plants grown under controlled environment conditions and field experiments conducted for a single season at two geographic locations. The transgenic canola plants retained higher chlorophyll levels for an extended period and produced significantly higher seed yield with similar growth and phenology compared to wild type and null control plants under rainfed and irrigated treatments. The yield increase in transgenic plants was in the range of 16% to 23% and 7% to 16% under rainfed and irrigated conditions, respectively, compared to control plants. Most of the seed quality parameters in transgenic plants were similar, and with elevated oleic acid content in all transgenic lines and higher oil content and lower glucosinolate content in one specific transgenic line as compared to control plants. The results suggest that by delaying leaf senescence using the AtMYB32xs::IPT technology, productivity in crop plants can be improved under water stress and well-watered conditions.

  12. A modelling approach to evaluate the long-term effect of soil texture on spring wheat productivity under a rain-fed condition

    PubMed Central

    He, Yong; Hou, Lingling; Wang, Hong; Hu, Kelin; McConkey, Brian

    2014-01-01

    Soil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat (Triticum aestivum L.) from two soil textures (silt loam and clay) under rain-fed condition were analyzed. Regression analysis showed that wheat grown in silt loam soil is more sensitive to WU than wheat grown in clay soil, indicating that the wheat grown in clay soil has higher drought tolerance than that grown in silt loam. Yield variation can be explained by WU other than by precipitation use (PU). These results demonstrated that the DSSAT-CERES-Wheat model can be used to evaluate the WU of different soil textures and assess the feasibility of wheat production under various conditions. These outcomes can improve our understanding of the long-term effect of soil texture on spring wheat productivity in rain-fed condition. PMID:25074796

  13. A comparison of water use and water-use-efficiency of maize and biomass sorghum in the rain-fed, Midwestern, US.

    NASA Astrophysics Data System (ADS)

    Roby, M.; Salas Fernandez, M.; VanLoocke, A. D.

    2014-12-01

    There is growing consensus among model projections that climate change may increase the frequency and intensity of drought in the rain-fed, maize-dominated, Midwestern US. Uncertainty in the availability of water, combined with an increased demand for non-grain ethanol feedstock, may necessitate expanding the production of more water-use-efficient and less drought sensitive crops for biomass applications. Research suggests that biomass sorghum [Sorghum bicolor (L.) Moench] is more drought tolerant and can produce more biomass than maize in water-limiting environments; however, sorghum water use data are limited for the rain-fed Midwestern US. To address this gap, a replicated (n=3) side-by-side trial was established in Ames, Iowa to determine cumulative water use and water-use-efficiency of maize and biomass sorghum. Data were collected by micrometeorological stations located in the center of each plot and used to calculate cumulative evapotranspiration throughout the 2014 growing season using the residual energy balance method. Continuous micrometeorological measurements were supplemented by periodic measurements of leaf area index (LAI) and above-ground biomass. At mid-point of the growing season, preliminary data analysis revealed similar water use for sorghum and maize. Data collection will continue for the remainder of the growing season, at which point a stronger conclusion can be drawn. This research will provide important insight on the potential hydrologic effects of expanding biomass sorghum production in the Midwestern, US.

  14. Outcrossing Potential between U.S. Blackhull Red Rice and Indica Rice Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy red rice is a major weed pest of rice in the southern U.S. Outcrossing between red rice and commercial tropical japonica rice cultivars has resulted in new weed biotypes that further hinder the effectiveness of weed management. In recent years, indica rice has been used increasingly as a ger...

  15. Suspected macular degeneration in a captive Western lowland gorilla (Gorilla gorilla gorilla).

    PubMed

    Steinmetz, Andrea; Bernhard, Andreas; Sahr, Sabine; Oechtering, Gerhard

    2012-09-01

    The case of a 31-year-old captive female Western lowland gorilla (Gorilla gorilla gorilla) with decreased near vision but good distance vision is presented. Examination of the fundus revealed drusen-like bodies in the macula presumably because of an age-related macular degeneration (AMD).

  16. Tephra layers as correlation tools of neogene coal-bearing strata from the Kenai lowland, Alaska

    SciTech Connect

    Reinink-Smith, L.M.

    1995-03-01

    Thirty-two tephra layers, exposed in coal beds of the Miocene and Pliocene Beluga and Sterling Formations along the shores of the Kenai lowland on the northwestern Kenai Peninsula, Alaska, were studied in detail to improve the geochronology and regional correlation of the Sterling Formation and test prior correlations that were based on palynology and physical tracing of beds over short distances. Published radiogenic isotope data suggest an age span of approximately 4 m.y. for the Sterling Formation at this location but give discordant ages for individual samples depending on dating techniques. A crystal-rich tephra layer near the middle of the section was traced across the Kenai lowland as one or two ash falls based on stratigraphic position, inertinite contents of adjacent coal, geochemical and mineralogical analyses, and individual characteristics. A pumice-rich layer deposited near the top of the Sterling Formation is preserved at two localities on the northwestern and southeastern sides of the Kenai lowland. Geochemical similarities, similar glass morphologies, and an absence of opaque phases characterize this layer as a single ash fall and allow correlation. On a regional scale, these correlations concur with previous correlations and show that a shallow anticline with a northwest-southeast-trending axis extends across the Kenai lowland. 28 refs., 14 figs., 1 tab.

  17. Instream wood as a driver of nutrient attenuation in a lowland sandy stream

    NASA Astrophysics Data System (ADS)

    Klaar, Megan; Shelley, Felicity; Blaen, Phil; Dapelo, Davide; Trimmer, Mark; Bridgeman, John; Hannah, David; Krause, Stefan

    2016-04-01

    Our poster outlines our research to assess the potential of instream wood to enhance nutrient (nitrogen and carbon) attenuating potential in UK lowland rivers. Using cutting-edge distributed temperature sensing, geophysical technologies, novel microbial metabolic activity tracers and 15N isotope tracer applications, we are able to identify how instream wood alters hyporheic exchange fluxes and residence times which control the development and occurrence of biogeochemical hotspots, which facilitate nitrogen removal. Initial results show that instream wood increases surface water downwelling into the hyporheic, creating increased hyporheic mixing. Metabolic tracer, nutrient and modelling data reveal a correlation between these hyporheic exchange flow locations and increased denitrification hotspots. This data in conjunction with ongoing experimentation suggests that instream wood could be used in river basin management and river restoration efforts to improve water quality and hydromorphic integrity within lowland sandy streams. Ongoing work seeks to quantify the efficiency of alternative (stationary and transient) wood designs for controlled alteration and management of hyporheic exchange fluxes and residence times and nutrient turnover in the streambed. Outputs from this project will provide a quantitative understanding of the optimal design and efficiency of instream wood structures for removing excess nitrate from streambed sediments of nutrient impacted lowland rivers. This information will directly impact UK and European river restoration policies and inform decisions of whether wood restoration in UK lowland rivers should be promoted on a national level and how the most efficient strategies should be designed.

  18. Accumulation of metallic elements by Amanita muscaria from rural lowland and industrial upland regions.

    PubMed

    Lipka, Krzysztof; Falandysz, Jerzy

    2017-03-04

    This study was carried out on the accumulation and occurrence of Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Na, Rb, Sr and Zn in the mushroom Amanita muscaria and forest topsoil from two lowland sites in the Tuchola Pinewoods in the north-central region and an upland site in the Świetokrzyskie Mountains in the south-central region of Poland. Topsoil from the upland location showed Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, Na and Zn at significantly higher concentration levels (pseudo-total fraction and often also the labile or extractable fraction) than at both lowland locations, where topsoil was richer in Mg, and similar in Rb. Amanita muscaria from the upland region differed from individuals collected in the lowland sites by higher concentration levels of Cd, Cu, Hg and Mn in caps. This could be related to higher concentration levels of the metallic elements in topsoil in the upland region. On other side, A. muscaria from the upland site was poorer in Co and Fe in caps, and in Ca, Co, Fe and Sr in stipes. In spite of the differences in content of the geogenic metallic elements in topsoil between the lowland and upland locations, A. muscaria from both regions was able to regulate uptake and accumulation of Ag, Al, Ba, Ca, K, Mg, Na, Rb and Zn, which were at similar concentration levels in caps but not necessarily in stipes.

  19. An analysis of modern pollen rain from the Maya lowlands of northern Belize

    USGS Publications Warehouse

    Bhattacharya, T.; Beach, T.; Wahl, D.

    2011-01-01

    In the lowland Maya area, pollen records provide important insights into the impact of past human populations and climate change on tropical ecosystems. Despite a long history of regional paleoecological research, few studies have characterized the palynological signatures of lowland ecosystems, a fact which lowers confidence in ecological inferences made from palynological data. We sought to verify whether we could use pollen spectra to reliably distinguish modern ecosystem types in the Maya lowlands of Central America. We collected 23 soil and sediment samples from eight ecosystem types, including upland, riparian, secondary, and swamp (bajo) forests; pine savanna; and three distinct wetland communities. We analyzed pollen spectra with non-metric multidimensional scaling (NMDS), and found significant compositional differences in ecosystem types' pollen spectra. Forested sites had spectra dominated by Moraceae/Urticaceae pollen, while non-forested sites had significant portions of Poaceae, Asteraceae, and Amaranthaceae pollen. Upland, bajo, and riparian forest differed in representation of Cyperaceae, Bactris-type, and Combretaceae/Melastomataceae pollen. High percentages of pine (Pinus), oak (Quercus), and the presence of Byrsonima characterized pine savanna. Despite its limited sample size, this study provides one of the first statistical analyses of modern pollen rain in the Maya lowlands. Our results show that pollen assemblages can accurately reflect differences between ecosystem types, which may help refine interpretations of pollen records from the Maya area. ?? 2010 Elsevier B.V.

  20. Alien Roadside Species More Easily Invade Alpine than Lowland Plant Communities in a Subarctic Mountain Ecosystem

    PubMed Central

    Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment. PMID:24586947

  1. Widespread loess-like deposit in the Martian northern lowlands identifies Middle Amazonian climate change

    USGS Publications Warehouse

    Skinner, James A.; Tanaka, Kenneth L.; Thomas Platz,

    2014-01-01

    Consistently mappable units critical to distinguishing the style and interplay of geologic processes through time are sparse in the Martian lowlands. This study identifies a previously unmapped Middle Amazonian (ca. 1 Ga) unit (Middle Amazonian lowland unit, mAl) that postdates the Late Hesperian and Early Amazonian lowland plains by >2 b.y. The unit is regionally defined by subtle marginal scarps and slopes, has a mean thickness of 32 m, and extends >3.1 × 106 km2 between lat 35°N and 80°N. Pedestal-type craterforms and nested, arcuate ridges (thumbprint terrain) tend to occur adjacent to unit mAl outcrops, suggesting that current outcrops are vestiges of a more extensive deposit that previously covered ∼16 × 106 km2. Exposed layers, surface pits, and the draping of subjacent landforms allude to a sedimentary origin, perhaps as a loess-like deposit emplaced rhythmically through atmospheric fallout. We propose that unit mAl accumulated coevally with, and at the expense of, the erosion of the north polar basal units, identifying a major episode of Middle Amazonian climate-driven sedimentation in the lowlands. This work links ancient sedimentary processes to climate change that occurred well before those implied by current orbital and spin axis models.

  2. Cross-Sectional Comparison of Sleep-Disordered Breathing in Native Peruvian Highlanders and Lowlanders.

    PubMed

    Pham, Luu V; Meinzen, Christopher; Arias, Rafael S; Schwartz, Noah G; Rattner, Adi; Miele, Catherine H; Smith, Philip L; Schneider, Hartmut; Miranda, J Jaime; Gilman, Robert H; Polotsky, Vsevolod Y; Checkley, William; Schwartz, Alan R

    2017-03-01

    Pham, Luu V., Christopher Meinzen, Rafael S. Arias, Noah G. Schwartz, Adi Rattner, Catherine H. Miele, Philip L. Smith, Hartmut Schneider, J. Jaime Miranda, Robert H. Gilman, Vsevolod Y. Polotsky, William Checkley, and Alan R. Schwartz. Cross-sectional comparison of sleep-disordered breathing in native Peruvian highlanders and lowlanders. High Alt Med Biol. 18:11-19, 2017.

  3. Dental Screening and Education Among Cambodian, Lowland Lao, and Hmong Refugees in Fresno County, California.

    ERIC Educational Resources Information Center

    Rowe, Donald R.; Jackson, Sidney

    1988-01-01

    Ascertains the dental health needs of the following refugee groups in Fresno County, California: (1) Cambodians; (2) lowland Lao; and (3) Hmong. Discusses successful health marketing and educational strategies aimed at these groups. A Dental Screening program instructed community health specialists, provided dental health education, and performed…

  4. The Land Remembers: Landscape Terms and Place Names in Lowland Chontal of Oaxaca, Mexico

    ERIC Educational Resources Information Center

    O'Connor, Loretta; Kroefges, Peter C.

    2008-01-01

    This paper examines landscape terminology and place names of the Chontal region in the state of Oaxaca in southern Mexico, with a focus on terms from Lowland Chontal, a highly endangered language spoken near the Pacific coast. In addition to the linguistic analysis, the paper presents a general description of the physical geography of the area and…

  5. Phylogeography of Declining Relict and Lowland Leopard Frogs in the Desert Southwest of North America

    EPA Science Inventory

    We investigated the phylogeography of the closely related relict leopard frog (Rana onca) and lowland leopard frog (R. yavapaiensis) – two declining anurans from the warm-desert regions of southwestern North America. We used sequence data from two mitochondrial DNA genes to asses...

  6. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    EPA Science Inventory

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  7. Hydraulic Properties of Rice and the Response of Gas Exchange to Water Stress1

    PubMed Central

    Stiller, Volker; Lafitte, H. Renee; Sperry, John S.

    2003-01-01

    We investigated the role of xylem cavitation, plant hydraulic conductance, and root pressure in the response of rice (Oryza sativa) gas exchange to water stress. In the field (Philippines), the percentage loss of xylem conductivity (PLC) from cavitation exceeded 60% in leaves even in watered controls. The PLC versus leaf water potential relationship indicated diurnal refilling of cavitated xylem. The leaf water potential causing 50 PLC (P50) was –1.6 MPa and did not differ between upland versus lowland rice varieties. Greenhouse-grown varieties (Utah) were more resistant to cavitation with a 50 PLC of –1.9 MPa but also showed no difference between varieties. Six-day droughts caused concomitant reductions in leaf-specific photosynthetic rate, leaf diffusive conductance, and soil-leaf hydraulic conductance that were associated with cavitation-inducing water potentials and the disappearance of nightly root pressure. The return of root pressure after drought was associated with the complete recovery of leaf diffusive conductance, leaf-specific photosynthetic rate, and soil-leaf hydraulic conductance. Root pressure after the 6-d drought (61.2 ± 8.8 kPa) was stimulated 7-fold compared with well-watered plants before drought (8.5 ± 3.8 kPa). The results indicate: (a) that xylem cavitation plays a major role in the reduction of plant hydraulic conductance during drought, and (b) that rice can readily reverse cavitation, possibly aided by nocturnal root pressure. PMID:12857848

  8. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions.

    PubMed

    Sandhu, Nitika; Raman, K Anitha; Torres, Rolando O; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-08-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity.

  9. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  10. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  11. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  12. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  13. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  14. Can lowland dry forests represent a refuge from avian malaria for native Hawaiian birds?

    USGS Publications Warehouse

    Tucker-Mohl, Katherine; Hart, Patrick; Atkinson, Carter T.

    2010-01-01

    Hawaii's native birds have become increasingly threatened over the past century. Introduced mosquito borne diseases such as avian malaria may be responsible for the near absence of endemic Hawaiian forest birds in low-elevation habitats. The recent recognition that some native Hawaiian forest birds may be repopulating moist lowland habitats as a result of evolved resistance to this disease has increased the conservation value of these areas. Here, we investigate whether remnant low elevation dry forests on Hawaii Island provide natural 'refuges' from mosquito-transmitted malaria by nature of their low rainfall and absence of suitable natural sources of water for mosquito breeding. Unlike lowland wet forests where high rates of disease transmission may be selecting for disease resistance, lowland dry forests may provide some refuge for native forest birds without natural resistance to malaria. We mistnetted forest birds in two lowland dry forests and tested all native birds by microscopy and serology for avian malaria caused by the Plasmodium relictum parasite. We also conducted surveys for standing water and mosquito larvae. Overall prevalence of infections with Plasmodium relictum in the Hawaii Amakihi Hemignathus virens virens was 15%. Most infected birds had lowlevel parasitemias, suggesting chronic infections. Although avian malaria is present in these lowland dry forest Amakihi populations, infection rates are significantly lower than in wet forest populations at similar elevations. Sources of breeding mosquitoes in these forests appeared to be largely anthropogenic; thus, there is potential to manage dry forests as mosquito-free habitat for Hawaii Amakihi and other Hawaiian forest birds.

  15. Functional trait composition of aquatic plants can serve to disentangle multiple interacting stressors in lowland streams.

    PubMed

    Baattrup-Pedersen, Annette; Göthe, Emma; Riis, Tenna; O'Hare, Matthew T

    2016-02-01

    Historically, close attention has been paid to negative impacts associated with nutrient loads to streams and rivers, but today hydromorphological alterations are considered increasingly implicated when lowland streams do not achieve good ecological status. Here, we explore if trait-abundance patterns of aquatic plants change along gradients in hydromorphological degradation and eutrophication in lowland stream sites located in Denmark. Specifically, we hypothesised that: i) changes in trait-abundance patterns occur along gradients in hydromorphological degradation and ii) trait-abundance patterns can serve to disentangle effects of eutrophication and hydromorphological degradation in lowland streams reflecting that the mechanisms behind changes differ. We used monitoring data from a total of 147 stream reaches with combined data on aquatic plant species abundance, catchment land use, hydromorphological alterations (i.e. planform, cross section, weed cutting) and water chemistry parameters. Traits related to life form, dispersal, reproduction and survival together with ecological preference values for nutrients and light (Ellenberg N and L) were allocated to 41 species representing 79% of the total species pool. We found clear evidence that habitat degradation (hydromorphological alterations and eutrophication) mediated selective changes in the trait-abundance patterns of the plant community. Specific traits could distinguish hydromorphological degradation (free-floating, surface; anchored floating leaves; anchored heterophylly) from eutrophication (free-floating, submerged; leaf area). We provide a conceptual framework for interpretation of how eutrophication and hydromorphological degradation interact and how this is reflected in trait-abundance patterns in aquatic plant communities in lowland streams. Our findings support the merit of trait-based approaches in biomonitoring as they shed light on mechanisms controlling structural changes under environmental

  16. Plant available silicon in South-east Asian rice paddy soils - relevance of agricultural practice and of abiotic factors

    NASA Astrophysics Data System (ADS)

    Marxen, A.; Klotzbücher, T.; Vetterlein, D.; Jahn, R.

    2012-12-01

    Background Silicon (Si) plays a crucial role in rice production. Si content of rice plants exceeds the content of other major nutrients such as nitrogen, phosphorous or potassium. Recent studies showed that in some environments external supply of Si can enhance the growth of rice plants. Rice plants express specific Si transporters to absorb Si from soil solutions in form of silicic acid, which precipitates in tissue cells forming amorphous silica bodies, called phytoliths. The phytoliths are returned to soils with plant residues. They might be a main source of plant available silicic acid in soils. Aims In this study we assess the effects of rice paddy cultivation on the stocks of `reactive` Si fractions in mineral topsoils of rice paddy fields in contrasting landscapes. The `reactive` Si fractions are presumed to determine the release of plant-available silicic acid in soils. We consider the relevance of abiotic factors (mineral assemblage; soil weathering status) and agricultural practice for these fractions. Agricultural practices, which were assumed to affect the stocks of `reactive` Si were (i) the usage of different rice varieties (which might differ in Si demand), (ii) straw residue management (i.e., whether straw residues are returned to the fields or removed and used e.g. as fodder), and (iii) yield level and number of crops per year. Material and methods Soils (top horizon of about 0-20 cm depth) were sampled from rice paddy fields in 2 mountainous and 5 lowland landscapes of contrasting geologic conditions in Vietnam and the Philippines. Ten paddy fields were sampled per landscape. The rice paddy management within landscapes differed when different farmers and/or communities managed the fields. We analysed the following fractions of `reactive` Si in the soils: acetate-extractable Si (dissolved and easily exchangeable Si), phosphate-extractable Si (adsorbed Si), oxalate extractable Si (Si associated with poorly-ordered sesquioxides), NaOH extractable Si

  17. Lowland tapir (Tapirus terrestris) distribution, activity patterns and relative abundance in the Greater Madidi-Tambopata Landscape.

    PubMed

    Wallace, Robert; Ayala, Guido; Viscarra, Maria

    2012-12-01

    Lowland tapir distribution is described in northwestern Bolivia and southeastern Peru within the Greater Madidi-Tambopata Landscape, a priority Tapir Conservation Unit, using 1255 distribution points derived from camera trapping efforts, field research and interviews with park guards from 5 national protected areas and hunters from 19 local communities. A total of 392 independent camera trapping events from 14 camera trap surveys at 11 sites demonstrated the nocturnal and crepuscular activity patterns (86%) of the lowland tapir and provide 3 indices of relative abundance for spatial and temporal comparison. Capture rates for lowland tapirs were not significantly different between camera trapping stations placed on river beaches versus those placed in the forest. Lowland tapir capture rates were significantly higher in the national protected areas of the region versus indigenous territories and unprotected portions of the landscape. Capture rates through time suggested that lowland tapir populations are recovering within the Tuichi Valley, an area currently dedicated towards ecotourism activities, following the creation (1995) and subsequent implementation (1997) of the Madidi National Park in Bolivia. Based on our distributional data and published conservative estimates of population density, we calculated that this transboundary landscape holds an overall lowland tapir population of between 14 540 and 36 351 individuals, of which at least 24.3% are under protection from national and municipal parks. As such, the Greater Madidi-Tambopata Landscape should be considered a lowland tapir population stronghold and priority conservation efforts are discussed in order to maintain this population.

  18. The Submergence Tolerance Regulator SUB1A Mediates Crosstalk between Submergence and Drought Tolerance in Rice[W][OA

    PubMed Central

    Fukao, Takeshi; Yeung, Elaine; Bailey-Serres, Julia

    2011-01-01

    Submergence and drought are major constraints to rice (Oryza sativa) production in rain-fed farmlands, both of which can occur sequentially during a single crop cycle. SUB1A, an ERF transcription factor found in limited rice accessions, dampens ethylene production and gibberellic acid responsiveness during submergence, economizing carbohydrate reserves and significantly prolonging endurance. Here, we evaluated the functional role of SUB1A in acclimation to dehydration. Comparative analysis of genotypes with and without SUB1A revealed that SUB1A enhanced recovery from drought at the vegetative stage through reduction of leaf water loss and lipid peroxidation and increased expression of genes associated with acclimation to dehydration. Overexpression of SUB1A augmented ABA responsiveness, thereby activating stress-inducible gene expression. Paradoxically, vegetative tissue undergoes dehydration upon desubmergence even though the soil contains sufficient water, indicating that leaf desiccation occurs in the natural progression of a flooding event. Desubmergence caused the upregulation of gene transcripts associated with acclimation to dehydration, with higher induction in SUB1A genotypes. SUB1A also restrained accumulation of reactive oxygen species (ROS) in aerial tissue during drought and desubmergence. Consistently, SUB1A increased the abundance of transcripts encoding ROS scavenging enzymes, resulting in enhanced tolerance to oxidative stress. Therefore, in addition to providing robust submergence tolerance, SUB1A improves survival of rapid dehydration following desubmergence and water deficit during drought. PMID:21239643

  19. Selenate-enriched urea granules are a highly effective fertilizer for selenium biofortification of paddy rice grain.

    PubMed

    Premarathna, Lakmalie; McLaughlin, Mike J; Kirby, Jason K; Hettiarachchi, Ganga M; Stacey, Samuel; Chittleborough, David J

    2012-06-13

    This study examined the effects of applied selenium (Se) species, time of application, method of application, and soil water management regimen on the accumulation of Se in rice plants. Plants were grown to maturity in a temperature- and humidity-controlled growth chamber using three water management methods: field capacity (FC), submerged until harvest, and submerged and drained 2 weeks before harvest. Two Se species, selenate (SeO4(2-)) and selenite (SeO3(2-)), were applied at a rate equivalent to 30 g ha(-1). Four application methods were employed as follows: (i) Se applied at soil preparation, (ii) Se-enriched urea granules applied to floodwater at heading; (iii) foliar Se applied at heading; and (iv) fluid fertilizer Se applied to soil or floodwater at heading. Total Se concentrations in rice grains, husks, leaves, culms, and roots were measured, as well as Se speciation in grains from the Se-enriched urea granule treatment. Highest Se concentrations in the grain occurred with SeO4(2-) and with fertilizer applied at heading stage; SeO4(2-)-enriched urea granules applied at heading increased grain Se concentrations 5-6-fold (by 450-600 μg kg(-1)) compared to the control (no fertilizer Se applied) in all water treatments. Under paddy conditions other Se fertilization strategies were much less effective. Drainage before harvesting caused Se to accumulate in/on rice roots, possibly through adsorption onto iron plaque on roots. Rice grains contained Se mainly in the organic form as selenomethionine (SeM), which comprised >90% of the total grain Se in treatments fertilized with SeO4(2-)-enriched urea granules. The results of this study clearly show that of the fertilizer strategies tested biofortification of Se in rice grains can best be achieved in lowland rice by broadcast application of SeO4(2-)-enriched urea granules to floodwater at heading stage.

  20. Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi arid tropics of India

    NASA Astrophysics Data System (ADS)

    Pratibha, G.; Srinivas, I.; Rao, K. V.; Shanker, Arun K.; Raju, B. M. K.; Choudhary, Deepak K.; Srinivas Rao, K.; Srinivasarao, Ch.; Maheswari, M.

    2016-11-01

    Agriculture has been considered as one of the contributors to greenhouse gas (GHG) emissions and it continues to increase with increase in crop production. Hence development of sustainable agro techniques with maximum crop production, and low global warming potential is need of the hour. Quantifying net global warming potential (NGWP) and greenhouse gas intensity (GHGI) of an agricultural activity is a method to assess the mitigation potential of the activity. But there is dearth of information on NGWP of conservation agriculture under rainfed conditions. Hence in this study two methods such as crop based (NGWPcrop) and soil based (NGWPsoil) were estimated from the data of the experiment initiated in 2009 in rainfed semiarid regions of Hyderabad, India with different tillage practices like conventional tillage (CT), reduced tillage (RT), zero tillage (ZT) and residue retention levels by harvesting at different heights which includes 0, 10 and 30 cm anchored residue in pigeonpea-castor systems. The results of the study revealed that under rainfed conditions CT recorded 24% higher yields over ZT, but CT and RT were on par with each other. However, the yield gap between the tillage treatments is narrowing down over 5 years of study. ZT and RT recorded 26 and 11% lower indirect GHG emissions (emissions from farm operations and input use) over CT, respectively. The percent contribution of CO2 eq. N2O emission is higher to total GHG emissions in both the crops. Both NGWPcrop, NGWPsoil, GHGIcrop, and GHGIsoil based were influenced by tillage and residue treatments. Further, castor grown on pigeonpea residue recorded 20% higher GHG emissions over pigeonpea grown on castor residues. The fuel consumption in ZT was reduced by 58% and 81% as compared to CT in pigeonpea and castor, respectively. Lower NGWP and GHGI based on crop and soil was observed with increase in crop residues and decrease in tillage intensity in both the crops. The results of the study indicate that, there

  1. Mars: the evolutionary history of the northern lowlands based on crater counting and geologic mapping

    USGS Publications Warehouse

    Werner, S.C.; Tanaka, K.L.; Skinner, J.A.

    2011-01-01

    The geologic history of planetary surfaces is most effectively determined by joining geologic mapping and crater counting which provides an iterative, qualitative and quantitative method for defining relative ages and absolute model ages. Based on this approach, we present spatial and temporal details regarding the evolution of the Martian northern plains and surrounding regions. The highland–lowland boundary (HLB) formed during the pre-Noachian and was subsequently modified through various processes. The Nepenthes Mensae unit along the northern margins of the cratered highlands, was formed by HLB scarp-erosion, deposition of sedimentary and volcanic materials, and dissection by surface runoff between 3.81 and 3.65 Ga. Ages for giant polygons in Utopia and Acidalia Planitiae are ~ 3.75 Ga and likely reflect the age of buried basement rocks. These buried lowland surfaces are comparable in age to those located closer to the HLB, where a much thinner, post-HLB deposit is mapped. The emplacement of the most extensive lowland surfaces ended between 3.75 and 3.4 Ga, based on densities of craters generally View the MathML source> 3 km in diameter. Results from the polygonal terrain support the existence of a major lowland depocenter shortly after the pre-Noachian formation of the northern lowlands. In general, northern plains surfaces show gradually younger ages at lower elevations, consistent local to regional unit emplacement and resurfacing between 3.6 and 2.6 Ga. Elevation levels and morphology are not necessarily related, and variations in ages within the mapped units are found, especially in units formed and modified by multiple geological processes. Regardless, most of the youngest units in the northern lowlands are considered to be lavas, polar ice, or thick mantle deposits, arguing against the ocean theory during the Amazonian Period (younger than about 3.15 Ga). All ages measured in the closest vicinity of the steep dichotomy escarpment are also 3.7 Ga or

  2. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems.

    PubMed

    Weller, Sebastian; Janz, Baldur; Jörg, Lena; Kraus, David; Racela, Heathcliff S U; Wassmann, Reiner; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-01-01

    Global rice agriculture will be increasingly challenged by water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from double-rice cropping to the introduction of upland crops in the dry season. For a comprehensive assessment of greenhouse gas (GHG) balances, we measured methane (CH4 )/nitrous oxide (N2 O) emissions and agronomic parameters over 2.5 years in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N2 O emissions increased two- to threefold in the diversified systems, the strong reduction in CH4 led to a significantly lower (P < 0.05) annual GWP (CH4  + N2 O) as compared to the traditional double-rice cropping system. Measurements of soil organic carbon (SOC) contents before and 3 years after the introduction of upland crop rotations indicated a SOC loss for the R-M system, while for the other systems SOC stocks were unaffected. This trend for R-M systems needs to be followed as it has significant consequences not only for the GWP balance but also with regard to soil fertility. Economic assessment showed a similar gross profit span for R-M and R-R, while gross profits for R-A were reduced as a consequence of lower productivity. Nevertheless, regarding a future increase in water scarcity, it can be expected that mixed lowland-upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops.

  3. Soil Incorporation of Silica-Rich Rice Husk Decreases Inorganic Arsenic in Rice Grain.

    PubMed

    Seyfferth, Angelia L; Morris, Andrew H; Gill, Rattandeep; Kearns, Kelli A; Mann, Jessica N; Paukett, Michelle; Leskanic, Corey

    2016-05-18

    Arsenic decreases rice yield, and inorganic grain As threatens human health; thus, strategies to decrease rice As are critically needed. Increased plant-available silica (Si) can decrease rice As, yet the source of Si matters. Rice husk, an underutilized and Si-rich byproduct of rice production that contains less labile C and an order of magnitude less As than rice straw, may be an economically viable Si resource to decrease rice As, yet the impact of rice husk incorporation on As in the rice-soil nexus has not been reported. This proof-of-concept study shows that rice husk incorporation to soil (1% w/w) decreases inorganic grain As by 25-50% without negatively affecting grain Cd, yield, or dissolved CH4 levels. Rice husk is a critical yet perhaps overlooked resource to improve soil quality through enhanced nutrient availability and attenuate human health risks through consumption of As-laden grain.

  4. [Causes of drinking-water contamination in rain-fed cisterns in three villages in Ramallah and Al-Bireh District, Palestine].

    PubMed

    Al-Khatib, Issam A; Orabi, Moammar

    2004-05-01

    We studied the biological characteristics of drinking-water in three villages in Ramallah and al-Bireh district, by testing the total coliforms. Water samples were collected from rain-fed cisterns between October and November 2001. The results show that 87% of tested samples of drinking-water were highly contaminated and in need of coagulation, filtration and disinfection based on the World Health Organization guidelines for drinking-water, and 10.5% had low contamination and were in need of treatment by disinfection only. Only 2.5% of the tested samples were not contaminated and were suitable for drinking without treatment. The main cause of drinking-water con tamination was the presence of cesspits, wastewater and solid waste dumping sites near the cisterns.

  5. Rice scene radiation research plan

    NASA Technical Reports Server (NTRS)

    Heilman, J.

    1982-01-01

    Data requirements, tasks to be accomplished, and the technical approaches to be used in identifying the characteristics of rice for crop inventories are listed as well as methods for estimating crop development and assessing its conditions.

  6. Rice in an interdependent world.

    PubMed

    Falck, V T

    1991-01-01

    The purpose of this paper is to examine the outcome of the increasing need and dependence on rice as an essential food, and the potential hazards of this trajectory in an interdependent world, and to propose the need for a supranational system to guide decisions made in areas of mutual dependency among nations. All rice producing countries of the world should be responsible for assuring sufficient quantities and qualities of rice for the world's population. However, there are hazards related to emphasis on rice yields associated with the neglect of overall nutritional needs and also the potential for environmental impact given the need for sustainable development. Scientific measurement and data analyses of interdependent supranational variables are needed to guide policies and practices to insure conditions for life will be favorable for people everywhere.

  7. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach.

    PubMed

    Mora, Freddy; Quitral, Yerko A; Matus, Ivan; Russell, Joanne; Waugh, Robbie; Del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5-22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5-35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint.

  8. A tillering inhibition gene influences root–shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments

    PubMed Central

    Hendriks, P.W.; Kirkegaard, J.A.; Lilley, J.M.; Gregory, P.J.; Rebetzke, G.J.

    2016-01-01

    Genetic modification of shoot and root morphology has potential to improve water and nutrient uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering inhibition (tin) gene and representing multiple genetic backgrounds were phenotyped in contrasting, controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar until tillering, whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 145%. Together, the root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed greater root-to-shoot ratios with regular tiller removal in non-tin-containing genotypes. In validating these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but was associated with significantly (P<0.05) reduced tiller number (–37%), leaf area index (–26%), and spike number (–35%) to reduce plant biomass (–19%) at anthesis. Root biomass, root-to-shoot ratio at early stem elongation, and root depth at maturity were all increased in tin-containing NILs. Soil water use was slowed in tin-containing NILs, resulting in greater water availability, greater stomatal conductance, cooler canopy temperatures, and maintenance of green leaf area during grain-filling. Together these effects contributed to increases in harvest index and grain yield. In both the controlled and field environments, the tin gene was commonly associated with increased root length and biomass, but the significant influence of genetic background and environment suggests careful assessment of tin-containing progeny in selection for genotypic increases in root growth

  9. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach

    PubMed Central

    Mora, Freddy; Quitral, Yerko A.; Matus, Ivan; Russell, Joanne; Waugh, Robbie; del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5–22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5–35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint. PMID:27446139

  10. Chlorophyll fluorescence induction kinetics and yield responses in rainfed crops with variable potassium nutrition in K deficient semi-arid alfisols.

    PubMed

    Srinivasarao, Ch; Shanker, Arun K; Kundu, Sumanta; Reddy, Sharanbhoopal

    2016-07-01

    Optimum potassium (K) nutrition in semi-arid regions may help crop plants to overcome constraints in their growth and development such as moisture stress, leading to higher productivity of rainfed crops, thus judicious K management is essential. A study was conducted to evaluate the importance of K nutrition on physiological processes like photosynthesis through chlorophyll a fluorescence and chlorophyll fluorescence induction kinetics (OJIP) of rainfed crops viz., maize (Zea mays L.), pearl millet (Pennisetum glaucum), groundnut (Arachis hypogaea), sunflower (Helianthus annuus), castor (Ricinus communis L.) and cotton (Gossypium hirsutum) under water stress conditions by studying their growth attributes, water relations, yield, K uptake and use efficiency under varied K levels. Highest chlorophyll content was observed under K60 in maize and pearl millet. Narrow and wide Chl a:b ratio was observed in castor and groundnut respectively. The fluorescence yield decreased in the crops as K dosage increased, evidenced by increasing of all points (O, J, I and P) of the OJIP curves. The fluorescence transient curve for K60 was lower than K0 and K40 for all the crops. Potassium levels altered the fluorescence induction and impaired photosynthetic systems in all the crops studied. There was no distinct trend observed in leaf water potential of crops under study. Uptake of K was high in sunflower with increased rate of K application. Quantitatively, K uptake by castor crop was lesser compared to all other crops. Our results indicate that the yield reduction under low K was due to the low capacity of the crops to translocate K from non-photosynthetic organs such as stems and petioles to upper leaves and harvested organs and this in turn influenced the capacity of the crops to produce a high economic yield per unit of K taken up thus reducing utilization efficiency of K.

  11. Quantitative trait loci for water-use efficiency in barley (Hordeum vulgare L.) measured by carbon isotope discrimination under rain-fed conditions on the Canadian Prairies.

    PubMed

    Chen, Jing; Chang, Scott X; Anyia, Anthony O

    2012-06-01

    Barley (Hordeum vulgare L.) yield is commonly limited by low rainfall and high temperature during the growing season on the Canadian Prairies. Empirical knowledge suggests that carbon isotope discrimination (Δ(13)C), through its negative relationship with water-use efficiency (WUE), is a good index for selecting stable yielding crops in some rain-fed environments. Identification of quantitative trait loci (QTL) and linked markers for Δ(13)C will enhance its use efficiency in breeding programs. In the present study, two barley populations (W89001002003 × I60049 or W × I, six-row type, and Merit × H93174006 or M × H, two-row type), containing 200 and 127 recombinant inbred lines (RILs), were phenotyped for leaf Δ(13)C and agronomic traits under rain-fed environments in Alberta, Canada. A transgressive segregation pattern for leaf Δ(13)C was observed among RILs. The broad-sense heritability (H (2)) of leaf Δ(13)C was 0.8, and there was no significant interaction between genotype and environment for leaf Δ(13)C in the W × I RILs. A total of 12 QTL for leaf Δ(13)C were detected in the W × I RILs and 5 QTL in the M × H RILs. For the W × I RILs, a major QTL located on chromosome 3H near marker Bmag606 (9.3, 9.4 and 10.7 cM interval) was identified. This major QTL overlapped with several agronomic traits, with W89001002003 alleles favoring lower leaf Δ(13)C, increased plant height, and reduced leaf area index, grain yield, harvest index and days to maturity at this locus or loci. This major QTL and its associated marker, when validated, maybe useful in breeding programs aimed at improving WUE and yield stability of barley on the Canadian Prairies.

  12. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2.

    PubMed

    Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali; Archontoulis, Sotirios V; Zobel, Zachary; Kotamarthi, Veerabhadra R

    2017-01-07

    Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high-resolution (12 km) dynamically downscaled climate projections for 1995-2004 and 2085-2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems.

  13. Differentiation of weedy traits in ALS-resistant red rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice is a weedy form of cultivated rice (Oryza sativa) that competes aggressively with rice in the southern U.S., reduces yields and contaminates rice grains. The introduction of ClearfieldTM rice, a nontransgenic, herbicide-resistant rice cultivar a decade ago has led to increased use of imazet...

  14. Biodestructive processes occurring in the organic matter of lowland peat in the arctic zone

    NASA Astrophysics Data System (ADS)

    Svarovskaya, L. I.; Altunina, L. K.; Serebrennikova, O. V.

    2016-11-01

    A model experiment was carried on in laboratory conditions. The biodestruction of organic matter was studied using lowland peat samples collected in Kolguev Island in Barents Sea. Here the purpose was to obtain information about the species range and the activity of bacterial complex involved in the destruction processes of lowland peat organic matter from the natural environment by simulating the Arctic zone climate. The species range is found to include bacteria dominant species, i.e. Rhodococcus, Arthrobacter, Bacillus and Pseudomonas. In order to stimulate the biodestruction of organic matter, inoculate was added to the culture medium containing peat; its composition and dose were determined by the trial-and-error method. The catalytic activity of bacterial ferments was initiated in the presence of inoculate; hence, the desired effect was achieved. The composition of the organic matter of bacterial biomass and peat was analyzed by the method of gas chromatography-mass spectrometry.

  15. Why are There So Few Magnetic Anomalies in Martian Lowlands and Basins?

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Aharonson, Oded; Banerdt, W. Bruce; Dombard, Andrew J.; Frey, Herbert V.; Golombek, Matthew P.; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.; McGovern, Patrick J.

    2003-01-01

    The discovery of large areas of strongly magnetized crust on Mars [1,2] provides important information on the timing of both crustal and deeper interior processes on that planet. Critical to an understanding of that timing, as well as to the processes that have contributed to the magnetization and demagnetization of crustal materials, is the geographical distribution of magnetic anomalies discernible from spacecraft orbit. The paucity of resolved magnetic anomalies in the northern lowlands and within and surrounding the best-preserved major impact basins has been noted since the crustal field was first globally mapped [1], but no straightforward explanation of that full pattern has yet been offered. Here we suggest that ancient hydrothermal alteration of magnetic carriers in Martian lowlands and basins may have contributed to the magnetization distribution observed today.

  16. High-resolution lidar topography of the Puget Lowland, Washington - A bonanza for earth science

    USGS Publications Warehouse

    Haugerud, R.A.; Harding, D.J.; Johnson, S.Y.; Harless, J.L.; Weaver, C.S.; Sherrod, B.L.

    2003-01-01

    More than 10,000 km2 of high-resolution, public-domain topography acquired by the Puget Sound Lidar Consortium is revolutionizing investigations of active faulting, continental glaciation, landslides, and surficial processes in the seismically active Puget Lowland. The Lowland-the population and economic center of the Pacific Northwest-presents special problems for hazards investigations, with its young glacial topography, dense forest cover, and urbanization. Lidar mapping during leaf-off conditions has led to a detailed digital model of the landscape beneath the forest canopy. The surface thus revealed contains a rich and diverse record of previously unknown surface-rupturing faults, deep-seated landslides, uplifted Holocene and Pleistocene beaches, and subglacial and periglacial features. More than half a dozen suspected postglacial fault scarps have been identified to date. Five scarps that have been trenched show evidence of large, Holocene, surface-rupturing earthquakes.

  17. Nitrification inhibition activity, a novel trait in root exudates of rice

    PubMed Central

    Pariasca Tanaka, Juan; Nardi, Pierfrancesco; Wissuwa, Matthias

    2010-01-01

    Background and aims Nitrification is an important process in soil--plant systems for providing plant-available nitrate (NO3−). However, NO3− is less stable in soils compared with ammonium (NH4+) and is more easily lost through leaching, runoff or denitrification. This study tested whether biological nitrification inhibition (BNI) activity is present in the root exudates of rice (Oryza sativa) and also the extent of variation between different genotypes. Methodology The BNI activity of root exudates was estimated by a bioluminescence assay using a recombinant Nitrosomonas europaea strain. Afterwards, the effect of a single application of concentrated root exudates and that of exudates deposited in the rhizosphere soil was tested on BNI using soil incubation. Soil was added with (NH4)2SO4 and water to reach 60 % of the water-holding capacity and incubated at 30 °C for different periods. Amounts of NH4+ and NO3− were determined using a continuous-flow auto-analyser. Principal results In an initial screening experiment, BNI activity in the exudates of 36 different rice genotypes was evaluated using a bioassay based on a recombinant Nitrosomonas strain. Significant genotypic variation was detected with the upland cultivar IAC25 demonstrating consistently high BNI activity, while modern lowland varieties like Nipponbare or IR64 exhibited lower activity. Subsequent experiments ruled out the possibility that BNI activity is simply due to non-specific (solute) leakage from roots. Soil incubation studies with concentrated root exudates of IAC25 showed significant reductions in NO3− formation. This effect was confirmed by detecting lower NO3− levels in incubation experiments using rhizosphere soil obtained from IAC25. Conclusions Our results provide first evidence that root exudates of rice can reduce nitrification rates in soil. Having shown this for a model crop, rice, offers possibilities for further exploitation of this phenomenon through molecular and genetic

  18. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions

    PubMed Central

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814

  19. Detection algorithm for multiple rice seeds images

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Ying, Y. B.

    2006-10-01

    The objective of this research is to develop a digital image analysis algorithm for detection of multiple rice seeds images. The rice seeds used for this study involved a hybrid rice seed variety. Images of multiple rice seeds were acquired with a machine vision system for quality inspection of bulk rice seeds, which is designed to inspect rice seeds on a rotating disk with a CCD camera. Combining morphological operations and parallel processing gave improvements in accuracy, and a reduction in computation time. Using image features selected based on classification ability; a highly acceptable defects classification was achieved when the algorithm was implemented for all the samples to test the adaptability.

  20. Increasing rice plant growth by Trichoderma sp.

    NASA Astrophysics Data System (ADS)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  1. The Lethal Fungus Batrachochytrium dendrobatidis Is Present in Lowland Tropical Forests of Far Eastern Panamá

    PubMed Central

    Rebollar, Eria A.; Hughey, Myra C.; Harris, Reid N.; Domangue, Rickie J.; Medina, Daniel; Ibáñez, Roberto; Belden, Lisa K.

    2014-01-01

    The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is one of the main causes of amphibian population declines and extinctions all over the world. In the Neotropics, this fungal disease has caused catastrophic declines in the highlands as it has spread throughout Central America down to Panamá. In this study, we determined the prevalence and intensity of Bd infection in three species of frogs in one highland and four lowland tropical forests, including two lowland regions in eastern Panamá in which the pathogen had not been detected previously. Bd was present in all the sites sampled with a prevalence ranging from 15–34%, similar to other Neotropical lowland sites. The intensity of Bd infection on individual frogs was low, ranging from average values of 0.11–24 zoospore equivalents per site. Our work indicates that Bd is present in anuran communities in lowland Panamá, including the Darién province, and that the intensity of the infection may vary among species from different habitats and with different life histories. The population-level consequences of Bd infection in amphibian communities from the lowlands remain to be determined. Detailed studies of amphibian species from the lowlands will be essential to determine the reason why these species are persisting despite the presence of the pathogen. PMID:24740162

  2. Peat analyses in the Hudson Bay Lowlands using ground penetrating radar

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Davis, J. L.; Rossiter, J. R.

    1991-01-01

    The use of ground penetrating radar (GPR) as a means to determine peak thickness and estimate peat volume in the Hudson Bay Lowlands of Canada is examined. Ground-based and airborne GPR data were acquired so as to extrapolate measurements to larger scales. While the ground-based measurements did an excellent job in determining peat depth, the airborne techniques did a fair job a low altitudes and demonstrated great promise with additional system engineering changes.

  3. Severe idiopathic hypocalcemia in a juvenile western lowland gorilla, Gorilla gorilla gorilla.

    PubMed

    Chatfield, Jenifer; Stones, Greeley; Jalil, Tania

    2012-03-01

    A 6-mo-old, male western lowland gorilla (Gorilla gorilla gorilla) was evaluated because of tetany of both hands. The gorilla had alternating periods of constipation, diarrhea, and bloating since birth. A diagnosis of idiopathic hypocalcemia was based on severe hypocalcemia, a normal vitamin D level, response to oral calcium and vitamin D therapy, and eventual resolution. Idiopathic hypocalcemia, an uncommon disease in neonatal humans, should be considered in young gorillas with persistent gastrointestinal problems or acute tetany.

  4. Successful treatment of acute systemic anaphylaxis in a western lowland gorilla (Gorilla gorilla gorilla).

    PubMed

    Hayman, David T S; King, Tony; Cameron, Kenneth

    2010-09-01

    This brief communication describes the successful treatment of acute systemic anaphylaxis in a wild-born but captive infant western lowland gorilla (Gorilla gorilla gorilla) in the Republic of Congo. The infant demonstrated signs of acute respiratory distress, lingual swelling, and reaction to intradermal tuberculin, given 55 hr earlier. Details of the treatment with steroids, anesthetic induction, and i.v. epinephrine are all reported, and potential antigens that may have initiated the anaphylactic shock are discussed.

  5. Geochemical characterization of soils of the eastern coast of the Northern Sakhalin Lowland

    NASA Astrophysics Data System (ADS)

    Zharikova, E. A.

    2017-01-01

    Concentrations of heavy metals (HMs) were determined in soils of the eastern coast of the Northern Sakhalin Lowland. The total contents of HMs and their distribution in the studied soils differed from those in the world soils. Thus, barium and mercury concentrations exceeded clarke values for the world soils. The reserves of mobile forms of microelements were found to be low. Significant biogenic accumulation in organic soil horizons in the process of soil formation was found for copper, arsenic, and barium.

  6. An interactive modelling tool for understanding hydrological processes in lowland catchments

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Torfs, Paul; Uijlenhoet, Remko

    2016-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS), a rainfall-runoff model for catchments with shallow groundwater (Brauer et al., 2014ab). WALRUS explicitly simulates processes which are important in lowland catchments, such as feedbacks between saturated and unsaturated zone and between groundwater and surface water. WALRUS has a simple model structure and few parameters with physical connotations. Some default functions (which can be changed easily for research purposes) are implemented to facilitate application by practitioners and students. The effect of water management on hydrological variables can be simulated explicitly. The model description and applications are published in open access journals (Brauer et al, 2014). The open source code (provided as R package) and manual can be downloaded freely (www.github.com/ClaudiaBrauer/WALRUS). We organised a short course for Dutch water managers and consultants to become acquainted with WALRUS. We are now adapting this course as a stand-alone tutorial suitable for a varied, international audience. In addition, simple models can aid teachers to explain hydrological principles effectively. We used WALRUS to generate examples for simple interactive tools, which we will present at the EGU General Assembly. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332. C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028.

  7. Thermokarst Rates Intensify Due to Climate Change and Forest Fragmentation in an Alaskan Boreal Forest Lowland

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; Genet, H.; McGuire, A. D.; Euskirchen, E. S.; Zhang, Y.; Brown, D. N.; Jorgenson, T.; Romanovsky, V. E.; Breen, A. L.; Bolton, W. R.

    2015-12-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse scar-bogs, low shrub/scrub, and forests growing on elevated ice rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5o C of thawing. Increases in the collapse of lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998 and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30x30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, respectively. Gradient boosting and regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950-2009 landscape-level analysis estimates a transition of ~15 km² of birch forest area to wetlands on the Tanana Flats, where the greatest change followed warm periods. This work highlights the vulnerability of lowland

  8. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland.

    PubMed

    Lara, Mark J; Genet, Hélène; McGuire, Anthony D; Euskirchen, Eugénie S; Zhang, Yujin; Brown, Dana R N; Jorgenson, Mark T; Romanovsky, Vladimir; Breen, Amy; Bolton, William R

    2016-02-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  9. Hydrogeologic framework of the Willamette Lowland aquifer system, Oregon and Washington

    USGS Publications Warehouse

    Woodward, D.G.; Gannett, Marshall W.; Vaccaro, J.J.

    1998-01-01

    This report summarizes the hydraulic characteristics of the materials that make up the Willamette Lowland aquifer system, ground-water movement in the aquifer system, estimates of ground-water recharge, ground-water quality characteristics, construction and use of cross-sectional numerical ground-water flow models, hydrologic controls on ground-water movement, water budgets and flow paths, and a description and application of a conceptual model.

  10. Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.)

    PubMed Central

    Gao, Yong-Ming; Ma, Xiu-Fang; Meng, Li-Jun; Wang, Ying; Pang, Yun-Long; Guan, Yong-Sheng; Xu, Mei-Rong; Revilleza, Jastin E.; Franje, Neil J.; Zhou, Shao-Chuan; Li, Zhi-Kang

    2017-01-01

    To develop superior rice varieties with improved yield in most rainfed areas of Asia/Africa, we started an introgression-breeding program for simultaneously improving yield and tolerances of multiple abiotic stresses. Using eight BC1 populations derived from a widely adaptable recipient and eight donors plus three rounds of phenotypic selection, we developed 496 introgression lines (ILs) with significantly higher yield under drought, salt and/or non-stress conditions in 5 years. Six new varieties were released in the Philippines and Pakistan and many more are being evaluated in multi-location yield trials for releasing in several countries. Marker-facilitated genetic characterization revealed three interesting aspects of the breeding procedure: (1) the donor introgression pattern in specific BC populations was characteristic; (2) introgression frequency in different genomic regions varied considerably, resulting primarily from strong selection for the target traits; and (3) significantly lower heterozygosity was observed in BC progenies selected for drought and salinity tolerance. Applying strong phenotypic selection under abiotic stresses in early segregating generations has major advantages for not only improving multiple abiotic stress tolerance but also achieving quicker homozygosity in early generations. This breeding procedure can be easily adopted by small breeding programs in developing countries to develop high-yielding varieties tolerant of abiotic stresses. The large set of trait-specific ILs can be used for genetic mapping of genes/QTL that affect target and non-target traits and for efficient varietal development by designed QTL pyramiding and genomics-based recurrent selection in our Green Super Rice breeding technology. PMID:28278154

  11. Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.).

    PubMed

    Ali, Jauhar; Xu, Jian-Long; Gao, Yong-Ming; Ma, Xiu-Fang; Meng, Li-Jun; Wang, Ying; Pang, Yun-Long; Guan, Yong-Sheng; Xu, Mei-Rong; Revilleza, Jastin E; Franje, Neil J; Zhou, Shao-Chuan; Li, Zhi-Kang

    2017-01-01

    To develop superior rice varieties with improved yield in most rainfed areas of Asia/Africa, we started an introgression-breeding program for simultaneously improving yield and tolerances of multiple abiotic stresses. Using eight BC1 populations derived from a widely adaptable recipient and eight donors plus three rounds of phenotypic selection, we developed 496 introgression lines (ILs) with significantly higher yield under drought, salt and/or non-stress conditions in 5 years. Six new varieties were released in the Philippines and Pakistan and many more are being evaluated in multi-location yield trials for releasing in several countries. Marker-facilitated genetic characterization revealed three interesting aspects of the breeding procedure: (1) the donor introgression pattern in specific BC populations was characteristic; (2) introgression frequency in different genomic regions varied considerably, resulting primarily from strong selection for the target traits; and (3) significantly lower heterozygosity was observed in BC progenies selected for drought and salinity tolerance. Applying strong phenotypic selection under abiotic stresses in early segregating generations has major advantages for not only improving multiple abiotic stress tolerance but also achieving quicker homozygosity in early generations. This breeding procedure can be easily adopted by small breeding programs in developing countries to develop high-yielding varieties tolerant of abiotic stresses. The large set of trait-specific ILs can be used for genetic mapping of genes/QTL that affect target and non-target traits and for efficient varietal development by designed QTL pyramiding and genomics-based recurrent selection in our Green Super Rice breeding technology.

  12. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  13. Cuticular hydrocarbons corroborate the distinction between lowland and highland Natal fruit fly (Tephritidae, Ceratitis rosa) populations

    PubMed Central

    Vaníčková, Lucie; Břízová, Radka; Pompeiano, Antonio; Ekesi, Sunday; Meyer, Marc De

    2015-01-01

    Abstract The cuticular hydrocarbons (CHs) and morphology of two Ceratitis rosa Karsch (Diptera: Tephritidae) populations, putatively belonging to two cryptic taxa, were analysed. The chemical profiles were characterised by two-dimensional gas chromatography with mass spectrometric detection. CHs of Ceratitis rosa that originated from the lowlands and highlands of Kenya comprised of n-alkanes, monomethylalkanes, dimethylalkanes and unsaturated hydrocarbons in the range of the carbon backbone from C14 to C37. Hydrocarbons containing C29, C31, C33 and C35 carbon atoms predominated in these two populations. 2-Methyltriacontane was the predominant compound in both populations. Quantitative differences in the distribution of hydrocarbons of different chain lengths, mainly the C22, C32, C33 and C34 compounds of these two populations, were observed despite indistinct qualitative differences in these hydrocarbons. Morphological analyses of male legs confirmed that the flies belong to different morphotypes of Ceratitis rosa previously labelled as R1 and R2 for lowland and highland populations, respectively. A statistical analysis of the CH compositions of the putative R1 and R2 species showed distinct interspecific identities, with several CHs specific for each of the lowland and highland populations. This study supports a hypothesis that the taxon Ceratitis rosa consists of at least two biological species. PMID:26798275

  14. Incised channel fills containing conifers indicate that seasonally dry vegetation dominated Pennsylvanian tropical lowlands

    USGS Publications Warehouse

    Falcon-Lang, H. J.; Nelson, W.J.; Elrick, S.; Looy, C.V.; Ames, P.R.; DiMichele, W.A.

    2009-01-01

    The idea that the Pennsylvanian tropical lowlands were temporally dominated by rainforest (i.e., the Coal Forest) is deeply ingrained in the literature. Here we challenge two centuries of research by suggesting that this concept is based on a taphonomic artifact, and that seasonally dry vegetation dominated instead. This controversial finding arises from the discovery of a new middle Pennsylvanian (Moscovian) fossil plant assemblage in southeast Illinois, United States. The assemblage, which contains xerophytic walchian conifers, occurs in channels incised into a calcic Vertisol below the Baker Coal. These plants grew on seasonally dry tropical lowlands inferred to have developed during a glacial phase. This xerophytic flora differs markedly from that of the typical clubmoss-dominated Coal Forest developed during deglaciation events. Although preserved only very rarely, we argue that such xerophytic floras were temporally as dominant, and perhaps more dominant, than the iconic Coal Forests, which are overrepresented in the fossil record due to taphonomic megabias. These findings require the iconography of Pennsylvanian tropical lowlands to be redrawn. ?? 2009 Geological Society of America.

  15. Spread of Amphibian Chytrid Fungus across Lowland Populations of Túngara Frogs in Panamá.

    PubMed

    Rodríguez-Brenes, Sofía; Rodriguez, David; Ibáñez, Roberto; Ryan, Michael J

    2016-01-01

    Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emergent infectious disease partially responsible for worldwide amphibian population declines. The spread of Bd along highland habitats (> 500 meters above sea level, m a.s.l.) of Costa Rica and Panamá is well documented and has been linked to amphibian population collapses. In contrast, data are scarce on the prevalence and dispersal of Bd in lowland habitats where amphibians may be infected but asymptomatic. Here we describe the spread (2009 to 2014) of Bd across lowland habitats east of the Panamá Canal (< 500 m a.s.l.) with a focus on the Túngara frog (Physalaemus [Engystomops] pustulosus), one of the most common and abundant frog species in this region. Highland populations in western Panamá were already infected with Bd at the start of the study, which was consistent with previous studies indicating that Bd is enzootic in this region. In central Panamá, we collected the first positive samples in 2010, and by 2014, we detected Bd from remote sites in eastern Panamá (Darién National Park). We discuss the importance of studying Bd in lowland species, which may serve as potential reservoirs and agents of dispersal of Bd to highland species that are more susceptible to chytridiomycosis.

  16. Classic Period collapse of the Central Maya Lowlands: Insights about human–environment relationships for sustainability

    PubMed Central

    Turner, B. L.; Sabloff, Jeremy A.

    2012-01-01

    The ninth century collapse and abandonment of the Central Maya Lowlands in the Yucatán peninsular region were the result of complex human–environment interactions. Large-scale Maya landscape alterations and demands placed on resources and ecosystem services generated high-stress environmental conditions that were amplified by increasing climatic aridity. Coincident with this stress, the flow of commerce shifted from land transit across the peninsula to sea-borne transit around it. These changing socioeconomic and environmental conditions generated increasing societal conflicts, diminished control by the Maya elite, and led to decisions to move elsewhere in the peninsular region rather than incur the high costs of maintaining the human–environment systems in place. After abandonment, the environment of the Central Maya Lowlands largely recovered, although altered from its state before Maya occupation; the population never recovered. This history and the spatial and temporal variability in the pattern of collapse and abandonment throughout the Maya lowlands support the case for different conditions, opportunities, and constraints in the prevailing human–environment systems and the decisions to confront them. The Maya case lends insights for the use of paleo- and historical analogs to inform contemporary global environmental change and sustainability. PMID:22912403

  17. Yellow fever: ecology, epidemiology, and role in the collapse of the Classic lowland Maya civilization.

    PubMed

    Wilkinson, R L

    1995-07-01

    Mystery has long surrounded the collapse of the Classic lowland Mayan civilization of the Peten region in Guatemala. Recent population reconstructions derived from archaeological evidence from the central lowlands show population declines from urban levels of between 2.5 and 3.5 million to around 536,000 in the two hundred year interval between 800 A.D. and 1000 A.D., the period known as the Classic Maya Collapse. A steady, but lesser rate of population decline continued until the time of European contact. When knowledge of the ecology and epidemiology of yellow fever and its known mosquito vectors are compared with what is known of the ecological conditions of lowland Guatemala as modified by the Classic Maya, provocative similarities are observed. When infection and mortality patterns of more recent urban yellow fever epidemics are used as models for a possible series of Classic Maya epidemics, a correlation is noted between the modeled rate of population decline for a series of epidemics, and population decline figures reconstructed from archaeological evidence.

  18. Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars.

    PubMed

    Wyatt, Michael B; McSween, Harry Y

    2002-05-16

    Mineral abundances derived from the analysis of remotely sensed thermal emission data from Mars have been interpreted to indicate that the surface is composed of basalt (Surface Type 1) and andesite (Surface Type 2). The global distribution of these rock types is divided roughly along the planetary dichotomy which separates ancient, heavily cratered crust in the southern hemisphere (basalt) from younger lowland plains in the north (andesite). But the existence of such a large volume of andesite is difficult to reconcile with our present understanding of the geological evolution of Mars. Here we reinterpret martian surface rock lithologies using mineral abundances from previous work and new mineralogies derived from a spectral end-member set representing minerals common in unaltered and low-temperature aqueously altered basalts. Our results continue to indicate the dominance of unaltered basalt in the southern highlands, but reveal that the northern lowlands can be interpreted as weathered basalt as an alternative to andesite. The coincidence between locations of such altered basalt and a suggested northern ocean basin implies that lowland plains material may be composed of basalts weathered under submarine conditions or weathered basaltic sediments transported into this depocentre.

  19. Impacts of Climate Change on the Collapse of Lowland Maya Civilization

    NASA Astrophysics Data System (ADS)

    Douglas, Peter M. J.; Demarest, Arthur A.; Brenner, Mark; Canuto, Marcello A.

    2016-06-01

    Paleoclimatologists have discovered abundant evidence that droughts coincided with collapse of the Lowland Classic Maya civilization, and some argue that climate change contributed to societal disintegration. Many archaeologists, however, maintain that drought cannot explain the timing or complex nature of societal changes at the end of the Classic Period, between the eighth and eleventh centuries ce. This review presents a compilation of climate proxy data indicating that droughts in the ninth to eleventh century were the most severe and frequent in Maya prehistory. Comparison with recent archaeological evidence, however, indicates an earlier beginning for complex economic and political processes that led to the disintegration of states in the southern region of the Maya lowlands that precedes major droughts. Nonetheless, drought clearly contributed to the unusual severity of the Classic Maya collapse, and helped to inhibit the type of recovery seen in earlier periods of Maya prehistory. In the drier northern Maya Lowlands, a later political collapse at ca. 1000 ce appears to be related to ongoing extreme drought. Future interdisciplinary research should use more refined climatological and archaeological data to examine the relationship between climate and social processes throughout the entirety of Maya prehistory.

  20. Seismic reflection images beneath Puget Sound, western Washington State: The Puget Lowland thrust sheet hypothesis

    USGS Publications Warehouse

    Pratt, T.L.; Johnson, S.; Potter, C.; Stephenson, W.; Finn, C.

    1997-01-01

    Seismic reflection data show that the densely populated Puget Lowland of western Washington state is underlain by subhorizontal Paleogene and Neogene sedimentary rocks deformed by west and northwest trending faults and folds. From south to north beneath the Lowland, features seen on the seismic data include: the horizontally-stratified, 3.5 km thick Tacoma sedimentary basin; the Seattle uplift with south dipping (???20??) strata on its south flank and steeply (50?? to 90??) north dipping strata and the west-trending Seattle fault on its north flank; the 7.5 km thick, northward-thinning Seattle sedimentary basin; the antiformal Kingston arch; and the northwest trending, transpressional Southern Whidbey Island fault zone (SWIF). Interpreting the uplifts as fault-bend and fault-propagation folds leads to the hypothesis that the Puget Lowland lies on a north directed thrust sheet. The base of the thrust sheet may lie at 14 to 20 km depth within or at the base of a thick block of basaltic Crescent Formation; its edges may be right-lateral strike-slip faults along the base of the Cascade Range on the east and the Olympic Mountains on the west. Our model suggests that the Seattle fault has a long-term slip rate of about 0.25 mm/year and is large enough to generate a M7.6 to 7.7 earthquake.

  1. Lowland-upland migration of sauropod dinosaurs during the Late Jurassic epoch.

    PubMed

    Fricke, Henry C; Hencecroth, Justin; Hoerner, Marie E

    2011-10-26

    Sauropod dinosaurs were the largest vertebrates ever to walk the Earth, and as mega-herbivores they were important parts of terrestrial ecosystems. In the Late Jurassic-aged Morrison depositional basin of western North America, these animals occupied lowland river-floodplain settings characterized by a seasonally dry climate. Massive herbivores with high nutritional and water needs could periodically experience nutritional and water stress under these conditions, and thus the common occurrence of sauropods in this basin has remained a paradox. Energetic arguments and mammalian analogues have been used to suggest that migration allowed sauropods access to food and water resources over a wide region or during times of drought or both, but there has been no direct support for these hypotheses. Here we compare oxygen isotope ratios (δ(18)O) of tooth-enamel carbonate from the sauropod Camarasaurus with those of ancient soil, lake and wetland (that is, 'authigenic') carbonates that formed in lowland settings. We demonstrate that certain populations of these animals did in fact undertake seasonal migrations of several hundred kilometres from lowland to upland environments. This ability to describe patterns of sauropod movement will help to elucidate the role that migration played in the ecology and evolution of gigantism of these and associated dinosaurs.

  2. Classic Period collapse of the Central Maya Lowlands: insights about human-environment relationships for sustainability.

    PubMed

    Turner, B L; Sabloff, Jeremy A

    2012-08-28

    The ninth century collapse and abandonment of the Central Maya Lowlands in the Yucatán peninsular region were the result of complex human-environment interactions. Large-scale Maya landscape alterations and demands placed on resources and ecosystem services generated high-stress environmental conditions that were amplified by increasing climatic aridity. Coincident with this stress, the flow of commerce shifted from land transit across the peninsula to sea-borne transit around it. These changing socioeconomic and environmental conditions generated increasing societal conflicts, diminished control by the Maya elite, and led to decisions to move elsewhere in the peninsular region rather than incur the high costs of maintaining the human-environment systems in place. After abandonment, the environment of the Central Maya Lowlands largely recovered, although altered from its state before Maya occupation; the population never recovered. This history and the spatial and temporal variability in the pattern of collapse and abandonment throughout the Maya lowlands support the case for different conditions, opportunities, and constraints in the prevailing human-environment systems and the decisions to confront them. The Maya case lends insights for the use of paleo- and historical analogs to inform contemporary global environmental change and sustainability.

  3. Spread of Amphibian Chytrid Fungus across Lowland Populations of Túngara Frogs in Panamá

    PubMed Central

    Rodríguez-Brenes, Sofía; Rodriguez, David; Ibáñez, Roberto; Ryan, Michael J.

    2016-01-01

    Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emergent infectious disease partially responsible for worldwide amphibian population declines. The spread of Bd along highland habitats (> 500 meters above sea level, m a.s.l.) of Costa Rica and Panamá is well documented and has been linked to amphibian population collapses. In contrast, data are scarce on the prevalence and dispersal of Bd in lowland habitats where amphibians may be infected but asymptomatic. Here we describe the spread (2009 to 2014) of Bd across lowland habitats east of the Panamá Canal (< 500 m a.s.l.) with a focus on the Túngara frog (Physalaemus [Engystomops] pustulosus), one of the most common and abundant frog species in this region. Highland populations in western Panamá were already infected with Bd at the start of the study, which was consistent with previous studies indicating that Bd is enzootic in this region. In central Panamá, we collected the first positive samples in 2010, and by 2014, we detected Bd from remote sites in eastern Panamá (Darién National Park). We discuss the importance of studying Bd in lowland species, which may serve as potential reservoirs and agents of dispersal of Bd to highland species that are more susceptible to chytridiomycosis. PMID:27176629

  4. Analysis of western lowland gorilla (Gorilla gorilla gorilla) specific Alu repeats

    PubMed Central

    2013-01-01

    Background Research into great ape genomes has revealed widely divergent activity levels over time for Alu elements. However, the diversity of this mobile element family in the genome of the western lowland gorilla has previously been uncharacterized. Alu elements are primate-specific short interspersed elements that have been used as phylogenetic and population genetic markers for more than two decades. Alu elements are present at high copy number in the genomes of all primates surveyed thus far. The AluY subfamily and its derivatives have been recognized as the evolutionarily youngest Alu subfamily in the Old World primate lineage. Results Here we use a combination of computational and wet-bench laboratory methods to assess and catalog AluY subfamily activity level and composition in the western lowland gorilla genome (gorGor3.1). A total of 1,075 independent AluY insertions were identified and computationally divided into 10 subfamilies, with the largest number of gorilla-specific elements assigned to the canonical AluY subfamily. Conclusions The retrotransposition activity level appears to be significantly lower than that seen in the human and chimpanzee lineages, while higher than that seen in orangutan genomes, indicative of differential Alu amplification in the western lowland gorilla lineage as compared to other Homininae. PMID:24262036

  5. Kennedy at Rice University

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President Kennedy speaks before a crowd of 35,000 people at Rice University in the football field. The following are excerpts from his speech. ' ...We set sail on his new sea because there is a new knowledge to be gained, and new rights to be won, and they must be won and used for the progress of all people. ...Whether it will become a force for good or ill depends on man, and only if the United States occupies a position of pre-eminence can we help decide whether this new ocean will be a sea of peace or a new terrifying theater of war. But I do say space can be explored and mastered without feeding the fires of war, without repeating the mistakes that man has made with extending his writ around this globe of ours. ...There is no strife, no prejudice, no national conflict in outer space as yet. Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation may never come again. But why, some say the Moon? Why choose this as our goal? And they may well ask, why climb the highest mountian? Why - 35 years ago - why fly the Atlantic? Why does Rice play Texas? We choose to go to the Moon, we choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one in which we intend to win, and the others too.'

  6. Kennedy at Rice University

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President Kennedy speaks before a crowd of 35,000 people at Rice University in the football field. The following are excerpts from his speech. ' ...We set sail on his new sea because there is a new knowledge to begained, and new rights to be won, and they must be won and used for the progress of all people. Whether it will become a force for good or ill depends on man, and only if the United States occupies a position of pre-eminence can we help decide whether this new ocean will be a sea of peace or a new terrifying theater of war. But I do say space can be explored and mastered without feeding the fires of war, without repeating the mistakes that man has made with extending his wirt around this globe of ours. There is no strife, no prejudice, no national conflict in outer space as yet. Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation may never come again. But why, some say the Moon? Why choose this as our goal? And they may well ask, why climb the highest mountain? Why 35 years ago why fly the Atlantic? Why does Rice play Texas? We choose to go to the Moon, we choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one in which we attend to win, and the others , too.'

  7. Pullulanase from rice endosperm.

    PubMed

    Yamasaki, Yoshiki; Nakashima, Susumu; Konno, Haruyoshi

    2008-01-01

    Pullulanase (EC 3.2.1.41) in non-germinating seeds was compared with that in germinating seeds. Moreover, pullulanase from the endosperm of rice (Oryza sativa L., cv. Hinohikari) seeds was isolated and its properties investigated. The pI value of pullulanase from seeds after 8 days of germination was almost equal to that from non-germinating seeds, which shows that these two enzymes are the same protein. Therefore, the same pullulanase may play roles in both starch synthesis during ripening and starch degradation during germination in rice seeds. The enzyme was isolated by a procedure that included ammonium sulfate fractionation, DEAE-cellulofine column chromatography, preparative isoelectric focusing, and preparative disc gel electrophoresis. The enzyme was homogeneous by SDS/PAGE. The molecular weight of the enzyme was estimated to be 100 000 based on its mobility on SDS/PAGE and 105 000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 4.7. The enzyme was strongly inhibited by beta-cyclodextrin. The enzyme was not activated by thiol reagents such as dithiothreitol, 2-mercaptoethanol or glutathione. The enzyme most preferably hydrolyzed pullulan and liberated only maltotriose. The pullulan hydrolysis was strongly inhibited by the substrate at a concentration higher than 0.1%. The degree of inhibition increased with an increase in the concentration of pullulan. However, the enzyme hydrolyzed amylopectin, soluble starch and beta-limit dextrin more rapidly as their concentrations increased. The enzyme exhibited alpha-glucosyltransfer activity and produced an alpha-1,6-linked compound of two maltotriose molecules from pullulan.

  8. Genetic analysis of atypical U.S. red rice phenotypes: indications of prior gene flow in rice fields?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice is a troublesome weed problem in rice fields of the southern U.S. Outcrossing between rice and red rice occurs at low rates, resulting in a broad array of plant types. SSR markers were used to evaluate the genetic backgrounds of atypical red rice types obtained from rice farms in comparis...

  9. Outcrossing potential between U.S. red rice (Oryza sativa) and Chinese indica rice (Oryza sativa) lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice in southern U.S. rice fields remains a widespread, economically challenging problem despite nearly a decade of rice production systems that include true-breeding rice cultivars and indica-derived hybrid rice with resistance to imazethapyr. Both of these herbicide-resistant rice systems hav...

  10. Red rice (Oryza sativa L.) emergence characteristics and influence on rice (O. sativa) yield at different planting dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice yield losses due to red rice infestation vary by cultivar, red rice density, and duration of interference. The competition effects of red rice could be influenced further by emergence characteristics, red rice biotype, and planting time of cultivated rice. We aimed to characterize th...

  11. Processing Conditions, Rice Properties, Health and Environment

    PubMed Central

    Roy, Poritosh; Orikasa, Takahiro; Okadome, Hiroshi; Nakamura, Nobutaka; Shiina, Takeo

    2011-01-01

    Rice is the staple food for nearly two-thirds of the world’s population. Food components and environmental load of rice depends on the rice form that is resulted by different processing conditions. Brown rice (BR), germinated brown rice (GBR) and partially-milled rice (PMR) contains more health beneficial food components compared to the well milled rice (WMR). Although the arsenic concentration in cooked rice depends on the cooking methods, parboiled rice (PBR) seems to be relatively prone to arsenic contamination compared to that of untreated rice, if contaminated water is used for parboiling and cooking. A change in consumption patterns from PBR to untreated rice (non-parboiled), and WMR to PMR or BR may conserve about 43–54 million tons of rice and reduce the risk from arsenic contamination in the arsenic prone area. This study also reveals that a change in rice consumption patterns not only supply more food components but also reduces environmental loads. A switch in production and consumption patterns would improve food security where food grains are scarce, and provide more health beneficial food components, may prevent some diseases and ease the burden on the Earth. However, motivation and awareness of the environment and health, and even a nominal incentive may require for a method switching which may help in building a sustainable society. PMID:21776212

  12. Diversity of global rice markets and the science required for consumer-targeted rice breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of different quality traits that make up the rice grain and obtain a full picture of rice quality demographics. Rice ...

  13. Volatiles induction in rice stink bug host grasses and rice plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice stink bug (RSB), Oebalus pugnax F., is an important pest of heading rice in the United States. Little is known about plant volatiles production following herbivory by the rice stink bug. RSB feeding induced volatiles production in different RSB host grasses and rice varieties, and may help expl...

  14. Utilization of weedy rice for development of japonica hybrid rice (Oryza sativa L.).

    PubMed

    Tang, Liang; Ma, Dian Rong; Xu, Zheng Jin; Deng, Hua Feng; Chen, Wen Fu; Yuan, Long Ping

    2011-05-01

    Two representative weedy rice lines, three typical japonica varieties and three typical indica varieties were used for 6 pairs of reciprocal crosses. The morphological traits of twelve F(1) hybrid lines, their parents and four elite cultivars were investigated for heterosis over mid-parent (HM), over parent (HP) and competitive heterosis (CH) analysis. Traits detected in weedy rice lines seemed larger than those in cultivars and excellent heterosis was produced in weedy rice crossing with japonica rice. Although weedy rice kept closer relationships with japonica rice compared to indica rice. But the heterosis of reciprocal crosses between weedy rice and japonica was closed to those of crosses between indica rice and japonica rice. In six of one hundred and eighteen weedy rice lines, the fertility restore gene for BT type cytoplasmic male sterility (BT-CMS) were detected. Weedy rice was very valuable germplasm resources with the abundant polymorphism. Meanwhile, the disadvantage, lodging, shattering and incompact plant type, should be modified by hybridization, backcross and multiple cross with japonica rice. Although it is difficult to use weedy rice directly, weedy rice may be available to breed both male sterile line and restorer line through improvement, developing japonica hybrid rice.

  15. The impact of planting date on management of the rice water weevil in Louisiana rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice water weevil, Lissorhoptrus oryzophilus, is the most destructive insect pest of rice in the United States. Early planting of rice to avoid damaging infestations of the rice water weevil has long been suggested as a management tactic. A five-year study was conducted to characterize the influ...

  16. Genetic diversity for rice grain mineral concentrations observed among genetically and geographically giverse rice accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With about half of the world’s people dependent on rice as their main food source, improving the nutritional value of rice could have major impact on human health. While rice in the USA is often artificially fortified, natural enhancement of the rice grain’s nutritional value, i.e. from genetic impr...

  17. Elemental composition of Malawian rice.

    PubMed

    Joy, Edward J M; Louise Ander, E; Broadley, Martin R; Young, Scott D; Chilimba, Allan D C; Hamilton, Elliott M; Watts, Michael J

    2016-07-20

    Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers' fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg(-1), dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and <0.005; Mg = 1130 and 265; Mn = 18.2 and 9.6; Se = 0.025 and 0.028; and Zn = 17.0 and 14.4. In brown and white rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg(-1), and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg(-1), dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could

  18. Evaluation of the degree of mycophilia-mycophobia among highland and lowland inhabitants from Chiapas, Mexico

    PubMed Central

    2013-01-01

    Background Mushrooms generate strong and contrasting feelings ranging from extreme aversion to intense liking. To categorize these attitudes, Wasson and Wasson coined the dichotomic terms “mycophilia” and “mycophobia” in 1957. In Mesoamerica these categories have been associated to ecological regions. Highland peoples are viewed as mycophiles, whereas lowland inhabitants are considered mycophobes. However, this division is based on little empirical evidence and few indicators. This study questioned whether mycophilia and mycophobia are indeed related to ecological regions through the evaluation of 19 indicators tested in the highlands and lowlands of Chiapas, Mexico. Methods The heterogeneity of attitudes toward mushrooms was explored in terms of ecological region and sociocultural variables. Information was obtained through structured interviews in 10 communities in Los Altos de Chiapas (highlands) and the Selva Lacandona (lowlands). We analyzed indicators separately through χ2 tests and multivariate techniques. The Mycophilia-Mycophobia Index was also used in the analysis. To assess which factors better explain the distribution of attitudes, we built 11 models using the Beta probability-density function and compared them with the Akaike Information Criterion. Results Most people had positive attitudes in both ecological regions. The classification and ordination analyses found two large groups comprising both highland and lowland towns. Contrary to expectation if mycophilia and mycophobia were mutually exclusive, all the fitted probability distributions were bell-shaped; indicating these attitudes behave as a continuous variable. The model best supported by data included occupation and ethnicity. Indigenous peasants had the highest degree of mycophilia. Discussion Results suggest the studied populations tend to be mycophilic and that their attitudes are not dichotomic, but rather a gradient. Most people occupied intermediate degrees of mycophilia

  19. Extending a rainfall-runoff model for lowland catchments from lumped to semi-distributed

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Torfs, Paul; Teuling, Ryan; Uijlenhoet, Remko

    2016-04-01

    The Wageningen Lowland Runoff Simulator (WALRUS) is a parametric rainfall-runoff model for catchments with shallow groundwater (Brauer et al., 2014ab). WALRUS was developed using data and experience from two Dutch experimental catchments: the Hupsel Brook catchment (6.5 km2) and the Cabauw polder (0.5 km2). We identified key processes for runoff generation in lowland catchments, notably (1) groundwater-unsaturated zone coupling, (2) wetness-dependent flow routes, (3) groundwater-surface water feedbacks and (4) seepage and surface water supply, and accounted for these in the model structure. Up to now, WALRUS has been used in a lumped manner. However, water managers and researchers have expressed an interest in a semi-distributed version for application to larger catchments with varying forcing and catchment characteristics and to investigate the effect of groundwater flow within the catchment on modelled variables (e.g. groundwater depth). We combined WALRUS and a model for 2-dimensional groundwater flow into a simple modelling framework. WALRUS was already designed to cope with groundwater flow into or out of the model domain, because seepage and lateral groundwater flow are common in lowlands. In the semi-distributed version, we used this feature to couple different WALRUS elements (grid cells or subcatchments) to each other. Groundwater flow was computed using a digital elevation model, groundwater depths computed by WALRUS, soil transmissivity data and Darcy's law. Finally, we implemented a surface routing model including backwater effects, which are relevant in areas with little relief. With respect to the lumped version, the semi-distributed requires more data. Therefore, we investigated the added value of different data sources (forcing, elevation, soil, surface water) separately. We will present the rationale behind the semi-distributed model and show how the model structure compares to observations and and simulations without lateral transport. C.C. Brauer

  20. Quantitative estimates of tropical temperature change in lowland Central America during the last 42 ka

    NASA Astrophysics Data System (ADS)

    Grauel, Anna-Lena; Hodell, David A.; Bernasconi, Stefano M.

    2016-03-01

    Determining the magnitude of tropical temperature change during the last glacial period is a fundamental problem in paleoclimate research. Large discrepancies exist in estimates of tropical cooling inferred from marine and terrestrial archives. Here we present a reconstruction of temperature for the last 42 ka from a lake sediment core from Lake Petén Itzá, Guatemala, located at 17°N in lowland Central America. We compared three independent methods of glacial temperature reconstruction: pollen-based temperature estimates, tandem measurements of δ18O in biogenic carbonate and gypsum hydration water, and clumped isotope thermometry. Pollen provides a near-continuous record of temperature change for most of the glacial period but the occurrence of a no-analog pollen assemblage during cold, dry stadials renders temperature estimates unreliable for these intervals. In contrast, the gypsum hydration and clumped isotope methods are limited mainly to the stadial periods when gypsum and biogenic carbonate co-occur. The combination of palynological and geochemical methods leads to a continuous record of tropical temperature change in lowland Central America over the last 42 ka. Furthermore, the gypsum hydration water method and clumped isotope thermometry provide independent estimates of not only temperature, but also the δ18O of lake water that is dependent on the hydrologic balance between evaporation and precipitation over the lake surface and its catchment. The results show that average glacial temperature was cooler in lowland Central America by 5-10 °C relative to the Holocene. The coldest and driest times occurred during North Atlantic stadial events, particularly Heinrich stadials (HSs), when temperature decreased by up to 6 to 10 °C relative to today. This magnitude of cooling is much greater than estimates derived from Caribbean marine records and model simulations. The extreme dry and cold conditions during HSs in the lowland Central America were associated

  1. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance

    PubMed Central

    Semagn, Kassa; Sow, Mounirou; Nwilene, Francis; Kolade, Olufisayo; Bocco, Roland; Oyetunji, Olumoye; Mitchell-Olds, Thomas; Ndjiondjop, Marie-Noëlle

    2016-01-01

    African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders. PMID:27508500

  2. Rice protein-induced enterocolitis syndrome with transient specific IgE to boiled rice but not to retort-processed rice.

    PubMed

    Yasutomi, Motoko; Kosaka, Takuya; Kawakita, Akiko; Hayashi, Hisako; Okazaki, Shintaro; Murai, Hiroki; Miyagawa, Kazuhiko; Mayumi, Mitsufumi; Ohshima, Yusei

    2014-02-01

    Described herein is the case of an 8-month-old girl with atypical food protein-induced enterocolitis syndrome due to rice. She presented with vomiting and poor general activity 2 h after ingestion of boiled rice. Oral food challenge test using high-pressure retort-processed rice was negative, but re-exposure to boiled rice elicited gastrointestinal symptoms. On western blot analysis the patient's serum was found to contain IgE bound to crude protein extracts from rice seed or boiled rice, but not from retort-processed rice. The major protein bands were not detected in the electrophoresed gel of retort-processed rice extracts, suggesting decomposition by high-temperature and high-pressure processing. Oral food challenge for diagnosing rice allergy should be performed with boiled rice to avoid a false negative. Additionally, some patients with rice allergy might be able to ingest retort-processed rice as a substitute for boiled rice.

  3. Thermal characteristics of ohmically heated rice starch and rice flours.

    PubMed

    An, H J; King, J M

    2007-01-01

    Thermal properties of conventionally and ohmically heated rice starch and rice flours at various frequencies and voltages were studied. There was an increase in gelatinization temperature for conventionally heated rice starches since they were pregelatinized and became more rigid due to starch-chain interactions. In addition, there was a decrease in enthalpy (energy needed) for conventionally and ohmically heated starches during gelatinization; thus, the samples required less energy for gelatinization during DSC analysis. Ohmically heated commercial starch showed the greatest decrease in enthalpy probably because of the greatest extent of pregelatinization through ohmic heating. Brown rice flour showed the greatest gelatinization temperature resulting from the delay of starch granule swelling by lipid and protein. Enthalpy of ohmically heated starches at 20 V/cm was the lowest, which was most likely due to the lower voltage resulting in a more complete pregelatinization from a longer heating time required to reach 100 degrees C. Ohmic treatment at 70 V/cm decreased onset gelatinization temperature of white flour; therefore, it produced rice flour that swelled faster, whereas the conventionally heated sample showed a better thermal resistance.

  4. Modelling the fate of pesticides in paddy rice-fish pond farming system in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Lamers, M.; Nguyen, N.; Streck, T.

    2012-04-01

    During the last decade rice production in Vietnam has tremendously increased due to the introduction of new high yield, short duration rice varieties and an increased application of pesticides. Since pesticides are toxic by design, there is a natural concern on the possible impacts of their presence in the environment on human health and environment quality. In North Vietnam, lowland and upland rice fields were identified to be a major non-point source of agrochemical pollution to surface and ground water, which are often directly used for domestic purposes. Field measurements, however, are time consuming, costly and logistical demanding. Hence, quantification, forecast and risk assessment studies are hampered by a limited amount of field data. One potential way to cope with this shortcoming is the use of process-based models. In the present study we developed a model for simulating short-term pesticide dynamics in combined paddy rice field - fish pond farming systems under the specific environmental conditions of south-east Asia. Basic approaches and algorithms to describe the key underlying biogeochemical processes were mainly adopted from the literature to assure that the model reflects the current standard of scientific knowledge and commonly accepted theoretical background. The model was calibrated by means of the Gauss-Marquardt-Levenberg algorithm and validated against measured pesticide concentrations (dimethoate and fenitrothion) during spring and summer rice crop season 2008, respectively, of a paddy field - fish pond system typical for northern Vietnam. First simulation results indicate that our model is capable to simulate the fate of pesticides in such paddy - fish pond farming systems. The model efficiency for the period of calibration, for example, was 0.97 and 0.95 for dimethoate and fenitrothion, respectively. For the period of validation, however, the modeling efficiency slightly decreased to 0.96 and 0.81 for dimethoate and fenitrothion

  5. Climate change mitigation in the agricultural sector- an analysis of marginal abatement costs of climate mitigation in global paddy rice agriculture based on DNDC simulations

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, J.; Beach, R.; Salas, W.; Ingraham, P.; Ragnauth, S.

    2012-12-01

    Authors: Jia Li1, Robert H. Beach2, Changsheng Li3, William Salas4, Pete Ingraham5, Shaun Ragnauth1 INSTITUTIONS (ALL): 1. Climate Change Division, US Environmental Protection Agency, Washington, DC, United States. 2. RTI International, Durham, NC, United States. 3. ESRC, University of New Hampshire, Durham, NH, United States. 4. Applied Geosolutions, LLC, Newmarket, NH, United States. Global agriculture sector faces the dual challenge of climate change mitigation and providing food security for a growing population. In a new study, the U.S. EPA has developed an analysis of mitigation of non-CO2 greenhouse gases for the global agriculture sector. We estimate global greenhouse gas (GHG) emissions from paddy rice cultivation and rice yields under baseline management conditions as well as for alternative mitigation options. These biophysical effects are combined with data on input use and costs to estimate marginal abatement cost curves and evaluate the cost-effectiveness of mitigation options for global rice cropping systems. DNDC, a process-based crop model, is used to simulate crop yields, methane and nitrous oxide emissions, as well as soil carbon sequestration of the various rice cropping systems (irrigated and rainfed, and single, double, triple and mixed rotations) under local climatic and soil conditions at a 0.5 degree resolution at the global scale. We evaluate the impacts of various management alternatives (e.g., flooding methods, fertilizer applications, and crop residue management) on crop yields and GHG emissions and report the spatial and temporal distributions of the outcomes. The analysis provides important insights on the potential for closing the production efficiency gaps and the trade-offs and synergies between GHG mitigation and food security in different parts of the world.

  6. Three-dimensional geometric morphometric analysis of talar morphology in extant gorilla taxa from highland and lowland habitats.

    PubMed

    Knigge, Ryan P; Tocheri, Matthew W; Orr, Caley M; Mcnulty, Kieran P

    2015-01-01

    Western gorillas (Gorilla gorilla) are known to climb significantly more often than eastern gorillas (Gorilla beringei), a behavioral distinction attributable to major differences in their respective habitats (i.e., highland vs. lowland). Genetic evidence suggests that the lineages leading to these taxa began diverging from one another between approximately 1 and 3 million years ago. Thus, gorillas offer a special opportunity to examine the degree to which morphology of recently diverged taxa may be "fine-tuned" to differing ecological requirements. Using three-dimensional (3D) geometric morphometrics, we compared talar morphology in a sample of 87 specimens including western (lowland), mountain (highland), and grauer gorillas (lowland and highland populations). Talar shape was captured with a series of landmarks and semilandmarks superimposed by generalized Procrustes analysis. A between-group principal components analysis of overall talar shape separates gorillas by ecological habitat and by taxon. An analysis of only the trochlea and lateral malleolar facet identifies subtle variations in trochlear shape between western lowland and lowland grauer gorillas, potentially indicative of convergent evolution of arboreal adaptations in the talus. Lastly, talar shape scales differently with centroid size for highland and lowland gorillas, suggesting that ankle morphology may track body-size mediated variation in arboreal behaviors differently depending on ecological setting. Several of the observed shape differences are linked biomechanically to the facilitation of climbing in lowland gorillas and to stability and load-bearing on terrestrial substrates in the highland taxa, providing an important comparative model for studying morphological variation in groups known only from fossils (e.g., early hominins).

  7. New market opportunities for rice grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding efforts for rice have been focusing on increasing yield and improving quality (milling yield and grain quality), while maintaining cooked rice sensory properties to meet consumer preferences. These breeding targets will no doubt continue as the main foci for the rice industry. However, the ...

  8. Rice aroma and flavor: a literature review.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aroma and flavor of cooked rice are major criteria for preference among consumers. Small variations in these sensory properties can make rice highly desired or unacceptable to consumers. Human sensory analyses have identified over a dozen different aromas and flavors in rice. Instrumental ana...

  9. Understanding rice heterosis using deep sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterosis is a complex biological phenomenon where the offspring show better performance compared to the inbred parents. Although rice breeders have used heterosis in hybrid rice production for nearly 40 years, the genetic and molecular mechanism underlying the heterosis in rice is still poorly und...

  10. Is ALL Rice Bran Created Equal?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of whole grain rice is increasing in the U.S. This increase is likely due to increased consumer awareness of the importance of whole grains in the diet. Whole grain rice is superior nutritionally compared to milled rice because, except for carbohyrates, it contains more phytochemicals an...

  11. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions1[OPEN

    PubMed Central

    Sandhu, Nitika; Raman, K. Anitha; Torres, Rolando O.; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-01-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311

  12. Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian Lowland and the East Slovakian Lowland

    NASA Astrophysics Data System (ADS)

    Labudová, L.; Labuda, M.; Takáč, J.

    2016-07-01

    Drought belongs among the main impact factors considering crop yields. Therefore, this paper is focused on the assessment of drought occurrence and intensity as well as on its impact on crop yields on the Danubian and the East Slovakian lowlands with the spatial resolution at district level. Yield data were the main limitation of the study, which resulted in the limited length of the assessed period (1996-2013). The standardized yields of ten crops (winter wheat, spring wheat, winter barley, spring barley, rye, maize, potatoes, oilseed rape, sunflower, and sugar beet) were correlated with monthly, 2-, and 3-monthly standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI). For this purpose, the common significance level of alpha = 0.05 was used. The temporal evolution of both indices and drought occurrence during the period 1961-2013 were assessed for each district. Most crops show a higher correlation with the SPEI than with the SPI in contrast to potatoes, which reached a higher significant correlation using the SPI. The correlation also increases with increasing number of months within a time step. The highest correlation can be seen between maize and the 3-monthly SPEI in August representing summer precipitation and potential evapotranspiration conditions. Furthermore, a very high correlation was recorded considering sugar beet, which is influenced mainly by summer precipitation, because the correlation coefficient between the sugar beet and the 3-monthly SPI is as high as using the 3-monthly SPEI. Crop yields in the East Slovakian Lowland do not seem to be influenced by wet/dry periods identified using the SPI and the SPEI as their correlation with both indices is quite low and insignificant.

  13. Red Yeast Rice

    PubMed Central

    Nguyen, Thu; Karl, Mitchell; Santini, Antonello

    2017-01-01

    Red yeast rice (RYR), produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterol-reducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, non-augmented, standardized amount of monacolins. PMID:28257063

  14. Rice, indica (Oryza sativa L.).

    PubMed

    Hiei, Yukoh; Ishida, Yuji; Komari, Toshihiko

    2015-01-01

    Indica varieties, which are generally recalcitrant to tissue culture and transformation, occupy 80 % of rice cultivation area in the world. Therefore, transformation method for indica rice must be improved greatly so that global rice production would take full advantage of cutting-edge biotechnology. An efficient protocol for indica transformation mediated by Agrobacterium tumefaciens is hereby described. Immature embryos collected from plants in a greenhouse are cocultivated with A. tumefaciens after pretreatment with heat and centrifuging. The protocol was successfully tested in many elite indica cultivars such as IR8, IR24, IR58025B, IR64, IR72, Suweon 258, and Nanjing 11, yielding between 5 and 15 of independent transgenic plants per immature embryo. The use of immature embryos is recommended because gene transfer to them could be much more efficient and much less genotype dependent than gene transfer to callus.

  15. Out of Amazonia again and again: episodic crossing of the Andes promotes diversification in a lowland forest flycatcher

    PubMed Central

    Miller, Matthew J; Bermingham, Eldredge; Klicka, John; Escalante, Patricia; do Amaral, Fabio S. Raposo; Weir, Jason T; Winker, Kevin

    2008-01-01

    Most Neotropical lowland forest taxa occur exclusively on one side of the Andes despite the availability of appropriate habitat on both sides. Almost all molecular phylogenies and phylogenetic analyses of species assemblages (i.e. area cladograms) have supported the hypothesis that Andean uplift during the Late Pliocene created a vicariant barrier affecting lowland lineages in the region. However, a few widespread plant and animal species occurring in lowland forests on both sides of the Andes challenge the generality of this hypothesis. To understand the role of the Andes in the history of such organisms, we reconstructed the phylogeographic history of a widespread Neotropical flycatcher (Mionectes oleagineus) in the context of the other four species in the genus. A molecular phylogeny based on nuclear and mitochondrial sequences unambiguously showed an early basal split between montane and lowland Mionectes. The phylogeographic reconstruction of lowland taxa revealed a complex history, with multiple cases in which geographically proximate populations do not represent sister lineages. Specifically, three populations of M. oleagineus west of the Andes do not comprise a monophyletic clade; instead, each represents an independent lineage with origins east of the Andes. Divergence time estimates suggest that at least two cross-Andean dispersal events post-date Andean uplift. PMID:18285279

  16. Rice epigenomics and epigenetics: challenges and opportunities.

    PubMed

    Chen, Xiangsong; Zhou, Dao-Xiu

    2013-05-01

    During recent years rice genome-wide epigenomic information such as DNA methylation and histone modifications, which are important for genome activity has been accumulated. The function of a number of rice epigenetic regulators has been studied, many of which are found to be involved in a diverse range of developmental and stress-responsive pathways. Analysis of epigenetic variations among different rice varieties indicates that epigenetic modification may lead to inheritable phenotypic variation. Characterizing phenotypic consequences of rice epigenomic variations and the underlining chromatin mechanism and identifying epialleles related to important agronomic traits may provide novel strategies to enhance agronomically favorable traits and grain productivity in rice.

  17. Tillering and panicle branching genes in rice.

    PubMed

    Liang, Wei-hong; Shang, Fei; Lin, Qun-ting; Lou, Chen; Zhang, Jing

    2014-03-01

    Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks.

  18. Iron biofortification of myanmar rice.

    PubMed

    Aung, May Sann; Masuda, Hiroshi; Kobayashi, Takanori; Nakanishi, Hiromi; Yamakawa, Takashi; Nishizawa, Naoko K

    2013-01-01

    Iron (Fe) deficiency elevates human mortality rates, especially in developing countries. In Myanmar, the prevalence of Fe-deficient anemia in children and pregnant women are 75 and 71%, respectively. Myanmar people have one of the highest per capita rice consumption rates globally. Consequently, production of Fe-biofortified rice would likely contribute to solving the Fe-deficiency problem in this human population. To produce Fe-biofortified Myanmar rice by transgenic methods, we first analyzed callus induction and regeneration efficiencies in 15 varieties that are presently popular because of their high-yields or high-qualities. Callus formation and regeneration efficiency in each variety was strongly influenced by types of culture media containing a range of 2,4-dichlorophenoxyacetic acid concentrations. The Paw San Yin variety, which has a high-Fe content in polished seeds, performed well in callus induction and regeneration trials. Thus, we transformed this variety using a gene expression cassette that enhanced Fe transport within rice plants through overexpression of the nicotianamine synthase gene HvNAS1, Fe flow to the endosperm through the Fe(II)-nicotianamine transporter gene OsYSL2, and Fe accumulation in endosperm by the Fe storage protein gene SoyferH2. A line with a transgene insertion was successfully obtained. Enhanced expressions of the introduced genes OsYSL2, HvNAS1, and SoyferH2 occurred in immature T2 seeds. The transformants accumulated 3.4-fold higher Fe concentrations, and also 1.3-fold higher zinc concentrations in T2 polished seeds compared to levels in non-transgenic rice. This Fe-biofortified rice has the potential to reduce Fe-deficiency anemia in millions of Myanmar people without changing food habits and without introducing additional costs.

  19. Potential impacts of climate change on carbon dynamics in a rain-fed agro-ecosystem on the Loess Plateau of China.

    PubMed

    Qiu, Linjing; Hao, Mingde; Wu, Yiping

    2017-01-15

    Although many studies have been conducted on crop yield in rain-fed agriculture, the possible impacts of climate change on the carbon (C) dynamics of rain-fed rotation systems, particularly their direction and magnitude at the long-term scale, are still poorly understood. In this study, the sensitivity of C dynamics of a typical rotation system to elevated CO2 and changed temperature and precipitation were first tested using the CENTURY model, based on data collected from a 30-year field experiment of a corn-wheat-wheat-millet (CWWM) rotation system in the tableland of the Loess Plateau. The possible responses of crop biomass C and soil organic C (SOC) accumulation were then evaluated under scenarios representing the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicated that elevated CO2 and increased precipitation exerted positive effect on biomass C in CWWM rotation system, while increasing the temperature by 1°C, 2°C and 4°C had negative effects on biomass C due to opposite responses of corn and winter wheat to warming. SOC accumulation was enhanced by increased CO2 concentration and precipitation but impaired by increased temperature. Under future RCP scenarios with dynamic CO2, the biomass C of corn exhibited decrease during the period of 2046-2075 under RCP4.5 and the period of 2016-2075 under RCP8.5 due to reduced precipitation and a warmer climate. In contrast, winter wheat would benefit from increased CO2 and temperature and was projected to have larger biomass C under both RCP scenarios. Although the climate condition had large differences between RCP4.5 and RCP8.5, the projected SOC had similar trends under two scenarios due to CO2 fertilizer effect and precipitation fluctuation. These results implied that crop biomass C and SOC accumulation in a warmer environment are strongly related to precipitation, and increase in field water storage should be emphasized in coping with future climate.

  20. Water harvesting experience in sub-Saharan Africa - lessons for sustainable intensification of rainfed agriculture and the influence of available soils and rainfall data

    NASA Astrophysics Data System (ADS)

    Gowin, John; Bunclark, Lisa

    2013-04-01

    Africa is seen by many as the continent with the greatest potential for agricultural growth, but land degradation and environmental change threaten the African soil resource more severely than in many other regions of the planet. Achieving future food security will depend mainly on increasing production from rainfed agriculture. The challenge of delivering the required sustainable intensification in rainfed agriculture is most acute in the drylands - the semi-arid and dry sub-humid climatic regions. There are two broad strategies for increasing yields under these circumstances: (1) capturing more rainwater and storing it (increasing water availability), and (2) using the available water more effectively by increasing the plant growth and/or reducing non-productive soil evaporation (increasing water productivity). We focus on the first of these options - water harvesting, which is defined as, "the collection and concentration of rainfall runoff, or floodwaters, for plant production". The benefits of water harvesting have been documented from small scale experimental plot studies, but evidence of successful adoption and impact is weak. As a contribution to improving the evidence base, we present results from an investigation conducted in SSA to gather information on progress with efforts to promote adoption of water harvesting. The intention was to investigate in detail the processes and outcomes on a large enough sample area to draw some common conclusions. This was not a comprehensive analysis of all that is happening in each country, nor was it a random sample; this was a purposive sample guided by available baseline information to permit comparative analysis. Water harvesting seems to have made the most progress where techniques can be adopted by individual farmers: in Burkina Faso and Niger micro- scale zaï /tassa and demi-lune systems; in Sudan and Tanzania meso-scale majaruba and teras systems. Macro-scale systems requiring social organisation may offer

  1. Objective evaluation of whiteness of cooked rice and rice cakes using a portable spectrophotometer.

    PubMed

    Goto, Hajime; Asanome, Noriyuki; Suzuki, Keitaro; Sano, Tomoyoshi; Saito, Hiroshi; Abe, Yohei; Chuba, Masaru; Nishio, Takeshi

    2014-03-01

    The whiteness of cooked rice and rice cakes was evaluated using a portable spectrophotometer with a whiteness index (WI). Also, by using boiled rice for measurement of Mido values by Mido Meter, it was possible to infer the whiteness of cooked rice without rice cooking. In the analysis of varietal differences of cooked rice, 'Tsuyahime', 'Koshihikari' and 'Koshinokaori' showed high whiteness, while 'Satonoyuki' had inferior whiteness. The whiteness of rice cakes made from 'Koyukimochi' and 'Dewanomochi' was higher than the whiteness of those made from 'Himenomochi' and 'Koganemochi'. While there was a significant correlation (r = 0.84) between WI values and whiteness scores of cooked rice by the sensory test, no correlation was detected between the whiteness scores and Mido values, indicating that the values obtained by a spectrophotometer differ from those obtained by a Mido Meter. Thus, a spectrophotometer may be a novel device for measurement of rice eating quality.

  2. The Glycemic Index of Rice and Rice Products: A Review, and Table of GI Values.

    PubMed

    Kaur, Bhupinder; Ranawana, Viren; Henry, Jeyakumar

    2016-01-01

    Rice is the principle staple and energy source for nearly half the world's population and therefore has significant nutrition and health implications. Rice is generally considered a high glycemic index (GI) food, however, this depends on varietal, compositional, processing, and accompaniment factors. Being a major contributor to the glycemic load in rice eating populations, there is increasing concern that the rising prevalence of insulin resistance is as a result of the consumption of large amounts of rice. Devising ways and means of reducing the glycemic impact of rice is therefore imperative. This review gathers studies examining the GI of rice and rice products and provides a critical overview of the current state of the art. A table collating published GI values for rice and rice products is also included.

  3. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice.

    PubMed

    Zhu, Huike; Zhong, Huan; Wu, Jialu

    2016-06-01

    Paddy fields are characterized by frequent organic input (e.g., fertilization and rice residue amendment), which may affect mercury biogeochemistry and bioaccumulation. To explore potential effects of rice residue amendment on methylmercury (MMHg) accumulation in rice, a mercury-contaminated paddy soil was amended with rice root (RR), rice straw (RS) or composted rice straw (CS), and planted with rice. Incorporating RS or CS increased grain MMHg concentration by 14% or 11%. The observed increases could be attributed to the elevated porewater MMHg levels and thus enhanced MMHg uptake by plants, as well as increased MMHg translocation to grain within plants. Our results indicated for the first time that rice residue amendment could significantly affect MMHg accumulation in rice grain, which should be considered in risk assessment of MMHg in contaminated areas.

  4. Impacts of seeding rate on interactions between rice and rice water weevils.

    PubMed

    Stout, M J; Harrell, D; Tindall, K V; Bond, J

    2009-10-01

    The rice water weevil, Lissorhoptrus oryzophilus Kuschel, is the most widely distributed and destructive early season insect pest of rice, Oryza sativa L., in the United States. Economic losses result primarily from feeding by the larval stage of this insect on the roots of flooded rice plants. Prior studies suggest that infestations of rice water weevil larvae are more severe at low plant densities. Moreover, because feeding by the rice water weevil reduces rice plant tillering, a process particularly important to yield at low seeding rates, infestations by weevil larvae may have a greater impact on rice yields when rice is seeded at low rates. In total, six experiments were conducted over a 3-yr period in Louisiana and Missouri to investigate the impacts of rice seeding rate on levels of infestations by, and yield losses from, the rice water weevil. An inverse relationship between seeding rate and densities of rice water weevil larvae and pupae on a per area basis was found in two of the six experiments. Furthermore, in two of the three experiments conducted with 'Bengal' (a susceptible cultivar) in Louisiana, percentages of yield loss were significantly higher at lower seeding rates than at higher seeding rates. Overall, these results indicate that rice sown at low rates is more vulnerable to infestation by rice water weevils and more susceptible to yield losses from weevil injury. The significance of these findings in light of recent trends toward the use of lower seeding rates in drill-seeded rice is discussed.

  5. Fire and man - reconstructing Holocene biomass burning in the central European lowlands

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Słowiński, Michał; Feurdean, Angelica; Dräger, Nadine; Obremska, Milena; Ott, Florian; Pieńczewska, Anna; Theuerkauf, Martin; Brauer, Achim

    2016-04-01

    Fire is an important earth surface process that interacts with climate and vegetation and influences global biogeochemical cycles and carbon budget. Moreover, fire is tightly connected to the evolution and distributions of human beings. Especially in the humid vegetation zones that naturally do not inflame easily, fire has been the major tool to convert forests to arable land. In the central European lowlands, naturally dominated by broad-leaved forests, palaeofires were strongly related to human impact during at least the last 6000 years. Hence, the detection of past biomass burning in the sedimentological record points to human activity. Charcoal (black carbon) is the classical and widely-used proxy to reconstruct past fire histories. Abundant sedimentary charcoal records exist around the globe, and many are included in the Global Charcoal Database (GCD, www.gpwg.org). Molecular fire markers, on the other hand, are now being developed as new proxies to detect past biomass burning. This study reviews classical and "new" fire-proxies in peat and lake sediments that allow to reconstruct the signals of human impact on a regional scale in the central European lowlands with high temporal resolution. Furthermore, the charcoal records from the GCD and other sources covering the central European lowlands and adjacent areas were integrated in a spatial synthesis to document the current state-of-knowledge on regional Holocene fire history. We show preliminary charcoal data from the annually-laminated sediments of lakes Tiefer See (northeastern Germany) and Czechowskie (northern Poland). Links to reconstructed local and European-wide vegetation successions will be provided, as in times with dry climate and the dominance of a certain fire-prone vegetation cover (e.g., Pinus spec.), wildfires might have played a further important role. However, the interpretation of charcoal records is not always straightforward. Hence, we also discuss the potentials of other palaeofire

  6. Invertebrate and fish assemblage relations to dissolved Oxygen minima in lowland streams of southwestern Louisiana

    USGS Publications Warehouse

    Justus, B.G.; Mize, Scott V.; Kroes, Daniel; Wallace, James E.

    2012-01-01

    Dissolved oxygen (DO) concentrations in lowland streams are naturally lower than those in upland streams; however, in some regions where monitoring data are lacking, DO criteria originally established for upland streams have been applied to lowland streams. This study investigated the DO concentrations at which fish and invertebrate assemblages at 35 sites located on lowland streams in southwestern Louisiana began to demonstrate biological thresholds.Average threshold values for taxa richness, diversity and abundance metrics were 2.6 and 2.3 mg/L for the invertebrate and fish assemblages, respectively. These thresholds are approximately twice the DO concentration that some native fish species are capable of tolerating and are comparable with DO criteria that have been recently applied to some coastal streams in Louisiana and Texas. DO minima >2.5 mg/L were favoured for all but extremely tolerant taxa. Extremely tolerant taxa had respiratory adaptations that gave them a competitive advantage, and their success when DO minima were <2 mg/L could be related more to reductions in competition or predation than to DO concentration directly.DO generally had an inverse relation to the amount of agriculture in the buffer area; however, DO concentrations at sites with both low and high amounts of agriculture (including three least-disturbed sites) declined to <2.5 mg/L. Thus, although DO fell below a concentration that was identified as an approximate biological threshold, sources of this condition were sometimes natural (allochthonous material) and had little relation to anthropogenic activity.

  7. Evolving hydrologic connectivity in discontinuous permafrost lowlands: what it means for lake systems

    NASA Astrophysics Data System (ADS)

    Walvoord, M. A.; Jepsen, S. M.; Rover, J.; Voss, C. I.; Briggs, M. A.

    2015-12-01

    Permafrost influence on the hydrologic connectivity of surface water bodies in high-latitude lowlands is complicated by subsurface heterogeneity and the propensity of the system to change over time. In general, permafrost limits the subsurface exchange of water, solute, and nutrients between lakes and rivers. It follows that permafrost thaw could enhance subsurface hydrologic connectivity among surface water bodies, but the impact of this process on lake distribution is not well known. Changes in the extent of lakes in interior Alaska have important ecological and societal impacts since lakes provide (1) critical habitat for migratory arctic shorebirds and waterfowl, fish, and wildlife, and (2) provisional, recreational, and cultural resources for local communities. We utilize electromagnetic imaging of the shallow subsurface and remote sensing of lake level dynamics in the Yukon Flats of interior Alaska, USA, together with water balance modeling, to gain insight into the influence of discontinuous permafrost on lowland lake systems. In the study region with relatively low precipitation, observations suggest that lakes that are hydrologically isolated during normal conditions are sustained by periodic river flooding events, including ice-jam floods that occur during river ice break-up. Climatically-influenced alterations in flooding frequency and intensity, as well as depth to permafrost, are quantitatively assessed in the context of lake maintenance. Scenario modeling is used to evaluate lake level evolution under plausible changing conditions. Model results demonstrate how permafrost degradation can reduce the dependence of typical lowland lakes on flooding events. Study results also suggest that river flooding may recharge a more spatially widespread zone of lakes and wetlands under future scenarios of permafrost table deepening and enhanced subsurface hydrologic connectivity.

  8. The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and the Cabauw polder

    NASA Astrophysics Data System (ADS)

    Brauer, C. C.; Torfs, P. J. J. F.; Teuling, A. J.; Uijlenhoet, R.

    2014-10-01

    The Wageningen Lowland Runoff Simulator (WALRUS) is a new parametric (conceptual) rainfall-runoff model which accounts explicitly for processes that are important in lowland areas, such as groundwater-unsaturated zone coupling, wetness-dependent flowroutes, groundwater-surface water feedbacks, and seepage and surface water supply (see companion paper by Brauer et al., 2014). Lowland catchments can be divided into slightly sloping, freely draining catchments and flat polders with controlled water levels. Here, we apply WALRUS to two contrasting Dutch catchments: the Hupsel Brook catchment and the Cabauw polder. In both catchments, WALRUS performs well: Nash-Sutcliffe efficiencies obtained after calibration on 1 year of discharge observations are 0.87 for the Hupsel Brook catchment and 0.83 for the Cabauw polder, with values of 0.74 and 0.76 for validation. The model also performs well during floods and droughts and can forecast the effect of control operations. Through the dynamic division between quick and slow flowroutes controlled by a wetness index, temporal and spatial variability in groundwater depths can be accounted for, which results in adequate simulation of discharge peaks as well as low flows. The performance of WALRUS is most sensitive to the parameter controlling the wetness index and the groundwater reservoir constant, and to a lesser extent to the quickflow reservoir constant. The effects of these three parameters can be identified in the discharge time series, which indicates that the model is not overparameterised (parsimonious). Forcing uncertainty was found to have a larger effect on modelled discharge than parameter uncertainty and uncertainty in initial conditions.

  9. The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder

    NASA Astrophysics Data System (ADS)

    Brauer, C. C.; Torfs, P. J. J. F.; Teuling, A. J.; Uijlenhoet, R.

    2014-02-01

    The Wageningen Lowland Runoff Simulator (WALRUS) is a new parametric (conceptual) rainfall-runoff model which accounts explicitly for processes that are important in lowland areas, such as groundwater-unsaturated zone coupling, wetness-dependent flowroutes, groundwater-surface water feedbacks, and seepage and surface water supply (see companion paper by Brauer et al., 2014). Lowland catchments can be divided into slightly sloping, freely draining catchments and flat polders with controlled water levels. Here, we apply WALRUS to two contrasting Dutch catchments: the Hupsel Brook catchment and Cabauw polder. In both catchments, WALRUS performs well: Nash-Sutcliffe efficiencies obtained after calibration on one year of discharge observations are 0.87 for the Hupsel Brook catchment and 0.83 for the Cabauw polder, with values of 0.74 and 0.76 for validation. The model also performs well during floods and droughts and can forecast the effect of control operations. Through the dynamic division between quick and slow flowroutes controlled by a wetness index, temporal and spatial variability in groundwater depths can be accounted for, which results in adequate simulation of discharge peaks as well as low flows. The performance of WALRUS is most sensitive to the parameter controlling the wetness index and the groundwater reservoir constant, and to a lesser extent to the quickflow reservoir constant. The effects of these three parameters can be identified in the discharge time series, which indicates that the model is not overparameterised (parsimonious). Forcing uncertainty was found to have a larger effect on modelled discharge than parameter uncertainty and uncertainty in initial conditions.

  10. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia

    PubMed Central

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments. PMID:26132139

  11. Detailed mapping of detached plateaus and knobby terrain across the highland/lowland boundary on Mars

    SciTech Connect

    Frey, H.; Semeniuk, A.M.

    1985-01-01

    The present-day boundary between the cratered highlands and northern lowland plains on Mars represent a major physiographic landform. In some regions there is clear evidence of a southward migration of this boundary. The authors have mapped features which may be relict pieces of highlands; flat-topped, angular mesas which we call detached plateaus, knobby terrain and partial craters to determine where ancient cratered terrain may have been in the past. Most of the detached plateaus and knobby terrain lie along or slightly north of the present-day highland boundary, but significant occurrences are also found at high northern latitudes in several locations. They have also identified, mapped and measured all symmetric knobs visible on the 1:2,000,000 controlled photomosaics with the long dimension greater than or equal to 10 km and classified them by shape. Between +65/sup 0/ and -45/sup 0/ there are 1634 such features, many of which are concentrated along the highland/lowland boundary or around the rims of major impact basins such as Isidis, Argyre and Hellas. The most common shape is elliptical (79%) followed by circular (11%) and triangular or wedge-shaped (6%). Globally, all types share a similar decrease in number with increasing size. Regionally, there are significant differences in the size-frequency distributions that seem to be related to their locations; whether the knobs are associated with impact basin rims, the highland/lowland boundary or volcanic plains. There are similar variations in the shape-size characteristics of the elliptical knobs.

  12. Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives.

    PubMed

    Lundby, Carsten; Sander, Mikael; van Hall, Gerrit; Saltin, Bengt; Calbet, José A L

    2006-06-01

    The tight relation between arterial oxygen content and maximum oxygen uptake (Vv(o2max)within a given person at sea level is diminished with altitude acclimatization. An explanation often suggested for this mismatch is impairment of the muscle O(2) extraction capacity with chronic hypoxia, and is the focus of the present study. We have studied six lowlanders during maximal exercise at sea level (SL) and with acute (AH) exposure to 4,100 m altitude, and again after 2 (W2) and 8 weeks (W8) of altitude sojourn, where also eight high altitude native (Nat) Aymaras were studied. Fractional arterial muscle O(2) extraction at maximal exercise was 90.0+/-1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O(2) extraction was 83.2+/-2.8% in the high altitude natives, and did not change with the induction of normoxia. The capillary oxygen conductance of the lower extremity, a measure of oxygen diffusing capacity, was decreased in the Danish lowlanders after 8 weeks of acclimatization, but was still higher than the value obtained from the high altitude natives. The values were (in ml min(-1) mmHg(-1)) 55.2+/-3.7 (SL), 48.0+/-1.7 (W2), 37.8+/-0.4 (W8) and 27.7+/-1.5 (Nat). However, when correcting oxygen conductance for the observed reduction in maximal leg blood flow with acclimatization the effect diminished. When calculating a hypothetical leg V(o2max)at altitude using either the leg blood flow or the O(2) conductance values obtained at sea level, the former values were almost completely restored to sea level values. This would suggest that the major determinant V(o2max)for not to increase with acclimatization is the observed reduction in maximal leg blood flow and O(2) conductance.

  13. Tropical strains of Ralstonia solanacearum Outcompete race 3 biovar 2 strains at lowland tropical temperatures.

    PubMed

    Huerta, Alejandra I; Milling, Annett; Allen, Caitilyn

    2015-05-15

    Bacterial wilt, caused by members of the heterogenous Ralstonia solanacearum species complex, is an economically important vascular disease affecting many crops. Human activity has widely disseminated R. solanacearum strains, increasing their global agricultural impact. However, tropical highland race 3 biovar 2 (R3bv2) strains do not cause disease in tropical lowlands, even though they are virulent at warm temperatures. We tested the hypothesis that differences in temperature adaptation and competitive fitness explain the uneven geographic distribution of R. solanacearum strains. Using three phylogenetically and ecologically distinct strains, we measured competitive fitness at two temperatures following paired-strain inoculations of their shared host, tomato. Lowland tropical strain GMI1000 was only weakly virulent on tomato under temperate conditions (24°C for day and 19°C for night [24/19°C]), but highland tropical R3bv2 strain UW551 and U.S. warm temperate strain K60 were highly virulent at both 24/19°C and 28°C. Strain K60 was significantly more competitive than both GMI1000 and UW551 in tomato rhizospheres and stems at 28°C, and GMI1000 also outcompeted UW551 at 28°C. The results were reversed at cooler temperatures, at which highland strain UW551 generally outcompeted GMI1000 and K60 in planta. The superior competitive index of UW551 at 24/19°C suggests that adaptation to cool temperatures could explain why only R3bv2 strains threaten highland agriculture. Strains K60 and GMI1000 each produced different bacteriocins that inhibited growth of UW551 in culture. Such interstrain inhibition could explain why R3bv2 strains do not cause disease in tropical lowlands.

  14. Unraveling uncertainties of water table slope assessment with DGPS in lowland floodplain wetlands.

    PubMed

    Mirosław-Świątek, Dorota; Michałowski, Robert; Szporak-Wasilewska, Sylwia; Ignar, Stefan; Grygoruk, Mateusz

    2016-11-01

    In our study, we analyzed the combined standard uncertainty of water table slope assessment done using differential global positioning system (DGPS)-based measurements of water table elevation and distances between measurement locations. We compared and discussed uncertainties in water table slope assessments done in various hypothetical environments of lowland floodplains (water table slopes typically ranged from 1.25 · 10(-4) to 1 · 10(-3)). Our analyses referred to elevation measurements done with the static GPS and DGPS real-time kinematic (RTK) approaches, which are currently among the most frequently used elevation measurement techniques worldwide. Calculations of the combined standard uncertainty of water table slope allowed us to conclude that the DGPS-RTK approach used in water table slope assessment can result in assessment errors as high as 50 % at short (<200 m) distances. Acceptable water table slope measurement errors (lower than 5 %) occur at distances longer than 11,320 m in the case of DGPS-RTK measurements, while, in the case of static GPS measurements, acceptable measurement errors at the same level occur at distances as low as 1350 m. Errors in water table slope assessment as high as 50 % occur at distances of 1130 m and 140 m for DGPS-RTK and static GPS measurements, respectively. We conclude that, although the DGPS-RTK methodology-due to its ease of use and time-saving capabilities is very often applied to water level measurements in lowland riparian wetlands, the application of the DGPS-RTK methodology for water table slope assessment at distances shorter than a few couples of meters results in very low accuracy (errors greater than 50 %) and should not be used for calculating local slopes in low slope areas such as lowland riparian zones.

  15. Ophthalmic examination of the captive western lowland gorilla (Gorilla gorilla gorilla).

    PubMed

    Liang, David; Alvarado, Thomas P; Oral, Deniz; Vargas, Jose M; Denena, Melissa M; McCulley, James P

    2005-09-01

    This study examined the captive western lowland gorilla (Gorilla gorilla gorilla) eye as compared and contrasted with the human eye. Bilateral ophthalmic examinations of western lowland gorillas (n = 5) while under general anesthesia were performed opportunistically, including slit-lamp biomicroscopy, dilated fundus examination, cycloplegic retinoscopy, Schiotz tonometry, corneal diameter and thickness measurements, A-scan and B-scan ultrasonography, keratometry, and cultures of the eyelid margins and bulbar conjunctiva. Mean spherical equivalent refractive error by cycloplegic retinoscopy was +1.20 +/- 0.59 diopters. Mean intraocular pressure by Schiotz tonometry was 12.0 +/- 4.3 mm Hg. Mean optic nerve head cup to disc ratio was 0.42 +/- 0.11. Mean horizontal corneal diameter was 13.4 +/- 0.8 mm, and mean vertical cornea diameter was 12.7 +/- 0.8 mm. Mean central corneal thickness by ultrasound pachymetry was 489 +/- 52 microm. Mean axial length of the eye by A-scan was 22.75 +/- 0.71 mm. Mean lens thickness by A-scan was 4.23 +/- 0.34 mm. Mean anterior chamber depth by A-scan was 4.00 +/- 0.26 mm. Mean keratometry reading was 44.38 +/- 1.64 diopters. Eyelid margin and bulbar conjunctival cultures isolated Candida sp. (n = 5), Staphylococcus aureus (n = 4), Staphylococcus epidermidis (n = 3), Staphylococcus saccharolyticus (n = 3), and Micrococcus sp. (n = 3). This study suggests important similarities between western lowland gorilla and human eyes. These similarities may allow diagnostics, techniques, and equipment for human eye surgery, such as those used for cataract extraction and intraocular lens implantation, to be successfully utilized for gorillas.

  16. Climate Change in Lowland Central America During the Late Deglacial and Early Holocene

    SciTech Connect

    Hillesheim, M B; Hodell, D A; Leyden, B W; Brenner, M; Curtis, J H; Anselmetti, F S; Ariztegui, D; Buck, D G; Guilderson, T P; Rosenmeier, M F; Schnurrenberger, D W

    2005-02-08

    The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition ({approx}11,250 to 7,500 cal yr BP) inferred from sediment cores retrieved in Lake Peten Itza, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by {approx}11,250 cal yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11,250 to 10,350 cal yr BP, during the Preboreal period, lithologic changes in sediments from deep-water cores (>50 m below modern water level) indicate several wet-dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1-4) occurred at 11,200, 10,900, 10,700, and 10,400 cal yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10,350 cal yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Peten Itza with other records from the circum-Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high-latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores-Bermuda high-pressure system. This mechanism operated on millennial-to-submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC).

  17. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia.

    PubMed

    Benchimol, Maíra; Peres, Carlos A

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

  18. Tropical Strains of Ralstonia solanacearum Outcompete Race 3 Biovar 2 Strains at Lowland Tropical Temperatures

    PubMed Central

    Huerta, Alejandra I.; Milling, Annett

    2015-01-01

    Bacterial wilt, caused by members of the heterogenous Ralstonia solanacearum species complex, is an economically important vascular disease affecting many crops. Human activity has widely disseminated R. solanacearum strains, increasing their global agricultural impact. However, tropical highland race 3 biovar 2 (R3bv2) strains do not cause disease in tropical lowlands, even though they are virulent at warm temperatures. We tested the hypothesis that differences in temperature adaptation and competitive fitness explain the uneven geographic distribution of R. solanacearum strains. Using three phylogenetically and ecologically distinct strains, we measured competitive fitness at two temperatures following paired-strain inoculations of their shared host, tomato. Lowland tropical strain GMI1000 was only weakly virulent on tomato under temperate conditions (24°C for day and 19°C for night [24/19°C]), but highland tropical R3bv2 strain UW551 and U.S. warm temperate strain K60 were highly virulent at both 24/19°C and 28°C. Strain K60 was significantly more competitive than both GMI1000 and UW551 in tomato rhizospheres and stems at 28°C, and GMI1000 also outcompeted UW551 at 28°C. The results were reversed at cooler temperatures, at which highland strain UW551 generally outcompeted GMI1000 and K60 in planta. The superior competitive index of UW551 at 24/19°C suggests that adaptation to cool temperatures could explain why only R3bv2 strains threaten highland agriculture. Strains K60 and GMI1000 each produced different bacteriocins that inhibited growth of UW551 in culture. Such interstrain inhibition could explain why R3bv2 strains do not cause disease in tropical lowlands. PMID:25769835

  19. Stratigraphic Architecture of a Former Lowland Kauri Swamp in Ruakaka, North Island, New Zealand.

    NASA Astrophysics Data System (ADS)

    Velez, M.; Gontz, A. M.; Lorrey, A.

    2015-12-01

    The long-lived Kauri (Agathis australis) is an endemic conifer that presently exists within 4% of their pre-human contact range in northern New Zealand. Kauri preserve well in anoxic swamp and wetland environments in the lowlands across Northland and buried, subfossil samples of this species are commonly termed 'swamp kauri'. Subfossil kauri have been recently employed as a proxy to reconstruct past climate and establish a long dendrochronological records that have direct use for building the radiocarbon calibration curve. One component of work related to interpreting ancient kauri tree ring records is improving the understanding of the stratigraphic and geomorphic history of former lowland kauri environments to outline the role of environmental change in preserving this ancient wood resource. This study contributes to improving general understanding the subsurface stratigraphy of former lowland swamp kauri sites. A combination of ground penetrating radar, sediment cores, probing transects and trench exposures, provide details for the stratigraphic relationships for one type of swamp kauri site -relic coastal dune sequences- that will form a basis for future sediment and geochemistry work. Based on GPR and trenches, the stratigraphy includes several units -Peat, woody debris, dune sand, and coastal sand. Thickness of the peat, which usually contains the subfossil kauri, varies from thin veneers over antecedent coastal deposits 10-50cm to > 2.2m, with the thickest peat accumulation located between relic foredune ridges. Prior work at locations nearby have shown Rotoehu Tephra (>45ka) has been observed as a 40 cm thick deposit. Early sedimentary analysis suggests the Rotoehu is present at our study site, but it is possibly disseminated and bioturbation may have mixed the tephra into the underlying peat sediments. OSL samples and peat sediment samples were recovered for future chemical and chronological analysis from selected locations based on GPR and trench sections.

  20. Ischiopagus tripus conjoined twins in a western lowland gorilla (Gorilla gorilla).

    PubMed

    Langer, S; Jurczynski, K; Gessler, A; Kaup, F-J; Bleyer, M; Mätz-Rensing, K

    2014-05-01

    Conjoined twinning is rare in man and non-human primates. The current report describes a case of ischiopagus tripus conjoined Western Lowland gorilla (Gorilla gorilla) twins. The female twins were joined at the umbilical and pelvic region, involving the liver, xiphoid, umbilicus, body wall and skin. Computed tomography revealed two complete spines. The combined pelvic space was formed by two sacra, each connected with two iliac bones. The twins were only conjoined by a common pubis. Cause of death was attributed to cardiac and circulatory collapse resulting from a large patent foramen ovale (8 mm in diameter) of one twin and neonatal asphyxia.

  1. Dientamoeba fragilis: initial evidence of pathogenicity in the western lowland gorilla (Gorilla gorilla gorilla).

    PubMed

    Lankester, Felix; Kiyang, John Anyam; Bailey, Wendi; Unwin, Steve

    2010-06-01

    A 7-yr-old female western lowland gorilla (Gorilla gorilla gorilla) shared an enclosure with 10 other gorillas at the Limbe Wildlife Centre (LWC), a wildlife rehabilitation centre in Cameroon. The gorilla had been living at the LWC for more than 6 yr prior to the exhibition of irritable bowel syndrome (IBS)-like clinical signs. The gorilla improved dramatically after metronidazole therapy. The report suggests that metronidazole was effective because it eliminated the protozoa, Dientamoeba fragilis. Dientamoeba fragilis should be considered on the differential diagnosis list of any captive gorilla with IBS-like symptoms.

  2. Speculations on the origin and evolution of the Utopia-Elysium lowlands of Mars

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.; Schultz, Richard A.

    1990-01-01

    This paper proposes a qualitative model for the origin of the Utopia-Elysium northern lowlands on eastern Mars in terms of the long-term evolution of two large overlapping impact basins. The model, which is consistent with both the observed geologic constraints and more quantitative results obtained by numerical modeling of smaller (Orientale-size) impact basins, is shown to qualitatively account for the major topographic variation seen in the Utopia-Elysium region, including the overall 'lowness' of the area and localized depressions.

  3. Watershed Chemical Budgets and Interbasin Groundwater Transfer in the Lowland Rainforest of Costa Rica

    NASA Astrophysics Data System (ADS)

    Genereux, D. P.; Carbonell, D.

    2001-12-01

    Mixing of two distinct water sources explains most of the variability in major ion chemistry of streams and shallow groundwaters at La Selva Biological Station in the lowland rainforest of Costa Rica. The two water sources are high-solute bedrock groundwater and low-solute local water. Evidence suggests that bedrock groundwater represents interbasin transfer into the lowland watersheds beneath topographic divides. To quantify the effects of interbasin transfer on water and chemical budgets, hydrologic and chemical data are being collected at two small adjacent watersheds, the Arboleda (46 ha) and the Taconazo (26 ha). While identical or nearly so in rainfall, temperature, topography, soils, geology, etc., the watersheds have very different runoff and budget characteristics. Water budget calculations seem to rule out significant interbasin transfer into the Taconazo, consistent with the low major ion concentrations of streamflow on this watershed. Preliminary calculations show that Cl inputs and export were about 1300 moles/ha for February 2000 through January 2001. The water budget of the Arboleda for the same 12 months clearly indicates significant interbasin transfer (about 83% of total stream discharge). Interbasin transfer to the Arboleda includes both local water (about 43% of total discharge) and bedrock groundwater (40% of total discharge); both chemical and hydrologic data were needed to detect this (neither alone would have been sufficient). Cl export from the Arboleda was much higher than from the Taconazo (about 54000 moles/ha), mainly due to interbasin transfer of bedrock groundwater (this accounts for over 90% of the Arboleda's Cl export). Calculations for other major ions are underway and should give results similar to those for Cl, given the observed linear correlations between these ions and Cl (except for sulfate which is strongly affected by reduction in shallow groundwater). Interbasin transfer of water and solutes has a large (in some cases

  4. Radar mapping, archaeology, and ancient land use in the Maya lowlands

    NASA Technical Reports Server (NTRS)

    Adams, R. E. W.; Brown, W. E., Jr.; Culbert, T. P.

    1981-01-01

    Data from the use of synthetic aperture radar in aerial survey of the southern Maya lowlands suggest the presence of very large areas drained by ancient canals for the purpose of intensive cultivation. Preliminary ground checks in several very limited areas confirm the existence of canals and raised fields. Excavations and ground surveys by several scholars provide valuable comparative information. Taken together, the new data suggest that Late Classic period Maya civilization was firmly grounded in large-scale and intensive cultivation of swampy zones.

  5. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    USGS Publications Warehouse

    Lara, M.; Genet, Helene; McGuire, Anthony; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  6. Weedy (red) rice: An emerging constraint to global rice production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ongoing increases in the human population necessitate that rice will continue to be an essential aspect of food security for the 21st century. While production must increase in the coming decades to meet demand, such increases will be accompanied by diminished natural resources and rising productio...

  7. Insights into molecular mechanism of blast resistance in weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy rice is a serious pest in direct-seeded rice fields in the U.S. and worldwide. Under suitable conditions, weedy rice can reduce crop yields up to 70%. However, weedy rice may carry novel disease resistance genes. Rice blast disease caused by the fungus Magnaporthe oryzae is a major disease wo...

  8. The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater

    NASA Astrophysics Data System (ADS)

    Brauer, C. C.; Teuling, A. J.; Torfs, P. J. J. F.; Uijlenhoet, R.

    2014-02-01

    We present the Wageningen Lowland Runoff Simulator (WALRUS), a novel rainfall-runoff model to fill the gap between complex, spatially distributed models which are often used in lowland catchments and simple, parametric (conceptual) models which have mostly been developed for mountainous catchments. WALRUS explicitly accounts for processes that are important in lowland areas, notably (1) groundwater-unsaturated zone coupling, (2) wetness-dependent flow routes, (3) groundwater-surface water feedbacks and (4) seepage and surface water supply. WALRUS consists of a coupled groundwater-vadose zone reservoir, a quickflow reservoir and a surface water reservoir. WALRUS is suitable for operational use because it is computationally efficient and numerically stable (achieved with a flexible time step approach). In the open source model code default relations have been implemented, leaving only four parameters which require calibration. For research purposes, these defaults can easily be changed. Numerical experiments show that the implemented feedbacks have the desired effect on the system variables.

  9. The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater

    NASA Astrophysics Data System (ADS)

    Brauer, C. C.; Teuling, A. J.; Torfs, P. J. J. F.; Uijlenhoet, R.

    2014-10-01

    We present the Wageningen Lowland Runoff Simulator (WALRUS), a novel rainfall-runoff model to fill the gap between complex, spatially distributed models which are often used in lowland catchments and simple, parametric (conceptual) models which have mostly been developed for sloping catchments. WALRUS explicitly accounts for processes that are important in lowland areas, notably (1) groundwater-unsaturated zone coupling, (2) wetness-dependent flow routes, (3) groundwater-surface water feedbacks and (4) seepage and surface water supply. WALRUS consists of a coupled groundwater-vadose zone reservoir, a quickflow reservoir and a surface water reservoir. WALRUS is suitable for operational use because it is computationally efficient and numerically stable (achieved with a flexible time step approach). In the open source model code default relations have been implemented, leaving only four parameters which require calibration. For research purposes, these defaults can easily be changed. Numerical experiments show that the implemented feedbacks have the desired effect on the system variables.

  10. Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs. short-term lowlander adaptation.

    PubMed

    Stembridge, Mike; Ainslie, Philip N; Hughes, Michael G; Stöhr, Eric J; Cotter, James D; Nio, Amanda Q X; Shave, Rob

    2014-08-01

    Short-term, high-altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and decreases left-ventricular (LV) volumes. However, relatively little is known of the long-term cardiac consequences of prolonged exposure in Sherpa, a highly adapted HA population. To investigate short-term adaptation and potential long-term cardiac remodeling, we studied ventricular structure and function in Sherpa at 5,050 m (n = 11; 31 ± 13 yr; mass 68 ± 10 kg; height 169 ± 6 cm) and lowlanders at sea level (SL) and following 10 ± 3 days at 5,050 m (n = 9; 34 ± 7 yr; mass 82 ± 10 kg; height 177 ± 6 cm) using conventional and speckle-tracking echocardiography. At HA, PASP was higher in Sherpa and lowlanders compared with lowlanders at SL (both P < 0.05). Sherpa had smaller right-ventricular (RV) and LV stroke volumes than lowlanders at SL with lower RV systolic strain (P < 0.05) but similar LV systolic mechanics. In contrast to LV systolic mechanics, LV diastolic, untwisting velocity was significantly lower in Sherpa compared with lowlanders at both SL and HA. After partial acclimatization, lowlanders demonstrated no change in the RV end-diastolic area; however, both RV strain and LV end-diastolic volume were reduced. In conclusion, short-term hypoxia induced a reduction in RV systolic function that was also evident in Sherpa following chronic exposure. We propose that this was consequent to a persistently higher PASP. In contrast to the RV, remodeling of LV volumes and normalization of systolic mechanics indicate structural and functional adaptation to HA. However, altered LV diastolic relaxation after chronic hypoxic exposure may reflect differential remodeling of systolic and diastolic LV function.

  11. Left ventricular adaptation to high altitude: speckle tracking echocardiography in lowlanders, healthy highlanders and highlanders with chronic mountain sickness.

    PubMed

    Dedobbeleer, Chantal; Hadefi, Alia; Pichon, Aurelien; Villafuerte, Francisco; Naeije, Robert; Unger, Philippe

    2015-04-01

    Hypoxic exposure depresses myocardial contractility in vitro, but has been associated with indices of increased cardiac performance in intact animals and in humans, possibly related to sympathetic nervous system activation. We explored left ventricular (LV) function using speckle tracking echocardiography and sympathetic tone by spectral analysis of heart rate variability (HRV) in recently acclimatized lowlanders versus adapted or maladapted highlanders at high altitude. Twenty-six recently acclimatized lowlanders, 14 healthy highlanders and 12 highlanders with chronic mountain sickness (CMS) were studied. Control measurements at sea level were also obtained in the lowlanders. Altitude exposure in the lowlanders was associated with slightly increased blood pressure, decreased LV volumes and decreased longitudinal strain with a trend to increased prevalence of post-systolic shortening (p = 0.06), whereas the low frequency/high frequency (LF/HF) ratio increased (1.62 ± 0.81 vs. 5.08 ± 4.13, p < 0.05) indicating sympathetic activation. Highlanders had a similarly raised LF/HF ratio, but no alteration in LV deformation. Highlanders with CMS had no change in LV deformation, no significant increase in LF/HF, but decreased global HRV still suggestive of increased sympathetic tone, and lower mitral E/A ratio compared to healthy highlanders. Short-term altitude exposure in lowlanders alters indices of LV systolic function and increases sympathetic nervous system tone. Life-long altitude exposure in highlanders is associated with similar sympathetic hyperactivity, but preserved parameters of LV function, whereas diastolic function may be altered in those with CMS. Altered LV systolic function in recently acclimatized lowlanders may be explained by combined effects of hypoxia and changes in loading conditions.

  12. Soil water availability in rainfed cultivation affects more than cultivar some nutraceutical components and the sensory profile of virgin olive oil.

    PubMed

    Bucelli, Pierluigi; Costantini, Edoardo A C; Barbetti, Roberto; Franchini, Elena

    2011-08-10

    This research considered the varieties 'Frantoio' and 'Moraiolo' growing in rainfed olive trees (Olea europaea) and took place in Tuscany, central Italy. Soil moisture was monitored during the very meteorologically contrasting years 2002 and 2003 in two nearby olive groves. The plots had the same morphological and climatic conditions, but different soil types. Monocultivar oil samples were analyzed to determine fatty acids, minor polar compounds, and tocopherols content and were submitted to organoleptic analysis by a panel of trained tasters. The results highlighted that soil water regimen affects some nutraceutical components and the sensory evaluation of olive oil. Cultivar also affected yield components, polyphenols, and tocopherols content, but less than soil water availability. The plants on the soil inducing a relatively more intense and longer water deficit during summer (a Skeleti Calcaric Regosol) had an early ripening and gave the best results in terms of phenolic compounds and, consequently, antioxidant properties of the olive oil. The sensorial properties of the oil obtained from both cultivars on the Regosol were superior in both years of the trial.

  13. Three Dimensional Wind Speed and Flux Measurement over a Rain-fed Soybean Field Using Orthogonal and Non-orthogonal Sonic Anemometer Designs

    NASA Astrophysics Data System (ADS)

    Thomas, T.; Suyker, A.; Burba, G. G.; Billesbach, D.

    2014-12-01

    The eddy covariance method for estimating fluxes of trace gases, energy and momentum in the constant flux layer above a plant canopy fundamentally relies on accurate measurements of the vertical wind speed. This wind speed is typically measured using a three dimensional ultrasonic anemometer. These anemometers incorporate designs with transducer sets that are aligned either orthogonally or non-orthogonally. Previous studies comparing the two designs suggest differences in measured 3D wind speed components, in particular vertical wind speed, from the non-orthogonal transducer relative to the orthogonal design. These differences, attributed to additional flow distortion caused by the non-orthogonal transducer arrangement, directly affect fluxes of trace gases, energy and momentum. A field experiment is being conducted over a rain-fed soybean field at the AmeriFlux site (US-Ne3) near Mead, Nebraska. In this study, ultrasonic anemometers featuring orthogonal transducer sets (ATI Vx Probe) and non-orthogonal transducer sets (Gill R3-100) collect high frequency wind vector and sonic temperature data. Sensible heat and momentum fluxes and other key sonic performance data are evaluated based on environmental parameters including wind speed, wind direction, temperature, and angle of attack. Preliminary field experiment results are presented.

  14. Agriculture Education. Soybeans and Rice.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary students enrolled in one or two semester-long courses in agricultural education. The guide presents units of study in the following areas: (1) soybeans, (2) rice, and (3) orientation. Each of the 17 units of instruction follows a typical format: terminal objective, specific…

  15. Differentially Methylated Epiloci Generated from Numerous Genotypes of Contrasting Tolerances Are Associated with Osmotic-Tolerance in Rice Seedlings

    PubMed Central

    Xia, Hui; Huang, Weixia; Xiong, Jie; Yan, Shuaigang; Tao, Tao; Li, Jiajia; Wu, Jinhong; Luo, Lijun

    2017-01-01

    influence gene regulation in the rice seedling in response to the osmotic stress. All these results indicate that DME generated from a number of genotypes could have higher probabilityies for association with stress-tolerance, rather than DME generated from two genotypes of contrasting tolerance. The DME found in this study are suspected to be good epigenetic markers for the application in drought-tolerant rice breeding. They could also be a valuable tool to study the epigenetic differentiation in the drought-tolerance between upland and lowland rice ecotypes. PMID:28154573

  16. Erosion rates and landscape evolution of the lowlands of the Upper Paraguay river basin (Brazil) from cosmogenic 10Be

    NASA Astrophysics Data System (ADS)

    Pupim, Fabiano do Nascimento; Bierman, Paul R.; Assine, Mario Luis; Rood, Dylan H.; Silva, Aguinaldo; Merino, Eder Renato

    2015-04-01

    The importance of Earth's low sloping areas in regard to global erosion and sediment fluxes has been widely and vigorously debated. It is a crucial area of research to elucidate geologically meaningful rates of land-surface change and thus the speed of element cycling on Earth. However, there are large portions of Earth where erosion rates have not been well or extensively measured, for example, the tropical lowlands. The Cuiabana lowlands are an extensive low-altitude and low-relief dissected metamorphic terrain situated in the Upper Paraguay river basin, central-west Brazil. Besides exposures of highly variable dissected metamorphic rocks, flat residual lateritic caps related to a Late Cenozoic planation surface dominate interfluves of the Cuiabana lowlands. The timescale over which the lowlands evolved and the planation surface developed, and the rate at which they have been modified by erosion, are poorly known. Here, we present measurements of in situ produced cosmogenic 10Be in outcropping metamorphic bedrock and clastic-lateritic caps to quantify rates of erosion of the surface and associated landforms in order to better understand the Quaternary landscape evolution of these lowlands. Overall, slow erosion rates (mean 10 m/Ma) suggest a stable tectonic environment in these lowlands. Erosion rates vary widely between different lithologies (range 0.57 to 28.3 m/Ma) consistent with differential erosion driving regional landform evolution. The lowest erosion rates are associated with the low-relief area (irregular plains), where clastic-laterite (mean 0.67 m/Ma) and quartzite (mean 2.6 m/Ma) crop out, whereas the highest erosion rates are associated with dissection of residual hills, dominated by metasandstone (mean 11.6 m/Ma) and phyllite (mean 27.6 m/Ma). These data imply that the Cuiabana lowland is comprised of two dominant landform sets with distinct and different dynamics. Because the planation surface (mostly lowlands) is lowering and losing mass more

  17. Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Tanaka, K. L.

    2010-01-01

    The southern Utopia highland-lowland transitional zone extends from northern Terra Cimmeria to southern Utopia Planitia and contains broad, bench-like platforms with depressions, pitted cones, tholi, and lobate flows. The locally occurring geologic units and landforms contrast other transitional regions and record a spatially partitioned geologic history. We systematically delineated and described the geologic units and landforms of the southern Utopia-Cimmeria highland-lowland transitional zone for the production of a 1:1,000,000-scale geologic map (MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247). Herein, we present technical and scientific results of this mapping project.

  18. Rice production in relation to soil quality under different rice-based cropping systems

    NASA Astrophysics Data System (ADS)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  19. Effectiveness of unfertilized buffer strips for reducing nitrogen loads from agricultural lowland to surface waters.

    PubMed

    Noij, Ignatius G A M; Heinen, Marius; Heesmans, Hanneke I M; Thissen, Jac T N M; Groenendijk, Piet

    2012-01-01

    Unfertilized buffer strips (BS) are widely accepted to reduce nitrogen (N) loads from agricultural land to surface water. However, the relative reduction of N load or concentration (BS effectiveness, BSE), varies with management and local conditions, especially hydrogeology. We present novel experimental evidence on BSE for 5-m-wide grass BS on intensively drained and managed plain agricultural lowland with varying hydrogeology. We selected characteristic sites for five major hydrogeological classes of the Netherlands and installed paired 5-m-wide unfertilized grass (BS) and reference (REF) treatments along the ditch. The REF was managed like the adjacent field, and BS was only harvested. Treatments were equipped with reservoirs in the ditch to collect and measure discharge and flow proportional N concentration for 3 or 4 yr. In addition, N concentration in upper groundwater was measured. We found a statistically significant BSE of 10% on the peat site. At the other sites, BSE for N was low and statistically insignificant. Low BSE was explained by denitrification between adjacent field and ditch, as well as by the site-specific hydrologic factors including low proportion of shallow groundwater flow, downward seepage, low residence time in the BS, and surface runoff away from the ditch. We emphasize that a REF treatment is needed to evaluate BSE in agriculture and recommend reservoirs if drainage patterns are unknown. Introduction of a 5-m-wide BS is ineffective for mitigating N loads from lowland agriculture to surface waters. We expect more from BS specifically designed to abate surface runoff.

  20. Population structure and group composition of western lowland gorillas in north-western Republic of Congo.

    PubMed

    Magliocca, F; Querouil, S; Gautier-Hion, A

    1999-01-01

    Population studies are an essential part of conservation actions. Under exceptional observation conditions we studied a western lowland gorilla population visiting the Maya salt-clearing (north of the Parc national d'Odzala, P.N.O., Congo) over an 8 month period; 36 groups and 18 solitary individuals (a total of 420 individuals) have been identified visiting the clearing, which suggests a high gorilla density in the region. Ninety-six percent of the gorillas entered the clearing in groups. One-male groups had a mean size of 11.2. Ninety percent of solitary individuals were silver-back males. Compared with other populations of both lowland gorillas and mountain gorillas, the Maya population had the highest immature rate and the highest number of infants per female. Ecological correlates that could explain the attractiveness of the Maya clearing are discussed. The present status and the renewal rate of the Maya population indicate the need for further studies and confirm the importance of developing eco-tourism in this region as part of the sustainable park management activities developed by the ECOFAC programme (European Union). The results also provide arguments to support the proposal for extending the P.N.O. to include this region, which is rich in salt-clearings and attracts many other key-species of mammal such as forest elephants.

  1. An insight into pre-Columbian raised fields: the case of San Borja, Bolivian lowlands

    NASA Astrophysics Data System (ADS)

    Rodrigues, Leonor; Lombardo, Umberto; Trauerstein, Mareike; Huber, Perrine; Mohr, Sandra; Veit, Heinz

    2016-07-01

    Pre-Columbian raised field agriculture in the tropical lowlands of South America has received increasing attention and been the focus of heated debates regarding its function, productivity, and role in the development of pre-Columbian societies. Even though raised fields are all associated to permanent or semi-permanent high water levels, they occur in different environmental contexts. Very few field-based studies on raised fields have been carried out in the tropical lowlands and little is known about their use and past management. Based on topographic surveying and mapping, soil physical and chemical analysis and OSL and radiocarbon dating, this paper provides insight into the morphology, functioning and time frame of the use of raised fields in the south-western Llanos de Moxos, Bolivian Amazon. We have studied raised fields of different sizes that were built in an area near the town of San Borja, with a complex fluvial history. The results show that differences in field size and height are the result of an adaptation to a site where soil properties vary significantly on a scale of tens to hundreds of metres. The analysis and dating of the raised fields sediments point towards an extensive and rather brief use of the raised fields, for about 100-200 years at the beginning of the 2nd millennium.

  2. Comparative assessment of lowland and highland Smallholder farmers' vulnerability to climate variability in Ethiopia

    NASA Astrophysics Data System (ADS)

    Ayal, D. Y., Sr.; Abshare, M. W. M.; Desta, S. D.; Filho, W. L.

    2015-12-01

    Desalegn Yayeh Ayal P.O.BOX 150129 Addis Ababa University Ethiopia Mobil +251910824784 Abstract Smallholder farmers' near term scenario (2010-2039) vulnerability nature and magnitude was examined using twenty-two exposure, sensitivity and adaptive capacity vulnerability indicators. Assessment of smallholder farmers' vulnerability to climate variability revealed the importance of comprehending exposure, sensitivity and adaptive capacity induces. Due to differences in level of change in rainfall, temperature, drought frequency, their environmental interaction and variations on adaptive capacity the nature and magnitude of smallholder farmers vulnerability to physical, biological and epidemiological challenges of crop and livestock production varied within and across agro-ecologies. Highlanders' sensitive relates with high population density, erosion and crop disease and pest damage occurrence. Whereas lowlanders will be more sensitive to high crop disease and pest damage, provenance of livestock disease, absence of alternative water sources, less diversified agricultural practices. However, with little variations in the magnitude and nature of vulnerability, both highlanders and lowlanders are victims of climate variability and change. Given the ever increasing population, temperature and unpredictable nature of rainfall variability, the study concluded that future adaptation strategies should capitalize on preparing smallholder farmers for both extremes- excess rainfall and flooding on the one hand and severe drought on the other.

  3. Diet of lowland tapir (Tapirus terrestris) in El Rey National Park, Salta, Argentina.

    PubMed

    Chalukian, Silvia C; de Bustos, M Soledad; Lizárraga, R Leonidas

    2013-03-01

    Lowland tapir (Tapirus terrestris) is the largest herbivore in the Neotropics and, in Argentina, it inhabits a variety of habitats from 100 to 2100 m asl. Lowland tapirs importantly influence their habitat structure because they are selective browsers, seed predators and long-distance seed dispersers. However, increased knowledge of tapir ecology is necessary to support the conservation and management of the species in natural and human-modified environments. Between Jun 2002 and Dec 2008 we assessed the tapir's diet in El Rey National Park, Salta, northwestern Argentina. We collected fresh feces and recorded browsing signs, and we recorded direct observations of tapirs while they were feeding. We analyzed 88 feces samples that had been dried and subsequently weighed. Feces were dominated by fibers and leaves (84.09%), while fruit parts represented a small proportion of the weight (15.91%). During the dry months, a greater percentage of seeds were found in the feces, mainly due to the availability of 3 species of Fabaceae fruits. We recorded a total of 57 plant species from 26 families. Tapirs are adapted to extreme habitats, switching their diet from frugivory to herbivory when fruits are scarce. Considering this, forest remnants and even secondary growth fields should be protected from deforestation.

  4. The Impact of Climate Change on Metal Transport in a Lowland Catchment.

    PubMed

    Wijngaard, René R; van der Perk, Marcel; van der Grift, Bas; de Nijs, Ton C M; Bierkens, Marc F P

    2017-01-01

    This study investigates the impact of future climate change on heavy metal (i.e., Cd and Zn) transport from soils to surface waters in a contaminated lowland catchment. The WALRUS hydrological model is employed in a semi-distributed manner to simulate current and future hydrological fluxes in the Dommel catchment in the Netherlands. The model is forced with climate change projections and the simulated fluxes are used as input to a metal transport model that simulates heavy metal concentrations and loads in quickflow and baseflow pathways. Metal transport is simulated under baseline climate ("2000-2010") and future climate ("2090-2099") conditions including scenarios for no climate change and climate change. The outcomes show an increase in Cd and Zn loads and the mean flux-weighted Cd and Zn concentrations in the discharged runoff, which is attributed to breakthrough of heavy metals from the soil system. Due to climate change, runoff enhances and leaching is accelerated, resulting in enhanced Cd and Zn loads. Mean flux-weighted concentrations in the discharged runoff increase during early summer and decrease during late summer and early autumn under the most extreme scenario of climate change. The results of this study provide improved understanding on the processes responsible for future changes in heavy metal contamination in lowland catchments.

  5. Paleovegetation Simulations of Lowland Amazonia and Implications for Neotropical Allopatry and Speciation

    NASA Astrophysics Data System (ADS)

    Cowling, Sharon A.; Maslin, Mark A.; Sykes, Martin T.

    2001-03-01

    Paleovegetation modeling simulations of the lowland Amazon basin were made to assess the relative importance of glacial climate and atmospheric CO2 for altering vegetation type and structure, as well as to explore the potential physiological mechanisms underlying these ecosystem-level responses. Modeling results support the view that widespread invasion of grasslands into the Amazon lowlands during the last glaciation was not likely. Glacial cooling was probably responsible for maintaining glacial forest cover via its effects in reducing photorespiration and decreasing evapotranspiration, which collectively improve plant carbon and water relations. Modeling results confirm that leaf area index (LAI), a common proxy for canopy density, is highly sensitive to independent and interactive changes in climate and low concentration of atmospheric CO2, and the results show considerable region-to-region variation during the last glaciation. Heterogeneous variations in glacial vegetation LAI may have promoted allopatric speciation by geographically isolating species (called vicariance) in the forest (sub)canopy. The proposed vicariance hypothesis incorporating spatial variations in canopy density conforms to many of the essential tenets addressed by previous neotropical speciation models, but also helps to overcome some of their inconsistencies.

  6. Tropical Rain Forest and Climate Dynamics of the Atlantic Lowland, Southern Brazil, during the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Behling, Hermann; Negrelle, Raquel R. B.

    2001-11-01

    Palynological analysis of a core from the Atlantic rain forest region in Brazil provides unprecedented insight into late Quaternary vegetational and climate dynamics within this southern tropical lowland. The 576-cm-long sediment core is from a former beach-ridge "valley," located 3 km inland from the Atlantic Ocean. Radio-carbon dates suggest that sediment deposition began prior to 35,000 14C yr B.P. Between ca. 37,500 and ca. 27,500 14C yr B.P. and during the last glacial maximum (LGM; ca. 27,500 to ca. 14,500 14C yr B.P.), the coastal rain forest was replaced by grassland and patches of cold-adapted forest. Tropical trees, such as Alchornea, Moraceae/Urticaceae, and Arecaceae, were almost completely absent during the LGM. Furthermore, their distributions were shifted at least 750 km further north, suggesting a cooling between 3°C and 7°C and a strengthening of Antarctic cold fronts during full-glacial times. A depauperate tropical rain forest developed as part of a successional sequence after ca. 12,300 14C yr B.P. There is no evidence that Araucaria trees occurred in the Atlantic lowland during glacial times. The rain forest was disturbed by marine incursions during the early Holocene period until ca. 6100 14C yr B.P., as indicated by the presence of microforaminifera. A closed Atlantic rain forest then developed at the study site.

  7. Assessment of nutrient entry pathways and dominating hydrological processes in lowland catchments

    NASA Astrophysics Data System (ADS)

    Schmalz, B.; Tavares, F.; Fohrer, N.

    2007-06-01

    The achievement of a good water quality in all water bodies until 2015 is legally regulated since December 2000 for all European Union member states by the European Water Framework Directive (EU, 2000). The aim of this project is to detect nutrient entry pathways and to assess the dominating hydrological processes in complex mesoscale catchments. The investigated Treene catchment is located in Northern Germany as a part of a lowland area. Sandy, loamy and peat soils are characteristic for this area. Land use is dominated by agriculture and pasture. Drainage changed the natural water balance. In a nested approach we examined two catchment areas: a) Treene catchment 517 km2, b) Kielstau catchment 50 km2. The nested approach assists to improve the process understanding by using data of different scales. Therefore these catchments serve not only as an example but the results are transferable to other lowland catchment areas. In a first step the river basin scale model SWAT (Soil and Water Assessment Tool, Arnold et al., 1998) was used successfully to model the water balance. Furthermore the water quality was analysed to distinguish the impact of point and diffuse sources. The results show that the tributaries in the Kielstau catchment contribute high amounts of nutrients, mainly nitrate and ammonium. For the parameters nitrate, ammonium and phosphorus it was observed as a tendency that the annual loads were increasing along the river profile of the Kielstau.

  8. Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina).

    PubMed

    Cortelezzi, Agustina; Sierra, María Victoria; Gómez, Nora; Marinelli, Claudia; Rodrigues Capítulo, Alberto

    2013-07-01

    Our objective was to assess the effect of the physical habitat degradation in three lowland streams of Argentina that are subject to different land uses. To address this matter, we looked into some physical habitat alterations, mainly the water quality and channel changes, the impact on macrophytes' community, and the structural and functional descriptors of the epipelic biofilm and invertebrate assemblages. As a consequence of physical and chemical perturbations, we differentiated sampling sites with different degradation levels. The low degraded sites were affected mainly for the suburban land use, the moderately degraded sites for the rural land use, and the highly degraded sites for the urban land use. The data shows that the biotic descriptors that best reflected the environmental degradation were vegetation cover and macrophytes richness, the dominance of tolerant species (epipelic biofilm and invertebrates), algal biomass, O2 consumption by the epipelic biofilm, and invertebrates' richness and diversity. Furthermore, the results obtained highlight the importance of the macrophytes in the lowland streams, where there is a poor diversification of abiotic substrates and where the macrophytes not only provide shelter but also a food source for invertebrates and other trophic levels such as fish. We also noted that both in benthic communities, invertebrates and epipelic biofilm supplied different information: the habitat's physical structure provided by the macrophytes influenced mainly the invertebrate descriptors; meanwhile, the water quality mainly influenced most of the epipelic biofilm descriptors.

  9. Interpretation of gravity anomalies in the northwest Adirondack lowlands, northern New York

    SciTech Connect

    Revetta, F.A.; O'Brian, B. . Geology Dept.)

    1993-03-01

    Twelve hundred gravity measurements were made in the Adirondack Highlands and northwest Adirondack Lowlands, New York between 44[degree]15 minutes and 44[degree]30 minutes N. Latitude and 75[degree]00 minutes W. Longitude. A Bouguer gravity map constructed from the gravity measurements includes the Carthage-Colton Mylonite Zone, a major structural boundary between the highlands and lowlands. The gravity map indicates the gravity contours trend parallel to the CCMZ along most of its length however in some areas the contours cross the boundary. No clear-cut relationships exists between the CCMZ and gravity contours. The Bouguer gravity map shows several prominent gravity anomalies which correlate with the geology seismicity and mineral deposits in the area. Gravity lows of 20 to 30 g.u. are centered over the Gouverneur, Hyde and Payne Lake Alaskite gneiss bodies. A gravity high of 20 g.u. occurs over the Pleasant Lake gabbro pluton. Gravity highs of 35 and 100 g.u. occur over the Sylvia Lake Zinc District and marble just north of the district. A gravity high at Russell, N.Y. coincides with a cluster of nine earthquake epicenters. Finally a steep gravity gradient separates high density rocks from lower density rocks along the Black Lake fault. Two-dimensional computer modeling of the geologic features is underway and quantitative models of the structures will be presented.

  10. No evidence that boron influences tree species distributions in lowland tropical forests of Panama.

    PubMed

    Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W

    2017-04-01

    It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics.

  11. Beyond the Mayan Lowlands: impacts of the Terminal Classic Drought in the Caribbean Antilles

    NASA Astrophysics Data System (ADS)

    Lane, Chad S.; Horn, Sally P.; Kerr, Matthew T.

    2014-02-01

    High-resolution paleoclimate records from the Mayan Lowlands and the Cariaco Basin have shown that the collapse of the Mayan socio-political structure at the end of the Classic period ˜1000 C.E. was linked to a series of severe, multi-decadal drought events, collectively termed the 'Terminal Classic Drought' (TCD), between ˜750 and 1100 C.E. Here we present proxy evidence indicating that increased aridity leading up to and during the TCD also strongly affected the Caribbean Antilles. Additionally, the timing of the TCD corresponds with cultural and demographic shifts in the Greater Antilles, including the appearance of Ostionoid cultural traditions, the colonization of new islands, and the intensification of agriculture. We propose that these multi-decadal droughts affected not only the very large and complex socio-political structures governing large populations like that of the Late Classic Maya, but also smaller and less politically complex societies across the Caribbean. However, instead of resulting in societal collapses as suspected in the Mayan Lowlands, these climatic events may have spurred a cultural transition across the Caribbean Antilles that ultimately led to the development of Taíno cultural traditions encountered by Christopher Columbus upon his arrival in 1492 C.E.

  12. Cultural Phylogenetics of the Tupi Language Family in Lowland South America

    PubMed Central

    Walker, Robert S.; Wichmann, Søren; Mailund, Thomas; Atkisson, Curtis J.

    2012-01-01

    Background Recent advances in automated assessment of basic vocabulary lists allow the construction of linguistic phylogenies useful for tracing dynamics of human population expansions, reconstructing ancestral cultures, and modeling transition rates of cultural traits over time. Methods Here we investigate the Tupi expansion, a widely-dispersed language family in lowland South America, with a distance-based phylogeny based on 40-word vocabulary lists from 48 languages. We coded 11 cultural traits across the diverse Tupi family including traditional warfare patterns, post-marital residence, corporate structure, community size, paternity beliefs, sibling terminology, presence of canoes, tattooing, shamanism, men's houses, and lip plugs. Results/Discussion The linguistic phylogeny supports a Tupi homeland in west-central Brazil with subsequent major expansions across much of lowland South America. Consistently, ancestral reconstructions of cultural traits over the linguistic phylogeny suggest that social complexity has tended to decline through time, most notably in the independent emergence of several nomadic hunter-gatherer societies. Estimated rates of cultural change across the Tupi expansion are on the order of only a few changes per 10,000 years, in accord with previous cultural phylogenetic results in other language families around the world, and indicate a conservative nature to much of human culture. PMID:22506065

  13. Genetic Differentiation in Insular Lowland Rainforests: Insights from Historical Demographic Patterns in Philippine Birds

    PubMed Central

    Sánchez-González, Luis Antonio; Hosner, Peter A.; Moyle, Robert G.

    2015-01-01

    Phylogeographic studies of Philippine birds support that deep genetic structure occurs across continuous lowland forests within islands, despite the lack of obvious contemporary isolation mechanisms. To examine the pattern and tempo of diversification within Philippine island forests, and test if common mechanisms are responsible for observed differentiation, we focused on three co-distributed lowland bird taxa endemic to Greater Luzon and Greater Negros-Panay: Blue-headed Fantail (Rhipidura cyaniceps), White-browed Shama (Copsychus luzoniensis), and Lemon-throated Leaf-Warbler (Phylloscopus cebuensis). Each species has two described subspecies within Greater Luzon, and a single described subspecies on Greater Negros/Panay. Each of the three focal species showed a common geographic pattern of two monophyletic groups in Greater Luzon sister to a third monophyletic group found in Greater Negros-Panay, suggesting that common or similar biogeographic processes may have produced similar distributions. However, studied species displayed variable levels of mitochondrial DNA differentiation between clades, and genetic differentiation within Luzon was not necessarily concordant with described subspecies boundaries. Population genetic parameters for the three species suggested both rapid population growth from small numbers and geographic expansion across Luzon Island. Estimates of the timing of population expansion further supported that these events occurred asynchronously throughout the Pleistocene in the focal species, demanding particular explanations for differentiation, and support that co-distribution may be secondarily congruent. PMID:26312748

  14. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  15. Rice domestication: histories and mysteries.

    PubMed

    Gross, Briana L

    2012-09-01

    Domesticated rice (Oryza sativa) is one of the world's most important food crops, culturally, nutritionally and economically (Khush 1997). Thus, it is no surprise that there is intense curiosity about its genetic and geographical origins, its response to selection under domestication, and the genetic structure of its wild relative, Oryza rufipogon. Studies of Oryza attempting to answer these questions have accompanied each stage of the development of molecular markers, starting with allozymes and continuing to genome sequencing. While many of these studies have been restricted to small sample sizes, in terms of either the number of markers used or the number and distribution of the accessions, costs are now low enough that researchers are including large numbers of molecular markers and accessions. How will these studies relate to previous findings and long-held assumptions about rice domestication and evolution? If the paper in this issue of Molecular Ecology (Huang et al. 2012) is any indication, there will be some considerable surprises in store. In this study, a geographically and genomically thorough sampling of O. rufipogon and O. sativa revealed two genetically distinct groups of wild rice and also indicated that only one of these groups appears to be related to domesticated rice. While this fits well with previous studies indicating that there are genetic subdivisions within O. rufipogon, it stands in contrast to previous findings that the two major varieties of O. sativa (indica and japonica) were domesticated from two (or more) subpopulations of wild rice.

  16. Isoflavone content and profile comparisons of cooked soybean-rice mixtures: electric rice cooker versus electric pressure rice cooker.

    PubMed

    Chung, Ill-Min; Yu, Bo-Ra; Park, Inmyoung; Kim, Seung-Hyun

    2014-12-10

    This study examined the effects of heat and pressure on the isoflavone content and profiles of soybeans and rice cooked together using an electric rice cooker (ERC) and an electric pressure rice cooker (EPRC). The total isoflavone content of the soybean-rice mixture after ERC and EPRC cooking relative to that before cooking was ∼90% in soybeans and 14-15% in rice. Malonylglucosides decreased by an additional ∼20% in EPRC-cooked soybeans compared to those cooked using the ERC, whereas glucosides increased by an additional ∼15% in EPRC-cooked soybeans compared to those in ERC-cooked soybeans. In particular, malonylgenistin was highly susceptible to isoflavone conversion during soybean-rice cooking. Total genistein and total glycitein contents decreased in soybeans after ERC and EPRC cooking, whereas total daidzein content increased in EPRC-cooked soybeans (p < 0.05). These results may be useful for improving the content of nutraceuticals, such as isoflavones, in soybeans.

  17. Tier I Rice Model - Version 1.0 - Guidance for Estimating Pesticide Concentrations in Rice Paddies

    EPA Pesticide Factsheets

    Describes a Tier I Rice Model (Version 1.0) for estimating surface water exposure from the use of pesticides in rice paddies. The concentration calculated can be used for aquatic ecological risk and drinking water exposure assessments.

  18. The 3,000 rice genomes project: new opportunities and challenges for future rice research.

    PubMed

    Li, Jia-Yang; Wang, Jun; Zeigler, Robert S

    2014-01-01

    Rice is the world's most important staple grown by millions of small-holder farmers. Sustaining rice production relies on the intelligent use of rice diversity. The 3,000 Rice Genomes Project is a giga-dataset of publically available genome sequences (averaging 14× depth of coverage) derived from 3,000 accessions of rice with global representation of genetic and functional diversity. The seed of these accessions is available from the International Rice Genebank Collection. Together, they are an unprecedented resource for advancing rice science and breeding technology. Our immediate challenge now is to comprehensively and systematically mine this dataset to link genotypic variation to functional variation with the ultimate goal of creating new and sustainable rice varieties that can support a future world population that will approach 9.6 billion by 2050.

  19. Detection and quantification of trace elements in rice and rice products using x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Foran, Kelly A.; Fleming, David E. B.

    2015-12-01

    We used X-ray fluorescence (XRF) to examine the presence of arsenic (As) and other trace elements (manganese, iron, nickel, copper, and zinc) in rice and rice products. A portable XRF analyzer was used to test samples, and amplitudes for the analyzed elements were identified in the resulting data. The detection limit of the system was sufficiently low to detect As in some rice and rice product samples.

  20. The role of momilactones in rice allelopathy.

    PubMed

    Kato-Noguchi, Hisashi; Peters, Reuben J

    2013-02-01

    Large field screening programs and laboratory experiments in many countries have indicated that rice is allelopathic and releases allelochemical(s) into its environment. A number of compounds, such as phenolic acids, fatty acids, phenylalkanoic acids, hydroxamic acids, terpenes, and indoles, have been identified as potential rice allelochemicals. However, the studies reviewed here demonstrate that the labdane-related diterpenoid momilactones are the most important, with momilactone B playing a particularly critical role. Rice plants secrete momilactone B from their roots into the neighboring environments over their entire life cycle at phytotoxic levels, and momilactone B seems to account for the majority of the observed rice allelopathy. In addition, genetic studies have shown that selective removal of the momilactones only from the complex mixture found in rice root exudates significantly reduces allelopathy, demonstrating that these serve as allelochemicals, the importance of which is reflected in the presence of a dedicated momilactone biosynthetic gene cluster in the rice genome.

  1. Oscillating Transcriptome during Rice-Magnaporthe Interaction.

    PubMed

    Sharma, T R; Das, Alok; Thakur, Shallu; Devanna, B N; Singh, Pankaj Kumar; Jain, Priyanka; Vijayan, Joshitha; Kumar, Shrawan

    2016-01-01

    Rice blast disease caused by the fungus, Magnaporthe oryzae, is one of the most devastating diseases of rice. Deciphering molecular mechanism of host-pathogen interactions is of great importance in devising disease management strategies. Transcription being the first step for gene regulation in eukaryotes, basic understanding of the transcriptome is sine qua non for devising effective management strategy. The availability of genome sequences of rice and M. oryzae has facilitated the process to a large extent. The current review summarizes recent understanding of rice-blast pathosystem, application of transcriptomics approaches to understand the interactions employing different platforms, major determinants in the interaction and possibility of using certain candidate for conditioning enhanced disease resistance (Effector Triggered Immunity and PAMP Triggered Immunity) and downstream signalling in rice. A better understanding of the interaction elements and effective strategies hold potential to reduce yield losses in rice caused by M. oryzae.

  2. Novel transgenic rice-based vaccines.

    PubMed

    Azegami, Tatsuhiko; Itoh, Hiroshi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-04-01

    Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

  3. Characterizing irrigation water requirements for rice production from the Arkansas Rice Research Verification Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated rice irrigation water use in the University of Arkansas Rice Research Verification Program between the years of 2003 and 2011. Irrigation water use averaged 747 mm (29.4 inches) over the nine years. A significant 40% water savings was reported for rice grown under a zero gr...

  4. Effects of rice harvest moisture on kernel damage and milled rice surface free fatty acid levels.

    PubMed

    Parker, Amanda M; Proctor, Andrew; Eason, Robert L; Jain, Vishal

    2007-01-01

    Surface free fatty acid (FFA) on milled rice is a key factor in determining rice quality and acceptability to the brewing industry. Rice FFA oxidizes, causing off-flavors and odors to develop, compromising the brewing quality of milled rice. The effect of harvest moisture (13%, 16%, and 20%), harvester type (1688 Case and 9500 John Deere), and rice variety (Cocodrie and Bengal) on harvest damaged rough rice and milled rice surface FFA after drying to 12% moisture and 6 mo rough rice storage was examined. The Case harvester produced more damaged kernels than the John Deere harvester, but this was not reflected in surface FFA development. There were no significant FFA differences in variety or harvester type. Rice harvested at a higher moisture content (20%) produced significantly greater FFA values, with a peak near 0.1%, than rice harvested at lower moisture contents (13% and 16%), which had FFA values near 0.08%. Retention of bran by damaged kernels at high harvest moisture probably was responsible for promoting surface FFA development, but if bran was lost at lower harvest moistures, surface FFA, development was limited. Harvest moisture affected milled rice FFA, although rough rice was dried to 12% immediately after harvesting.

  5. Global Gene Expression of Rice after Infections with Rice Blast and Sheath blight Pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa) production worldwide has been challenged by increased new virulent pathogens. Over the years, genetic diversity needed for fighting diseases has been decreasing in cultivated rice around the globe. This presents a real challenge for rice crop protection. In an effort to develo...

  6. Effect of volunteer rice infestation on grain quality and yield of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volunteer rice (Oryza sativa L.) plants arise from shattered seeds of the previous crop, which could reduce the yield of cultivated rice and the commercial value of harvested grain. Volunteer rice plants from a cultivar other than the current crop produce grains that may differ in physico-chemical t...

  7. Relative competitive ability of rice with strawhull and blackhull red rice biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed interference depends largely upon the species composition of the weed community and an ability to compete with the cultured crop. Weedy red rice is a major weed pest of rice in the southern U.S. The focus of this study was to evaluate the competitive ability of rice against common, genetically ...

  8. Introgression of Clearfield(TM) rice crop traits into weedy red rice outcrosses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to determine the impact of introgression of crop alleles into weedy rice populations. Seeds of 89 weedy rice accessions collected from Arkansas fields in 11 counties, with a history of Clearfield(TM) rice production, were planted in 2011 and treated with two applications of im...

  9. A Very Large Population of Likely Buried Impact Basins in the Northern Lowlands of Mars Revealed by MOLA Data

    NASA Technical Reports Server (NTRS)

    Frey, H. V.; Shockey, K. M.; Frey, E. L.; Roark, J. H.; Sakimoto, S. E. H.

    2001-01-01

    High resolution Mars Orbiter Laser Altimeter (MOLA) data have revealed a large number of subdued quasi-circular depressions (QCDs) >50 km diameter in the northern lowlands of Mars which are generally not visible in Viking imagery and which may be buried ancient impact basins. Additional information is contained in the original extended abstract.

  10. Protein nitration, lipid peroxidation and DNA damage at high altitude in acclimatized lowlanders and native highlanders: relation with oxygen consumption.

    PubMed

    Sinha, Sanchari; Dutta, Arkadeb; Singh, Som Nath; Ray, Uday Sankar

    2010-04-30

    Reactive oxygen and nitrogen species have been reported to be increased due to hypobaric hypoxia. It was hypothesized that lowlanders are more susceptible to protein nitration, lipid peroxidation and DNA damage at high altitude than highlanders and formation of these biomarkers may have strong correlation with oxygen consumption. Male volunteers were randomly selected and categorized into 3 groups, i.e. lowlanders at sea level (LL-SL, n=10), lowlanders at an altitude of 4560 m (LL-HA, n=10) and highlanders (HAN, n=10). Volunteers performed maximal aerobic exercise. Resting and post-exercise blood samples were taken at sea level and high altitude. Both resting and maximum oxygen consumption showed positive correlation with stress markers. LL-HA showed increased 3-nitrotyrosine and lipid hydroperoxide than LL-SL at rest. 3-Nitrotyrosine and lipid hydroperoxide increased after exercise in 3 groups, but percentage increase was higher in HAN than LL-SL and LL-HA. LL-SL and HAN showed significant DNA damage after exercise. Results indicate that resting oxygen consumption is positively correlated with nitrosative and oxidative stress markers irrespective of environmental condition and adaptation levels. Lowlanders have shown higher susceptibility to hypoxic insult than highlanders at rest, but when subjected to exercise test, they showed better tolerance to hypoxia than highlanders.

  11. Incorporating landscape depressions and tile drainages of a northern German lowland catchment into a semi-distributed model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrological models need to be adapted to specific hydrological characteristics of the catchment in which they are applied. In the lowland region of northern Germany, tile drains and depressions are prominent features of the landscape though are often neglected in hydrological modelling on the catch...

  12. CHANGES IN LOWLAND FLOODPLAIN SEDIMENTATION PROCESSES: PRE-DISTURBANCE TO POST-REHABILITATION, COSUMNES RIVER, CA. (R825433)

    EPA Science Inventory

    During the late Holocene, sediment deposition on the lowland Cosumnes River floodplain, CA has depended on factors that varied temporally and spatially, such as basin subsidence, sea level rise, flow, and sediment supply from both the Sacramento River system and from the Cosum...

  13. The role of sediment accumulation on lowland floodplains in modulating sediment discharge and recycling

    NASA Astrophysics Data System (ADS)

    Aalto, R.

    2006-12-01

    I will summarize recent advances in techniques used to study floodplain accumulation rates, dates, and processes in lowland rivers and resulting empirical discoveries regarding the trapping and recycling rates by floodplains within mobile, sand-bedded river-floodplain systems. I will then briefly compare and contrast processes in pristine versus anthropogenically perturbed rivers spanning various tectonic settings. The studied pristine rivers are: 1) the Strickland R. of Papua New Guinea, which traverses a drowned valley basin with both a high sediment discharge and a steep slope, 2) the Fly R. of PNG, which traverses a similar basin with a lower sediment load and slope, 3) the Beni R. of Bolivia, which traverses an enormous foreland basin with a very high sediment load and slope, and 4) the Mamore R. of Bolivia, traversing a similar basin with a lower sediment discharge and slope. Processes of sediment transport, deposition, and recycling differ between these basins, due to differences in slope, sediment and water supply, local hydrology, basin geometry, and tectonic activity. However, in all cases the rates of these processes and the resulting modulation of sediment delivery downstream by large, natural, lowland floodplains are significant, especially when compared to rates in human-influenced floodplains. The human-perturbed rivers discussed are 1) the Sacramento R. of California (USA), which has a moderate sediment load and slope, but is heavily engineered for channel stability and flood control along most of its lowland floodplains, and 2) the Danube R. of Romania, a large river that is also highly engineered, but with more separation between its levees. These engineered floodplains have largely ceased to function as depocenters that both capture and recycle a significant portion of the total sediment load, although the degree of this effect varies with the spacing of the engineered levees. For the natural systems, the floodplains essentially buffer extreme

  14. Holocene Biomass Burning, Environmental Change, and Human Land Use in the Southern Maya Lowlands

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Wahl, D.

    2013-12-01

    For several decades scholars have studied the dynamic relationship between the prehispanic Maya and their environment in order to test hypotheses that environmental change played a role in the abandonment of the Maya lowlands. Fire was inherent in Maya land use practices, arguably the primary tool used to alter the landscape and extract resources. Opening of forest for agriculture, building, and extraction/production of construction material necessitated burning. The extensive production of lime plaster for architectural and domestic use demanded harvesting and burning of vast quantities of green wood. While we understand the fundamental role of fire in Maya land use, there are very few records of prehispanic biomass burning from the Maya lowlands. Consequently, only a limited understanding exists of both natural fire regimes and patterns of anthropogenic burning in the tropical dry forests of Central America. Here we report two new well-dated, high-resolution records of biomass burning based on analysis of fossil charcoal recovered from lacustrine sediment cores, extending from the early Holocene to the present. The study sites, Lagos Paixban and Puerto Arturo are located in the southern Maya lowlands in modern northern Peten, Guatemala. Macroscopic charcoal data are presented along with previously published proxy data from the sites, and interpreted in the context of existing regional and local paleoenvironmental and archeological records. Results show that frequent fires occurred in the closed canopy forests of the region since at least the early mid-Holocene (~9000 BP), prior to occupation by sedentary agriculturalists. Following the arrival of sedentary agriculture at around 4600 BP, the system transitioned from climate controlled to anthropogenic control. During the Maya period, changes in fire regime are muted and do not appear to be driven by changes in climate conditions. Low charcoal influx and fire frequency in the Preclassic period suggest that land use

  15. Investigating Appropriate Sampling Design for Estimating Above-Ground Biomass in Bruneian Lowland Mixed Dipterocarp Forest

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, D.; Abu Salim, K.; Yun, H. M.; Han, S.; Lee, W. K.; Davies, S. J.; Son, Y.

    2014-12-01

    Mixed tropical forest structure is highly heterogeneous unlike plantation or mixed temperate forest structure, and therefore, different sampling approaches are required. However, the appropriate sampling design for estimating the above-ground biomass (AGB) in Bruneian lowland mixed dipterocarp forest (MDF) has not yet been fully clarified. The aim of this study was to provide supportive information in sampling design for Bruneian forest carbon inventory. The study site was located at Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Six 60 m × 60 m quadrats were established, separated by a distance of approximately 100 m and each was subdivided into quadrats of 10 m × 10 m, at an elevation between 200 and 300 m above sea level. At each plot all free-standing trees with diameter at breast height (dbh) ≥ 1 cm were measured. The AGB for all trees with dbh ≥ 10 cm was estimated by allometric models. In order to analyze changes in the diameter-dependent parameters used for estimating the AGB, different quadrat areas, ranging from 10 m × 10 m to 60 m × 60 m, were used across the study area, starting at the South-West end and moving towards the North-East end. The derived result was as follows: (a) Big trees (dbh ≥ 70 cm) with sparse distribution have remarkable contribution to the total AGB in Bruneian lowland MDF, and therefore, special consideration is required when estimating the AGB of big trees. Stem number of trees with dbh ≥ 70 cm comprised only 2.7% of all trees with dbh ≥ 10 cm, but 38.5% of the total AGB. (b) For estimating the AGB of big trees at the given acceptable limit of precision (p), it is more efficient to use large quadrats than to use small quadrats, because the total sampling area decreases with the former. Our result showed that 239 20 m × 20 m quadrats (9.6 ha in total) were required, while 15 60 m × 60 m quadrats (5.4 ha in total) were required when estimating the AGB of the trees

  16. Vegetation and floristics of a lowland tropical rainforest in northeast Australia

    PubMed Central

    Apgaua, Deborah M. G.; Campbell, Mason J; Cox, Casey J; Crayn, Darren M; Ishida, Françoise Y; Laidlaw, Melinda J; Liddell, Michael J; Seager, Michael; Laurance, Susan G. W.

    2016-01-01

    Abstract Background Full floristic data, tree demography, and biomass estimates incorporating non-tree lifeforms are seldom collected and reported for forest plots in the tropics. Established research stations serve as important repositories of such biodiversity and ecological data. With a canopy crane setup within a tropical lowland rainforest estate, the 42-ha Daintree Rainforest Observatory (DRO) in Cape Tribulation, northern Australia is a research facility of international significance. We obtained an estimate of the vascular plant species richness for the site, by surveying all vascular plant species from various mature-phase, remnant and open vegetation patches within the site. We also integrate and report the demography and basal areas of trees ≥ 10 cm diameter at breast height (dbh) in a new 1-ha core plot, an extension to the pre-existing forest 1-ha plot under the canopy crane. In addition, we report for the canopy crane plot new demography and basal areas for smaller-size shrubs and treelets subsampled from nine 20 m2 quadrats, and liana basal area and abundance from the whole plot. The DRO site has an estimated total vascular plant species richness of 441 species, of which 172 species (39%) are endemic to Australia, and 4 species are endemics to the Daintree region. The 2 x 1-ha plots contains a total of 262 vascular plant species of which 116 (1531 individuals) are tree species ≥ 10 cm dbh. We estimate a stem basal area of 34.9 m2 ha-1, of which small stems (tree saplings and shrubs <10cm dbh) and lianas collectively contribute c.4.2%. Comparing the stem density-diversity patterns of the DRO forest with other tropical rainforests globally, our meta-analysis shows that DRO forests has a comparatively high stem density and moderate species diversity, due to the influence of cyclones. These data will provide an important foundation for ecological and conservation studies in lowland tropical forest. New information We present a floristic checklist, a

  17. Landscape characteristics impacts on water quality of urban lowland catchments: monitoring the Amsterdam city area

    NASA Astrophysics Data System (ADS)

    Yu, Liang; van der Vlugt, Corné; Rozemeijer, Joachim; Broers, Hans Peter; van Breukelen, Boris; Ouboter, Maarten; Stuyfzand, Pieter

    2015-04-01

    In Dutch lowland polder systems, groundwater quality significantly contributes to surface water quality. This process is influenced by landscape characteristics such as topography, geology, and land use types. In this study, 23 variables were selected for 144 polder catchments, including groundwater and surface water solute concentrations (TN, TP, NH4+, NO3-, HCO3-, SO42-, Ca2+, Cl-), seepage rate in mm per year, elevation, paved area percentage, surface water area percentage, and soil types (calcite, humus and lutum percentage). The spatial patters in groundwater and surface water quality can largely be explained by groundwater seepage rates in polders and partly by artificial redistribution of water via the regional surface water system. High correlations (R2 up to 0.66) between solutes in groundwater and surface water revealed their probable interaction. This was further supported by results from principal component analysis (PCA) and linear regression. The PCA distinguished four factors that were related to a fresh groundwater factor, seepage rate factor, brackish groundwater factor and clay soil factor. Nutrients (TP, TN, NH4+ and NO3-) and SO42- in surface water bodies are mainly determined by groundwater quality combined with seepage rate, which is negatively related to surface water area percentage and elevation of the catchment. This pattern is more obvious in deep urban lowland catchments. Relatively high NO3- loads more tend to appear in catchments with high humus, but low calcite percentage soil type on top, which was attributed to clay soil type that was expressed by calcite percentage in our regression. Different from nitrogen contained solutes, TP is more closely related to fresh groundwater quality than to seepage rate. Surface water Cl- concentration has a high relation with brackish groundwater. Due to the artificial regulation of flow direction, brackish inlet water from upstream highly influences the chloride load in surface water bodies

  18. Total and inorganic arsenic in Iranian rice.

    PubMed

    Cano-Lamadrid, Marina; Munera-Picazo, Sandra; Burló, Francisco; Hojjati, Mohammad; Carbonell-Barrachina, Ángel A

    2015-05-01

    It is well known that arsenic (As) exposure, particularly to inorganic species (i-As), has adverse effects on humans. Nowadays, the European Union (EU) has still not regulated the maximum residue limit of As in commercial samples of rice and rice-based products, although it is actively working on the topic. The European Food Safety Authority (EFSA) is collecting data on total arsenic (t-As) and i-As from different rice-producing regions not only from EU countries but also from other parts of the world to finally set up this maximum threshold. As Iran is a rice-producing country, the aim of this work was to evaluate the contents of t-As and i-As in 15 samples of Iranian white, nonorganic, and aromatic rice collected from the most important rice-producing regions of the country. The means of t-As and i-As were 120 and 82 μg/kg, respectively. The experimental i-As mean in Iranian rice was below the Chinese standard for the i-As in rice, 150 μg/kg, and the Food and Agriculture Organization of the United Nations (FAO) limit, 200 μg/kg. Therefore, Iranian rice seems to have reasonable low i-As content and it is safe to be marketed in any market, including China and the EU.

  19. Arsenic in rice: a cause for concern.

    PubMed

    Hojsak, Iva; Braegger, Christian; Bronsky, Jiri; Campoy, Cristina; Colomb, Virginie; Decsi, Tamas; Domellöf, Magnus; Fewtrell, Mary; Mis, Nataša Fidler; Mihatsch, Walter; Molgaard, Christian; van Goudoever, Johannes

    2015-01-01

    Inorganic arsenic intake is likely to affect long-term health. High concentrations are found in some rice-based foods and drinks widely used in infants and young children. In order to reduce exposure, we recommend avoidance of rice drinks for infants and young children. For all of the rice products, strict regulation should be enforced regarding arsenic content. Moreover, infants and young children should consume a balanced diet including a variety of grains as carbohydrate sources. Although rice protein-based infant formulas are an option for infants with cows' milk protein allergy, the inorganic arsenic content should be declared and the potential risks should be considered when using these products.

  20. Wheat products as acceptable substitutes for rice.

    PubMed

    Yu, B H; Kies, C

    1993-07-01

    The objective of the study was to compare the acceptability to semi-trained US American and Asian palatability panelist, of four wheat products processed to be possible replacers of rice in human diets. Products evaluated using rice as the control standard of excellence were steamed whole wheat, couscous (steamed, extracted wheat flour semolina), rosamarina (rice shaped, extracted wheat flour pasta), and bulgar (steamed, pre-cooked partly debranned, cracked wheat). Using a ten point hedonic rating scale, both groups of panelists gave rosamarina closely followed by couscous, most favorable ratings although these ratings were somewhat lower than that of the positive control, steamed polished rice. Bulgar wheat was given the lowest evaluation and was, in general, found to be an unacceptable replacement for rice by both American and Asian judges because of its dark, 'greasy' color and distinctive flavor. In their personal dietaries, judges included rice from 0.25 to 18 times per week with the Asian judges consuming rice significantly more times per week than did the American judges (10.8 +/- 4.71 vs 1.75 +/- 1.65, p < 0.01). However, rice consumption patterns, nationality, race, or sex of the judges was not demonstrated to affect scoring of the wheat products as rice replacers.

  1. Population history, phylogeography, and conservation genetics of the last Neotropical mega-herbivore, the lowland tapir (Tapirus terrestris)

    PubMed Central

    2010-01-01

    Background Understanding the forces that shaped Neotropical diversity is central issue to explain tropical biodiversity and inform conservation action; yet few studies have examined large, widespread species. Lowland tapir (Tapirus terrrestris, Perissodactyla, Tapiridae) is the largest Neotropical herbivore whose ancestors arrived in South America during the Great American Biotic Interchange. A Pleistocene diversification is inferred for the genus Tapirus from the fossil record, but only two species survived the Pleistocene megafauna extinction. Here, we investigate the history of lowland tapir as revealed by variation at the mitochondrial gene Cytochrome b, compare it to the fossil data, and explore mechanisms that could have shaped the observed structure of current populations. Results Separate methodological approaches found mutually exclusive divergence times for lowland tapir, either in the late or in the early Pleistocene, although a late Pleistocene divergence is more in tune with the fossil record. Bayesian analysis favored mountain tapir (T. pinchaque) paraphyly in relation to lowland tapir over reciprocal monophyly, corroborating the inferences from the fossil data these species are sister taxa. A coalescent-based analysis rejected a null hypothesis of allopatric divergence, suggesting a complex history. Based on the geographic distribution of haplotypes we propose (i) a central role for western Amazonia in tapir diversification, with a key role of the ecological gradient along the transition between Andean subcloud forests and Amazon lowland forest, and (ii) that the Amazon river acted as an barrier to gene flow. Finally, the branching patterns and estimates based on nucleotide diversity indicate a population expansion after the Last Glacial Maximum. Conclusions This study is the first examining lowland tapir phylogeography. Climatic events at the end of the Pleistocene, parapatric speciation, divergence along the Andean foothill, and role of the Amazon

  2. Seasonal and interannual variation of radiation and energy fluxes over a rain-fed cropland in the semi-arid area of Loess Plateau, northwestern China

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Yu, Ye; Chen, Jinbei; Zhang, Tangtang; Li, Zhenchao

    2016-07-01

    Understanding the land-atmosphere interactions over the semi-arid area of Loess Plateau is important due to its special climate and unique underlying surface. In this study, two years' micrometeorological and energy flux observations from the Pingliang Land Surface Process & Severe Weather Research Station, CAS were used to investigate the seasonal and interannual variations of radiation budget and energy fluxes over a rain-fed cropland in the semi-arid area of Loess Plateau, with an emphasis on the influence of rain, soil moisture and agricultural production activities (such as crop type and harvest time) on the energy partitioning as well as the surface energy balance. The results revealed large annual variations in the seasonal distribution of precipitation, which gave rise to significant seasonal and interannual variations in soil moisture. Soil moisture was the main factor affecting radiation budget and energy partitioning. There was a negatively linear relationship between the albedo and the soil moisture. The main consumer of available energy varied among months and years with an apparent water stress threshold value of ca. 0.12 m3 m- 3, and the evapotranspiration was suppressed especially during the growing season. On an annual scale, the largest consumer of midday net radiation was sensible heat flux in 2010-2011, while it was latent heat flux in 2011-2012, which accounted for about 35% and 40% of the net radiation, respectively. The agricultural activity altered the sensitivity and variability of albedo to soil moisture, as well as energy partitioning patterns. The surface energy budget closures during Dec. 2010-Nov. 2011 and Dec. 2011-Nov. 2012 were 77.6% and 73.3%, respectively, after considering the soil heat storage. The closure was comparable to other sites in ChinaFLUX (49% to 81% of 8 sites). The patterns of energy partitioning and the water stress threshold found in the semi-arid cropland could be used to evaluate and improve land surface models.

  3. Dynamics of CO2 fluxes and environmental responses in the rain-fed winter wheat ecosystem of the Loess Plateau, China.

    PubMed

    Wang, Wen; Liao, Yuncheng; Wen, Xiaoxia; Guo, Qiang

    2013-09-01

    Chinese Loess Plateau plays an important role in carbon balance of terrestrial ecosystems. Continuous measurement of CO2 fluxes in cropland ecosystem is of great significance to accurately evaluate the carbon sequestration potential and to better explain the carbon cycle process in this region. By using the eddy covariance system we conducted a long-term (from Sep 2009 to Jun 2010) CO2 fluxes measurement in the rain-fed winter wheat field of the Chinese Loess Plateau and elaborated the responses of CO2 fluxes to environmental factors. The results show that the winter wheat ecosystem has distinct seasonal dynamics of CO2 fluxes. The total net ecosystem CO2 exchange (NEE) of -218.9±11.5 gC m(-2) in the growing season, however, after considering the harvested grain, the agro-ecosystem turned into a weak carbon sink (-36.2 gC m(-2)). On the other hand, the responses of CO2 fluxes to environmental factors depended on different growth stages of winter wheat and different ranges of environmental variables, suggesting that the variations in CO2 exchange were sensitive to the changes in controlling factors. Particularly, we found the pulse response of ecosystem respiration (Reco) to a large rainfall event, and the strong fluctuations of CO2 fluxes usually appeared after effective rainfall events (daily precipitation > 5 mm) during middle growing season. Such phenomenon also occurred in the case of the drastic changes in air temperature and within 5 days after field management (e.g. tillage and plough).

  4. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach.

    PubMed

    Zhang, Kefeng; Bosch-Serra, Angela D; Boixadera, Jaume; Thompson, Andrew J

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm(3) cm(-3) and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha(-l) for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was

  5. The influence of N-fertilization regimes on N2O emissions and denitrification in rain-fed cropland during the rainy season.

    PubMed

    Dong, Zhixin; Zhu, Bo; Zeng, Zebin

    2014-11-01

    The effects of nitrogen fertilization regimes on N2O emissions and denitrification rates were evaluated by in situ field incubation experiments with intact soil cores and the acetylene block technique. Intact soil cores were collected from long-term field experiments involving several N fertilization regimes, including single synthetic N fertilizer (N), organic manure (OM), synthetic N, P, K fertilizer (NPK), organic manure with synthetic fertilizer (OMNPK), crop straw residue with synthetic fertilizer (SRNPK) and no nitrogen fertilizer (NF). N2O was sampled from the head space of the cylinders to determine the daily N2O emission and denitrification rate. The results showed that the N2O emissions were greatly influenced by the specific fertilization regime even when the same nitrogen rate was applied. The mean N2O emissions and denitrification rates from the N, OM, NPK, OMNPK and SRNPK treatment were 2.22, 2.66, 1.94, 2.53, 1.67 and 4.63, 5.96, 4.15, 5.41, 3.65 mg per m(2) per day, respectively. The application of OM significantly increased the N2O emission and denitrification compared to the application of NPK because of the high soil organic carbon (SOC) content of OM. However, SRNPK increased the SOC content and decreased the N2O emissions significantly compared to the OM and OMNPK treatments because the addition of crop straw with a high C/N ratio to soil with a low inorganic N content induced N immobilization. The contents of soil nitrate and ammonium were the main limiting factors for N2O emissions in a positive regression as follows: Ln (N2O) = 2.511 + 1.258 × Ln ([NH4(+)] + [NO3(-)]). Crop straw residue combined with synthetic fertilizer is recommended as an optimal strategy for mitigating N2O emissions and denitrification-induced N loss in rain-fed croplands.

  6. Characterization of water and energy exchanges for rainfed olive orchards in a semi-arid land : modeling and integration of remote sensing data

    NASA Astrophysics Data System (ADS)

    Chebbi, Wafa; Le Dantec, Valérie; Boulet, Gilles; Lili Chabaane, Zohra; Fanise, Pascal; Mougenot, Bernard; Ayari, Hassan; Cheheb, Hechmi; Rivalland, Vincent; Zribi, Mehrez

    2016-04-01

    Evapotranspiration is one of the most important fluxes of the water balance in semi-arid areas. The components of evapotranspiration are soil evaporation (E) and transpiration (T) through the stomata of the plants. The estimation of crop actual transpiration is a major issue in central and south Tunisia because it affects irrigation scheduling, crop growth and yield. Olive is well adapted to the soil and climate conditions of Tunisia and covers an entire agricultural land of 1.7 million hectares representing nearly 79% of the total tree area. The southern part of the Mediterranean basin faces climate change and could affect olive tree production in rainfed conditions. The hydrological functioning of sparse olive trees is difficult to characterize because of its low LAI. For a good comprehension of the functionning of the water and energy transfers throuigh the Soil-Plant-Atmosphere continuum, we combine the eddy covariance method, soil water content measurements and sap flow method. The main objectives of this study are 1) to characterize the eco-hydrological processes of sparse olive trees from a dedicated experimental protocol and a SVAT model adapted to the sparse characteristic of such crop 2) to analyze the vulnerability of the system to climate change. First, we identify the factors of changes of transpiration at different time steps and characterized the different water stress levels by the combined use of different types of ecophysiological (sap flow) and spectral (photochemical reflectance index) measurements. Then, we estimate the percentage of evaporation, transpiration and the total evapotranspiration (ET). We compared scaled evapotranspiration values (the fraction of cover fraction contributing to the footprint of total ET fluxes) with scaled sap flow values. The sum of soil evaporation and transpiration matches well the total ET. A SVAT model is currently be applied and expanded to represent the impact of canopy structure on radiative and turbulent

  7. Seasonal and interannual variation of energy balance and partition over a rain-fed cropland in the semi-arid area of Loess Plateau, northwestern China

    NASA Astrophysics Data System (ADS)

    Chen, X.; Yu, Y.

    2014-12-01

    In this study, two years' micrometeorological and energy flux observations from the Pingliang Station of Lightning and Hail Storm Research, CAS were used to investigate the seasonal and interannual variations of radiation, albedo and energy fluxes over a rain-fed cropland in the semi-arid area of Loess Plateau, with an emphasis on the influence of rain, soil moisture and agricultural production activities on the energy partitioning as well as the surface energy balance. The results revealed large annual variations in the seasonal distribution of precipitation, which along with soil freezing and thawing gave rise to significant variations in soil moisture. Radiation components had general seasonal cycles with less annual variability. Shortwave radiation fluctuated obviously with weather conditions, while longwave radiation was less affected. Surface albedo had significant seasonal and interannual variations: the maximum midday mean value (0.83) occurred after snow, then it dropped to less than 0.2 during crop growing season, after crop harvest, it fluctuated with precipitation. There was a negatively linear relationship between the albedo and the soil moisture. Large interannual differences in seasonal variations of sensible and latent heat fluxes were observed due to the interannual variations in precipitation and agricultural activities. The main consumer of available energy varied among months and years, with the monthly mean diurnal cycle of latent (sensible) heat flux peaking in summer (spring) at 251.9 (192.5) W m-2. On an annual scale, the largest consumer of midday net radiation was sensible (latent) heat flux in 2010-2011 (2011-2012), which accounted for about 35% (40%) of the net radiation. The annual surface energy budget closures were 77.6% and 73.3%, respectively. The closure was the lowest in winter and the highest in spring, which was affected by atmospheric stability and the heat storage by vegetation canopy and near surface air layer.

  8. Investigating the water balance of on-farm techniques for improved crop productivity in rainfed systems: A case study of Makanya catchment, Tanzania

    NASA Astrophysics Data System (ADS)

    Makurira, H.; Savenije, H. H. G.; Uhlenbrook, S.; Rockström, J.; Senzanje, A.

    Water scarcity is a perennial problem in sub-Saharan agricultural systems where extreme rainfall events dominate agricultural seasons. Dry spell occurrences between and during seasons negatively impact on crop yields especially if such dry spells exceed 14 days. The impact of dry spells is felt more at smallholder farming scales where subsistence farming is the only source of livelihood for many households. This paper presents results from on-going research to improve rainfed water productivity in arid and semi-arid regions. The study site is the Makanya catchment in northern Tanzania where rainfall rarely exceeds 400 mm/season. Rainwater alone is not sufficient to support maize which is the preferred crop. The research introduced new soil and water conservation measures to promote water availability into the root zone. The introduced techniques include deep tillage, runoff diversion, fanya juus (infiltration trenches with bunds) and infiltration pits. The research aims at understanding the effectiveness of these interventions in increasing moisture availability within the root zone. Time domain reflectometry (TDR) was used to measure soil moisture twice weekly at 10 cm depth intervals up to depths of 2 m. Soil moisture fluctuated in the range 5-25% of volume with the beginning of the season recording the driest moisture levels and periods after good rainfall/runoff events recording the highest moisture levels. From the field observations made, a spreadsheet model was developed to simulate soil moisture variations during different maize growth stages. The results obtained show that the zones of greatest soil moisture concentrations are those around the trenches and bunds. Soil moisture is least at the centre of the plots. The study confirms the effectiveness of the introduced techniques to help concentrate the little available rainfall into green water flow paths. Indirect benefits from these improved techniques are the creation of fertile and moist zones around

  9. Spatial Analysis of Weather-induced Annual and Decadal Average Yield Variability as Modeled by EPIC for Rain-fed Wheat in Europe

    NASA Astrophysics Data System (ADS)

    Khabarov, Nikolay; Balkovic, Juraj; Schmid, Erwin; Schwartz, Alexander; Obersteiner, Michael; Azevedo, Ligia B.

    2016-04-01

    In our analysis we evaluate the accuracy of near-term (decadal) average crop yield assessments as supported by the biophysical crop growth model EPIC. A spatial assessment of averages and variability has clear practical implications for agricultural producers and investors concerned with an estimation of the basic stochastic characteristics of a crop yield distribution. As a reliable weather projection for a time period of several years will apparently remain a challenge in the near future, we have employed the existing gridded datasets on historical weather as a best proxy for the current climate. Based on different weather inputs to EPIC, we analyzed the model runs for the rain-fed wheat for 1968-2007 employing AgGRID/GGCMI simulations using harmonized inputs and assumptions (weather datasets: GRASP and Princeton). We have explored the variability of historical ten-year yield averages in the past forty years as modeled by the EPIC model, and found that generally the ten-year average yield variability is less than 20% ((max-min)/average), whereas there are mid/low yielding areas with a higher ten-years average variability of 20-50%. The location of these spots of high variability differs between distinctive model-weather setups. Assuming that historical weather can be used as a proxy of the weather in the next ten years, a best possible EPIC-based assessment of a ten-year average yield is a range of 20% width ((max-min)/average). For some mid/low productive areas the range is up to 50% wide.

  10. Use of inverse modeling to evaluate CENTURY-predictions for soil carbon sequestration in US rain-fed corn production systems

    PubMed Central

    Ugarte, Carmen M.; Ogle, Stephen M.; Williams, Stephen A.; Wander, Michelle M.

    2017-01-01

    We evaluated the accuracy and precision of the CENTURY soil organic matter model for predicting soil organic carbon (SOC) sequestration under rainfed corn-based cropping systems in the US. This was achieved by inversely modeling long-term SOC data obtained from 10 experimental sites where corn, soybean, or wheat were grown with a range of tillage, fertilization, and organic matter additions. Inverse modeling was accomplished using a surrogate model for CENTURY’s SOC dynamics sub-model wherein mass balance and decomposition kinetics equations from CENTURY are coded and solved by using a nonlinear regression routine of a standard statistical software package. With this approach we generated statistics of CENTURY parameters that are associated with the effects of N fertilization and organic amendment on SOC decay, which are not as well quantified as those of tillage, and initial status of SOC. The results showed that the fit between simulated and observed SOC prior to inverse modeling (R2 = 0.41) can be improved to R2 = 0.84 mainly by increasing the rate of SOC decay up to 1.5 fold for the year in which N fertilizer application rates are over 200 kg N ha-1. We also observed positive relationships between C inputs and the rate of SOC decay, indicating that the structure of CENTURY, and therefore model accuracy, could be improved by representing SOC decay as Michaelis-Menten kinetics rather than first-order kinetics. Finally, calibration of initial status of SOC against observed levels allowed us to account for site history, confirming that values should be adjusted to account for soil condition during model initialization. Future research should apply this inverse modeling approach to explore how C input rates and N abundance interact to alter SOC decay rates using C inputs made in various forms over a wider range of rates. PMID:28234992

  11. Modeling rain-fed maize vulnerability to droughts using the standardized precipitation index from satellite estimated rainfall—Southern Malawi case study

    USGS Publications Warehouse

    Funk, Christopher C.; Verdin, James; Adams Chavula,; Gregory J. Husak,; Harikishan Jayanthi,; Tamuka Magadzire,

    2013-01-01

    During 1990s, disaster risk reduction emerged as a novel, proactive approach to managing risks from natural hazards. The World Bank, USAID, and other international donor agencies began making efforts to mainstream disaster risk reduction in countries whose population and economies were heavily dependent on rain-fed agriculture. This approach has more significance in light of the increasing climatic hazard patterns and the climate scenarios projected for different hazard prone countries in the world. The Famine Early Warning System Network (FEWS NET) has been monitoring the food security issues in the sub-Saharan Africa, Asia and in Haiti. FEWS NET monitors the rainfall and moisture availability conditions with the help of NOAA RFE2 data for deriving food security status in Africa. This paper highlights the efforts in using satellite estimated rainfall inputs to develop drought vulnerability models in the drought prone areas in Malawi. The satellite RFE2 based SPI corresponding to the critical tasseling and silking phases (in the months of January, February, and March) were statistically regressed with drought-induced yield losses at the district level. The analysis has shown that the drought conditions in February and early March lead to most damage to maize yields in this region. The district-wise vulnerabilities to drought were upscaled to obtain a regional maize vulnerability model for southern Malawi. The results would help in establishing an early monitoring mechanism for drought impact assessment, give the decision makers additional time to assess seasonal outcomes, and identify potential food-related hazards in Malawi.

  12. Paleozoological Data Suggest Euroamerican Settlement Did Not Displace Ursids and North American Elk from Lowlands to Highlands

    NASA Astrophysics Data System (ADS)

    Lee Lyman, R.

    2011-05-01

    The hypothesis that Euroamerican settlement displaced some populations of large mammal taxa from lowland plains habitats to previously unoccupied highland mountain habitats was commonly believed in the late nineteenth and early twentieth centuries. By the middle twentieth century biologists had come to favor the hypothesis that Euroamerican colonization resulted in the extirpation of populations of large mammal in lowland habitats and those taxa survived in pre-existing relict populations in the highlands. Why modern biologists changed their minds is unclear. There is no historical evidence that unequivocally favors one hypothesis over the other. The low-elevation Columbia Basin of eastern Washington state in the northwestern United States is surrounded by forested mountains. The majority of historical records (1850 AD or younger) of black bear ( Ursus americanus), brown bear ( Ursus arctos), and North American elk ( Cervus elaphus) occur in mountainous, coniferous forest habitats. Paleozoological records of these taxa ≤ 10,000 year old and >160 year old in both highland and lowland habitats suggest the displacement hypothesis does not apply to ursids and elk in this area. These taxa seem to have been more or less ubiquitous in the area prior to Euroamerican colonization (ca. 1850 AD), and were extirpated from lowland habitats after colonization. Recent colonization of lowland shrub-steppe habitats by elk in particular, although historically unprecedented, must be categorized as recolonization rather than an invasion. Whether a species is classified as indigenous or nonindigenous may influence management activities focused on that species. The paleozoological record indicates ursids and elk are indigenous to the highland forest habitats of eastern Washington.

  13. Higher thermal acclimation potential of respiration but not photosynthesis in two alpine Picea taxa in contrast to two lowland congeners.

    PubMed

    Zhang, Xiao Wei; Wang, Jing Ru; Ji, Ming Fei; Milne, Richard Ian; Wang, Ming Hao; Liu, Jian-Quan; Shi, Sheng; Yang, Shu-Li; Zhao, Chang-Ming

    2015-01-01

    The members of the genus Picea form a dominant component in many alpine and boreal forests which are the major sink for atmospheric CO2. However, little is known about the growth response and acclimation of CO2 exchange characteristics to high temperature stress in Picea taxa from different altitudes. Gas exchange parameters and growth characteristics were recorded from four year old seedlings of two alpine (Picea likiangensis vars. rubescens and linzhiensis) and two lowland (P. koraiensis and P. meyeri) taxa. Seedlings were grown at moderate (25°C/15°C) and high (35°C/25°C) day/night temperatures, for four months. The approximated biomass increment (ΔD2H) for all taxa decreased under high temperature stress, associated with decreased photosynthesis and increased respiration. However, the two alpine taxa exhibited lower photosynthetic acclimation and higher respiratory acclimation than either lowland taxon. Moreover, higher leaf dry mass per unit area (LMA) and leaf nitrogen content per unit area (Narea), and a smaller change in the nitrogen use efficiency of photosynthesis (PNUE) for lowland taxa indicated that these maintained higher homeostasis of photosynthesis than alpine taxa. The higher respiration rates produced more energy for repair and maintenance biomass, especially for higher photosynthetic activity for lowland taxa, which causes lower respiratory acclimation. Thus, the changes of ΔD2H for alpine spruces were larger than that for lowland spruces. These results indicate that long term heat stress negatively impact on the growth of Picea seedlings, and alpine taxa are more affected than low altitude ones by high temperature stress. Hence the altitude ranges of Picea taxa should be taken into account when predicting changes to carbon fluxes in warmer conditions.

  14. The role of oblique strike-slip faulting in the tectonics of the Puget Lowlands and throughout the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Keranen, K. M.

    2015-12-01

    Upper-plate seismicity in the Puget Lowland, away from and oblique to known fault structures, challenges our understanding of active tectonics and seismic hazards of the region. The challenge arises in part from the thick glacial sediments and extensive water bodies that obscure active faults. Multichannel seismic reflection data in waterways, combined with aeromagnetic and gravity data, can effectively map fault structures throughout the Puget Lowland. Seismic reflection data indicate a NE-SW zone of recent high-angle faulting and shallow sediment deformation crossing the Seattle Uplift and the Seattle Basin, distinct from previously interpreted E-W fault systems including the main Seattle Fault. These NE-SW faults correlate with a zone of active seismicity, cut or deform sediments at the seafloor, and trend across the central Puget Lowland at an oblique angle to major regional structures. Aeromagnetic data show that the trend continues southeastward across the Seattle Uplift and connects deformation of shallow sediment in the Puget Sound with deformation of shallow sediment in Hood Canal. Two additional zones of faulting have NW-SE trend and cut through the Seattle Basin and Kingston Arch. Though strike-slip motion is a new interpretation for deformation along the southern edge of the Seattle Basin, it is not anomalous in the Puget Lowland; it is observed to the north along the southern Whidbey Island Fault (Sherrod et al., 2008) and Darrington-Devils Mountain Fault (Personius et al., 2014) and to the south along the Mount St. Helens seismic zone. Strike-slip motion accompanying regional compression and thrust-faulting occurs elsewhere in the Pacific Northwest including in south-central Washington (Blakely et al., 2014). Oblique strike-slip faults may contribute more significantly to deformation and seismicity within the Puget Lowland than previously recognized. Future work will evaluate the impact of deformation along these structures in tectonic models and

  15. Changes in CH4 emission from rice fields from 1960 to 1990s: 1. Impacts of modern rice technology

    NASA Astrophysics Data System (ADS)

    Gon, Hugo Denier

    2000-03-01

    Four countries (Indonesia, Philippines, Thailand, and Nepal) were taken as an example to assess the impact of changes in rice cultivation on methane emissions from rice fields since the 1960s. The change of rice area by type of culture from 1960-1990s is estimated, and its relative contribution to national harvested rice area is calculated and multiplied with an emission factor, to derive the relative methane emission per unit rice land. Relative methane emission per ha rice land has increased since 1960 for all four countries, largely due to an increase in irrigated rice area and partly due to a decrease in upland rice area. Patterns of rice area changes and related emission changes differ considerably among countries. On the basis of the rice area increases between 1960 and the 1990s, significant increases in methane emissions from rice fields due to increases in total rice cultivated area are not to be expected in the future. The impact of modern rice variety adoption is assessed by relating methane emissions to rice production. The organic matter returned to the paddy soil is largely determined by rice biomass production which, given a certain yield, is different for traditional and modern rice varieties. By calculating total organic matter returned to rice paddy soils and assuming a constant fraction to be emitted as methane, rice production and methane emission can be related. The analysis indicates that (1) up to now, rice yield increases in countries with high modern rice variety adoption have not resulted in increased methane emissions per unit of harvested area and, (2) global annual emission from rice fields may be considerably lower than generally assumed. The introduction of modern rice varieties can be regarded as a historical methane emission mitigation strategy because higher rice yields resulted in lower or equal methane emissions.

  16. Changes in CH4 emission from rice fields from 1960 to 1990s. 1. Impacts of modern rice technology

    NASA Astrophysics Data System (ADS)

    van der Gon, Hugo Denier

    2000-03-01

    Four countries (Indonesia, Philippines, Thailand, and Nepal) were taken as an example to assess the impact of changes in rice cultivation on methane emissions from rice fields since the 1960s. The change of rice area by type of culture from 1960-1990s is estimated, and its relative contribution to national harvested rice area is calculated and multiplied with an emission factor, to derive the relative methane emission per unit rice land. Relative methane emission per ha rice land has increased since 1960 for all four countries, largely due to an increase in irrigated rice area and partly due to a decrease in upland rice area. Patterns of rice area changes and related emission changes differ considerably among countries. On the basis of the rice area increases between 1960 and the 1990s, significant increases in methane emissions from rice fields due to increases in total rice cultivated area are not to be expected in the future. The impact of modern rice variety adoption is assessed by relating methane emissions to rice production. The organic matter returned to the paddy soil is largely determined by rice biomass production which, given a certain yield, is different for traditional and modern rice varieties. By calculating total organic matter returned to rice paddy soils and assuming a constant fraction to be emitted as methane, rice production and methane emission can be related. The analysis indicates that (1) up to now, rice yield increases in countries with high modern rice variety adoption have not resulted in increased methane emissions per unit of harvested area and, (2) global annual emission from rice fields may be considerably lower than generally assumed. The introduction of modern rice varieties can be regarded as a historical methane emission mitigation strategy because higher rice yields resulted in lower or equal methane emissions.

  17. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest.

    PubMed

    Barron, Alexander R; Purves, Drew W; Hedin, Lars O

    2011-02-01

    Symbiotic dinitrogen (N(2)) fixation is often invoked to explain the N richness of tropical forests as ostensibly N(2)-fixing trees can be a major component of the community. Such arguments assume N(2) fixers are fixing N when present. However, in laboratory experiments, legumes consistently reduce N(2) fixation in response to increased soil N availability. These contrasting views of N(2) fixation as either obligate or facultative have drastically different implications for the N cycle of tropical forests. We tested these models by directly measuring N(2)-fixing root nodules and nitrogenase activity of individual canopy-dominant legume trees (Inga sp.) across several lowland forest types. Fixation was substantial in disturbed forests and some gaps but near zero in the high N soils of mature forest. Our findings suggest that canopy legumes closely regulate N(2) fixation, leading to large variations in N inputs across the landscape, and low symbiotic fixation in mature forests despite abundant legumes.

  18. Sexual behavior in female western lowland gorillas (Gorilla gorilla gorilla): evidence for sexual competition.

    PubMed

    Stoinski, Tara S; Perdue, Bonnie M; Legg, Angela M

    2009-07-01

    Previous research in gorillas suggests that females engage in post-conception mating as a form of sexual competition designed to improve their own reproductive success. This study focused on sexual behaviors in a newly formed group of western lowland gorillas (Gorilla gorilla gorilla) housed at Zoo Atlanta. All females engaged in mating outside their conceptive periods, although there was individual variation in the frequency of the behavior. An analysis of the presence/absence of sexual behavior found females, regardless of reproductive condition, were more likely to engage in sexual behavior on days when other females were sexually active. On these "co-occurrence" days, females were significantly more likely to solicit the silverback, but copulations did not differ from expectation. The results find further evidence for sexual competition among female gorillas and suggest that this may occur throughout their reproductive cycle rather than only during pregnancy.

  19. Magnetic study of alluvial Holocene paleosols in the Mayan Lowlands from Usumacinta River, México.

    NASA Astrophysics Data System (ADS)

    Solis-Castillo, Berenice; Vázquez-Castro, Gabriel; Barceinas, Hermenegildo; Solleiro, Elizabeth; Avto, Gogichaisvili

    2014-05-01

    Rock Magnetic techniques have been used to study paleosols in a Pleistocene-Holocene alluvial sequence at the Usumacinta River in the Mayan Lowlands. Concentration, grain size and mineralogy of magnetic components, mainly iron oxides in soil are used as an indicator for studying several factors involved in the soil formation processes. Magnetic susceptibility in low and high frequence (χlf, χhf), anhysteretic and isothermal remanent magnetization (ARM, IRM), hysteresis loops and Curie temperatures were measured in order to identify different stages of soil formation in the sequence and to correlate them with paleo-environmental conditions. This method allows to determine environmental changes and climatic variations as humid and warm periods during the studied interval. Also, paleosols bring us the possibility of analyze the cultural impact of human settlement along of Usumacinta River.

  20. Increasing neonicotinoid use and the declining butterfly fauna of lowland California

    USGS Publications Warehouse

    Forister, Matthew L.; Cousens, Bruce; Harrison, Joshua G.; Anderson, Kayce; Thorne, James H.; Waetjen, Dave; Nice, Chris C.; De Parsia, Matthew; Hladik, Michelle; Meese, Robert; van Vliet, Heidi; Shapiro, Arthur M.

    2