Science.gov

Sample records for rainforest tree species

  1. Complementary N Uptake Strategies between Tree Species in Tropical Rainforest.

    PubMed

    Roggy, J C; Schimann, H; Sabatier, D; Molino, J F; Freycon, V; Domenach, Anne-Marie

    2014-01-01

    Within tree communities, the differential use of soil N mineral resources, a key factor in ecosystem functioning, may reflect functional complementarity, a major mechanism that could explain species coexistence in tropical rainforests. Eperua falcata and Dicorynia guianensis, two abundant species cooccurring in rainforests of French Guiana, were chosen as representative of two functional groups with complementary N uptake strategies (contrasting leaf δ (15)N signatures related to the δ (15)N of their soil N source, NO3 (-) or NH4 (+)). The objectives were to investigate if these strategies occurred under contrasted soil N resources in sites with distinct geological substrates representative of the coastal rainforests. Results showed that species displayed contrasting leaf δ (15)N signatures on both substrates, confirming their complementary N uptake strategy. Consequently, their leaf (15)N can be used to trace the presence of inorganic N-forms in soils (NH4 (+) and NO3 (-)) and thus to indicate the capacity of soils to provide each of these two N sources to the plant community.

  2. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Ci, Xiuqin; Song, Caiyun; He, Tianhua; Zhang, Wenfu; Li, Qiaoming; Li, Jie

    2016-12-01

    The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m(2) (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.

  3. Leaf and whole-tree water use relations of Australian rainforest species

    NASA Astrophysics Data System (ADS)

    Ishida, Yoko; Laurance, Susan; Liddell, Michael; Lloyd, Jonathan

    2015-04-01

    Climate change induces drought events and may therefore cause significant impact on tropical rainforests, where most plants are reliant on high water availability - potentially affecting the distribution, composition and abundance of plant species. Using an experimental approach, we are studying the effects of a simulated drought on lowland rainforest plants at the Daintree Rainforest Observatory (DRO), in tropical northern Australia. Before to build up the rainout infrastructure, we installed sap flow meters (HRM) on 62 rainforest trees. Eight tree species were selected with diverse ecological strategies including wood density values ranging from 0.34 to 0.88 g/cm3 and could be replicated within a 1ha plot: Alstonia scholaris (Apocynaceae), Argyrondendron peralatum (Malvaceae), Elaeocarpus angustifolius (Elaeocarpaceae), Endiandra microneura (Lauraceae), Myristica globosa (Myristicaceae), Syzygium graveolens (Myrtaceae), Normanbya normanbyi (Arecaceae), and Castanospermum australe (Fabaceae). Our preliminary results from sap flow data obtained from October 2013 to December of 2014 showed differences in the amount of water used by our trees varied in response to species, size and climate. For example Syzygium graveolens has used a maximum of 60 litres/day while Argyrondendrum peralatum used 13 litres/day. Other potential causes for differential water-use between species and the implications of our research will be discussed. We will continue to monitor sap flow during the rainfall exclusion (2014 to 2016) to determine the effects of plant physiological traits on water use strategies.

  4. The contribution of seed dispersers to tree species diversity in tropical rainforests

    PubMed Central

    Kakishima, Satoshi; Morita, Satoru; Yoshida, Katsuhiko; Ishida, Atsushi; Hayashi, Saki; Asami, Takahiro; Ito, Hiromu; Miller, Donald G.; Uehara, Takashi; Mori, Shigeta; Hasegawa, Eisuke; Matsuura, Kenji; Kasuya, Eiiti; Yoshimura, Jin

    2015-01-01

    Tropical rainforests are known for their extreme biodiversity, posing a challenging problem in tropical ecology. Many hypotheses have been proposed to explain the diversity of tree species, yet our understanding of this phenomenon remains incomplete. Here, we consider the contribution of animal seed dispersers to the species diversity of trees. We built a multi-layer lattice model of trees whose animal seed dispersers are allowed to move only in restricted areas to disperse the tree seeds. We incorporated the effects of seed dispersers in the traditional theory of allopatric speciation on a geological time scale. We modified the lattice model to explicitly examine the coexistence of new tree species and the resulting high biodiversity. The results indicate that both the coexistence and diversified evolution of tree species can be explained by the introduction of animal seed dispersers. PMID:26587246

  5. Regression models for estimating leaf area of seedlings and adult individuals of Neotropical rainforest tree species.

    PubMed

    Brito-Rocha, E; Schilling, A C; Dos Anjos, L; Piotto, D; Dalmolin, A C; Mielke, M S

    2016-01-01

    Individual leaf area (LA) is a key variable in studies of tree ecophysiology because it directly influences light interception, photosynthesis and evapotranspiration of adult trees and seedlings. We analyzed the leaf dimensions (length - L and width - W) of seedlings and adults of seven Neotropical rainforest tree species (Brosimum rubescens, Manilkara maxima, Pouteria caimito, Pouteria torta, Psidium cattleyanum, Symphonia globulifera and Tabebuia stenocalyx) with the objective to test the feasibility of single regression models to estimate LA of both adults and seedlings. In southern Bahia, Brazil, a first set of data was collected between March and October 2012. From the seven species analyzed, only two (P. cattleyanum and T. stenocalyx) had very similar relationships between LW and LA in both ontogenetic stages. For these two species, a second set of data was collected in August 2014, in order to validate the single models encompassing adult and seedlings. Our results show the possibility of development of models for predicting individual leaf area encompassing different ontogenetic stages for tropical tree species. The development of these models was more dependent on the species than the differences in leaf size between seedlings and adults.

  6. Interactions between terrestrial mammals and the fruits of two neotropical rainforest tree species

    NASA Astrophysics Data System (ADS)

    Camargo-Sanabria, Angela A.; Mendoza, Eduardo

    2016-05-01

    Mammalian frugivory is a distinctive biotic interaction of tropical forests; however, most efforts in the Neotropics have focused on cases of animals foraging in the forest canopy, in particular primates and bats. In contrast much less is known about this interaction when it involves fruits deposited on the forest floor and terrestrial mammals. We conducted a camera-trapping survey to analyze the characteristics of the mammalian ensembles visiting fruits of Licania platypus and Pouteria sapota deposited on the forest floor in a well preserved tropical rainforest of Mexico. Both tree species produce large fruits but contrast in their population densities and fruit chemical composition. In particular, we expected that more species of terrestrial mammals would consume P. sapota fruits due to its higher pulp:seed ratio, lower availability and greater carbohydrate content. We monitored fruits at the base of 13 trees (P. sapota, n = 4 and L. platypus, n = 9) using camera-traps. We recorded 13 mammal species from which we had evidence of 8 consuming or removing fruits. These eight species accounted for 70% of the species of mammalian frugivores active in the forest floor of our study area. The ensemble of frugivores associated with L. platypus (6 spp.) was a subset of that associated with P. sapota (8 spp). Large body-sized species such as Tapirus bairdii, Pecari tajacu and Cuniculus paca were the mammals more frequently interacting with fruits of the focal species. Our results further our understanding of the characteristics of the interaction between terrestrial mammalian frugivores and large-sized fruits, helping to gain a more balanced view of its importance across different tropical forests and providing a baseline to compare against defaunated forests.

  7. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species

    NASA Astrophysics Data System (ADS)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M.; Dusenge, Mirindi Eric; Medlyn, Belinda E.; Hasper, Thomas B.; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species to exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to CO2 at different temperatures (20 - 40 C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. (Reference: New Phytologist, in press)

  8. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species.

    PubMed

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M; Dusenge, Mirindi Eric; Medlyn, Belinda E; Hasper, Thomas B; Nsabimana, Donat; Uddling, Johan

    2015-05-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species with those of exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to carbon dioxide (CO2 ) at different temperatures (20-40°C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming.

  9. Variation in leaf litter production and resorption of nutrients in abundant tree species in Nyungwe tropical montane rainforest in Rwanda

    NASA Astrophysics Data System (ADS)

    Nyirambangutse, Brigitte; Mirindi Dusenge, Eric; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran

    2014-05-01

    African tropical rainforests play many roles from local to global scale as providers of resources and ecosystem services. Although covering 30% of the global rainforest, only few studies aiming to better understand the storage and fluxes of carbon and nutrients in these forests have been conducted. To answer questions related to these issues, we have established 15 permanent 0.5 ha plots where we compare carbon and nutrient fluxes of primary and secondary forest tree communities in a tropical montane forest in central Africa. The studies are conducted in Nyungwe montane tropical rain forest gazetted as a National Park to protect its extensive floral and faunal diversity covering an area of 970 km2. Nyungwe is located in Southwest Rwanda (2o17'-2o50'S, 29o07'-29o26A'E). The forest is ranging between 1600-2950 m.a.s.l. and is one of the most biologically important rainforest in Albertine Rift region in terms of Biodiversity. Nyungwe consists of a mixture of primary and secondary forest communities supporting a richness of plant and animal life. More than 260 species of trees and shrubs have been found in Nyungwe, including species endemic to the Albertine Rift. The forest has a climate with a mean annual temperature of 15.5oC and annual rainfall of ca 1850 mm yr-1, with July and August being the only months when rainfall drops. A part of this study is focusing on the dynamics of nutrients through leaf turnover. This turnover of leaves is regulated to maximize the carbon gain through canopy photosynthesis and resource-use efficiency of the plant. It is known that about half of leaf nitrogen is invested in photosynthetic apparatus and that there normally is a strong correlation between the photosynthetic capacity and leaf nitrogen per unit area. Hence leaf nitrogen is an important factor for canopy photosynthesis. However, leaves are produced, senesce and fall. Some nitrogen in the leaf is lost when leaves senesce but other is resorbed. The resorption of nitrogen

  10. Respiration characteristics in temperate rainforest tree species differ along a long-term soil-development chronosequence.

    PubMed

    Turnbull, Matthew H; Tissue, David T; Griffin, Kevin L; Richardson, Sarah J; Peltzer, Duane A; Whitehead, David

    2005-03-01

    We measured the response of dark respiration (R(d)) to temperature and foliage characteristics in the upper canopies of tree species in temperate rainforest communities in New Zealand along a soil chronosequence (six sites from 6 years to 120,000 years). The chronosequence provided a vegetation gradient characterised by significant changes in soil nutrition. This enabled us to examine the extent to which changes in dark respiration can be applied across forest biomes and the utility of scaling rules in whole-canopy carbon modelling. The response of respiration to temperature in the dominant tree species differed significantly between sites along the sequence. This involved changes in both R(d) at a reference temperature (R(10)) and the extent to which R(d) increased with temperature (described by E(o), a parameter related to the energy of activation, or the change in R(d) over a 10 degrees C range, Q(10)). Site averaged E(o) ranged from 44.4 kJ mol(-1) K(-1) at the 60-year-old site to 26.0 kJ mol(-1) K(-1) at the oldest, most nutrient poor, site. Relationships between respiratory and foliage characteristics indicated that both the temperature response of respiration (E(o) or Q(10)) and the instantaneous rate of respiration increased with both foliar nitrogen and phosphorus content. The ratio of photosynthetic capacity (Whitehead et al. in Oecologia 2005) to respiration (A(max)/R(d)) attained values in excess of 15 for species in the 6- to 120-year-old sites, but thereafter decreased significantly to around five at the 120,000-year-old site. This indicates that shoot carbon acquisition is regulated by nutrient limitations in the retrogressing ecosystems on the oldest sites. Our findings indicate that respiration and its temperature response will vary according to soil age and, therefore, to soil nutrient availability and the stage of forest development. Thus, variability in respiratory characteristics for canopies should be considered when using models to integrate

  11. Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm

    NASA Astrophysics Data System (ADS)

    Ghulam, Abduwasit; Porton, Ingrid; Freeman, Karen

    2014-02-01

    In this paper, we propose a decision tree algorithm to characterize spatial extent and spectral features of invasive plant species (i.e., guava, Madagascar cardamom, and Molucca raspberry) in tropical rainforests by integrating datasets from passive and active remote sensing sensors. The decision tree algorithm is based on a number of input variables including matching score and infeasibility images from Mixture Tuned Matched Filtering (MTMF), land-cover maps, tree height information derived from high resolution stereo imagery, polarimetric feature images, Radar Forest Degradation Index (RFDI), polarimetric and InSAR coherence and phase difference images. Spatial distributions of the study organisms are mapped using pixel-based Winner-Takes-All (WTA) algorithm, object oriented feature extraction, spectral unmixing, and compared with the newly developed decision tree approach. Our results show that the InSAR phase difference and PolInSAR HH-VV coherence images of L-band PALSAR data are the most important variables following the MTMF outputs in mapping subcanopy invasive plant species in tropical rainforest. We also show that the three types of invasive plants alone occupy about 17.6% of the Betampona Nature Reserve (BNR) while mixed forest, shrubland and grassland areas are summed to 11.9% of the reserve. This work presents the first systematic attempt to evaluate forest degradation, habitat quality and invasive plant statistics in the BNR, and provides significant insights as to management strategies for the control of invasive plants and conversation in the reserve.

  12. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits

    PubMed Central

    Lusk, Christopher H.; Kelly, Jeff W. G.; Gleason, Sean M.

    2013-01-01

    Background and Aims A trade-off between shade tolerance and growth in high light is thought to underlie the temporal dynamics of humid forests. On the other hand, it has been suggested that tree species sorting on temperature gradients involves a trade-off between growth rate and cold resistance. Little is known about how these two major trade-offs interact. Methods Seedlings of Australian tropical and cool-temperate rainforest trees were grown in glasshouse environments to compare growth versus shade-tolerance trade-offs in these two assemblages. Biomass distribution, photosynthetic capacity and vessel diameters were measured in order to examine the functional correlates of species differences in light requirements and growth rate. Species light requirements were assessed by field estimation of the light compensation point for stem growth. Results Light-demanding and shade-tolerant tropical species differed markedly in relative growth rates (RGR), but this trend was less evident among temperate species. This pattern was paralleled by biomass distribution data: specific leaf area (SLA) and leaf area ratio (LAR) of tropical species were significantly positively correlated with compensation points, but not those of cool-temperate species. The relatively slow growth and small SLA and LAR of Tasmanian light-demanders were associated with narrow vessels and low potential sapwood conductivity. Conclusions The conservative xylem traits, small LAR and modest RGR of Tasmanian light-demanders are consistent with selection for resistance to freeze–thaw embolism, at the expense of growth rate. Whereas competition for light favours rapid growth in light-demanding trees native to environments with warm, frost-free growing seasons, frost resistance may be an equally important determinant of the fitness of light-demanders in cool-temperate rainforest, as seedlings establishing in large openings are exposed to sub-zero temperatures that can occur throughout most of the year. PMID

  13. Pioneer and late stage tropical rainforest tree species (French Guiana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential.

    PubMed

    Huc, R; Ferhi, A; Guehl, J M

    1994-09-01

    Leaf gas exchange rates, predawn Ψwp and daily minimum Ψwm leaf water potentials were measured during a wet-to-dry season transition in pioneer (Jacaranda copaia, Goupia glabra andCarapa guianensis) and late stage rainforest tree species (Dicorynia guianensis andEperua falcata) growing in common conditions in artificial stands in French Guiana. Carbon isotope discrimination (Δ) was assessed by measuring the stable carbon isotope composition of the cellulose fraction of wood cores. The Δ values were 2.7‰ higher in the pioneer species than in the late stage species. The calculated time integratedC i values derived from the Δ values averaged 281 μmol mol(-1) in the pioneers and 240 μmol mol(-1) in the late stage species. The corresponding time-integrated values of intrinsinc water-use efficiency [ratio CO2 assimilation rate (A)/leaf conductance (g)] ranged from 37 to 47 mmol mol(-1) in the pioneers and the values were 64 and 74 mmol mol(-1) for the two late stage species. The high Δ values were associated-at least inJ. copaia-with high maximumg values and with high plant intrinsinc specific hydraulic conductance [C≔g/(Ψwm-Ψwp], which could reflect a high competitive ability for water and nutrient uptake in the absence of soil drought in the pioneers. A further clear discriminating trait of the pioneer species was the very sensitive stomatal response to drought in the soil, which might be associated with a high vulnerability to cavitation in these species. From a methodological point of view, the results show the relevance of Δ for distinguishing ecophysiological functional types among rainforest trees.

  14. Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients.

    PubMed

    Fortunel, Claire; Ruelle, Julien; Beauchêne, Jacques; Fine, Paul V A; Baraloto, Christopher

    2014-04-01

    Wood specific gravity (WSG) is a strong predictor of tree performance across environmental gradients. Yet it remains unclear how anatomical elements linked to different wood functions contribute to variation in WSG in branches and roots across tropical forests. We examined WSG and wood anatomy in white sand, clay terra firme and seasonally flooded forests in French Guiana, spanning broad environmental gradients found throughout Amazonia. We measured 15 traits relating to branches and small woody roots in 113 species representing the 15 most abundant species in each habitat and representative species from seven monophyletic lineages occurring in all habitats. Fiber traits appear to be major determinants of WSG, independent of vessel traits, in branches and roots. Fiber traits and branch and root WSG increased from seasonally flooded species to clay terra firme species and lastly to white sand species. Branch and root wood traits were strongly phylogenetically constrained. Lineages differed in wood design, but exhibited similar variation in wood structure across habitats. We conclude that tropical trees can invest differently in support and transport to respond to environmental conditions. Wind disturbance and drought stress represent significant filters driving tree distribution of Amazonian forests; hence we suggest that biophysical explanations should receive more attention.

  15. Pit Membrane Porosity and Water Stress-Induced Cavitation in Four Co-Existing Dry Rainforest Tree Species

    PubMed Central

    Choat, Brendan; Ball, Marilyn; Luly, Jon; Holtum, Joseph

    2003-01-01

    Aspects of xylem anatomy and vulnerability to water stress-induced embolism were examined in stems of two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret., growing in a seasonally dry rainforest. The deciduous species were more vulnerable to water stress-induced xylem embolism. B. australis and C. gillivraei reached a 50% loss of hydraulic conductivity at −3.17 MPa and −1.44 MPa, respectively; a 50% loss of hydraulic conductivity occurred at −5.56 MPa in A. excelsa and −5.12 MPa in A. bidwillii. To determine whether pit membrane porosity was responsible for greater vulnerability to embolism (air seeding hypothesis), pit membrane structure was examined. Expected pore sizes were calculated from vulnerability curves; however, the predicted inter-specific variation in pore sizes was not detected using scanning electron microscopy (pores were not visible to a resolution of 20 nm). Suspensions of colloidal gold particles were then perfused through branch sections. These experiments indicated that pit membrane pores were between 5 and 20 nm in diameter in all four species. The results may be explained by three possibilities: (a) the pores of the expected size range were not present, (b) larger pores, within the size range to cause air seeding, were present but were rare enough to avoid detection, or (c) pore sizes in the expected range only develop while the membrane is under mechanical stress (during air seeding) due to stretching/flexing. PMID:12529513

  16. Stomatal and non-stomatal limitations to photosynthesis in four tree species in a temperate rainforest dominated by Dacrydium cupressinum in New Zealand.

    PubMed

    Tissue, David T; Griffin, Kevin L; Turnbull, Matthew H; Whitehead, David

    2005-04-01

    We assessed the relative limitations to photosynthesis imposed by stomatal and non-stomatal processes in Dacrydium cupressinum Lamb. (Podocarpaceae), which is the dominant species in a native, mixed conifer-broad-leaved rainforest in New Zealand. For comparison, we included three co-occurring broad-leaved tree species (Meterosideros umbellata Cav. (Myrtaceae), Weinmannia racemosa L.f. (Cunoniaceae) and Quintinia acutifolia Kirk (Escalloniaceae)) that differ in phylogeny and in leaf morphology from D. cupressinum. We found that low foliage phosphorus content on an area basis (P(a)) limited light-saturated photosynthesis on an area basis (A(sat)) in Q. acutifolia. Depth in the canopy did not generally affect A(sat) or the relative limitations to A(sat) because of stomatal and non-stomatal constraints, despite reductions in the ratio of foliage mass to area, foliar nitrogen on an area basis (N(a)) and P(a) with depth in the canopy. In the canopy-dominant conifer D. cupressinum, A(sat) was low, consistent with low values of the maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation (V(cmax)). In comparison, the A(sat) response of the three broad-leaved tree species was quite variable. Although A(sat) was high in the canopy-dominant M. umbellata, it was low in the sub-canopy trees W. racemosa and Q. acutifolia. Relative stomatal limitation to photosynthesis was more pronounced in W. racemosa (40%) than in the other three species (28-33%). Despite differences in degree, non-stomatal limitation to A(sat) predominated in all tree species.

  17. Large tree species richness is associated with topography, forest structure and spectral heterogeneity in a neotropical rainforest

    NASA Astrophysics Data System (ADS)

    Fricker, G. A.; Wolf, J. A.; Gillespie, T.; Meyer, V.; Hubbell, S. P.; Santo, F. E.; Saatchi, S. S.

    2013-12-01

    Large tropical canopy trees contain the majority of forest biomass in addition to being the primary producers in the forest ecosystem in terms of both food and structural habitat. The spatial distributions of large tropical trees are non-randomly distributed across environmental gradients in light, water and nutrients. These environmental gradients are a result of the biophysical processes related to topography and three-dimensional forest structure. In this study we examine large (>10 cm) diameter tree species richness across Barro Colorado Nature Monument in a tropical moist forest in Panama using active and passive remote sensing. Airborne light detection and ranging and high-resolution satellite imagery were used to quantify spectral heterogeneity, sub-canopy topography and vertical canopy structure across existing vegetation plots to model the extent to which remote sensing variables can be used to explain variation in large tree species richness. Plant species richness data was calculated from the stem mapped 50-ha forest dynamics plot on Barro Colorado Island in addition to 8 large tree plots across the Barro Colorado Nature Monument at 1.0 ha and 0.25 ha spatial scales. We investigated four statistical models to predict large tree species richness including spectral, topographic, vertical canopy structure and a combined ';global' model which includes all remote sensing derived variables. The models demonstrate that remote sensing derived variables can capture a significant fraction (R2= 0.54 and 0.36) of observed variation in tree species richness across the 1.0 and 0.25 ha spatial scales respectively. A selection of remote sensing derived predictor variables. A) World View-2 satellite imagery in RGB/true color. B) False color image of the principal component analysis. C) Normalized Difference Vegetation Index (NDVI). D) Simple Ratio Index. E) Quickbird satellite imagery in RGB/true color. F) False color image of the principal component analysis. G) NDVI. H

  18. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    NASA Astrophysics Data System (ADS)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; van Straaten, O.; Barus, H.

    2011-08-01

    A large-scale replicated throughfall exclusion experiment was conducted in a pre-montane perhumid rainforest in Sulawesi (Indonesia) exposing the trees for two years to pronounced soil desiccation. The lack of regularly occurring dry periods and shallow rooting patterns distinguish this experiment from similar experiments conducted in the Amazonian rainforest. We tested the hypotheses that a tree's sun canopy is more affected by soil drought than its shade crown, making tall trees particularly vulnerable even under a perhumid climate, and that extended drought periods stimulate an acclimation in the hydraulic system of the sun canopy. In the abundant and tall tree species Castanopsis acuminatissima (Fagaceae), we compared 31 morphological, anatomical, hydraulic and chemical variables of leaves, branches and the stem together with stem diameter growth between drought and control plots. There was no evidence of canopy dieback. However, the drought treatment led to a 30 % reduction in sapwood-specific hydraulic conductivity of sun canopy branches, possibly caused by the formation of smaller vessels and/or vessel filling by tyloses. Drought caused an increase in leaf size, but a decrease in leaf number, and a reduction in foliar calcium content. The δ13C and δ18O signatures of sun canopy leaves gave no indication of a permanent down-regulation of stomatal conductance during the drought, indicating that pre-senescent leaf shedding may have improved the water status of the remaining leaves. Annual stem diameter growth decreased during the drought, while the density of wood in the recently produced xylem increased in both the stem and sun canopy branches (marginally significant). The sun canopy showed a more pronounced drought response than the shade crown indicating that tall trees with a large sun canopy are more vulnerable to drought stress. We conclude that the extended drought prompted a number of medium- to long-term responses in the leaves, branches and the trunk

  19. Lianas, tree ferns and understory species: indicators of conservation status in the Brazilian Atlantic Rainforest remnants, southeastern Brazil.

    PubMed

    Castello, A C D; Coelho, S; Cardoso-Leite, E

    2016-08-29

    Indicators are applied faster and at lower costs than conventional surveys, providing quick and efficient responses that can facilitate protected areas management. Our aim was to select indicators from vegetation to monitor protected areas. For this purpose, we analyzed understory and quantified lianas and tree ferns in protected and non-protected areas, in order to find indicator species. Our study areas are located in Vale do Ribeira, southeastern São Paulo state, Brazil. One of the areas is under two protection categories (IUCN's categories II and V), and the other is a privately owned farm. Lianas with large diameters (> 13 cm) and tree ferns with great heights (> 19 m) were considered indicators of undisturbed areas (protected areas) because their growth is directly related to forest successional stage. Indicator species within the protected area were shade tolerant species, such as Bathysa australis (A.St.-Hil.) K.Schum., whereas outside the protected area were pioneer species, such as Pera glabrata (Schott) Poepp. ex Baill. e Nectandra oppositifolia Ness. All of the suggested indicators can be used in management actions, especially in protected areas, to guarantee forest maintenance and ensure fulfillment of the conservation objectives of these areas.

  20. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees.

    PubMed

    Apgaua, Deborah M G; Ishida, Françoise Y; Tng, David Y P; Laidlaw, Melinda J; Santos, Rubens M; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A M; Laurance, Susan G W

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.

  1. Contrasting Strategies of Tree Function in a Seasonal Amazon Rainforest

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Oliveira, R.; Agee, E.; Brum, M., Jr.; Saleska, S. R.; Fatichi, S.; Ewing, G.

    2015-12-01

    The increased frequency and severity of drought conditions in the Amazon Basin region have emphasized the question of rainforest vulnerability and resilience to heat and drought-induced stresses. However, what emerges from much research is that the impacts of droughts, essential controlling factors of the rainforest function, and variability of tree-scale strategies are yet to be fully understood. We present here a preliminary analysis of hydraulic relations of a seasonal Amazon rainforest using a set of ecohydrologic data collected through the GoAmazon project over dry and wet seasons. Expressions of different hydraulic strategies are identified that convey different implications for tree resilience during short- (diurnal) and longer-term (seasonal) stress periods. These hydraulic strategies appear to be inter-related with the tree growth and non-structural carbohydrate dynamics, contributing to the understanding of trait coordination at the whole-plant scale. Integration of individual responses is conducted over a range of wood density and exposure conditions. The results of this research thus shed light on the implication of variations in the rainforest function for future stresses, vital for predictive models of ecosystem dynamics of next generation.

  2. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees

    PubMed Central

    Apgaua, Deborah M. G.; Ishida, Françoise Y.; Tng, David Y. P.; Laidlaw, Melinda J.; Santos, Rubens M.; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A. M.; Laurance, Susan G. W.

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species’ hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios. PMID:26087009

  3. Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter?

    PubMed

    Stahl, Clément; Hérault, Bruno; Rossi, Vivien; Burban, Benoit; Bréchet, Claude; Bonal, Damien

    2013-12-01

    Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.

  4. Feeding guild structure of beetles on Australian tropical rainforest trees reflects microhabitat resource availability.

    PubMed

    Wardhaugh, Carl W; Stork, Nigel E; Edwards, Will

    2012-09-01

    1. We tested the hypotheses that feeding guild structure of beetle assemblages changed with different arboreal microhabitats and that these differences were consistent across rainforest tree species. 2. Hand collection and beating techniques were used from the gondola of the Australian Canopy Crane to collect beetles from five microhabitats (mature leaves, flush leaves, flowers, fruit and suspended dead wood) within the rainforest canopy. A simple randomization procedure was implemented to test whether the abundances of each feeding guild on each microhabitat were different from that expected based on a null hypothesis of random distribution of individuals across microhabitats. 3. Beetles from different feeding guilds were not randomly distributed, but congregated on those microhabitats that are likely to provide the highest concentrations of their preferred food sources. Herbivorous beetles, in particular, were over-represented on flowers and flush foliage and under-represented on mature leaves and dead wood. Proportional numbers of species within each feeding guild were remarkably uniform across tree species for each microhabitat, but proportional abundances of feeding guilds were all significantly non-uniformly distributed between host tree species, regardless of microhabitat, confirming patterns previously found for arthropods in trees in temperate and tropical forests. 4. These results show that the canopy beetle community is partitioned into discrete assemblages between microhabitats and that this partitioning arises because of differences in feeding guild structure as a function of the diversity and the temporal and spatial availability of resources found on each microhabitat.

  5. Photosynthetic responses to vapour pressure deficit in temperate and tropical evergreen rainforest trees of Australia.

    PubMed

    Cunningham, S C

    2005-02-01

    Rainforests occur in high precipitation areas of eastern Australia, along a gradient in seasonality of precipitation, ranging from a summer dry season in the temperate south to a winter dry season in the tropical north. The response of net photosynthesis to increasing vapour pressure deficit (VPD) was measured in a range of Australian rainforest trees from different latitudes to investigate possible differences in their response to atmospheric drought. Plants were grown in glasshouses under ambient or low VPD to determine the effect of growth VPD on the photosynthetic response. Temperate species, which experience low summer precipitation, were found to maintain maximum net photosynthesis over the measurement range of VPD (0.5-1.9 kPa). In contrast, the tropical species from climates with high summer precipitation showed large reductions in net photosynthesis with increasing VPD. Temperate species showed higher intrinsic water-use efficiencies under low VPD than the tropical species, whereas their efficiencies were similar under high VPD. Growing plants under a low VPD had little effect on either the photosynthetic response to VPD or the intrinsic water-use efficiency of the species. These different responses of gas exchange to VPD shown by the tropical and temperate rainforest species may reflect different strategies to maximise productivity in their respective climates.

  6. The role of immigrants in the assembly of the South American rainforest tree flora.

    PubMed

    Pennington, R Toby; Dick, Christopher W

    2004-10-29

    The Amazon lowland rainforest flora is conventionally viewed as comprising lineages that evolved in biogeographic isolation after the split of west Gondwana (ca. 100 Myr ago). Recent molecular phylogenies, however, identify immigrant lineages that arrived in South America during its period of oceanic isolation (ca. 100-3 Myr ago). Long-distance sweepstakes dispersal across oceans played an important and possibly predominant role. Stepping-stone migration from Africa and North America through hypothesized Late Cretaceous and Tertiary island chains may have facilitated immigration. An analysis of inventory plot data suggests that immigrant lineages comprise ca. 20% of both the species and individuals of an Amazon tree community in Ecuador. This is more than an order of magnitude higher than previous estimates. We also present data on the community-level similarity between South American and palaeotropical rainforests, and suggest that most taxonomic similarity derives from trans-oceanic dispersal, rather than a shared Gondwanan history.

  7. The role of immigrants in the assembly of the South American rainforest tree flora.

    PubMed Central

    Pennington, R Toby; Dick, Christopher W

    2004-01-01

    The Amazon lowland rainforest flora is conventionally viewed as comprising lineages that evolved in biogeographic isolation after the split of west Gondwana (ca. 100 Myr ago). Recent molecular phylogenies, however, identify immigrant lineages that arrived in South America during its period of oceanic isolation (ca. 100-3 Myr ago). Long-distance sweepstakes dispersal across oceans played an important and possibly predominant role. Stepping-stone migration from Africa and North America through hypothesized Late Cretaceous and Tertiary island chains may have facilitated immigration. An analysis of inventory plot data suggests that immigrant lineages comprise ca. 20% of both the species and individuals of an Amazon tree community in Ecuador. This is more than an order of magnitude higher than previous estimates. We also present data on the community-level similarity between South American and palaeotropical rainforests, and suggest that most taxonomic similarity derives from trans-oceanic dispersal, rather than a shared Gondwanan history. PMID:15519976

  8. Ontogenetic changes in leaf traits of tropical rainforest trees differing in juvenile light requirement.

    PubMed

    Houter, Nico C; Pons, Thijs L

    2012-05-01

    Relationships between leaf traits and the gap dependence for regeneration, and ontogenetic changes therein, were investigated in juvenile and adult tropical rainforest tree species. The juveniles of the 17 species included in the study were grown in high light, similar to the exposed crowns of the adult trees. The traits were structural, biomechanical, chemical and photosynthetic. With increasing species gap dependence, leaf mass per area (LMA) decreased only slightly in juveniles and remained constant in adults, whereas punch strength together with tissue density decreased, and photosynthetic capacity and chlorophyll increased. Contrary to what has been mostly found in evergreen tropical rainforest, the trade-off between investment in longevity and in productivity was evident at an essentially constant LMA. Of the traits pertaining to the chloroplast level, photosynthetic capacity per unit chlorophyll increased with gap dependence, but the chlorophyll a/b ratio showed no relationship. Adults had a twofold higher LMA, but leaf strength was on average only about 50% larger. Leaf tissue density, and chlorophyll and leaf N per area were also higher, whereas chlorophyll and leaf N per unit dry mass were lower. Ranking of the species, relationships between traits and with the gap dependence of the species were similar for juveniles and adults. However, the magnitudes of most ontogenetic changes were not clearly related to a species' gap dependence. The adaptive value of the leaf traits for juveniles and adults is discussed.

  9. Halogenated organic species over the tropical rainforest

    NASA Astrophysics Data System (ADS)

    Gebhardt, S.; Colomb, A.; Hofmann, R.; Williams, J.; Lelieveld, J.

    2008-01-01

    Airborne measurements of the halogenated trace gases methyl chloride, methyl bromide and chloroform were conducted over the Atlantic Ocean and 1000 km of pristine tropical rainforest in Suriname and French Guyana (3-6° N, 51-59° W) in October 2005. In the boundary layer (0-1.4 km), maritime air masses initially low in forest hydrocarbons, advected over the forest by southeasterly trade winds, were measured at various distances from the coast. Since the organohalogens presented here have relatively long atmospheric lifetimes (0.4-1.0 years) in comparison to the transport times (1-2 days), emissions will accumulate in air traversing the rainforest. The distributions of methyl chloride, methyl bromide and chloroform were analyzed as a function of forest contact time and the respective relationship used to determine fluxes from the rainforest during the long dry season. Emission fluxes have been calculated for methyl chloride and chloroform as 9.4 (±4.0 2σ) and 0.34 (0.14± 2σ) μg m-2 h-1, respectively. No significant flux from the rainforest was observed for methyl bromide within the limits of these measurements. The flux of methyl chloride was in general agreement with the flux measured over the same region in March 1998 during the LBA Claire project using a different analytical system. This confirms that the rainforest is a strong source for methyl chloride and suggests that this emission is relatively uniform throughout the year. In contrast the chloroform flux derived here is a factor of three less than previous measurements made in March 1998 suggesting a pronounced ecosystem variation. The differences in chloroform fluxes could not be attributed to either temperature or rainfall changes. The global extrapolation of the derived fluxes led to 1.5 (±0.6 2σ) Tg yr-1 for methyl chloride, which is in the range of the missing source postulated by previous model studies and 55 (±22 2σ) Gg yr-1 for chloroform.

  10. A new species of Tropidopedia from the Amazon rainforest, Brazil (Hymenoptera: Apidae), with a revised phylogenetic overview of the genus.

    PubMed

    Mahlmann, Thiago; De Oliveira, Marcio L

    2015-10-15

    We describe a new species of the bee tribe Tapinotaspidini, Tropidopedia guaranae Mahlmann & Oliveira sp. n. from the Amazon rainforest, Amazonas, Brazil. We emend the phylogenetic tree of Aguiar & Melo (2007) to include the new species and comment upon some characters presented by those authors.

  11. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    PubMed

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux.

  12. Contribution of litter and tree diameter increment in the eastern Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Camargo, P. B.; Ferreira, M.; De Oliveira, R., Jr.; Saleska, S. R.; Alves, L. F.

    2013-12-01

    Tropical forests have a great importance in the global carbon cycle, especially with regard to biomass. Some models predict that these forests can be vulnerable to carbon loss due to global warming-induced drought increases, while others contradict this theory. So, it is necessary to assess changes in carbon storage over time to better understand the future trends of this scenario. In this sense, this work has as its main objective the evaluation of tree diameter increment and the amount of litter, in a region of the eastern Amazon rainforest. 1000 dendometric trees bands were installed in different taxonomic families and size classes over four transects represent 4 ha each, as well as 60 collectors (litter traps). The trees of the forest had a higher growth in November and a smaller diameter increment in the month of September. The trees of the size class 55-90 cm were the most grown up followed by class > 90 cm trees. A likely factor that drove this episode was the height of the canopy of these trees. Pearson's correlation analysis showed correlation of 55-90 cm class with temperature and precipitation. The production of litter has an average production within the range found in the literature between 200 and 1700 kg.ha.ano-1. Further studies are needed in order to understand more clearly, what are the key factors that drive or limit the growth of tree species in the Amazon.

  13. Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo.

    PubMed

    Loader, N J; Walsh, R P D; Robertson, I; Bidin, K; Ong, R C; Reynolds, G; McCarroll, D; Gagen, M; Young, G H F

    2011-11-27

    Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum).

  14. Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo

    PubMed Central

    Loader, N. J.; Walsh, R. P. D.; Robertson, I.; Bidin, K.; Ong, R. C.; Reynolds, G.; McCarroll, D.; Gagen, M.; Young, G. H. F.

    2011-01-01

    Stable carbon isotope (δ13C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age–growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum). PMID:22006972

  15. Spatial trends in leaf size of Amazonian rainforest trees

    NASA Astrophysics Data System (ADS)

    Malhado, A. C. M.; Malhi, Y.; Whittaker, R. J.; Ladle, R. J.; Ter Steege, H.; Phillips, O. L.; Butt, N.; Aragão, L. E. O. C.; Quesada, C. A.; Araujo-Murakami, A.; Arroyo, L.; Peacock, J.; Lopez-Gonzalez, G.; Baker, T. R.; Anderson, L. O.; Almeida, S.; Higuchi, N.; Killeen, T. J.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R. P.; Vásquez-Martínez, R.; Laurance, W. F.

    2009-08-01

    Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing from southwest to northeast) and length of the dry season (increasing from northwest to south and east). Here we describe the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25-182.25 cm2). The geographic distribution of species and individuals with large leaves (>20.25 cm2) is complex but is generally characterized by a higher proportion of such trees in the northwest of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.

  16. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    PubMed

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest.

  17. Long-term trends in nitrogen isotope composition and nitrogen concentration in brazilian rainforest trees suggest changes in nitrogen cycle.

    PubMed

    Hietz, Peter; Dünisch, Oliver; Wanek, Wolfgang

    2010-02-15

    Direct or indirect anthropogenic effects on ecosystem nitrogen cycles are important components of global change. Recent research has shown that N isotopes in tree rings reflect changes in ecosystem nitrogen sources or cycles and can be used to study past changes. We analyzed trends in two tree species from a remote and pristine tropical rainforest in Brazil, using trees of different ages to distinguish between the effect of tree age and long-term trends. Because sapwood differed from heartwood in delta(15)N and N concentration and N can be translocated between living sapwood cells, long-term trends are best seen in dead heartwood. Heartwood delta(15)N in Spanish cedar (Cedrela odorata) and big-leaf mahogany (Swietenia macrophylla) increased with tree age, and N concentrations increased with age in Cedrela. Controlling for tree age, delta(15)N increased significantly during the past century even when analyzing only heartwood and after removing labile N compounds. In contrast to northern temperate and boreal forests where wood delta(15)N often decreased, the delta(15)N increase in a remote rainforest is unlikely to be a direct signal of changed N deposition. More plausibly, the change in N isotopic composition indicates a more open N cycle, i.e., higher N losses relative to internal N cycling in the forest, which could be the result of changed forest dynamics.

  18. The influence of tree morphology on stemflow generation in a tropical lowland rainforest

    NASA Astrophysics Data System (ADS)

    Uber, Magdalena; Levia, Delphis F.; Zimmermann, Beate; Zimmermann, Alexander

    2014-05-01

    Even though stemflow usually accounts for only a small proportion of rainfall, it is an important point source of water and ion input to forest floors and may, for instance, influence soil moisture patterns and groundwater recharge. Previous studies showed that the generation of stemflow depends on a multitude of meteorological and biological factors. Interestingly, despite the tremendous progress in stemflow research during the last decades it is still largely unknown which combination of tree characteristics determines stemflow volumes in species-rich tropical forests. This knowledge gap motivated us to analyse the influence of tree characteristics on stemflow volumes in a 1 hectare plot located in a Panamanian lowland rainforest. Our study comprised stemflow measurements in six randomly selected 10 m by 10 m subplots. In each subplot we measured stemflow of all trees with a diameter at breast height (DBH) > 5 cm on an event-basis for a period of six weeks. Additionally, we identified all tree species and determined a set of tree characteristics including DBH, crown diameter, bark roughness, bark furrowing, epiphyte coverage, tree architecture, stem inclination, and crown position. During the sampling period, we collected 985 L of stemflow (0.98 % of total rainfall). Based on regression analyses and comparisons among plant functional groups we show that palms were most efficient in yielding stemflow due to their large inclined fronds. Trees with large emergent crowns also produced relatively large amounts of stemflow. Due to their abundance, understory trees contribute much to stemflow yield not on individual but on the plot scale. Even though parameters such as crown diameter, branch inclination and position of the crown influence stemflow generation to some extent, these parameters explain less than 30 % of the variation in stemflow volumes. In contrast to published results from temperate forests, we did not detect a negative correlation between bark roughness

  19. Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought.

    PubMed

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Christoffersen, Bradley; Nardini, Andrea; Mencuccini, Maurizio

    2016-07-01

    The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change.

  20. Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample.

    PubMed

    Crampton-Platt, Alex; Timmermans, Martijn J T N; Gimmel, Matthew L; Kutty, Sujatha Narayanan; Cockerill, Timothy D; Vun Khen, Chey; Vogler, Alfried P

    2015-09-01

    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity.

  1. Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample

    PubMed Central

    Crampton-Platt, Alex; Timmermans, Martijn J.T.N.; Gimmel, Matthew L.; Kutty, Sujatha Narayanan; Cockerill, Timothy D.; Vun Khen, Chey; Vogler, Alfried P.

    2015-01-01

    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA “superbarcodes” for testing hypotheses regarding global patterns of diversity. PMID:25957318

  2. [Relationship between population variation of fig trees and environment in the tropical rainforests of Xishuangbanna].

    PubMed

    Yang, Darong; Peng, Yanqiong; Zhang, Guangming; Song, Qishi; Zhao, Tingzhou; Wang, Qiuyan

    2002-09-01

    The species diversity of the plant plays an important role in the ecological environment conservation. In the tropical rainforest of Xishuangbanna the biological diversity is extremely rich, and which is a key region used to biological diversity research. And the fig is a key plant species in the tropical rainforest. The research results about the relationship between the variation of the figs population and environment of the region were following: 1. There were 69 species, variants and subspecies Ficus plant that was known in the tropical rainforest of Xishuangbanna, thereinto there were 23 species and subspecies owned to the Urostigma, and the Pharmacosyea had four species; the Sycomorrus two species and subspecies; while the Ficus owned 41 species, subspecies and variants, then Xishuangbanna borne the most richness and diversity of fig species and numbers in China. 2. The distribution of the figs had intimate connection with the environment, and the species and the quantities showed the most richness in the tropical primary rainforest that was protected well and almost intact, where the figs were mainly to be arbors and giant arbors; and in the devastated stand and secondary forest dwarf arbors, shrubs, bushes and ligneous liana possessed the most in the fig species; while in such regions of tropical rainforest environment that have been destroyed seriously one proportion of the pioneer species of the figs were the main members. 3. Only the key colony of Ficus can be conserved in the tropical rainforest, can the whole ecological environment of the tropical rainforest be protected and rehabilitated, which was one of the important measures to realize it.

  3. Influence of leaf traits on the spatial distribution of insect herbivores associated with an overstorey rainforest tree.

    PubMed

    Basset, Yves

    1991-09-01

    The spatial distribution of insect herbivores associated with the Australian rainforest treeArgyrodendron actinophyllum (Sterculiaceae) was investigated by restricted canopy fogging. The foliage of this species was low in nitrogen and water content, and high in fibre content. Herbivore abundance was positively correlated with the amount of young foliage present within the samples and in adjacent samples, and with the nitrogen content of young leaves. In particular, the occurrence of phloem-feeders was correlated with the magnitude of translocation within the samples. The influence of leaf water content upon herbivore distribution was marginal, presumably because this factor is not limiting in rain-forest environments during the wet season, which usually coincides with the season of leaf-flush. Specific leaf weight, leaf size and foliage compactness had little or no apparent effect on herbivore distribution. Since the magnitude of leaf turnover affected both the quantity and the quality, as exemplified by translocation effects, of young foliage available, this factor may be critical to herbivores associated with evergreen rainforest trees which are particularly low in foliar nutrients, such asA. actinophyllum.

  4. Conserving tropical tree diversity and forest structure: the value of small rainforest patches in moderately-managed landscapes.

    PubMed

    Hernández-Ruedas, Manuel A; Arroyo-Rodríguez, Víctor; Meave, Jorge A; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P L; Santos, Bráulio A

    2014-01-01

    Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (<100 ha) can be highly valuable for the conservation of tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services.

  5. Conserving Tropical Tree Diversity and Forest Structure: The Value of Small Rainforest Patches in Moderately-Managed Landscapes

    PubMed Central

    Hernández-Ruedas, Manuel A.; Arroyo-Rodríguez, Víctor; Meave, Jorge A.; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P. L.; Santos, Bráulio A.

    2014-01-01

    Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (<100 ha) can be highly valuable for the conservation of tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services. PMID:24901954

  6. Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests.

    PubMed

    Menge, Duncan N L; Chazdon, Robin L

    2016-02-01

    Trees capable of symbiotic nitrogen (N) fixation ('N fixers') are abundant in many tropical forests. In temperate forests, it is well known that N fixers specialize in early-successional niches, but in tropical forests, successional trends of N-fixing species are poorly understood. We used a long-term census study (1997-2013) of regenerating lowland wet tropical forests in Costa Rica to document successional patterns of N fixers vs non-fixers, and used an individual-based model to determine the demographic drivers of these trends. N fixers increased in relative basal area during succession. In the youngest forests, N fixers grew 2.5 times faster, recruited at a similar rate and were 15 times less likely to die as non-fixers. As succession proceeded, the growth and survival disparities decreased, whereas N fixer recruitment decreased relative to non-fixers. According to our individual-based model, high survival was the dominant driver of the increase in basal area of N fixers. Our data suggest that N fixers are successful throughout secondary succession in tropical rainforests of north-east Costa Rica, and that attempts to understand this success should focus on tree survival.

  7. Structural attributes of individual trees for identifying homogeneous patches in a tropical rainforest

    NASA Astrophysics Data System (ADS)

    Alexander, Cici; Korstjens, Amanda H.; Hill, Ross A.

    2017-03-01

    Mapping and monitoring tropical rainforests and quantifying their carbon stocks are important, both for devising strategies for their conservation and mitigating the effects of climate change. Airborne Laser Scanning (ALS) has advantages over other remote sensing techniques for describing the three-dimensional structure of forests. This study identifies forest patches using ALS-based structural attributes in a tropical rainforest in Sumatra, Indonesia. A method to group trees with similar attributes into forest patches based on Thiessen polygons and k-medoids clustering is developed, combining the advantages of both raster and individual tree-based methods. The structural composition of the patches could be an indicator of habitat type and quality. The patches could also be a basis for developing allometric models for more accurate estimation of carbon stock than is currently possible with generalised models.

  8. Extreme long-distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics.

    PubMed

    Dick, Christopher W; Bermingham, Eldredge; Lemes, Maristerra R; Gribel, Rogerio

    2007-07-01

    Many tropical tree species occupy continental expanses of rainforest and flank dispersal barriers such as oceans and mountains. The role of long-distance dispersal in establishing the range of such species is poorly understood. In this study, we test vicariance hypotheses for range disjunctions in the rainforest tree Ceiba pentandra, which is naturally widespread across equatorial Africa and the Neotropics. Approximate molecular clocks were applied to nuclear ribosomal [ITS (internal transcribed spacer)] and chloroplast (psbB-psbF) spacer DNA sampled from 12 Neotropical and five West African populations. The ITS (N=5) and psbB-psbF (N=2) haplotypes exhibited few nucleotide differences, and ITS and psbB-psbF haplotypes were shared by populations on both continents. The low levels of nucleotide divergence falsify vicariance explanations for transatlantic and cross-Andean range disjunctions. The study shows how extreme long-distance dispersal, via wind or marine currents, creates taxonomic similarities in the plant communities of Africa and the Neotropics.

  9. Spatial distribution of dominant arboreal ants in a malagasy coastal rainforest: gaps and presence of an invasive species.

    PubMed

    Dejean, Alain; Fisher, Brian L; Corbara, Bruno; Rarevohitra, Raymond; Randrianaivo, Richard; Rajemison, Balsama; Leponce, Maurice

    2010-02-19

    We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species-a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant arboreal

  10. Ants inhabiting myrmecophytic ferns regulate the distribution of lianas on emergent trees in a Bornean tropical rainforest.

    PubMed

    Tanaka, Hiroshi O; Itioka, Takao

    2011-10-23

    Little is known about the spatial distribution of lianas on emergent trees in tropical rainforests and the factors affecting this distribution. The present study investigated the effects of an arboreal ant species, Crematogaster difformis, which forms myrmecophytic symbioses with two epiphytic ferns, Lecanopteris sp. and Platycerium sp., on the spatial distribution of lianas associated with emergent trees. Living lianas were placed onto trunk surfaces inside and outside the territories of the ants in the canopy, to examine their ability to remove them. The number of leaves pruned by the ants was significantly higher on lianas inside than outside their territories. The spatial overlap of the distributions of lianas and the two ferns on emergent trees were then examined. The frequency of liana colonization of tree crowns was found to be significantly lower on trees with than without ferns. Under the natural conditions, C. difformis workers were observed biting and pruning the lianas. These results suggest that C. difformis regulates the distribution of lianas on emergent trees.

  11. Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii

    PubMed Central

    Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E

    2016-01-01

    Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania. PMID:26350630

  12. Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii.

    PubMed

    Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E

    2016-01-01

    Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.

  13. An application of the lottery competition model to a montane rainforest community of two canopy trees, ohia (Metrosideros polymorpha) and koa (Acacia koa) on Mauna Loa, Hawaii

    USGS Publications Warehouse

    Hatfield, J.S.; Link, W.A.; Dawson, D.K.; Lindquist, E.L.

    1992-01-01

    This rainforest occurs on Mauna Loa at 1500-2000 m elevation. Earthwatch volunteers, studying the habitat of 8 native forest bird species (3 endangered), identified 2382 living canopy trees, and 99 dead trees, on 68 study plots, 400 m2 each. Ohia made up 88% of the canopy; koa was 12%. The two-species lottery competition model, a stochastic model in which coexistence of species results from variation in recruitment and death rates, predicts a quadratic-beta distribution for the proportion of space occupied by one species. A discrete version was fit to the live tree data and a likelihood ratio test (p=0.02) was used to test if the mean death rates were equal. This test was corroborated by a contingency table analysis (p=0.03) based on dead trees. Parameter estimates from the two analyses were similar.

  14. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest

    PubMed Central

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  15. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-02-10

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community.

  16. An UV-sensitive anuran species as an indicator of environmental quality of the Southern Atlantic Rainforest.

    PubMed

    Lipinski, Victor Mendes; Santos, Tiago Gomes Dos; Schuch, André Passaglia

    2016-12-01

    The Southern Atlantic rainforest is continuously suffering from wood extraction activity, which results in the increase of clearings within the forest. Although the direct impacts of deforestation on landscape are already well described, there is an absence of studies focused on the evaluation of its indirect effects, such as the increase of solar UV radiation levels inside forest environment and its consequences for forest specialist anuran species. The results presented in this work clearly show that the threatened tree frog species Hypsiboas curupi presents severe traits of sensitivity to UV wavelengths of sunlight, making it a vulnerable species to this environmental stressor, as well as a biological indicator of the quality of forest canopy coverage. In addition, the measurement of solar UVB and UVA radiation incidence upon H. curupi breeding site and the analyses of a 20-year dataset of satellite images regarding the management of canopy coverage indicate that the photoprotection provided by trees of the Southern Atlantic rainforest is critical for the conservation of this forest specialist anuran species. Therefore, this work demonstrates that the deforestation process enhances the exposure of H. curupi embryos to solar UVB and UVA radiation, negatively affecting their embryonic development, inducing mortality and population decline.

  17. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    USGS Publications Warehouse

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  18. An autogamous rainforest species of Schiedea (Caryophyllaceae) from East Maui, Hawaiian Islands

    USGS Publications Warehouse

    Wagner, W.L.; Weller, S.G.; Sakai, A.K.; Medeiros, A.C.

    1999-01-01

    A new autogamous species of Schiedea is described and illustrated. It is known only from cliff habitat in rainforest on a single ridge in the Natural Area Reserve, Hanawi, East Maui. With the addition of this species there are 28 species in this endemic Hawaiian genus. The new species appears to be most closely related to Schiedea nuttallii, a species of mesic habitats on O'ahu, Moloka'i, and Maui.

  19. Halogenated organic species over the tropical South American rainforest

    NASA Astrophysics Data System (ADS)

    Gebhardt, S.; Colomb, A.; Hofmann, R.; Williams, J.; Lelieveld, J.

    2008-06-01

    Airborne measurements of the halogenated trace gases methyl chloride, methyl bromide and chloroform were conducted over the Atlantic Ocean and about 1000 km of pristine tropical rainforest in Suriname and French Guyana (3 6° N, 51 59° W) in October 2005. In the boundary layer (0 1.4 km), maritime air masses, advected over the forest by southeasterly trade winds, were measured at various distances from the coast. Since the organohalogens presented here have relatively long atmospheric lifetimes (0.4 1.0 years) in comparison to the advection times from the coast (1 2 days), emissions will accumulate in air traversing the rainforest. The distributions of methyl chloride, methyl bromide and chloroform were analyzed as a function of time the air spent over land and the respective relationship used to determine net fluxes from the rainforest for one week within the long dry season. Net fluxes from the rainforest ecosystem have been calculated for methyl chloride and chloroform as 9.5 (±3.8 2σ) and 0.35 (±0.15 2σ)μg m-2 h-1, respectively. No significant flux was observed for methyl bromide within the limits of these measurements. The global budget of methyl chloride contains large uncertainties, in particular with regard to a possible source from tropical vegetation. Our measurements are used in a large-scale approach to determine the net flux from a tropical ecosystem to the planetary boundary layer. The obtained global net flux of 1.5 (±0.6 2σ) Tg yr-1 for methyl chloride is at the lower end of current estimates for tropical vegetation sources, which helps to constrain the range of tropical sources and sinks (0.82 to 8.2 Tg yr-1 from tropical plants, 0.03 to 2.5 Tg yr-1 from senescent/dead leaves and a sink of 0.1 to 1.6 Tg yr-1 by soil uptake). Nevertheless, these results show that the contribution of the rainforest ecosystem is the major source in the global budget of methyl chloride. For chloroform, the extrapolated global net flux from tropical ecosystems

  20. Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest.

    PubMed

    Dick, Christopher W; Etchelecu, Gabriela; Austerlitz, Frédéric

    2003-03-01

    Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees (Apis mellifera scutellata) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a twogener analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest (approximately 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.

  1. Contrasting levels of connectivity and localised persistence characterise the latitudinal distribution of a wind-dispersed rainforest canopy tree.

    PubMed

    Heslewood, Margaret M; Lowe, Andrew J; Crayn, Darren M; Rossetto, Maurizio

    2014-06-01

    Contrasting signals of genetic divergence due to historic and contemporary gene flow were inferred for Coachwood, Ceratopetalum apetalum (Cunoniaceae), a wind-dispersed canopy tree endemic to eastern Australian warm temperate rainforest. Analysis of nine nuclear microsatellites across 22 localities revealed two clusters between northern and southern regions and with vicariance centred on the wide Hunter River Valley. Within populations diversity was high indicating a relatively high level of pollen dispersal among populations. Genetic variation was correlated to differences in regional biogeography and ecology corresponding to IBRA regions, primary factors being soil type and rainfall. Eleven haplotypes were identified by chloroplast microsatellite analysis from the same 22 localities. A lack of chloroplast diversity within sites demonstrates limited gene flow via seed dispersal. Network representation indicated regional sharing of haplotypes indicative of multiple Pleistocene refugia as well as deep divergences between regional elements of present populations. Chloroplast differentiation between sites in the upper and lower sections of the northern population is reflective of historic vicariance at the Clarence River Corridor. There was no simple vicariance explanation for the distribution of the divergent southern chlorotype, but its distribution may be explained by the effects of drift from a larger initial gene pool. Both the Hunter and Clarence River Valleys represent significant dry breaks within the species range, consistent with this species being rainfall dependent rather than cold-adapted.

  2. STRAW: Species TRee Analysis Web server

    PubMed Central

    Shaw, Timothy I.; Ruan, Zheng; Glenn, Travis C.; Liu, Liang

    2013-01-01

    The coalescent methods for species tree reconstruction are increasingly popular because they can accommodate coalescence and multilocus data sets. Herein, we present STRAW, a web server that offers workflows for reconstruction of phylogenies of species using three species tree methods—MP-EST, STAR and NJst. The input data are a collection of rooted gene trees (for STAR and MP-EST methods) or unrooted gene trees (for NJst). The output includes the estimated species tree, modified Robinson-Foulds distances between gene trees and the estimated species tree and visualization of trees to compare gene trees with the estimated species tree. The web sever is available at http://bioinformatics.publichealth.uga.edu/SpeciesTreeAnalysis/. PMID:23661681

  3. Wood traits related to size and life history of trees in a Panamanian rainforest.

    PubMed

    Hietz, Peter; Rosner, Sabine; Hietz-Seifert, Ursula; Wright, S Joseph

    2017-01-01

    Wood structure differs widely among tree species and species with faster growth, higher mortality and larger maximum size have been reported to have fewer but larger vessels and higher hydraulic conductivity (Kh). However, previous studies compiled data from various sources, often failed to control tree size and rarely controlled variation in other traits. We measured wood density, tree size and vessel traits for 325 species from a wet forest in Panama, and compared wood and leaf traits to demographic traits using species-level data and phylogenetically independent contrasts. Wood traits showed strong phylogenetic signal whereas pairwise relationships between traits were mostly phylogenetically independent. Trees with larger vessels had a lower fraction of the cross-sectional area occupied by vessel lumina, suggesting that the hydraulic efficiency of large vessels permits trees to dedicate a larger proportion of the wood to functions other than water transport. Vessel traits were more strongly correlated with the size of individual trees than with maximal size of a species. When individual tree size was included in models, Kh scaled positively with maximal size and was the best predictor for both diameter and biomass growth rates, but was unrelated to mortality.

  4. Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display

    PubMed Central

    Lusk, Christopher H.; Pérez-Millaqueo, Manuel M.; Saldaña, Alfredo; Burns, Bruce R.; Laughlin, Daniel C.; Falster, Daniel S.

    2012-01-01

    Background and Aims The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. Methods This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LARd) was used to indicate plant light interception potential: LARd is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Results Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LARd was about twice that of conifers. Although specific leaf area was the most pervasive influence on LARd, differences in self-shading also significantly influenced LARd of large seedlings. Conclusions The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition. PMID:22585929

  5. The Inference of Gene Trees with Species Trees

    PubMed Central

    Szöllősi, Gergely J.; Tannier, Eric; Daubin, Vincent; Boussau, Bastien

    2015-01-01

    This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree–species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree–species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution. PMID:25070970

  6. Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns

    NASA Astrophysics Data System (ADS)

    Stuntz, Sabine; Simon, Ulrich; Zotz, Gerhard

    2002-05-01

    Epiphytes are often assumed to influence the microclimatic conditions of the tree crowns that they inhabit. In order to quantify this notion, we measured the parameters "temperature" (of the substrate surface and the boundary layer of air above it), "evaporative drying rate" and "evapotranspiration" at various locations within tree crowns with differing epiphyte assemblages. The host tree species was Annona glabra, which was either populated by one of three epiphyte species ( Dimerandra emarginata, Tillandsia fasciculata, or Vriesea sanguinolenta) or was epiphyte-free. We found that during the hottest and driest time of day, microsites in the immediate proximity of epiphytes had significantly lower temperatures than epiphyte-bare locations within the same tree crown, even though the latter were also shaded by host tree foliage or branches. Moreover, water loss through evaporative drying at microsites adjacent to epiphytes was almost 20% lower than at exposed microsites. We also found that, over the course of several weeks, the evapotranspiration in tree crowns bearing epiphytes was significantly lower than in trees without epiphytes. Although the influence of epiphytes on temperature extremes and evaporation rates is relatively subtle, their mitigating effect could be of importance for small animals like arthropods inhabiting an environment as harsh and extreme as the tropical forest canopy.

  7. Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns.

    PubMed

    Stuntz, Sabine; Simon, Ulrich; Zotz, Gerhard

    2002-05-01

    Epiphytes are often assumed to influence the microclimatic conditions of the tree crowns that they inhabit. In order to quantify this notion, we measured the parameters "temperature" (of the substrate surface and the boundary layer of air above it), "evaporative drying rate" and "evapotranspiration" at various locations within tree crowns with differing epiphyte assemblages. The host tree species was Annona glabra, which was either populated by one of three epiphyte species (Dimerandra emarginata, Tillandsia fasciculata, or Vriesea sanguinolenta) or was epiphyte-free. We found that during the hottest and driest time of day, microsites in the immediate proximity of epiphytes had significantly lower temperatures than epiphyte-bare locations within the same tree crown, even though the latter were also shaded by host tree foliage or branches. Moreover, water loss through evaporative drying at microsites adjacent to epiphytes was almost 20% lower than at exposed microsites. We also found that, over the course of several weeks, the evapotranspiration in tree crowns bearing epiphytes was significantly lower than in trees without epiphytes. Although the influence of epiphytes on temperature extremes and evaporation rates is relatively subtle, their mitigating effect could be of importance for small animals like arthropods inhabiting an environment as harsh and extreme as the tropical forest canopy.

  8. Two common species dominate the species-rich Euglossine bee fauna of an Atlantic Rainforest remnant in Pernambuco, Brazil.

    PubMed

    Oliveira, R; Pinto, C E; Schlindwein, C

    2015-11-01

    Nowadays, the northern part of the Atlantic Rainforest of Brazil is largely destroyed and forest remnants rarely exceed 100 ha. In a 118 ha forest fragment within a state nature reserve of Pernambuco (Reserva Ecológica Gurjaú), we surveyed the orchid bee fauna (Apidae, Euglossini) using eight different scent baits to attract males. Once a month during one year, the bees were actively collected with entomological nets, from November 2002 to October 2003 by two collectors. We collected 2,908 orchid bee males belonging to 23 species, one of the highest richness values of the Northern Atlantic Rainforest. Bees of only two species, Euglossa carolina (50%) and Eulaema nigrita (25%), which occurred throughout the year, accounted for three quarter of the collected individuals. Both species are typical for open or disturbed areas. Rainforest remnants like those of Gurjaú within the predominant sugar cane monocultures in the coastal plains of the northern Atlantic Rainforest play an important role in orchid bee conservation and maintenance of biodiversity.

  9. Caterpillars and host plant records for 59 species of Geometridae (Lepidoptera) from a montane rainforest in southern Ecuador.

    PubMed

    Bodner, Florian; Brehm, Gunnar; Homeier, Jürgen; Strutzenberger, Patrick; Fiedler, Konrad

    2010-01-01

    During four months of field surveys at the Reserva Biológica San Francisco in the south Ecuadorian Andes, caterpillars of 59 Geometridae species were collected in a montane rainforest between 1800 and 2800m altitude and reared to adults. The resulting data on host plant affiliations of these species was collated. The preimaginal stages of 58 and adult stages of all 59 species are depicted in colour plates. Observations on morphology and behaviour are briefly described. Five species, documented for the first time in the study area by means of larval collections, had not been previously collected by intensive light-trap surveys. Together with published literature records, life-history data covers 8.6% of the 1271 geometrid species observed so far in the study area. For 50 species these are the first records of their early stages, and for another 7 the data significantly extend known host plant ranges. Most larvae were collected on shrubs or trees, but more unusual host plant affiliations, such as ferns (6 geometrid species) and lichens (3 geometrid species), were also recorded. Thirty-four percent of the caterpillars were infested by wasp or tachinid parasitoids.

  10. How Effective Are DNA Barcodes in the Identification of African Rainforest Trees?

    PubMed Central

    Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W.; Kenfack, David; Chuyong, George B.; Cruaud, Corinne; Hardy, Olivier J.

    2013-01-01

    Background DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. Methodology/Principal Findings We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95–100% success), but less for species identification (71–88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84–90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Conclusions/Significance Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements

  11. Niche separation of seven lemur species in the eastern rainforest of Madagascar.

    PubMed

    Ganzhorn, Jörg U

    1989-05-01

    This study examines segregation of seven lemur species in an eastern rainforest of Madagascar by a numerical analysis of microhabitats using structural and phenological data. These data are combined with the results of a previous study on food selection by these species in relation to plant chemistry. Description of some 441 10×10 m(2) microhabitats yields clear separation of the frugivorous from the more folivorous guild of lemurs. Within each guild there are subgroups of two species each, which use similar microhabitats. The two species of the subgroups are separated by their different reactions towards food chemicals. Thus food chemistry and microhabitat structure are two complementary axes sufficient to separate lemur species in the Malagasy rainforest. Species using the same microhabitats choose food items with different chemical properties and species eating the same food differ in their utilization of microhabitats. Only Cheirogaleus major can not be separated from the other lemur species based on habitat utilization and the chemical composition of their food. This species, however, is active only at times of food abundance and reduces its activity at times of scarcity thus avoiding potential competition. The folivorous species Avahi laniger and Indri indri use similar micro habitats for feeding and for resting, reflecting the strategy of low energy cost and fow energy return. A more folivorous species, Lemur fulvus, discriminates between feeding and resting sites based on phenological and structural variables, representing an example for behavior shaped by high cost and high energy return. Feeding sites of this species are linked to fruit abundance but the need to see but not to be seen seems to determine their choice of resting sites. This discrimination is similar to habitat choices of frugivorous primates in other tropical rainforests which have been linked to anti-predator behavior and suggests convergent evolution due to similar evolutionary selection

  12. The ancient tropical rainforest tree Symphonia globulifera L. f. (Clusiaceae) was not restricted to postulated Pleistocene refugia in Atlantic Equatorial Africa

    PubMed Central

    Budde, K B; González-Martínez, S C; Hardy, O J; Heuertz, M

    2013-01-01

    Understanding the history of forests and their species' demographic responses to past disturbances is important for predicting impacts of future environmental changes. Tropical rainforests of the Guineo-Congolian region in Central Africa are believed to have survived the Pleistocene glacial periods in a few major refugia, essentially centred on mountainous regions close to the Atlantic Ocean. We tested this hypothesis by investigating the phylogeographic structure of a widespread, ancient rainforest tree species, Symphonia globulifera L. f. (Clusiaceae), using plastid DNA sequences (chloroplast DNA [cpDNA], psbA-trnH intergenic spacer) and nuclear microsatellites (simple sequence repeats, SSRs). SSRs identified four gene pools located in Benin, West Cameroon, South Cameroon and Gabon, and São Tomé. This structure was also apparent at cpDNA. Approximate Bayesian Computation detected recent bottlenecks approximately dated to the last glacial maximum in Benin, West Cameroon and São Tomé, and an older bottleneck in South Cameroon and Gabon, suggesting a genetic effect of Pleistocene cycles of forest contraction. CpDNA haplotype distribution indicated wide-ranging long-term persistence of S. globulifera both inside and outside of postulated forest refugia. Pollen flow was four times greater than that of seed in South Cameroon and Gabon, which probably enabled rapid population recovery after bottlenecks. Furthermore, our study suggested ecotypic differentiation—coastal or swamp vs terra firme—in S. globulifera. Comparison with other tree phylogeographic studies in Central Africa highlighted the relevance of species-specific responses to environmental change in forest trees. PMID:23572126

  13. The ancient tropical rainforest tree Symphonia globulifera L. f. (Clusiaceae) was not restricted to postulated Pleistocene refugia in Atlantic Equatorial Africa.

    PubMed

    Budde, K B; González-Martínez, S C; Hardy, O J; Heuertz, M

    2013-07-01

    Understanding the history of forests and their species' demographic responses to past disturbances is important for predicting impacts of future environmental changes. Tropical rainforests of the Guineo-Congolian region in Central Africa are believed to have survived the Pleistocene glacial periods in a few major refugia, essentially centred on mountainous regions close to the Atlantic Ocean. We tested this hypothesis by investigating the phylogeographic structure of a widespread, ancient rainforest tree species, Symphonia globulifera L. f. (Clusiaceae), using plastid DNA sequences (chloroplast DNA [cpDNA], psbA-trnH intergenic spacer) and nuclear microsatellites (simple sequence repeats, SSRs). SSRs identified four gene pools located in Benin, West Cameroon, South Cameroon and Gabon, and São Tomé. This structure was also apparent at cpDNA. Approximate Bayesian Computation detected recent bottlenecks approximately dated to the last glacial maximum in Benin, West Cameroon and São Tomé, and an older bottleneck in South Cameroon and Gabon, suggesting a genetic effect of Pleistocene cycles of forest contraction. CpDNA haplotype distribution indicated wide-ranging long-term persistence of S. globulifera both inside and outside of postulated forest refugia. Pollen flow was four times greater than that of seed in South Cameroon and Gabon, which probably enabled rapid population recovery after bottlenecks. Furthermore, our study suggested ecotypic differentiation-coastal or swamp vs terra firme-in S. globulifera. Comparison with other tree phylogeographic studies in Central Africa highlighted the relevance of species-specific responses to environmental change in forest trees.

  14. From ratites to rats: the size of fleshy fruits shapes species' distributions and continental rainforest assembly.

    PubMed

    Rossetto, Maurizio; Kooyman, Robert; Yap, Jia-Yee S; Laffan, Shawn W

    2015-12-07

    Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator.

  15. From ratites to rats: the size of fleshy fruits shapes species' distributions and continental rainforest assembly

    PubMed Central

    Rossetto, Maurizio; Kooyman, Robert; Yap, Jia-Yee S.; Laffan, Shawn W.

    2015-01-01

    Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator. PMID:26645199

  16. Hymenochaetaceae from the Guineo-Congolian rainforest: three new species of Phylloporia based on morphological, DNA sequences and ecological data.

    PubMed

    Yombiyeni, Prudence; Balezi, Alphonse; Amalfi, Mario; Decock, Cony

    2015-01-01

    Four species are added to Phylloporia. Three species, originating from the western edge of the Guineo-Congolian rainforest in Gabon (central Africa), are described as new. Phylloporia afrospathulata sp. nov. forms seasonal, stipitate, solitary basidiomata emerging from soil, more likely connected to buried roots, and has broadly ellipsoid basidiospores. Phylloporia inonotoides sp. nov. forms seasonal sessile, soft basidiomata, solitary at the base of small-stemmed trees including Crotonogyne manniana (Euphorbiaceae) and Garcinia cf. smeathmannii (Clusiaceae). It has a homogeneous context, large pores (2-3 mm), and oblong-ellipsoid to suballantoid basidiospores. Phylloporia fulva sp. nov. forms sessile, conchate, mostly pendant, gregarious basidiomata emerging from the trunk of an unidentified small-stemmed tree and has small, subglobose basidiospores. This species is compared to Polyporus pullus and Phylloporia pulla comb. nov. and proposed based on the study of the type specimen. Phylogenetic inferences using partial nuc 28S DNA sequence data (region including the D1/D2/D3 domains) and the most exhaustive dataset available to date resolved these new morphospecies as three distinct terminal lineages. No sequence data of P. pulla currently is available. The 28S-based phylogenic inferences poorly resolved the interspecific relationships within the Phylloporia clade.

  17. Six new species of the genus Opopaea Simon, 1891 from Xishuangbanna Rainforest, southwestern China (Araneae: Oonopidae).

    PubMed

    Tong, Yanfeng; Li, Shuqiang

    2015-03-11

    Seven species of the genus Opopaea Simon, 1891 from Xishuangbanna Rainforest, Yunnan, China are recognized, including six new species: Opopaea auriforma sp. nov. (male, female), Opopaea cornuta Yin & Wang, 1984, Opopaea flabellata sp. nov. (female), Opopaea macula sp. nov. (male, female), Opopaea rigidula sp. nov. (male, female), Opopaea semilunata sp. nov. (female), and Opopaea zhengi sp. nov. (male, female). Morphological descriptions and illustrations of all the six new species are given. All the types are deposited in the Institute of Zoology, Chinese Academy of Sciences in Beijing (IZCAS).

  18. New species of Microcentrum Scudder, 1862 (Orthoptera: Tettigonioidea: Phaneropteridae) from Amazon rainforest.

    PubMed

    Da Silva Sovano, Rafael S; Cadena-Castañeda, Oscar J

    2015-03-26

    A regional study is performed for the Amazonian species of the genus Microcentrum Scudder, 1862, its proposed Microcentrum punctifrons Brunner von Wattenwyl, 1891 as nomen dubium n. stat. and two new species are described: Microcentrum amacayacu Cadena-Casteñada, Sovano n. sp. and Microcentrum xavieri Sovano, Cadena-Casteñada n. sp. the Colombian and Brazilian Amazon, respectively. A list and a key to the Amazonian species are also provided, along with a discussion on their distribution, according to endemism areas established to Amazon rainforest.

  19. Exact solutions for species tree inference from discordant gene trees.

    PubMed

    Chang, Wen-Chieh; Górecki, Paweł; Eulenstein, Oliver

    2013-10-01

    Phylogenetic analysis has to overcome the grant challenge of inferring accurate species trees from evolutionary histories of gene families (gene trees) that are discordant with the species tree along whose branches they have evolved. Two well studied approaches to cope with this challenge are to solve either biologically informed gene tree parsimony (GTP) problems under gene duplication, gene loss, and deep coalescence, or the classic RF supertree problem that does not rely on any biological model. Despite the potential of these problems to infer credible species trees, they are NP-hard. Therefore, these problems are addressed by heuristics that typically lack any provable accuracy and precision. We describe fast dynamic programming algorithms that solve the GTP problems and the RF supertree problem exactly, and demonstrate that our algorithms can solve instances with data sets consisting of as many as 22 taxa. Extensions of our algorithms can also report the number of all optimal species trees, as well as the trees themselves. To better asses the quality of the resulting species trees that best fit the given gene trees, we also compute the worst case species trees, their numbers, and optimization score for each of the computational problems. Finally, we demonstrate the performance of our exact algorithms using empirical and simulated data sets, and analyze the quality of heuristic solutions for the studied problems by contrasting them with our exact solutions.

  20. Root systems of successional and old-growth forest species and its role on nutrient dynamics within a tropical rainforest in Indonesia

    SciTech Connect

    Soedjito, H.

    1990-01-01

    Most studies of nutrient dynamics in tropical rainforest have focused on the above ground portion of forest trees. However, the aim of this dissertation is to demonstrate the root systems also play an important role in nutrient dynamics. Nutrient dynamics, in general, are likely to differ between successional forest and old-growth forest. To test for differences in nutrient uptake between trees of successional and old-growth forests, the author experimentally compared seedlings of six different species by measuring biomass allocation and nutrient concentrations as well as determining spatial patterns of root distribution and the absorption ability of the root systems by usign the [sup 32]P radiotracer technique. Young saplings of ten species from natural habitats were also examined for the same parameters, and the results to determine whether results of the laboratory experiments were consistent with field results. It was found that as seedlings, roots of successional forest species penetrate deeper into the soil and have longer lateral roots than old-growth forest species. Successional forest species also had greater biomass accumulation rates, higher ability to absorb [sup 32]P, and contained higher levels of nutrients than species of old-growth forest. Mycorrhizal associations are suspected to be responsible for the high nutrient concentrations, primarily of P and N, within successional species. Successional forest tree species had more cases of infection by vesicular arbuscular mycorrhizas (VAM), while old-growth forest species were infected by both VAM and ectomycorrhizas. Therefore, successional seedlings can play an important role in conserving released nutrients after disturbance. At the landscape level, successional species together with old-growth species can maintain sustainable nutrient cycling within tropical rainforests.

  1. Individual Species-Area Relationship of Woody Plant Communities in a Heterogeneous Subtropical Monsoon Rainforest

    PubMed Central

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species’ habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species’ interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (<10–30 m); (ii) the detection of accumulator species was lower at large interaction distances (>30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions. PMID:25884405

  2. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

    PubMed

    Rowland, Lucy; Lobo-do-Vale, Raquel L; Christoffersen, Bradley O; Melém, Eliane A; Kruijt, Bart; Vasconcelos, Steel S; Domingues, Tomas; Binks, Oliver J; Oliveira, Alex A R; Metcalfe, Daniel; da Costa, Antonio C L; Mencuccini, Maurizio; Meir, Patrick

    2015-12-01

    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity.

  3. Evolutionary consequences of human disturbance in a rainforest bird species from Central Africa.

    PubMed

    Smith, Thomas B; Milá, Borja; Grether, Gregory F; Slabbekoorn, Hans; Sepil, Irem; Buermann, Wolfgang; Saatchi, Sassan; Pollinger, John P

    2008-01-01

    Relatively little attention has been directed towards understanding the impacts of human disturbance on evolutionary processes that produce and maintain biodiversity. Here, we examine the influence of anthropogenic habitat changes on traits typically associated with natural and sexual selection in the little greenbul (Andropadus virens), an African rainforest bird species. Using satellite remote-sensing and field survey data, we classified habitats into nonhuman-altered mature and human-altered secondary forest. Mature rainforest consisted of pristine rainforest, with little or no human influence, and secondary forest was characterized by plantations of coffee and cacao and high human impacts. Andropadus virens abundance was higher in secondary forest, and populations inhabiting mature rainforest were significantly larger in wing and tarsus length and bill size; characters often correlated with fitness. To assess the extent to which characters important in sexual section and mate choice might be influenced by habitat change, we also examined differences in plumage colour and song. Plumage colour and the variance in plumage luminance were found to differ between forest types, and song duration was found to be significantly longer in mature forest. The possible adaptive significance of these differences in traits is discussed. Despite relatively high levels of gene flow across habitats, amplified fragment length polymorphism analysis revealed that a small proportion of high-F(ST) loci differentiated mature from secondary forest populations. These loci were significant outliers against neutral expectations in a simulation analysis, suggesting a role for divergent selection in differentiation across habitats. A distance-based redundancy analysis further showed that forest type as defined by remote-sensing variables was significantly associated with genetic dissimilarities between habitats, even when controlling for distance. The observed shifts in morphology, plumage

  4. Designing Mixed Species Tree Plantations for the Tropics: Balancing Ecological Attributes of Species with Landholder Preferences in the Philippines

    PubMed Central

    Nguyen, Huong; Lamb, David; Herbohn, John; Firn, Jennifer

    2014-01-01

    A mixed species reforestation program known as the Rainforestation Farming system was undertaken in the Philippines to develop forms of farm forestry more suitable for smallholders than the simple monocultural plantations commonly used then. In this study, we describe the subsequent changes in stand structure and floristic composition of these plantations in order to learn from the experience and develop improved prescriptions for reforestation systems likely to be attractive to smallholders. We investigated stands aged from 6 to 11 years old on three successive occasions over a 6 year period. We found the number of species originally present in the plots as trees >5 cm dbh decreased from an initial total of 76 species to 65 species at the end of study period. But, at the same time, some new species reached the size class threshold and were recruited into the canopy layer. There was a substantial decline in tree density from an estimated stocking of about 5000 trees per ha at the time of planting to 1380 trees per ha at the time of the first measurement; the density declined by a further 4.9% per year. Changes in composition and stand structure were indicated by a marked shift in the Importance Value Index of species. Over six years, shade-intolerant species became less important and the native shade-tolerant species (often Dipterocarps) increased in importance. Based on how the Rainforestation Farming plantations developed in these early years, we suggest that mixed-species plantations elsewhere in the humid tropics should be around 1000 trees per ha or less, that the proportion of fast growing (and hence early maturing) trees should be about 30–40% of this initial density and that any fruit tree component should only be planted on the plantation margin where more light and space are available for crowns to develop. PMID:24751720

  5. Designing mixed species tree plantations for the tropics: balancing ecological attributes of species with landholder preferences in the Philippines.

    PubMed

    Nguyen, Huong; Lamb, David; Herbohn, John; Firn, Jennifer

    2014-01-01

    A mixed species reforestation program known as the Rainforestation Farming system was undertaken in the Philippines to develop forms of farm forestry more suitable for smallholders than the simple monocultural plantations commonly used then. In this study, we describe the subsequent changes in stand structure and floristic composition of these plantations in order to learn from the experience and develop improved prescriptions for reforestation systems likely to be attractive to smallholders. We investigated stands aged from 6 to 11 years old on three successive occasions over a 6 year period. We found the number of species originally present in the plots as trees >5 cm dbh decreased from an initial total of 76 species to 65 species at the end of study period. But, at the same time, some new species reached the size class threshold and were recruited into the canopy layer. There was a substantial decline in tree density from an estimated stocking of about 5000 trees per ha at the time of planting to 1380 trees per ha at the time of the first measurement; the density declined by a further 4.9% per year. Changes in composition and stand structure were indicated by a marked shift in the Importance Value Index of species. Over six years, shade-intolerant species became less important and the native shade-tolerant species (often Dipterocarps) increased in importance. Based on how the Rainforestation Farming plantations developed in these early years, we suggest that mixed-species plantations elsewhere in the humid tropics should be around 1000 trees per ha or less, that the proportion of fast growing (and hence early maturing) trees should be about 30-40% of this initial density and that any fruit tree component should only be planted on the plantation margin where more light and space are available for crowns to develop.

  6. Tropical Rainforests.

    ERIC Educational Resources Information Center

    Nigh, Ronald B.; Nations, James D.

    1980-01-01

    Presented is a summary of scientific knowledge about the rainforest environment, a tropical ecosystem in danger of extermination. Topics include the current state of tropical rainforests, the causes of rainforest destruction, and alternatives of rainforest destruction. (BT)

  7. Comparative LC-MS-based metabolite profiling of the ancient tropical rainforest tree Symphonia globulifera.

    PubMed

    Cottet, Kévin; Genta-Jouve, Grégory; Fromentin, Yann; Odonne, Guillaume; Duplais, Christophe; Laprévote, Olivier; Michel, Sylvie; Lallemand, Marie-Christine

    2014-12-01

    In the last few years, several phytochemical studies have been undertaken on the tropical tree Symphonia globulifera leading to the isolation and characterisation of several compounds exhibiting antiparasitic activities against Plasmodium falciparum, Trypanosoma brucei and Leishmania donovani. The comparative LC-MS based metabolite profiling study conducted on the tree led to the identification of compounds originating from specific tissues. The results showed that renewable organs/tissues can be used as the starting material for the production of polycyclic poly-prenylated-acylphloroglucinols, therefore reducing impacts on biodiversity. This study also underlined the lack of knowledge on the secondary metabolites produced by S. globulifera since only a small number of the total detected features were putatively identified using the database of known compounds for the species.

  8. Germination and allometry of the native palm tree Euterpe edulis compared to the introduced E. oleracea and their hybrids in Atlantic rainforest.

    PubMed

    Tiberio, F C S; Sampaio-e-Silva, T A; Dodonov, P; Garcia, V A; Silva Matos, D M

    2012-11-01

    Palms are distinctive plants of tropics and have peculiar allometric relations. Understanding such relations is useful in the case of introduced species because their ability to establish and invade must be clarified in terms of their responses in the new site. Our purpose was to assess the survival and invasive capacity of an introduced palm species in the Atlantic rainforest, Euterpe oleracea Mart., compared to the native Euterpe edulis Mart. and to the hybrids produced between the two species. Considering this, we compared the allometry in different ontogenetic stages, the germination rates, and aspects of the initial development. The ontogenetic stages proposed for both Euterpe illustrated the growth patterns described for palm trees. E. oleracea and hybrids adjusted to the geometric similarity allometric model, while E. edulis presented a slope greater than would be expected considering this model, indicating a greater height for a given diameter. E. oleracea showed the same amount of pulp per fruit as E. edulis and a similar initial development of seedlings. The main differences observed were a lower germination rate and a faster height gain of E. oleracea seedlings. We conclude that E. oleracea, which is similar to E. edulis in aspects of allometry, development, seed and seedling morphology, may be an important competitor of this native palm tree in the Atlantic Forest.

  9. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest.

    PubMed

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest.

  10. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest

    PubMed Central

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest. PMID:26172543

  11. Two new species of Dryinidae (Hymenoptera: Chrysidoidea) from areas of Atlantic Rainforest at São Paulo State, Brazil.

    PubMed

    Martins, A L; Lara, R I R; Perioto, N W; Olmi, M

    2015-05-01

    Two new species of Dryinidae are described and illustrated Dryinus auratus Martins, Lara, Perioto & Olmi sp. nov. and Gonatopus mariae Martins, Lara, Perioto & Olmi sp. nov., both from areas of Atlantic Rainforest at São Paulo State, Brazil. Keys to species are provided.

  12. Isoprenoid emissions of trees in a tropical rainforest in Xishuangbanna, SW China

    NASA Astrophysics Data System (ADS)

    Wilske, B.; Cao, K.-F.; Schebeske, G.; Chen, J.-W.; Wang, A.; Kesselmeier, J.

    Isoprenoid emissions of eight tropical tree species of SE Asia were investigated using dynamic Teflon bag branch enclosures. Emission potentials of four species were considerably deviating from a previous report. Two species, Garcinia cowa and Celtis philippensis, emitted isoprene with standard emission factors, given as carbon on dry weight basis of 20.7 and 0.2μgg-1h-1, respectively, before the peak of the rainy season. After the peak of the rainy reason the standard emission changed to 17.5 and 0.7μgg-1h-1, respectively. The other six species emitted monoterpenes with low standard emission factors between <0.1 and 0.5μgg-1h-1. Four out of five species investigated at two different times of the year showed seasonal differences in emission rates and composition. Total isoprenoid emissions were generally higher with new leaf flush than with aged leaves. Overall, the results suggest that better understanding of volatile organic compounds (VOC) emission from tropical species of SE Asia requires investigations that cover different seasons.

  13. Computer simulation model of ecological succession in Australian subtropical rainforest. Environmental Sciences Division Publication No. 1407

    SciTech Connect

    Shugart, H.H.; Mortlock, A.T.; Hopkins, M.S.; Burgess, I.P.

    1980-04-01

    KIAMBRAM, a detailed simulation model for ecological succession in an Australian subtropical humid rainforest is documented in respect to model structure. Model parameters for 125 rainforest tree species are provided. A listing of the KIAMBRAM model and a sample of output from the model is included.

  14. Trade-offs between light interception and leaf water shedding: a comparison of shade- and sun-adapted species in a subtropical rainforest.

    PubMed

    Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun

    2014-01-01

    Species in high-rainfall regions have two major alternative approaches to quickly drain off water, i.e., increasing leaf inclination angles relative to the horizontal plane, or developing long leaf drip tips. We hypothesized that shade-adapted species will have more pronounced leaf drip tips but not greater inclination angles (which can reduce the ability to intercept light) compared to sun-adapted species and that length of leaf drip tips will be negatively correlated with photosynthetic capacity [characterized by light-saturated net photosynthetic rates (Amax), associated light compensation points (LCP), and light saturation points (LSP)]. We tested this hypothesis by measuring morphological and physiological traits that are associated with light-interception and water shedding for seven shade-adapted shrub species, ten sun-adapted understory shrub species, and 15 sun-adapted tree species in a subtropical Chinese rainforest, where mean annual precipitation is around 1,600 mm. Shade-adapted understory species had lower LMA, Amax, LSP, and LCP compared to understory or canopy sun-adapted species; their leaf and twig inclination angles were significantly smaller and leaf drip tips were significantly longer than those in sun-adapted species. This suggests that shade-adapted understory species tend to develop pronounced leaf drip tips but not large leaf inclination angles to shed water. The length of leaf drip tips was negatively correlated with leaf inclination angles and photosynthetic capacity. These relationships were consistent between ordinary regression and phylogenetic generalized least squares analyses. Our study illustrates the trade-offs between light interception and leaf water shedding and indicates that length of leaf drip tips can be used as an indicator of adaptation to shady conditions and overall photosynthetic performance of shrub species in subtropical rainforests.

  15. Morphological and molecular characterization and phylogenetic relationships of a new species of trypanosome in Tapirus terrestris (lowland tapir), Trypanosoma terrestris sp. nov., from Atlantic Rainforest of southeastern Brazi

    PubMed Central

    2013-01-01

    Background The Lowland tapir (Tapirus terrestris) is the largest Brazilian mammal and despite being distributed in various Brazilian biomes, it is seriously endangered in the Atlantic Rainforest. These hosts were never evaluated for the presence of Trypanosoma parasites. Methods The Lowland tapirs were captured in the Brazilian southeastern Atlantic Rainforest, Espírito Santo state. Trypanosomes were isolated by hemoculture, and the molecular phylogeny based on small subunit rDNA (SSU rDNA) and glycosomal-3-phosphate dehydrogenase (gGAPDH) gene sequences and the ultrastructural features seen via light microscopy and scanning and transmission electron microscopy are described. Results Phylogenetic trees using combined SSU rDNA and gGAPDH data sets clustered the trypanosomes of Lowland tapirs, which were highly divergent from other trypanosome species. The phylogenetic position and morphological discontinuities, mainly in epimastigote culture forms, made it possible to classify the trypanosomes from Lowland tapirs as a separate species. Conclusions The isolated trypanosomes from Tapirus terrestris are a new species, Trypanosoma terrestris sp. n., and were positioned in a new Trypanosoma clade, named T. terrestris clade. PMID:24330660

  16. Species-soil associations, disturbance, and nutrient cycling in an Australian tropical rainforest.

    PubMed

    Gleason, Sean Michael; Read, Jennifer; Ares, Adrian; Metcalfe, Daniel J

    2010-04-01

    Resource availability and disturbance are important factors that shape the composition, structure, and functioning of ecosystems. We investigated the effects of soil fertility and disturbance on plant-soil interactions and nutrient cycling in a diverse tropical rainforest. Our goal was to determine how common soil specialisation is among species and how plant-soil interactions affect ecosystem functioning in the presence of disturbance. Most species (59%) showed significant fidelity to either fertile (basalt) or infertile (schist) soils. Obligate schist specialists (six species) contributed 39 and 37% to total stand-level basal area and aboveground net primary productivity, respectively. High nutrient use efficiency of schist specialists reduced the rates of within-stand nutrient cycling through the production of nutrient-poor plant tissues and litter. Although forests on schist soils had higher basal area and similar rates of productivity to forests on basalt, uptake of Mg, K, P, and N were markedly less on schist than on basalt, particularly after a cyclone disturbance. Stands on schist soils were also less affected by the cyclone and, as a result, contributed less (ca. 50%) Mg, K, P, and N inputs to the forest floor (via litterfall) than stands on basalt soils. System "openness" (i.e. the risk of nutrient loss) from cyclone-affected basalt forests was minimised by high rates of uptake following disturbance and large effective cation exchange capacities of soils. Soil-plant-disturbance interactions are likely to engender different fitness-enhancing strategies on fertile and infertile soils, possibly leading to the development and/or maintenance of diversity in rainforests.

  17. Tree species richness of upper Amazonian forests

    PubMed Central

    Gentry, Alwyn H.

    1988-01-01

    Upper Amazonian data for tree species richness in 1-hectare plots are reported. All plants ≥10 cm diameter were censused and identified in six plots in Amazonian Peru and one on the Venezuela-Brazil border. The two plots from the everwet forests near Iquitos, Peru, are the most species-rich in the world, with ≈300 species ≥10 cm diameter in single hectares; all of the Peruvian plots are among the most species-rich ever reported. Contrary to accepted opinion, upper Amazonian forest, and perhaps Central African ones, have as many or more tree species as comparable Asian forests. Very high tree species richness seems to be a general property of mature lowland evergreen forests on fertile to moderately infertile soils on all three continents. PMID:16578826

  18. Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island

    PubMed Central

    Birnbaum, Philippe; Ibanez, Thomas; Pouteau, Robin; Vandrot, Hervé; Hequet, Vanessa; Blanchard, Elodie; Jaffré, Tanguy

    2015-01-01

    High-elevation tropical islands are ideally suited for examining the factors that determine species distribution, given the complex topographies and climatic gradients that create a wide variety of habitats within relatively small areas. New Caledonia, a megadiverse Pacific archipelago, has long focussed the attention of botanists working on the spatial and environmental ranges of specific groups, but few studies have embraced the entire tree flora of the archipelago. In this study we analyse the distribution of 702 native species of rainforest trees of New Caledonia, belonging to 195 genera and 80 families, along elevation and rainfall gradients on ultramafic (UM) and non-ultramafic (non-UM) substrates. We compiled four complementary data sources: (i) herbarium specimens, (ii) plots, (iii) photographs and (iv) observations, totalling 38 936 unique occurrences distributed across the main island. Compiled into a regular 1-min grid (1.852 × 1.852 km), this dataset covered ∼22 % of the island. The studied rainforest species exhibited high environmental tolerance; 56 % of them were not affiliated to a substrate type and they exhibited wide elevation (average 891 ± 332 m) and rainfall (average 2.2 ± 0.8 m year−1) ranges. Conversely their spatial distribution was highly aggregated, which suggests dispersal limitation. The observed species richness was driven mainly by the density of occurrences. However, at the highest elevations or rainfalls, and particularly on UM, the observed richness tends to be lower, independently of the sampling effort. The study highlights the imbalance of the dataset in favour of higher values of rainfall and of elevation. Projected onto a map, under-represented areas are a guide as to where future sampling efforts are most required to complete our understanding of rainforest tree species distribution. PMID:26162898

  19. Automated species recognition of antbirds in a Mexican rainforest using hidden Markov models.

    PubMed

    Trifa, Vlad M; Kirschel, Alexander N G; Taylor, Charles E; Vallejo, Edgar E

    2008-04-01

    Behavioral and ecological studies would benefit from the ability to automatically identify species from acoustic recordings. The work presented in this article explores the ability of hidden Markov models to distinguish songs from five species of antbirds that share the same territory in a rainforest environment in Mexico. When only clean recordings were used, species recognition was nearly perfect, 99.5%. With noisy recordings, performance was lower but generally exceeding 90%. Besides the quality of the recordings, performance has been found to be heavily influenced by a multitude of factors, such as the size of the training set, the feature extraction method used, and number of states in the Markov model. In general, training with noisier data also improved recognition in test recordings, because of an increased ability to generalize. Considerations for improving performance, including beamforming with sensor arrays and design of preprocessing methods particularly suited for bird songs, are discussed. Combining sensor network technology with effective event detection and species identification algorithms will enable observation of species interactions at a spatial and temporal resolution that is simply impossible with current tools. Analysis of animal behavior through real-time tracking of individuals and recording of large amounts of data with embedded devices in remote locations is thus a realistic goal.

  20. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted

  1. Transcriptomic analysis suggests a key role for SQUAMOSA PROMOTER BINDING PROTEIN LIKE, NAC and YUCCA genes in the heteroblastic development of the temperate rainforest tree Gevuina avellana (Proteaceae).

    PubMed

    Ostria-Gallardo, Enrique; Ranjan, Aashish; Chitwood, Daniel H; Kumar, Ravi; Townsley, Brad T; Ichihashi, Yasunori; Corcuera, Luis J; Sinha, Neelima R

    2016-04-01

    Heteroblasty, the temporal development of the meristem, can produce diverse leaf shapes within a plant. Gevuina avellana, a tree from the South American temperate rainforest shows strong heteroblasty affecting leaf shape, transitioning from juvenile simple leaves to highly pinnate adult leaves. Light availability within the forest canopy also modulates its leaf size and complexity. Here we studied how the interaction between the light environment and the heteroblastic progression of leaves is coordinated in this species. We used RNA-seq on the Illumina platform to compare the range of transcriptional responses in leaf primordia of G. avellana at different heteroblastic stages and growing under different light environments. We found a steady up-regulation of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL), NAC, YUCCA and AGAMOUS-LIKE genes associated with increases in age, leaf complexity, and light availability. In contrast, expression of TCP, TPR and KNOTTED1 homeobox genes showed a sustained down-regulation. Additionally, genes involved in auxin synthesis/transport and jasmonate activity were differentially expressed, indicating an active regulation of processes controlled by these hormones. Our large-scale transcriptional analysis of the leaf primordia of G. avellana sheds light on the integration of internal and external cues during heteroblastic development in this species.

  2. Ultrastructure and pollen morphology of Bromeliaceae species from the Atlantic Rainforest in Southeastern Brazil.

    PubMed

    Silva, Vanessa J D; Ribeiro, Ester M; Luizi-Ponzo, Andrea P; Faria, Ana Paula G

    2016-01-01

    Pollen grain morphology of Bromeliaceae species collected in areas of the Atlantic Rainforest of southeastern Brazil was studied. The following species were analyzed: Aechmea bambusoides L.B.Sm. & Reitz, A. nudicaulis (L.) Griseb., A. ramosa Mart. ex Schult.f., Ananas bracteatus (Lindl.) Schult.f., Billbergia distachia (Vell.) Mez, B. euphemiae E. Morren, B. horrida Regel, B. zebrina (Herb.) Lindl., Portea petropolitana (Wawra) Mez, Pitcairnia flammea Lindl., Quesnelia indecora Mez, Tillandsia polystachia (L.) L., T. stricta Sol., T. gardneri Lindl., T. geminiflora Brongn. and Vriesea grandiflora Leme. Light and scanning electron microscopy were used and the species were grouped into three pollen types, organized according to aperture characteristics: Type I - pantoporate pollen grains observed in P. petropolitana, Type II - 2-porate pollen grains, observed in the genera Ananas, Aechmea and Quesnelia, and Type III - 1-colpate pollen grains, observed in the genera Billbergia, Pitcairnia, Tillandsia and Vriesea. Pollen data led to the construction of an identification key. The results showed that the species analyzed can be distinguished using mainly aperture features and exine ornamentation, and that these characteristics may assist in taxonomic studies of the family.

  3. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees.

    PubMed

    Schuldt, Bernhard; Leuschner, Christoph; Brock, Nicolai; Horna, Viviana

    2013-02-01

    It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth

  4. Pushing the Pace of Tree Species Migration

    PubMed Central

    Lazarus, Eli D.; McGill, Brian J.

    2014-01-01

    Plants and animals have responded to past climate changes by migrating with habitable environments, sometimes shifting the boundaries of their geographic ranges by tens of kilometers per year or more. Species migrating in response to present climate conditions, however, must contend with landscapes fragmented by anthropogenic disturbance. We consider this problem in the context of wind-dispersed tree species. Mechanisms of long-distance seed dispersal make these species capable of rapid migration rates. Models of species-front migration suggest that even tree species with the capacity for long-distance dispersal will be unable to keep pace with future spatial changes in temperature gradients, exclusive of habitat fragmentation effects. Here we present a numerical model that captures the salient dynamics of migration by long-distance dispersal for a generic tree species. We then use the model to explore the possible effects of assisted colonization within a fragmented landscape under a simulated tree-planting scheme. Our results suggest that an assisted-colonization program could accelerate species-front migration rates enough to match the speed of climate change, but such a program would involve an environmental-sustainability intervention at a massive scale. PMID:25162663

  5. Isoprene emission from tropical tree species.

    PubMed

    Padhy, P K; Varshney, C K

    2005-05-01

    Foliar emission of isoprene was measured in nine commonly growing tree species of Delhi, India. Dynamic flow enclosure technique was used and gas samples were collected onto Tenax-GC/Carboseive cartridges, which were then attached to the sample injection system in the gas chromatograph (GC). Eluting compounds were analysed using a flame ionisation detector (FID). Out of the nine tree species, isoprene emission was found in six species (Eucalyptus sp., Ficus benghalensis, Ficus religiosa, Mangifera indica, Melia azedarach, and Syzygium jambolanum), whereas, in the remaining three tree species (Alstonia scholaris, Azadirachta indica, and Cassia fistula) no isoprene emission was detected or the levels of emission were negligible or below the detection limit (BDL). Among six tree species, the highest hourly emission (10.2 +/- 6.8 microg g(-1) leaf dry weight, average of five seasons) was observed in Ficus religiosa, while minimum emission was from Melia azedarach (2.2 +/- 4.9 microg g(-1) leaf dry weight, average of five seasons). Isoprene emission (average of six species), over five seasons, was found to vary between 3.9 and 8.5 microg g(-1) leaf dry weight during the rainy season. In addition, significant diurnal variation in isoprene emission was observed in each species. The preliminary estimate made in this study on the annual biogenic VOC emission from India may probably be the first of its kind from this part of the world.

  6. New species of haemosporidian parasites (Haemosporida) from African rainforest birds, with remarks on their classification.

    PubMed

    Valkiūnas, Gediminas; Iezhova, Tatjana A; Loiseau, Claire; Chasar, Anthony; Smith, Thomas B; Sehgal, Ravinder N M

    2008-10-01

    Plasmodium (Novyella) megaglobularis n. sp. was recorded in the olive sunbird Cyanomitra olivacea, and Plasmodium (Novyella) globularis n. sp. and Haemoproteus (Parahaemoproteus) vacuolatus n. sp. were found in the yellow-whiskered greenbul Andropadus latirostris in rainforests of Ghana and Cameroon. These parasites are described based on the morphology of their blood stages and a segment of the mitochondrial cytochrome b gene, which can be used for molecular identification and diagnosis of these species. Illustrations of blood stages of new species are given, and phylogenetic analysis identifies deoxyribonucleic acid (DNA) lineages closely related to these parasites. Traditional taxonomy of avian pigment-forming haemosporidians of the families Plasmodiidae and Haemoproteidae is discussed based on the recent molecular phylogenies of these parasites. We conclude that further work to increase the number of precise linkages between haemosporidian DNA sequences and their corresponding morphospecies is needed before revising the current classification of haemosporidians. This study emphasises the value of both the polymerase chain reaction and microscopy in the identification of avian haemosporidian parasites.

  7. AFLP marker analysis revealing genetic structure of the tree Parapiptadenia rigida (Benth.) Brenan (Leguminosae-Mimosoideae) in the southern Brazilian Tropical Rainforest

    PubMed Central

    de Souza, Laís Bérgamo; Ruas, Eduardo A.; Rodrigues, Luana A.; Ruas, Claudete F.; Ruas, Paulo M.

    2013-01-01

    Parapiptadenia rigida is a tropical early secondary succession tree characteristic of the Tropical Atlantic Rainforest. This species is of great ecological importance in the recovery of degraded areas. In this study we investigated the variability and population genetic structure of eight populations of P. rigida. Five AFLP primer combinations were used in a sample of 159 individuals representing these eight populations, rendering a total of 126 polymorphic fragments. The averages of percentage of polymorphic loci, gene diversity, and Shannon index were 60.45%, 0.217, and 0.322, respectively. A significant correlation between the population genetic variability and the population sizes was observed. The genetic variability within populations (72.20%) was higher than between these (22.80%). No perfect correlation was observed between geographic and genetic distances, which might be explained by differences in deforestation intensities that occurred in these areas. A dendrogram constructed by the UPGMA method revealed the formation of two clusters, these also confirmed by Bayesian analysis for the number of K cluster. These results show that it is necessary to develop urgent management strategies for the conservation of certain populations of P. rigida, while other populations still preserve reasonably high levels of genetic variability. PMID:24385857

  8. AFLP marker analysis revealing genetic structure of the tree Parapiptadenia rigida (Benth.) Brenan (Leguminosae-Mimosoideae) in the southern Brazilian Tropical Rainforest.

    PubMed

    de Souza, Laís Bérgamo; Ruas, Eduardo A; Rodrigues, Luana A; Ruas, Claudete F; Ruas, Paulo M

    2013-12-01

    Parapiptadenia rigida is a tropical early secondary succession tree characteristic of the Tropical Atlantic Rainforest. This species is of great ecological importance in the recovery of degraded areas. In this study we investigated the variability and population genetic structure of eight populations of P. rigida. Five AFLP primer combinations were used in a sample of 159 individuals representing these eight populations, rendering a total of 126 polymorphic fragments. The averages of percentage of polymorphic loci, gene diversity, and Shannon index were 60.45%, 0.217, and 0.322, respectively. A significant correlation between the population genetic variability and the population sizes was observed. The genetic variability within populations (72.20%) was higher than between these (22.80%). No perfect correlation was observed between geographic and genetic distances, which might be explained by differences in deforestation intensities that occurred in these areas. A dendrogram constructed by the UPGMA method revealed the formation of two clusters, these also confirmed by Bayesian analysis for the number of K cluster. These results show that it is necessary to develop urgent management strategies for the conservation of certain populations of P. rigida, while other populations still preserve reasonably high levels of genetic variability.

  9. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent.

    PubMed

    Allman, Elizabeth S; Degnan, James H; Rhodes, John A

    2011-06-01

    Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.

  10. A new tropical montane firefly genus and species, active during winter and endemic to the southeastern Atlantic Rainforest (Coleoptera: Lampyridae).

    PubMed

    Silveira, Luiz Felipe Lima DA; Mermudes, José Ricardo Miras

    2017-01-17

    Here we describe Araucariocladus hiems gen. et sp. nov. (Lampyridae: Amydetinae), a firefly species endemic to high montane forests, and occurring during June, a relatively cool and dry month in the Southeastern Atlantic Rainforest of Brazil. We tentatively place it in Psilocladina McDermott, and discuss the limitations of its classification. We also provide illustrations of key structural features of the new taxa and discuss its affinities.

  11. Helminth fauna of two species of Physalaemus (Anura: Leiuperidae) from an undisturbed fragment of the Atlantic rainforest, southeastern Brazil.

    PubMed

    Toledo, Gislayne M; Aguiar, Aline; Silva, Reinaldo J; Anjos, Luciano A

    2013-10-01

    Two amphibian species, Physalaemus cuvieri and Physalaemus olfersii, from Serra do Mar State Park, which is an old-growth environment of the Atlantic Rainforest in southeastern Brazil, were surveyed for endoparasites. Hosts were sampled in 2 ponds; each was colonized by only 1 Physalaemus species. The overall prevalence of helminths was high and similar in both amphibian species. The mean intensity of infection in P. olfersii did not differ statistically from that in P. cuvieri . Nine helminth species were found: 2 acanthocephalans, 1 cestode, and 6 nematodes. Parasite richness in the 2 host species was similar. The composition of helminth fauna differed but the 2 hosts shared the most prevalent taxon of nematode (an unidentified species of Cosmocercidae). All helminth species exhibited an aggregated distribution pattern in the host species. The present results demonstrate relatively low species richness and the dominance of generalist parasite species. This study contributes to knowledge regarding the structure and composition of the helminth community in anurans.

  12. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  13. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment.

    PubMed

    Raich, James W; Clark, Deborah A; Schwendenmann, Luitgard; Wood, Tana E

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15-20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.

  14. Genetic diversity of Burkholderia (Proteobacteria) species from the Caatinga and Atlantic rainforest biomes in Bahia, Brazil.

    PubMed

    Santini, A C; Santos, H R M; Gross, E; Corrêa, R X

    2013-03-11

    The genus Burkholderia (β-Proteobacteria) currently comprises more than 60 species, including parasites, symbionts and free-living organisms. Several new species of Burkholderia have recently been described showing a great diversity of phenotypes. We examined the diversity of Burkholderia spp in environmental samples collected from Caatinga and Atlantic rainforest biomes of Bahia, Brazil. Legume nodules were collected from five locations, and 16S rDNA and recA genes of the isolated microorganisms were analyzed. Thirty-three contigs of 16S rRNA genes and four contigs of the recA gene related to the genus Burkholderia were obtained. The genetic dissimilarity of the strains ranged from 0 to 2.5% based on 16S rDNA analysis, indicating two main branches: one distinct branch of the dendrogram for the B. cepacia complex and another branch that rendered three major groups, partially reflecting host plants and locations. A dendrogram designed with sequences of this research and those designed with sequences of Burkholderia-type strains and the first hit BLAST had similar topologies. A dendrogram similar to that constructed by analysis of 16S rDNA was obtained using sequences of the fragment of the recA gene. The 16S rDNA sequences enabled sufficient identification of relevant similarities and groupings amongst isolates and the sequences that we obtained. Only 6 of the 33 isolates analyzed via 16S rDNA sequencing showed high similarity with the B. cepacia complex. Thus, over 3/4 of the isolates have potential for biotechnological applications.

  15. Spatial Distribution and Interspecific Associations of Tree Species in a Tropical Seasonal Rain Forest of China

    PubMed Central

    Lan, Guoyu; Getzin, Stephan; Wiegand, Thorsten; Hu, Yuehua; Xie, Guishui; Zhu, Hua; Cao, Min

    2012-01-01

    Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1) fourteen of the twenty tree species were negatively (or positively) associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2) Most saplings of the study species showed a significantly clumped distribution at small scales (0–10 m) which was lost at larger scales (10–30 m). (3) The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4) It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely) contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China. PMID:23029394

  16. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees

    PubMed Central

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio

    2016-01-01

    Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm3 cm−2, control: 1.77 ± 0.30 mm3 cm−2). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry

  17. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees.

    PubMed

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio

    2016-12-01

    Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm(3) cm(-2), control: 1.77 ± 0.30 mm(3) cm(-2)). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in

  18. A new species, Litomosoides odilae n. sp (Nematoda: Onchocercidae) from Oligoryzomys nigripes (Rodentia: Muridae) in the rainforest of Misiones, Argentina.

    PubMed

    Notarnicola, Juliana; Navone, Graciela

    2002-10-01

    A new species of Litomosoides was collected from the abdominal cavity of Oligoryzomys nigripes (Rodentia: Muridae) in a semideciduous secondary rainforest of Misiones, Argentina. Litomosoides odilae n. sp. belongs to the carinii group and is characterized by the amphids displaced dorsally; buccal capsule with an anterior segment transparent and an annular asymmetrical thickening; esophagus divided, with the posterior glandular portion slightly wider than the muscular; male cloacal aperture strongly protruded; and microfilaria sheathed with an attenuated tail. The morphology of the new species, which is similar to that of L petteri, a parasite of marsupials in Brazil, suggests that host-switching events may have occurred in the diversification of this genus.

  19. Ecophysiological Traits May Explain the Abundance of Climbing Plant Species across the Light Gradient in a Temperate Rainforest

    PubMed Central

    Gianoli, Ernesto; Saldaña, Alfredo; Jiménez-Castillo, Mylthon

    2012-01-01

    Climbing plants are a key component of rainforests, but mechanistic approaches to their distribution and abundance are scarce. In a southern temperate rainforest, we addressed whether the dominance of climbing plants across light environments is associated with the expression of ecophysiological traits. In mature forest and canopy gaps, we measured leaf size, specific leaf area, photosynthetic rate, and dark respiration in six of the most abundant woody vines. Mean values of traits and their phenotypic change (%) between mature forest and canopy gaps were predictor variables. Leaf size and specific leaf area were not significantly associated with climbing plant dominance. Variation in gas-exchange traits between mature forest and canopy gaps explained, at least partly, the dominance of climbers in this forest. A greater increase in photosynthetic rate and a lower increase in dark respiration rate when canopy openings occur were related to the success of climbing plant species. Dominant climbers showed a strategy of maximizing exploitation of resource availability but minimizing metabolic costs. Results may reflect phenotypic plasticity or genetic differentiation in ecophysiological traits between light environments. It is suggested that the dominant climbers in this temperate rainforest would be able to cope with forest clearings due to human activities. PMID:22685611

  20. Axiomatic opportunities and obstacles for inferring a species tree from gene trees.

    PubMed

    Steel, Mike; Velasco, Joel D

    2014-09-01

    The reconstruction of a central tendency "species tree" from a large number of conflicting gene trees is a central problem in systematic biology. Moreover, it becomes particularly problematic when taxon coverage is patchy, so that not all taxa are present in every gene tree. Here, we list four apparently desirable properties that a method for estimating a species tree from gene trees could have (the strongest property states that building a species tree from input gene trees and then pruning leaves gives a tree that is the same as, or more resolved than, the tree obtained by first removing the taxa from the input trees and then building the species tree). We show that although it is technically possible to simultaneously satisfy these properties when taxon coverage is complete, they cannot all be satisfied in the more general supertree setting. In part two, we discuss a concordance-based consensus method based on Baum's "plurality clusters", and an extension to concordance supertrees.

  1. Carbon stocks, tree diversity and their relation to soil properties in a Neotropical rainforest of South-East Mexico

    NASA Astrophysics Data System (ADS)

    Navarrete-Segueda, Armando; Siebe-Grabach, Christina; Ibarra-Manríquez, Guillermo; Martínez-Ramos, Miguel; Vázquez-Selem, Lorenzo

    2015-04-01

    Site heterogeneity at the local scale is an important factor for the generation of ecosystem services across the landscape. Several investigations at regional or local scale have identified the important role of soil properties and topography to determine tree diversity and productivity in tropical forests. We studied how the characteristics of soils affect the tree richness and carbon storage in the tropical rain forest of south-east Mexico. We compared carbon stocks on above-ground dry biomass of living trees, litter and soil organic carbon in 9 plots of 5000 m2 distributed in three contrasting soil-topographic units in neotropical forest (Floodplains/Low altitude hills/Steep slopes) all under the same climate. In each plot, landform features and soil properties to rooting depths were determined. We obtained richness and biomass values of trees with diameter at breast height (DBH) ≥ 10 cm. In each plot, litter and soil samples were taken for quantifying carbon in laboratory and allometric equations were applied to relate tree biomass (root and aerial) with carbon. We used cluster analysis as classification technique to compare richness between units. The relationship between soil properties and tree richness was obtained based on a canonical correspondence analysis. Both the classification and ordination techniques showed that plant diversity and richness respond to soil conditions. The variation was positively correlated with pH, total nitrogen, soil aeration, water retention capacity and exchange aluminum. The richness is smaller in floodplains, but this unit, with higher water and nutrient storage capacity, shows the largest carbon stocks. In contrast, limiting site for tree growth have less total carbon. Low altitude hills are much more heterogeneous in soil properties but also richer in tree species. The soil in this land unit has small rooting depth and available water holding capacity. Additionally, in this soil carbon stock is greater than the carbon

  2. Growing up or growing out? How soil pH and light affect seedling growth of a relictual rainforest tree

    PubMed Central

    Offord, Catherine A.; Meagher, Patricia F.; Zimmer, Heidi C.

    2014-01-01

    Seedling growth rates can have important long-term effects on forest dynamics. Environmental variables such as light availability and edaphic factors can exert a strong influence on seedling growth. In the wild, seedlings of Wollemi pine (Wollemia nobilis) grow on very acid soils (pH ∼4.3) in deeply shaded sites (∼3 % full sunlight). To examine the relative influences of these two factors on the growth of young W. nobilis seedlings, we conducted a glasshouse experiment growing seedlings at two soil pH levels (4.5 and 6.5) under three light levels: low (5 % full sun), medium (15 %) and high (50 %). Stem length and stem diameter were measured, stem number and branch number were counted, and chlorophyll and carotenoid content were analysed. In general, increased plant growth was associated with increased light, and with low pH irrespective of light treatment, and pigment content was higher at low pH. Maximum stem growth occurred in plants grown in the low pH/high light treatment combination. However, stem number was highest in low pH/medium light. We hypothesize that these differences in stem development of W. nobilis among light treatments were due to this species' different recruitment strategies in response to light: greater stem growth at high light and greater investment in multiple stem production at low light. The low light levels in the W. nobilis habitat may be a key limitation on stem growth and hence W. nobilis recruitment from seedling to adult. Light and soil pH are two key factors in the growth of this threatened relictual rainforest species. PMID:24790132

  3. Growing up or growing out? How soil pH and light affect seedling growth of a relictual rainforest tree.

    PubMed

    Offord, Catherine A; Meagher, Patricia F; Zimmer, Heidi C

    2014-01-01

    Seedling growth rates can have important long-term effects on forest dynamics. Environmental variables such as light availability and edaphic factors can exert a strong influence on seedling growth. In the wild, seedlings of Wollemi pine (Wollemia nobilis) grow on very acid soils (pH ∼4.3) in deeply shaded sites (∼3 % full sunlight). To examine the relative influences of these two factors on the growth of young W. nobilis seedlings, we conducted a glasshouse experiment growing seedlings at two soil pH levels (4.5 and 6.5) under three light levels: low (5 % full sun), medium (15 %) and high (50 %). Stem length and stem diameter were measured, stem number and branch number were counted, and chlorophyll and carotenoid content were analysed. In general, increased plant growth was associated with increased light, and with low pH irrespective of light treatment, and pigment content was higher at low pH. Maximum stem growth occurred in plants grown in the low pH/high light treatment combination. However, stem number was highest in low pH/medium light. We hypothesize that these differences in stem development of W. nobilis among light treatments were due to this species' different recruitment strategies in response to light: greater stem growth at high light and greater investment in multiple stem production at low light. The low light levels in the W. nobilis habitat may be a key limitation on stem growth and hence W. nobilis recruitment from seedling to adult. Light and soil pH are two key factors in the growth of this threatened relictual rainforest species.

  4. Memoan ciceroi gen. et sp. nov., a remarkable new firefly genus and species from the Atlantic Rainforest (Coleoptera: Lampyridae).

    PubMed

    Da Silveira, Luiz Felipe Lima; Mermudes, José Ricardo M

    2013-01-01

    A species of firefly discovered in a fragile and rapidly disappearing Atlantic Rainforest biome in Brazil does not fit into any of the existing subfamilies nor described generic categories in the Lampyridae and is described here as Memoan ciceroi gen. et sp. nov. and classed as Lampyridae Incertae sedis, as it exhibits features of both the Amydetinae and Lampyrinae. An overview of subfamily arrangements and relevant generic characters is given to support this action. Memoan gen. nov. can be distinguished by its alveolate pronotum and elytra; subserrate antennae, antenommeres II-IX compressed, antennal sockets obliquely inserted on tubercles; labial palp one-segmented and obconic, and by its conspicuous pleuroventral suture.

  5. Detectability in Audio-Visual Surveys of Tropical Rainforest Birds: The Influence of Species, Weather and Habitat Characteristics.

    PubMed

    Anderson, Alexander S; Marques, Tiago A; Shoo, Luke P; Williams, Stephen E

    2015-01-01

    Indices of relative abundance do not control for variation in detectability, which can bias density estimates such that ecological processes are difficult to infer. Distance sampling methods can be used to correct for detectability, but in rainforest, where dense vegetation and diverse assemblages complicate sampling, information is lacking about factors affecting their application. Rare species present an additional challenge, as data may be too sparse to fit detection functions. We present analyses of distance sampling data collected for a diverse tropical rainforest bird assemblage across broad elevational and latitudinal gradients in North Queensland, Australia. Using audio and visual detections, we assessed the influence of various factors on Effective Strip Width (ESW), an intuitively useful parameter, since it can be used to calculate an estimate of density from count data. Body size and species exerted the most important influence on ESW, with larger species detectable over greater distances than smaller species. Secondarily, wet weather and high shrub density decreased ESW for most species. ESW for several species also differed between summer and winter, possibly due to seasonal differences in calling behavior. Distance sampling proved logistically intensive in these environments, but large differences in ESW between species confirmed the need to correct for detection probability to obtain accurate density estimates. Our results suggest an evidence-based approach to controlling for factors influencing detectability, and avenues for further work including modeling detectability as a function of species characteristics such as body size and call characteristics. Such models may be useful in developing a calibration for non-distance sampling data and for estimating detectability of rare species.

  6. Detectability in Audio-Visual Surveys of Tropical Rainforest Birds: The Influence of Species, Weather and Habitat Characteristics

    PubMed Central

    Anderson, Alexander S.; Marques, Tiago A.; Shoo, Luke P.; Williams, Stephen E.

    2015-01-01

    Indices of relative abundance do not control for variation in detectability, which can bias density estimates such that ecological processes are difficult to infer. Distance sampling methods can be used to correct for detectability, but in rainforest, where dense vegetation and diverse assemblages complicate sampling, information is lacking about factors affecting their application. Rare species present an additional challenge, as data may be too sparse to fit detection functions. We present analyses of distance sampling data collected for a diverse tropical rainforest bird assemblage across broad elevational and latitudinal gradients in North Queensland, Australia. Using audio and visual detections, we assessed the influence of various factors on Effective Strip Width (ESW), an intuitively useful parameter, since it can be used to calculate an estimate of density from count data. Body size and species exerted the most important influence on ESW, with larger species detectable over greater distances than smaller species. Secondarily, wet weather and high shrub density decreased ESW for most species. ESW for several species also differed between summer and winter, possibly due to seasonal differences in calling behavior. Distance sampling proved logistically intensive in these environments, but large differences in ESW between species confirmed the need to correct for detection probability to obtain accurate density estimates. Our results suggest an evidence-based approach to controlling for factors influencing detectability, and avenues for further work including modeling detectability as a function of species characteristics such as body size and call characteristics. Such models may be useful in developing a calibration for non-distance sampling data and for estimating detectability of rare species. PMID:26110433

  7. Kerteszia Theobald (Diptera: Culicidae) mosquitoes and bromeliads: A landscape ecology approach regarding two species in the Atlantic rainforest.

    PubMed

    Chaves, Leonardo Suveges Moreira; Rodrigues de Sá, Ivy Luizi; Bergamaschi, Denise Pimentel; Sallum, Maria Anice Mureb

    2016-12-01

    On the ecological scale of an organism, a homogeneous geographical landscape can represent a mosaic of heterogeneous landscapes. The bionomy of Kerteszia mosquitoes can contribute to foundation landscape ecology by virtue of in the role of the configuration and composition of the habitat played in the distribution of mosquito species. Thus, this study aimed: to compare the abundance of Kerteszia in dense tropical rainforest, restinga and rural area, to assess the bioecological characteristics of the main bromeliads hosting Kerteszia, and to associate the bioecological arrangement of the bromeliads with Kerteszia distribution. Field collections were conducted in a monthly schedule from December of 2010 to November 2011. The vegetation of landscapes was characterized on the basis of a digital cartographic database, the manual of the Brazilian vegetation, environmental atlas information, satellite images and visits to the sites. Multivariate generalized linear models were employed using the R-project statistical program. The results were: Anopheles cruzii was the most frequent species in dense tropical rainforest (67.42%), with a positive association (deviance=25.8; P=0.002). Anopheles bellator was more abundant in the Restinga area (78.97%), with a positive association (deviance=10.4, P=0.018). There was a positive aggregation of Restinga with An. bellator (RR=2.42) but a lower level with An. cruzii (RR=0.31). Thus we can conclude that landscape characteristics influence the distribution of Kerteszia mosquitoes. An. bellator has a higher prevalence in Restinga areas, whereas An. cruzii was the most prevalent in the dense tropical rainforest.

  8. Discovering the Ancient Temperate Rainforest.

    ERIC Educational Resources Information Center

    Lindsay, Anne

    1997-01-01

    Two activities for grades 3 through 8 explore species adaptation and forestry issues in the North American rainforests. In one activity, students create imaginary species of plants or animals that are adapted for life in an ancient temperate rainforest. In the second activity, students role play groups affected by plans to log an area of the…

  9. Drivers of Tree Growth, Mortality and Harvest Preferences in Species-Rich Plantations for Smallholders and Communities in the Tropics.

    PubMed

    Nguyen, Huong; Vanclay, Jerome; Herbohn, John; Firn, Jennifer

    2016-01-01

    There is growing interest in multi-species tropical plantations but little information exists to guide their design and silviculture. The Rainforestation Farming system is the oldest tropical polyculture planting system in the Philippines and provides a unique opportunity to understand the underlying processes affecting tree performance within diverse plantings. Data collected from 85 plots distributed across the 18 mixed-species plantations in the Philippines was used to identify the factors influencing growth, probability of harvest, and death of trees in these complex plantings. The 18 sites (aged from 6 to 11 years at time of first measurement) were measured on three occasions over a 6-year period. We used data from the first period of data collection to develop models predicting harvesting probability and growth of trees in the second period. We found little evidence that tree species diversity had an effect on tree growth and tree loss at the community level, although a negative effect was found on tree growth of specific species such as Parashorea plicata and Swietenia macrophylla. While tree density of stands at age 10+ years (more than 1000 trees/ha with diameter > 5cm) did not have an impact on growth, growth rates were decreasing in stands with a high basal area. Tree size in the first period of measure was a good predictor for both tree growth and tree status in the next period, with larger trees tending to grow faster and having a greater chance of being harvested, and a lower possibility of mortality than smaller trees. Shade-intolerant trees were both more likely to be harvested, and had a higher probability of death, than shade-tolerant individuals. Native species and exotic species were equally likely to have been lost from the plots between measurement periods. However, shade-tolerant native trees were likely to grow faster than the others at age 10+ years. Our findings suggest that species traits (e.g. shade tolerance) could play an important

  10. Drivers of Tree Growth, Mortality and Harvest Preferences in Species-Rich Plantations for Smallholders and Communities in the Tropics

    PubMed Central

    Nguyen, Huong; Vanclay, Jerome; Herbohn, John; Firn, Jennifer

    2016-01-01

    There is growing interest in multi-species tropical plantations but little information exists to guide their design and silviculture. The Rainforestation Farming system is the oldest tropical polyculture planting system in the Philippines and provides a unique opportunity to understand the underlying processes affecting tree performance within diverse plantings. Data collected from 85 plots distributed across the 18 mixed-species plantations in the Philippines was used to identify the factors influencing growth, probability of harvest, and death of trees in these complex plantings. The 18 sites (aged from 6 to 11 years at time of first measurement) were measured on three occasions over a 6-year period. We used data from the first period of data collection to develop models predicting harvesting probability and growth of trees in the second period. We found little evidence that tree species diversity had an effect on tree growth and tree loss at the community level, although a negative effect was found on tree growth of specific species such as Parashorea plicata and Swietenia macrophylla. While tree density of stands at age 10+ years (more than 1000 trees/ha with diameter > 5cm) did not have an impact on growth, growth rates were decreasing in stands with a high basal area. Tree size in the first period of measure was a good predictor for both tree growth and tree status in the next period, with larger trees tending to grow faster and having a greater chance of being harvested, and a lower possibility of mortality than smaller trees. Shade-intolerant trees were both more likely to be harvested, and had a higher probability of death, than shade-tolerant individuals. Native species and exotic species were equally likely to have been lost from the plots between measurement periods. However, shade-tolerant native trees were likely to grow faster than the others at age 10+ years. Our findings suggest that species traits (e.g. shade tolerance) could play an important

  11. Mapping the geographic distribution of canopy species communities in lowland Amazon rainforest with CAO-AToMS (Invited)

    NASA Astrophysics Data System (ADS)

    Feret, J.; Asner, G. P.

    2013-12-01

    Mapping regional canopy diversity will greatly advance our understanding as well as the conservation of tropical rainforests. Changes in species composition across space and time are particularly important to understand the influence of climate, human activity and environmental factors on these ecosystems, but to date such monitoring is extremely challenging and is facing a scale gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. Advances were recently made in the field of spectroscopic imagery for the estimation of canopy alpha-diversity, and an original approach based on the segmentation of the spectral space proved its ability to estimate Shannon diversity index with unprecedented accuracy. We adapted this method in order to estimate spectral dissimilarity across landscape as a proxy for changes in species composition. We applied this approach and mapped species composition over four sites located in lowland rainforest of Peruvian Amazon. This study was based on spectroscopic imagery acquired using the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS), operating a unique sensor combining the fine spectral and spatial resolution required for such task. We obtained accurate estimation of Bray-Curtis distance between pairs of plots, which is the most commonly used metric to estimate dissimilarity in species composition (n=497 pairs, r=0.63). The maps of species composition were then compared to topo-hydrographic properties. Our results indicated a strong shift in species composition and community diversity between floodplain and terra firme terrain conditions as well as a significantly higher diversity of species communities within Amazonian floodplains. These results pave the way for global mapping of tropical canopy diversity at fine geographic resolution.

  12. Liana competition with tropical trees varies seasonally but not with tree species identity.

    PubMed

    Leonor, Alvarez-Cansino; Schnitzer, Stefan A; Reid, Joseph P; Powers, Jennifer S

    2015-01-01

    Lianas in tropical forests compete intensely with trees for above- and belowground resources and limit tree growth and regeneration. Liana competition with adult canopy trees may be particularly strong, and, if lianas compete more intensely with some tree species than others, they may influence tree species composition. We performed the first systematic, large-scale liana removal experiment to assess the competitive effects of lianas on multiple tropical tree species by measuring sap velocity and growth in a lowland tropical forest in Panama. Tree sap velocity increased 60% soon after liana removal compared to control trees, and tree diameter growth increased 25% after one year. Although tree species varied in their response to lianas, this variation was not significant, suggesting that lianas competed similarly with all tree species examined. The effect of lianas on tree sap velocity was particularly strong during the dry season, when soil moisture was low, suggesting that lianas compete intensely with trees for water. Under the predicted global change scenario of increased temperature and drought intensity, competition from lianas may become more prevalent in seasonal tropical forests, which, according to our data, should have a negative effect on most tropical tree species.

  13. African rainforests: past, present and future

    PubMed Central

    Malhi, Yadvinder; Adu-Bredu, Stephen; Asare, Rebecca A.; Lewis, Simon L.; Mayaux, Philippe

    2013-01-01

    The rainforests are the great green heart of Africa, and present a unique combination of ecological, climatic and human interactions. In this synthesis paper, we review the past and present state processes of change in African rainforests, and explore the challenges and opportunities for maintaining a viable future for these biomes. We draw in particular on the insights and new analyses emerging from the Theme Issue on ‘African rainforests: past, present and future’ of Philosophical Transactions of the Royal Society B. A combination of features characterize the African rainforest biome, including a history of climate variation; forest expansion and retreat; a long history of human interaction with the biome; a relatively low plant species diversity but large tree biomass; a historically exceptionally high animal biomass that is now being severely hunted down; the dominance of selective logging; small-scale farming and bushmeat hunting as the major forms of direct human pressure; and, in Central Africa, the particular context of mineral- and oil-driven economies that have resulted in unusually low rates of deforestation and agricultural activity. We conclude by discussing how this combination of factors influences the prospects for African forests in the twenty-first century. PMID:23878339

  14. Flavanol binding of nuclei from tree species.

    PubMed

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  15. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    NASA Astrophysics Data System (ADS)

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  16. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    PubMed Central

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198

  17. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest.

    PubMed

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-18

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  18. A new species of Acroleptus Bourgeois (Coleoptera: Lycidae) from the Brazilian Amazonian rainforest, with a note on its homonymy with Acroleptus Cabanis (Aves).

    PubMed

    Ferreira, Vinicius S

    2015-04-24

    Acroleptus costae sp. nov. is described from the Brazilian Amazonian rainforest, raising the diversity of the formerly monotypic genus to two known species. The validity of Acroleptus Bourgeois, 1886 (Insecta) is maintained while Acroleptus Cabanis, 1861 (Aves) is considered to be an incorrect subsequent spelling.

  19. An estimate of the number of tropical tree species

    PubMed Central

    Slik, J. W. Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F.; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L.; Bellingham, Peter J.; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal; Bongers, Frans; Boyle, Brad; Bradford, Matt; Brearley, Francis Q.; Breuer-Ndoundou Hockemba, Mireille; Bunyavejchewin, Sarayudh; Calderado Leal Matos, Darley; Castillo-Santiago, Miguel; Catharino, Eduardo L. M.; Chai, Shauna-Lee; Chen, Yukai; Colwell, Robert K.; Chazdon, Robin L.; Clark, Connie; Clark, David B.; Clark, Deborah A.; Culmsee, Heike; Damas, Kipiro; Dattaraja, Handanakere S.; Dauby, Gilles; Davidar, Priya; DeWalt, Saara J.; Doucet, Jean-Louis; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl A. O.; Eisenlohr, Pedro V.; Eler, Eduardo; Ewango, Corneille; Farwig, Nina; Feeley, Kenneth J.; Ferreira, Leandro; Field, Richard; de Oliveira Filho, Ary T.; Fletcher, Christine; Forshed, Olle; Franco, Geraldo; Fredriksson, Gabriella; Gillespie, Thomas; Gillet, Jean-François; Amarnath, Giriraj; Griffith, Daniel M.; Grogan, James; Gunatilleke, Nimal; Harris, David; Harrison, Rhett; Hector, Andy; Homeier, Jürgen; Imai, Nobuo; Itoh, Akira; Jansen, Patrick A.; Joly, Carlos A.; de Jong, Bernardus H. J.; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kenfack, David; Kessler, Michael; Kitayama, Kanehiro; Kooyman, Robert; Larney, Eileen; Laumonier, Yves; Laurance, Susan; Laurance, William F.; Lawes, Michael J.; do Amaral, Ieda Leao; Letcher, Susan G.; Lindsell, Jeremy; Lu, Xinghui; Mansor, Asyraf; Marjokorpi, Antti; Martin, Emanuel H.; Meilby, Henrik; Melo, Felipe P. L.; Metcalfe, Daniel J.; Medjibe, Vincent P.; Metzger, Jean Paul; Millet, Jerome; Mohandass, D.; Montero, Juan C.; de Morisson Valeriano, Márcio; Mugerwa, Badru; Nagamasu, Hidetoshi; Nilus, Reuben; Ochoa-Gaona, Susana; Onrizal; Page, Navendu; Parolin, Pia; Parren, Marc; Parthasarathy, Narayanaswamy; Paudel, Ekananda; Permana, Andrea; Piedade, Maria T. F.; Pitman, Nigel C. A.; Poorter, Lourens; Poulsen, Axel D.; Poulsen, John; Powers, Jennifer; Prasad, Rama C.; Puyravaud, Jean-Philippe; Razafimahaimodison, Jean-Claude; Reitsma, Jan; dos Santos, João Roberto; Roberto Spironello, Wilson; Romero-Saltos, Hugo; Rovero, Francesco; Rozak, Andes Hamuraby; Ruokolainen, Kalle; Rutishauser, Ervan; Saiter, Felipe; Saner, Philippe; Santos, Braulio A.; Santos, Fernanda; Sarker, Swapan K.; Satdichanh, Manichanh; Schmitt, Christine B.; Schöngart, Jochen; Schulze, Mark; Suganuma, Marcio S.; Sheil, Douglas; da Silva Pinheiro, Eduardo; Sist, Plinio; Stevart, Tariq; Sukumar, Raman; Sun, I.-Fang; Sunderland, Terry; Suresh, H. S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jangwei; Targhetta, Natália; Theilade, Ida; Thomas, Duncan W.; Tchouto, Peguy; Hurtado, Johanna; Valencia, Renato; van Valkenburg, Johan L. C. H.; Van Do, Tran; Vasquez, Rodolfo; Verbeeck, Hans; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Whitfeld, Timothy; Wich, Serge A.; Williams, John; Wittmann, Florian; Wöll, Hannsjoerg; Yang, Xiaobo; Adou Yao, C. Yves; Yap, Sandra L.; Yoneda, Tsuyoshi; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo; de Assis, Rafael L.; Garcia Luize, Bruno; Venticinque, Eduardo M.

    2015-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa. PMID:26034279

  20. An estimate of the number of tropical tree species.

    PubMed

    Slik, J W Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L; Bellingham, Peter J; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal; Bongers, Frans; Boyle, Brad; Bradford, Matt; Brearley, Francis Q; Breuer-Ndoundou Hockemba, Mireille; Bunyavejchewin, Sarayudh; Calderado Leal Matos, Darley; Castillo-Santiago, Miguel; Catharino, Eduardo L M; Chai, Shauna-Lee; Chen, Yukai; Colwell, Robert K; Chazdon, Robin L; Robin, Chazdon L; Clark, Connie; Clark, David B; Clark, Deborah A; Culmsee, Heike; Damas, Kipiro; Dattaraja, Handanakere S; Dauby, Gilles; Davidar, Priya; DeWalt, Saara J; Doucet, Jean-Louis; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl A O; Eisenlohr, Pedro V; Eler, Eduardo; Ewango, Corneille; Farwig, Nina; Feeley, Kenneth J; Ferreira, Leandro; Field, Richard; de Oliveira Filho, Ary T; Fletcher, Christine; Forshed, Olle; Franco, Geraldo; Fredriksson, Gabriella; Gillespie, Thomas; Gillet, Jean-François; Amarnath, Giriraj; Griffith, Daniel M; Grogan, James; Gunatilleke, Nimal; Harris, David; Harrison, Rhett; Hector, Andy; Homeier, Jürgen; Imai, Nobuo; Itoh, Akira; Jansen, Patrick A; Joly, Carlos A; de Jong, Bernardus H J; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kenfack, David; Kessler, Michael; Kitayama, Kanehiro; Kooyman, Robert; Larney, Eileen; Laumonier, Yves; Laurance, Susan; Laurance, William F; Lawes, Michael J; Amaral, Ieda Leao do; Letcher, Susan G; Lindsell, Jeremy; Lu, Xinghui; Mansor, Asyraf; Marjokorpi, Antti; Martin, Emanuel H; Meilby, Henrik; Melo, Felipe P L; Metcalfe, Daniel J; Medjibe, Vincent P; Metzger, Jean Paul; Millet, Jerome; Mohandass, D; Montero, Juan C; de Morisson Valeriano, Márcio; Mugerwa, Badru; Nagamasu, Hidetoshi; Nilus, Reuben; Ochoa-Gaona, Susana; Onrizal; Page, Navendu; Parolin, Pia; Parren, Marc; Parthasarathy, Narayanaswamy; Paudel, Ekananda; Permana, Andrea; Piedade, Maria T F; Pitman, Nigel C A; Poorter, Lourens; Poulsen, Axel D; Poulsen, John; Powers, Jennifer; Prasad, Rama C; Puyravaud, Jean-Philippe; Razafimahaimodison, Jean-Claude; Reitsma, Jan; Dos Santos, João Roberto; Roberto Spironello, Wilson; Romero-Saltos, Hugo; Rovero, Francesco; Rozak, Andes Hamuraby; Ruokolainen, Kalle; Rutishauser, Ervan; Saiter, Felipe; Saner, Philippe; Santos, Braulio A; Santos, Fernanda; Sarker, Swapan K; Satdichanh, Manichanh; Schmitt, Christine B; Schöngart, Jochen; Schulze, Mark; Suganuma, Marcio S; Sheil, Douglas; da Silva Pinheiro, Eduardo; Sist, Plinio; Stevart, Tariq; Sukumar, Raman; Sun, I-Fang; Sunderland, Terry; Sunderand, Terry; Suresh, H S; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jangwei; Targhetta, Natália; Theilade, Ida; Thomas, Duncan W; Tchouto, Peguy; Hurtado, Johanna; Valencia, Renato; van Valkenburg, Johan L C H; Van Do, Tran; Vasquez, Rodolfo; Verbeeck, Hans; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Whitfeld, Timothy; Wich, Serge A; Williams, John; Wittmann, Florian; Wöll, Hannsjoerg; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Yoneda, Tsuyoshi; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo; de Assis, Rafael L; Garcia Luize, Bruno; Venticinque, Eduardo M

    2015-06-16

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.

  1. STBase: one million species trees for comparative biology.

    PubMed

    McMahon, Michelle M; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J

    2015-01-01

    Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user's query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed

  2. Increases in the evolutionary potential of upper thermal limits under warmer temperatures in two rainforest Drosophila species.

    PubMed

    van Heerwaarden, Belinda; Malmberg, Michelle; Sgrò, Carla M

    2016-02-01

    Tropical and subtropical species represent the majority of biodiversity. These species are predicted to lack the capacity to evolve higher thermal limits in response to selection imposed by climatic change. However, these assessments have relied on indirect estimates of adaptive capacity, using conditions that do not reflect environmental changes projected under climate change. Using a paternal half-sib full-sib breeding design, we estimated the additive genetic variance and narrow-sense heritability for adult upper thermal limits in two rainforest-restricted species of Drosophila reared under two thermal regimes, reflecting increases in seasonal temperature projected for the Wet Tropics of Australia and under standard laboratory conditions (constant 25°C). Estimates of additive genetic variation and narrow-sense heritability for adult heat tolerance were significantly different from zero in both species under projected summer, but not winter or constant, thermal regimes. In contrast, significant broad-sense genetic variation was apparent in all thermal regimes for egg-to-adult viability. Environment-dependent changes in the expression of genetic variation for adult upper thermal limits suggest that predicting adaptive responses to climate change will be difficult. Estimating adaptive capacity under conditions that do not reflect future environmental conditions may provide limited insight into evolutionary responses to climate change.

  3. Spatio-temporal microhabitat use by two co-occurring species of scorpions in Atlantic rainforest in Brazil.

    PubMed

    Lira, André F A; Souza, Adriano M; Silva Filho, Arthur A C; Albuquerque, Cleide M R

    2013-06-01

    With the increasing devastation of the tropical rain forest, there is a critical need to understand how animal forest communities are structured and how habitat degradation will affect these communities. We conducted a field survey to investigate the microhabitat preferences of two co-occurring species of scorpions (Tityus pusillus and Ananteris mauryi) in a fragment of Atlantic rainforest, as well as their abundance and their ecological niche, during both the dry and rainy seasons. Behavioural aspects related to the use of the environment and the proportions of juveniles and adults are also described. The occurrence of intra- and interspecific coexistence was assessed by active search. In addition, pitfall catches were used to assess the structure of the population in the dry and rainy seasons. The differential patterns of spatial distribution in the litter layers provided evidence of partial niche partitioning between the two coexisting scorpion species depending on age and climatic conditions. Abundance, foraging behaviour and age structure (juveniles and adults) were seasonally influenced. We conclude that the diverse and subtle behaviours involved in interaction and habitat use may facilitate species coexistence. Resource partitioning and refuge sharing on a temporal and/or spatial scale, as well as predation pressure, may drive the dynamics and spatial distribution of scorpion species in the rain forest environment.

  4. Are temperate canopy spiders tree-species specific?

    PubMed

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

  5. The ghosts of trees past: savanna trees create enduring legacies in plant species composition.

    PubMed

    Stahlheber, Karen A; Crispin, Kimberly L; Anton, Cassidy; D'Antonio, Carla M

    2015-09-01

    Isolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation. Oak trees of all species created distinct, homogenous understory communities dominated by exotic grasses across several sites. The composition of the low-diversity understory communities showed less interannual variation than open grassland, despite a two-fold difference in precipitation between the driest and wettest year. Vegetation composition was correlated with variation in soil properties, which were strongly affected by trees. Oaks also influenced the communities beyond the edge of the crown, but this depended on site and oak species. Low-diversity understory communities persisted up to 43 years following the death of the tree. A gradual decline in the effect of trees on the physical, environment following death did not result in vegetation becoming more similar to open grassland over time. The presence of long-lasting legacies of past tree crowns highlights the difficulty of assigning control of the current distribution of herbaceous species in grassland to their contemporary environment.

  6. The Origins of Tropical Rainforest Hyperdiversity.

    PubMed

    Pennington, R Toby; Hughes, Mark; Moonlight, Peter W

    2015-11-01

    Traditional models for tropical species richness contrast rainforests as "museums" of old species or "cradles" of recent speciation. High plant species diversity in rainforests may be more likely to reflect high episodic evolutionary turnover of species--a scenario implicating high rates of both speciation and extinction through geological time.

  7. Efficient Bayesian species tree inference under the multispecies coalescent.

    PubMed

    Rannala, Bruce; Yang, Ziheng

    2017-01-04

    We develop a Bayesian method for inferring the species phylogeny under the multispecies coalescent (MSC) model. To improve the mixing properties of the Markov chain Monte Carlo (MCMC) algorithm that traverses the space of species trees, we implement two efficient MCMC proposals: the first is based on the Subtree Pruning and Regrafting (SPR) algorithm and the second is based on a node-slider algorithm. Like the Nearest-Neighbor Interchange (NNI) algorithm we implemented previously, both new algorithms propose changes to the species tree while simultaneously altering the gene trees at multiple genetic loci to automatically avoid conflicts with the newly proposed species tree. The method integrates over gene trees, naturally taking account of the uncertainty of gene tree topology and branch lengths given the sequence data. A simulation study was performed to examine the statistical properties of the new method. The method was found to show excellent statistical performance, inferring the correct species tree with near certainty when 10 loci were included in the dataset. The prior on species trees has some impact, particularly for small numbers of loci. We analyzed several previously published datasets (both real and simulated) for rattlesnakes and Philippine shrews, in comparison with alternative methods. The results suggest that the Bayesian coalescent-based method is statistically more efficient than heuristic methods based on summary statistics, and that our implementation is computationally more efficient than alternative full-likelihood methods under the MSC. Parameter estimates for the rattlesnake data suggest drastically different evolutionary dynamics between the nuclear and mitochondrial loci, even though they support largely consistent species trees. We discuss the different challenges facing the marginal likelihood calculation and transmodel MCMC as alternative strategies for estimating posterior probabilities for species trees.

  8. Evidence of tree species' range shifts in a complex landscape.

    PubMed

    Monleon, Vicente J; Lintz, Heather E

    2015-01-01

    Climate change is expected to change the distribution of species. For long-lived, sessile species such as trees, tracking the warming climate depends on seedling colonization of newly favorable areas. We compare the distribution of seedlings and mature trees for all but the rarest tree species in California, Oregon and Washington, United States of America, a large, environmentally diverse region. Across 46 species, the mean annual temperature of the range of seedlings was 0.120°C colder than that of the range of trees (95% confidence interval from 0.096 to 0.144°C). The extremes of the seedling distributions also shifted towards colder temperature than those of mature trees, but the change was less pronounced. Although the mean elevation and mean latitude of the range of seedlings was higher than and north of those of the range of mature trees, elevational and latitudinal shifts run in opposite directions for the majority of the species, reflecting the lack of a direct biological relationship between species' distributions and those variables. The broad scale, environmental diversity and variety of disturbance regimes and land uses of the study area, the large number and exhaustive sampling of tree species, and the direct causal relationship between the temperature response and a warming climate, provide strong evidence to attribute the observed shifts to climate change.

  9. Landscape Variation in Plant Defense Syndromes across a Tropical Rainforest

    NASA Astrophysics Data System (ADS)

    McManus, K. M.; Asner, G. P.; Martin, R.; Field, C. B.

    2014-12-01

    Plant defenses against herbivores shape tropical rainforest biodiversity, yet community- and landscape-scale patterns of plant defense and the phylogenetic and environmental factors that may shape them are poorly known. We measured foliar defense, growth, and longevity traits for 345 canopy trees across 84 species in a tropical rainforest and examined whether patterns of trait co-variation indicated the existence of plant defense syndromes. Using a DNA-barcode phylogeny and remote sensing and land-use data, we investigated how phylogeny and topo-edaphic properties influenced the distribution of syndromes. We found evidence for three distinct defense syndromes, characterized by rapid growth, growth compensated by defense, or limited palatability/low nutrition. Phylogenetic signal was generally lower for defense traits than traits related to growth or longevity. Individual defense syndromes were organized at different taxonomic levels and responded to different spatial-environmental gradients. The results suggest that a diverse set of tropical canopy trees converge on a limited number of strategies to secure resources and mitigate fitness losses due to herbivory, with patterns of distribution mediated by evolutionary histories and local habitat associations. Plant defense syndromes are multidimensional plant strategies, and thus are a useful means of discerning ecologically-relevant variation in highly diverse tropical rainforest communities. Scaling this approach to the landscape level, if plant defense syndromes can be distinguished in remotely-sensed data, they may yield new insights into the role of plant defense in structuring diverse tropical rainforest communities.

  10. Bushmeat hunting changes regeneration of African rainforests

    PubMed Central

    Effiom, Edu O.; Nuñez-Iturri, Gabriela; Smith, Henrik G.; Ottosson, Ulf; Olsson, Ola

    2013-01-01

    To assess ecological consequences of bushmeat hunting in African lowland rainforests, we compared paired sites, with high and low hunting pressure, in three areas of southeastern Nigeria. In hunted sites, populations of important seed dispersers—both small and large primates (including the Cross River gorilla, Gorilla gorilla diehli)—were drastically reduced. Large rodents were more abundant in hunted sites, even though they are hunted. Hunted and protected sites had similar mature tree communities dominated by primate-dispersed species. In protected sites, seedling communities were similar in composition to the mature trees, but in hunted sites species with other dispersal modes dominated among seedlings. Seedlings emerging 1 year after clearing of all vegetation in experimental plots showed a similar pattern to the standing seedlings. This study thus verifies the transforming effects of bushmeat hunting on plant communities of tropical forests and is one of the first studies to do so for the African continent. PMID:23516245

  11. Indirect interactions among tropical tree species through shared rodent seed predators: a novel mechanism of tree species coexistence.

    PubMed

    Garzon-Lopez, Carol X; Ballesteros-Mejia, Liliana; Ordoñez, Alejandro; Bohlman, Stephanie A; Olff, Han; Jansen, Patrick A

    2015-08-01

    The coexistence of numerous tree species in tropical forests is commonly explained by negative dependence of recruitment on the conspecific seed and tree density due to specialist natural enemies that attack seeds and seedlings ('Janzen-Connell' effects). Less known is whether guilds of shared seed predators can induce a negative dependence of recruitment on the density of different species of the same plant functional group. We studied 54 plots in tropical forest on Barro Colorado Island, Panama, with contrasting mature tree densities of three coexisting large seeded tree species with shared seed predators. Levels of seed predation were far better explained by incorporating seed densities of all three focal species than by conspecific seed density alone. Both positive and negative density dependencies were observed for different species combinations. Thus, indirect interactions via shared seed predators can either promote or reduce the coexistence of different plant functional groups in tropical forest.

  12. Herbs versus Trees: Influences on Teenagers' Knowledge of Plant Species

    ERIC Educational Resources Information Center

    Lückmann, Katrin; Menzel, Susanne

    2014-01-01

    The study reports on species knowledge among German adolescents (n = 507) as: (1) self-assessed evaluation of one's species knowledge; and (2) factual knowledge about popular local herbs and trees. Besides assessing species knowledge, we were interested in whether selected demographic factors, environmental attitude (as measured through the New…

  13. Exploring the Taxonomy of Oaks and Related Tree Species

    ERIC Educational Resources Information Center

    McMaster, Robert T.

    2004-01-01

    A lab in Eastern North America conducted a study to determine the taxonomic relationship between deciduous trees and several species of oaks by calculating the similarity index of all species to be studied. The study enabled students to classify the different species of oaks according to their distinct characteristics.

  14. Event-based biogeography of Eusarcus dandara sp. nov. (Opiliones: Gonyleptidae), an endemic species of the Northern Atlantic Rainforest of Brazil, and its closely related species.

    PubMed

    Saraiva, Nícolas Eugenio DE Vasconcelos; Dasilva, Marcio Bernardino

    2016-12-12

    Here, we describe a new species of Eusarcus and reconstruct the geographical evolution of its species group based on biogeographical event-based analysis. Eusarcus dandara sp. nov. has been recorded from Alagoas state, in northeastern Brazil, which represents an important range extension of the genus to the northern Atlantic Rainforest. We performed a cladistic morphological analysis based on new data and data from a previous systematic review of the genus to reconstruct the phylogenetic placement of the new species. This analysis resulted in six most parsimonious cladograms. We performed the biogeographical reconstruction using the Treefitter 1.3B1 algorithm for the clade of eight species that includes E. dandara sp. nov., and we tested the significance of the reconstructions. We found two alternative reconstructions depended on the differences in species relationships; both were significant (0.002 ≤ p ≤ 0.019). The phylogenetic placement of the new species is consistent with some expectations based on previous biogeographical studies of Atlantic Rainforest harvestmen. Reconstructions reveal the origin of the species group in the northeast region, in the Atlantic Rainforest plus interior and dry biomes, such as the Caatinga xeric shrubland and Cerrado savanna, with subsequent dispersal to the southeast region. Harvestmen are good models to study the historical biogeography of the Atlantic Rainforest, especially those species that are endemic, like most Eusarcus. We have demonstrated a complex history of the spatial evolution of the group and the importance of the adjacent drier biomes in the evolution of endemic organisms of the Atlantic Rainforest.

  15. Mapping urban forest tree species using IKONOS imagery: preliminary results.

    PubMed

    Pu, Ruiliang

    2011-01-01

    A stepwise masking system with high-resolution IKONOS imagery was developed to identify and map urban forest tree species/groups in the City of Tampa, Florida, USA. The eight species/groups consist of sand live oak (Quercus geminata), laurel oak (Quercus laurifolia), live oak (Quercus virginiana), magnolia (Magnolia grandiflora), pine (species group), palm (species group), camphor (Cinnamomum camphora), and red maple (Acer rubrum). The system was implemented with soil-adjusted vegetation index (SAVI) threshold, textural information after running a low-pass filter, and brightness threshold of NIR band to separate tree canopies from non-vegetated areas from other vegetation types (e.g., grass/lawn) and to separate the tree canopies into sunlit and shadow areas. A maximum likelihood classifier was used to identify and map forest type and species. After IKONOS imagery was preprocessed, a total of nine spectral features were generated, including four spectral bands, three hue-intensity-saturation indices, one SAVI, and one texture image. The identified and mapped results were examined with independent ground survey data. The experimental results indicate that when classifying all the eight tree species/ groups with the high-resolution IKONOS image data, the identifying accuracy was very low and could not satisfy a practical application level, and when merging the eight species/groups into four major species/groups, the average accuracy is still low (average accuracy = 73%, overall accuracy = 86%, and κ = 0.76 with sunlit test samples). Such a low accuracy of identifying and mapping the urban tree species/groups is attributable to low spatial resolution IKONOS image data relative to tree crown size, to complex and variable background spectrum impact on crown spectra, and to shadow/shaded impact. The preliminary results imply that to improve the tree species identification accuracy and achieve a practical application level in urban area, multi-temporal (multi

  16. New species of Daidalotarsonemus and Excelsotarsonemus (Acari: Tarsonemidae) from the Brazilian rainforest including new morphological characters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three new species, Daidalotarsonemus oliveirai Rezende, Lofego & Ochoa, sp. nov.,Excelsotarsonemus caravelis Rezende, Lofego & Ochoa, sp. nov. and E. tupi Rezende, Lofego & Ochoa, sp. nov. are described and illustrated. Measurements for these species are provided, as well as drawings, phase contrast...

  17. Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays.

    PubMed

    McCormack, John E; Heled, Joseph; Delaney, Kathleen S; Peterson, A Townsend; Knowles, L Lacey

    2011-01-01

    Estimates of the timing of divergence are central to testing the underlying causes of speciation. Relaxed molecular clocks and fossil calibration have improved these estimates; however, these advances are implemented in the context of gene trees, which can overestimate divergence times. Here we couple recent innovations for dating speciation events with the analytical power of species trees, where multilocus data are considered in a coalescent context. Divergence times are estimated in the bird genus Aphelocoma to test whether speciation in these jays coincided with mountain uplift or glacial cycles. Gene trees and species trees show general agreement that diversification began in the Miocene amid mountain uplift. However, dates from the multilocus species tree are more recent, occurring predominately in the Pleistocene, consistent with theory that divergence times can be significantly overestimated with gene-tree based approaches that do not correct for genetic divergence that predates speciation. In addition to coalescent stochasticity, Haldane's rule could account for some differences in timing estimates between mitochondrial DNA and nuclear genes. By incorporating a fossil calibration applied to the species tree, in addition to the process of gene lineage coalescence, the present approach provides a more biologically realistic framework for dating speciation events, and hence for testing the links between diversification and specific biogeographic and geologic events.

  18. Diversity and Structure of Fungal Communities in Neotropical Rainforest Soils: The Effect of Host Recurrence.

    PubMed

    Schimann, Heidy; Bach, Cyrille; Lengelle, Juliette; Louisanna, Eliane; Barantal, Sandra; Murat, Claude; Buée, Marc

    2017-02-01

    The patterns of the distribution of fungal species and their potential interactions with trees remain understudied in Neotropical rainforests, which harbor more than 16,000 tree species, mostly dominated by endomycorrhizal trees. Our hypothesis was that tree species shape the non-mycorrhizal fungal assemblages in soil and litter and that the diversity of fungal communities in these two compartments is partly dependent on the coverage of trees in the Neotropical rainforest. In French Guiana, a long-term plantation and a natural forest were selected to test this hypothesis. Fungal ITS1 regions were sequenced from soil and litter samples from within the vicinity of tree species. A broad range of fungal taxa was found, with 42 orders and 14 classes. Significant spatial heterogeneity in the fungal communities was found without strong variation in the species richness and evenness among the tree plots. However, tree species shaped the fungal assemblages in the soil and litter, explaining up to 18 % of the variation among the communities in the natural forest. These results demonstrate that vegetation cover has an important effect on the structure of fungal assemblages inhabiting the soil and litter in Amazonian forests, illustrating the relative impact of deterministic processes on fungal community structures in these highly diverse ecosystems.

  19. Inter- and intraspecific comparisons of antiherbivore defenses in three species of rainforest understory shrubs.

    PubMed

    Fincher, R M; Dyer, L A; Dodson, C D; Richards, J L; Tobler, M A; Searcy, J; Mather, J E; Reid, A J; Rolig, J S; Pidcock, W

    2008-04-01

    Plants defend themselves against herbivores and pathogens with a suite of morphological, phenological, biochemical, and biotic defenses, each of which is presumably costly. The best studied are allocation costs that involve trade-offs in investment of resources to defense versus other plant functions. Decreases in growth or reproductive effort are the costs most often associated with antiherbivore defenses, but trade-offs among different defenses may also occur within a single plant species. We examined trade-offs among defenses in closely related tropical rain forest shrubs (Piper cenocladum, P. imperiale, and P. melanocladum) that possess different combinations of three types of defense: ant mutualists, secondary compounds, and leaf toughness. We also examined the effectiveness of different defenses and suites of defenses against the most abundant generalist and specialist Piper herbivores. For all species examined, leaf toughness was the most effective defense, with the toughest species, P. melanocladum, receiving the lowest incidence of total herbivory, and the least tough species, P. imperiale, receiving the highest incidence. Although variation in toughness within each species was substantial, there were no intraspecific relationships between toughness and herbivory. In other Piper studies, chemical and biotic defenses had strong intraspecific negative correlations with herbivory. A wide variety of defensive mechanisms was quantified in the three Piper species studied, ranging from low concentrations of chemical defenses in P. imperiale to a complex suite of defenses in P. cenocladum that includes ant mutualists, secondary metabolites, and moderate toughness. Ecological costs were evident for the array of defensive mechanisms within these Piper species, and the differences in defensive strategies among species may represent evolutionary trade-offs between costly defenses.

  20. Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima

    PubMed Central

    Cannon, Charles H.; Hijmans, Robert J.; Piessens, Thomas; Saw, Leng Guan; van Welzen, Peter C.; Slik, J. W. Ferry

    2014-01-01

    The extent of Dipterocarp rainforests on the emergent Sundaland landmass in Southeast Asia during Quaternary glaciations remains a key question. A better understanding of the biogeographic history of Sundaland could help explain current patterns of biodiversity and support the development of effective forest conservation strategies. Dipterocarpaceae trees dominate the rainforests of Sundaland, and their distributions serve as a proxy for rainforest extent. We used species distribution models (SDMs) of 317 Dipterocarp species to estimate the geographic extent of appropriate climatic conditions for rainforest on Sundaland at the last glacial maximum (LGM). The SDMs suggest that the climate of central Sundaland at the LGM was suitable to sustain Dipterocarp rainforest, and that the presence of a previously suggested transequatorial savannah corridor at that time is unlikely. Our findings are supported by palynologic evidence, dynamic vegetation models, extant mammal and termite communities, vascular plant fatty acid stable isotopic compositions, and stable carbon isotopic compositions of cave guano profiles. Although Dipterocarp species richness was generally lower at the LGM, areas of high species richness were mostly found off the current islands and on the emergent Sunda Shelf, indicating substantial species migration and mixing during the transitions between the Quaternary glacial maxima and warm periods such as the present. PMID:25385612

  1. Soil nutrients influence spatial distributions of tropical trees species

    USGS Publications Warehouse

    John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; Foster, R.B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. ?? 2007 by The National Academy of Sciences of the USA.

  2. Tree Species Classification By Multiseasonal High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Elatawneh, Alata; Wallner, Adelheid; Straub, Christoph; Schneider, Thomas; Knoke, Thomas

    2013-12-01

    Accurate forest tree species mapping is a fundamental issue for sustainable forest management and planning. Forest tree species mapping with the means of remote sensing data is still a topic to be investigated. The Bavaria state institute of forestry is investigating the potential of using digital aerial images for forest management purposes. However, using aerial images is still cost- and time-consuming, in addition to their acquisition restrictions. The new space-born sensor generations such as, RapidEye, with a very high temporal resolution, offering multiseasonal data have the potential to improve the forest tree species mapping. In this study, we investigated the potential of multiseasonal RapidEye data for mapping tree species in a Mid European forest in Southern Germany. The RapidEye data of level A3 were collected on ten different dates in the years 2009, 2010 and 2011. For data analysis, a model was developed, which combines the Spectral Angle Mapper technique with a 10-fold- cross-validation. The analysis succeeded to differentiate four tree species; Norway spruce (Picea abies L.), Silver Fir (Abies alba Mill.), European beech (Fagus sylvatica) and Maple (Acer pseudoplatanus). The model success was evaluated using digital aerial images acquired in the year 2009 and inventory point records from 2008/09 inventory. Model results of the multiseasonal RapidEye data analysis achieved an overall accuracy of 76%. However, the success of the model was evaluated only for all the identified species and not for the individual.

  3. Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees

    PubMed Central

    Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans

    2007-01-01

    Background and Aims Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Methods Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25 % of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. Key Results The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (Aarea) and similar photosynthetic rates per unit mass (Amass) than the trees. Across species, RGR was positively related to SLA, but not to LAR and Aarea. Conclusions It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species. PMID:17720978

  4. A new species of Xystonotus Wolcott, 1900 (Acari, Hydrachnidia, Mideopsidae) from bromeliad phytotelmata in Brazilian Atlantic rainforest.

    PubMed

    Pešić, Vladimir; Piccoli, Gustavo Cauê De Oliveira; Araújo, Marcel Santos De; Rezende, José Marcos; Gonçalves, Ana Zangirolame

    2015-07-02

    The rosette architecture of some bromeliad species traps water and organic matter from the canopy in leaf axils (forming phytotelmata) and harbors many species of invertebrate animals (Frank & Lounibos 2009). Some water mites are adapted to live in phytotelmata; typically recorded from water-filled tree holes, bromeliad tanks, and a range of plant axils. Karl Viets (1939) was the first acarologist who discovered Micruracaropsis phytotelmaticola (Viets, 1939) in the water contained in the leaf bases of epiphytic Bromeliaceae in Surinam. Later on, Orghidan et al. (1977) described Arrenurus bromeliacearum Orghidan, Gruia & Viña Bayés, 1977 from phytotelmata in Cuba. Orghidan & Gruia (1987) reported Arrenurus andrewfieldi Orghidan & Gruia, 1983 from phytotelmata of epiphytic bromeliad Vriesea platynema in Venezuela. Smith & Harvey (1989) described Arrenurus kitchingi Smith & Harvey, 1989 from water-filled tree holes in Queensland, Australia. The same authors (Smith & Harvey 1989) also reported that members of genus Thyopsis occur in water-filled tree holes in Ohio, USA. Rosso de Ferradás & Fernández (2001) reported two Arrenurus species from water accumulated in Guzmania mucronata (Bromeliaceae) in Venezuela, A. andrewfieldi Orghidan & Gruia, 1983 and A. caquetiorum Rosso de Ferradás & Fernández, 2001.

  5. Geographical range and local abundance of tree species in China.

    PubMed

    Ren, Haibao; Condit, Richard; Chen, Bin; Mi, Xiangcheng; Cao, Min; Ye, Wanhui; Hao, Zhanqing; Ma, Keping

    2013-01-01

    Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1) whether locally abundant species tend to be geographically widespread; 2) whether species are more abundant towards their range-centers; and 3) how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20-25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km(2), and >90% of 651 species had ranges >10(5) km(2). There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species' abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges.

  6. Importance of riparian remnants for frog species diversity in a highly fragmented rainforest

    PubMed Central

    Rodríguez-Mendoza, Clara; Pineda, Eduardo

    2010-01-01

    Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest. PMID:20554561

  7. Spatial variation of haemosporidian parasite infection in African rainforest bird species.

    PubMed

    Loiseau, Claire; Iezhova, Tatjana; Valkiūnas, Gediminas; Chasar, Anthony; Hutchinson, Anna; Buermann, Wolfgang; Smith, Thomas B; Sehgal, Ravinder N M

    2010-02-01

    Spatial heterogeneity influences the distribution, prevalence, and diversity of haemosporidian parasites. Previous studies have found complex patterns of prevalence with respect to habitat characteristics and parasite genotype, and their interactions, but there is little information regarding how parasitemia intensity and the prevalence of co-infections may vary in space. Here, using both molecular methods and microscopy, we report an analysis of the variation of parasitemia intensity and co-infections of avian haemosporidian parasites ( Plasmodium and Haemoproteus species) in 2 common African birds species, the yellow-whiskered greenbul ( Andropadus latirostris ) and the olive sunbird ( Cyanomitra olivacea ), at 3 sites with distinct habitat characteristics in Ghana. First, we found an interaction between the site and host species for the prevalence of Plasmodium spp. and Haemoproteus spp. For the olive sunbird, the prevalence of Plasmodium spp., as well as the number of individuals with co-infections, varied significantly among the sites, but these measures remained constant for the yellow-whiskered greenbul. In addition, yellow-whiskered greenbuls infected with Haemoproteus spp. were found only at 1 site. Furthermore, for both bird species, the parasitemia intensity of Plasmodium spp. varied significantly among the 3 sites, but with opposing trends. These results suggest that spatial heterogeneity differently affects haemosporidian infection parameters in these vertebrate-hosts. Environmental conditions here can either favor or reduce parasite infection. We discuss the implications of these discrepancies for conservation and ecological studies of infectious diseases in natural populations.

  8. Lack of phylogenetic signals within environmental niches of tropical tree species across life stages

    PubMed Central

    Zhang, Caicai; Yang, Jie; Sha, Liqing; Ci, Xiuqin; Li, Jie; Cao, Min; Brown, Calum; Swenson, Nathan G.; Lin, Luxiang

    2017-01-01

    The lasting imprint of phylogenetic history on current day ecological patterns has long intrigued biologists. Over the past decade ecologists have increasingly sought to quantify phylogenetic signals in environmental niche preferences and, especially, traits to help uncover the mechanisms driving plant community assembly. However, relatively little is known about how phylogenetic patterns in environmental niches and traits compare, leaving significant uncertainty about the ecological implications of trait-based analyses. We examined phylogenetic signals within known environmental niches of 64 species, at seedling and adult life stages, in a Chinese tropical forest, to test whether local environmental niches had consistent relationships with phylogenies. Our analyses show that local environmental niches are highly phylogenetically labile for both seedlings and adult trees, with closely related species occupying niches that are no more similar than expected by random chance. These findings contrast with previous trait-based studies in the same forest, suggesting that phylogenetic signals in traits might not a reliable guide to niche preferences or, therefore, to community assembly processes in some ecosystems, like the tropical seasonal rainforest in this study. PMID:28181524

  9. Shade tolerance and herbivory are associated with RGR of tree species via different functional traits.

    PubMed

    Salgado-Luarte, C; Gianoli, E

    2016-12-20

    Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade-off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth-related functional traits. Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth-related functional traits and (i) species' shade-tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth-related functional traits. We found that RGR was associated negatively with shade-tolerance and positively with herbivory rate. However, herbivory rate and shade-tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax ) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade-tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd ), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content. The effects of low light on RGR would be mediated by Amax , while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource-uptake functional traits.

  10. New species and records of Otiothopinae from the Southern Atlantic Rainforest, with notes on the claw tufts in Fernandezina Birabén (Araneae: Palpimanidae).

    PubMed

    Castro, Diogo; Baptista, Renner; Grismado, Cristian; Ramírez, Martín

    2015-09-04

    Two new species of Otiothops MacLeay, 1839 (O. atalaia sp. n. and O. goytacaz sp. n.), a new species of Fernandezina Birabén, 1951 (F. jurubatiba sp. n.) as well as the female of F. tijuca Ramírez & Grismado, 1996 are described from the Atlantic Rainforest of southeastern Brazil, in the state of Rio de Janeiro. Scanning electron microscope images of the tarsi of F. jurubatiba sp. n. and F. dasilvai Platnick, Grismado & Ramírez, 1999 show that this genus has claw tufts on the posterior legs, composed of setae of variable structure.

  11. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests.

    PubMed

    Rodrigues, P M S; Silva, J O; Eisenlohr, P V; Schaefer, C E G R

    2015-08-01

    The aim of this study was to evaluate the ecological niche models (ENMs) for three specialist trees (Anadenanthera colubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva) in seasonally dry tropical forests (SDTFs) in Brazil, considering present and future pessimist scenarios (2080) of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent).We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%), although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity). Long-term multidisciplinary studies are necessary to make reliable predictions of the plant's adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly.

  12. Geographical Range and Local Abundance of Tree Species in China

    PubMed Central

    Ren, Haibao; Condit, Richard; Chen, Bin; Mi, Xiangcheng; Cao, Min; Ye, Wanhui; Hao, Zhanqing; Ma, Keping

    2013-01-01

    Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1) whether locally abundant species tend to be geographically widespread; 2) whether species are more abundant towards their range-centers; and 3) how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20–25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km2, and >90% of 651 species had ranges >105 km2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species’ abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges. PMID:24130772

  13. Genetic variability of an endangered Bromeliaceae species (Pitcairnia albiflos) from the Brazilian Atlantic rainforest.

    PubMed

    Domingues, R; Machado, M A; Forzza, R C; Melo, T D; Wohlres-Viana, S; Viccini, L F

    2011-10-13

    Pitcairnia albiflos is a Bromeliaceae species endemic to Brazil that has been included as data-deficient in the extinction risk list of Brazilian flora. We analyzed genetic variability in P. albiflos populations using RAPD markers to investigate population structure and reproductive mechanisms and also to evaluate the actual extinction risk level of this species. Leaves of 56 individuals of P. albiflos from three populations were collected: Urca Hill (UH, 20 individuals), Chacrinha State Park (CSP, 24 individuals) and Tijuca National Park (TNP, 12 individuals). The RAPD technique was effective in characterizing the genetic diversity in the P. albiflos populations since it was possible to differentiate the populations and to identify exclusive bands for at least two of them. Even if there is low genetic diversity among them (CSP-UH = 0.463; CSP-TNP = 0.440; UH-TNP = 0.524), the populations seem to be isolated according to the low genetic diversity observed within them (H(pop) CSP = 0.060; H(pop) UH = 0.042; H(pop) TNP = 0.130). This fact might be the result of clonal and self-reproduction predominance and also from environmental degradation around the collection areas. Consequently, it would be important to protect all populations both in situ and ex situ to prevent the decrease of genetic variability. The low genetic variability among individuals of the same population confirms the inclusion of this species as critically endangered in the risk list for Brazilian flora.

  14. Infection of Amblyomma ovale with Rickettsia species Atlantic rainforest in Serra do Mar, São Paulo State, Brazil.

    PubMed

    Luz, Hermes Ribeiro; McIntosh, Douglas; Furusawa, Guilherme P; Flausino, Walter; Rozental, Tatiana; Lemos, Elba R S; Landulfo, Gabriel A; Faccini, João Luiz H

    2016-10-01

    Rickettsia rickettsii and Rickettsia sp. strain Atlantic rainforest, that is considered to represent a genetic variant of Rickettsia parkeri, are confirmed as being capable of infecting humans in Brazil. This study reports the detection and characterization, by PCR and nucleotide sequencing, of Rickettsia sp. strain Atlantic rain forest in Amblyomma ovale parasitizing a human, in ticks infesting dogs and in free-living ticks collected from the environment where the human infestation was recorded. The data contribute to our knowledge of infection rates in A. ovale with Rickettsia sp. strain Atlantic rainforest and identified an additional location in the state of São Paulo populated with ticks infected with this emerging pathogen.

  15. Why abundant tropical tree species are phylogenetically old.

    PubMed

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community.

  16. Structure trees and species trees: what they say about morphological development and evolution.

    PubMed

    Geeta, R

    2003-01-01

    The evolutionary history of morphological structures generally is equated with that of the taxa that carry them. It is argued here that, analogous to genes, developmental genetic pathways underlying morphological structures may be subject to developmental evolutionary changes that result, for instance, in duplication (serial homology analogous to gene duplication and paralogy). Entities that undergo evolution are expected to be related to each other as a tree. Just as with molecular evolution, "structure trees" and species trees sometimes may be incongruent, with implications for morphological homology concepts. Detection of structure trees through morphological evolutionary analyses may point to an entity that is maintained through evolution, possibly in part because it is a developmentally integrated structure ("individualized"). This idea is illustrated in a morphological evolutionary analysis of leaf primordia. These analyses suggest that leaf primordia in monocots and close relatives are related to each other as a tree and, therefore, are developmentally integrated, evolving entities. Among monocot primordia this tree structure breaks down, and it is concluded that there is no entity, the "monocot leaf primordium." However, one group of primordia is identified within monocots that have uniform characteristics and that are well represented by model species maize and rice. Such analyses of structure trees can facilitate the extrapolation and interpretation of results from molecular developmental and other comparative studies.

  17. Is tree species diversity or tree species identity the most important driver of European forest soil carbon stocks?

    NASA Astrophysics Data System (ADS)

    Vesterdal, Lars; Muhie Dawud, Seid; Raulund-Rasmussen, Karsten; Finér, Leena; Domisch, Timo

    2016-04-01

    Land management includes the selection of specific tree species and tree species mixtures for European forests. Studies of functional species diversity effects have reported positive effects for aboveground carbon (C) sequestration, but the question remains whether higher soil C stocks could also result from belowground niche differentiation including more efficient root exploitation of soils. We studied topsoil C stocks in tree species diversity gradients established within the FunDivEurope project to explore biodiversity-ecosystem functioning relationships in six European forest types in Finland, Poland, Germany, Romania, Spain and Italy. In the Polish forest type we extended the sampling to also include subsoils. We found consistent but modest effects of species diversity on total soil C stocks (forest floor and 0-20 cm) across the six European forest types. Carbon stocks in the forest floor alone and in the combined forest floor and mineral soil layers increased with increasing tree species diversity. In contrast, there was a strong effect of species identity (broadleaf vs. conifer) and its interaction with site-related factors. Within the Polish forest type we sampled soils down to 40 cm and found that species identity was again the main factor explaining total soil C stock. However, species diversity increased soil C stocks in deeper soil layers (20-40 cm), while species identity influenced C stocks significantly within forest floors and the 0-10 cm layer. Root biomass increased with diversity in 30-40 cm depth, and a positive relationship between C stocks and root biomass in the 30-40 cm layer suggested that belowground niche complementarity could be a driving mechanism for higher root carbon input and in turn a deeper distribution of C in diverse forests. We conclude that total C stocks are mainly driven by tree species identity. However, modest positive diversity effects were detected at the European scale, and stronger positive effects on subsoil C stocks

  18. Early recovery of a Hawaiian lowland rainforest following clearcutting at Kalapana on the Island of Hawaii

    SciTech Connect

    Grossman, D.H.

    1992-01-01

    The recovery of lowland rainforest vegetation on the Island of Hawaii was evaluated 2 years after clearcutting. Rainforest quality was assessed with regeneration success associated with the environmental changes. Sixty-three percent of the 57 vascular species in the forest were native to the Hawaiian rainforest. Phanerophytes were the most important life form. The presence of Psidium cattleianum and other alien species demonstrated disturbances had occurred in selected areas prior to the clearcutting. Two years after clearcutting (1987), only 24% of the 101 species coming into the clearcut area were native. The shrubs, micro- and nano-phanerophyte, were the dominant life forms, represented by Pipturus albidus, a native rainforest shrub or tree, and four non-native shrub species. Metrosideros polymorpha, the dominant tree in the native forest, was successfully regenerating from seed across the clear-cut area. The forest seedbank analysis also demonstrated that Metrosideros, along with the seeds of important exotic species colonizing the clearcut area were presented in the forest soils. The forest and clearcut species had a high rate of correlation with the elevation gradient. The underlying lava flows strong influenced past and present vegetation associations. In the clearcut area, the degree of compaction and distance from the forest were critical factors determining the composition of recovering vegetation. The microclimate variables of soils, significantly altered due to the effects of clearcutting, and competition from weeds probably lead to poor germination and growth of native rainforest species. This native forest is not pristine, but unique in stature, in complex of cohort stands, and in position on the landscape. It is extremely prone to species composition shift following perturbation, due to the presence of the weed seedbank in the forest seedbank as demonstrated in the dominance of these species across the clearcut area.

  19. Tree species effects on stand transpiration in northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Gower, S. T.; Ahl, D. E.; Burrows, S. N.; Samanta, S. S.

    2002-07-01

    We quantified canopy transpiration (EC) using sap flux measurements representing the four major forest types (northern hardwoods, conifer, aspen/fir, and forested wetland) around the WLEF-TV tall tower in northern Wisconsin. In order to scale individual sap flux measurements to EC, we quantified the amount of sapwood area per unit ground area and the spatial distribution of sap flux within trees. Contrary to our hypothesis that all tree species would have the same positive relationship between tree diameter and sapwood depth, white cedar and speckled alder, both wetland species, showed no relationship. We also hypothesized that the conifer trees would have a lower whole tree hydraulic conductance than deciduous trees. We actually discovered that white cedar had the highest hydraulic conductance. Our third hypothesis, that sapwood area per unit ground area would determine stand EC, was not rejected. The resulting average daily EC values over 53 days (23 June to 16 August 2000) from combining sap flux and sapwood area per unit ground area were 1.4, 0.8, 2.1, and 1.4 mm d-1 for conifer, northern hardwoods, aspen/fir, and forested wetland cover types, respectively. Average daily EC was only explained by an exponential saturation with daily average vapor pressure deficit.

  20. Regional assessment of ozone sensitive tree species using bioindicator plants.

    PubMed

    Coulston, John W; Smith, Gretchen C; Smith, William D

    2003-04-01

    Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document direct foliar injury irrespective of direct measure of ozone uptake. We used bioindicator and field plot data from the USDA Forest Service to identify tree species likely to exhibit regional-scale ozone impacts. Approximately 24% of sampled sweetgum (Liquidambar styraciflua), 15% of sampled loblolly pine (Pinus taeda), and 12% of sampled black cherry (Prunus serotina) trees were in the highest risk category. Sweetgum and loblolly pine trees were at risk on the coastal plain of Maryland, Virginia and Delaware. Black cherry trees were at risk on the Allegheny Plateau (Pennsylvania), in the Allegheny Mountains (Pennsylvania, West Virginia, and Maryland) as well as coastal plain areas of Maryland and Virginia. Our findings indicate a need for more in-depth study of actual impacts on growth and reproduction of these three species.

  1. Tracking a genetic signal of extinction-recolonization events in a neotropical tree species: Vouacapoua americana Aublet in French Guiana.

    PubMed

    Dutech, Cyril; Maggia, Laurent; Tardy, Christophe; Joly, Hélène I; Jarne, Philippe

    2003-12-01

    Drier periods from the late Pleistocene and early Holocene have been hypothesized to have caused the disappearance of various rainforest species over large geographical areas in South America and restricted the extant populations to mesic sites. Subsequent improvement in climatic conditions has been associated with recolonization. Changes in population size associated with these extinction-recolonization events should have affected genetic diversity within species. However, these historical hypotheses and their genetic consequences have rarely been tested in South America. Here, we examine the diversity of the chloroplast and nuclear genomes in a Neotropical rainforest tree species, Vouacapoua americana (Leguminosae, Caesalpinioideae) in French Guiana. The chloroplast diversity was analyzed using a polymerase chain reaction-restriction fragment length polymorphism method (six pairs of primers) in 29 populations distributed over most of French Guiana, and a subset of 17 populations was also analyzed at nine polymorphic microsatellite loci. To determine whether this species has experienced extinction-recolonization, we sampled populations in areas supposedly not or only slightly affected by climatic changes, where the populations would not have experienced frequent extinction, and in areas that appear to have been recently recolonized. In the putatively recolonized areas, we found patches of several thousands of hectares homogeneous for chloroplast variation that can be interpreted as the effect of recolonization processes from several geographical origins. In addition, we observed that, for both chloroplast and nuclear genomes, the populations in newly recolonized areas exhibited a significantly smaller allelic richness than others. Controlling for geographic distance, we also detected a significant correlation between chloroplast and nuclear population differentiation. This result indicates a cytonuclear disequilibrium that can be interpreted as a historical signal

  2. Hylax bahiensis Bechyné (Chrysomelidae: Eumolpinae): a New Potential Pest of Eucalyptus and Species Used for Atlantic Rainforest Restoration.

    PubMed

    Mafia, R G; da Silva, J B; Ramos, J F; Mafia, G V; Rosado-Neto, G H; Ferronatto, E M O

    2015-02-01

    Hylax bahiensis Bechyné (Coleoptera: Chrysomelidae), a new pest of forest species, including eucalyptus (hybrid Eucalyptus urophylla x Eucalyptus grandis), Joannesia princeps, Mimosa artemisiana, Croton urucurana, Croton floribundus, and Senna multijuga is recorded. The insect attack in clonal eucalyptus plantations and in forest restoration areas between 2010 and 2013 in the states of Espírito Santo, Bahia and Minas Gerais, Brasil, was observed for the first time. The outbreaks generally occurred from September to March. This new potential pest can affect the growth, productivity, and quality of the trees. We recommended monitoring this leaf-eating beetle especially during the critical period of its occurrence.

  3. A new species of Falsocaenia Pic, 1922 from Amazonian Rainforest (Coleoptera: Lycidae) with an updated key to the species.

    PubMed

    Ferreira, Vinicius S

    2016-04-25

    While searching for Calochromini (Coleoptera: Lycidae) specimens in entomological collections and identifying other Lycidae, a new species of Falsocaenia Pic, 1922 was found in the collection of Instituto Nacional de Pesquisas da Amazônia (INPA). This genus is one of the smallest in the tribe Calopterini with 13 known species, two of which were recently described by Bocákova et al. (2012) in their revision of the genus, and can be found in Central and South America.

  4. Clarification of the katydid genus Uchuca Giglio-tos, 1898 (Orthoptera: Tettigoniidae): A new species in the Brazilian Amazon Rainforest.

    PubMed

    Tavares, Gustavo Costa; Sovano, Rafael Segtowick Da Silva; Gutjahr, Ana Lúcia Nunes

    2016-07-22

    This paper accomplishes three tasks: Firstly, description of a new species, Uchuca almeirina sp. nov., from the Brazilian Amazon Rainforest, specifically from Monte Dourado, Almeirim, Pará. Secondly, it is proposed that Uchuca macroptera Montealegre-Z & Morris, 2003 be made a synonym of Uchuca ferreirai (Piza, 1976). Thirdly, a compilation of the generic distribution is presented, which includes new records of Uchuca amacayaca Montealegre-Z & Morris (2003) in Brazil and Uchuca similis Montealegre-Z & Morris (2003) in Colombia and Brazil, and the amplification of the occurrences of U. ferreirai.

  5. Documenting Biogeographical Patterns of African Timber Species Using Herbarium Records: A Conservation Perspective Based on Native Trees from Angola

    PubMed Central

    Romeiras, Maria M.; Figueira, Rui; Duarte, Maria Cristina; Beja, Pedro; Darbyshire, Iain

    2014-01-01

    In many tropical regions the development of informed conservation strategies is hindered by a dearth of biodiversity information. Biological collections can help to overcome this problem, by providing baseline information to guide research and conservation efforts. This study focuses on the timber trees of Angola, combining herbarium (2670 records) and bibliographic data to identify the main timber species, document biogeographic patterns and identify conservation priorities. The study recognized 18 key species, most of which are threatened or near-threatened globally, or lack formal conservation assessments. Biogeographical analysis reveals three groups of species associated with the enclave of Cabinda and northwest Angola, which occur primarily in Guineo-Congolian rainforests, and evergreen forests and woodlands. The fourth group is widespread across the country, and is mostly associated with dry forests. There is little correspondence between the spatial pattern of species groups and the ecoregions adopted by WWF, suggesting that these may not provide an adequate basis for conservation planning for Angolan timber trees. Eight of the species evaluated should be given high conservation priority since they are of global conservation concern, they have very restricted distributions in Angola, their historical collection localities are largely outside protected areas and they may be under increasing logging pressure. High conservation priority was also attributed to another three species that have a large proportion of their global range concentrated in Angola and that occur in dry forests where deforestation rates are high. Our results suggest that timber tree species in Angola may be under increasing risk, thus calling for efforts to promote their conservation and sustainable exploitation. The study also highlights the importance of studying historic herbarium collections in poorly explored regions of the tropics, though new field surveys remain a priority to

  6. Documenting biogeographical patterns of African timber species using herbarium records: a conservation perspective based on native trees from Angola.

    PubMed

    Romeiras, Maria M; Figueira, Rui; Duarte, Maria Cristina; Beja, Pedro; Darbyshire, Iain

    2014-01-01

    In many tropical regions the development of informed conservation strategies is hindered by a dearth of biodiversity information. Biological collections can help to overcome this problem, by providing baseline information to guide research and conservation efforts. This study focuses on the timber trees of Angola, combining herbarium (2670 records) and bibliographic data to identify the main timber species, document biogeographic patterns and identify conservation priorities. The study recognized 18 key species, most of which are threatened or near-threatened globally, or lack formal conservation assessments. Biogeographical analysis reveals three groups of species associated with the enclave of Cabinda and northwest Angola, which occur primarily in Guineo-Congolian rainforests, and evergreen forests and woodlands. The fourth group is widespread across the country, and is mostly associated with dry forests. There is little correspondence between the spatial pattern of species groups and the ecoregions adopted by WWF, suggesting that these may not provide an adequate basis for conservation planning for Angolan timber trees. Eight of the species evaluated should be given high conservation priority since they are of global conservation concern, they have very restricted distributions in Angola, their historical collection localities are largely outside protected areas and they may be under increasing logging pressure. High conservation priority was also attributed to another three species that have a large proportion of their global range concentrated in Angola and that occur in dry forests where deforestation rates are high. Our results suggest that timber tree species in Angola may be under increasing risk, thus calling for efforts to promote their conservation and sustainable exploitation. The study also highlights the importance of studying historic herbarium collections in poorly explored regions of the tropics, though new field surveys remain a priority to

  7. Nitrogen Addition Enhances Drought Sensitivity of Young Deciduous Tree Species

    PubMed Central

    Dziedek, Christoph; Härdtle, Werner; von Oheimb, Goddert; Fichtner, Andreas

    2016-01-01

    Understanding how trees respond to global change drivers is central to predict changes in forest structure and functions. Although there is evidence on the mode of nitrogen (N) and drought (D) effects on tree growth, our understanding of the interplay of these factors is still limited. Simultaneously, as mixtures are expected to be less sensitive to global change as compared to monocultures, we aimed to investigate the combined effects of N addition and D on the productivity of three tree species (Fagus sylvatica, Quercus petraea, Pseudotsuga menziesii) in relation to functional diverse species mixtures using data from a 4-year field experiment in Northwest Germany. Here we show that species mixing can mitigate the negative effects of combined N fertilization and D events, but the community response is mainly driven by the combination of certain traits rather than the tree species richness of a community. For beech, we found that negative effects of D on growth rates were amplified by N fertilization (i.e., combined treatment effects were non-additive), while for oak and fir, the simultaneous effects of N and D were additive. Beech and oak were identified as most sensitive to combined N+D effects with a strong size-dependency observed for beech, suggesting that the negative impact of N+D becomes stronger with time as beech grows larger. As a consequence, the net biodiversity effect declined at the community level, which can be mainly assigned to a distinct loss of complementarity in beech-oak mixtures. This pattern, however, was not evident in the other species-mixtures, indicating that neighborhood composition (i.e., trait combination), but not tree species richness mediated the relationship between tree diversity and treatment effects on tree growth. Our findings point to the importance of the qualitative role (‘trait portfolio’) that biodiversity play in determining resistance of diverse tree communities to environmental changes. As such, they provide

  8. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth.

    PubMed

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-05-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species' local rarity and specific leaf area - traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that the

  9. tropiTree: An NGS-Based EST-SSR Resource for 24 Tropical Tree Species

    PubMed Central

    Russell, Joanne R.; Hedley, Peter E.; Cardle, Linda; Dancey, Siobhan; Morris, Jenny; Booth, Allan; Odee, David; Mwaura, Lucy; Omondi, William; Angaine, Peter; Machua, Joseph; Muchugi, Alice; Milne, Iain; Kindt, Roeland; Jamnadass, Ramni; Dawson, Ian K.

    2014-01-01

    The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data. PMID:25025376

  10. Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment

    PubMed Central

    Wein, Annika; Bauhus, Jürgen; Bilodeau-Gauthier, Simon; Scherer-Lorenzen, Michael; Nock, Charles

    2016-01-01

    Tree diversity in forests is an important driver of ecological processes including herbivory. Empirical evidence suggests both negative and positive effects of tree diversity on herbivory, which can be, respectively, attributed to associational resistance or associational susceptibility. Tree diversity experiments allow testing for associational effects, but evidence regarding which pattern predominates is mixed. Furthermore, it is unknown if herbivory on tree species of native vs. exotic origin is influenced by changing tree diversity in a similar way, or if exotic tree species escape natural enemies, resulting in lower damage that is unrelated to tree diversity. To address these questions, we established a young tree diversity experiment in temperate southwestern Germany that uses high planting density (49 trees per plot; plot size 13 m2). The species pool consists of six congeneric species pairs of European and North American origin (12 species in total) planted in monocultures and mixtures (1, 2, 4, 6 species). We assessed leaf damage by leaf-chewing insects on more than 5,000 saplings of six broadleaved tree species. Plot-level tree species richness increased leaf damage, which more than doubled from monocultures to six-species mixtures, strongly supporting associational susceptibility. However, leaf damage among congeneric native and exotic species pairs was similar. There were marked differences in patterns of leaf damage across tree genera, and only the genera likely having a predominately generalist herbivore community showed associational susceptibility, irrespective of the geographical origin of a tree species. In conclusion, an increase in tree species richness in young temperate forests may result in associational susceptibility to feeding by generalist herbivores. PMID:27992554

  11. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    PubMed Central

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species’ local rarity and specific leaf area – traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that

  12. Species mixing boosts root yield in mangrove trees.

    PubMed

    Lang'at, Joseph K Sigi; Kirui, Bernard K Y; Skov, Martin W; Kairo, James G; Mencuccini, Maurizio; Huxham, Mark

    2013-05-01

    Enhanced species richness can stimulate the productivity of plant communities; however, its effect on the belowground production of forests has scarcely been tested, despite the role of tree roots in carbon storage and ecosystem processes. Therefore, we tested for the effects of tree species richness on mangrove root biomass: thirty-two 6 m by 6 m plots were planted with zero (control), one, two or three species treatments of six-month-old Avicennia marina (A), Bruguiera gymnorrhiza (B) and Ceriops tagal (C). A monoculture of each species and the four possible combinations of the three species were used, with four replicate plots per treatment. Above- and belowground biomass was measured after three and four years' growth. In both years, the all-species mix (ABC) had significant overyielding of roots, suggesting complementarity mediated by differences in rhizosphere use amongst species. In year four, there was higher belowground than aboveground biomass in all but one treatment. Belowground biomass was strongly influenced by the presence of the most vigorously growing species, A. marina. These results demonstrate the potential for complementarity between fast- and slow-growing species to enhance belowground growth in mangrove forests, with implications for forest productivity and the potential for belowground carbon sequestration.

  13. Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp (Fabaceae)

    PubMed Central

    2013-01-01

    Background The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Results Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate

  14. Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna

    PubMed Central

    Tng, David Y. P.; Jordan, Greg J.; Bowman, David M. J. S.

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. PMID:24358359

  15. Multilocus inference of species trees and DNA barcoding

    PubMed Central

    2016-01-01

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree—gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481787

  16. Complementary resource use by tree species in a rain forest tree plantation.

    PubMed

    Richards, Anna E; Schmidt, Susanne

    2010-07-01

    Mixed-species tree plantations, composed of high-value native rain forest timbers, are potential forestry systems for the subtropics and tropics that can provide ecological and production benefits. Choices of rain forest tree species for mixtures are generally based on the concept that assemblages of fast-growing and light-demanding species are less productive than assemblages of species with different shade tolerances. We examined the hypothesis that mixtures of two fast-growing species compete for resources, while mixtures of shade-tolerant and shade-intolerant species are complementary. Ecophysiological characteristics of young trees were determined and analyzed with a physiology-based canopy model (MAESTRA) to test species interactions. Contrary to predictions, there was evidence for complementary interactions between two fast-growing species with respect to nutrient uptake, nutrient use efficiency, and nutrient cycling. Fast-growing Elaeocarpus angustifolius had maximum demand for soil nutrients in summer, the most efficient internal recycling of N, and low P use efficiency at the leaf and whole-plant level and produced a large amount of nutrient-rich litter. In contrast, fast-growing Grevillea robusta had maximum demand for soil nutrients in spring and highest leaf nutrient use efficiency for N and P and produced low-nutrient litter. Thus, mixtures of fast-growing G. robusta and E. angustifolius or G. robusta and slow-growing, shade-tolerant Castanospermum australe may have similar or even greater productivity than monocultures, as light requirement is just one of several factors affecting performance of mixed-species plantations. We conclude that the knowledge gained here will be useful for designing large-scale experimental mixtures and commercial forestry systems in subtropical Australia and elsewhere.

  17. Widespread Discordance of Gene Trees with Species Tree inDrosophila: Evidence for Incomplete Lineage Sorting

    SciTech Connect

    Pollard, Daniel A.; Iyer, Venky N.; Moses, Alan M.; Eisen,Michael B.

    2006-08-28

    The phylogenetic relationship of the now fully sequencedspecies Drosophila erecta and D. yakuba with respect to the D.melanogaster species complex has been a subject of controversy. All threepossible groupings of the species have been reported in the past, thoughrecent multi-gene studies suggest that D. erecta and D. yakuba are sisterspecies. Using the whole genomes of each of these species as well as thefour other fully sequenced species in the subgenus Sophophora, we set outto investigate the placement of D. erecta and D. yakuba in the D.melanogaster species group and to understand the cause of the pastincongruence. Though we find that the phylogeny grouping D. erecta and D.yakuba together is the best supported, we also find widespreadincongruence in nucleotide and amino acid substitutions, insertions anddeletions, and gene trees. The time inferred to span the two keyspeciation events is short enough that under the coalescent model, theincongruence could be the result of incomplete lineage sorting.Consistent with the lineage-sorting hypothesis, substitutions supportingthe same tree were spatially clustered. Support for the different treeswas found to be linked to recombination such that adjacent genes supportthe same tree most often in regions of low recombination andsubstitutions supporting the same tree are most enriched roughly on thesame scale as linkage disequilibrium, also consistent with lineagesorting. The incongruence was found to be statistically significant androbust to model and species choice. No systematic biases were found. Weconclude that phylogenetic incongruence in the D. melanogaster speciescomplex is the result, at least in part, of incomplete lineage sorting.Incomplete lineage sorting will likely cause phylogenetic incongruence inmany comparative genomics datasets. Methods to infer the correct speciestree, the history of every base in the genome, and comparative methodsthat control for and/or utilize this information will be

  18. Diversification rates and species richness across the Tree of Life.

    PubMed

    Scholl, Joshua P; Wiens, John J

    2016-09-14

    Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies.

  19. Linking size-dependent growth and mortality with architectural traits across 145 co-occurring tropical tree species.

    PubMed

    Iida, Yoshiko; Poorter, Lourens; Sterck, Frank; Kassim, Abd Rahman; Potts, Matthew D; Kubo, Takuya; Kohyama, Takashi S

    2014-02-01

    Tree architecture, growth, and mortality change with increasing tree size and associated light conditions. To date, few studies have quantified how size-dependent changes in growth and mortality rates co-vary with architectural traits, and how such size-dependent changes differ across species and possible light capture strategies. We applied a hierarchical Bayesian model to quantify size-dependent changes in demographic rates and correlated demographic rates and architectural traits for 145 co-occurring Malaysian rain-forest tree species covering a wide range of tree sizes. Demographic rates were estimated using relative growth rate in stem diameter (RGR) and mortality rate as a function of stem diameter. Architectural traits examined were adult stature measured as the 95-percentile of the maximum stem diameter (upper diameter), wood density, and three tree architectural variables: tree height, foliage height, and crown width. Correlations between demographic rates and architectural traits were examined for stem diameters ranging from 1 to 47 cm. As a result, RGR and mortality varied significantly with increasing stem diameter across species. At smaller stem diameters, RGR was higher for tall trees with wide crowns, large upper diameter, and low wood density. Increased mortality was associated with low wood density at small diameters, and associated with small upper diameter and wide crowns over a wide range of stem diameters. Positive correlations between RGR and mortality were found over the whole range of stem diameters, but they were significant only at small stem diameters. Associations between architectural traits and demographic rates were strongest at small stem diameters. In the dark understory of tropical rain forests, the limiting amount of light is likely to make the interspecific difference in the effects of functional traits on demography more clear. Demographic performance is therefore tightly linked with architectural traits such as adult stature

  20. Vegetation and floristics of a lowland tropical rainforest in northeast Australia

    PubMed Central

    Apgaua, Deborah M. G.; Campbell, Mason J; Cox, Casey J; Crayn, Darren M; Ishida, Françoise Y; Laidlaw, Melinda J; Liddell, Michael J; Seager, Michael; Laurance, Susan G. W.

    2016-01-01

    Abstract Background Full floristic data, tree demography, and biomass estimates incorporating non-tree lifeforms are seldom collected and reported for forest plots in the tropics. Established research stations serve as important repositories of such biodiversity and ecological data. With a canopy crane setup within a tropical lowland rainforest estate, the 42-ha Daintree Rainforest Observatory (DRO) in Cape Tribulation, northern Australia is a research facility of international significance. We obtained an estimate of the vascular plant species richness for the site, by surveying all vascular plant species from various mature-phase, remnant and open vegetation patches within the site. We also integrate and report the demography and basal areas of trees ≥ 10 cm diameter at breast height (dbh) in a new 1-ha core plot, an extension to the pre-existing forest 1-ha plot under the canopy crane. In addition, we report for the canopy crane plot new demography and basal areas for smaller-size shrubs and treelets subsampled from nine 20 m2 quadrats, and liana basal area and abundance from the whole plot. The DRO site has an estimated total vascular plant species richness of 441 species, of which 172 species (39%) are endemic to Australia, and 4 species are endemics to the Daintree region. The 2 x 1-ha plots contains a total of 262 vascular plant species of which 116 (1531 individuals) are tree species ≥ 10 cm dbh. We estimate a stem basal area of 34.9 m2 ha-1, of which small stems (tree saplings and shrubs <10cm dbh) and lianas collectively contribute c.4.2%. Comparing the stem density-diversity patterns of the DRO forest with other tropical rainforests globally, our meta-analysis shows that DRO forests has a comparatively high stem density and moderate species diversity, due to the influence of cyclones. These data will provide an important foundation for ecological and conservation studies in lowland tropical forest. New information We present a floristic checklist, a

  1. Climatic extremes improve predictions of spatial patterns of tree species

    USGS Publications Warehouse

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, A.; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  2. DNA barcoding reveals species level divergence between populations of the microhylid frog genus Arcovomer (Anura: Microhylidae) in the Atlantic Rainforest of southeastern Brazil.

    PubMed

    Jennings, W Bryan; Wogel, Henrique; Bilate, Marcos; Salles, Rodrigo de O L; Buckup, Paulo A

    2016-09-01

    The microhylid frogs belonging to the genus Arcovomer have been reported from lowland Atlantic Rainforest in the Brazilian states of Espírito Santo, Rio de Janeiro, and São Paulo. Here, we use DNA barcoding to assess levels of genetic divergence between apparently isolated populations in Espírito Santo and Rio de Janeiro. Our mtDNA data consisting of cytochrome oxidase subunit I (COI) nucleotide sequences reveals 13.2% uncorrected and 30.4% TIM2 + I + Γ corrected genetic divergences between these two populations. This level of divergence exceeds the suggested 10% uncorrected divergence threshold for elevating amphibian populations to candidate species using this marker, which implies that the Espírito Santo population is a species distinct from Arcovomer passarellii. Calibration of our model-corrected sequence divergence estimates suggests that the time of population divergence falls between 12 and 29 million years ago.

  3. Occurrence of stomatal patchiness and its spatial scale in leaves from various sizes of trees distributed in a South-east Asian tropical rainforest in Peninsular Malaysia.

    PubMed

    Kamakura, Mai; Kosugi, Yoshiko; Takanashi, Satoru; Uemura, Akira; Utsugi, Hajime; Kassim, Abd Rahman

    2015-01-01

    In this study, we demonstrated the occurrence of stomatal patchiness and its spatial scale in leaves from various sizes of trees grown in a lowland dipterocarp forest in Peninsular Malaysia. To evaluate the patterns of stomatal behavior, we used three techniques simultaneously to analyze heterobaric or homobaric leaves from five tree species ranging from 0.6 to 31 m in height: (i) diurnal changes in chlorophyll fluorescence imaging, (ii) observation and simulation of leaf gas-exchange rates and (iii) a pressure-infiltration method. Measurements were performed in situ with 1000 or 500 μmol m(-2) s(-1) photosynthetic photon flux density. Diurnal patterns in the spatial distribution of photosynthetic electron transport rate (J) mapped from chlorophyll fluorescence images, a comparison of observed and simulated leaf gas-exchange rates, and the spatial distribution of stomatal apertures obtained from the acid-fuchsin-infiltrated area showed that patchy stomatal closure coupled with severe midday depression of photosynthesis occurred in Neobalanocarpus heimii (King) Ashton, a higher canopy tree with heterobaric leaves due to the higher leaf temperature and vapor pressure deficit. However, subcanopy or understory trees showed uniform stomatal behavior throughout the day, although they also have heterobaric leaves. These results suggest that the occurrence of stomatal patchiness is determined by tree size and/or environmental conditions. The analysis of spatial scale by chlorophyll fluorescence imaging showed that several adjacent anatomical patches (lamina areas bounded by bundle-sheath extensions within the lamina) may co-operate for the distributed patterns of J and stomatal apertures.

  4. Patterns in volatile organic compound emissions along a savanna-rainforest gradient in central Africa

    NASA Astrophysics Data System (ADS)

    Klinger, L. F.; Greenburg, J.; Guenther, A.; Tyndall, G.; Zimmerman, P.; M'bangui, M.; Moutsamboté, J.-M.; Kenfack, D.

    1998-01-01

    In temperate regions the chemistry of the lower troposphere is known to be significantly affected by biogenic volatile organic compounds (VOCs) emitted by plants. The chemistry of the lower troposphere over the tropics, however, is poorly understood, in part because of the considerable uncertainties in VOC emissions from tropical ecosystems. Present global VOC models predict that base emissions of isoprene from tropical rainforests are considerably higher than from savannas. These global models of VOC emissions which rely mainly on species inventories are useful, but significant improvement might be made with more ecologically based models of VOC emissions by plants. Ecosystems along a successional transect from woodland savanna to primary rainforest in central Africa were characterized for species composition and vegetation abundance using ground surveys and remotely sensed data. A total of 336 species (mostly trees) at 13 sites were recorded, and 208 of these were measured for VOC emissions at near-optimal light and temperature conditions using a leaf cuvette and hand-held photoionization detector (PID). A subset of 59 species was also sampled using conventional VOC emission techniques in order to validate the PID technique. Results of ecological and VOC emission surveys indicate both phylogenetic and successional patterns along the savanna-rainforest transect. Genera and families of trees which tend to emit isoprene include Lophira, Irvingia, Albizia, Artocarpus, Ficus, Pterocarpus, Caesalpiniaceae, Arecaceae, and Moraceae. Other taxa tend to contain stored VOCs (Annonaceae and Asteraceae). Successional patterns suggest that isoprene emissions are highest in the relatively early successional Isoberlinia forest communities and progressively decrease in the later successional secondary and primary rainforest communities. Stored VOCs appear to increase along the savanna-rainforest succession, but these data are more tentative. These findings are consistent with

  5. Semi-supervised SVM for individual tree crown species classification

    NASA Astrophysics Data System (ADS)

    Dalponte, Michele; Ene, Liviu Theodor; Marconcini, Mattia; Gobakken, Terje; Næsset, Erik

    2015-12-01

    In this paper a novel semi-supervised SVM classifier is presented, specifically developed for tree species classification at individual tree crown (ITC) level. In ITC tree species classification, all the pixels belonging to an ITC should have the same label. This assumption is used in the learning of the proposed semi-supervised SVM classifier (ITC-S3VM). This method exploits the information contained in the unlabeled ITC samples in order to improve the classification accuracy of a standard SVM. The ITC-S3VM method can be easily implemented using freely available software libraries. The datasets used in this study include hyperspectral imagery and laser scanning data acquired over two boreal forest areas characterized by the presence of three information classes (Pine, Spruce, and Broadleaves). The experimental results quantify the effectiveness of the proposed approach, which provides classification accuracies significantly higher (from 2% to above 27%) than those obtained by the standard supervised SVM and by a state-of-the-art semi-supervised SVM (S3VM). Particularly, by reducing the number of training samples (i.e. from 100% to 25%, and from 100% to 5% for the two datasets, respectively) the proposed method still exhibits results comparable to the ones of a supervised SVM trained with the full available training set. This property of the method makes it particularly suitable for practical forest inventory applications in which collection of in situ information can be very expensive both in terms of cost and time.

  6. Inferring Species Trees from Gene Trees in a Radiation of California Trapdoor Spiders (Araneae, Antrodiaetidae, Aliatypus)

    PubMed Central

    Satler, Jordan D.; Starrett, James; Hayashi, Cheryl Y.; Hedin, Marshal

    2011-01-01

    Background The California Floristic Province is a biodiversity hotspot, reflecting a complex geologic history, strong selective gradients, and a heterogeneous landscape. These factors have led to high endemic diversity across many lifeforms within this region, including the richest diversity of mygalomorph spiders (tarantulas, trapdoor spiders, and kin) in North America. The trapdoor spider genus Aliatypus encompasses twelve described species, eleven of which are endemic to California. Several Aliatypus species show disjunct distributional patterns in California (some are found on both sides of the vast Central Valley), and the genus as a whole occupies an impressive variety of habitats. Methodology/Principal Findings We collected specimens from 89 populations representing all described species. DNA sequence data were collected from seven gene regions, including two newly developed for spider systematics. Bayesian inference (in individual gene tree and species tree approaches) recovered a general “3 clade” structure for the genus (A. gulosus, californicus group, erebus group), with three other phylogenetically isolated species differing slightly in position across different phylogenetic analyses. Because of extremely high intraspecific divergences in mitochondrial COI sequences, the relatively slowly evolving 28S rRNA gene was found to be more useful than mitochondrial data for identification of morphologically indistinguishable immatures. For multiple species spanning the Central Valley, explicit hypothesis testing suggests a lack of monophyly for regional populations (e.g., western Coast Range populations). Phylogenetic evidence clearly shows that syntopy is restricted to distant phylogenetic relatives, consistent with ecological niche conservatism. Conclusions/Significance This study provides fundamental insight into a radiation of trapdoor spiders found in the biodiversity hotspot of California. Species relationships are clarified and undescribed lineages

  7. Urban Tree Species Show the Same Hydraulic Response to Vapor Pressure Deficit across Varying Tree Size and Environmental Conditions

    PubMed Central

    Chen, Lixin; Zhang, Zhiqiang; Ewers, Brent E.

    2012-01-01

    Background The functional convergence of tree transpiration has rarely been tested for tree species growing under urban conditions even though it is of significance to elucidate the relationship between functional convergence and species differences of urban trees for establishing sustainable urban forests in the context of forest water relations. Methodology/Principal Findings We measured sap flux of four urban tree species including Cedrus deodara, Zelkova schneideriana, Euonymus bungeanus and Metasequoia glyptostroboides in an urban park by using thermal dissipation probes (TDP). The concurrent microclimate conditions and soil moisture content were also measured. Our objectives were to examine 1) the influence of tree species and size on transpiration, and 2) the hydraulic control of urban trees under different environmental conditions over the transpiration in response to VPD as represented by canopy conductance. The results showed that the functional convergence between tree diameter at breast height (DBH) and tree canopy transpiration amount (Ec) was not reliable to predict stand transpiration and there were species differences within same DBH class. Species differed in transpiration patterns to seasonal weather progression and soil water stress as a result of varied sensitivity to water availability. Species differences were also found in their potential maximum transpiration rate and reaction to light. However, a same theoretical hydraulic relationship between Gc at VPD = 1 kPa (Gcref) and the Gc sensitivity to VPD (−dGc/dlnVPD) across studied species as well as under contrasting soil water and Rs conditions in the urban area. Conclusions/Significance We concluded that urban trees show the same hydraulic regulation over response to VPD across varying tree size and environmental conditions and thus tree transpiration could be predicted with appropriate assessment of Gcref. PMID:23118904

  8. Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest.

    PubMed

    Martínez-Izquierdo, Laura; García, María M; Powers, Jennifer S; Schnitzer, Stefan A

    2016-01-01

    Lianas are a common plant growth form in tropical forests, where they compete intensely with trees, decreasing tree recruitment, growth, and survival. If the detrimental effects of lianas vary significantly with tree species identity, as is often assumed, then lianas may influence tree species diversity and community composition. Furthermore, recent studies have shown that liana abundance and biomass are increasing relative to trees in neotropical forests, which will likely magnify the detrimental effects of lianas and may ultimately alter tree species diversity, relative abundances, and community composition. Few studies, however, have tested the responses of multiple tree species to the presence of lianas in robust, well-replicated experiments. We tested the hypotheses that lianas reduce tree seedling growth and survival, and that the effect of lianas varies with tree species identity. We used a large-scale liana removal experiment in Central Panama in which we planted 14 replicate seedlings of 14 different tree species that varied in shade tolerance in each of 16 80 x 80 m plots (eight liana-removal and eight unmanipulated controls; 3136 total seedlings). Over a nearly two-yr period, we found that tree seedlings survived 75% more, grew 300% taller, and had twice the aboveground biomass in liana-removal plots than seedlings in control plots, consistent with strong competition between lianas and tree seedlings. There were no significant differences in the response of tree species to liana competition (i.e., there was no species by treatment interaction), indicating that lianas had a similar negative effect on all 14 tree species. Furthermore, the effect of lianas did not vary with tree species shade tolerance classification, suggesting that the liana effect was not solely based on light. Based on these findings, recently observed increases in liana abundance in neotropical forests will substantially reduce tree regeneration, but will not significantly alter

  9. Performance of seedlings of a shade-tolerant tropical tree species after moderate addition of N and P

    NASA Astrophysics Data System (ADS)

    Cárate Tandalla, Daisy; Leuschner, Christoph; Homeier, Jürgen

    2015-12-01

    Nitrogen deposition to tropical forests is predicted to increase in future in many regions due to agricultural intensification. We conducted a seedling transplantation experiment in a tropical premontane forest in Ecuador with a locally abundant late-successional tree species (Pouteria torta, Sapotaceae) aimed at detecting species-specific responses to moderate N and P addition and to understand how increasing nutrient availability will affect regeneration. From locally collected seeds, 320 seedlings were produced and transplanted to the plots of the Ecuadorian Nutrient Manipulation Experiment (NUMEX) with three treatments (moderate N addition: 50 kg N ha-1 yr-1, moderate P addition: 10 kg P ha-1 yr-1 and combined N and P addition) and a control (80 plants per treatment). After 12 months, mortality, relative growth rate, leaf nutrient content and leaf herbivory rate were measured. N and NP addition significantly increased the mortality rate (70 % vs. 54 % in the control). However, N and P addition also increased the diameter growth rate of the surviving seedlings. N and P addition did not alter foliar nutrient concentrations and leaf N:P ratio, but N addition decreased the leaf C:N ratio and increased SLA. P addition (but not N addition) resulted in higher leaf area loss to herbivore consumption and also shifted carbon allocation to root growth. This fertilization experiment with a common rainforest tree species conducted in old-growth forest shows that already moderate doses of added N and P are affecting seedling performance which most likely will have consequences for the competitive strength in the understory and the recruitment success of P. torta. Simultaneous increases in growth, herbivory and mortality rates make it difficult to assess the species' overall performance and predict how a future increase in nutrient deposition will alter the abundance of this species in the Andean tropical montane forests.

  10. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation.

    PubMed

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-11-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning.We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species.Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species.We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded.Synthesis. For the first time, we experimentally demonstrated

  11. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally

  12. The Impact of Missing Data on Species Tree Estimation.

    PubMed

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C

    2016-03-01

    Phylogeneticists are increasingly assembling genome-scale data sets that include hundreds of genes to resolve their focal clades. Although these data sets commonly include a moderate to high amount of missing data, there remains no consensus on their impact to species tree estimation. Here, using several simulated and empirical data sets, we assess the effects of missing data on species tree estimation under varying degrees of incomplete lineage sorting (ILS) and gene rate heterogeneity. We demonstrate that concatenation (RAxML), gene-tree-based coalescent (ASTRAL, MP-EST, and STAR), and supertree (matrix representation with parsimony [MRP]) methods perform reliably, so long as missing data are randomly distributed (by gene and/or by species) and that a sufficiently large number of genes are sampled. When data sets are indecisive sensu Sanderson et al. (2010. Phylogenomics with incomplete taxon coverage: the limits to inference. BMC Evol Biol. 10:155) and/or ILS is high, however, high amounts of missing data that are randomly distributed require exhaustive levels of gene sampling, likely exceeding most empirical studies to date. Moreover, missing data become especially problematic when they are nonrandomly distributed. We demonstrate that STAR produces inconsistent results when the amount of nonrandom missing data is high, regardless of the degree of ILS and gene rate heterogeneity. Similarly, concatenation methods using maximum likelihood can be misled by nonrandom missing data in the presence of gene rate heterogeneity, which becomes further exacerbated when combined with high ILS. In contrast, ASTRAL, MP-EST, and MRP are more robust under all of these scenarios. These results underscore the importance of understanding the influence of missing data in the phylogenomics era.

  13. Interannual Variation in Stand Transpiration is Dependent Upon Tree Species

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Burrows, S. N.; Ahl, D. E.; Samanta, S.

    2003-12-01

    In order to successfully predict transpirational water fluxes from forested watersheds, interannual variability in transpiration must be quantified and understood. In a heterogeneous forested landscape in northern Wisconsin, we quantified stand transpiration across four forest cover types representing more than 80 percent of the land area in order to 1) quantify differences in stand transpiration and leaf area over two years and 2) determine the mechanisms governing the changes in transpiration over two years. We measured sap flux in eight trees of each tree species in the four cover types. We found that in northern hardwoods, the leaf area of sugar maple increased between the two measurement years with transpiration per unit ground area increasing even more than could be explained by leaf area. In an aspen stand, tent caterpillars completely defoliated the stand for approximately a month until a new set of leaves flushed out. The new set of leaves resulted in a lower leaf area but the same transpiration per unit leaf area indicating there was no physiological compensation for the lower leaf area. At the same time, balsam fir growing underneath the aspen increased their transpiration rate in response to greater light penetration through the dominant aspen canopy Red pine had a thirty percent change in leaf area within a growing season due to multiple cohorts of leaves and transpiration followed this leaf area dynamic. In a forested wetland, white cedar transpiration was proportional to surface water depth between the two years. Despite the specific tree species' effects on stand transpiration, all species displayed a minimum water potential regulation resulting in a saturating response of transpiration to vapor pressure deficit that did not vary across the two years. This physiological set point will allow future water flux models to explain mechanistically interannual variability in transpiration of this and similar forests.

  14. [Tree species information extraction of farmland returned to forests based on improved support vector machine algorithm].

    PubMed

    Wu, Jian; Peng, Dao-Li

    2011-04-01

    The difference analysis of spectrum among tree species and the improvement of classification algorithm are the difficult points of extracting tree species information using remote sensing images, and are also the keys to improving the accuracy in the tree species information extraction in farmland returned to forests area. TM images were selected in this study, and the spectral indexes that could distinguish tree species information were filtered by analyzing tree species spectrum. Afterwards, the information of tree species was extracted using improved support vector machine algorithm. Although errors and confusion exist, this method shows satisfying results with an overall accuracy of 81.7%. The corresponding result of the traditional method is 72.5%. The method in this paper can achieve a more precise information extraction of tree species and the results can meet the demand of accurate monitoring and decision-making. This method is significant to the rapid assessment of project quality.

  15. Dipterans Associated with a Decomposing Animal Carcass in a Rainforest Fragment in Brazil: Notes on the Early Arrival and Colonization by Necrophagous Species

    PubMed Central

    Vasconcelos, Simao D.; Cruz, Tadeu M.; Salgado, Roberta L.; Thyssen, Patricia J.

    2013-01-01

    This study aimed to provide the first checklist of forensically-important dipteran species in a rainforest environment in Northeastern Brazil, a region exposed to high rates of homicides. Using a decomposing pig, Sus scrofa L. (Artiodactyla: Suidae), carcass as a model, adult flies were collected immediately after death and in the early stages of carcass decomposition. To confirm actual colonization of the carcass, insects that completed their larval development on the resource were also collected and reared until adult stage. A diverse assemblage of dipterans composed of at least 28 species from seven families with necrophagous habits was observed within minutes after death. Besides Calliphoridae and Sarcophagidae, species from forensically-important families such as Phoridae, Anthomyiidae, and Fanniidae were also registered. Eleven species were shown to complete their development on the carcass. The majority of individuals emerged from larvae collected at the dry stage of decomposition. Hemilucilia segmentaria Fabricius (Diptera: Calliphoridae), H. semidiaphana (Rondani), and Ophyra chalcogaster (Wiedemann) (Muscidae) were the dominant species among the colonizers, which supports their importance as forensic evidence in Brazil. PMID:24787899

  16. Dipterans associated with a decomposing animal carcass in a rainforest fragment in Brazil: notes on the early arrival and colonization by necrophagous species.

    PubMed

    Vasconcelos, Simao D; Cruz, Tadeu M; Salgado, Roberta L; Thyssen, Patricia J

    2013-01-01

    This study aimed to provide the first checklist of forensically-important dipteran species in a rainforest environment in Northeastern Brazil, a region exposed to high rates of homicides. Using a decomposing pig, Sus scrofa L. (Artiodactyla: Suidae), carcass as a model, adult flies were collected immediately after death and in the early stages of carcass decomposition. To confirm actual colonization of the carcass, insects that completed their larval development on the resource were also collected and reared until adult stage. A diverse assemblage of dipterans composed of at least 28 species from seven families with necrophagous habits was observed within minutes after death. Besides Calliphoridae and Sarcophagidae, species from forensically-important families such as Phoridae, Anthomyiidae, and Fanniidae were also registered. Eleven species were shown to complete their development on the carcass. The majority of individuals emerged from larvae collected at the dry stage of decomposition. Hemilucilia segmentaria Fabricius (Diptera: Calliphoridae), H. semidiaphana (Rondani), and Ophyra chalcogaster (Wiedemann) (Muscidae) were the dominant species among the colonizers, which supports their importance as forensic evidence in Brazil.

  17. Species tree estimation for the late blight pathogen, Phytophthora infestans, and close relatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary process...

  18. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests

    PubMed Central

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-01-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species. PMID:26696137

  19. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests.

    PubMed

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-03-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species.

  20. Neogene origins and implied warmth tolerance of Amazon tree species.

    PubMed

    Dick, Christopher W; Lewis, Simon L; Maslin, Mark; Bermingham, Eldredge

    2012-01-01

    Tropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long-term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm-adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6-5 Ma) and late-Miocene (8-10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near-term high temperature-induced mass species extinction is unlikely.

  1. Neogene origins and implied warmth tolerance of Amazon tree species

    PubMed Central

    Dick, Christopher W; Lewis, Simon L; Maslin, Mark; Bermingham, Eldredge

    2013-01-01

    Tropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long-term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm-adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6–5 Ma) and late-Miocene (8–10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near-term high temperature-induced mass species extinction is unlikely. PMID:23404439

  2. Aluminium Accumulation and Intra-Tree Distribution Patterns in Three Arbor aluminosa (Symplocos) Species from Central Sulawesi

    PubMed Central

    Schmitt, Marco; Boras, Sven; Tjoa, Aiyen; Watanabe, Toshihiro; Jansen, Steven

    2016-01-01

    Accumulation of Aluminium (Al) at concentrations far above 1,000 mg kg-1 in aboveground plant tissues of Arbor aluminosa (Symplocos) species is the main reason why traditional Indonesian weavers rely on their leaves and bark as a mordant for dyeing textile. Recently, Symplocos species have become a flagship species for the conservation efforts of weaving communities due to their traditionally non-sustainable sampling and increasing demand for Symplocos plant material. Here we investigated Symplocos odoratissima, S. ophirensis and S. ambangensis at three montane rainforest sites in Central Sulawesi to measure Al levels in different tissues and organs. The highest Al concentrations were found in old leaves (24,180 ± 7,236 mg·kg-1 dry weight, mean ± SD), while young leaves had significantly lower Al levels (20,708 ± 7,025 mg·kg-1). Al accumulation was also lower in bark and wood tissue of the trunk (17,231 ± 8,356 mg·kg-1 and 5,181 ± 2,032 mg·kg-1, respectively). Two Al excluding species (Syzigium sp. and Lithocarpus sp.) contained only high Al levels in their roots. Moreover, no difference was found in soil pH (4.7 ± 0.61) and nutrient (K, Ca, Fe, Mg) availability at different soil levels and within or outside the crown of Symplocos trees, except for the upper soil layer. Furthermore, a positive and significant correlation between Al and Ca concentrations was found at the whole plant level for Symplocos, and at the leaf level for S. ophirensis and S. ambangensis, suggesting a potential role of Ca in Al uptake and/or detoxification within the plant. Our results provide evidence for strong Al accumulation in Symplocos species and illustrate that both Al accumulation and exclusion represent two co-occurring strategies of montane rainforest plants for dealing with Al toxicity. Indonesian weavers should be encouraged to harvest old leaves, which have the most efficient mordant capacity due to high Al concentrations. PMID:26871698

  3. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees.

    PubMed

    Asao, Shinichi; Ryan, Michael G

    2015-06-01

    How trees sense source-sink carbon balance remains unclear. One potential mechanism is a feedback from non-structural carbohydrates regulating photosynthesis and removing excess as waste respiration when the balance of photosynthesis against growth and metabolic activity changes. We tested this carbohydrate regulation of photosynthesis and respiration using branch girdling in four tree species in a wet tropical rainforest in Costa Rica. Because girdling severs phloem to stop carbohydrate export while leaving xylem intact to allow photosynthesis, we expected carbohydrates to accumulate in leaves to simulate a carbon imbalance. We varied girdling intensity by removing phloem in increments of one-quarter of the circumference (zero, one--quarter, half, three-quarters, full) and surrounded a target branch with fully girdled ones to create a gradient in leaf carbohydrate content. Light saturated photosynthesis rate was measured in situ, and foliar respiration rate and leaf carbohydrate content were measured after destructive harvest at the end of the treatment. Girdling intensity created no consistent or strong responses in leaf carbohydrates. Glucose and fructose slightly increased in all species by 3.4% per one-quarter girdle, total carbon content and leaf mass per area increased only in one species by 5.4 and 5.5% per one-quarter girdle, and starch did not change. Only full girdling lowered photosynthesis in three of four species by 59-69%, but the decrease in photosynthesis was unrelated to the increase in glucose and fructose content. Girdling did not affect respiration. The results suggest that leaf carbohydrate content remains relatively constant under carbon imbalance, and any changes are unlikely to regulate photosynthesis or respiration. Because girdling also stops the export of hormones and reactive oxygen species, girdling may induce physiological changes unrelated to carbohydrate accumulation and may not be an effective method to study carbohydrate feedback

  4. Archipelago colonization by ecologically dissimilar amphibians: evaluating the expectation of common evolutionary history of geographical diffusion in co-distributed rainforest tree frogs in islands of Southeast Asia.

    PubMed

    Gonzalez, Paulette; Su, Yong-Chao; Siler, Cameron D; Barley, Anthony J; Sanguila, Marites B; Diesmos, Arvin C; Brown, Rafe M

    2014-03-01

    Widespread, co-distributed species with limited relative dispersal abilities represent compelling focal taxa for comparative phylogeography. Forest vertebrates in island archipelagos often exhibit pronounced population structure resulting from limited dispersal abilities or capacity to overcome marine barriers to dispersal. The exceptionally diverse Old World tree frogs of the family Rhacophoridae have colonized the forested island archipelagos of Southeast Asia on multiple occasions, entering the islands of Indonesia and the Philippines via a "stepping stone" mode of dispersal along elongate island chains, separated by a series of marine channels. Here we evaluate the prediction that two tightly co-distributed Philippine rhacophorids colonized the archipelago during concomitant timescales and in the same, linear, "island-hopping" progression. We use a new multilocus dataset, utilize dense genetic sampling from the eastern arc of the Philippines, and we take a model-based phylogeographic approach to examining the two species for similar topological patterns of diversification, genetic structure, and timescales of diversification. Our results support some common mechanistic predictions (a general south-to-north polarity of colonization) but not others (timescale for colonization and manner and degree of lineage diversification), suggesting differing biogeographic scenarios of geographical diffusion through the archipelago and unique and idiosyncratic ecological capacities and evolutionary histories of each species.

  5. Effect of bait decomposition on the attractiveness to species of Diptera of veterinary and forensic importance in a rainforest fragment in Brazil.

    PubMed

    Oliveira, Diego L; Soares, Thiago F; Vasconcelos, Simão D

    2016-01-01

    Insects associated with carrion can have parasitological importance as vectors of several pathogens and causal agents of myiasis to men and to domestic and wild animals. We tested the attractiveness of animal baits (chicken liver) at different stages of decomposition to necrophagous species of Diptera (Calliphoridae, Fanniidae, Muscidae, Phoridae and Sarcophagidae) in a rainforest fragment in Brazil. Five types of bait were used: fresh and decomposed at room temperature (26 °C) for 24, 48, 72 and 96 h. A positive correlation was detected between the time of decomposition and the abundance of Calliphoridae and Muscidae, whilst the abundance of adults of Phoridae decreased with the time of decomposition. Ten species of calliphorids were registered, of which Chrysomya albiceps, Chrysomya megacephala and Chloroprocta idioidea showed a positive significant correlation between abundance and decomposition. Specimens of Sarcophagidae and Fanniidae did not discriminate between fresh and highly decomposed baits. A strong female bias was registered for all species of Calliphoridae irrespective of the type of bait. The results reinforce the feasibility of using animal tissues as attractants to a wide diversity of dipterans of medical, parasitological and forensic importance in short-term surveys, especially using baits at intermediate stages of decomposition.

  6. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle.

    PubMed

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K; Schmidl, Jürgen; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Lewinsohn, Thomas M; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.

  7. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle

    PubMed Central

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K.; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K.; Schmidl, Jürgen; Winchester, Neville N.; Roubik, David W.; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R.; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H. C.; Dejean, Alain; Fagan, Laura L.; Floren, Andreas; Kitching, Roger L.; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P.; Roisin, Yves; Schmidt, Jesper B.; Sørensen, Line; Lewinsohn, Thomas M.; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  8. Biogenic volatile organic compound emissions from nine tree species used in an urban tree-planting program

    NASA Astrophysics Data System (ADS)

    Curtis, A. J.; Helmig, D.; Baroch, C.; Daly, R.; Davis, S.

    2014-10-01

    The biogenic volatile organic compound (BVOC) emissions of nine urban tree species were studied to assess the air quality impacts from planting a large quantity of these trees in the City and County of Denver, Colorado, through the Mile High Million tree-planting initiative. The deciduous tree species studied were Sugar maple, Ohio buckeye, northern hackberry, Turkish hazelnut, London planetree, American basswood, Littleleaf linden, Valley Forge elm, and Japanese zelkova. These tree species were selected using the i-Tree Species Selector (itreetools.org). BVOC emissions from the selected tree species were investigated to evaluate the Species Selector data under the Colorado climate and environmental growing conditions. Individual tree species were subjected to branch enclosure experiments in which foliar emissions of BVOC were collected onto solid adsorbent cartridges. The cartridge samples were analyzed for monoterpenes (MT), sesquiterpenes (SQT), and other C10-C15 BVOC using thermal desorption-gas chromatography-flame ionization detection/mass spectroscopy (GC-FID/MS). Individual compounds and their emission rates (ER) were identified. MT were observed in all tree species, exhibiting the following total MT basal emission rates (BER; with a 1-σ lower bound, upper bound uncertainty window): Sugar maple, 0.07 (0.02, 0.11) μg g-1 h-1; London planetree, 0.15 (0.02, 0.27) μg g-1 h-1; northern hackberry, 0.33 (0.09, 0.57) μg g-1 h-1; Japanese zelkova, 0.42 (0.26, 0.58) μg g-1 h-1; Littleleaf linden, 0.71 (0.33, 1.09) μg g-1 h-1; Valley Forge elm, 0.96 (0.01, 1.92) μg g-1 h-1; Turkish hazelnut, 1.30 (0.32, 2.23) μg g-1 h-1; American basswood, 1.50 (0.40, 2.70) μg g-1 h-1; and Ohio buckeye, 6.61 (1.76, 11.47) μg g-1 h-1. SQT emissions were seen in five tree species with total SQT BER of: London planetree, 0.11 (0.01, 0.20) μg g-1 h-1; Japanese zelkova, 0.11 (0.05, 0.16) μg g-1 h-1; Littleleaf linden, 0.13 (0.06, 0.21) μg g-1 h-1; northern hackberry, 0.20 (0

  9. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  10. Landscape variation in tree species richness in northern Iran forests.

    PubMed

    Bourque, Charles P-A; Bayat, Mahmoud

    2015-01-01

    Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area's digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be

  11. Tree species identity and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2015-06-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale runoff plots was conducted to investigate the influence of tree species richness and identity as well as tree functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 t ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion, but higher tree species richness did not mitigate soil losses in young forest stands. Thus, different tree morphologies have to be considered, when assessing erosion under forest. High crown cover and leaf area index reduced soil losses in initial forest ecosystems, whereas rising tree height increased them. Even if a leaf litter cover was not present, remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on soil loss. Long-term monitoring of soil erosion under closing tree canopies is necessary and a wide range of functional tree traits should be taken into consideration in future research.

  12. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    PubMed

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland.

  13. Helmdon's First Rainforest

    ERIC Educational Resources Information Center

    Blackburn, Sue

    2003-01-01

    This article describes how Helmdon Primary School is transformed in a memorable learning experience. It started out as a simple idea, a whole-school art exhibition centred on the theme of a tropical rainforest. The focal point was to be a life-sized rainforest created using a variety of media in the school hall. The school wanted the children to…

  14. Species identity and neighbor size surpass the impact of tree species diversity on productivity in experimental broad-leaved tree sapling assemblages under dry and moist conditions

    PubMed Central

    Lübbe, Torben; Schuldt, Bernhard; Leuschner, Christoph

    2015-01-01

    Species diversity may increase the productivity of tree communities through complementarity (CE) and/or selection effects (SE), but it is not well known how this relationship changes under water limitation. We tested the stress-gradient hypothesis, which predicts that resource use complementarity and facilitation are more important under water-limited conditions. We conducted a growth experiment with saplings of five temperate broad-leaved tree species that were grown in assemblages of variable diversity (1, 3, or 5 species) and species composition under ample and limited water supply to examine effects of species richness and species identity on stand- and tree-level productivity. Special attention was paid to effects of neighbor identity on the growth of target trees in mixture as compared to growth in monoculture. Stand productivity was strongly influenced by species identity while a net biodiversity effect (NE) was significant in the moist treatment (mostly assignable to CE) but of minor importance. The growth performance of some of the species in the mixtures was affected by tree neighborhood characteristics with neighbor size likely being more important than neighbor species identity. Diversity and neighbor identity effects visible in the moist treatment mostly disappeared in the dry treatment, disproving the stress-gradient hypothesis. The mixtures were similarly sensitive to drought-induced growth reduction as the monocultures, which may relate to the decreased CE on growth upon drought in the mixtures. PMID:26579136

  15. Floristic and phytosociology in dense "terra firme" rainforest in the Belo Monte Hydroelectric Plant influence area, Pará, Brazil.

    PubMed

    Lemos, D A N; Ferreira, B G A; Siqueira, J D P; Oliveira, M M; Ferreira, A M

    2015-08-01

    The objective of the present study was to characterise the floristic and phytosociological composition on a stretch of dense "Terra Firme" rainforest located in the Belo Monte hydroelectric plant area of influence, located in the state of Pará, Brazil. All trees with DAP >10 cm situated in 75 permanent plots of 1 ha were inventoried. 27,126 individuals trees (361 ind.ha-1), distributed in 59 botanical families, comprising 481 species were observed. The families with the largest number of species were Fabaceae (94), Araceae (65) and Arecaceae (43), comprising 43.7% of total species. The species Alexa grandiflora (4.41), Cenostigma tocantinum (2.50) and Bertholletia excelsa (2.28) showed the highest importance values (IV). The ten species with greater IV are concentrated (22%). The forest community has high species richness and can be classified as diverse age trees, heterogeneous and of medium conservation condition.

  16. Species tree estimation for the late blight pathogen, Phytophthora infestans, and close relatives.

    PubMed

    Blair, Jaime E; Coffey, Michael D; Martin, Frank N

    2012-01-01

    To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based "supergene" approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred.

  17. Species Tree Estimation for the Late Blight Pathogen, Phytophthora infestans, and Close Relatives

    PubMed Central

    Blair, Jaime E.; Coffey, Michael D.; Martin, Frank N.

    2012-01-01

    To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based “supergene” approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred. PMID:22615869

  18. Origin of the Hawaiian rainforest and its transition states in long-term primary succession

    NASA Astrophysics Data System (ADS)

    Mueller-Dombois, D.; Boehmer, H. J.

    2013-07-01

    This paper addresses the question of transition states in the Hawaiian rainforest ecosystem with emphasis on their initial developments. Born among volcanoes in the north central Pacific about 4 million years ago, the Hawaiian rainforest became assembled from spores of algae, fungi, lichens, bryophytes, ferns and from seeds of about 275 flowering plants that over the millennia evolved into ca. 1000 endemic species. Outstanding among the forest builders were the tree ferns (Cibotium spp.) and the 'ōhi'a lehua trees (Metrosideros spp.), which still dominate the Hawaiian rainforest ecosystem today. The structure of this forest is simple. The canopy in closed mature rainforests is dominated by cohorts of Metrosideros polymorpha and the undergrowth by tree fern species of Cibotium. When a new lava flow cuts through this forest, kipuka are formed, i.e., islands of remnant vegetation. On the new volcanic substrate, the assemblage of plant life forms is similar to the assemblage during the evolution of this system. In open juvenile forests, a mat-forming fern, the uluhe fern (Dicranopteris linearis), becomes established. It inhibits further regeneration of the dominant 'ōhi'a tree, thereby reinforcing the cohort structure of the canopy guild. In the later part of its life cycle, the canopy guild breaks down often in synchrony. The trigger is hypothesized to be a climatic perturbation. After the disturbance, the forest becomes reestablished in about 30-40 yr. As the volcanic surfaces age, they go from a mesotrophic to a eutrophic phase, reaching a biophilic nutrient climax by about 1-25 K yr. Thereafter, a regressive oligotrophic phase follows; the soils become exhausted of nutrients. The shield volcanoes break down. Marginally, forest habitats change into bogs and stream ecosystems. The broader 'ōhi'a rainforest redeveloping in the more dissected landscapes of the older islands loses stature, often forming large gaps that are invaded by the aluminum tolerant uluhe fern

  19. Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest

    PubMed Central

    Sandor, Manette E.; Chazdon, Robin L.

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700

  20. Remnant trees affect species composition but not structure of tropical second-growth forest.

    PubMed

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  1. Three New Species of Phytotelm-Breeding Melanophryniscus from the Atlantic Rainforest of Southern Brazil (Anura: Bufonidae).

    PubMed

    Bornschein, Marcos R; Firkowski, Carina R; Baldo, Diego; Ribeiro, Luiz F; Belmonte-Lopes, Ricardo; Corrêa, Leandro; Morato, Sérgio A A; Pie, Marcio R

    2015-01-01

    Three new species of Melanophryniscus are described from the Serra do Mar mountain range of the state of Santa Catarina, southern Brazil. All species are found at intermediate to high altitudes and share phytotelm-breeding as their reproductive strategy. The new species are distinguished from other phytotelm-breeding Melanophryniscus based on different combinations of the following traits: snout-vent length, presence of white and/or yellow spots on forearms, mouth, belly and cloaca, pattern and arrangement of warts, and presence and number of corneous spines. The discovery of these species in a rather restricted geographical area suggests that the diversity of phytotelm-breeding species of Melanophryniscus might be severely underestimated. The conservation status of these species is of particular concern, given that one of them is at risk of extinction not only due to its restricted habitat, but also because of anthropogenic disturbances.

  2. Three New Species of Phytotelm-Breeding Melanophryniscus from the Atlantic Rainforest of Southern Brazil (Anura: Bufonidae)

    PubMed Central

    Bornschein, Marcos R.; Firkowski, Carina R.; Baldo, Diego; Ribeiro, Luiz F.; Belmonte-Lopes, Ricardo; Corrêa, Leandro; Morato, Sérgio A. A.; Pie, Marcio R.

    2015-01-01

    Three new species of Melanophryniscus are described from the Serra do Mar mountain range of the state of Santa Catarina, southern Brazil. All species are found at intermediate to high altitudes and share phytotelm-breeding as their reproductive strategy. The new species are distinguished from other phytotelm-breeding Melanophryniscus based on different combinations of the following traits: snout-vent length, presence of white and/or yellow spots on forearms, mouth, belly and cloaca, pattern and arrangement of warts, and presence and number of corneous spines. The discovery of these species in a rather restricted geographical area suggests that the diversity of phytotelm-breeding species of Melanophryniscus might be severely underestimated. The conservation status of these species is of particular concern, given that one of them is at risk of extinction not only due to its restricted habitat, but also because of anthropogenic disturbances. PMID:26630281

  3. Landscape Variation in Tree Species Richness in Northern Iran Forests

    PubMed Central

    Bourque, Charles P.-A.; Bayat, Mahmoud

    2015-01-01

    Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area’s unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area’s digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to

  4. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)

    PubMed Central

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  5. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico).

    PubMed

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  6. The Relationship between Species Diversity and Genetic Structure in the Rare Picea chihuahuana Tree Species Community, Mexico

    PubMed Central

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as “Endangered” on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions

  7. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico.

    PubMed

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between

  8. Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity.

    PubMed

    Koenen, Erik J M; Clarkson, James J; Pennington, Terence D; Chatrou, Lars W

    2015-07-01

    Tropical rainforest hyperdiversity is often suggested to have evolved over a long time-span (the 'museum' model), but there is also evidence for recent rainforest radiations. The mahoganies (Meliaceae) are a prominent plant group in lowland tropical rainforests world-wide but also occur in all other tropical ecosystems. We investigated whether rainforest diversity in Meliaceae has accumulated over a long time or has more recently evolved. We inferred the largest time-calibrated phylogeny for the family to date, reconstructed ancestral states for habitat and deciduousness, estimated diversification rates and modeled potential shifts in macro-evolutionary processes using a recently developed Bayesian method. The ancestral Meliaceae is reconstructed as a deciduous species that inhabited seasonal habitats. Rainforest clades have diversified from the Late Oligocene or Early Miocene onwards. Two contemporaneous Amazonian clades have converged on similar ecologies and high speciation rates. Most species-level diversity of Meliaceae in rainforest is recent. Other studies have found steady accumulation of lineages, but the large majority of plant species diversity in rainforests is recent, suggesting (episodic) species turnover. Rainforest hyperdiversity may best be explained by recent radiations from a large stock of higher level taxa.

  9. Response of tree growth and species coexistence to density and species evenness in a young forest plantation with two competing species

    PubMed Central

    Collet, Catherine; Ningre, François; Barbeito, Ignacio; Arnaud, Anthony; Piboule, Alexandre

    2014-01-01

    Background and Aims There is considerable evidence for the presence of positive species diversity–productivity relationships in plant populations, but the population parameters determining the type and strength of the relationship are poorly defined. Relationships between species evenness and tree survival or species coexistence are not well established. The objective of this study was to quantify the joint effects of density and species evenness on tree productivity and species coexistence. Methods A 12-year-old experimental tree plantation mixing two species according to a double gradient of density and species proportion was used. A neighbourhood approach was employed and descriptors of local competition were used to model individual tree growth. Fagus sylvatica and Acer pseudoplatanus were used as model species, as they can be considered as ecologically equivalent in their young stages. Key Results Density and tree size were primary factors determining individual growth and stand productivity. Species identity had a significant, but less pronounced, role. Stand productivity was highest when species evenness was close to 1 and slightly lower in uneven mixtures. The reduction in stand productivity when species evenness decreased was of similar magnitude irrespective of which species became dominant, indicating symmetric effects for the two species. When examining individual tree growth in response to species proportion for each species separately, it was observed for both species that individual trees exhibited greater growth in uneven mixtures in which the other species was more frequent. Conclusions The results suggest that mixtures of these two functionally similar species have the highest production at maximum evenness, indicating a complementary effect between them. The presence of a mixture combines both stabilizing mechanisms (individuals from both species show higher growth when surrounded by individuals from the other species) and equalizing mechanisms

  10. Mortality rates associated with crown health for eastern forest tree species.

    PubMed

    Morin, Randall S; Randolph, KaDonna C; Steinman, Jim

    2015-03-01

    The condition of tree crowns is an important indicator of tree and forest health. Crown conditions have been evaluated during inventories of the US Forest Service Forest Inventory and Analysis (FIA) program since 1999. In this study, remeasured data from 55,013 trees on 2616 FIA plots in the eastern USA were used to assess the probability of survival among various tree species using the suite of FIA crown condition variables. Logistic regression procedures were employed to develop models for predicting tree survival. Results of the regression analyses indicated that crown dieback was the most important crown condition variable for predicting tree survival for all species combined and for many of the 15 individual species in the study. The logistic models were generally successful in representing recent tree mortality responses to multiyear infestations of beech bark disease and hemlock woolly adelgid. Although our models are only applicable to trees growing in a forest setting, the utility of models that predict impending tree mortality goes beyond forest inventory or traditional forestry growth and yield models and includes any application where managers need to assess tree health or predict tree mortality including urban forest, recreation, wildlife, and pest management.

  11. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species.

    PubMed

    Meng, Fengqun; Zhang, Guangfu; Li, Xincheng; Niklas, Karl J; Sun, Shucun

    2015-06-01

    During the development of woody twigs, the growth in leaf may or may not be proportional to the growth in stem. The presence or absence of a synchronicity between these two phenologies may reflect differences in life history adaptive strategies concerning carbon gain. We hypothesized that sun-adapted species are more likely to be less synchronous between growths in total leaf area (TLA) and stem length compared with shade-adapted species, with a bias in growth in stem length, and that shade-adapted species are more likely to be more synchronous between increases in individual leaf area (ILA) (leaf size) and leaf number (LN) during twig development compared with sun-adapted species, giving priority to growth of leaf size. We tested these two hypotheses by recording the phenologies of leaf emergence, leaf expansion and stem elongation during twig development for 19 evergreen woody species (including five shade-adapted understory species, six sun-adapted understory species and eight sun-adapted canopy species) in a subtropical evergreen broad-leaved forest in eastern China. We constructed indices to characterize the synchronicity between TLA and stem length (αLS) and between leaf size and leaf number (αSN) and we derived the α values from logistic functions taking the general form of A = A(max)/[1 + exp(β - αB)] (where A is the TLA or average ILA, B is the corresponding stem length or LN at a specific time, and A(max) is the maximum TLA or the maximum ILA of a twig; the higher the numerical value of α, the less synchronous the corresponding phenologies). Consistent with our hypotheses, sun-adapted species were higher both in α(LS) and α(SN), showing less synchronous patterns in the growths of TLA vs stem length and leaf size vs LN during twig development. Moreover, α(LS) and α(SN) were significantly positively correlated with relative growth rates of LN and leaf size across species, as indicated by both analyses of ordinary regression and

  12. Have we underestimated stemflow? Lessons from an open tropical rainforest

    NASA Astrophysics Data System (ADS)

    Germer, Sonja; Werther, Lisa; Elsenbeer, Helmut

    2010-12-01

    SummaryStemflow was monitored on event-basis in an undisturbed open tropical rainforest with a large number of palm trees located in the southwestern Amazon basin of Brazil. We estimated stemflow of 24 trees with a diameter at breast height (DBH) over 5 cm and of 16 juvenile and eight aborescent babassu palms ( Orbignya phalerata Mart.). To obtain within-event stemflow variability we monitored stemflow of one additional aborescent babassu palm with a tipping-bucket rain gauge at 5-min intervals. Total stemflow of the forest accounted for 8.0 ± 1.8% (S.E.) of incident rainfall and reached the forest floor over an area corresponding to the total basal area that sums up to only 0.3% of the plot area. The most influential predictive variables for stemflow generation were DBH and rainfall amount. The stemflow parameter 'funneling ratio', which is normalized for DBH and rainfall amount, was particularly useful to highlight the relevance of small trees (DBH ⩽ 10 cm) for stemflow generation. Small trees and babassu palms had significantly higher funneling ratios than larger trees (median funneling ratios: 15-27 and 1-2, respectively). The maximum 5-min stemflow intensity (1232 mm h -1) was 15-fold that of rainfall. High funneling ratios of small trees and babassu palms suggest that high stemflow intensities are the rule rather than the exception. Therefore, we expect small trees and babassu palms to influence hydrologic processes as subsurface flow, saturation overland flow or groundwater recharge. Consequently, stemflow studies should include all DBH classes and species with exceptionally high funneling ratios. For modeling purposes, stemflow should be estimated and not just assumed if study sites have a large number of palms or of small trees.

  13. Impact of forest fragment size on the population structure of three palm species (Arecaceae) in the Brazilian Atlantic rainforest.

    PubMed

    Portela, Rita de Cássia Quitete; dos Santos, Flavio Antonio Maes

    2014-06-01

    The main threats to natural populations in terrestrial ecosystems have been widly recognized to be the habitat fragmentation and the exploitation of forest products. In this study, we compared the density of the populations and the structure of three tropical palm species, Astrocaryum aculeatissimum, Euterpe edulis and Geonoma schottiana. For this, we selected five forest fragments of different sizes (3 500ha, 2 400ha, 57ha, 21ha and 19ha) where palms were censused in nine 30 x 30m plots. We tracked the palms survival from 2005 to 2007, and recorded all new individuals encountered. Each individual was assigned in one of the five ontogenetic stages: seedling, infant, juvenile, immature and reproductive. The demographic structure of each palm species was analyzed and compared by a generalized linear model (GLM). The analysis was performed per palm species. The forest fragment area and the year of observation were explanatory variables, and the proportion of individuals in each ontogenetic class and palm density were response variables. The total number of individuals (from seedlings to reproductives, of all species) monitored was 6 450 in 2005, 7 268 in 2006, and 8 664 in 2007. The densities of two palm species were not influenced by the size of the fragment, but the population density of A. aculeatissimum was dependent on the size of the fragment: there were more individuals in the bigger than in the smaller forest fragments. The population structure of A. aculeatissimum, E. edulis, and G. schottiana was not altered in the smaller fragments, except the infants of G. schottiana. The main point to be drawn from the results found in this study is that the responses of density and population structure seem not to be dependent on fragment size, except for one species that resulted more abundant in bigger fragments.

  14. Photosynthetic Light Responses May Explain Vertical Distribution of Hymenophyllaceae Species in a Temperate Rainforest of Southern Chile

    PubMed Central

    Parra, María José; Acuña, Karina I.; Sierra-Almeida, Angela; Sanfuentes, Camila; Saldaña, Alfredo; Corcuera, Luis J.; Bravo, León A.

    2015-01-01

    Some epiphytic Hymenophyllaceae are restricted to lower parts of the host (<60 cm; 10–100 μmol photons m-2 s-1) in a secondary forest of Southern Chile; other species occupy the whole host height (≥10 m; max PPFD >1000 μmol photons m-2 s-1). Our aim was to study the photosynthetic light responses of two Hymenophyllaceae species in relation to their contrasting distribution. We determined light tolerance of Hymenoglossum cruentum and Hymenophyllum dentatum by measuring gas exchange, PSI and PSII light energy partitioning, NPQ components, and pigment contents. H. dentatum showed lower maximum photosynthesis rates (Amax) than H. cruentum, but the former species kept its net rates (An) near Amax across a wide light range. In contrast, in the latter one, An declined at PPFDs >60 μmol photons m-2 s-1. H. cruentum, the shadiest plant, showed higher chlorophyll contents than H. dentatum. Differences in energy partitioning at PSI and PSII were consistent with gas exchange results. H. dentatum exhibited a higher light compensation point of the partitioning of absorbed energy between photochemical Y(PSII) and non-photochemical Y(NPQ) processes. Hence, both species allocated energy mainly toward photochemistry instead of heat dissipation at their light saturation points. Above saturation, H. cruentum had higher heat dissipation than H. dentatum. PSI yield (YPSI) remained higher in H. dentatum than H. cruentum in a wider light range. In both species, the main cause of heat dissipation at PSI was a donor side limitation. An early dynamic photo-inhibition of PSII may have caused an over reduction of the Qa+ pool decreasing the efficiency of electron donation to PSI. In H. dentatum, a slight increase in heat dissipation due to acceptor side limitation of PSI was observed above 300 μmol photons m-2s-1. Differences in photosynthetic responses to light suggest that light tolerance and species plasticity could explain their contrasting vertical distribution. PMID:26699612

  15. A new genus and species of myrmecophilous brentid beetle (Coleoptera: Brentidae) inhabiting the myrmecophytic epiphytes in the Bornean rainforest canopy.

    PubMed

    Maruyama, Munetoshi; Bartolozzi, Luca; Inui, Yoko; Tanaka, Hiroshi O; Hyodo, Fujio; Shimizu-Kaya, Usun; Takematsu, Yoko; Hishi, Takuo; Itioka, Takao

    2014-04-08

    Pycnotarsobrentus inuiae Maruyama & Bartolozzi, gen. nov. and sp. nov. (Brentinae: Eremoxenini) is described from the Lambir Hills National Park, Borneo (Sarawak, Malaysia) based on specimens collected from Crematogaster difformis F. Smith, 1857 ant nests in the myrmecophytic epiphytic ferns Platycerium crustacea Copel. and Lecanopteris ridleyi H. Christ. A second species of Pycnotarsobrentus is known from Malaysia but is represented by only one female and consequently not yet described pending discovery of a male. Pycnotarsobrentus belongs to the tribe Eremoxenini and shares some character states with the African genus Pericordus Kolbe, 1883. No species of Eremoxenini with similar morphological modifications are known from the Oriental region.

  16. Four new species of Oidardis Hermann, 1912 (Diptera, Asilidae, Laphriinae, Atomosiini) from two major faunistic surveys in the Atlantic Rainforest

    PubMed Central

    Cezar, Lucas A.; Fisher, Eric M.; Lamas, Carlos J. E.

    2013-01-01

    Abstract Two recent faunistic surveys in the Brazilian Atlantic Forests region, the PROFAUPAR and the Biota/FAPESP Program, have provided important material for the discovery of new taxa from Brazil. We describe herein four new species of robber-flies of the genus Oidardis (O. falcimystax sp. n., O. fontenellei sp. n., O. maculiseta sp. n. and O. marinonii sp. n.), including illustrations and details on male hypopygia and female genitalia. A distribution map and a key to the species of Oidardis from the Brazilian Atlantic Forests region, including O. triangularis (Hermann), 1912, are also provided. PMID:24294083

  17. Surface Water Storage Capacity of Twenty Tree Species in Davis, California.

    PubMed

    Xiao, Qingfu; McPherson, E Gregory

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage capacity is known to vary widely among tree species, but it is little studied. This research measured surface storage capacities of 20 urban tree species in a rainfall simulator. The measurement system included a rainfall simulator, digital balance, digital camera, and computer. Eight samples were randomly collected from each tree species. Twelve rainfall intensities (3.5-139.5 mm h) were simulated. Leaf-on and leaf-off simulations were conducted for deciduous species. Stem and foliar surface areas were estimated using an image analysis method. Results indicated that surface storage capacities varied threefold among tree species, 0.59 mm for crape myrtle ( L.) and 1.81 mm for blue spruce ( Engelm.). The mean value across all species was 0.86 mm (0.11 mm SD). To illustrate application of the storage values, interception was simulated and compared across species for a 40-yr period with different rainfall intensities and durations. By quantifying the potential for different tree species to intercept rainfall under a variety of meteorological conditions, this study provides new knowledge that is fundamental to validating the cost-effectiveness of urban forestry as a green infrastructure strategy and designing functional plantings.

  18. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis.

    PubMed

    Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A

    2015-10-01

    The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous

  19. The tribe Dysoniini part IV: New species of Quiva Hebard, 1927 (Orthoptera: Tettigoniidae: Phaneropterinae) from Brazilian rainforest and some clarifications.

    PubMed

    Cadena-Castañeda, Oscar J; Mendes, Diego Matheus De Mello; Sovano, Rafael S Da Silva

    2015-06-10

    Two new species of the genus Quiva: Quiva buhrnheimi n. sp. and Quiva gutjahrae n. sp. from Brazilian Amazon are described. Determinations for distributional data previously published by Sovano & Mendes (2013) are clarified and the synonymy of Ituana dorisae under Q. abacata is confirmed. In this paper, an updated key to subgenus Quiva is provided.

  20. The paradox of great longevity in a short-lived tree species.

    PubMed

    Larson, D W

    2001-04-01

    Thuja occidentalis is a tree species that was once thought to be relatively short-lived (80 years). Up until 10 years ago maximum ages were considered to be near 400 years, but such trees were thought to be rare. Research along the cliffs of the Niagara Escarpment has altered this view. Exceptionally slow-growing trees of this species have been found with ring counts to 1653 years and estimated ages to 1890 years. Senescence is slow or absent. Injury and death is due to rockfall and sporadic severe drought that kills small sectors of the trees by exposing and killing the roots. Experiments in which colored dyes are infused into roots show that each tree is composed of hydraulically independent units that allow mortality in one part of the 'individual' with little negative effect on the remaining parts of the tree. The trees are small, so environmental loadings of ice, snow, and wind are low. Slow growth of the trees results in a much greater mechanical strength in the wood. Together these properties increase the ability of the cedars to persist on cliffs for long periods of time. The paradox of great longevity in this 'short-lived' tree species is explained by slow growth that minimizes maintenance and repair costs while maximizing durability and strength, combined with an internal architecture that creates functionally independent units within each tree.

  1. Diversification of Bromelioideae (Bromeliaceae) in the Brazilian Atlantic rainforest: A case study in Aechmea subgenus Ortgiesia.

    PubMed

    Goetze, Márcia; Schulte, Katharina; Palma-Silva, Clarisse; Zanella, Camila M; Büttow, Miriam V; Capra, Fernanda; Bered, Fernanda

    2016-05-01

    Aechmea subgenus Ortgiesia comprises ca. 20 species distributed in Brazil, Argentina, Paraguay, and Uruguay, with a center of diversity in the Brazilian Atlantic rainforest. We examined interspecific relationships of Ortgiesia based on Amplified Fragment Length Polymorphisms (AFLP). Ninety-six accessions belonging to 14 species of Ortgiesia were sampled, and genotyped with 11 AFLP primer combinations. The neighbor joining (NJ) tree depicted two main genetic groups within Aechmea subgenus Ortgiesia, and four subgroups. The NJ tree showed short internal branches, indicating an overall shallow genetic divergence among Ortgiesia species as expected for the recently radiated subfamily Bromelioideae. Our results suggest that hybridization and/or incomplete lineage sorting may have hampered the reconstruction of interspecific relationships in Aechmea subgenus Ortgiesia. The mapping of petal color (yellow, blue, pink, or white), inflorescence type (simple or compound), and inflorescence shape (ellipsoid, subcylindric, cylindric, or pyramidal) against the NJ tree indicated that these characters are of limited taxonomic use in Aechmea subgenus Ortgiesia due to homoplasy. An analysis of the current distribution of Ortgiesia identified the southern region of the Brazilian Atlantic rainforest, between latitudes of 26° and 27°S, as the center of diversity for the subgenus.

  2. People, Parks and Rainforests.

    ERIC Educational Resources Information Center

    Singer, Judith Y.

    1992-01-01

    The MLE Learning Center, a publicly funded day care center and after-school program in Brooklyn, New York, helps children develop awareness of a global community by using local resources to teach the children about the rainforest. (LB)

  3. The dynamics of ant mosaics in tropical rainforests characterized using the Self-Organizing Map algorithm.

    PubMed

    Dejean, Alain; Azémar, Frédéric; Céréghino, Régis; Leponce, Maurice; Corbara, Bruno; Orivel, Jérôme; Compin, Arthur

    2016-08-01

    Ants, the most abundant taxa among canopy-dwelling animals in tropical rainforests, are mostly represented by territorially dominant arboreal ants (TDAs) whose territories are distributed in a mosaic pattern (arboreal ant mosaics). Large TDA colonies regulate insect herbivores, with implications for forestry and agronomy. What generates these mosaics in vegetal formations, which are dynamic, still needs to be better understood. So, from empirical research based on 3 Cameroonian tree species (Lophira alata, Ochnaceae; Anthocleista vogelii, Gentianaceae; and Barteria fistulosa, Passifloraceae), we used the Self-Organizing Map (SOM, neural network) to illustrate the succession of TDAs as their host trees grow and age. The SOM separated the trees by species and by size for L. alata, which can reach 60 m in height and live several centuries. An ontogenic succession of TDAs from sapling to mature trees is shown, and some ecological traits are highlighted for certain TDAs. Also, because the SOM permits the analysis of data with many zeroes with no effect of outliers on the overall scatterplot distributions, we obtained ecological information on rare species. Finally, the SOM permitted us to show that functional groups cannot be selected at the genus level as congeneric species can have very different ecological niches, something particularly true for Crematogaster spp., which include a species specifically associated with B. fistulosa, nondominant species and TDAs. Therefore, the SOM permitted the complex relationships between TDAs and their growing host trees to be analyzed, while also providing new information on the ecological traits of the ant species involved.

  4. Soil magnetic susceptibility reflects soil moisture regimes and the adaptability of tree species to these regimes

    USGS Publications Warehouse

    Wang, J.-S.; Grimley, D.A.; Xu, C.; Dawson, J.O.

    2008-01-01

    Flooded, saturated or poorly drained soils are frequently anaerobic, leading to dissolution of the strongly magnetic minerals, magnetite and maghemite, and a corresponding decrease in soil magnetic susceptibility (MS). In this study of five temperate deciduous forests in east-central Illinois, USA, mean surface soil MS was significantly higher adjacent to upland tree species (31 ?? 10-5 SI) than adjacent to floodplain or lowland tree species (17 ?? 10-5 SI), when comparing regional soils with similar parent material of loessal silt. Although the sites differ in average soil MS for each tree species, the relative order of soil MS means for associated tree species at different locations is similar. Lowland tree species, Celtis occidentalis L., Ulmus americana L., Acer saccharinum L., Carya laciniosa (Michx. f.) Loud., and Fraxinus pennsylvanica Marsh. were associated with the lowest measured soil MS mean values overall and at each site. Tree species' flood tolerance rankings increased significantly, as soil MS values declined, the published rankings having significant correlations with soil MS values for the same species groups. The three published classifications of tree species' flood tolerance were significantly correlated with associated soil MS values at all sites, but most strongly at Allerton Park, the site with the widest range of soil drainage classes and MS values. Using soil MS measurements in forests with soil parent material containing similar initial levels of strongly magnetic minerals can provide a simple, rapid and quantitative method to classify soils according to hydric regimes, including dry conditions, and associated plant composition. Soil MS values thus have the capacity to quantify the continuum of hydric tolerances of tree species and guide tree species selection for reforestation. ?? 2007 Elsevier B.V. All rights reserved.

  5. Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures.

    PubMed

    Krause, G Heinrich; Cheesman, Alexander W; Winter, Klaus; Krause, Barbara; Virgo, Aurelio

    2013-06-15

    Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39°C), combined with either close to natural (22°C) or elevated (32°C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51°C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters.

  6. Population and species differences in treeline tree species germination in response to climate change

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Faist, A.; Castanha, C.

    2009-12-01

    The ability of plant species to recruit within and beyond their current geographic ranges in response to climate warming may be constrained by population differences in response. A number of studies have highlighted the degree to which genotype and environment are strongly linked in forest trees (i.e., provenances), but few studies have examined whether these local adaptations are at all predictive of population or species response to change. We report the results of lab germination experiments using high and low elevation populations of both limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii), which are important treeline species in the Rocky Mountains. Seeds collected in 2008 were germinated under two different temperature regimes (ambient and +5°C) and two different moisture regimes, and followed for 17 weeks. For both species and source elevations, warmer temperatures advanced the timing of emergence by up to 20 days, whereas the effects of moisture were less consistent. At harvest, high elevation limber pine had less root and shoot biomass, and a slightly lower root:shoot ratio, under the +5°C treatment, whereas low elevation limber pine seedling mass was not sensitive to temperature. Whether these differences persist under field conditions will be tested in a field experiment now established at Niwot Ridge, CO. The ability to accurately predict tree seedling recruitment and ultimately shifts in treeline position with climate change will improve our ability to model changes in surface albedo, water cycling and carbon cycling, all of which can generate feedbacks to regional and global climate.

  7. Species-environment relationships and vegetation patterns: Effects of spatial scale and tree life-stage

    USGS Publications Warehouse

    Stohlgren, T.J.; Bachand, R.R.; Onami, Y.; Binkley, D.

    1998-01-01

    Do relationships between species and environmental gradients strengthen or weaken with tree life-stage (i.e., small seedlings, large seedlings, saplings, and mature trees)? Strengthened relationships may lead to distinct forest type boundaries, or weakening connections could lead to gradual ecotones and heterogeneous forest landscapes. We quantified the changes in forest dominance (basal area of tree species by life-stage) and environmental factors (elevation, slope, aspect, intercepted photosynthetically active radiation (PAR), summer soil moisture, and soil depth and texture) across 14 forest ecotones (n = 584, 10 m x 10 m plots) in Rocky Mountain National Park, Colorado, U.S.A. Local, ecotone-specific species-environment relationships, based on multiple regression techniques, generally strengthened from the small seedling stage (multiple R2 ranged from 0.00 to 0.26) to the tree stage (multiple R2 ranged from 0.20 to 0.61). At the landscape scale, combined canonical correspondence analysis (CCA) among species and for all tree life-stages suggested that the seedlings of most species became established in lower-elevation, drier sites than where mature trees of the same species dominated. However, conflicting evidence showed that species-environment relationships may weaken with tree life-stage. Seedlings were only found in a subset of plots (habitats) occupied by mature trees of the same species. At the landscape scale, CCA results showed that species-environment relationships weakened somewhat from the small seedling stage (86.4% of the variance explained by the first two axes) to the tree stage (76.6% of variance explained). The basal area of tree species co-occurring with Pinus contorta Doug. ex. Loud declined more gradually than P. contorta basal area declined across ecotones, resulting in less-distinct forest type boundaries. We conclude that broad, gradual ecotones and heterogeneous forest landscapes are created and maintained by: (1) sporadic establishment

  8. Recruitment dynamics in a rainforest seedling community: context-independent impact of a keystone consumer.

    PubMed

    Green, Peter T; O'Dowd, Dennis J; Lake, P S

    2008-05-01

    The influence of keystone consumers on community structure is frequently context-dependent; the same species plays a central organising role in some situations, but not others. On Christmas Island, in the Indian Ocean, a single species of omnivorous land crab, Gecarcoidea natalis, dominates the forest floor across intact rainforest. We hypothesised that this consumer plays a key role in regulating seedling recruitment and in controlling litter dynamics on the island, independent of the type of vegetation in which it occurred. To test this hypothesis, we conducted crab exclusion experiments in two forest types on the island and followed the dynamics of seedling recruitment and litter processing for six years. To determine if these effects were likely to be general across the island, we compared land crab densities and seedling abundance and diversity at ten sites across island rainforest. Surveys across island rainforest showed that seedlings of species susceptible to predation by land crabs are consistently rare. Abundance and diversity of these species were negatively correlated to red crab abundance. Although red land crabs may be important determinants of seedling recruitment to the overstorey, differences in overstorey and seedling composition at the sites suggests that recruitment of vulnerable trees still occurs at a temporal scale exceeding that of this study. These "windows" of recruitment may be related to infrequent events that reduce the effects of land crabs. Our results suggest that unlike the context dependence of most keystone consumers in continental systems, a single consumer, the red land crab, consistently controls the dynamics of seedling recruitment across this island rainforest.

  9. Assessing redox potential of a native tree from the Brazilian Atlantic Rainforest: a successful evaluation of oxidative stress associated to a new power generation source of an oil refinery.

    PubMed

    Esposito, Marisia Pannia; Pedroso, Andrea Nunes Vaz; Domingos, Marisa

    2016-04-15

    The antioxidant responses in saplings of Tibouchina pulchra (a native tree from the Brazilian Atlantic Rainforest) exposed around an oil refinery in the city of Cubatão (SE Brazil), varied during the exchange of its power generation source, from boilers fueled with oil to a thermoelectric fueled with natural gas. The redox potential changed in response to an interaction of air pollution and meteorological parameters, indicating that the pro-oxidant/antioxidant balance was not reached after the exchange of the power generation system. The gain in environmental quality in the region was not achieved as expected due the technological modernization, at least relative to oxidative stressors. These conclusions were based on results of analyses of enzymatic antioxidants: superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR); non-enzymatic antioxidants: reduced, oxidized and total ascorbic acid (AsA, DHA, totAA) and glutathione (GSH, GSSG, totG), their redox state (AsA/totAA and GSH/totG) and an indicator of lipid peroxidation (MDA). We also applied exploratory multivariate statistics in order to verify if the temporal sequence of changes in the plant redox capacity coincided with changes in the profile of air pollution, climatic conditions or with their interactions and if the environmental benefits that would supposedly be promoted by the mentioned exchange of power generation system were achieved in the region.

  10. Conspecific plant-soil feedbacks of temperate tree species in the southern Appalachians, USA.

    PubMed

    Reinhart, Kurt O; Johnson, Daniel; Clay, Keith

    2012-01-01

    Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be

  11. Conspecific Plant-Soil Feedbacks of Temperate Tree Species in the Southern Appalachians, USA

    PubMed Central

    Reinhart, Kurt O.; Johnson, Daniel; Clay, Keith

    2012-01-01

    Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be

  12. Object-based methods for individual tree identification and tree species classification from high-spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Wang, Le

    2003-10-01

    Modern forest management poses an increasing need for detailed knowledge of forest information at different spatial scales. At the forest level, the information for tree species assemblage is desired whereas at or below the stand level, individual tree related information is preferred. Remote Sensing provides an effective tool to extract the above information at multiple spatial scales in the continuous time domain. To date, the increasing volume and readily availability of high-spatial-resolution data have lead to a much wider application of remotely sensed products. Nevertheless, to make effective use of the improving spatial resolution, conventional pixel-based classification methods are far from satisfactory. Correspondingly, developing object-based methods becomes a central challenge for researchers in the field of Remote Sensing. This thesis focuses on the development of methods for accurate individual tree identification and tree species classification. We develop a method in which individual tree crown boundaries and treetop locations are derived under a unified framework. We apply a two-stage approach with edge detection followed by marker-controlled watershed segmentation. Treetops are modeled from radiometry and geometry aspects. Specifically, treetops are assumed to be represented by local radiation maxima and to be located near the center of the tree-crown. As a result, a marker image was created from the derived treetop to guide a watershed segmentation to further differentiate overlapping trees and to produce a segmented image comprised of individual tree crowns. The image segmentation method developed achieves a promising result for a 256 x 256 CASI image. Then further effort is made to extend our methods to the multiscales which are constructed from a wavelet decomposition. A scale consistency and geometric consistency are designed to examine the gradients along the scale-space for the purpose of separating true crown boundary from unwanted

  13. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent.

    PubMed

    Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy

    2016-02-01

    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.

  14. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent

    PubMed Central

    Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy

    2016-01-01

    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se. PMID:26172210

  15. Primate extirpation from rainforest fragments does not appear to influence seedling recruitment.

    PubMed

    Chaves, Oscarm M; Arroyo-Rodríguez, Víctor; Martínez-Ramos, Miguel; Stoner, Kathryne E

    2015-04-01

    Primates are important seed dispersers, especially of large-seeded tree species, but the impact that these animals have on seedling recruitment is unclear. Evidence suggests that forest regeneration might be disrupted in forest fragments in which primates were extirpated. We tested this hypothesis by assessing seedling recruitment in 3 forest fragments occupied (OF) by primates, 3 fragments unoccupied (UF) by primates, and 3 areas within a continuous forest (CF) in the Lacandona rainforest, Mexico. Species and stem densities of tree, palm and liana seedlings were recorded over 16 months. Individuals were classified according to dispersal mode: large-seeded animal-dispersed (LS), small- and medium-seeded animal-dispersed (SS), and abiotically-dispersed species (AD). We assessed the influence of primate presence, adult tree assemblage, and fragment spatial metrics (size, age, distance to nearest fragment, and distance to continuous forest) on seedling assemblages. We recorded 6879 seedlings belonging to 90 species, and 59 genera in 405 1-m(2) plots. Both seedlings and adults showed similar differences in species and stem densities of LS, SS and AD species among forest types, suggesting that seedling assemblages were strongly influenced by the adult assemblages. The recruitment of each LS species varied among study sites, but evidence supporting higher recruitment enhancement of these species in continuous forest and occupied fragments was weak. Distance to continuous forest was the unique fragment spatial metric related (negatively) to the recruitment of LS species. Thus, primate extirpation does not appear to disrupt seedling assemblages in the Lancandona rainforest. Nevertheless, we cannot reject the hypothesis that certain LS species such as Spondias radlkoferi may be affected by the extirpation of primates.

  16. Quantifying habitat requirements of tree-living species in fragmented boreal forests with Bayesian methods.

    PubMed

    Berglund, Håkan; O'Hara, Robert B; Jonsson, Bengt Gunnar

    2009-10-01

    Quantitative conservation objectives require detailed consideration of the habitat requirements of target species. Tree-living bryophytes, lichens, and fungi are a critical and declining biodiversity component of boreal forests. To understand their requirements, Bayesian methods were used to analyze the relationships between the occurrence of individual species and habitat factors at the tree and the stand scale in a naturally fragmented boreal forest landscape. The importance of unexplained between-stand variation in occurrence of species was estimated, and the ability of derived models to predict species' occurrence was tested. The occurrence of species was affected by quality of individual trees. Furthermore, the relationships between occurrence of species at the tree level and size and shape of stands indicated edge effects, implying that some species were restricted to interior habitats of large, regular stands. Yet for the habitat factors studied, requirements of many species appeared similar. Species occurrence also varied between stands; most of the seemingly suitable trees in some stands were unoccupied. The models captured most variation in species occurrence at tree level. They also successfully accounted for between-stand variation in species occurrence, thus providing realistic simulations of stand-level occupancy of species. Important unexplained between-stand variation in species occurrence warns against a simplified view that only local habitat factors influence species' occurrence. Apparently, similar stands will host populations of different sizes due to historical, spatial, and stochastic factors. Thus, habitat suitability cannot be assessed simply by population sizes, and stands lacking a species may still provide suitable habitat and merit protection.

  17. Coordination between water transport capacity, biomass growth, metabolic scaling and species stature in co-occurring shrub and tree species.

    PubMed

    Smith, Duncan D; Sperry, John S

    2014-12-01

    The significance of xylem function and metabolic scaling theory begins from the idea that water transport is strongly coupled to growth rate. At the same time, coordination of water transport and growth seemingly should differ between plant functional types. We evaluated the relationships between water transport, growth and species stature in six species of co-occurring trees and shrubs. Within species, a strong proportionality between plant hydraulic conductance (K), sap flow (Q) and shoot biomass growth (G) was generally supported. Across species, however, trees grew more for a given K or Q than shrubs, indicating greater growth-based water-use efficiency (WUE) in trees. Trees also showed slower decline in relative growth rate (RGR) than shrubs, equivalent to a steeper G by mass (M) scaling exponent in trees (0.77-0.98). The K and Q by M scaling exponents were common across all species (0.80, 0.82), suggesting that the steeper G scaling in trees reflects a size-dependent increase in their growth-based WUE. The common K and Q by M exponents were statistically consistent with the 0.75 of ideal scaling theory. A model based upon xylem anatomy and branching architecture consistently predicted the observed K by M scaling exponents but only when deviations from ideal symmetric branching were incorporated.

  18. SIMULATION OF OZONE EFFECTS ON EIGHT TREE SPECIES AT SHENANDOAH NATIONAL PARK

    EPA Science Inventory

    As part of an assessment of potential effects of air pollutants on the vegetation of Shenandoah National Park (SHEN), we simulated the growth of eight important tree species using TREGRO, a mechanistic model of individual tree growth. Published TREGRO parameters for black cherry...

  19. Assessing the potential of native tree species for carbon sequestration forestry in Northeast China.

    PubMed

    Thomas, S C; Malczewski, G; Saprunoff, M

    2007-11-01

    Although the native forests of China are exceptionally diverse, only a small number of tree species have been widely utilized in forest plantations and reforestation efforts. We used dendrochronological sampling methods to assess the potential growth and carbon sequestration of native tree species in Jilin Province, Northeast China. Trees were sampled in and near the Changbaishan Biosphere Reserve, with samples encompassing old-growth, disturbed forest, and plantations. To approximate conditions for planted trees, sampling focused on trees with exposed crowns (dominant and co-dominant individuals). A log-linear relationship was found between diameter increment and tree diameter, with a linear decrease in increment with increasing local basal area; no significant differences in these patterns between plantations and natural stands were detected for two commonly planted species (Pinus koraiensis and Larix olgensis). A growth model that incorporates observed feedbacks with individual tree size and local basal area (in conjunction with allometric models for tree biomass), was used to project stand-level biomass increment. Predicted growth trajectories were then linked to the carbon process model InTEC to provide estimates of carbon sequestration potential. Results indicate substantial differences among species, and suggest that certain native hardwoods (in particular Fraxinus mandshurica and Phellodendron amurense), have high potential for use in carbon forestry applications. Increased use of native hardwoods in carbon forestry in China is likely to have additional benefits in terms of economic diversification and enhanced provision of "ecosystem services", including biodiversity protection.

  20. Soil modification by different tree species influences the extent of seedling ectomycorrhizal infection.

    PubMed

    Dickie, I A; Oleksyn, J; Reich, P B; Karolewski, P; Zytkowiak, R; Jagodzinski, A M; Turzanska, E

    2006-03-01

    Established vegetation can facilitate the ectomycorrhizal infection of seedlings, but it is not known whether this interaction is limited by the phylogenetic relatedness of trees and seedlings. We use a series of bioassay experiments to test whether soil modification by different ectomycorrhizal tree species causes different levels of seedling infection, whether the extent of seedling infection is a function of the relatedness of tree and seedling, and whether the effect of trees on seedlings is mediated by biotic or abiotic soil factors. We found that soils from under different tree species do vary in their mycorrhizal infectiveness. However, this variation is not related to the genetic relatedness of trees and seedlings but instead, appears to be an attribute of the overstory species, irrespective of seedling species, mediated through a suite of humus- and base-cation-related abiotic effects on soils. Modification of abiotic soil properties by overstory trees should be considered as an important factor in the effect of different overstory trees on the extent of seedling mycorrhizal infection.

  1. Species divergence and phylogenetic variation of ecophysiological traits in lianas and trees.

    PubMed

    Rios, Rodrigo S; Salgado-Luarte, Cristian; Gianoli, Ernesto

    2014-01-01

    The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [A(max)], dark respiration rate [R(d)], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that R(d) evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for R(d), while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. R(d) followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for A(max). R(d) may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades.

  2. Habitat fragmentation threatens wild populations of Carica papaya (Caricaceae) in a lowland rainforest.

    PubMed

    Chávez-Pesqueira, Mariana; Suárez-Montes, Pilar; Castillo, Guillermo; Núñez-Farfán, Juan

    2014-07-01

    • Premise of the study: Wild populations of domesticated species constitute a genetic reservoir and are fundamental to the evolutionary potential of species. Wild papaya (Carica papaya) is a rare, short-lived, gap-colonizing, dioecious tree that persists in the forest by continuous dispersal. Theoretically, these life-history characteristics render wild papaya highly susceptible to habitat fragmentation, with anticipated negative effects on its gene pool. Further, species dioecy may cause founder effects to generate local biases in sex ratio, decreasing effective population size.• Methods: We contrasted the genetic diversity and structure of C. papaya between wild populations from rainforest fragments and continuous forest at Los Tuxtlas, Mexico. We evaluated recent migration rates among populations as well as landscape resistance to gene flow. Finally, we calculated the sex ratio of the populations in both habitats.• Key results: Populations of wild papaya in rainforest fragments showed lower genetic diversity and higher population differentiation than populations in continuous rainforest. Estimates of recent migration rates showed a higher percentage of migrants moving from the continuous forest to the forest fragments than in the opposite direction. Agricultural land and cattle pasture were found to be the most resistant matrices to gene flow. Finally, biased sex ratios were seen to affect the effective population size in both habitats.• Conclusions: The mating system, rarity, and short life cycle of C. papaya are exacerbating the effects of rainforest fragmentation on its genetic diversity, threatening the persistence of its natural populations in the proposed place of origin as well as its genetic reservoir.

  3. New flux based dose-response relationships for ozone for European forest tree species.

    PubMed

    Büker, P; Feng, Z; Uddling, J; Briolat, A; Alonso, R; Braun, S; Elvira, S; Gerosa, G; Karlsson, P E; Le Thiec, D; Marzuoli, R; Mills, G; Oksanen, E; Wieser, G; Wilkinson, M; Emberson, L D

    2015-11-01

    To derive O3 dose-response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate.

  4. Solving the supply of resveratrol tetramers from Papua New Guinean rainforest anisoptera species that inhibit bacterial type III secretion systems.

    PubMed

    Davis, Rohan A; Beattie, Karren D; Xu, Min; Yang, Xinzhou; Yin, Sheng; Holla, Harish; Healy, Peter C; Sykes, Melissa; Shelper, Todd; Avery, Vicky M; Elofsson, Mikael; Sundin, Charlotta; Quinn, Ronald J

    2014-12-26

    The supply of (-)-hopeaphenol (1) was achieved via enzymatic biotransformation in order to provide material for preclinical investigation. High-throughput screening of a prefractionated natural product library aimed to identify compounds that inhibit the bacterial virulence type III secretion system (T3SS) identified several fractions derived from two Papua New Guinean Anisoptera species, showing activity against Yersinia pseudotuberculosis outer proteins E and H (YopE and YopH). Bioassay-directed isolation from the leaves of A. thurifera, and similarly A. polyandra, resulted in three known resveratrol tetramers, (-)-hopeaphenol (1), vatalbinoside A (2), and vaticanol B (3). Compounds 1-3 displayed IC50 values of 8.8, 12.5, and 9.9 μM in a luminescent reporter-gene assay (YopE) and IC50 values of 2.9, 4.5, and 3.3 μM in an enzyme-based YopH assay, respectively, which suggested that they could potentially act against the T3SS in Yersinia. The structures of 1-3 were confirmed through a combination of spectrometric, chemical methods, and single-crystal X-ray structure determinations of the natural product 1 and the permethyl ether analogue of 3. The enzymatic hydrolysis of the β-glycoside 2 to the aglycone 1 was achieved through biotransformation using the endogenous leaf enzymes. This significantly enhanced the yield of the target bioactive natural product from 0.08% to 1.3% and facilitates ADMET studies of (-)-hopeaphenol (1).

  5. Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest.

    PubMed Central

    Plana, Vanessa

    2004-01-01

    This paper reviews how and when African rainforest diversity arose, presenting evidence from both plant and animal studies. Preliminary investigations show that these African forests are an assemblage of species of varying age. Phylogenetic evidence, from both African rainforest angiosperms and vertebrates, suggest a Tertiary origin for the major lineages in some of these groups. In groups where savannah species are well represented and rainforest species are a minority, the latter appear to be relics of a Mid-Tertiary rainforest. By contrast, species that are primarily adapted to rainforest have arisen in the past 10 Myr with the main morphological innovations dating from the Late Miocene, and Quaternary speciation dominating in large, morphologically homogeneous groups. The small number of species-level phylogenies for African rainforest plants hinders a more incisive and detailed study into the historical assembly of these continental forests. PMID:15519974

  6. Origin of the Hawaiian rainforest ecosystem and its evolution in long-term primary succession

    NASA Astrophysics Data System (ADS)

    Mueller-Dombois, D.; Boehmer, H. J.

    2013-02-01

    Born among volcanoes in the north central Pacific about 4 million years ago, the Hawaiian rainforest became assembled from spores of algae, fungi, lichens, bryophytes, ferns and from seeds of about 275 flowering plants that over the millenia evolved into ca. 1000 endemic species. Outstanding among the forest builders were the tree ferns (Cibotium spp.) and the 'Ōhi'a lehua trees (Metrosideros spp.), which still dominate the Hawaiian rainforest ecosystem today. The structure of this forest is simple. The canopy in closed mature rainforests is dominated by cohorts of Metrosideros polymorpha and the undergrowth by tree fern species of Cibotium. When a new lava flow cuts through this forest, kipuka are formed, i.e. islands of remnant vegetation. On the new volcanic substrate, the assemblage of plant life-forms is similar as during the evolution of this system. In open juvenile forests, a mat-forming fern, the uluhe fern (Dicranopteris lineraris) becomes established. It inhibits further regeneration of the dominant 'Ōhi'a tree, thereby reinforcing the cohort structure of the canopy guild. In the later part of its life cycle, the canopy guild breaks down often in synchrony. The trigger is hypothesized to be a climatic perturbation. After that disturbance the forest becomes reestablished in about 30-40 yr. As the volcanic surfaces age, they go from a mesotrophic to a eutrophic phase, reaching a biophilic nutrient climax by about 1-25 K yr. Thereafter, a regressive oligotrophic phase follows; the soils become exhausted of nutrients. The shield volcanoes break down. Marginally, forest habitats change into bogs and stream ecosystems. The broader 'Ōhi'a rainforest redeveloping in the more dissected landscapes of the older islands looses stature, often forming large gaps that are invaded by the aluminum tolerant uluhe fern. The 'Ōhi'a trees still thrive on soils rejuvenated from landslides and from Asian dust on the oldest (5 million year old) island Kaua'i but their

  7. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    PubMed

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  8. Supercooling Capacity Increases from Sea Level to Tree Line in the Hawaiian Tree Species Metrosideros polymorpha.

    PubMed

    Melcher; Cordell; Jones; Scowcroft; Niemczura; Giambelluca; Goldstein

    2000-05-01

    Population-specific differences in the freezing resistance of Metrosideros polymorpha leaves were studied along an elevational gradient from sea level to tree line (located at ca. 2500 m above sea level) on the east flank of the Mauna Loa volcano in Hawaii. In addition, we also studied 8-yr-old saplings grown in a common garden from seeds collected from the same field populations. Leaves of low-elevation field plants exhibited damage at -2 degrees C, before the onset of ice formation, which occurred at -5.7 degrees C. Leaves of high-elevation plants exhibited damage at ca. -8.5 degrees C, concurrent with ice formation in the leaf tissue, which is typical of plants that avoid freezing in their natural environment by supercooling. Nuclear magnetic resonance studies revealed that water molecules of both extra- and intracellular leaf water fractions from high-elevation plants had restricted mobility, which is consistent with their low water content and their high levels of osmotically active solutes. Decreased mobility of water molecules may delay ice nucleation and/or ice growth and may therefore enhance the ability of plant tissues to supercool. Leaf traits that correlated with specific differences in supercooling capacity were in part genetically determined and in part environmentally induced. Evidence indicated that lower apoplastic water content and smaller intercellular spaces were associated with the larger supercooling capacity of the plant's foliage at tree line. The irreversible tissue-damage temperature decreased by ca. 7 degrees C from sea level to tree line in leaves of field populations. However, this decrease appears to be only large enough to allow M. polymorpha trees to avoid leaf tissue damage from freezing up to a level of ca. 2500 m elevation, which is also the current tree line location on the east flank of Mauna Loa. The limited freezing resistance of M. polymorpha leaves may be partially responsible for the occurrence of tree line at a relatively

  9. Mountain landscapes offer few opportunities for high-elevation tree species migration

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes.

  10. Reintroduced Sumatran orangutans (Pongo abelii): using major food tree species as indicators of habitat suitability.

    PubMed

    Kelle, Doris; Gärtner, Stefanie; Pratje, Peter H; Storch, Ilse

    2014-01-01

    Reintroducing orangutans (Pongo spp.) into the wild requires a suitable, secure habitat. To identify acceptable areas for their reintroduction and define priority conservation sites, we analysed the tree species composition in the Bukit Tigapuluh ecosystem in Jambi, Sumatra. We used this information to determine the distribution patterns of those species that represent an essential part of the diet of reintroduced orangutans. Important orangutan food tree species showed significant differences in composition, frequency and abundance among topographic forest types and recovered selectively logged and unlogged forests. Riparian forests and recovered selectively logged areas offered a vegetation composition and forest structure most suitable for the reintroduction of orangutans and showed numerous important tree species that serve as indicator species, i.e. species growing predominantly or exclusively in a specific forest type. © 2014 S. Karger AG, Basel.

  11. Use of sonic tomography to detect and quantify wood decay in living trees1

    PubMed Central

    Gilbert, Gregory S.; Ballesteros, Javier O.; Barrios-Rodriguez, Cesar A.; Bonadies, Ernesto F.; Cedeño-Sánchez, Marjorie L.; Fossatti-Caballero, Nohely J.; Trejos-Rodríguez, Mariam M.; Pérez-Suñiga, José Moises; Holub-Young, Katharine S.; Henn, Laura A. W.; Thompson, Jennifer B.; García-López, Cesar G.; Romo, Amanda C.; Johnston, Daniel C.; Barrick, Pablo P.; Jordan, Fulvia A.; Hershcovich, Shiran; Russo, Natalie; Sánchez, Juan David; Fábrega, Juan Pablo; Lumpkin, Raleigh; McWilliams, Hunter A.; Chester, Kathleen N.; Burgos, Alana C.; Wong, E. Beatriz; Diab, Jonathan H.; Renteria, Sonia A.; Harrower, Jennifer T.; Hooton, Douglas A.; Glenn, Travis C.; Faircloth, Brant C.; Hubbell, Stephen P.

    2016-01-01

    Premise of the study: Field methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes. Methods and Results: Living trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness. Conclusions: Sonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees. PMID:28101433

  12. Version 5 of Forecasts; Forecasts of Climate-Associated Shifts in Tree Species

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Kumar, J.; Potter, K. M.; Hoffman, F. M.

    2014-12-01

    Version 5 of the ForeCASTS tree range shift atlas (www.geobabble.org/~hnw/global/treeranges5/climate_change/atlas.html) now predicts global shifts in the suitable ranges of 335 tree species (essentially all woody species measured in Forest Inventory Analysis (FIA)) under forecasts from the Parallel Climate Model, and the Hadley Model, each under future climatic scenarios A1 and B1, each at two future dates (2050 and 2100). Version 5 includes more Global Biodiversity Information Facility (GBIF) occurrence points, uses improved heuristics for occurrence training, and recovers occurrence points that fall in water. A multivariate clustering procedure was used to quantitatively delineate 30 thousand environmentally homogeneous ecoregions across present and 8 potential future global locations at once, using global maps of 17 environmental characteristics describing temperature, precipitation, soils, topography and solar insolation. Occurrence of each tree species on FIA plots and in GBIF samples was used to identify a subset of suitable ecoregions from the full set of 30 thousand. This subset of suitable ecoregions was compared to the known current present range of the tree species. Predicted present ranges correspond well with existing ranges for all but a few of the 335 tree species. The subset of suitable ecoregions can then be tracked into the future to determine whether the suitable home range remains the same, moves, grows, shrinks, or disappears under each model/scenario combination. A quantitative niche breadth analysis allows sorting of the 17 environmental variables from the narrowest, most important, to the broadest, least restrictive environmental factors limiting each tree species. Potential tree richness maps were produced, along with a quantitative potential tree endemism map for present and future CONUS. Using a new empirical imputation method which associates sparse measurements of dependent variables with particular clustered combinations of the

  13. The mycorrhizal status and colonization of 26 tree species growing in urban and rural environments.

    PubMed

    Bainard, Luke D; Klironomos, John N; Gordon, Andrew M

    2011-02-01

    Urban environments are highly disturbed and fragmented ecosystems that commonly have lower mycorrhizal fungal species richness and diversity compared to rural or natural ecosystems. In this study, we assessed whether the mycorrhizal status and colonization of trees are influenced by the overall environment (rural vs. urban) they are growing in. Soil cores were collected from the rhizosphere of trees growing in urban and rural environments around southern Ontario. Roots were extracted from the soil cores to determine whether the trees were colonized by arbuscular mycorrhizal fungi, ectomycorrhizal fungi, or both, and to quantify the percent colonization of each type of mycorrhizal fungi. All 26 tree species were colonized by arbuscular mycorrhizal fungi, and seven tree species were dually colonized by arbuscular mycorrhizal and ectomycorrhizal fungi. Overall, arbuscular mycorrhizal and ectomycorrhizal fungal colonization was significantly (p < 0.001) lower in trees growing in urban compared to rural environments. It is not clear what 'urban' factors are responsible for the reduction in mycorrhizal fungal colonization; more research is needed to determine whether inoculating urban trees with mycorrhizal fungi would increase colonization levels and growth of the trees.

  14. Extending the dormant bud cryopreservation method to new tree species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cryopreservation of germplasm, using dormant winter buds (DB) as source plant material is economically favorable over tissue culture options. Although the DB cryopreservation method has been known for many years, the approach is feasible only for cryopreserving a select number of temperate tree s...

  15. Effects of growth form and functional traits on response of woody plants to clearing and fragmentation of subtropical rainforest.

    PubMed

    Kooyman, R M; Zanne, A E; Gallagher, R V; Cornwell, W; Rossetto, M; O'Connor, P; Parkes, E A; Catterall, C F; Laffan, S W; Lusk, C H

    2013-12-01

    The conservation implications of large-scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free-standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free-standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind-dispersed seeds. Connections between the patchy spatial distribution of free-standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free-standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow-growing mature-phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for

  16. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests.

    PubMed

    Joly, François-Xavier; Milcu, Alexandru; Scherer-Lorenzen, Michael; Jean, Loreline-Katia; Bussotti, Filippo; Dawud, Seid Muhie; Müller, Sandra; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Vesterdal, Lars; Hättenschwiler, Stephan

    2017-02-09

    Different tree species influence litter decomposition directly through species-specific litter traits, and indirectly through distinct modifications of the local decomposition environment. Whether these indirect effects on decomposition are influenced by tree species diversity is presently not clear. We addressed this question by studying the decomposition of two common substrates, cellulose paper and wood sticks, in a total of 209 forest stands of varying tree species diversity across six major forest types at the scale of Europe. Tree species richness showed a weak but positive correlation with the decomposition of cellulose but not with that of wood. Surprisingly, macroclimate had only a minor effect on cellulose decomposition and no effect on wood decomposition despite the wide range in climatic conditions among sites from Mediterranean to boreal forests. Instead, forest canopy density and stand-specific litter traits affected the decomposition of both substrates, with a particularly clear negative effect of the proportion of evergreen tree litter. Our study suggests that species richness and composition of tree canopies modify decomposition indirectly through changes in microenvironmental conditions. These canopy-induced differences in the local decomposition environment control decomposition to a greater extent than continental-scale differences in macroclimatic conditions.

  17. North American tree squirrels and ground squirrels with overlapping ranges host different Cryptosporidium species and genotypes.

    PubMed

    Stenger, Brianna L S; Clark, Mark E; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W; Prediger, Jitka; McEvoy, John M

    2015-12-01

    Wildlife-associated Cryptosporidium are an emerging cause of cryptosporidiosis in humans. The present study was undertaken to determine the extent to which North American tree squirrels and ground squirrels host zoonotic Cryptosporidium species and genotypes. Fragments of the Cryptosporidium 18S rRNA and actin genes were amplified and sequenced from fecal samples obtained from three tree squirrel and three ground squirrel species. In tree squirrels, Cryptosporidium was identified in 40.5% (17/42) of American red squirrels (Tamiasciurus hudsonicus), 40.4% (55/136) of eastern gray squirrels (Sciurus carolinensis), and 28.6% (2/7) of fox squirrels (Sciurus niger). Human-pathogenic Cryptosporidium ubiquitum and Cryptosporidium skunk genotype were the most prevalent species/genotypes in tree squirrels. Because tree squirrels live in close proximity to humans and are frequently infected with potentially zoonotic Cryptosporidium species/genotypes, they may be a significant reservoir of infection in humans. In ground squirrels, Cryptosporidium was detected in 70.2% (33/47) of 13-lined ground squirrels (Ictidomys tridecemlineatus), 35.1% (27/77) of black-tailed prairie dogs (Cynomys ludovicianus), and the only golden-mantled ground squirrel (Callospermophilus lateralis) that was sampled. Cryptosporidium rubeyi and ground squirrel genotypes I, II, and III were identified in isolates from these ground squirrel species. In contrast to the Cryptosporidium infecting tree squirrels, these species/genotypes appear to be specific for ground squirrels and are not associated with human disease.

  18. Inter- and intra-specific variation in stemflow for evergreen species and deciduous tree species in a subtropical forest

    NASA Astrophysics Data System (ADS)

    Su, Lei; Xu, Wenting; Zhao, Changming; Xie, Zongqiang; Ju, Hua

    2016-06-01

    Quantification of stemflow is necessary for the assessment of forest ecosystem hydrological effects. Nevertheless, variation of stemflow among plant functional groups is currently not well understood. Stemflow production of co-occurring evergreen broadleaved trees (Cyclobalanopsis multinervis and Cyclobalanopsis oxyodon) and deciduous broadleaved trees (Fagus engleriana and Quercus serrata var. brevipetiolata) was quantified through field observations in a mixed evergreen and deciduous broadleaved forest. The research results revealed that stemflow increased linearly with increasing rainfall magnitude, with precipitation depths of 6.9, 7.2, 10.0 and 14.8 mm required for the initiation of stemflow for C. multinervis, C. oxyodon, F. engleriana and Q. serrata, respectively. Stemflow percentage and funneling ratio (FR) increased with increasing rainfall in a logarithmic fashion. Stemflow percentage and FR tended to grow rapidly with increasing rainfall magnitude up to a rainfall threshold of 50 mm, above which, further rainfall increases brought about only small increases. For C. multinervis, C. oxyodon, F. engleriana and Q. serrata, FR averaged 19.8, 14.8, 8.9 and 2.8, respectively. The stemflow generating rainfall thresholds for evergreen species were smaller than for deciduous species. Furthermore, stemflow percentage and FR of the former was greater than the latter. For both evergreen species and deciduous species, overall funneling ratio (FRs) decreased with increasing basal area. We concluded that: (1) although stemflow partitioning represented a fairly low percentage of gross rainfall in mixed evergreen and deciduous broadleaved forests, it was capable of providing substantial amount of rainwater to tree boles; (2) the evergreen species were more likely to generate stemflow than deciduous species, and directed more intercepted rainwater to the root zone; (3) small trees were more productive in funneling stemflow than larger trees, which may provide a favorable

  19. South American palaeobotany and the origins of neotropical rainforests.

    PubMed Central

    Burnham, Robyn J; Johnson, Kirk R

    2004-01-01

    Extant neotropical rainforest biomes are characterized by a high diversity and abundance of angiosperm trees and vines, high proportions of entire-margined leaves, high proportions of large leaves (larger than 4500 mm2), high abundance of drip tips and a suite of characteristic dominant families: Sapotaceae, Lauraceae, Leguminosae (Fabaceae), Melastomataceae and Palmae (Arecaceae). Our aim is to define parameters of extant rainforests that will allow their recognition in the fossil record of South America and to evaluate all known South American plant fossil assemblages for first evidence and continued presence of those parameters. We ask when did these critical rainforest characters arise? When did vegetative parameters reach the level of abundance that we see in neotropical forests? Also, when do specific lineages become common in neotropical forests? Our review indicates that evidence of neotropical rainforest is exceedingly rare and equivocal before the Palaeocene. Even in the Palaeocene, the only evidence for tropical rainforest in South America is the appearance of moderately high pollen diversity. By contrast, North American sites provide evidence that rainforest leaf physiognomy was established early in the Palaeocene. By the Eocene in South America, several lines of evidence suggest that neotropical rainforests were diverse, physiognomically recognizable as rainforest and taxonomically allied to modern neotropical rainforests. A mismatch of evidence regarding the age of origin between sites of palaeobotanical high diversity and sites of predicted tropical climates should be reconciled with intensified collecting efforts in South America. We identify several lines of promising research that will help to coalesce previously disparate approaches to the origin, longevity and maintenance of high diversity floras of South America. PMID:15519975

  20. Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods

    PubMed Central

    Nguyen, Diem; Boberg, Johanna; Cleary, Michelle; Bruelheide, Helge; Hönig, Lydia; Koricheva, Julia; Stenlid, Jan

    2017-01-01

    Foliar fungi of silver birch (Betula pendula) in an experimental Finnish forest were investigated across a gradient of tree species richness using molecular high-throughput sequencing and visual macroscopic assessment. We hypothesized that the molecular approach detects more fungal taxa than visual assessment, and that there is a relationship among the most common fungal taxa detected by both techniques. Furthermore, we hypothesized that the fungal community composition, diversity, and distribution patterns are affected by changes in tree diversity. Sequencing revealed greater diversity of fungi on birch leaves than the visual assessment method. One species showed a linear relationship between the methods. Species-specific variation in fungal community composition could be partially explained by tree diversity, though overall fungal diversity was not affected by tree diversity. Analysis of specific fungal taxa indicated tree diversity effects at the local neighbourhood scale, where the proportion of birch among neighbouring trees varied, but not at the plot scale. In conclusion, both methods may be used to determine tree diversity effects on the foliar fungal community. However, high-throughput sequencing provided higher resolution of the fungal community, while the visual macroscopic assessment detected functionally active fungal species. PMID:28150710

  1. Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods

    NASA Astrophysics Data System (ADS)

    Nguyen, Diem; Boberg, Johanna; Cleary, Michelle; Bruelheide, Helge; Hönig, Lydia; Koricheva, Julia; Stenlid, Jan

    2017-02-01

    Foliar fungi of silver birch (Betula pendula) in an experimental Finnish forest were investigated across a gradient of tree species richness using molecular high-throughput sequencing and visual macroscopic assessment. We hypothesized that the molecular approach detects more fungal taxa than visual assessment, and that there is a relationship among the most common fungal taxa detected by both techniques. Furthermore, we hypothesized that the fungal community composition, diversity, and distribution patterns are affected by changes in tree diversity. Sequencing revealed greater diversity of fungi on birch leaves than the visual assessment method. One species showed a linear relationship between the methods. Species-specific variation in fungal community composition could be partially explained by tree diversity, though overall fungal diversity was not affected by tree diversity. Analysis of specific fungal taxa indicated tree diversity effects at the local neighbourhood scale, where the proportion of birch among neighbouring trees varied, but not at the plot scale. In conclusion, both methods may be used to determine tree diversity effects on the foliar fungal community. However, high-throughput sequencing provided higher resolution of the fungal community, while the visual macroscopic assessment detected functionally active fungal species.

  2. Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests

    PubMed Central

    Ayres, Edward; Steltzer, Heidi; Berg, Sarah; Wallenstein, Matthew D.; Simmons, Breana L.; Wall, Diana H.

    2009-01-01

    Background Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. Methodology/Principal Findings We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin∶N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin∶N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not

  3. ISOPRENE EMISSION CAPACITY FOR U.S. TREE SPECIES

    EPA Science Inventory

    Isoprene emission capacity measurements are presented from 18 North American oak (Quercus) species and species from six other genera previously found to emit significant quantities of isoprene. Sampling was conducted at physiographically diverse locations in North Carolina...

  4. Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration.

    PubMed

    Shoo, Luke P; Freebody, Kylie; Kanowski, John; Catterall, Carla P

    2016-02-01

    There is current debate about the potential for secondary regrowth to rescue tropical forests from an otherwise inevitable cascade of biodiversity loss due to land clearing and scant evidence to test how well active restoration may accelerate recovery. We used site chronosequences to compare developmental trajectories of vegetation between self-organized (i.e., spontaneous) forest regrowth and biodiversity plantings (established for ecological restoration, with many locally native tree species at high density) in the Australian wet tropics uplands. Across 28 regrowth sites aged 1-59 years, some structural attributes reached reference rainforest levels within 40 years, whereas wood volume and most tested components of native plant species richness (classified by species' origins, family, and ecological functions) reached less than 50% of reference rainforest values. Development of native tree and shrub richness was particularly slow among species that were wind dispersed or animal dispersed with large (>10 mm) seeds. Many species with animal-dispersed seeds were from near-basal evolutionary lineages that contribute to recognized World Heritage values of the study region. Faster recovery was recorded in 25 biodiversity plantings of 1-25 years in which wood volume developed more rapidly; native woody plant species richness reached values similar to reference rainforest and was better represented across all dispersal modes; and species from near-basal plant families were better (although incompletely) represented. Plantings and regrowth showed slow recovery in species richness of vines and epiphytes and in overall resemblance to forest in species composition. Our results can inform decision making about when and where to invest in active restoration and provide strong evidence that protecting old-growth forest is crucially important for sustaining tropical biodiversity.

  5. Relationships among environmental variables and distribution of tree species at high elevation in the Olympic Mountains

    USGS Publications Warehouse

    Woodward, Andrea

    1998-01-01

    Relationships among environmental variables and occurrence of tree species were investigated at Hurricane Ridge in Olympic National Park, Washington, USA. A transect consisting of three plots was established down one north-and one south-facing slope in stands representing the typical elevational sequence of tree species. Tree species included subalpine fir (Abies lasiocarpa), Douglas-fir (Pseudotsuga menziesii), mountain hemlock (Tsuga mertensiana), and Pacific silver fir (Abies amabilis). Air and soil temperature, precipitation, and soil moisture were measured during three growing seasons. Snowmelt patterns, soil carbon and moisture release curves were also determined. The plots represented a wide range in soil water potential, a major determinant of tree species distribution (range of minimum values = -1.1 to -8.0 MPa for Pacific silver fir and Douglas-fir plots, respectively). Precipitation intercepted at plots depended on topographic location, storm direction and storm type. Differences in soil moisture among plots was related to soil properties, while annual differences at each plot were most often related to early season precipitation. Changes in climate due to a doubling of atmospheric CO2 will likely shift tree species distributions within, but not among aspects. Change will be buffered by innate tolerance of adult trees and the inertia of soil properties.

  6. Glacial refugia and modern genetic diversity of 22 western North American tree species

    PubMed Central

    Roberts, David R.; Hamann, Andreas

    2015-01-01

    North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2 = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711

  7. Temporal and Spatial Dynamics of Tree Species Composition in Temperate Mountains of South Korea

    NASA Astrophysics Data System (ADS)

    Lee, Boknam; Park, Juhan; Cho, Sungsik; Ryu, Daun; Zaw Wynn, Khine; Park, Minji; Cho, Sunhee; Yoon, Jongguk; Park, Jongyoung; Kim, Hyun Seok

    2015-04-01

    Long term studies on vegetation dynamics are important to identify changes of ecosystem-level responses to climate change. To learn how tree species composition and stand structure change across temperate mountains, the temporal and spatial variations in tree species diversity and structure were investigated using the species composition and DBH size collected over the fourteen-year period across 134 sites in Jiri and Baekoon Mountains, South Korea. The overall temporal changes over fourteen years showed significant increase in stand density, species diversity and evenness according to the indices of Shannon-Weiner diversity, Bray-Curtis dissimilarity, and Pielou's evenness, contributing to the increase of basal area and biomass growth. The change of tree species composition could be categorized into five species communities, representing gradual increase or decrease, establishment, extinction, fluctuation of species population. However, in general, the change in species composition appeared to have consistent and directional patterns of increase in the annual rate of change in the mean species traits including species richness, pole growth rate, adult growth rate, and adult stature with five common dominant species (Quercus mongolica, Quercus variabilis, Quercus serrata, Carpinus laxiflora, and Styrax japonicus). The spatial patterns of species composition appeared to have a higher stand density and species diversity along with the low latitude and high slope ecosystem. The climate change was another main driver to vary the distribution of species abundance. Overall, both temporal and spatial changes of composition in tree species community was clear and further analysis to clarify the reasons for such fast and species-specific changes is underway especially to separate the effect of successional change and climate change. Keywords species composition; climate change; temporal and spatial variation ; forest structure; temperate forest

  8. [Effects of sampling plot number on tree species distribution prediction under climate change].

    PubMed

    Liang, Yu; He, Hong-Shi; Wu, Zhi-Wei; Li, Xiao-Na; Luo, Xu

    2013-05-01

    Based on the neutral landscapes under different degrees of landscape fragmentation, this paper studied the effects of sampling plot number on the prediction of tree species distribution at landscape scale under climate change. The tree species distribution was predicted by the coupled modeling approach which linked an ecosystem process model with a forest landscape model, and three contingent scenarios and one reference scenario of sampling plot numbers were assumed. The differences between the three scenarios and the reference scenario under different degrees of landscape fragmentation were tested. The results indicated that the effects of sampling plot number on the prediction of tree species distribution depended on the tree species life history attributes. For the generalist species, the prediction of their distribution at landscape scale needed more plots. Except for the extreme specialist, landscape fragmentation degree also affected the effects of sampling plot number on the prediction. With the increase of simulation period, the effects of sampling plot number on the prediction of tree species distribution at landscape scale could be changed. For generalist species, more plots are needed for the long-term simulation.

  9. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    PubMed

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances.

  10. Identification, measurement and interpretation of tree rings in woody species from mediterranean climates.

    PubMed

    Cherubini, Paolo; Gartner, Barbara L; Tognetti, Roberto; Bräker, Otto U; Schoch, Werner; Innes, John L

    2003-02-01

    We review the literature dealing with mediterranean climate, vegetation, phenology and ecophysiology relevant to the understanding of tree-ring formation in mediterranean regions. Tree rings have been used extensively in temperate regions to reconstruct responses of forests to past environmental changes. In mediterranean regions, studies of tree rings are scarce, despite their potential for understanding and predicting the effects of global change on important ecological processes such as desertification. In mediterranean regions, due to the great spatio-temporal variability of mediterranean environmental conditions, tree rings are sometimes not formed. Often, clear seasonality is lacking, and vegetation activity is not always associated with regular dormancy periods. We present examples of tree-ring morphology of five species (Arbutus unedo, Fraxinus ornus, Quercus cerris, Q. ilex, Q. pubescens) sampled in Tuscany, Italy, focusing on the difficulties we encountered during the dating. We present an interpretation of anomalies found in the wood structure and, more generally, of cambial activity in such environments. Furthermore, we propose a classification of tree-ring formation in mediterranean environments. Mediterranean tree rings can be dated and used for dendrochronological purposes, but great care should be taken in selecting sampling sites, species and sample trees.

  11. Are tree ontogenetic structure and allometric relationship independent of vegetation formation type? A case study with Cordia oncocalyx in the Brazilian caatinga

    NASA Astrophysics Data System (ADS)

    Silveira, Andréa P.; Martins, Fernando R.; Araújo, Francisca S.

    2012-08-01

    In temperate and tropical rainforests, ontogenetic structure and allometry during tree ontogeny are often associated with light gradients. Light is not considered a limiting resource in deciduous thorny woodland (DTW), but establishment and growth occur during a short rainy period, when the canopy is fully leaved and light in the understory may be modified. Our aim was to investigate whether the light gradient in DTW and the biomechanical limitations of tree growth would be enough to produce an ontogenetic structure and allometric growth similar to rainforest canopy trees. We investigated the ontogenetic stages and diameter-height relationship of Cordia oncocalyx (Boraginaceae), a dominant canopy tree of the DTW of semiarid northeastern Brazil. We tagged, measured and classified the ontogenetic stages of 2.895 individuals in a 1 ha area (5°6'58.1″S and 40°52'19.4″W). In the rainy season only 4.7% of the light falling on the canopy reached the ground. Initial ontogenetic stages, mainly infant (50.9%) and seedling (42.1%), were predominant in the population, with the remaining 7% distributed among juvenile, immature, virginile and reproductive. The ontogenetic structure was similar to that of rainforest tree species, but the population formed both permanent seed and infant banks in response to long dry periods and erratic rainy spells. Like many other Boraginaceae tree species in tropical rainforests, C. oncocalyx has a Prévost architectural model, but allometric growth was quite different from rainforest trees. C. oncocalyx invested slightly more in diameter at first, then in height and finally invested greatly in diameter and attained an asymptotic height. The continued high investment in diameter growth at late stages and the asymptotic height point to low tree density and more frequent xylem embolism as the main drivers of tree allometric shape in DTW. This indicates that tree ontogenetic structure and allometric relationships depend on vegetation

  12. Phthalate pollution in an Amazonian rainforest.

    PubMed

    Lenoir, Alain; Boulay, Raphaël; Dejean, Alain; Touchard, Axel; Cuvillier-Hot, Virginie

    2016-08-01

    Phthalates are ubiquitous contaminants and endocrine-disrupting chemicals that can become trapped in the cuticles of insects, including ants which were recognized as good bioindicators for such pollution. Because phthalates have been noted in developed countries and because they also have been found in the Arctic, a region isolated from direct anthropogenic influence, we hypothesized that they are widespread. So, we looked for their presence on the cuticle of ants gathered from isolated areas of the Amazonian rainforest and along an anthropogenic gradient of pollution (rainforest vs. road sides vs. cities in French Guiana). Phthalate pollution (mainly di(2-ethylhexyl) phthalate (DEHP)) was higher on ants gathered in cities and along road sides than on those collected in the pristine rainforest, indicating that it follows a human-mediated gradient of disturbance related to the use of plastics and many other products that contain phthalates in urban zones. Their presence varied with the ant species; the cuticle of Solenopsis saevissima traps higher amount of phthalates than that of compared species. However, the presence of phthalates in isolated areas of pristine rainforests suggests that they are associated both with atmospheric particles and in gaseous form and are transported over long distances by wind, resulting in a worldwide diffusion. These findings suggest that there is no such thing as a "pristine" zone.

  13. Climate warming and precipitation redistribution modify tree-grass interactions and tree species establishment in a warm-temperate savanna.

    PubMed

    Volder, Astrid; Briske, David D; Tjoelker, Mark G

    2013-03-01

    Savanna tree-grass interactions may be particularly sensitive to climate change. Establishment of two tree canopy dominants, post oak (Quercus stellata) and eastern redcedar (Juniperus virginiana), grown with the dominant C4 perennial grass (Schizachyrium scoparium) in southern oak savanna of the United States were evaluated under four climatic scenarios for 6 years. Tree-grass interactions were examined with and without warming (+1.5 °C) in combination with a long-term mean rainfall treatment and a modified rainfall regime that redistributed 40% of summer rainfall to spring and fall, intensifying summer drought. The aim was to determine: (1) the relative growth response of these species, (2) potential shifts in the balance of tree-grass interactions, and (3) the trajectory of juniper encroachment into savannas, under these anticipated climatic conditions. Precipitation redistribution reduced relative growth rate (RGR) of trees grown with grass. Warming increased growth of J. virginiana and strongly reduced Q. stellata survival. Tiller numbers of S. scoparium plants were unaffected by warming, but the number of reproductive tillers was increasingly suppressed by intensified drought each year. Growth rates of J. virginiana and Q. stellata were suppressed by grass presence early, but in subsequent years were higher when grown with grass. Quercus stellata had overall reduced RGR, but enhanced survival when grown with grass, while survival of J. virginiana remained near 100% in all treatments. Once trees surpassed a threshold height of 1.1 m, both tiller number and survival of S. scoparium plants were drastically reduced by the presence of J. virginiana, but not Q. stellata. Juniperus virginiana was the only savanna dominant in which neither survival nor final aboveground mass were adversely affected by the climate scenario of warming and intensified summer drought. These responses indicate that climate warming and altered precipitation patterns will further

  14. Functional decay in tree community within tropical fragmented landscapes: Effects of landscape-scale forest cover.

    PubMed

    Rocha-Santos, Larissa; Benchimol, Maíra; Mayfield, Margaret M; Faria, Deborah; Pessoa, Michaele S; Talora, Daniela C; Mariano-Neto, Eduardo; Cazetta, Eliana

    2017-01-01

    As tropical rainforests are cleared, forest remnants are increasingly isolated within agricultural landscapes. Understanding how forest loss impacts on species diversity can, therefore, contribute to identifying the minimum amount of habitat required for biodiversity maintenance in human-modified landscapes. Here, we evaluate how the amount of forest cover, at the landscape scale, affects patterns of species richness, abundance, key functional traits and common taxonomic families of adult trees in twenty Brazilian Atlantic rainforest landscapes. We found that as forest cover decreases, both tree community richness and abundance decline, without exhibiting a threshold. At the family-level, species richness and abundance of the Myrtaceae and Sapotaceae were also negatively impacted by the percent forest remaining at the landscape scale. For functional traits, we found a reduction in shade-tolerant, animal-dispersed and small-seeded species following a decrease in the amount of forest retained in landscapes. These results suggest that the amount of forest in a landscape is driving non-random losses in phylogenetic and functional tree diversity in Brazil's remaining Atlantic rainforests. Our study highlights potential restraints on the conservation value of Atlantic rainforest remnants in deforested landscapes in the future.

  15. Dual mycorrhizal colonization of forest-dominating tropical trees and the mycorrhizal status of non-dominant tree and liana species.

    PubMed

    McGuire, K L; Henkel, T W; Granzow de la Cerda, I; Villa, G; Edmund, F; Andrew, C

    2008-04-01

    The contribution of mycorrhizal associations to maintaining tree diversity patterns in tropical rain forests is poorly known. Many tropical monodominant trees form ectomycorrhizal (EM) associations, and there is evidence that the EM mutualism contributes to the maintenance of monodominance. It is assumed that most other tropical tree species form arbuscular mycorrhizal (AM) associations, and while many mycorrhizal surveys have been done, the mycorrhizal status of numerous tropical tree taxa remains undocumented. In this study, we tested the assumption that most tropical trees form AM associations by sampling root vouchers from tree and liana species in monodominant Dicymbe corymbosa forest and an adjacent mixed rain forest in Guyana. Roots were assessed for the presence/ absence of AM and EM structures. Of the 142 species of trees and lianas surveyed, three tree species (the mono-dominant D. corymbosa, the grove-forming D. altsonii, and the non-dominant Aldina insignis) were EM, 137 were exclusively AM, and two were non-mycorrhizal. Both EM and AM structures wer e observed in D. corymbosa and D. altsonii. These results provide empirical data supporting the assumption that most tropical trees form AM associations for this region in the Guiana Shield and provide the first report of dual EM/AM colonization in Dicymbe species. Dual colonization of the Dicymbe species should be further explored to determine if this ability contributes to the establishment and maintenance of site dominance.

  16. [Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species].

    PubMed

    Wang, Gui-Bin; Cao, Fu-Liang; Zhang, Xiao-Yan; Zhang, Wang-Xiang

    2010-03-01

    Aimed to understand the waterlogging tolerance and adaptation mechanisms of different tree species, a simulated field experiment was conducted to study the growth and energy-metabolic enzyme activities of one-year-old seedlings of Taxodium distichum, Carya illinoensis, and Sapium sebiferum. Three treatments were installed, i. e., CK, waterlogging, and flooding, with the treatment duration being 60 days. Under waterlogging and flooding, the relative growth of test tree species was in the order of T. distichum > C. illinoensis > S. sebiferum, indicating that T. distichum had the strongest tolerance against waterlogging and flooding, while S. sebiferum had the weakest one. Also under waterlogging and flooding, the root/crown ratio of the three tree species increased significantly, suggesting that more photosynthates were allocated in roots, and the lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) activities of the tree species also had a significant increase. Among the test tree species, T. distichum had the lowest increment of LDH and ADH activities under waterlogging and flooding, but the increment could maintain at a higher level in the treatment duration, while for C. illinoensis and S. sebiferum, the increment was larger during the initial and medium period, but declined rapidly during the later period of treatment. The malate dehydrogenase (MDH), phosphohexose (HPI), and glucose-6-phosphate dehydrogenase (G6PDH) -6-phosphogluconate dehydrogenase (6PGDH) activities of the tree species under waterlogging and flooding had a significant decrease, and the decrement was the largest for T. distichum, being 35.6% for MDH, 21.0% for HPI, and 22.7% for G6PDH - 6PGDH under flooding. It was suggested that under waterlogging and flooding, the tree species with strong waterlogging tolerance had a higher ability to maintain energy-metabolic balance, and thus, its growth could be maintained at a certain level.

  17. Does deciduous tree species identity affect carbon storage in temperate soils?

    NASA Astrophysics Data System (ADS)

    Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix

    2015-04-01

    Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate tree species identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous trees. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and tree species composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a tree diversity gradient , i.e., 1- (beech), 3- (plus ash and lime tree)- and 5-(plus maple and hornbeam) species. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant species identity or species diversity effect on C stabilization. In contrast to the subsoil, no tree species effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous tree species

  18. Flowering and fruiting phenology of tree species in mount papandayan nature reserve, west java, indonesia.

    PubMed

    Sulistyawati, Endah; Mashita, Nusa; Setiawan, Nuri Nurlaila; Choesin, Devi N; Suryana, Pipin

    2012-12-01

    Mount Papandayan Nature Reserve (MPNR) is an area highly rich in biodiversity, however deforestation has left a vast area urgently in need of reforestation. When reforestation is designed to restore some level of biodiversity, it is imperative that native tree species are used for planting. This research aimed to provide information on the flowering and fruiting phenology of native trees. Such information can be useful to plan seed collection and mass seedling production in the nursery. The observations were conducted each month during August 2009-July 2010 by recording flowering and fruiting trees along two survey track passing through the middle of the mixed forest of MPNR. Data gathered were used to construct a simple phenology calendar. During the study, there were 155 trees of 43 species found flowering or fruiting along the survey track. The peak time of flowering and fruiting was in July (13 species flowering and 19 species fruiting), while the lowest level was in October (1 species flowering and 3 species fruiting). According to the phenology calendar constructed, March to July were considered to be the appropriate time to collect seeds of native trees in Mount Papandayan.

  19. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    PubMed Central

    Chave, Jérôme

    2016-01-01

    Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin. PMID:27651991

  20. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees.

    PubMed

    Dexter, Kyle; Chave, Jérôme

    2016-01-01

    Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin.

  1. Effects of missing data on species tree estimation under the coalescent.

    PubMed

    Hovmöller, Rasmus; Knowles, L Lacey; Kubatko, Laura S

    2013-12-01

    With recent advances in genomic sequencing, the importance of taking the effects of the processes that can cause discord between the speciation history and the individual gene histories into account has become evident. For multilocus datasets, it is difficult to achieve complete coverage of all sampled loci across all sample specimens, a problem that also arises when combining incompletely overlapping datasets. Here we examine how missing data affects the accuracy of species tree reconstruction. In our study, 10- and 100-locus sequence datasets were simulated under the coalescent model from shallow and deep speciation histories, and species trees were estimated using the maximum likelihood and Bayesian frameworks (with STEM and (*)BEAST, respectively). The accuracy of the estimated species trees was evaluated using the symmetric difference and the SPR distance. We examine the effects of sampling more than one individual per species, as well as the effects of different patterns of missing data (i.e., different amounts of missing data, which is represented among random taxa as opposed to being concentrated in specific taxa, as is often the case for empirical studies). Our general conclusion is that the species tree estimates are remarkably resilient to the effects of missing data. We find that for datasets with more limited numbers of loci, sampling more than one individual per species has the strongest effect on improving species tree accuracy when there is missing data, especially at higher degrees of missing data. For larger multilocus datasets (e.g., 25-100 loci), the amount of missing data has a negligible effect on species tree reconstruction, even at 50% missing data and a single sampled individual per species.

  2. Stem radial growth of different tree species in an unmanaged southern taiga stand

    NASA Astrophysics Data System (ADS)

    Tatarinov, F.; Nadezhdina, N.; Bochkarev, Yu.; Cermak, J.

    2003-04-01

    Radial growth of stems was measured in altogether 32 sample trees of 5 species (Picea abies (L.)Karst., Populus tremula L., Betula alba L., Sorbus aucuparia L. and Alnus incana (L.) Moench) during the growing season 2000 in a mixed uneven-aged stand dominated by spruce and aspen in the region of upper Volga within the framework of international project “Volgaforest”. Measurement was done by band dendrometers read every two weeks from May to late October 2000. In addition, two readings were done in 2001 (the last one in November, i.e. only the total seasonal growth for this year was obtained). Subsequently the woody cores were taken from all sample spruce and aspen trees in October 2002 in order to evaluate the stem growth over a longer period of time. The growing season 2000 was characterized by late spring frost (approximately until May 20) and very wet summer. In contrast the season 2001 was hot and dry. Radial growth of stems in majority of sample trees of all species started during early May and continued until mid August. However the smallest spruce trees and some deciduous trees (especially birches) started growing later (in late May or even in mid June) and the relatively small aspen trees (although reaching DBH up to 33 cm) did not grew at all during the whole season. As an exception, growth of 2 sample trees (spruce and aspen) continued during the whole season up to mid October. The most interesting seems that aspen showed significantly lower growth of basal area in absolute and relative terms when compared to spruce. This difference was observed in both years under consideration, but was more pronounced in 2000, when the relative growth of basal area reached 1 to 6% in spruce, and was increasing with tree DBH, whereas for aspens the same parameter ranged from 0% for smaller trees to 0.8% for the largest ones. Such difference was not so pronounced and occurred only in small and medium DBH trees in the more favorable growing season of 2001. However

  3. A hyperspectral image can predict tropical tree growth rates in single-species stands.

    PubMed

    Caughlin, T Trevor; Graves, Sarah J; Asner, Gregory P; van Breugel, Michiel; Hall, Jefferson S; Martin, Roberta E; Ashton, Mark S; Bohlman, Stephanie A

    2016-12-01

    Remote sensing is increasingly needed to meet the critical demand for estimates of forest structure and composition at landscape to continental scales. Hyperspectral images can detect tree canopy properties, including species identity, leaf chemistry and disease. Tree growth rates are related to these measurable canopy properties but whether growth can be directly predicted from hyperspectral data remains unknown. We used a single hyperspectral image and light detection and ranging-derived elevation to predict growth rates for 20 tropical tree species planted in experimental plots. We asked whether a consistent relationship between spectral data and growth rates exists across all species and which spectral regions, associated with different canopy chemical and structural properties, are important for predicting growth rates. We found that a linear combination of narrowband indices and elevation is correlated with standardized growth rates across all 20 tree species (R(2)  = 53.70%). Although wavelengths from the entire visible-to-shortwave infrared spectrum were involved in our analysis, results point to relatively greater importance of visible and near-infrared regions for relating canopy reflectance to tree growth data. Overall, we demonstrate the potential for hyperspectral data to quantify tree demography over a much larger area than possible with field-based methods in forest inventory plots.

  4. Ambrosia Beetle (Coleoptera: Scolytidae) Species, Flight, and Attack on Living Eastern Cottonwood Trees.

    SciTech Connect

    Coyle, D R; D.C. Booth: M.S. Wallace

    2005-12-01

    ABSTRACT In spring 2002, ambrosia beetles (Coleoptera: Scolytidae) infested an intensively managed 22-ha tree plantation on the upper coastal plain of South Carolina. Nearly 3,500 scolytids representing 28 species were captured in ethanol-baited traps from 18 June 2002 to 18 April 2004. More than 88% of total captures were exotic species. Five species [Dryoxylon onoharaensum (Murayama), Euwallacea validus (Eichhoff), Pseudopityophthorus minutissimus (Zimmermann), Xyleborus atratus Eichhoff, and Xyleborus impressus Eichhoff]) were collected in South Carolina for the first time. Of four tree species in the plantation, eastern cottonwood, Populus deltoides Bartram, was the only one attacked, with nearly 40% of the trees sustaining ambrosia beetle damage. Clone ST66 sustained more damage than clone S7C15. ST66 trees receiving fertilization were attacked more frequently than trees receiving irrigation, irrigation_fertilization, or controls, although the number of S7C15 trees attacked did not differ among treatments. The study location is near major shipping ports; our results demonstrate the necessity for intensive monitoring programs to determine the arrival, spread, ecology, and impact of exotic scolytids.

  5. A novel approach to internal crown characterization for coniferous tree species classification

    NASA Astrophysics Data System (ADS)

    Harikumar, A.; Bovolo, F.; Bruzzone, L.

    2016-10-01

    The knowledge about individual trees in forest is highly beneficial in forest management. High density small foot- print multi-return airborne Light Detection and Ranging (LiDAR) data can provide a very accurate information about the structural properties of individual trees in forests. Every tree species has a unique set of crown structural characteristics that can be used for tree species classification. In this paper, we use both the internal and external crown structural information of a conifer tree crown, derived from a high density small foot-print multi-return LiDAR data acquisition for species classification. Considering the fact that branches are the major building blocks of a conifer tree crown, we obtain the internal crown structural information using a branch level analysis. The structure of each conifer branch is represented using clusters in the LiDAR point cloud. We propose the joint use of the k-means clustering and geometric shape fitting, on the LiDAR data projected onto a novel 3-dimensional space, to identify branch clusters. After mapping the identified clusters back to the original space, six internal geometric features are estimated using a branch-level analysis. The external crown characteristics are modeled by using six least correlated features based on cone fitting and convex hull. Species classification is performed using a sparse Support Vector Machines (sparse SVM) classifier.

  6. Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand.

    PubMed

    Whitehead, David; Boelman, Natalie T; Turnbull, Matthew H; Griffin, Kevin L; Tissue, David T; Barbour, Margaret M; Hunt, John E; Richardson, Sarah J; Peltzer, Duane A

    2005-06-01

    Measurements of photosynthesis at saturating irradiance and CO2 partial pressure, Amax, "adjusted" normalised difference vegetation index, RaNDVI, and photochemical reflectance index, RPRI, were made on trees sampled along a soil chronosequence to investigate the relationship between carbon uptake and ecosystem development in relation to nutrient availability. Measurements were made on the three most dominant species at six sites along the sequence in South Westland, New Zealand with soil age ranging from < 6 to 120,000 years resulting from the retreat of the Franz Josef glacier. The decrease in soil phosphorus availability with increasing soil age and high soil nitrogen availability at the two youngest sites, due to the presence of a nitrogen-fixing species, provided marked differences in nutrient availability. Mean Amax was high at the two youngest sites, then decreased markedly with increasing site age. Analysis of the data for individual species within sites revealed separation of groups of species in the response of Amax to Nm and Pm, suggesting complex interactions between the two nutrients. There were strong linear relationships for leaf-level RaNDVI and RPRI with Amax, at high irradiance, showing that measurements of reflectance indices can be used to estimate Amax for foliage with a range in morphology and nutrient concentrations. Notwithstanding the change in species composition from angiosperms to conifers with increasing site age, the presence of nitrogen-fixing species, the variability in foliage morphology from flat leaves to imbricate scales and a wide range in foliar nitrogen and phosphorus concentrations, there were strong positive linear relationships between site average Amax and foliage nitrogen, Nm, and phosphorus, Pm, concentrations on a foliage mass basis. The results provide insights to interpret the regulation of photosynthesis across natural ecosystems with marked gradients in nitrogen and phosphorus availability.

  7. BOREAS TE-4 Branch Bag Data From Boreal Tree Species

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Berry, Joseph A.; Fu, Wei; Fredeen, Art; Gamon, John

    2000-01-01

    The BOREAS TE-4 team collected continuous records of gas exchange under ambient conditions from intact boreal forest trees in the BOREAS NSA from 23-Jul-1996 until 14-Aug-1996. These measurements can be used to test models of photosynthesis, stomatal conductance, and leaf respiration, such as SiB2 (Sellers et al., 1996) or the leaf model (Collatz et al., 1991), and programs can be obtained from the investigators. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. Making Rainforests Relevant.

    ERIC Educational Resources Information Center

    Lustbader, Sara

    1995-01-01

    Describes a program for teaching about tropical rainforests in a concrete way using what's outside the door. This activity uses an eastern deciduous hardwood forest as an example. Step-by-step instructions include introductory activities, plus descriptions of stations in the forest to be visited. Resources include books, audio-visual materials,…

  9. Rainforest: Reptiles and Amphibians

    ERIC Educational Resources Information Center

    Olson, Susanna

    2006-01-01

    Rainforest reptiles and amphibians are a vibrantly colored, multimedia art experience. To complete the entire project one may need to dedicate many class periods to production, yet in each aspect of the project a new and important skill, concept, or element is being taught or reinforced. This project incorporates the study of warm and cool color…

  10. Wind Disturbance Produced Changes in Tree Species Assemblage in the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Rifai, S. W.; Chambers, J. Q.; Negron Juarez, R. I.; Ramirez, F.; Tello, R.; Alegria Muñoz, W.

    2010-12-01

    Wind disturbance has been a frequently overlooked abiotic cause of mass tree mortality in the Amazon basin. In the Peruvian Amazon these wind disturbances are produced by meteorological events such as convective systems. Downbursts for example produce short term descendent wind speeds that can be in excess of 30 m s-1. These are capable of producing tree blowdowns which have been reported to be as large as 33 km2 in the Amazon basin. We used the chronosequence of Landsat Satellite imagery to find and locate where these blowdowns have occurred in the Loreto region of the Peruvian Amazon. Spectral Mixture Analysis was used to estimate the proportion landcover of green vegetation, non-photosynthetic vegetation (NPV), soil and shade in each pixel. The change in NPV was calculated by subtracting the NPV signal in the Landsat image prior to the blowdown occurrence, from the image following the disturbance. Our prior research has established a linear relationship between tree mortality and change in NPV. It is hypothesized that these mass tree mortality events result in changes in the tree species assemblage of affected forests. Here we present preliminary tree species assemblage data from two sites in the Peruvian Amazon near Iquitos, Peru. The site (ALP) at the Allpahuayo Mishana reserve (3.945 S, 73.455 W) is 30 km south of Iquitos, Peru, and hosts the remnants of a 50 ha blowdown that occurred in either 1992 or 1993. Another site (NAPO) on the Napo river about 60 km north of Iquitos, is the location of an approximately 300 ha blowdown that occurred in 1998. At each site, a 3000 m x 10 m transect encompassing non disturbed and disturbed areas was installed, and trees greater than 10 cm diameter at breast height were measured for diameter, height and were identified to the species. Stem density of trees with diameter at breast height > 10 cm, and tree height appear to be similar both inside and outside the blowdown affected areas of the forests at both sites. At the ALP

  11. Links between tree species, symbiotic fungal diversity and ecosystem functioning in simplified tropical ecosystems.

    PubMed

    Lovelock, Catherine E; Ewel, John J

    2005-07-01

    We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.

  12. Selective logging in tropical forests decreases the robustness of liana–tree interaction networks to the loss of host tree species

    PubMed Central

    Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.

    2016-01-01

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241

  13. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    PubMed

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'.

  14. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest

    PubMed Central

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916

  15. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    PubMed

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  16. Fuel wood properties of some oak tree species of Manipur, India.

    PubMed

    Meetei, Shougrakpam Bijen; Singh, E J; Das, Ashesh Kumar

    2015-07-01

    Five indigenous oak tree species, i.e., Castanopsis indica (Roxb. ex Lindl.) A.DC., Lithocarpus fenestratus (Roxb.) Rehder, Lithocarpus pachyphyllus (Kurz) Rehder, Lithocarpus polystachyus (Wall. ex A.DC.) Rehder and Quercus serrata Murray were estimated for their wood properties such as calorific value, density, moisture content and ash content from a sub-tropical forest of Haraothel hill, Senapati District, Manipur. Wood biomass components were found to have higher calorific value (kJ g(-)) than bark components. The calorific values for tree species were found highest in L. pachyphyllus (17.99 kJ g(-1)) followed by C. indica (17.98 kJ g1), L. fenestratus (17.96 kJ g"), L. polystachyus (17.80 kJ g(-1)) and Q. serrata (17.49 kJ g(-1)). Calorific values for bole bark, bole wood and branch bark were found significantly different (F > 3.48 at p = 0.05) in five oak tree species. Percentage of ash on dry weight basis was found to be highest in Q. serrata (4.73%) and lowest in C. indica (2.19%). Ash content of tree components gives a singnificant factor in determining fuelwood value index (FVI). Of all the five oak tree species, Q. serrata exhibited highest value of wood density (0.78 g cm-) and lowest was observed in C. indica (0.63 g cm(-3)). There was significant correlation between wood density (p<0.05), ash content (p<0.01) with calorific value in oak tree species. Fuelwood value index (FVI) was in the following order: C. indica (1109.70) > L. pachyphyllus (898.41)> L. polystachyus (879.02)> L. fenestratus (824.61)> Q. serrata (792.50). Thus, the present study suggests that C. indica may be considered as a fuelwood oak tree species in Manipur.

  17. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions

    PubMed Central

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y.

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. PMID:27402618

  18. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    PubMed

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics.

  19. Did tropical rainforest vegetation exist during the Late Cretaceous? New data from the late Campanian to early Maastrichtian Olmos Formation, Coahuila, Mexico.

    NASA Astrophysics Data System (ADS)

    Upchurch, G. R.; Estrada-Ruiz, E.; Cevallos-Ferriz, S. S.

    2008-12-01

    A major problem in paleobotany and paleoclimatology is the origin of modern tropical and paratropical rainforests. Studies of leaf macrofossils, beginning with those of Wolfe and Upchurch, have suggested that tropical and paratropical (i.e., megathermal) rainforests with dominant angiosperms are of Cenozoic origin, and that comparable vegetation was either absent or greatly restricted during the Late Cretaceous. Earth System modeling studies, in contrast, predict the existence of megathermal rainforest vegetation during the mid- and Late Cretaceous, though with less areal extent than during the Late Cenozoic and Recent. Megathermal climate with year-round precipitation is simulated along the paleoequator and along the northern margin of the Tethys Ocean, and tends to occur in highly focused regions, in contrast to the more latitudinally zoned pattern of the Recent. Low-resolution climatic indicators, such as the distribution of coals and tree fern spores, are consistent with evidence from climate modeling for megathermal wet climates during the Late Cretaceous, and by extension megathermal rainforest vegetation. However, corroborative data from plant macrofossil assemblages is needed, because the physiognomy of leaves and woods directly reflects plant adaptation to the environment and can estimate climate independently of the generic and familial affinities of the paleoflora. Newly collected plant macrofossil assemblages from the late Campian to early Maastrichtian Olmos Formation of Coahuila, Mexico, provide evidence for megathermal rainforest vegetation on the northern margin of the Tethys Ocean at approximately 35 degrees paleolatitude. The newly collected leaf flora is 72 percent entire- margined and has abundant palms, features typical of modern megathermal rainforests. Thirty percent of the species have large leaves, and 50 percent of the species have drip tips, features indicative of wet conditions. Simple and multiple regression functions based on the

  20. [Mahalanobis distance based hyperspectral characteristic discrimination of leaves of different desert tree species].

    PubMed

    Lin, Hai-jun; Zhang, Hui-fang; Gao, Ya-qi; Li, Xia; Yang, Fan; Zhou, Yan-fei

    2014-12-01

    The hyperspectral reflectance of Populus euphratica, Tamarix hispida, Haloxylon ammodendron and Calligonum mongolicum in the lower reaches of Tarim River and Turpan Desert Botanical Garden was measured by using the HR-768 field-portable spectroradiometer. The method of continuum removal, first derivative reflectance and second derivative reflectance were used to deal with the original spectral data of four tree species. The method of Mahalanobis Distance was used to select the bands with significant differences in the original spectral data and transform spectral data to identify the different tree species. The progressive discrimination analyses were used to test the selective bands used to identify different tree species. The results showed that The Mahalanobis Distance method was an effective method in feature band extraction. The bands for identifying different tree species were most near-infrared bands. The recognition accuracy of four methods was 85%, 93.8%, 92.4% and 95.5% respectively. Spectrum transform could improve the recognition accuracy. The recognition accuracy of different research objects and different spectrum transform methods were different. The research provided evidence for desert tree species classification, monitoring biodiversity and the analysis of area in desert by using large scale remote sensing method.

  1. Fruit availability, frugivore satiation and seed removal in 2 primate-dispersed tree species.

    PubMed

    Ratiarison, Sandra; Forget, Pierre-Michel

    2011-09-01

    During a mast-fruiting event we investigated spatial variability in fruit availability, consumption, and seed removal at two sympatric tree species, Manilkara bidentata and M. huberi (Sapotaceae) at Nouragues Natural Reserve, French Guiana. We addressed the question of how Manilkara density and fruits at the community level might be major causes of variability in feeding assemblages between tree species. We thus explored how the frugivore assemblages differed between forest patches with contrasting relative Manilkara density and fruiting context. During the daytime, Alouatta seniculus was more often observed in M. huberi crowns at Petit Plateau (PP) with the greatest density of Manilkara spp. and the lowest fruit diversity and availability, whereas Cebus apella and Saguinus midas were more often observed in M. bidentata crowns at both Grand Plateau (GP), with a lowest density of M. bidentata and overall greater fruit supply, and PP. Overall, nearly 53% and 15% of the M. bidentata seed crop at GP and PP, respectively, and about 47% of the M. huberi seed crop were removed, otherwise either spit out or defecated beneath trees, or dropped in fruits. Small-bodied primates concentrated fallen seeds beneath parent trees while large-bodied primate species removed and dispersed more seeds away from parents. However, among the latter, satiated A. seniculus wasted seeds under conspecific trees at PP. Variations in feeding assemblages, seed removal rates and fates possibly reflected interactions with extra-generic fruit species at the community level, according to feeding choice, habitat preferences and ranging patterns of primate species.

  2. [Effects of temperature on CH4 emission from subtropical common tree species leaves].

    PubMed

    Yang, Yan-Hua; Yi, Li-Ming; Xie, Jin-Sheng; Yang, Zhi-Jie; Jiang, Jun; Xu, Chao; Yang, Yu-Sheng

    2013-06-01

    Laboratory incubation test was conducted to study the effects of temperature on the CH4 emission from the leaves of subtropical common tree species Castanopsis carlesii, Schima superb, Cinnamomum chekiangense, Castsanopsis fabri, Cunninghamia lanceolata, and Citrus reticulata. Among the six tree species, only S. superb, C. reticulate, and C. fabri emitted CH4 at 10 degrees C. At above 20 degrees C, all the six species emitted CH4, and the average CH4 emission rate at above 30 degrees C (1.010 ng CH4 x g(-1) DM x h(-1)) was 2.96 times higher than that at 10-30 degrees C (0.255 ng CH4 x g(-1) DM x h(-1)). Moreover, increasing temperature had much more effects on the CH4 emission rate of C. reticulata and C. lanceolata than on that of the other four tree species. Incubation time affected the CH4 emission rate of all test tree species significantly, suggesting that the effects of temperature stress on the CH4 emission could be controlled by plant activity. Dry leaves could not emit CH4 no matter the temperature was very high or low. It was suggested that high temperature stress had important effects on the CH4 emission from subtropical tree leaves, and global warming could increase the CH4 emission from plants.

  3. Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System Imagery

    PubMed Central

    Lisein, Jonathan; Michez, Adrien; Claessens, Hugues; Lejeune, Philippe

    2015-01-01

    Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous tree species. The goal of this research is to determine when is the best time window to achieve an optimal species discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest tree phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within tree species groups and, at the same time, maximizes the phenologic differences between species. Sunlit tree crowns (5 deciduous species groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%). PMID:26600422

  4. Interpreting species-specific variation in tree-ring oxygen isotope ratios among three temperate forest trees.

    PubMed

    Song, Xin; Clark, Kenneth S; Helliker, Brent R

    2014-09-01

    Although considerable variation has been documented in tree-ring cellulose oxygen isotope ratios (δ(18)O(cell)) among co-occurring species, the underlying causes are unknown. Here, we used a combination of field measurements and modelling to investigate the mechanisms behind variations in late-wood δ(18) O(cell) (δ(18)O(lc)) among three co-occurring species (chestnut oak, black oak and pitch pine) in a temperate forest. For two growing seasons, we quantified among-species variation in δ(18)O(lc), as well as several variables that could potentially cause the δ(18)O(lc) variation. Data analysis based on the δ(18) O(cell) model rules out leaf water enrichment (Δ(18)O(lw)) and tree-ring formation period (Δt), but highlights source water δ(18) O (δ(18) O(sw)) as an important driver for the measured difference in δ(18)O(lc) between black and chestnut oak. However, the enriched δ(18)O(lc) in pitch pine relative to the oaks could not be sufficiently explained by consideration of the above three variables only, but rather, we show that differences in the proportion of oxygen exchange during cellulose synthesis (p(ex)) is most likely a key mechanism. Our demonstration of the relevance of some species-specific features (or lack thereof) to δ(18)O(cell) has important implications for isotope based ecophysiological/paleoclimate studies.

  5. Supplemental planting of early successional tree species during bottomland hardwood afforestation

    USGS Publications Warehouse

    Twedt, D.J.; Wilson, R.R.; Outcalt, Kenneth W.

    2002-01-01

    Reforestation of former bottom land hardwood forests that have been cleared for agriculture (i.e., afforestation) has historically emphasized planting heavy-seeded oaks (Quercus spp.) and pecans (Carya spp.). These species are slow to develop vertical forest structure. However, vertical forest structure is key to colonization of afforested sites by forest birds. Although early-successional tree species often enhance vertical structure, few of these species invade afforested sites that are distant from seed sources. Furthermore, many land mangers are reluctant to establish and maintain stands of fast-growing plantation trees. Therefore, on 40 afforested bottomland sites, we supplemented heavy-seeded seedlings with 8 patches of fast-growing trees: 4 patches of 12 eastern cottonwood (Populus deltoides) stem cuttings and 4 patches of 12 American sycamore (Platanus occidentalis) seedlings. To enhance survival and growth, tree patches were subjected to 4 weed control treatments: (1) physical weed barriers, (2) chemical herbicide, (3) both physical and chemical weed control, or (4) no weed control. Overall, first-year survival of cottonwood and sycamore was 25 percent and 47 percent, respectively. Second-year survival of extant trees was 52 percent for cottonwood and 77 percent for sycamore. Physical weed barriers increased survival of cottonwoods to 30 percent versus 18 percent survival with no weed control. Similarly, sycamore survival was increased from 49 percent without weed control to 64 percent with physical weed barriers. Chemical weed control adversely impacted sycamore and reduced survival to 35 percent. Tree heights did not differ between species or among weed control treatments. Girdling of trees by deer often destroyed saplings. Thus, little increase in vertical structure was detected between growing seasons. Application of fertilizer and protection via tree shelters did not improve survival or vertical development of sycamore or cottonwood.

  6. An Efficient Algorithm for Gene/Species Trees Parsimonious Reconciliation with Losses, Duplications and Transfers

    NASA Astrophysics Data System (ADS)

    Doyon, Jean-Philippe; Scornavacca, Celine; Gorbunov, K. Yu.; Szöllősi, Gergely J.; Ranwez, Vincent; Berry, Vincent

    Tree reconciliation methods aim at estimating the evolutionary events that cause discrepancy between gene trees and species trees. We provide a discrete computational model that considers duplications, transfers and losses of genes. The model yields a fast and exact algorithm to infer time consistent and most parsimonious reconciliations. Then we study the conditions under which parsimony is able to accurately infer such events. Overall, it performs well even under realistic rates, transfers being in general less accurately recovered than duplications. An implementation is freely available at http://www.atgc-montpellier.fr/MPR.

  7. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy

    PubMed Central

    Baldeck, Claire A.; Asner, Gregory P.; Martin, Robin E.; Anderson, Christopher B.; Knapp, David E.; Kellner, James R.; Wright, S. Joseph

    2015-01-01

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods—binary support vector machine (SVM) and biased SVM—for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer’s accuracies of 94–97% for the three focal species, and field validation of the predicted crown objects indicated that these had user’s accuracies of 94–100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems. PMID:26153693

  8. Quantifying tree mortality in a mixed species woodland using multitemporal high spatial resolution satellite imagery

    USGS Publications Warehouse

    Garrity, Steven R.; Allen, Craig D.; Brumby, Steven P.; Gangodagamage, Chandana; McDowell, Nate G.; Cai, D. Michael

    2013-01-01

    Widespread tree mortality events have recently been observed in several biomes. To effectively quantify the severity and extent of these events, tools that allow for rapid assessment at the landscape scale are required. Past studies using high spatial resolution satellite imagery have primarily focused on detecting green, red, and gray tree canopies during and shortly after tree damage or mortality has occurred. However, detecting trees in various stages of death is not always possible due to limited availability of archived satellite imagery. Here we assess the capability of high spatial resolution satellite imagery for tree mortality detection in a southwestern U.S. mixed species woodland using archived satellite images acquired prior to mortality and well after dead trees had dropped their leaves. We developed a multistep classification approach that uses: supervised masking of non-tree image elements; bi-temporal (pre- and post-mortality) differencing of normalized difference vegetation index (NDVI) and red:green ratio (RGI); and unsupervised multivariate clustering of pixels into live and dead tree classes using a Gaussian mixture model. Classification accuracies were improved in a final step by tuning the rules of pixel classification using the posterior probabilities of class membership obtained from the Gaussian mixture model. Classifications were produced for two images acquired post-mortality with overall accuracies of 97.9% and 98.5%, respectively. Classified images were combined with land cover data to characterize the spatiotemporal characteristics of tree mortality across areas with differences in tree species composition. We found that 38% of tree crown area was lost during the drought period between 2002 and 2006. The majority of tree mortality during this period was concentrated in piñon-juniper (Pinus edulis-Juniperus monosperma) woodlands. An additional 20% of the tree canopy died or was removed between 2006 and 2011, primarily in areas

  9. Dominant tree species are at risk from exaggerated drought under climate change.

    PubMed

    Fensham, Roderick J; Fraser, Josie; MacDermott, Harry J; Firn, Jenifer

    2015-10-01

    Predicting the consequences of climate change on forest systems is difficult because trees may display species-specific responses to exaggerated droughts that may not be reflected by the climatic envelope of their geographic range. Furthermore, few studies have examined the postdrought recovery potential of drought-susceptible tree species. This study develops a robust ranking of the drought susceptibility of 21 tree species based on their mortality after two droughts (1990s and 2000s) in the savanna of north-eastern Australia. Drought-induced mortality was positively related to species dominance, negatively related to the ratio of postdrought seedlings to adults and had no relationship to the magnitude of extreme drought within the species current geographic ranges. These results suggest that predicting the consequences of exaggerated drought on species' geographic ranges is difficult, but that dominant species like Eucalyptus with relatively slow rates of population recovery and dispersal are the most susceptible. The implications for savanna ecosystems are lower tree densities and basal area.

  10. Identification and Mapping of Tree Species in Urban Areas Using WORLDVIEW-2 Imagery

    NASA Astrophysics Data System (ADS)

    Mustafa, Y. T.; Habeeb, H. N.; Stein, A.; Sulaiman, F. Y.

    2015-10-01

    Monitoring and mapping of urban trees are essential to provide urban forestry authorities with timely and consistent information. Modern techniques increasingly facilitate these tasks, but require the development of semi-automatic tree detection and classification methods. In this article, we propose an approach to delineate and map the crown of 15 tree species in the city of Duhok, Kurdistan Region of Iraq using WorldView-2 (WV-2) imagery. A tree crown object is identified first and is subsequently delineated as an image object (IO) using vegetation indices and texture measurements. Next, three classification methods: Maximum Likelihood, Neural Network, and Support Vector Machine were used to classify IOs using selected IO features. The best results are obtained with Support Vector Machine classification that gives the best map of urban tree species in Duhok. The overall accuracy was between 60.93% to 88.92% and κ-coefficient was between 0.57 to 0.75. We conclude that fifteen tree species were identified and mapped at a satisfactory accuracy in urban areas of this study.

  11. Micropropagation of Sterculia urens Roxb. - an endangered tree species.

    PubMed

    Purohit, S D; Dave, A

    1996-05-01

    An in vitro procedure for large scale multiplication of Sterculia urens Roxb. (Gum Kadaya Tree) has been developed using cotyledonary node segments. An average of 4.0 shoots per node were obtained on Murashige and Skoog's (MS) medium containing 2.0 mgl(-1) 6-benzyl amino-purine (BAP) within 21 days of initial culture. Upon subsequent subculture 16 shoots/node could be harvested every three weeks and upto three times. Sixty per cent of the shoots were successfully rooted. Rooted plantlets were transferred to plastic pots containing soil under mist house conditions before they were finally exposed to an external environment. Fifty seven per cent of the plantlets survived in nursery sheds.

  12. Tree species control rates of free-living nitrogen fixation in a tropical rain forest.

    PubMed

    Reed, Sasha C; Cleveland, Cory C; Townsend, Alan R

    2008-10-01

    Tropical rain forests represent some of the most diverse ecosystems on earth, yet mechanistic links between tree species identity and ecosystem function in these forests remains poorly understood. Here, using free-living nitrogen (N) fixation as a model, we explore the idea that interspecies variation in canopy nutrient concentrations may drive significant local-scale variation in biogeochemical processes. Biological N fixation is the largest "natural" source of newly available N to terrestrial ecosystems, and estimates suggest the highest such inputs occur in tropical ecosystems. While patterns of and controls over N fixation in these systems remain poorly known, the data we do have suggest that chemical differences among tree species canopies could affect free-living N fixation rates. In a diverse lowland rain forest in Costa Rica, we established a series of vertical, canopy-to-soil profiles for six common canopy tree species, and we measured free-living N fixation rates and multiple aspects of chemistry of live canopy leaves, senesced canopy leaves, bulk leaf litter, and soil for eight individuals of each tree species. Free-living N fixation rates varied significantly among tree species for all four components, and independent of species identity, rates of N fixation ranged by orders of magnitude along the vertical profile. Our data suggest that variations in phosphorus (P) concentration drove a significant fraction of the observed species-specific variation in free-living N fixation rates within each layer of the vertical profile. Furthermore, our data suggest significant links between canopy and forest floor nutrient concentrations; canopy P was correlated with bulk leaf litter P below individual tree crowns. Thus, canopy chemistry may affect a suite of ecosystem processes not only within the canopy itself, but at and beneath the forest floor as well.

  13. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest.

    PubMed

    Mangan, Scott A; Schnitzer, Stefan A; Herre, Edward A; Mack, Keenan M L; Valencia, Mariana C; Sanchez, Evelyn I; Bever, James D

    2010-08-05

    The accumulation of species-specific enemies around adults is hypothesized to maintain plant diversity by limiting the recruitment of conspecific seedlings relative to heterospecific seedlings. Although previous studies in forested ecosystems have documented patterns consistent with the process of negative feedback, these studies are unable to address which classes of enemies (for example, pathogens, invertebrates, mammals) exhibit species-specific effects strong enough to generate negative feedback, and whether negative feedback at the level of the individual tree is sufficient to influence community-wide forest composition. Here we use fully reciprocal shade-house and field experiments to test whether the performance of conspecific tree seedlings (relative to heterospecific seedlings) is reduced when grown in the presence of enemies associated with adult trees. Both experiments provide strong evidence for negative plant-soil feedback mediated by soil biota. In contrast, above-ground enemies (mammals, foliar herbivores and foliar pathogens) contributed little to negative feedback observed in the field. In both experiments, we found that tree species that showed stronger negative feedback were less common as adults in the forest community, indicating that susceptibility to soil biota may determine species relative abundance in these tropical forests. Finally, our simulation models confirm that the strength of local negative feedback that we measured is sufficient to produce the observed community-wide patterns in tree-species relative abundance. Our findings indicate that plant-soil feedback is an important mechanism that can maintain species diversity and explain patterns of tree-species relative abundance in tropical forests.

  14. Warming effects on photosynthesis of subtropical tree species: a translocation experiment along an altitudinal gradient

    PubMed Central

    Li, Yiyong; Liu, Juxiu; Zhou, Guoyi; Huang, Wenjuan; Duan, Honglang

    2016-01-01

    Ongoing climate warming induced by human activities may have great impacts on trees, yet it remains unresolved how subtropical tree species respond to rising temperature in the field. Here, we used downward translocation to investigate the effects of climate warming on leaf photosynthesis of six common tree species in subtropical China. During the experimental period between 2012 and 2014, the mean average photosynthetic rates (Asat) under saturating light for Schima superba, Machilus breviflora, Pinus massoniana and Ardisia lindleyana in the warm site were7%, 19%, 20% and 29% higher than those in the control site. In contrast, seasonal Asat for Castanopsis hystrix in the warm site were lower compared to the control site. Changes in Asat in response to translocation were mainly associated with those in leaf stomatal conductance (gs) and photosynthetic capacity (RuBP carboxylation, RuBP regeneration capacity). Our results imply that climate warming could have potential impacts on species composition and community structure in subtropical forests. PMID:27102064

  15. Warming effects on photosynthesis of subtropical tree species: a translocation experiment along an altitudinal gradient.

    PubMed

    Li, Yiyong; Liu, Juxiu; Zhou, Guoyi; Huang, Wenjuan; Duan, Honglang

    2016-04-22

    Ongoing climate warming induced by human activities may have great impacts on trees, yet it remains unresolved how subtropical tree species respond to rising temperature in the field. Here, we used downward translocation to investigate the effects of climate warming on leaf photosynthesis of six common tree species in subtropical China. During the experimental period between 2012 and 2014, the mean average photosynthetic rates (Asat) under saturating light for Schima superba, Machilus breviflora, Pinus massoniana and Ardisia lindleyana in the warm site were7%, 19%, 20% and 29% higher than those in the control site. In contrast, seasonal Asat for Castanopsis hystrix in the warm site were lower compared to the control site. Changes in Asat in response to translocation were mainly associated with those in leaf stomatal conductance (gs) and photosynthetic capacity (RuBP carboxylation, RuBP regeneration capacity). Our results imply that climate warming could have potential impacts on species composition and community structure in subtropical forests.

  16. The response of European tree species to drought: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Irschick, C.; Mayr, S.; Wohlfahrt, G.

    2012-04-01

    Here we provide first results of a meta-analysis of the response of European tree species to drought. A literature search was conducted in order to collect available studies of the response of the gas exchange of European tree species to either natural or imposed water shortage. The resulting publications were screened and parameters at organ (e.g. leaf or shoot), individual (i.e. tree) and ecosystem scale were transferred to a data base. Here we present preliminary results from queries of the data base aiming at identifying differences in the drought response between species that may have implications for forest productivity and composition under likely future warmer and drier conditions.

  17. Warming effects on photosynthesis of subtropical tree species: a translocation experiment along an altitudinal gradient

    NASA Astrophysics Data System (ADS)

    Li, Yiyong; Liu, Juxiu; Zhou, Guoyi; Huang, Wenjuan; Duan, Honglang

    2016-04-01

    Ongoing climate warming induced by human activities may have great impacts on trees, yet it remains unresolved how subtropical tree species respond to rising temperature in the field. Here, we used downward translocation to investigate the effects of climate warming on leaf photosynthesis of six common tree species in subtropical China. During the experimental period between 2012 and 2014, the mean average photosynthetic rates (Asat) under saturating light for Schima superba, Machilus breviflora, Pinus massoniana and Ardisia lindleyana in the warm site were7%, 19%, 20% and 29% higher than those in the control site. In contrast, seasonal Asat for Castanopsis hystrix in the warm site were lower compared to the control site. Changes in Asat in response to translocation were mainly associated with those in leaf stomatal conductance (gs) and photosynthetic capacity (RuBP carboxylation, RuBP regeneration capacity). Our results imply that climate warming could have potential impacts on species composition and community structure in subtropical forests.

  18. An empirical evaluation of two-stage species tree inference strategies using a multilocus dataset from North American pines

    PubMed Central

    2014-01-01

    Background As it becomes increasingly possible to obtain DNA sequences of orthologous genes from diverse sets of taxa, species trees are frequently being inferred from multilocus data. However, the behavior of many methods for performing this inference has remained largely unexplored. Some methods have been proven to be consistent given certain evolutionary models, whereas others rely on criteria that, although appropriate for many parameter values, have peculiar zones of the parameter space in which they fail to converge on the correct estimate as data sets increase in size. Results Here, using North American pines, we empirically evaluate the behavior of 24 strategies for species tree inference using three alternative outgroups (72 strategies total). The data consist of 120 individuals sampled in eight ingroup species from subsection Strobus and three outgroup species from subsection Gerardianae, spanning ∼47 kilobases of sequence at 121 loci. Each “strategy” for inferring species trees consists of three features: a species tree construction method, a gene tree inference method, and a choice of outgroup. We use multivariate analysis techniques such as principal components analysis and hierarchical clustering to identify tree characteristics that are robustly observed across strategies, as well as to identify groups of strategies that produce trees with similar features. We find that strategies that construct species trees using only topological information cluster together and that strategies that use additional non-topological information (e.g., branch lengths) also cluster together. Strategies that utilize more than one individual within a species to infer gene trees tend to produce estimates of species trees that contain clades present in trees estimated by other strategies. Strategies that use the minimize-deep-coalescences criterion to construct species trees tend to produce species tree estimates that contain clades that are not present in trees

  19. Influences of forest structure, climate and species composition on tree mortality across the eastern US.

    PubMed

    Lines, Emily R; Coomes, David A; Purves, Drew W

    2010-10-13

    Few studies have quantified regional variation in tree mortality, or explored whether species compositional changes or within-species variation are responsible for regional patterns, despite the fact that mortality has direct effects on the dynamics of woody biomass, species composition, stand structure, wood production and forest response to climate change. Using bayesian analysis of over 430,000 tree records from a large eastern US forest database we characterised tree mortality as a function of climate, soils, species and size (stem diameter). We found (1) mortality is U-shaped vs. stem diameter for all 21 species examined; (2) mortality is hump-shaped vs. plot basal area for most species; (3) geographical variation in mortality is substantial, and correlated with several environmental factors; and (4) individual species vary substantially from the combined average in the nature and magnitude of their mortality responses to environmental variation. Regional variation in mortality is therefore the product of variation in species composition combined with highly varied mortality-environment correlations within species. The results imply that variation in mortality is a crucial part of variation in the forest carbon cycle, such that including this variation in models of the global carbon cycle could significantly narrow uncertainty in climate change predictions.

  20. Forest tree species clssification based on airborne hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Dian, Yuanyong; Li, Zengyuan; Pang, Yong

    2013-10-01

    Forest precision classification products were the basic data for surveying of forest resource, updating forest subplot information, logging and design of forest. However, due to the diversity of stand structure, complexity of the forest growth environment, it's difficult to discriminate forest tree species using multi-spectral image. The airborne hyperspectral images can achieve the high spatial and spectral resolution imagery of forest canopy, so it will good for tree species level classification. The aim of this paper was to test the effective of combining spatial and spectral features in airborne hyper-spectral image classification. The CASI hyper spectral image data were acquired from Liangshui natural reserves area. Firstly, we use the MNF (minimum noise fraction) transform method for to reduce the hyperspectral image dimensionality and highlighting variation. And secondly, we use the grey level co-occurrence matrix (GLCM) to extract the texture features of forest tree canopy from the hyper-spectral image, and thirdly we fused the texture and the spectral features of forest canopy to classify the trees species using support vector machine (SVM) with different kernel functions. The results showed that when using the SVM classifier, MNF and texture-based features combined with linear kernel function can achieve the best overall accuracy which was 85.92%. It was also confirm that combine the spatial and spectral information can improve the accuracy of tree species classification.

  1. Trees

    ERIC Educational Resources Information Center

    Al-Khaja, Nawal

    2007-01-01

    This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.

  2. Diversity and utilization of tree species in Meitei homegardens of Barak Valley, Assam.

    PubMed

    Devi, N Linthoingambi; Das, Ashesh Kumar

    2013-03-01

    An inventory of tree diversity in traditional homegardens of Meitei community was conducted in a Bontarapur village in Cachar district of Barak Valley, Assam. Meitei homegarden locally called Ingkhol exhibits a wide diversity in size, shape, location and composition. Seventy one tree species were enumerated from 50 homegardens belonging to 60 genus and 35 families. Among the families encountered, Rutaceae was the dominant family (4 genus and 7 species) followed by Meliaceae (5 genus and 5 species), Arecaceae (4 genus and 4 species) and Moraceae (3 genus and 5 species). Total 7946 tree individuals were recorded, with the density of 831 No ha(-1) of and total basal area of 9.54 m2 ha(-1). Areco catechu was the dominant species with the maximum number of individuals. Other dominant trees include Mangifera indica, Artocarpus heterophyllus, Citrus grandis, Parkia timoriana, Syzygium cumini and Psidium guajava. Being a cash crop, the intensification of betel nut has been preferred in many homegardens. Homegardens form an important component of land use of Meitei community which fulfills the socio-cultural and economic needs of the family and helps in conserving plant diversity through utilization.

  3. Negative Density Dependence Regulates Two Tree Species at Later Life Stage in a Temperate Forest

    PubMed Central

    Piao, Tiefeng; Chun, Jung Hwa; Yang, Hee Moon; Cheon, Kwangil

    2014-01-01

    Numerous studies have demonstrated that tree survival is influenced by negative density dependence (NDD) and differences among species in shade tolerance could enhance coexistence via resource partitioning, but it is still unclear how NDD affects tree species with different shade-tolerance guilds at later life stages. In this study, we analyzed the spatial patterns for trees with dbh (diameter at breast height) ≥2 cm using the pair-correlation g(r) function to test for NDD in a temperate forest in South Korea after removing the effects of habitat heterogeneity. The analyses were implemented for the most abundant shade-tolerant (Chamaecyparis obtusa) and shade-intolerant (Quercus serrata) species. We found NDD existed for both species at later life stages. We also found Quercus serrata experienced greater NDD compared with Chamaecyparis obtusa. This study indicates that NDD regulates the two abundant tree species at later life stages and it is important to consider variation in species' shade tolerance in NDD study. PMID:25058660

  4. Negative density dependence regulates two tree species at later life stage in a temperate forest.

    PubMed

    Piao, Tiefeng; Chun, Jung Hwa; Yang, Hee Moon; Cheon, Kwangil

    2014-01-01

    Numerous studies have demonstrated that tree survival is influenced by negative density dependence (NDD) and differences among species in shade tolerance could enhance coexistence via resource partitioning, but it is still unclear how NDD affects tree species with different shade-tolerance guilds at later life stages. In this study, we analyzed the spatial patterns for trees with dbh (diameter at breast height) ≥2 cm using the pair-correlation g(r) function to test for NDD in a temperate forest in South Korea after removing the effects of habitat heterogeneity. The analyses were implemented for the most abundant shade-tolerant (Chamaecyparis obtusa) and shade-intolerant (Quercus serrata) species. We found NDD existed for both species at later life stages. We also found Quercus serrata experienced greater NDD compared with Chamaecyparis obtusa. This study indicates that NDD regulates the two abundant tree species at later life stages and it is important to consider variation in species' shade tolerance in NDD study.

  5. The role of selected tree species in industrial sewage sludge/flotation tailing management.

    PubMed

    Mleczek, Mirosław; Rutkowski, Paweł; Niedzielski, Przemysław; Goliński, Piotr; Gąsecka, Monika; Kozubik, Tomisław; Dąbrowski, Jędrzej; Budzyńska, Sylwia; Pakuła, Jarosław

    2016-11-01

    The aim of the study was to estimate the ability of ten tree and bush species to tolerate and accumulate Cd, Cu, Pb, Zn, and As species [As(III), As(V), and total organic arsenic] in industrial sewage sludge extremely contaminated with arsenic (almost 27.5 g kg(-1)) in a pot experiment. The premise being that it will then be possible to select the most promising tree/bush species, able to grow in the vicinity of dams where sewage sludge/flotation tailings are used as landfill. Six of the ten tested tree species were able to grow on the sludge. The highest content of total As was observed in Betula pendula roots (30.0 ± 1.3 mg kg(-1) DW), where the dominant As species was the toxic As(V). The highest biomass of Quercus Q1 robur (77.3 § 2.6 g) and Acer platanoides (76.0 § 4.9 g) was observed. A proper planting of selected tree species that are able to thrive on sewage sludge/flotation tailings could be an interesting and promising way to protect dams. By utilizing differences in their root systems and water needs, we will be able to reduce the risk of fatal environmental disasters.

  6. [Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China].

    PubMed

    Zuo, Shu-di; Ren, Yin; Weng, Xian; Ding, Hong-feng; Luo, Yun-jian

    2015-02-01

    Biomass allometric equation (BAE) considered as a simple and reliable method in the estimation of forest biomass and carbon was used widely. In China, numerous studies focused on the BAEs for coniferous forest and pure broadleaved forest, and generalized BAEs were frequently used to estimate the biomass and carbon of mixed broadleaved forest, although they could induce large uncertainty in the estimates. In this study, we developed the species-specific and generalized BAEs using biomass measurement for 9 common broadleaved trees (Castanopsis fargesii, C. lamontii, C. tibetana, Lithocarpus glaber, Sloanea sinensis, Daphniphyllum oldhami, Alniphyllum fortunei, Manglietia yuyuanensis, and Engelhardtia fenzlii) of subtropical evergreen broadleaved forest, and compared differences in species-specific and generalized BAEs. The results showed that D (diameter at breast height) was a better independent variable in estimating the biomass of branch, leaf, root, aboveground section and total tree than a combined variable (D2 H) of D and H (tree height) , but D2H was better than D in estimating stem biomass. R2 (coefficient of determination) values of BAEs for 6 species decreased when adding H as the second independent variable into D- only BAEs, where R2 value for S. sinensis decreased by 5.6%. Compared with generalized D- and D2H-based BAEs, standard errors of estimate (SEE) of BAEs for 8 tree species decreased, and similar decreasing trend was observed for different components, where SEEs of the branch decreased by 13.0% and 20.3%. Therefore, the biomass carbon storage and its dynamic estimates were influenced largely by tree species and model types. In order to improve the accuracy of the estimates of biomass and carbon, we should consider the differences in tree species and model types.

  7. Effects of sample survey design on the accuracy of classification tree models in species distribution models

    USGS Publications Warehouse

    Edwards, T.C.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.; Moisen, G.G.

    2006-01-01

    We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by resubstitution rates were similar for each lichen species irrespective of the underlying sample survey form. Cross-validation estimates of prediction accuracies were lower than resubstitution accuracies for all species and both design types, and in all cases were closer to the true prediction accuracies based on the EVALUATION data set. We argue that greater emphasis should be placed on calculating and reporting cross-validation accuracy rates rather than simple resubstitution accuracy rates. Evaluation of the DESIGN and PURPOSIVE tree models on the EVALUATION data set shows significantly lower prediction accuracy for the PURPOSIVE tree models relative to the DESIGN models, indicating that non-probabilistic sample surveys may generate models with limited predictive capability. These differences were consistent across all four lichen species, with 11 of the 12 possible species and sample survey type comparisons having significantly lower accuracy rates. Some differences in accuracy were as large as 50%. The classification tree structures also differed considerably both among and within the modelled species, depending on the sample survey form. Overlap in the predictor variables selected by the DESIGN and PURPOSIVE tree models ranged from only 20% to 38%, indicating the classification trees fit the two evaluated survey forms on different sets of predictor variables. The magnitude of these differences in predictor variables throws doubt on ecological interpretation derived from prediction models based on non-probabilistic sample surveys. ?? 2006 Elsevier B.V. All rights reserved.

  8. Toward More Accurate Ancestral Protein Genotype–Phenotype Reconstructions with the Use of Species Tree-Aware Gene Trees

    PubMed Central

    Groussin, Mathieu; Hobbs, Joanne K.; Szöllősi, Gergely J.; Gribaldo, Simonetta; Arcus, Vickery L.; Gouy, Manolo

    2015-01-01

    The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein functions and structures. However, to date, all protein resurrection studies have used simplistic approaches for ancestral sequence reconstruction (ASR), including the assumption that a single sequence alignment alone is sufficient to accurately reconstruct the history of the gene family. The impact of such shortcuts on conclusions about ancestral functions has not been investigated. Here, we show with simulations that utilizing information on species history using a model that accounts for the duplication, horizontal transfer, and loss (DTL) of genes statistically increases ASR accuracy. This underscores the importance of the tree topology in the inference of putative ancestors. We validate our in silico predictions using in vitro resurrection of the LeuB enzyme for the ancestor of the Firmicutes, a major and ancient bacterial phylum. With this particular protein, our experimental results demonstrate that information on the species phylogeny results in a biochemically more realistic and kinetically more stable ancestral protein. Additional resurrection experiments with different proteins are necessary to statistically quantify the impact of using species tree-aware gene trees on ancestral protein phenotypes. Nonetheless, our results suggest the need for incorporating both sequence and DTL information in future studies of protein resurrections to accurately define the genotype–phenotype space in which proteins diversify. PMID:25371435

  9. Effects of pioneer tree species hyperabundance on forest fragments in northeastern Brazil.

    PubMed

    Tabarelli, Marcelo; Aguiar, Antonio V; Girão, Luciana C; Peres, Carlos A; Lopes, Ariadna V

    2010-12-01

    Despite many studies on fragmentation of tropical forests, the extent to which plant and animal communities are altered in small, isolated forest fragments remains obscure if not controversial. We examined the hypothesis that fragmentation alters the relative abundance of tree species with different vegetative and reproductive traits. In a fragmented landscape (670 km(2) ) of the Atlantic Forest of northeastern Brazil, we categorized 4056 trees of 182 species by leafing pattern, reproductive phenology, and morphology of seeds and fruit. We calculated relative abundance of traits in 50 1-ha plots in three types of forest configurations: forest edges, small forest fragments (3.4-83.6 ha), and interior of the largest forest fragment (3500 ha, old growth). Although evergreen species were the most abundant across all configurations, forest edges and small fragments had more deciduous and semideciduous species than interior forest. Edges lacked supra-annual flowering and fruiting species and had more species and stems with drupes and small seeds than small forest fragments and forest interior areas. In an ordination of species similarity and life-history traits, the three types of configurations formed clearly segregated clusters. Furthermore, the differences in the taxonomic and functional (i.e., trait-based) composition of tree assemblages we documented were driven primarily by the higher abundance of pioneer species in the forest edge and small forest fragments. Our work provides strong evidence that long-term transitions in phenology and seed and fruit morphology of tree functional groups are occurring in fragmented tropical forests. Our results also suggest that edge-induced shifts in tree assemblages of tropical forests can be larger than previously documented.

  10. Residential Knowledge of Native Tree Species: A Case Study of Residents in Four Southern Ontario Municipalities

    NASA Astrophysics Data System (ADS)

    Almas, Andrew D.; Conway, Tenley M.

    2017-01-01

    In the past decade, municipalities across North America have increased investment in their urban forests in an effort to maintain and enhance the numerous benefits provided by them. Some municipalities have now drafted long-term urban forest management plans that emphasize the planting of native trees, to improve ecological integrity, and participation of residents, since the majority of urban trees are typically located on residential property. Yet it is unclear if residents are familiar with native trees or municipalities' urban forest management goals. Through a case study of southern Ontario municipalities, we administered a survey exploring residents' ability to correctly label common tree species as native or non-native, as well as their knowledge of urban forest management plans to test four hypotheses: 1) residents in municipalities with an urban forest management plans will be more knowledgeable about the native status of common street trees; 2) residents who have lived in the area longer will have greater knowledge; 3) knowledge level will be correlated with education level, ethnicity, and income; and 4) residents' knowledge will be related to having planted trees on their property. Our results indicate that residents are better able to identify common native trees than correctly determine which trees are non-native, although knowledge levels are generally low. Knowledge was significantly related to length of residency and tree planting experience, supporting hypotheses 2 and 4. These results highlight the importance of experience and local knowledge acquisition in relation to basic knowledge about urban trees, and also point to the failures of resident outreach within the case study municipalities.

  11. Complementary models of tree species-soil relationships in old-growth temperate forests

    USGS Publications Warehouse

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and

  12. Responses of Crown Development to Canopy Openings by Saplings of Eight Tropical Submontane Forest Tree Species in Indonesia: A Comparison with Cool-temperate Trees

    PubMed Central

    TAKAHASHI, KOICHI; RUSTANDI, AGUS

    2006-01-01

    • Background and Aims Growth in trunk height in canopy openings is important for saplings. How saplings increase height growth in canopy openings may relate to crown architectural constraints. Responses of crown development to canopy openings in relation to trunk height growth were studied for saplings (0·2–2·5 m tall) of eight tropical submontane forest tree species in Indonesia. The results of this study were also compared with those of temperate trees in northern Japan. • Methods The crown architecture differed among the eight tropical species, i.e. they had sparsely to highly developed branching structures. Crown allometry was compared among the eight species in each canopy condition (closed canopy or canopy openings), and between closed canopy and canopy openings within a species. A general linear regression model was used to analyse how each species increases height growth rate in canopy openings. Crown allometry and its plasticity were compared between tropical and temperate trees by a nested analysis of covariance. • Key Results Tropical submontane trees had responses similar to cool-temperate trees, showing an increase in height in canopy openings, i.e. taller saplings of sparsely branched species increase height growth rates by increasing the sapling leaf area. Cool-temperate trees have a wider crown projection area and a smaller leaf area per crown projection area to avoid self-shading within a crown compared with tropical submontane trees. Plasticity of the crown projection area is greater in cool-temperate trees than in tropical submontane trees, probably because of the difference in leaf longevity. • Conclusions This study concluded that interspecific variation in the responses of crown development to canopy openings in regard to increasing height related to the species' branching structure, and that different life-forms, such as evergreen and deciduous trees, had different crown allometry and plasticity. PMID:16399792

  13. Modeling the effects of anthropogenic habitat change on savanna snake invasions into African rainforest.

    PubMed

    Freedman, Adam H; Buermann, Wolfgang; Lebreton, Matthew; Chirio, Laurent; Smith, Thomas B

    2009-02-01

    We used a species-distribution modeling approach, ground-based climate data sets, and newly available remote-sensing data on vegetation from the MODIS and Quick Scatterometer sensors to investigate the combined effects of human-caused habitat alterations and climate on potential invasions of rainforest by 3 savanna snake species in Cameroon, Central Africa: the night adder (Causus maculatus), olympic lined snake (Dromophis lineatus), and African house snake (Lamprophis fuliginosus). Models with contemporary climate variables and localities from native savanna habitats showed that the current climate in undisturbed rainforest was unsuitable for any of the snake species due to high precipitation. Limited availability of thermally suitable nest sites and mismatches between important life-history events and prey availability are a likely explanation for the predicted exclusion from undisturbed rainforest. Models with only MODIS-derived vegetation variables and savanna localities predicted invasion in disturbed areas within the rainforest zone, which suggests that human removal of forest cover creates suitable microhabitats that facilitate invasions into rainforest. Models with a combination of contemporary climate, MODIS- and Quick Scatterometer-derived vegetation variables, and forest and savanna localities predicted extensive invasion into rainforest caused by rainforest loss. In contrast, a projection of the present-day species-climate envelope on future climate suggested a reduction in invasion potential within the rainforest zone as a consequence of predicted increases in precipitation. These results emphasize that the combined responses of deforestation and climate change will likely be complex in tropical rainforest systems.

  14. Litter mercury deposition in the Amazonian rainforest.

    PubMed

    Fostier, Anne Hélène; Melendez-Perez, José Javier; Richter, Larissa

    2015-11-01

    The objective of this work was to assess the flux of atmospheric mercury transferred to the soil of the Amazonian rainforest by litterfall. Calculations were based on a large survey of published and unpublished data on litterfall and Hg concentrations in litterfall samples from the Amazonian region. Litterfall based on 65 sites located in the Amazon rainforest averaged 8.15 ± 2.25 Mg ha(-1) y(-1). Average Hg concentrations were calculated from nine datasets for fresh tree leaves and ten datasets for litter, and a median concentration of 60.5 ng Hg g(-1) was considered for Hg deposition in litterfall, which averaged 49 ± 14 μg m(-2) yr(-1). This value was used to estimate that in the Amazonian rainforest, litterfall would be responsible for the annual removing of 268 ± 77 Mg of Hg, approximately 8% of the total atmospheric Hg deposition to land. The impact of the Amazon deforestation on the Hg biogeochemical cycle is also discussed.

  15. Human impacts flatten rainforest-savanna gradient and reduce adaptive diversity in a rainforest bird.

    PubMed

    Freedman, Adam H; Buermann, Wolfgang; Mitchard, Edward T A; Defries, Ruth S; Smith, Thomas B

    2010-09-30

    Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens). Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions.

  16. Pollen morphology of Vochysiaceae tree species in the State of Santa Catarina, Southern Brazil.

    PubMed

    Barth, Ortrud Monika; Pinto Da Luz, Cynthia Fernandes

    2014-09-01

    Tropical Vochysiaceae includes mainly trees, and also shrubs and subshrubs. Three genera and seven species are present in the Brazilian state of Santa Catarina. The pollen morphology of six species of trees, belonging to three genera of the Vochysiaceae A. St-Hil. family, was studied. Herbaria samples were obtained, processed and treated by standard methods. The pollen grain morphology of Callisthene, Qualea and Vochysia is distinct. Medium sized pollen grains occur in Vochysia species, and small ones in Callisthene and Qualea. Specific characteristics were considered at species level [C. castellanosii H. F. Martins, C. kuhlmannii H. F. Martins, Qualea cordata Spreng var. cordata, Q. cryptantha (Spreng) Warm. var. cryptantha, Vochysia magnifica Warm. and V. tucanorum Mart.]. The presence ofa fastigium (vestibulum) and a thin space devoid of nexine fixing the boundary of the apertural area is characteristic of Qualea and Vochysia species only.

  17. Animal versus wind dispersal and the robustness of tree species to deforestation.

    PubMed

    Montoya, Daniel; Zavala, Miguel A; Rodríguez, Miguel A; Purves, Drew W

    2008-06-13

    Studies suggest that populations of different species do not decline equally after habitat loss. However, empirical tests have been confined to fine spatiotemporal scales and have rarely included plants. Using data from 89,365 forest survey plots covering peninsular Spain, we explored, for each of 34 common tree species, the relationship between probability of occurrence and the local cover of remaining forest. Twenty-four species showed a significant negative response to forest loss, so that decreased forest cover had a negative effect on tree diversity, but the responses of individual species were highly variable. Animal-dispersed species were less vulnerable to forest loss, with six showing positive responses to decreased forest cover. The results imply that plant-animal interactions help prevent the collapse of forest communities that suffer habitat destruction.

  18. How tree species fill geographic and ecological space in eastern North America

    PubMed Central

    Ricklefs, Robert E.

    2015-01-01

    Background and Aims Ecologists broadly accept that the number of species present within a region balances regional processes of immigration and speciation against competitive and other interactions between populations that limit distribution and constrain diversity. Although ecological theory has, for a long time, addressed the premise that ecological space can be filled to ‘capacity’ with species, only with the availability of time-calibrated phylogenies has it been possible to test the hypothesis that diversification slows as the number of species in a region increases. Focusing on the deciduous trees of eastern North America, this study tested predictions from competition theory concerning the distribution and abundance of species. Methods Local assemblages of trees tabulated in a previous study published in 1950 were analysed. Assemblages were ordinated with respect to species composition by non-metric multidimensional scaling (NMS). Distributions of trees were analysed by taxonomically nested analysis of variance, discriminant analysis based on NMS scores, and canonical correlation analysis of NMS scores and Bioclim climate variables. Key Results Most of the variance in species abundance and distribution was concentrated among closely related (i.e. congeneric) species, indicating evolutionary lability. Species distribution and abundance were unrelated to the number of close relatives, suggesting that competitive effects are diffuse. Distances between pairs of congeneric species in NMS space did not differ significantly from distances between more distantly related species, in contrast to the predictions of both competitive habitat partitioning and ecological sorting of species. Conclusions Eastern deciduous forests of North America do not appear to be saturated with species. The distributions and abundances of individual species provide little evidence of being shaped by competition from related (i.e. ecologically similar) species and, by inference, that

  19. Sleeping Sites and Latrines of Spider Monkeys in Continuous and Fragmented Rainforests: Implications for Seed Dispersal and Forest Regeneration

    PubMed Central

    González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A.; Stoner, Kathryn E.

    2012-01-01

    Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the

  20. Sleeping sites and latrines of spider monkeys in continuous and fragmented rainforests: implications for seed dispersal and forest regeneration.

    PubMed

    González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A; Stoner, Kathryn E

    2012-01-01

    Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the

  1. The Right Tree for the Job? Perceptions of Species Suitability for the Provision of Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Smaill, Simeon J.; Bayne, Karen M.; Coker, Graham W. R.; Paul, Thomas S. H.; Clinton, Peter W.

    2014-04-01

    Stakeholders in plantation forestry are increasingly aware of the importance of the ecosystem services and non-market values associated with forests. In New Zealand, there is significant interest in establishing species other than Pinus radiata D. Don (the dominant plantation species) in the belief that alternative species are better suited to deliver these services. Significant risk is associated with this position as there is little objective data to support these views. To identify which species were likely to be planted to deliver ecosystem services, a survey was distributed to examine stakeholder perceptions. Stakeholders were asked which of 15 tree attributes contributed to the provision of five ecosystem services (amenity value, bioenergy production, carbon capture, the diversity of native habitat, and erosion control/water quality) and to identify which of 22 candidate tree species possessed those attributes. These data were combined to identify the species perceived most suitable for the delivery of each ecosystem service. Sequoia sempervirens (D.Don) Endl. closely matched the stakeholder derived ideotypes associated with all five ecosystem services. Comparisons to data from growth, physiological and ecological studies demonstrated that many of the opinions held by stakeholders were inaccurate, leading to erroneous assumptions regarding the suitability of most candidate species. Stakeholder perceptions substantially influence tree species selection, and plantations established on the basis of inaccurate opinions are unlikely to deliver the desired outcomes. Attitudinal surveys associated with engagement campaigns are essential to improve stakeholder knowledge, advancing the development of fit-for-purpose forest management that provides the required ecosystem services.

  2. The right tree for the job? perceptions of species suitability for the provision of ecosystem services.

    PubMed

    Smaill, Simeon J; Bayne, Karen M; Coker, Graham W R; Paul, Thomas S H; Clinton, Peter W

    2014-04-01

    Stakeholders in plantation forestry are increasingly aware of the importance of the ecosystem services and non-market values associated with forests. In New Zealand, there is significant interest in establishing species other than Pinus radiata D. Don (the dominant plantation species) in the belief that alternative species are better suited to deliver these services. Significant risk is associated with this position as there is little objective data to support these views. To identify which species were likely to be planted to deliver ecosystem services, a survey was distributed to examine stakeholder perceptions. Stakeholders were asked which of 15 tree attributes contributed to the provision of five ecosystem services (amenity value, bioenergy production, carbon capture, the diversity of native habitat, and erosion control/water quality) and to identify which of 22 candidate tree species possessed those attributes. These data were combined to identify the species perceived most suitable for the delivery of each ecosystem service. Sequoia sempervirens (D.Don) Endl. closely matched the stakeholder derived ideotypes associated with all five ecosystem services. Comparisons to data from growth, physiological and ecological studies demonstrated that many of the opinions held by stakeholders were inaccurate, leading to erroneous assumptions regarding the suitability of most candidate species. Stakeholder perceptions substantially influence tree species selection, and plantations established on the basis of inaccurate opinions are unlikely to deliver the desired outcomes. Attitudinal surveys associated with engagement campaigns are essential to improve stakeholder knowledge, advancing the development of fit-for-purpose forest management that provides the required ecosystem services.

  3. Stem CO2 efflux in six co-occurring tree species: underlying factors and ecological implications.

    PubMed

    Rodríguez-Calcerrada, Jesús; López, Rosana; Salomón, Roberto; Gordaliza, Guillermo G; Valbuena-Carabaña, María; Oleksyn, Jacek; Gil, Luis

    2015-06-01

    Stem respiration plays a role in species coexistence and forest dynamics. Here we examined the intra- and inter-specific variability of stem CO2 efflux (E) in dominant and suppressed trees of six deciduous species in a mixed forest stand: Fagus sylvatica L., Quercus petraea [Matt.] Liebl, Quercus pyrenaica Willd., Prunus avium L., Sorbus aucuparia L. and Crataegus monogyna Jacq. We conducted measurements in late autumn. Within species, dominants had higher E per unit stem surface area (Es ) mainly because sapwood depth was higher than in suppressed trees. Across species, however, differences in Es corresponded with differences in the proportion of living parenchyma in sapwood and concentration of non-structural carbohydrates (NSC). Across species, Es was strongly and NSC marginally positively related with an index of drought tolerance, suggesting that slow growth of drought-tolerant trees is related to higher NSC concentration and Es . We conclude that, during the leafless period, E is indicative of maintenance respiration and is related with some ecological characteristics of the species, such as drought resistance; that sapwood depth is the main factor explaining variability in Es within species; and that the proportion of NSC in the sapwood is the main factor behind variability in Es among species.

  4. Rainforests and Rousseau

    ERIC Educational Resources Information Center

    Rohrbach, Marla

    2012-01-01

    One of the fifth-grade art-curriculum objectives is to create a relief print. In this era of budget cuts, the author was looking for a way for her students to meet this objective by making colorful prints without using a lot of expensive printing ink. She knew she wanted to use a rainforest animal theme, as well as share the colorful art of Henri…

  5. Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps

    PubMed Central

    Nieto-Lugilde, Diego; Lenoir, Jonathan; Abdulhak, Sylvain; Aeschimann, David; Dullinger, Stefan; Gégout, Jean-Claude; Guisan, Antoine; Pauli, Harald; Renaud, Julien; Theurillat, Jean-Paul; Thuiller, Wilfried; Van Es, Jérémie; Vittoz, Pascal; Willner, Wolfgang; Wohlgemuth, Thomas; Zimmermann, Niklaus E.; Svenning, Jens-Christian

    2015-01-01

    The role of competition for light among plants has long been recognised at local scales, but its importance for plant species distributions at larger spatial scales has generally been ignored. Tree cover modifies the local abiotic conditions below the canopy, notably by reducing light availability, and thus, also the performance of species that are not adapted to low-light conditions. However, this local effect may propagate to coarser spatial grains, by affecting colonisation probabilities and local extinction risks of herbs and shrubs. To assess the effect of tree cover at both the plot- and landscape-grain sizes (approximately 10-m and 1-km), we fit Generalised Linear Models (GLMs) for the plot-level distributions of 960 species of herbs and shrubs using 6,935 vegetation plots across the European Alps. We ran four models with different combinations of variables (climate, soil and tree cover) at both spatial grains for each species. We used partial regressions to evaluate the independent effects of plot- and landscape-grain tree cover on plot-level plant communities. Finally, the effects on species-specific elevational range limits were assessed by simulating a removal experiment comparing the species distributions under high and low tree cover. Accounting for tree cover improved the model performance, with the probability of the presence of shade-tolerant species increasing with increasing tree cover, whereas shade-intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both the plot and landscape spatial grains, albeit most strongly at the former. Importantly, tree cover at the two grain sizes had partially independent effects on plot-level plant communities. With high tree cover, shade-intolerant species exhibited narrower elevational ranges than with low tree cover whereas shade-tolerant species showed wider elevational ranges at both limits. These findings suggest that forecasts of climate-related range shifts for herb

  6. Stomatal dynamics and its importance to carbon gain in two rainforest Piper species : I. VPD effects on the transient stomatal response to lightflecks.

    PubMed

    Tinoco-Ojanguren, Clara; Pearcy, Robert W

    1993-06-01

    The effects of leaf-air vapor pressure deficit (VPD) on the transient and steady-state stomatal responses to photon flux density (PFD) were evaluated in Piper auritum, a pioneer tree, and Piper aequale, a shade tolerant shrub, that are both native to tropical forests at Los Tuxtlas, Veracruz, México. Under constant high-PFD conditions, the stomata of shade-acclimated plants of both species were sensitive to VPD, exhibiting a nearly uniform decrease in gs as VPD increased. Acclimation of P. auritum to high light increased the stomatal sensitivity to VPD that was sufflcient to cause a reduction in transpiration at high VPD's. At low PFD, where gs was already reduced, there was little additional absolute change with VPD for any species or growth condition. The stomatal response to 8-min duration lightflecks was strongly modulated by VPD and varied between the species and growth light conditions. In P. aequale shade plants, increased VPD had no effect on the extent of stomatal opening but caused the rate of closure after the lightfleck to be faster. Thus, the overall response to a lightfleck changed from hysteretic (faster opening than closure) to symmetric (similar opening and closing rates). Either high or low VPD caused gs not to return to the steady-state value present before the lightfleck. At high VPD the value after was considerably less than the value before whereas at low VPD the opposite occurred. Shade-acclimated plants of P. auritum showed only a small gs response to lightflecks, which was not affected by VPD. Under sunfleck regimes in the understory, the stomatal response of P. aequale at low VPD may function to enhance carbon gain by increasing the induction state. At high VPD, the shift in the response enhances water use efficiency but at the cost of reduced assimilation.

  7. Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands.

    PubMed

    Jiménez, M. Soledad; Nadezhdina, Nadezhda; Cermák, Jan; Morales, Domingo

    2000-11-01

    Variations in radial patterns of xylem water content and sap flow rate were measured in five laurel forest tree species (Laurus azorica (Seub.) Franco, Persea indica (L.) Spreng., Myrica faya Ait., Erica arborea L. and Ilex perado Ait. ssp. platyphylla (Webb & Berth.) Tutin) growing in an experimental plot at Agua García, Tenerife, Canary Islands. Measurements were performed around midday during warm and sunny days by the heat field deformation method. In all species, water content was almost constant (around 35% by volume) over the whole xylem cross-sectional area. There were no differences in wood color over the whole cross-sectional area of the stem in most species with the exception of E. arborea, whose wood became darker in the inner layers. Radial patterns of sap flow were highly variable and did not show clear relationships with tree diameter or species. Sap flow occurred over the whole xylem cross-sectional area in some species, whereas it was limited to the outer xylem layers in others. Sap flow rate was either similar along the xylem radius or exhibited a peak in the outer part of the xylem area. Low sap flow rates with little variation in radial pattern were typical for shaded suppressed trees, whereas dominant trees exhibited high sap flow rates with a peak in the radial pattern. Stem damage resulted in a significant decrease in sap flow rate in the outer xylem layers. The outer xylem is more important for whole tree water supply than the inner xylem because of its larger size. We conclude that measurement of radial flow pattern provides a reliable method of integrating sap flow from individual measuring points to the whole tree.

  8. Forest floor leachate fluxes under six different tree species on a metal contaminated site.

    PubMed

    Van Nevel, Lotte; Mertens, Jan; De Schrijver, An; Baeten, Lander; De Neve, Stefaan; Tack, Filip M G; Meers, Erik; Verheyen, Kris

    2013-03-01

    Trees play an important role in the biogeochemical cycling of metals, although the influence of different tree species on the mobilization of metals is not yet clear. This study examined effects of six tree species on fluxes of Cd, Zn, DOC, H(+) and base cations in forest floor leachates on a metal polluted site in Belgium. Forest floor leachates were sampled with zero-tension lysimeters in a 12-year-old post-agricultural forest on a sandy soil. The tree species included were silver birch (Betula pendula), oak (Quercus robur and Q. petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii). We show that total Cd fluxes in forest floor leachate under aspen were slightly higher than those in the other species' leachates, yet the relative differences between the species were considerably smaller when looking at dissolved Cd fluxes. The latter was probably caused by extremely low H(+) amounts leaching from aspen's forest floor. No tree species effect was found for Zn leachate fluxes. We expected higher metal leachate fluxes under aspen as its leaf litter was significantly contaminated with Cd and Zn. We propose that the low amounts of Cd and Zn leaching under aspen's forest floor were possibly caused by high activity of soil biota, for example burrowing earthworms. Furthermore, our results reveal that Scots pine and oak were characterized by high H(+) and DOC fluxes as well as low base cation fluxes in their forest floor leachates, implying that those species might enhance metal mobilization in the soil profile and thus bear a potential risk for belowground metal dispersion.

  9. Comparative phylogeography of eight herbs and lianas (Marantaceae) in central African rainforests

    PubMed Central

    Ley, Alexandra C.; Dauby, Gilles; Köhler, Julia; Wypior, Catherina; Röser, Martin; Hardy, Olivier J.

    2014-01-01

    Vegetation history in tropical Africa is still to date hardly known and the drivers of population differentiation and speciation processes are little documented. It has often been postulated that population fragmentations following climate changes have played a key role in shaping the geographic distribution patterns of genetic diversity and in driving speciation. Here we analyzed phylogeographic patterns (chloroplast-DNA sequences) within and between eight (sister) species of widespread rainforest herbs and lianas from four genera of Marantaceae (Halopegia, Haumania, Marantochloa, Megaphrynium), searching for concordant patterns across species and concordance with the Pleistocene refuge hypothesis. Using 1146 plastid DNA sequences sampled across African tropical lowland rainforest, particularly in the Lower Guinean (LG) phytogeographic region, we analyzed intra- and interspecific patterns of genetic diversity, endemism and distinctiveness. Intraspecific patterns of haplotype diversity were concordant among most species as well as with the species-level diversity pattern of Marantaceae. Highest values were found in the hilly areas of Cameroon and Gabon. However, the spatial distribution of endemic haplotypes, an indicator for refuge areas in general, was not congruent across species. Each proposed refuge exhibited high values of endemism for one or a few species indicating their potential role as area of retraction for the respective species only. Thus, evolutionary histories seem to be diverse across species. In fact, areas of high diversity might have been both refuge and/or crossing zone of recolonization routes i.e., secondary contact zone. We hypothesize that retraction of species into one or the other refuge happened by chance depending on the species' distribution range at the time of climate deterioration. The idiosyncratic patterns found in Marantaceae species are similar to those found among tropical tree species, especially in southern LG. PMID:25477901

  10. Comparative phylogeography of eight herbs and lianas (Marantaceae) in central African rainforests.

    PubMed

    Ley, Alexandra C; Dauby, Gilles; Köhler, Julia; Wypior, Catherina; Röser, Martin; Hardy, Olivier J

    2014-01-01

    Vegetation history in tropical Africa is still to date hardly known and the drivers of population differentiation and speciation processes are little documented. It has often been postulated that population fragmentations following climate changes have played a key role in shaping the geographic distribution patterns of genetic diversity and in driving speciation. Here we analyzed phylogeographic patterns (chloroplast-DNA sequences) within and between eight (sister) species of widespread rainforest herbs and lianas from four genera of Marantaceae (Halopegia, Haumania, Marantochloa, Megaphrynium), searching for concordant patterns across species and concordance with the Pleistocene refuge hypothesis. Using 1146 plastid DNA sequences sampled across African tropical lowland rainforest, particularly in the Lower Guinean (LG) phytogeographic region, we analyzed intra- and interspecific patterns of genetic diversity, endemism and distinctiveness. Intraspecific patterns of haplotype diversity were concordant among most species as well as with the species-level diversity pattern of Marantaceae. Highest values were found in the hilly areas of Cameroon and Gabon. However, the spatial distribution of endemic haplotypes, an indicator for refuge areas in general, was not congruent across species. Each proposed refuge exhibited high values of endemism for one or a few species indicating their potential role as area of retraction for the respective species only. Thus, evolutionary histories seem to be diverse across species. In fact, areas of high diversity might have been both refuge and/or crossing zone of recolonization routes i.e., secondary contact zone. We hypothesize that retraction of species into one or the other refuge happened by chance depending on the species' distribution range at the time of climate deterioration. The idiosyncratic patterns found in Marantaceae species are similar to those found among tropical tree species, especially in southern LG.

  11. Certified and Uncertified Logging Concessions Compared in Gabon: Changes in Stand Structure, Tree Species, and Biomass

    NASA Astrophysics Data System (ADS)

    Medjibe, V. P.; Putz, Francis E.; Romero, Claudia

    2013-03-01

    Forest management certification is assumed to promote sustainable forest management, but there is little field-based evidence to support this claim. To help fill this gap, we compared a Forest Stewardship Council (FSC)-certified with an adjacent uncertified, conventionally logged concession (CL) in Gabon on the basis of logging damage, above-ground biomass (AGB), and tree species diversity and composition. Before logging, we marked, mapped, and measured all trees >10 cm dbh in 20 and twelve 1-ha permanent plots in the FSC and CL areas, respectively. Soil and tree damage due to felling, skidding, and road-related activities was then assessed 2-3 months after the 508 ha FSC study area and the 200 ha CL study area were selectively logged at respective intensities of 5.7 m3/ha (0.39 trees/ha) and 11.4 m3/ha (0.76 trees/ha). For each tree felled, averages of 9.1 and 20.9 other trees were damaged in the FSC and CL plots, respectively; when expressed as the impacts per timber volume extracted, the values did not differ between the two treatments. Skid trails covered 2.9 % more of the CL surface, but skid trail length per unit timber volume extracted was not greater. Logging roads were wider in the CL than FSC site and disturbed 4.7 % more of the surface. Overall, logging caused declines in AGB of 7.1 and 13.4 % at the FSC and CL sites, respectively. Changes in tree species composition were small but greater for the CL site. Based on these findings and in light of the pseudoreplicated study design with less-than perfect counterfactual, we cautiously conclude that certification yields environmental benefits even after accounting for differences in logging intensities.

  12. Strong coupling of plant and fungal community structure across western Amazonian rainforests.

    PubMed

    Peay, Kabir G; Baraloto, Christopher; Fine, Paul V A

    2013-09-01

    The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant-fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity.

  13. Direct vs. Microclimate-Driven Effects of Tree Species Diversity on Litter Decomposition in Young Subtropical Forest Stands.

    PubMed

    Seidelmann, Katrin N; Scherer-Lorenzen, Michael; Niklaus, Pascal A

    2016-01-01

    Effects of tree species diversity on decomposition can operate via a multitude of mechanism, including alterations of microclimate by the forest canopy. Studying such effects in natural settings is complicated by the fact that topography also affects microclimate and thus decomposition, so that effects of diversity are more difficult to isolate. Here, we quantified decomposition rates of standard litter in young subtropical forest stands, separating effects of canopy tree species richness and topography, and quantifying their direct and micro-climate-mediated components. Our litterbag study was carried out at two experimental sites of a biodiversity-ecosystem functioning field experiment in south-east China (BEF-China). The field sites display strong topographical heterogeneity and were planted with tree communities ranging from monocultures to mixtures of 24 native subtropical tree species. Litter bags filled with senescent leaves of three native tree species were placed from Nov. 2011 to Oct. 2012 on 134 plots along the tree species diversity gradient. Topographic features were measured for all and microclimate in a subset of plots. Stand species richness, topography and microclimate explained important fractions of the variations in litter decomposition rates, with diversity and topographic effects in part mediated by microclimatic changes. Tree stands were 2-3 years old, but nevertheless tree species diversity explained more variation (54.3%) in decomposition than topography (7.7%). Tree species richness slowed litter decomposition, an effect that slightly depended on litter species identity. A large part of the variance in decomposition was explained by tree species composition, with the presence of three tree species playing a significant role. Microclimate explained 31.4% of the variance in decomposition, and was related to lower soil moisture. Within this microclimate effect, species diversity (without composition) explained 8.9% and topography 34.4% of

  14. Direct vs. Microclimate-Driven Effects of Tree Species Diversity on Litter Decomposition in Young Subtropical Forest Stands

    PubMed Central

    Seidelmann, Katrin N.; Scherer-Lorenzen, Michael; Niklaus, Pascal A.

    2016-01-01

    Effects of tree species diversity on decomposition can operate via a multitude of mechanism, including alterations of microclimate by the forest canopy. Studying such effects in natural settings is complicated by the fact that topography also affects microclimate and thus decomposition, so that effects of diversity are more difficult to isolate. Here, we quantified decomposition rates of standard litter in young subtropical forest stands, separating effects of canopy tree species richness and topography, and quantifying their direct and micro-climate-mediated components. Our litterbag study was carried out at two experimental sites of a biodiversity-ecosystem functioning field experiment in south-east China (BEF-China). The field sites display strong topographical heterogeneity and were planted with tree communities ranging from monocultures to mixtures of 24 native subtropical tree species. Litter bags filled with senescent leaves of three native tree species were placed from Nov. 2011 to Oct. 2012 on 134 plots along the tree species diversity gradient. Topographic features were measured for all and microclimate in a subset of plots. Stand species richness, topography and microclimate explained important fractions of the variations in litter decomposition rates, with diversity and topographic effects in part mediated by microclimatic changes. Tree stands were 2–3 years old, but nevertheless tree species diversity explained more variation (54.3%) in decomposition than topography (7.7%). Tree species richness slowed litter decomposition, an effect that slightly depended on litter species identity. A large part of the variance in decomposition was explained by tree species composition, with the presence of three tree species playing a significant role. Microclimate explained 31.4% of the variance in decomposition, and was related to lower soil moisture. Within this microclimate effect, species diversity (without composition) explained 8.9% and topography 34.4% of

  15. Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation

    USGS Publications Warehouse

    Page, B.D.; Bullen, T.D.; Mitchell, M.J.

    2008-01-01

    The calcium (Ca) isotope system is potentially of great use for understanding biogeochemical processes at multiple scales in forest ecosystems, yet remains largely unexplored for this purpose. In order to further our understanding of Ca behavior in forests, we examined two nearly adjacent hardwood-dominated catchments with differing soil Ca concentrations, developed from crystalline bedrock, to determine the variability of 44Ca/ 40Ca ratios (expressed as ??44Ca) within soil and vegetation pools. For both sugar maple and American beech, the Ca isotope compositions of the measured roots and calculated bulk trees were considerably lighter than those of soil pools at these sites, suggesting that the trees were able to preferentially take up light Ca at the root-soil interface. The Ca isotope compositions of three of four root samples were among the lightest values yet reported for terrestrial materials (??44Ca ???-3.95???). Our results further indicate that Ca isotopes were fractionated along the transpiration streams of both tree species with roots having the least ??44Ca values and leaf litter the greatest. An approximately 2??? difference in ??44Ca values between roots and leaf litter of both tree species suggests a persistent fractionation mechanism along the transpiration stream, likely related to Ca binding in wood tissue coupled with internal ion exchange. Finally, our data indicate that differing tree species demand for Ca and soil Ca concentrations together may influence Ca isotope distribution within the trees. Inter-catchment differences in Ca isotope distributions in soils and trees were minor, indicating that the results of our study may have broad transferability to studies of forest ecosystems in catchments developed on crystalline substrates elsewhere. ?? 2008 Springer Science+Business Media B.V.

  16. Patterns of Tree Species Diversity in Relation to Climatic Factors on the Sierra Madre Occidental, Mexico

    PubMed Central

    Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian

    2014-01-01

    Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within species, between species, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different species of Pinus (ca. 22% on the whole), 54 species of Quercus (ca. 9–14%), 7 species of Arbutus (ca. 50%) and many other trees species. The objectives of this study were to model how tree species diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum tree species diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of tree species are generally higher in cold

  17. Tree species identity and interactions with neighbors determine nutrient leaching in model tropical forests.

    PubMed

    Ewel, John J; Bigelow, Seth W

    2011-12-01

    An ecosystem containing a mixture of species that differ in phenology, morphology, and physiology might be expected to resist leaching of soil nutrients to a greater extent than one composed of a single species. We tested the effects of species identity and plant-life-form richness on nutrient leaching at a lowland tropical site where deep infiltration averages >2 m year(-1). Three indigenous tree species with contrasting leafing phenologies (evergreen, dry-season deciduous, and wet-season deciduous) were grown in monoculture and together with two other life-forms with which they commonly occur in tropical forests: a palm and a giant, perennial herb. To calculate nutrient leaching over an 11-year period, concentrations of nutrients in soil water were multiplied by drainage rates estimated from a water balance. The effect of plant-life-form richness on retention differed according to tree species identity and nutrient. Nitrate retention was greater in polycultures of the dry-season deciduous tree species (mean of 7.4 kg ha(-1) year(-1) of NO(3)-N lost compared to 12.7 in monoculture), and calcium and magnesium retention were greater in polycultures of the evergreen and wet-season deciduous tree species. Complementary use of light led to intensification of soil exploitation by roots, the main agent responsible for enhanced nutrient retention in some polycultures. Other mechanisms included differences in nutrient demand among species, and avoidance of catastrophic failure due to episodic weather events or pest outbreaks. Even unrealistically simple multi-life-form mimics of tropical forest can safeguard a site's nutrient capital if careful attention is paid to species' characteristics and temporal changes in interspecific interactions.

  18. Data concatenation, Bayesian concordance and coalescent-based analyses of the species tree for the rapid radiation of Triturus newts.

    PubMed

    Wielstra, Ben; Arntzen, Jan W; van der Gaag, Kristiaan J; Pabijan, Maciej; Babik, Wieslaw

    2014-01-01

    The phylogenetic relationships for rapid species radiations are difficult to disentangle. Here we study one such case, namely the genus Triturus, which is composed of the marbled and crested newts. We analyze data for 38 genetic markers, positioned in 3-prime untranslated regions of protein-coding genes, obtained with 454 sequencing. Our dataset includes twenty Triturus newts and represents all nine species. Bayesian analysis of population structure allocates all individuals to their respective species. The branching patterns obtained by data concatenation, Bayesian concordance analysis and coalescent-based estimations of the species tree differ from one another. The data concatenation based species tree shows high branch support but branching order is considerably affected by allele choice in the case of heterozygotes in the concatenation process. Bayesian concordance analysis expresses the conflict between individual gene trees for part of the Triturus species tree as low concordance factors. The coalescent-based species tree is relatively similar to a previously published species tree based upon morphology and full mtDNA and any conflicting internal branches are not highly supported. Our findings reflect high gene tree discordance due to incomplete lineage sorting (possibly aggravated by hybridization) in combination with low information content of the markers employed (as can be expected for relatively recent species radiations). This case study highlights the complexity of resolving rapid radiations and we acknowledge that to convincingly resolve the Triturus species tree even more genes will have to be consulted.

  19. Modern tree species composition reflects ancient Maya "forest gardens" in northwest Belize.

    PubMed

    Ross, Nanci J

    2011-01-01

    Ecology and ethnobotany were integrated to assess the impact of ancient Maya tree-dominated home gardens (i.e., "forest gardens"), which contained a diversity of tree species used for daily household needs, on the modern tree species composition of a Mesoamerican forest. Researchers have argued that the ubiquity of these ancient gardens throughout Mesoamerica led to the dominance of species useful to Maya in the contemporary forest, but this pattern may be localized depending on ancient land use. The tested hypothesis was that species composition would be significantly different between areas of dense ancient residential structures (high density) and areas of little or no ancient settlement (low density). Sixty-three 400-m2 plots (31 high density and 32 low density) were censused around the El Pilar Archaeological Reserve in northwestern Belize. Species composition was significantly different, with higher abundances of commonly utilized "forest garden" species still persisting in high-density forest areas despite centuries of abandonment. Subsequent edaphic analyses only explained 5% of the species composition differences. This research provides data on the long-term impacts of Maya forests gardens for use in development of future conservation models. For Mesoamerican conservation programs to work, we must understand the complex ecological and social interactions within an ecosystem that developed in intimate association with humans.

  20. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna.

    PubMed

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2016-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a "safety valve" to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia, drought-deciduous Terminthia paniculata, and winter-deciduous Lannea coromandelica, to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50leaf-stem) was positive in P. weinmanniifolia and L. coromandelica, whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains the

  1. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna

    PubMed Central

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2017-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a “safety valve” to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia, drought-deciduous Terminthia paniculata, and winter-deciduous Lannea coromandelica, to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50leaf−stem) was positive in P. weinmanniifolia and L. coromandelica, whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains

  2. Neoendemism in Madagascan scaly tree ferns results from recent, coincident diversification bursts.

    PubMed

    Janssen, Thomas; Bystriakova, Nadia; Rakotondrainibe, France; Coomes, David; Labat, Jean-Noël; Schneider, Harald

    2008-08-01

    More than 80% of Madagascar's 12,000 plant species are endemic with the degree of endemism reaching as much as 95% in the scaly tree ferns, an important species rich component of Madagascar's evergreen rainforests. Predominantly African or Asian ancestry and divergence times usually postdating the separation of Madagascar from the Gondwanan landmasses have been demonstrated for several Madagascan animal and angiosperm groups. However, evolutionary studies of rainforest-specific lineages are scarce and the ecological context of radiation events has rarely been investigated. Here, we examine the evolution of Madagascan tree ferns as a rainforest-specific model family, integrate results from bioclimatic niche analysis with a dated phylogenetic framework, and propose an evolutionary scenario casting new light on our knowledge of the evolution of large island endemic clades. We show that Madagascar's extant tree fern diversity springs from three distinct ancestors independently colonizing Madagascar in the Miocene and that these three monophyletic clades diversified in three coincident radiation bursts during the Pliocene, reaching exceptionally high diversification rates and most likely responding to a common climatic trigger. Recent diversification bursts may thus have played a major role in the evolution of the extant Madagascan rainforest biome, which hence contains a significant number of young, neoendemic taxa.

  3. Epigenetic regulation of adaptive responses of forest tree species to the environment

    PubMed Central

    Bräutigam, Katharina; Vining, Kelly J; Lafon-Placette, Clément; Fossdal, Carl G; Mirouze, Marie; Marcos, José Gutiérrez; Fluch, Silvia; Fraga, Mario Fernández; Guevara, M Ángeles; Abarca, Dolores; Johnsen, Øystein; Maury, Stéphane; Strauss, Steven H; Campbell, Malcolm M; Rohde, Antje; Díaz-Sala, Carmen; Cervera, María-Teresa

    2013-01-01

    Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change. PMID:23467802

  4. BOREAS TE-4 Gas Exchange Data from Boreal Tree Species

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Collatz, G. James; Berry, Joseph A.; Gamon, John; Fredeen, Art; Fu, Wei

    2000-01-01

    The BOREAS TE-4 team collected steady-state gas exchange and reflectance data from several species in the BOREAS SSA during 1994 and in the NSA during 1996. Measurements of light, CO2, temperature, and humidity response curves were made by the BOREAS TE-4 team during the summers of 1994 and 1996 using intact attached leaves of boreal forest species located in the BOREAS SSA and NSA. These measurements were conducted to calibrate models used to predict photosynthesis, stomatal conductance, and leaf respiration. The 1994 and 1996 data can be used to construct plots of response functions or for parameterizing models. Parameter values are suitable for application in SiB2 (Sellers et al., 1996) or the leaf model of Collatz et al. (1991), and programs can be obtained from the investigators. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  5. Eco-physiological adaptation of dominant tree species at two contrasting karst habitats in southwestern China.

    PubMed

    Zhang, Shouren; Fan, Dayong; Wu, Qian; Yan, Hui; Xu, Xinwu

    2013-01-01

    The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody species to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the trees were measured for three growth seasons. Photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr) of the tree species in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous species were markedly higher than those for the evergreen species. Habitat had no significant effect on water use efficiency (WUE) or photochemical characteristics of PSII. The stomatal sensitivity of woody species in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N) and phosphorus (P) contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous species was much higher than that of evergreen species, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous species. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE) of deciduous species were much higher than those of evergreens. Further, the PPUE of the woody species in Tianlongshan was much higher than that  of the woody species in Daxiagu. The results from three growth seasons imply that the tree species were able to adapt well to their growth habitats. Furthermore, it seems that so-called "temporary drought stress" may not occur, or may not be severe for most woody plants in karst areas of southwestern China.

  6. Eco-physiological adaptation of dominant tree species at two contrasting karst habitats in southwestern China

    PubMed Central

    Wu, Qian; Yan, Hui; Xu, Xinwu

    2013-01-01

    The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody species to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the trees were measured for three growth seasons. Photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr) of the tree species in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous species were markedly higher than those for the evergreen species. Habitat had no significant effect on water use efficiency (WUE) or photochemical characteristics of PSII. The stomatal sensitivity of woody species in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N) and phosphorus (P) contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous species was much higher than that of evergreen species, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous species. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE) of deciduous species were much higher than those of evergreens. Further, the PPUE of the woody species in Tianlongshan was much higher than that  of the woody species in Daxiagu. The results from three growth seasons imply that the tree species were able to adapt well to their growth habitats. Furthermore, it seems that so-called “temporary drought stress” may not occur, or may not be severe for most woody plants in karst areas of southwestern China. PMID:24555059

  7. Effects of groundwater abstraction on two keystone tree species in an arid savanna national park

    PubMed Central

    2017-01-01

    Background In arid systems with no surface water, deep boreholes in ephemeral river beds provide for humans and animals. With continually increasing infrastructure development for tourism in arid wildlife parks such as the Kgalagadi Transfrontier Park in southern Africa, we ask what effects increased abstraction may have on large trees. Large trees in arid savannas perform essential ecosystem services by providing food, shade, nesting sites and increased nutrients for many other plant and animal species and for this are regarded as keystone species. Methods We determine seasonal fluctuations in the water table while also determining the water source for the dominant large tree species in the Auob and Nossob rivers in the Park. We also determine the extent to which these trees are physiologically stressed using leaf δ13C, xylem pressure potentials, specific leaf area and an estimate of canopy death. We do this both upstream and downstream of a low water use borehole in the Auob River and a high water use borehole in the Nossob River. Results Our results show that the trees are indeed using deep groundwater in the wet season and that this is the same water used by people. In the dry season, trees in the Auob downstream of the active borehole become detached from the aquifer and use more isotopically enriched soil water. In the Nossob in the dry season, all trees use isotopically enriched soil water, and downstream of the active borehole use stomatal regulation to maintain leaf water potentials. These results suggest that trees in the more heavily utilised Nossob are under more water stress than those trees in the Auob but that trees in both rivers demonstrate physiological adaptation to the changes in available water with smaller heavier leaves, no significant canopy dieback and in the dry season in the Nossob stomatal regulation of leaf water potentials. Discussion An increase in abstraction of groundwater particularly at the Nossob borehole may cause an additional

  8. Pure stands of temperate forest tree species modify soil respiration and N turnover

    NASA Astrophysics Data System (ADS)

    Brüggemann, N.; Rosenkranz, P.; Papen, H.; Pilegaard, K.; Butterbach-Bahl, K.

    2005-04-01

    The effects of five different tree species common in the temperate zone, i.e. beech (Fagus sylvatica L.), pedunculate oak (Quercus robur L.), Norway spruce (Picea abies [L.] Karst), Japanese larch (Larix leptolepis [Sichold and Zucc.] Gordon) and mountain pine (Pinus mugo Turra), on soil respiration, gross N mineralization and gross nitrification rates were investigated. Soils were sampled in spring and summer 2002 at a forest trial in Western Jutland, Denmark, where pure stands of the five tree species of the same age were growing on the same soil. Soil respiration, gross rates of N mineralization and nitrification were significantly higher in the organic layers than in the Ah horizons for all tree species and both sampling dates. In summer (July), the highest rates of soil respiration, gross N mineralization and gross nitrification were found in the organic layer under spruce, followed by beech > larch > oak > pine. In spring (April), these rates were also higher under spruce compared to the other tree species, but were significantly lower than in summer. For the Ah horizons no clear seasonal trend was observed for any of the processes examined. A linear relationship between soil respiration and gross N mineralization (r2=0.77), gross N mineralization and gross nitrification rates (r2=0.72), and between soil respiration and gross nitrification (r2=0.81) was found. The results obtained underline the importance of considering the effect of forest type on soil C and N transformations.

  9. [Reproductive phenology of tree species in the Tenosique tropical forest, Tabasco, Mexico].

    PubMed

    Ochoa-Gaona, Susana; Hernández, Isidro Pérez; de Jong, Bernardus H J

    2008-06-01

    Between August 2003 and August 2005 we registered the flowering and fruiting of 75 tree species (341 individual trees) in a tropical rain forest at Tenosique, Tabasco, Mexico. Monthly we checked five transects (500 m long; 5 m wide). To test the homogeneity of flowering and fruiting during the year, and between adjacent months, we applied a chi2 test. The flowering was bimodal, with a highest peak in March and April, coinciding with the dry season, and a second lower peak in July when precipitation is relatively low. The highest number of fruiting tree species occur between May and July, with its peak in May. Each of the most common botanical families showed a particular phenological pattern. Monthly rainfall and the number of species flowering or fruiting were not significantly correlated. This means that trees are flowering and fruiting all year long, with seasonal increases of both phenological phenomena in the dryer periods. We conclude that phenological patterns vary between individuals and between years and are not seasonally correlated. The data we generated are relevant to program the best periods of seed collections according to individual or groups of species, as part of forest management and conservation practices.

  10. No evidence that boron influences tree species distributions in lowland tropical forests of Panama.

    PubMed

    Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W

    2017-04-01

    It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics.

  11. [Hyperspectral feature band selection based on mean confidence interval and tree species discrimination].

    PubMed

    Chen, Yong-Gang; Ding, Li-Xia; Ge, Hong-Li; Zhang, Mao-Zhen; Hu, Yun

    2011-09-01

    In the present study, based on the leaf-level hyperspectral data of BaiMu, LeiZhu and WuHuanZi, the authors come up with two solutions through the theory of statistics; the first one is that optimal discriminating band between tree species is extracted by mean interval confidence, the other one is that tree species is discriminated by the Manhattan distance and the Min Max interval similarity. The research results showed that (1) the optimal discriminating bands between BaiMu and LeiZhu are around 350-446, 497-527, 553-1 330, 1 355-2 400 and 2 436-2 500 nm; the optimal discriminating bands between BaiMu and WuHuanZi are around 434-555, 580-1 903, 1 914-2 089, 2 172-2 457 and 2 475-2 500 nm; the optimal discriminating bands between LeiZhu and WuHuanZi are around 434-555, 580-1 903, 1 914-2 089, 2 172-2 457 and 2 475-2 500 nm; and this result is helpful for us to find maximum difference to identifying tree species respectively. (2) In these optimal discriminating bands, we find that the Manhattan distance between the same species is far less than the different species; but the Min-Max interval similarity between the same species is far more than the different species, so this result could help us to discriminate and identify different types of tree species effectively.

  12. Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest

    USGS Publications Warehouse

    Keller, Adrienne B.; Reed, Sasha C.; Townsend, Alan R.;