Science.gov

Sample records for raman spectroscopy applied

  1. Raman Spectroscopy and Chemometrics Applied to Recycled Polyethylene Terephthalate

    NASA Astrophysics Data System (ADS)

    Silva, Edmir Augusto

    For decades, polyester polymer has maintained its position as the polymer of choice for multiple applications. Recently, recycling of polyester has become very popular. Given the challenge of process control, this dissertation suggests Raman spectroscopy as a viable soft, non-destructive analysis tool for discrimination and potential characterization of the melt stream. This research found that Raman can be applied to recycled Polyethylene Terephthalate (PET) to ameliorate the production off-quality materials by predicting melt viscosity and detecting polymer contaminants. It was found that melt temperature and melt pressure could be predicted using Chemometrics tools, such as OPLS, when spectra were collected from a Raman probe facing the melt in a polyester extruder. This work opens the door to the usage of spectrometer in the extrusion field more often than it is today; most of the Raman work published in polyester is regarding crystallinity. This thesis will list some of those, but none of the existing literature spends time showing how to predict melt viscosity, for example. This dissertation will show how to calculate it from the melt pressure. In the future a lot more important information can be extracted from the same system described here due to the system proposed: spectrometer, probe, statistical method for pre and post processing the data and predictive model.

  2. Surface-enhanced Raman spectroscopy applied to food safety.

    PubMed

    Craig, Ana Paula; Franca, Adriana S; Irudayaraj, Joseph

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is an advanced Raman technique that enhances the vibrational spectrum of molecules adsorbed on or in the vicinity of metal particles and/or surfaces. Because of its readiness, sensitivity, and minimum sample preparation requirements, SERS is being considered as a powerful technique for food inspection. Key aspects of food-safety assurance, spectroscopy methods, and SERS are briefly discussed in an extended introduction of this review. The recent and potential advances in SERS are highlighted in sections that deal with the (a) detection of food-borne pathogenic microorganisms and (b) the detection of food contaminants and adulteration, concentrated specifically on antibiotics, drugs, hormones, melamine, and pesticides. This review provides an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for food-safety assessment.

  3. Raman spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  4. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  5. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  6. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.

    PubMed

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W; Popp, Jürgen

    2017-07-27

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.

  7. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra

    PubMed Central

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W.; Popp, Jürgen

    2017-01-01

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC. PMID:28749450

  8. Chemotaxonomy of mints of genus Mentha by applying Raman spectroscopy.

    PubMed

    Rösch, P; Kiefer, W; Popp, J

    2002-01-01

    The characterization of mints is often problematic because Mentha is a taxonomically complex genus. In order to provide a fast and easy characterization method, we use a combination of micro-Raman spectroscopy and hierarchical cluster analysis. A classification trial of different mint taxa is possible for one collection time. For spectra measured at different points during the growing season, a more sophisticated pretreatment of the data is necessary to receive good discrimination between the species, as well as between the subspecies and varieties of the mints.

  9. Raman Spectroscopy Applied to Mars Water Cycle Studies

    NASA Astrophysics Data System (ADS)

    Nikolakakos, G.; Whiteway, J. A.

    2014-12-01

    One of the key findings during the Phoenix and Mars Science Laboratory landed Mars missions has been the detection of perchlorate, a highly deliquescent salt. Perchlorates are of great interest on Mars due to their high affinity for water vapour as well as their ability to greatly depress the freezing point of water when in solution. This has intriguing biological implications as resulting brines could potentially provide a habitable environment for living organisms. Additionally, it has been speculated that these salts may play a significant role in influencing the hydrological cycle on Mars. In order to experimentally study brine formation on Mars and assess the feasibility of a future landed detection tool, a stand-off Raman spectroscopy instrument and environmental simulation chamber have been developed at York University. A sample of magnesium perchlorate has been subjected to the water vapour pressure, background pressure and temperatures found at polar Martian latitudes. Results indicate that at a water vapour pressure of ~20 Pa, Raman spectroscopy is able to detect the onset of brine formation and provide an estimate of the quantity of water taken up by the sample. At the lower water vapour pressures typically found on Mars ( ~1 Pa), it appears that slower dynamics inhibit the onset of water uptake over relevant time scales. The experimental setup and current results will be presented.

  10. Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gleeson, Helen F.

    Raman spectroscopy has been used as a tool to study liquid crystals for several decades. There are several features that make Raman spectroscopy an important characterisation method. It is bond-specific, so can provide information about the interaction of liquid crystals with colloidal systems and can offer an insight into phase transitions. The polarization dependence of the scattering can be used to determine order parameters in liquid crystal systems. Finally, the relatively high spatial resolution of the technique (∽1 μm) can be used to explore spatiallydependent order in soft matter systems. This chapter describes the most important ways in which Raman spectroscopy can be used to reveal information about liquid crystal systems, illustrated by examples. Both the theoretical background and experimental considerations are described, providing a comprehensive introduction to anybody interested in using the technique to understand liquid crystal systems.

  11. Shifted Excitation Raman Difference Spectroscopy applied to extraterrestrial particles returned from the asteroid Itokawa

    NASA Astrophysics Data System (ADS)

    Böttger, U.; Maiwald, M.; Hanke, F.; Braune, M.; Pavlov, S. G.; Schröder, S.; Weber, I.; Busemann, H.; Sumpf, B.; Tränkle, G.; Hübers, H.-W.

    2017-09-01

    Two extraterrestrial particles from the asteroid Itokawa are investigated applying Shifted Excitation Raman Difference Spectroscopy (SERDS). These particles were returned by the Hayabusa mission of the Japanese Space Agency JAXA. For SERDS a diode laser based microsystem light source at 488 nm is used for excitation. It has been found that fluorescence signals masking the Raman spectral features of interest can be substantially separated by applying SERDS. Therefore, SERDS improves the information obtained from the Raman spectra and enables a reliable analysis for investigations on extraterrestrial samples.

  12. Raman spectroscopy

    SciTech Connect

    Gerrard, D.L.; Bowley, H.J.

    1988-06-15

    The period of this review is from late 1985 to late 1987. During this time over 6000 papers have been published in the scientific literature dealing with many applications of Raman spectroscopy and extending its use to new areas of study. This article covers only those papers that are relevant to the analytical chemist and this necessitates a highly selective approach. There are some areas that have been the subject of many papers with relatively few being of analytical interest. In such cases the reader is referred to appropriate reviews which are detailed in this section.

  13. Raman spectroscopy and capillary electrophoresis applied to forensic colour inkjet printer inks analysis.

    PubMed

    Król, Małgorzata; Karoly, Agnes; Kościelniak, Paweł

    2014-09-01

    Forensic laboratories are increasingly engaged in the examination of fraudulent documents, and what is important, in many cases these are inkjet-printed documents. That is why systematic approaches to inkjet printer inks comparison and identification have been carried out by both non-destructive and destructive methods. In this study, micro-Raman spectroscopy and capillary electrophoresis (CE) were applied to the analysis of colour inkjet printer inks. Micro-Raman spectroscopy was used to study the chemical composition of colour inks in situ on a paper surface. It helps to characterize and differentiate inkjet inks, and can be used to create a spectra database of inks taken from different cartridge brands and cartridge numbers. Capillary electrophoresis in micellar electrophoretic capillary chromatography mode was applied to separate colour and colourless components of inks, enabling group identification of those components which occur in a sufficient concentration (giving intensive peaks). Finally, on the basis of the obtained results, differentiation of the analysed inks was performed. Twenty-three samples of inkjet printer inks were examined and the discriminating power (DP) values for both presented methods were established in the routine work of experts during the result interpretation step. DP was found to be 94.0% (Raman) and 95.6% (CE) when all the analysed ink samples were taken into account, and it was 96.7% (Raman) and 98.4% (CE), when only cartridges with different index numbers were considered. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Raman spectroscopy applied to identify metabolites in urine of physically active subjects.

    PubMed

    Moreira, Letícia Parada; Silveira, Landulfo; da Silva, Alexandre Galvão; Fernandes, Adriana Barrinha; Pacheco, Marcos Tadeu Tavares; Rocco, Débora Dias Ferraretto Moura

    2017-09-22

    Raman spectroscopy is a rapid and non-destructive technique suitable for biological fluids analysis. In this work, dispersive Raman spectroscopy has been employed as a rapid and nondestructive technique to detect the metabolites in urine of physically active subjects before and after vigorous 30min pedaling or running compared to sedentary subjects. For so, urine samples from 9 subjects were obtained before and immediately after physical activities and submitted to Raman spectroscopy (830nm excitation, 250mW laser power, 20s integration time) and compared to urine from 5 sedentary subjects. The Raman spectra of urine from sedentary showed peaks related to urea, creatinine, ketone bodies, phosphate and other nitrogenous compounds. These metabolic biomarkers presented peaks with different intensities in the urine of physically active individuals after exercises compared to before, measured by the intensity of selected peaks the Raman spectra, which means different concentrations after training. These peaks presented different intensity values for each subject before physical activity, also behaving differently compared to the post-training: some subjects presented increase while others decrease the intensity. Raman spectroscopy may allow the development of a rapid and non-destructive test for metabolic evaluation of the physical training in active and trained subjects using urine samples, allowing nutrition adjustment with the sport's performance. Copyright © 2017. Published by Elsevier B.V.

  15. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Caspers, P. J.; van der Pol, A.; Richter, H.; Patzelt, A.; Zastrow, L.; Darvin, M.; Sterry, W.; Fluhr, J. W.

    2009-01-01

    In the present study, the distribution of the carotenoids as a marker for the complete antioxidative potential in human skin was investigated before and after the topical application of carotenoids by in vivo Raman spectroscopy with an excitation wavelength of 785 nm. The carotenoid profile was assessed after a short term topical application in 4 healthy volunteers. In the untreated skin, the highest concentration of natural carotenoids was detected in different layers of the stratum corneum (SC) close to the skin surface. After topical application of carotenoids, an increase in the antioxidative potential in the skin could be observed. Topically applied carotenoids penetrate deep into the epidermis down to approximately 24 μm. This study supports the hypothesis that antioxidative substances are secreted via eccrine sweat glands and/or sebaceous glands to the skin surface. Subsequently they penetrate into the different layers of the SC.

  16. Industrial applications of Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Grasselli, J. G.; Walder, F.; Petty, C.; Kemeny, G.

    1993-03-01

    In the last two decades, Raman spectroscopy has matured as an important method for the study of molecules and complex molecular systems. This is evident from the number of fine texts and the many review articles which have been published describing theory and applications of Raman spectroscopy over a very broad range of subjects (1-10). Raman spectroscopy is the essential partner to infrared spectroscopy for a complete vibrational analysis of a molecule in structure determinations. From the understanding developed on small molecules, theory was extended to interpret the spectra of larger systems such as polymers, biological molecules, and ordered condensed phases. The contribution of Raman spectroscopy to these areas has been significant. It was the development of commercial lasers in the 1960s which spurred the renewed interest in the Raman technique. But applications were still limited for highly fluorescing or intensely colored systems. In 1986, a breakthrough paper by Hirschfeld and Chase (11) described the use of near-infrared laser excitation and a commercial interferometer-based FT-IR spectrometer to record FT-Raman spectra. Significant advantages included the inherent multiplex, throughput and data processing features of the FT interferometers and the use of a ND:YAG laser (1.064 μm) which dramatically decreased problems with sample fluorescence and decomposition. A deluge of papers describing applications of FT-Raman spectroscopy can be found in the Journal of Raman Spectroscopy, Spectrochimica Acta (special issues 40A ad 47A), and Applied Spectroscopy since then.

  17. Applying Raman spectroscopy to the assessment of the biodegradation of industrial polyurethanes wastes.

    PubMed

    Cregut, Mickael; Bedas, Marion; Assaf, Ali; Durand-Thouand, Marie-José; Thouand, Gérald

    2014-01-01

    Polyether-based polyurethanes (PBP) are extremely problematic polymers due to their long persistence in the environment. Moreover, the assessment of PBP biodegradation remains biased due to the inability of conventional methods to determine how their diverse subunits are degraded. To improve our knowledge of PBP biodegradation, we used Raman spectroscopy to identify patterns of PBP biodegradation. Specifically, PBP biodegradation was assessed using a microbial inoculum isolated from an industrial soil in which polyurethanes have been buried for 40 years. During a 28-day biodegradation assay, the PBP biodegradation level reached 27.5% (w/w), in addition to undergoing profound alteration of the PBP composition as identified by chemical analyses. After microbial degradation, Raman analyses revealed the disappearance of the polymer's amorphous region, which contains a high polyol content, whereas the isocyanate-rich crystalline regions were preserved. The use of Raman spectroscopy appears to be a particularly useful tool to enhance our assessment of polymer biodegradation.

  18. FTIR and Raman Spectroscopy Applied to Dementia Diagnosis Through Analysis of Biological Fluids.

    PubMed

    Lopes, Jéssica; Correia, Marta; Martins, Ilka; Henriques, Ana Gabriela; Delgadillo, Ivonne; da Cruz E Silva, Odete; Nunes, Alexandra

    2016-04-08

    To date, it is still difficult to perform an early and accurate diagnosis of dementia, therefore significant research has focused on finding new dementia biomarkers that can aid in this respect. There is an urgent need for non-invasive, rapid, and relatively inexpensive procedures for early diagnostics. Studies have demonstrated that of spectroscopic techniques, such as Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy could be a useful and accurate procedure to diagnose dementia. Given that several biochemical mechanisms related to neurodegeneration and dementia can lead to changes in plasma components and others peripheral body fluids; blood-based samples coupled to spectroscopic analyses can be used as a simple and less invasive approach.

  19. Raman spectroscopy in graphene

    NASA Astrophysics Data System (ADS)

    Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.

    2009-04-01

    Recent Raman scattering studies in different types of graphene samples are reviewed here. We first discuss the first-order and the double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features. The determination of the number of layers in few-layer graphene is discussed, giving special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal (AB) configuration. Different types of graphene samples produced both by exfoliation and using epitaxial methods are described and their Raman spectra are compared with those of 3D crystalline graphite and turbostratic graphite, in which the layers are stacked with rotational disorder. We show that Resonance Raman studies, where the energy of the excitation laser line can be tuned continuously, can be used to probe electrons and phonons near the Dirac point of graphene and, in particular allowing a determination to be made of the tight-binding parameters for bilayer graphene. The special process of electron-phonon interaction that renormalizes the phonon energy giving rise to the Kohn anomaly is discussed, and is illustrated by gated experiments where the position of the Fermi level can be changed experimentally. Finally, we discuss the ability of distinguishing armchair and zig-zag edges by Raman spectroscopy and studies in graphene nanoribbons in which the Raman signal is enhanced due to resonance with singularities in the density of electronic states.

  20. Femtosecond Stimulated Raman Spectroscopy.

    PubMed

    Dietze, Daniel R; Mathies, Richard A

    2016-05-04

    Femtosecond stimulated Raman spectroscopy (FSRS) is an ultrafast nonlinear optical technique that provides vibrational structural information with high temporal (sub-50 fs) precision and high spectral (10 cm(-1) ) resolution. Since the first full demonstration of its capabilities ≈15 years ago, FSRS has evolved into a mature technique, giving deep insights into chemical and biochemical reaction dynamics that would be inaccessible with any other technique. It is now being routinely applied to virtually all possible photochemical reactions and systems spanning from single molecules in solution to thin films, bulk crystals and macromolecular proteins. This review starts with an historic overview and discusses the theoretical and experimental concepts behind this technology. Emphasis is put on the current state-of-the-art experimental realization and several variations of FSRS that have been developed. The unique capabilities of FSRS are illustrated through a comprehensive presentation of experiments to date followed by prospects.

  1. Surface-Enhanced Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Garrell, Robin L.

    1989-01-01

    Reviews the basis for the technique and its experimental requirements. Describes a few examples of the analytical problems to which surface-enhanced Raman spectroscopy (SERS) has been and can be applied. Provides a perspective on the current limitations and frontiers in developing SERS as an analytical technique. (MVL)

  2. Surface-Enhanced Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Garrell, Robin L.

    1989-01-01

    Reviews the basis for the technique and its experimental requirements. Describes a few examples of the analytical problems to which surface-enhanced Raman spectroscopy (SERS) has been and can be applied. Provides a perspective on the current limitations and frontiers in developing SERS as an analytical technique. (MVL)

  3. Paraconsistent analysis network applied in the treatment of Raman spectroscopy data to support medical diagnosis of skin cancer.

    PubMed

    Da Silva Filho, João Inácio; Vander Nunes, Célio; Garcia, Dorotéa Vilanova; Mario, Mauricio Conceição; Giordano, Fábio; Abe, Jair Minoro; Pacheco, Marcos Tadeu Tavares; Silveira, Landulfo

    2016-10-01

    Paraconsistent logic (PL) is a type of non-classical logic that accepts contradiction as a fundamental concept and has produced valuable results in the analysis of uncertainties. In this work, algorithms based on a type of PL-paraconsistent annotated logic of two values (PAL2v)-are interconnected into a network of paraconsistent analysis (PANnet). PANnet was applied to a dataset comprising 146 Raman spectra of skin tissue biopsy fragments of which 30 spectra were determined to represent normal skin tissue (N), 96 were determined to represent tissue with basal cell carcinoma, and 19 were determined to be tissue with melanoma (MEL). In this database, paraconsistent analysis was able to correctly discriminate 136 out of a total of 145 fragments, obtaining a 93.793 % correct diagnostic accuracy. The application of PAL2v in the analysis of Raman spectroscopy signals produces better discrimination of cells than conventional statistical processes and presents a good graphical overview through its associated lattice structure. The technique of PAL2v-based data processing can be fundamental in the development of a computational tool dedicated to support the diagnosis of skin cancer using Raman spectroscopy.

  4. Raman spectroscopy in astrobiology.

    PubMed

    Jorge Villar, Susana E; Edwards, Howell G M

    2006-01-01

    Raman spectroscopy is proposed as a valuable analytical technique for planetary exploration because it is sensitive to organic and inorganic compounds and able to unambiguously identify key spectral markers in a mixture of biological and geological components; furthermore, sample manipulation is not required and any size of sample can be studied without chemical or mechanical pretreatment. NASA and ESA are considering the adoption of miniaturised Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for extinct or extant life signals. In this paper we review the advantages and limitations of Raman spectroscopy for the analysis of complex specimens with relevance to the detection of bio- and geomarkers in extremophilic organisms which are considered to be terrestrial analogues of possible extraterrestial life that could have developed on planetary surfaces.

  5. Raman spectroscopy of piezoelectrics

    NASA Astrophysics Data System (ADS)

    Pezzotti, Giuseppe

    2013-06-01

    Raman spectroscopy represents an insightful characterization tool in electronics, which comprehensively suits the technological needs for locally and quantitatively assessing crystal structures, domain textures, crystallographic misalignments, and residual stresses in piezoelectric materials and related devices. Recent improvements in data processing and instrumental screening of large sampling areas have provided Raman spectroscopic evaluations with rejuvenating effectiveness and presently give spin to increasingly wider and more sophisticated experimental explorations. However, the physics underlying the Raman effect represents an issue of deep complexity and its applicative development to non-cubic crystallographic structures can yet be considered in its infancy. This review paper revisits some applicative aspects of the physics governing Raman emission from crystalline matter, exploring the possibility of disentangling the convoluted dependences of the Raman spectrum on crystal orientation and mechanical stress. Attention is paid to the technologically important class of piezoelectric materials, for which working algorithms are explicitly worked out in order to quantitatively extract both structural and mechanical information from polarized Raman spectra. Systematic characterizations of piezoelectric materials and devices are successively presented as applications of the developed equations. The Raman response of complex crystal structures, described here according to a unified formalism, is interpreted as a means for assessing both crystallographic textures and stress-related issues in the three-dimensional space (thus preserving their vectorial and tensorial nature, respectively). Statistical descriptions of domain textures based on orientation distribution functions are also developed in order to provide a link between intrinsic single-crystal data and data collected on polycrystalline (partly textured) structures. This paper aims at providing rigorous

  6. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect

    Meyer, Matthew W.

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  7. Resonance Raman spectroscopy.

    PubMed

    Robert, Bruno

    2009-01-01

    Resonance Raman spectroscopy may yield precise information on the conformation of, and on the interactions assumed by, the chromophores involved in the first steps of the photosynthetic process, whether isolated in solvents, embedded in soluble or membrane proteins, or, as shown recently, in vivo. By making use of this technique, it is possible, for instance, to relate the electronic properties of these molecules to their structure and/or the physical properties of their environment, or to determine subtle changes of their conformation associated with regulatory processes. After a short introduction to the physical principles that govern resonance Raman spectroscopy, the information content of resonance Raman spectra of chlorophyll and carotenoid molecules is described in this review, together with the experiments which helped in determining which structural parameter each Raman band is sensitive to. A selection of applications of this technique is then presented, in order to give a fair and precise idea of which type of information can be obtained from its use in the field of photosynthesis.

  8. Discrimination of fennel chemotypes applying IR and Raman spectroscopy: discovery of a new γ-asarone chemotype.

    PubMed

    Gudi, Gennadi; Krähmer, Andrea; Krüger, Hans; Hennig, Lothar; Schulz, Hartwig

    2014-04-23

    Various vibrational spectroscopy methods have been applied to classify different fennel chemotypes according to their individual profile of volatile substances. Intact fennel fruits of different chemotypes could be successfully discriminated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) and near infrared (NIR) spectroscopy. Solvent extracts (CCl4) of the considered fennel fruits showed characteristic fingerprints with marker bands related to the individual volatile components (trans-anethole, fenchone, estragole, piperitenone oxide, γ-asarone, limonene) for ATR-FTIR and FT-Raman spectroscopy. Especially νC═C and νC═O absorption bands contribute to the different spectral profiles. On the basis of hierarchical cluster analysis, the considered fennel accessions were classified according to gas chromatographic (GC) and vibrational spectroscopic data. Furthermore, even a discrimination of "sweet" and "bitter" fennel fruits, both belonging to the trans-anethole chemotype, could be successfully performed. All vibrational spectroscopical techniques used in this study are rapid and easy to apply. Hence, they allow different fennel chemotypes to be reliably distinguished and can also be used for on-site measurement in free nature.

  9. Applications of Raman spectroscopy in life science

    NASA Astrophysics Data System (ADS)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  10. Raman spectroscopy of oral bacteria

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Zhu, Qingyuan; Quivey, Robert G.

    2003-10-01

    Raman spectroscopy has been employed to measure the varying concentrations of two oral bacteria in simple mixtures. Evaporated droplets of centrifuged mixtures of Streptococcus sanguis and Streptococcus mutans were analyzed via Raman microspectroscopy. The concentration of s. sanguis was determined based upon the measured Raman spectrum, using partial least squares cross-validation, with an r2 value of 0.98.

  11. Fast label-free detection of Legionella spp. in biofilms by applying immunomagnetic beads and Raman spectroscopy.

    PubMed

    Kusić, Dragana; Rösch, Petra; Popp, Jürgen

    2016-03-01

    Legionellae colonize biofilms, can form a biofilm by itself and multiply intracellularly within the protozoa commonly found in water distribution systems. Approximately half of the known species are pathogenic and have been connected to severe multisystem Legionnaires' disease. The detection methods for Legionella spp. in water samples are still based on cultivation, which is time consuming due to the slow growth of this bacterium. Here, we developed a cultivation-independent, label-free and fast detection method for legionellae in a biofilm matrix based on the Raman spectroscopic analysis of isolated single cells via immunomagnetic separation (IMS). A database comprising the Raman spectra of single bacterial cells captured and separated from the biofilms formed by each species was used to build the identification method based on a support vector machine (SVM) discriminative classifier. The complete method allows the detection of Legionella spp. in 100 min. Cross-reactivity of Legionella spp. specific immunomagnetic beads to the other studied genera was tested, where only small cell amounts of Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli compared to the initial number of cells were isolated by the immunobeads. Nevertheless, the Raman spectra collected from isolated non-targeted bacteria were well-discriminated from the Raman spectra collected from isolated Legionella cells, whereby the Raman spectra of the independent dataset of Legionella strains were assigned with an accuracy of 98.6%. In addition, Raman spectroscopy was also used to differentiate between isolated Legionella species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Stress measurement in MEMS using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Animoto, Sherwin T.; Chang, Dick J.; Birkitt, Andra D.

    1998-09-01

    Raman spectroscopy is used as a non-contact method in measuring stresses at the surface of a crystalline structure or the crystalline-coated surface of an amorphous structure. The stress measurement capability is based on the relative frequency shift of Raman spectra when the crystal lattice is strained. The Raman spectroscopy has a resolution on the order of a few micrometer (micrometers ) which may be used to probe the local non-uniform stress distribution and thus address the material nonhomogeneity. This paper presents the Raman secular equation for general and cubic crystal systems and discusses the stress field effects to Raman frequency shifts and polarization. Experimental testing will include the calibration of the Raman signal versus mechanically applied stresses using single crystal strips, poly-silicon coatings deposited on different specimen configurations, and the stress measurements on a frequently used MEMS structure, cantilever beam, subject to electrostatic forces. Correlation of the experimental results with the analytical prediction will be addressed.

  13. Transcutaneous Raman Spectroscopy of Bone

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  14. Raman Spectroscopy of Cocrystals

    NASA Astrophysics Data System (ADS)

    Rooney, Frank; Reardon, Paul; Ochoa, Romulo; Abourahma, Heba; Marti, Marcus; Dimeo, Rachel

    2010-02-01

    Cocrystals are a class of compounds that consist of two or more molecules that are held together by hydrogen bonding. Pharmaceutical cocrystals are those that contain an active pharmaceutical ingredient (API) as one of the components. Pharmaceutical cocrystals are of particular interest and have gained a lot of attention in recent years because they offer the ability to modify the physical properties of the API, like solubility and bioavailability, without altering the chemical structure of the API. The APIs that we targeted for our studies are theophylline (Tp) and indomethacin (Ind). These compounds have been mixed with complementary coformers (cocrystal former) that include acetamide (AcONH2), melamine (MLM), nicotinic acid (Nic-COOH), 4-cyanopyridine (4-CNPy) and 4-aminopyridine (4-NH2Py). Raman spectroscopy has been used to characterize these cocrystals. Spectra of the cocrystals were compared to those of the coformers to analyze for peak shifts, specifically those corresponding to hydrogen bonding. A 0.5 m CCD Spex spectrometer was used, in a micro-Raman setup, for spectral analysis. An Argon ion Coherent laser at 514.5 nm was used as the excitation source. )

  15. Surface-enhanced resonance Raman scattering spectroscopy applied to phytochrome and its model compounds. 1. Biliverdin photoisomers

    SciTech Connect

    Holt, R.E.; Farrens, D.L.; Song, Pillsoon; Cotton, T.M. )

    1989-12-20

    The application of surface-enhanced resonance Raman scattering (SERRS) spectroscopy to the analysis of the configuration of biliverdin dimethyl ester (BVDE) is reported. SERRS spectra obtained by adsorption of the compounds onto an electrochemically roughened silver electrode and recorded at 7 K were intense and free of significant photodegradation. The similarity of the SERRS and resonance Raman (RR) spectra obtained under identical conditions suggests that no perturbation of the electronic structure of the BVDE occurs upon interaction with the silver surface, and that the distribution of conformers comprising the BVDE solution is not changed. SERRS spectra of the deuterated and monoprotonated Z,Z,Z isomer are also presented. To investigate the influence of configuration upon the Raman spectrum we have synthesized and purified the E,Z,A, and Z,Z,E isomers of BVDE. Excellent SERRS spectra were obtained from the solutions of the compounds eluted directly from the TLC plates.

  16. Laser sources for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kilmer, J.; Iadevaia, A.; Yin, Y.

    2011-06-01

    While conventional Raman Spectroscopy (RS) has predominately used fixed wavelength cw lasers, advanced Raman spectroscopic techniques such as Stimulated Raman and some types of Raman Imaging typically need pulsed lasers with sufficient energy to induce the Raman process. In addition, pulsed lasers are beneficial for the following Raman techniques: Time Resolved Raman (TRR), Resonance Raman (RR), or non linear Raman techniques, such as Coherent anti-Stokes Raman spectroscopy (CARS). Here the naturally narrower linewidth of a ns pulse width laser is advantageous to a broader linewidth ultrafast pulsed laser. In this paper, we report on the development of a compact, highly efficient, high power solid-state Ti: Sapphire laser ideally suited for many Raman spectroscopic techniques. This laser produces nanosecond pulses at kHz repetition rates with a tunable output wavelength from ~1 micron to ~200 nm and pulse energies up to 1 mJ. The narrow bandwidth of this laser (<0.1cm-1) is ideally suited for applications such as Laser-induced fluorescence (LIF) measurement of OH free-radicals concentrations, atmospheric LIDAR and Raman spectroscopy. New KBBF and RBBF deep ultraviolet (DUV) and vacuum ultraviolet (VUV) crystals are now available that enable direct doubling of the SHG output of these tunable Ti: Sapphire lasers to directly achieve wavelengths as short as 175 nm without the need to generate the 3rd harmonic and utilize frequency mixing. This results in a highly efficient output in the DUV/VUV, enabling improved signal to noise ratios (S/N) in these previously difficult wavelength regions. Photonics Industries has recently achieved a few mW of power at 193nm with such direct doubling crystals.

  17. Online fluorescence suppression in modulated Raman spectroscopy.

    PubMed

    De Luca, Anna Chiara; Mazilu, Michael; Riches, Andrew; Herrington, C Simon; Dholakia, Kishan

    2010-01-15

    Label-free chemical characterization of single cells is an important aim for biomedical research. Standard Raman spectroscopy provides intrinsic biochemical markers for noninvasive analysis of biological samples but is often hindered by the presence of fluorescence background. In this paper, we present an innovative modulated Raman spectroscopy technique to filter out the Raman spectra from the fluorescence background. The method is based on the principle that the fluorescence background does not change whereas the Raman scattering is shifted by the periodical modulation of the laser wavelength. Exploiting this physical property and importantly the multichannel lock-in detection of the Raman signal, the modulation technique fulfills the requirements of an effective fluorescence subtraction method. Indeed, once the synchronization and calibration procedure is performed, minimal user intervention is required, making the method online and less time-consuming than the other fluorescent suppression methods. We analyze the modulated Raman signal and shifted excitation Raman difference spectroscopy (SERDS) signal of 2 mum-sized polystyrene beads suspended in a solution of fluorescent dye as a function of modulation rate. We show that the signal-to-noise ratio of the modulated Raman spectra at the highest modulation rate is 3 times higher than the SERDS one. To finally evaluate the real benefits of the modulated Raman spectroscopy, we apply our technique to Chinese hamster ovary cells (CHO). Specifically, by analyzing separate spectra from the membrane, cytoplasm, and nucleus of CHO cells, we demonstrate the ability of this method to obtain localized sensitive chemical information from cells, away from the interfering fluorescence background. In particular, statistical analysis of the Raman data and classification using PCA (principal component analysis) indicate that our method allows us to distinguish between different cell locations with higher sensitivity and

  18. Laser Raman spectroscopy and omegatron mass spectrometry applied to investigations of the radiochemical reactions between methane and tritium

    SciTech Connect

    Engelmann, U.; Glugla, M.; Penzhorn, R.D.; Ache, H.J. . Inst. fuer Radiochemie)

    1992-03-01

    This paper reports that the radiochemical reactions between methane and tritium were vicariously chosen for the evaluation of an omegatron type mass spectrometer and a laser Raman spectrometer in view of their analytical application in tritium systems. Assessment of the omegatron was extended beyond previous work on the quantitative analysis of all hydrogen isotopes and stable helium isotopes to include the determination of tritiated hydrocarbons. As opposed to mass spectrometry, laser Raman spectroscopy is an absolute method, which in principle is applicable to all polyatomic gases. For the employment in tritium systems an uhv-tight stainless steel gas cell using windows mounted in CF flanges with a flatness better than 1 lambda was constructed and tested. The Raman spectra of H{sub 2}, HD and D{sub 2} were measured and the pure rotation and rotation vibration branches assigned. The fundamental vibrations of methane and deuterated methanes have also been identified. First kinetic data on the {beta}-radiation induced exchange reaction between tritium and methane have been obtained with an omegatron.

  19. Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stiles, Paul L.; Dieringer, Jon A.; Shah, Nilam C.; van Duyne, Richard P.

    2008-07-01

    The ability to control the size, shape, and material of a surface has reinvigorated the field of surface-enhanced Raman spectroscopy (SERS). Because excitation of the localized surface plasmon resonance of a nanostructured surface or nanoparticle lies at the heart of SERS, the ability to reliably control the surface characteristics has taken SERS from an interesting surface phenomenon to a rapidly developing analytical tool. This article first explains many fundamental features of SERS and then describes the use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates. In particular, we review metal film over nanosphere surfaces as excellent candidates for several experiments that were once impossible with more primitive SERS substrates (e.g., metal island films). The article also describes progress in applying SERS to the detection of chemical warfare agents and several biological molecules.

  20. NanoSIMS and Micro-Raman Spectroscopy applied to the Analysis of Uranium Oxyfluoride Particles for Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Kips, R.; Kristo, M.; Crowhurst, J.; Stefaniak, E.; Hutcheon, I. D.

    2010-12-01

    Environmental swipe sampling is used by safeguards organizations to verify the absence of undeclared nuclear activities. Particulate material collected in environmental swipe samples is typically analyzed for its uranium isotopic composition. At enrichment facilities, these swipe samples often contain UO2F2 particles formed from the hydrolysis of uranium hexafluoride gas. Since UO2F2 particulate material has been found to be unstable with respect to the loss of fluorine (J.A. Carter et al. Task A.200.3 K/NSP-777, 1998) the measurement of the residual amount of fluorine has the potential of placing boundaries on the particle’s age and exposure history. To investigate the decomposition of UO2F2 and its potential applications in nuclear safeguards and nuclear forensics, a suite of micro-analytical tools was applied to a set of lab-synthesized UO2F2 particles. Samples were either stored in an inert atmosphere or exposed to different levels of humidity, temperature and light to identify those environmental conditions that accelerate the decomposition of UO2F2. Given the small size of the particles, secondary ion mass spectrometry with nanometer-scale spatial resolution (NanoSIMS) was used to measure the relative amount of fluorine. The elemental data from the NanoSIMS was complemented with micro-Raman spectroscopy for molecular fingerprinting. These measurements showed that even though the decomposition of UO2F2 generally happens very slowly, subtle differences can be distinguished depending on the environmental conditions to which they were exposed. The exposure to humidity was identified as the main factor accelerating the loss of fluorine in UO2F2 particles. Particles exposed to 30 % relative humidity and higher showed a decrease in the relative amount of fluorine and a shift of the UO22+ symmetric stretching frequency towards lower frequencies. These changes were attributed to an increase in hydration of the UO2F2 particles. This work was performed under the

  1. Raman spectroscopy in halophile research

    PubMed Central

    Jehlička, Jan; Oren, Aharon

    2013-01-01

    Raman spectroscopy plays a major role in robust detection of biomolecules and mineral signatures in halophile research. An overview of Raman spectroscopic investigations in halophile research of the last decade is given here to show advantages of the approach, progress made as well as limits of the technique. Raman spectroscopy is an excellent tool to monitor and identify microbial pigments and other biomolecules in extant and extinct halophile biomass. Studies of bottom gypsum crusts from salterns, native evaporitic sediments, halite inclusions, and endoliths as well as cultures of halophilic microorganisms permitted to understand the content, distribution, and behavior of important molecular species. The first papers describing Raman spectroscopic detection of microbiological and geochemical key markers using portable instruments are highlighted as well. PMID:24339823

  2. Laser crater enhanced Raman spectroscopy.

    PubMed

    Lednev, Vasily N; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Filippov, Mikhail N; Shchegolikhin, Alexander N; Pershin, Sergey M

    2017-02-01

    Raman signal enhancement by multiple scattering inside laser crater cones was observed for the first time, to the best of our knowledge. Laser crater enhanced Raman spectroscopy (LCERS) yielded a 14-fold increase in the Raman spectra bands due to efficient multiple scattering of laser irradiation within the laser crater walls. The same pulsed Nd:YAG laser (532 nm, 10 ns) was used for both laser crater formation and Raman scattering experiments by varying the output pulse energy. First, powerful pulses are used to produce the laser crater; then low-energy pulses are used to perform Raman scattering measurements. The laser crater profile and its alignment with the laser beam waist were found to be the key parameters for the optimization of the Raman spectrum intensity enhancement. Raman intensity enhancement resulted from increased surface scattering area at the crater walls, rather than spatially offset Raman scattering. The increased signal-to-noise ratio resulted in limits of detection improvement for quantitative analysis using LCERS.

  3. Applications of Raman Spectroscopy to Virology and Microbial Analysis

    NASA Astrophysics Data System (ADS)

    Harz, Michaela; Stöckel, Stephan; Ciobotă, Valerian; Cialla, Dana; Rösch, Petra; Popp, Jürgen

    This chapter reports from the utilization of Raman spectroscopic techniques like Raman microscopy, Raman optical activity (ROA), UV-resonance Raman (UVRR)-spectroscopy, surface enhanced Raman spectroscopy (SERS), and tip-enhanced Raman spectroscopy (TERS) for the investigation of viruses and microorganisms, especially bacteria and yeasts for medical and pharmaceutical applications. The application of these Raman techniques allows for the analysis of chemical components of cells and subcellular regions, as well as the monitoring of chemical differences occurring as a result of the growth of microorganisms. In addition, the interaction of microorganisms with active pharmaceutical agents can be investigated. In combination with chemometric methods Raman spectroscopy can also be applied to identify microorganisms both in micro colonies and even on single cells.

  4. Rotational coherent anti-Stokes Raman spectroscopy (CARS) applied to thermometry in high-pressure hydrocarbon flames

    SciTech Connect

    Vestin, Fredrik; Sedarsky, David; Collin, Robert; Alden, Marcus; Linne, Mark; Bengtsson, Per-Erik

    2008-07-15

    Dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) has been investigated for thermometry under high-pressure and high-temperature conditions, in the product gas of fuel-lean hydrocarbon flames up to 1 MPa. Initial calibration measurements made in nitrogen, oxygen, and air, at pressures up to 1.55 MPa and temperatures up to 1800 K, showed good agreement between experimental and theoretical spectra. In the high-pressure flames, high-quality single-shot spectra were recorded in which nitrogen lines dominated, and peaks from CO{sub 2} and O{sub 2} were also visible. A spectral model including the species N{sub 2}, CO{sub 2}, and O{sub 2}, as well as the best available Raman linewidth models for flame thermometry, were used to evaluate the experimental spectra. Experimental problems as well as considerations related to the spectral evaluation are discussed. This work demonstrates the significant potential of DB-RCARS thermometry for applications in high-pressure and high-temperature environments. (author)

  5. Raman Spectroscopy of Microbial Pigments

    PubMed Central

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  6. Raman spectroscopy of advanced materials.

    PubMed

    Huong, P V

    1996-06-01

    Many micro-structural aspects of advanced materials and the incidence on the physical properties have been elucidated by Raman micro-spectroscopy. The potential of this technique is demonstrated with new materials interesting in both academic and industrial developments: new carbons and diamonds, superconductors, semiconductors, superhards.

  7. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    PubMed

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.

  8. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    USDA-ARS?s Scientific Manuscript database

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  9. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    USDA-ARS?s Scientific Manuscript database

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  10. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.

    2002-01-01

    Laser-based combustion diagnostics, such as single-pulse UV Raman spectroscopy and visible Raman spectroscopy, have been successfully applied to optically-accessible rocket-like test articles. If an independent pressure measurement is available, Raman major species concentration measurements can also provide a temperature measurement. However it is desirable to obtain a Raman-derived temperature measurement without the need for simultaneous pressure measurement, especially when chamber pressure may vary spatially. This report describes Raman temperature measurements obtained by exploiting the variation in shape of the H2 Raman spectrum. Hydrogen is advantageous since it is ubiquitous in H2-O2 systems and its Raman spectrum is simpler than for other diatomics. However the influence of high pressure on the H2 Raman spectrum must be investigated. At moderate pressures, well below those of rocket engines, the Raman spectra of O2 and N2 are known to become featureless due to collisional broadening.

  11. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.

    2002-01-01

    Laser-based combustion diagnostics, such as single-pulse UV Raman spectroscopy and visible Raman spectroscopy, have been successfully applied to optically-accessible rocket-like test articles. If an independent pressure measurement is available, Raman major species concentration measurements can also provide a temperature measurement. However it is desirable to obtain a Raman-derived temperature measurement without the need for simultaneous pressure measurement, especially when chamber pressure may vary spatially. This report describes Raman temperature measurements obtained by exploiting the variation in shape of the H2 Raman spectrum. Hydrogen is advantageous since it is ubiquitous in H2-O2 systems and its Raman spectrum is simpler than for other diatomics. However the influence of high pressure on the H2 Raman spectrum must be investigated. At moderate pressures, well below those of rocket engines, the Raman spectra of O2 and N2 are known to become featureless due to collisional broadening.

  12. Raman spectroscopy of thin films

    NASA Astrophysics Data System (ADS)

    Burgess, James Shaw

    Raman spectroscopy was used in conjunction with x-ray diffraction and x-ray photoelectron spectroscopy to elucidate structural and compositional information on a variety of samples. Raman was used on the unique La 2NiMnO6 mixed double perovskite which is a member of the LaMnO3 family of perovskites and has multiferroic properties. Raman was also used on nanodiamond films as well as some boron-doped carbon compounds. Finally, Raman was used to identify metal-dendrimer bonds that have previously been overlooked. Vibrational modes for La2NiMnO6 were ascribed by comparing spectra with that for LaMnO3 bulk and thin film spectra. The two most prominent modes were labeled as an asymmetric stretch (A g) centered around 535 cm-1 and a symmetric stretch (B g) centered around 678 cm. The heteroepitaxial quality of La2NiMnO 6 films on SrTiO3 (100) and LaAlO3 (100) substrates were examined using the Raman microscope by way of depth profile experiments and by varying the thickness of the films. It was found that thin films (10 nm) had much greater strain on the LaAlO3 substrate than on the SrTiO3 substrate by examining the shifts of the Ag and the Bg modes from their bulk positions. Changes in the unit cell owing to the presence of oxygen defects were also monitored using Raman spectroscopy. It was found that the Ag and Bg modes shifted between samples formed with different oxygen partial pressures. These shifts could be correlated to changes in the symmetry of the manganese centers due to oxygen defects. Raman spectroscopy was used to examine the structural and compositional characteristics of carbon materials. Nanocrystalline diamond coated cutting tools were examined using the Raman Microscope. Impact, abrasion, and depth profile experiments indicated that delamination was the primary cause of film failure in these systems. Boron doped material of interest as catalyst supports were also examined. Monitoring of the G-mode and intensities of the D- and G-modes indicated that

  13. Quantitative fiber-optic Raman spectroscopy for tissue Raman measurements

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Bergholt, Mads; Zheng, Wei; Huang, Zhiwei

    2014-03-01

    Molecular profiling of tissue using near-infrared (NIR) Raman spectroscopy has shown great promise for in vivo detection and prognostication of cancer. The Raman spectra measured from the tissue generally contain fundamental information about the absolute biomolecular concentrations in tissue and its changes associated with disease transformation. However, producing analogues tissue Raman spectra present a great technical challenge. In this preliminary study, we propose a method to ensure the reproducible tissue Raman measurements and validated with the in vivo Raman spectra (n=150) of inner lip acquired using different laser powers (i.e., 30 and 60 mW). A rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe was utilized for tissue Raman measurements. The investigational results showed that the variations between the spectra measured with different laser powers are almost negligible, facilitating the quantitative analysis of tissue Raman measurements in vivo.

  14. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  15. FT-Raman Spectroscopy: A Catalyst for the Raman Explosion?

    ERIC Educational Resources Information Center

    Chase, Bruce

    2007-01-01

    The limitations of Fourier transform (FT) Raman spectroscopy, which is used to detect and analyze the scattered radiation, are discussed. FT-Raman has served to revitalize a field that was lagging and the presence of Raman instrumentation as a routine analytical tool is established for the foreseeable future.

  16. FT-Raman Spectroscopy: A Catalyst for the Raman Explosion?

    ERIC Educational Resources Information Center

    Chase, Bruce

    2007-01-01

    The limitations of Fourier transform (FT) Raman spectroscopy, which is used to detect and analyze the scattered radiation, are discussed. FT-Raman has served to revitalize a field that was lagging and the presence of Raman instrumentation as a routine analytical tool is established for the foreseeable future.

  17. Study and application of new Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Qiushi; Zhang, Xiaohua

    2016-03-01

    Spatially Offset Raman Spectroscopy (SORS) is a new type of Raman Spectroscopy technology, which can detect the medium concealed in the opaque or sub-transparent material fast and nondestructively. The article summarized Spatially Offset Raman Spectroscopy`s international and domestic study and application progress on contraband detecting, medical science (bone ingredient, cancer diagnose etc.), agricultural products, historical relic identification etc. and stated the technology would become an effective measurement which had wide application prospect.

  18. Discrimination model applied to urinalysis of patients with diabetes and hypertension aiming at diagnosis of chronic kidney disease by Raman spectroscopy.

    PubMed

    de Souza Vieira, Elzo Everton; Bispo, Jeyse Aliana Martins; Silveira, Landulfo; Fernandes, Adriana Barrinha

    2017-07-27

    Higher blood pressure level and poor glycemic control in diabetic patients are considered progression factors that cause faster decline in kidney functions leading to kidney damage. The present study aimed to develop a quantification model of biomarkers creatinine, urea, and glucose by means of selected peaks of these compounds, measured by Raman spectroscopy, and to estimate the concentration of these analytes in the urine of normal subjects (G_N), diabetic patients with hypertension (G_WOL) patients with chronic renal failure doing dialysis (G_D). Raman peak intensities at 680 cm(-1) (creatinine), 1004 cm(-1) (urea), and 1128 cm(-1) (glucose) from normal, diabetic, and hypertensive and doing dialysis patients, obtained with a dispersive 830 nm Raman spectrometer, were estimated through Origin software. Spectra of creatinine, urea, and glucose diluted in water were also obtained, and the same peaks were evaluated. A discrimination model based on Mahalanobis distance was developed. It was possible to determine the concentration of creatinine, urea, and glucose by means of the Raman peaks of the selected biomarkers in the urine of the groups G_N, G_WOL, and G_D (r = 0.9). It was shown that the groups G_WOL and G_D had lower creatinine and urea concentrations than the group G_N (p < 0.05). The classification model based on Mahalanobis distance applied to the concentrations of creatinine, urea, and glucose presented a correct classification of 89% for G_N, 86% for G_WOL, and 79% for G_D. It was possible to obtain quantitative information regarding important biomarkers in urine for the assessment of renal impairment in patients with diabetes and hypertension, and this information can be correlated with clinical criteria for the diagnosis of chronic kidney disease.

  19. Raman spectroscopy: Enhanced by organic surfaces

    NASA Astrophysics Data System (ADS)

    Lombardi, John R.

    2017-09-01

    Nanostructured films of organic semiconductors are now shown to enhance the Raman signal of probe molecules, paving the way to the realization of substrates for Raman spectroscopy with molecular selectivity.

  20. Raman and Photoluminescence Spectroscopy in Mineral Identification

    NASA Astrophysics Data System (ADS)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  1. Characterization of Kevlar Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This paper explores the characterization of Kevlar composite materials using Raman spectroscopy. The goal of the research is to develop and understand the Raman spectrum of Kevlar materials to provide a foundation for the development of nondestructive evaluation (NDE) technologies based on the interaction of laser light with the polymer Kevlar. The paper discusses the fundamental aspects of experimental characterization of the spectrum of Kevlar, including the effects of incident wavelength, polarization and laser power. The effects of environmental exposure of Kevlar materials on certain characteristics of its Raman spectrum are explored, as well as the effects of applied stress. This data may provide a foundation for the development of NDE technologies intended to detect the in-situ deterioration of Kevlar materials used for engineering applications that can later be extended to other materials such as carbon fiber composites.

  2. Raman spectroscopy of biomedical polyethylenes.

    PubMed

    Pezzotti, Giuseppe

    2017-06-01

    With the development of three-dimensional Raman algorithms for local mapping of oxidation and plastic strain, and the ability to resolve molecular orientation patterns with microscopic spatial resolution, there is an opportunity to re-examine many of the foundations on which our understanding of biomedical grade ultra-high molecular weight polyethylenes (UHMWPEs) are based. By implementing polarized Raman spectroscopy into an automatized tool with an improved precision in non-destructively resolving Euler angles, oxidation levels, and microscopic strain, we become capable to make accurate and traceable measurements of the in vitro and in vivo tribological responses of a variety of commercially available UHMWPE bearings for artificial hip and knee joints. In this paper, we first review the foundations and the main algorithms for Raman analyses of oxidation and strain of biomedical polyethylene. Then, we critically re-examine a large body of Raman data previously collected on different polyethylene joint components after in vitro testing or in vivo service, in order to shed new light on an area of particular importance to joint orthopedics: the microscopic nature of UHMWPE surface degradation in the human body. A complex scenario of physical chemistry appears from the Raman analyses, which highlights the importance of molecular-scale phenomena besides mere microstructural changes. The availability of the Raman microscopic probe for visualizing oxidation patterns unveiled striking findings related to the chemical contribution to wear degradation: chain-breaking and subsequent formation of carboxylic acid sites preferentially occur in correspondence of third-phase regions, and they are triggered by emission of dehydroxylated oxygen from ceramic oxide counterparts. These findings profoundly differ from more popular (and simplistic) notions of mechanistic tribology adopted in analyzing joint simulator data. Statement of Significance This review was dedicated to the

  3. Raman Spectroscopy of Ocular Tissue

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  4. Raman spectroscopy of triolein under high pressures

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  5. Raman spectroscopy peer review report

    SciTech Connect

    Winkelman, W.D.; Eberlein, S.J.

    1994-09-01

    The Hanford Site in eastern Washington includes 177 underground storage tanks (UST), which contain waste materials produced during the production of nuclear fuels. The materials in the tanks must be characterized to support the retrieval, processing, and final disposition of the waste. Characterization is currently performed by removing waste samples for analyses in a hot cell or laboratory. A review of the Hanford Raman Spectroscopy Program was held in Richland on March 23 and 24, 1994. A team of principal investigators and researchers made presentations that covered both technical and programmatic aspects of the Hanford Site Raman work. After these presentations and discussions, the review panel met in a closed session to formalize a list of findings. The reviewers agreed that Raman spectroscopy is an excellent method to attack the tank waste characterization and screening problems that were presented. They agreed that there was a good chance that the method would be successful as presently envisioned. The reviewers provided the following primary recommendations: evaluation a laser with wavelength in the near infrared; provide optical filters at or near the sampling end of the fiber-optic probe; develop and implement a strategy for frequent calibration of the system; do not try to further increase Raman resolution at the expense of wavelength range; clearly identify and differentiate between requirements for providing a short-term operational system and requirements for optimizing a system for long-term field use; and determine the best optical configuration, which may include reduced fiber-optic diameter and/or short focal length and low F-number spectrographs.

  6. Standard addition method applied to the urinary quantification of nicotine in the presence of cotinine and anabasine using surface enhanced Raman spectroscopy and multivariate curve resolution.

    PubMed

    Mamián-López, Mónica B; Poppi, Ronei J

    2013-01-14

    In this work, urinary nicotine was determined in the presence of the metabolite cotinine and the alkaloid anabasine using surface enhanced Raman spectroscopy and colloidal gold as substrate. Spectra were decomposed using the multivariate curve resolution-alternating least squares method, and pure contributions were recovered. The standard addition method was applied by spiking urine samples with known amounts of the analyte and relative responses from curve resolution were employed to build the analytical curves. The use of multivariate curve resolution in conjunction with standard addition method showed to be an effective strategy that minimized the need for reagent and time-consuming procedures. The determination of the alkaloid nicotine was successfully accomplished at concentrations 0.10, 0.20 and 0.30 μg mL(-1) and total error values less than 10% were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  8. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles.

    PubMed

    Redding, Brandon; Schwab, Mark; Pan, Yong-le

    2015-08-04

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.

  9. Drug analysis by Raman and micro-Raman spectroscopy.

    PubMed

    Huong, P V

    1986-01-01

    The technique of Raman spectroscopy, resonance Raman spectroscopy and micro-Raman spectroscopy is described for application to drug analysis and investigation. Possibilities and limits are mentioned for qualitative and quantitative analyses as well as for studies of structure and interactions. Some principal interaction modes, such as hydrogen bonding, proton transfer, charge transfer and ion-molecule attraction, are shown to explain drug reactivity. Illustrations are given based on several drug families, in particular vitamins, anti-depressants, cardio-active and anticancer drugs.

  10. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy

    PubMed Central

    Das, Nandan K.; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya

    2017-01-01

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field. PMID:28686212

  11. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.

    PubMed

    Das, Nandan K; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya; Smith, Zachary J

    2017-07-07

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  12. Raman Spectroscopy and Related Techniques in Biomedicine

    PubMed Central

    Downes, Andrew; Elfick, Alistair

    2010-01-01

    In this review we describe label-free optical spectroscopy techniques which are able to non-invasively measure the (bio)chemistry in biological systems. Raman spectroscopy uses visible or near-infrared light to measure a spectrum of vibrational bonds in seconds. Coherent anti-Stokes Raman (CARS) microscopy and stimulated Raman loss (SRL) microscopy are orders of magnitude more efficient than Raman spectroscopy, and are able to acquire high quality chemically-specific images in seconds. We discuss the benefits and limitations of all techniques, with particular emphasis on applications in biomedicine—both in vivo (using fiber endoscopes) and in vitro (in optical microscopes). PMID:21151763

  13. Surface-enhanced resonance Raman scattering spectroscopy applied to phytochrome and its model compounds. 2. Phytochrome and phycocyanin chromophores

    SciTech Connect

    Farrens, D.L.; Holt, R.E.; Rospendowski, B.N.; Song, Pillsoon; Cotton, T.M. )

    1989-12-20

    Surface-enhanced resonance Raman scattering (SERRS) spectra of phytochrome at 77 K are reported. The spectra reveal significant differences between Pr and Pfr forms of phytochrome. SERRS spectra of C-phycocyanin Z,Z,Z- and Z,Z,E-chromopeptide isomers at 77 K are also reported. The phycocyanin chromopeptide studies are used to provide a basis for interpreting the phytochrome SERRS spectra. The spectra indicate that photoisomerization of chromophores from C-phycocyanin chromopeptides (from a Z,Z,Z to a Z,Z,E configuration) is detectable with SERRS.

  14. Application of Raman spectroscopy to forensic fibre cases.

    PubMed

    Lepot, L; De Wael, K; Gason, F; Gilbert, B

    2008-09-01

    Five forensic fibre cases in which Raman spectroscopy proved to be a good complementary method for microspectrophotometry (MSP) are described. Absorption spectra in the visible range are indeed sometimes characteristic ofa certain dye but this one can be subsequently identified unambiguously by Raman spectroscopy using a spectral library. In other cases the comparison of Raman spectra of reference fibres and suspect fibres led to an improvement of the discrimination power. The Raman measurements have been performed directly on mounted fibres and the spectra showed only little interference from the mounting resin and glass. Raman spectroscopy is therefore a powerful method that can be applied in routine fibre analysis following optical microscopy and MSP measurements.

  15. Diagnosing breast cancer by using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Haka, Abigail S.; Shafer-Peltier, Karen E.; Fitzmaurice, Maryann; Crowe, Joseph; Dasari, Ramachandra R.; Feld, Michael S.

    2005-08-01

    We employ Raman spectroscopy to diagnose benign and malignant lesions in human breast tissue based on chemical composition. In this study, 130 Raman spectra are acquired from ex vivo samples of human breast tissue (normal, fibrocystic change, fibroadenoma, and infiltrating carcinoma) from 58 patients. Data are fit by using a linear combination model in which nine basis spectra represent the morphologic and chemical features of breast tissue. The resulting fit coefficients provide insight into the chemical/morphological makeup of the tissue and are used to develop diagnostic algorithms. The fit coefficients for fat and collagen are the key parameters in the resulting diagnostic algorithm, which classifies samples according to their specific pathological diagnoses, attaining 94% sensitivity and 96% specificity for distinguishing cancerous tissues from normal and benign tissues. The excellent results demonstrate that Raman spectroscopy has the potential to be applied in vivo to accurately classify breast lesions, thereby reducing the number of excisional breast biopsies that are performed. Author contributions: M.F., J.C., R.R.D., and M.S.F. designed research; A.S.H. and K.E.S.-P. performed research; A.S.H. and M.F. analyzed data; and A.S.H. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: DEH, ductal epithelial hyperplasia; ROC, receiver operating characteristic; N/C, nuclear-to-cytoplasm.

  16. Raman spectroscopy of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Saito, R.; Tatsumi, Y.; Huang, S.; Ling, X.; Dresselhaus, M. S.

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs.

  17. Raman spectroscopy of transition metal dichalcogenides.

    PubMed

    Saito, R; Tatsumi, Y; Huang, S; Ling, X; Dresselhaus, M S

    2016-09-07

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs.

  18. Characterization of amino acids using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jenkins, Amanda L.; Larsen, Richard A.; Williams, Timothy B.

    2005-05-01

    A key process in the development of new drugs is elucidation of the interaction between the drug molecule and the target protein. Such knowledge then makes it possible to make systematic structural modifications of the drug molecule to optimize the interaction. Many analytical techniques can be applied to proteins in solution such as circular dichroism, ultraviolet, and fluorescence spectroscopy but these all have limitations. In this paper, we investigate the feasibility of using relatively simple, visible light Raman spectroscopic methods to investigate amino acids and related biopolymers.

  19. Raman spectroscopy and its urological applications

    PubMed Central

    Hanchanale, Vishwanath S.; Rao, Amrith R.; Das, Sakti

    2008-01-01

    Purpose: The Raman spectroscopic technology can be utilized for the detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential of its use in urology is still in its infancy and increasing utility of this technology will transform noninvasive tissue diagnosis. The Nobel laureate, Sir C.V. Raman is credited for the discovery of the principles of Raman spectroscopy. Materials and Methods: Applications of Raman spectroscopy in the bladder, renal, prostate, and other urological disorders were gathered from Medline and abstracts from recent international urological meetings. Current status and future directions of Raman spectroscopy in urology were also reviewed. Results: Raman spectroscopic technology is used to interrogate biological tissues. The potential use of this technology in urology has shown encouraging results in the in vitro diagnosis and grading of cancers of the bladder and the prostate. Raman microprobes have been used for the characterization and identification of renal lithiasis. Technology may be available for the urologists to determine the margin status intraoperatively during partial nephrectomy and radical prostatectomy. The future would see the development of optical fiber probes to incorporate them into catheters, endoscopes, and laparoscopes that will enable the urologist to obtain information during the operation. Conclusion: Raman spectroscopy is an exciting tool for real-time diagnosis and in vivo evaluation of living tissue. The potential applications of Raman spectroscopy may herald a new future in the management of various malignant, premalignant, and other benign conditions in urology. PMID:19468494

  20. Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C

    USDA-ARS?s Scientific Manuscript database

    Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...

  1. Ultrafast surface-enhanced Raman spectroscopy.

    PubMed

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  2. Laser tweezers Raman spectroscopy of single cells

    NASA Astrophysics Data System (ADS)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  3. Gaseous trace analysis using pulsed photoacoustic Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Siebert, D. R.; West, G. A.; Barrett, J. J.

    1980-01-01

    The paper describes a method for the trace analysis of gases, based on the pulsed photoacoustic Raman spectroscopy (PARS) technique. It is reported that the method has been applied to the analysis of mixtures of CH4 in N2, CO2 in N2, and N2O in N2 at concentrations near 1 ppm. Attention is given to the apparatus used and means of improving the method's sensitivity as well as sensitivity-limiting processes are evaluated. Finally, the analytical capabilities of this technique are compared with both direct (IR) absorption and other Raman techniques such as CARS and stimulated Raman gain spectroscopy (SRGS).

  4. Raman spectroscopy: the gateway into tomorrow's virology

    PubMed Central

    Lambert, Phelps J; Whitman, Audy G; Dyson, Ossie F; Akula, Shaw M

    2006-01-01

    In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology. PMID:16805914

  5. Raman spectroscopy: the gateway into tomorrow's virology.

    PubMed

    Lambert, Phelps J; Whitman, Audy G; Dyson, Ossie F; Akula, Shaw M

    2006-06-28

    In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology.

  6. Study of virus by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Moor, K.; Kitamura, H.; Hashimoto, K.; Sawa, M.; Andriana, B. B.; Ohtani, K.; Yagura, T.; Sato, H.

    2013-02-01

    Problem of viruses is very actual for nowadays. Some viruses, which are responsible for human of all tumors, are about 15 %. Main purposes this study, early detection virus in live cell without labeling and in the real time by Raman spectroscopy. Micro Raman spectroscopy (mRs) is a technique that uses a Raman spectrometer to measure the spectra of microscopic samples. According to the Raman spectroscopy, it becomes possible to study the metabolites of a live cultured cell without labeling. We used mRs to detect the virus via HEK 293 cell line-infected adenovirus. We obtained raman specters of lives cells with viruses in 24 hours and 7 days after the infection. As the result, there is some biochemical changing after the treatment of cell with virus. One of biochemical alteration is at 1081 cm-1. For the clarification result, we use confocal fluorescent microscopy and transmission electron microscopy (TEM).

  7. Emerging Dental Applications of Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Choo-Smith, Lin-P'ing; Hewko, Mark; Sowa, Michael G.

    Until recently, the application of Raman spectroscopy to investigate dental tissues has primarily focused on using microspectroscopy to characterize dentin and enamel structures as well as to understand the adhesive interface of various resin and bonding agents used in restorative procedures. With the advent of improved laser, imaging/mapping and fibre optic technologies, the applications have expanded to investigate various biomedical problems ranging from oral cancer, bacterial identification and early dental caries detection. The overall aim of these applications is to develop Raman spectroscopy into a tool for use in the dental clinic. This chapter presents the recent dental applications of Raman spectroscopy as well as discusses the potential, strengths and limitations of the technology in comparison with alternative techniques. In addition, a discussion and rationale about combining Raman spectroscopy with other optical techniques will be included.

  8. Occlusal caries detection using polarized Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ionita, I.; Bulou, A.

    2008-02-01

    The tooth enamel, because of its hydroxyapatite composition, must present a Raman spectrum with strong polarization anisotropy. Carious lesions of the enamel will produce an alteration of local symmetry and will increase much more scattering of light. This will reduce the anisotropy of the Raman spectra. Because of the difference between high sensitivity to polarization of the 959 cm -1 Raman peak in sound enamel and low sensitivity in carried enamel, Raman polarized spectroscopy could be a useful method to early detect teeth caries.

  9. Applications of Raman spectroscopy to gemology.

    PubMed

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  10. Raman spectroscopy in pharmaceutical product design.

    PubMed

    Paudel, Amrit; Raijada, Dhara; Rantanen, Jukka

    2015-07-15

    Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed.

  11. Difference Raman spectroscopy of DNA molecules

    NASA Astrophysics Data System (ADS)

    Anokhin, Andrey S.; Gorelik, Vladimir S.; Dovbeshko, Galina I.; Pyatyshev, Alexander Yu; Yuzyuk, Yury I.

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm-1) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule.

  12. Raman spectroscopy at the tritium laboratory Karlsruhe

    SciTech Connect

    Schloesser, M.; Bornschein, B.; Fischer, S.; Kassel, F.; Rupp, S.; Sturm, M.; James, T.M.; Telle, H.H.

    2015-03-15

    Raman spectroscopy is employed successfully for analysis of hydrogen isotopologues at the Tritium Laboratory Karlsruhe (TLK). Raman spectroscopy is based on the inelastic scattering of photons off molecules. Energy is transferred to the molecules as rotational/vibrational excitation being characteristic for each type of molecule. Thus, qualitative analysis is possible from the Raman shifted light, while quantitative information can be obtained from the signal intensities. After years of research and development, the technique is now well-advanced providing fast (< 10 s), precise (< 0.1%) and true (< 3%) compositional analysis of gas mixtures of hydrogen isotopologues. In this paper, we summarize the recent achievements in the further development on this technique, and the various applications for which it is used at TLK. Raman spectroscopy has evolved as a versatile, highly accurate key method for quantitative analysis complementing the port-folio of analytic techniques at the TLK.

  13. Estimating Atomic Sizes with Raman Spectroscopy

    PubMed Central

    Wang, Dingdi; Guo, Wenhao; Hu, Juanmei; Liu, Fang; Chen, Lisheng; Du, Shengwang; Tang, Zikang

    2013-01-01

    We demonstrate a technique to determine the Van der Waals radius of iodine atoms using Raman spectroscopy. The iodine diatomic molecules are diffused into the nano-scale channels of a zeolite single crystal. We found their polarized Raman spectroscopy, which corresponds to iodine molecule's vibrational motion along the direction of molecular axis, is significantly modified by the interaction between the iodine molecules and the rigid frame of the crystal's nano-channels. From the number of excitable vibration quantum states of the confined iodine molecules determined from Raman spectra and the size of the nano-channels, we estimate the iodine atomic radius to be 2.10 ± 0.05 Å. It is the first time that atomic sizes, which are far beyond the optical diffraction limit, have be resolved optically using Raman spectroscopy with the help of nano-scale structures. PMID:23508118

  14. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    PubMed

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  15. Using Raman spectroscopy to characterize biological materials.

    PubMed

    Butler, Holly J; Ashton, Lorna; Bird, Benjamin; Cinque, Gianfelice; Curtis, Kelly; Dorney, Jennifer; Esmonde-White, Karen; Fullwood, Nigel J; Gardner, Benjamin; Martin-Hirsch, Pierre L; Walsh, Michael J; McAinsh, Martin R; Stone, Nicholas; Martin, Francis L

    2016-04-01

    Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation; biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer. As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis.

  16. Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy.

    PubMed

    Frontiera, Renee R; Henry, Anne-Isabelle; Gruenke, Natalie L; Van Duyne, Richard P

    2011-05-19

    Surface-enhanced Raman spectroscopy (SERS) and femtosecond stimulated Raman spectroscopy (FSRS) have revolutionized the Raman spectroscopy field. SERS provides spectroscopic detection of single molecules, and FSRS enables the acquisition of Raman spectra on the ultrafast time scale of molecular motion. Here, we present the first successful combination of these two techniques, demonstrating surface-enhanced femtosecond stimulated Raman spectroscopy (SE-FSRS) using gold nanoantennas with embedded reporter molecules. Using a picosecond Raman and femtosecond probe pulse, the time- and ensemble-averaged enhancement factor is estimated to be in the range of 10(4)-10(6). We report the line shapes, power dependence, and magnitude of the SE-FSRS signal and discuss contributions to sample degradation on the minute time scale. With these first successful proof-of-principle experiments, time-resolved SE-FSRS techniques can now be rationally attempted with the goals of investigating the dynamics of plasmonic materials as well as examining the contributions of environmental heterogeneities by probing more homogeneous molecular subsets.

  17. Raman spectroscopy of white wines.

    PubMed

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Remote Raman spectroscopy for planetary exploration: a review.

    PubMed

    Angel, S Michael; Gomer, Nathaniel R; Sharma, Shiv K; McKay, Chris

    2012-02-01

    In this review, we discuss the current state of standoff Raman spectroscopy as it applies to remote planetary applications, including standoff instrumentation, the technique's ability to identify biologically and geologically important analytes, and the feasibility to make standoff Raman measurements under various planetary conditions. This is not intended to be an exhaustive review of standoff Raman and many excellent papers are not mentioned. Rather it is intended to give the reader a quick review of the types of standoff Raman systems that are being developed and that might be suitable for astrospectroscopy, a look at specific analytes that are of interest for planetary applications, planetary measurement opportunities and challenges that need to be solved, and a brief discussion of the feasibility of making surface and plume planetary Raman measurements from an orbiting spacecraft.

  19. Potential of Raman and Infrared Spectroscopy for Plant Analysis

    NASA Astrophysics Data System (ADS)

    Schulz, H.

    2008-11-01

    Various mid-infrared (MIR) and Raman spectroscopic methods applied to the analysis of valuable plant substances or quality parameters in selected horticultural and agricultural crops are presented. Generally, both spectroscopy techniques allow to identify simultaneously characteristic key bands of individual plant components (e.g. carotenoids, alkaloids, polyacetylenes, fatty acids, amino acids, terpenoids). In contrast to MIR methods Raman spectroscopy mostly does not need any sample pre-treatment; even fresh plant material can be analysed without difficulty because water shows only weak Raman scattering properties. In some cases a significant sensivity enhancement of Raman signals can be achieved if the exciting laser wavelength is adjusted to the absorption range of particular plant chromophores such as carotenoids (Resonance Raman effect). Applying FT-IR or FT Raman micro-spectroscopy the distribution of certain plant constituents in the cell wall can be identified without the need for any physical separation. Furthermore it is also possible to analyse secondary metabolites occurring in the cell vacuoles if significant key bands do not coincide with the spectral background of the plant matrix.

  20. Polymorph Discrimination using Low Wavenumber Raman Spectroscopy

    PubMed Central

    Roy, Saikat; Chamberlin, Brianna; Matzger, Adam J.

    2016-01-01

    Characterization of crystalline polymorphs and their quantitation has become an integral part of the pre-clinical drug development process. Raman spectroscopy is a powerful technique for the rapid identification of phases of pharmaceuticals. In the present work we demonstrate the use of low wavenumber Raman vibrational spectroscopy (including phonon measurement) for discrimination among polymorphs. A total of 10 polymorphic pharmaceuticals were employed to conduct a critical assessment. Raman scattering in the low frequency region (10–400 cm−1), which includes crystal lattice vibrations, has been analyzed and the results indicate lattice phonon Raman scattering can be used for rapid discrimination of polymorphic phases with additional discriminating power compared to conventional collection strategies. Moreover structural insight and conformational changes can be detected with this approach. PMID:27642248

  1. Analysing avian eggshell pigments with Raman spectroscopy.

    PubMed

    Thomas, Daniel B; Hauber, Mark E; Hanley, Daniel; Waterhouse, Geoffrey I N; Fraser, Sara; Gordon, Keith C

    2015-09-01

    Avian eggshells are variable in appearance, including coloration. Here, we demonstrate that Raman spectroscopy can provide accurate diagnostic information about major eggshell constituents, including the pigments biliverdin and protoporphyrin IX. Eggshells pigmented with biliverdin showed a series of pigment-diagnostic Raman peaks under 785 nm excitation. Eggshells pigmented with protoporphyrin IX showed strong emission under 1064 nm and 785 nm excitation, whereas resonance Raman spectra (351 nm excitation) showed a set of protoporphyrin IX informative peaks characteristic of protoporphyrin IX. As representative examples, we identified biliverdin in the olive green eggshells of elegant crested tinamous (Eudromia elegans) and in the blue eggshells of extinct upland moa (Megalapteryx didinus). This study encourages the wider use of Raman spectroscopy in pigment and coloration research and highlights the value of this technique for non-destructive analyses of museum eggshell specimens. © 2015. Published by The Company of Biologists Ltd.

  2. Multiplex coherent raman spectroscopy detector and method

    DOEpatents

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  3. Multiplex coherent raman spectroscopy detector and method

    NASA Technical Reports Server (NTRS)

    Chen, Peter (Inventor); Joyner, Candace C. (Inventor); Patrick, Sheena T. (Inventor); Guyer, Dean R. (Inventor)

    2004-01-01

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  4. PiezoForce and Contact Resonance Microscopy Correlated with Raman Spectroscopy applied to a Non-linear Optical Material and to a Lithium Battery Material

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Zeltzer, Gabi; Zinoviev, Oleg; Roth, Michael; Roling, Bernhard; Lewis, Aaron; Dekhter, Rimma

    2014-03-01

    A non-linear optical material (KTP) and a lithium-ion conductive glass ceramic (LICGC) for lithium batteries have been studied with Raman Spectroscopy on-line with Piezo Force and Contact Resonance Microscopies. This is allowed by a unique design of the scanned probe microscopy platform used in these studies and the electrical probes that have been developed that keep the optical axis completely free from above so that such combinations are feasible. The integration allows the investigation of alterations in the strain induced in the chemical structure of the materials as a result of the induction of piezo force. The combination of chemical characterization with both piezo force and contact resonance [1] microscopy allows for the monitoring of structural and ionic changes using Raman scattering correlated with these modalities. In KTP, it has been seen that the largest changes take place in TiO6 octahedral structure symmetric and antisymmetric stretch in the interfaces between the regions of the poling of the structure. In the LICGC, defined Raman changes are observed that are related to the contact resonance frequency. The combination adds considerable insight into both the techniques of Piezo Force Microscopy and Contact Resonance Microscopy.

  5. Doppler-Shifted Raman Spectroscopy Measures Flows

    NASA Technical Reports Server (NTRS)

    Exton, Reginald J.; Hillard, Mervin E., Jr.; Lempert, Walter R.; Covell, Peter F.; Miller, David S.

    1990-01-01

    Technique for measuring velocity, static pressure, and translational temperature of flowing molecules by use of stimulated Raman spectroscopy demonstrated in supersonic wind tunnel at NASA Langley Research Center. Nonintrusive, accurate wind-tunnel measurements obtained without seeding flows. Optical equipment for vibration-free Raman doppler velocimetry in wind tunnel includes specially designed retrometer that reduces sensitivity of system to vibrations. This capability very valuable in aerodynamic testing and proves useful in wide variety of laboratory, industrial, and engineering applications.

  6. Raman spectroscopy under extreme conditions

    SciTech Connect

    Goncharov, A F; Crowhurst, J C

    2004-11-05

    We report the results of Raman measurements of various materials under simultaneous conditions of high temperature and high pressure in the diamond anvil cell (DAC). High temperatures are generated by laser heating or internal resistive (ohmic) heating or a combination of both. We present Raman spectra of cubic boron nitride (cBN) to 40 GPa and up to 2300 K that show a continuous pressure and temperature shift of the frequency of the transverse optical mode. We have also obtained high-pressure Raman spectra from a new noble metal nitride, which we synthesized at approximately 50 GPa and 2000 K. We have obtained high-temperature spectra from pure nitrogen to 39 GPa and up to 2000 K, which show the presence of a hot band that has previously been observed in CARS measurements. These measurements have also allowed us to constrain the melting curve and to examine changes in the intramolecular potential with pressure.

  7. Coherent Raman spectroscopy for supersonic flow measurments

    NASA Technical Reports Server (NTRS)

    She, C. Y.

    1986-01-01

    In collaboration with NASA/Langley Research Center, a truly nonintrusive and nonseeding method for measuring supersonic molecular flow parameters was proposed and developed at Colorado State University. The feasibility of this Raman Doppler Velocimetry (RDV), currently operated in a scanning mode, was demonstrated not only in a laboratory environment at Colorado State University, but also in a major wind tunnel at NASA/Langley Research Center. The research progress of the RDV development is summarized. In addition, methods of coherent Rayleigh-Brillouin spectroscopy and single-pulse coherent Raman spectroscopy are investigated, respectively, for measurements of high-pressure and turbulent flows.

  8. Process analytical applications of Raman spectroscopy.

    PubMed

    Rantanen, Jukka

    2007-02-01

    There is an increasing demand for new approaches to understand the chemical and physical phenomena that occur during pharmaceutical unit operations. Obtaining real-time information from processes opens new perspectives for safer and more efficient manufacture of pharmaceuticals. Raman spectroscopy provides a molecular level insight into processing, and therefore it is a future process analytical tool. In this review, different applications of Raman spectroscopy in the field of process analysis of pharmaceutical solid dosage forms are summarized. In addition, pitfalls associated with interfacing to the process environment and challenges within data management are discussed.

  9. [Application of depth-analysis of confocal Raman micro-spectroscopy to chirography identification].

    PubMed

    Lin, Hai-Bo; Xu, Xiao-Xuan; Wang, Bin; Yang, Yan-Yong; Yu, Gang; Zhang, Cun-Zhou; Li, Jie

    2005-01-01

    Depth analysis of confocal Raman micro-spectroscopy was applied to chirography identification. The result indicated that depth analysis has potential application to forensic science field, especially in longitudinal identification of ink and inkpad. No matter what the spatial distributions of the signature pen and inkpad are, confocal Raman micro-spectroscopy can longitudinally distinguish those spatial differences. All those suggested that confocal Raman micro-spectroscopy is a fast, simple, high sensitive and non-destructive technique.

  10. Combined coherent anti-Stokes Raman spectroscopy and linear Raman spectroscopy for simultaneous temperature and multiple species measurements.

    PubMed

    Weikl, Markus C; Beyrau, Frank; Kiefer, Johannes; Seeger, Thomas; Leipertz, Alfred

    2006-06-15

    The simultaneous application of pure rotational coherent anti-Stokes Raman spectroscopy (CARS) and vibrational linear Raman spectroscopy (LRS) for the measurement of temperature and species concentrations in combustion systems is demonstrated. In addition to the standard rotational CARS experimental setup, only one detection system (spectrometer and intensified CCD camera) for the collection of the LRS signals was applied. The emission of the broadband dye laser used for CARS was shifted to the deep red to avoid interferences with the LRS signals located in the visible region. First experimental results from a vaporizing propane spray using an engine injection system are shown.

  11. Endoscopic Raman Spectroscopy for Molecular Fingerprinting of Gastric Cancer: Principle to Implementation

    PubMed Central

    2015-01-01

    Currently, positive endoscopic biopsy is the standard criterion for gastric cancer diagnosis but is invasive, often inconsistent, and delayed although early detection and early treatment is the most important policy. Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light. Raman spectrum represents molecular composition of the interrogated volume providing a direct molecular fingerprint. Several investigations revealed that Raman spectroscopy can differentiate normal, dysplastic, and adenocarcinoma gastric tissue with high sensitivity and specificity. Moreover, this technique can indentify malignant ulcer and showed the capability to analyze the carcinogenesis process. Automated on-line Raman spectral diagnostic system raised possibility to use Raman spectroscopy in clinical field. Raman spectroscopy can be applied in many fields such as guiding a target biopsy, optical biopsy in bleeding prone situation, and delineating the margin of the lesion. With wide field technology, Raman spectroscopy is expected to have specific role in our future clinical field. PMID:26106612

  12. Endoscopic Raman Spectroscopy for Molecular Fingerprinting of Gastric Cancer: Principle to Implementation.

    PubMed

    Kim, Hyung Hun

    2015-01-01

    Currently, positive endoscopic biopsy is the standard criterion for gastric cancer diagnosis but is invasive, often inconsistent, and delayed although early detection and early treatment is the most important policy. Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light. Raman spectrum represents molecular composition of the interrogated volume providing a direct molecular fingerprint. Several investigations revealed that Raman spectroscopy can differentiate normal, dysplastic, and adenocarcinoma gastric tissue with high sensitivity and specificity. Moreover, this technique can indentify malignant ulcer and showed the capability to analyze the carcinogenesis process. Automated on-line Raman spectral diagnostic system raised possibility to use Raman spectroscopy in clinical field. Raman spectroscopy can be applied in many fields such as guiding a target biopsy, optical biopsy in bleeding prone situation, and delineating the margin of the lesion. With wide field technology, Raman spectroscopy is expected to have specific role in our future clinical field.

  13. Theory of femtosecond stimulated Raman spectroscopy

    PubMed Central

    Lee, Soo-Y.; Zhang, Donghui; McCamant, David W.; Kukura, Philipp; Mathies, Richard A.

    2005-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique that produces high-resolution (time-resolved) vibrational spectra from either the ground or excited electronic states of molecules, free from background fluorescence. FSRS uses simultaneously a narrow bandwidth ∼1 – 3 ps Raman pump pulse with a continuum ∼30– 50 fs Stokes probe pulse to produce sharp Raman gains, at positions corresponding to vibrational transitions in the sample, riding on top of the continuum Stokes probe spectrum. When FSRS is preceded by a femtosecond actinic pump pulse that initiates the photochemistry of interest, time-resolved Raman spectroscopy can be carried out. We present two theoretical approaches to FSRS: one is based on a coupling of Raman pump and probe light waves with the vibrations in the medium, and another is a quantum-mechanical description. The latter approach is used to discuss the conditions of applicability and limitations of the coupled-wave description. Extension of the quantum-mechanical description to the case where the Raman pump beam is on resonance with an excited electronic state, as well as when FSRS is used to probe a nonstationary vibrational wave packet prepared by an actinic pump pulse, is also discussed. PMID:15303930

  14. Visualizing Cell State Transition Using Raman Spectroscopy

    PubMed Central

    Ichimura, Taro; Chiu, Liang-da; Fujita, Katsumasa; Kawata, Satoshi; Watanabe, Tomonobu M.; Yanagida, Toshio; Fujita, Hideaki

    2014-01-01

    System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC) differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA), which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states. PMID:24409302

  15. Quantitative determinations using portable Raman spectroscopy.

    PubMed

    Navin, Chelliah V; Tondepu, Chaitanya; Toth, Roxana; Lawson, Latevi S; Rodriguez, Jason D

    2017-03-20

    A portable Raman spectrometer was used to develop chemometric models to determine percent (%) drug release and potency for 500mg ciprofloxacin HCl tablets. Parallel dissolution and chromatographic experiments were conducted alongside Raman experiments to assess and compare the performance and capabilities of portable Raman instruments in determining critical drug attributes. All batches tested passed the 30min dissolution specification and the Raman model for drug release was able to essentially reproduce the dissolution profiles obtained by ultraviolet spectroscopy at 276nm for all five batches of the 500mg ciprofloxacin tablets. The five batches of 500mg ciprofloxacin tablets also passed the potency (assay) specification and the % label claim for the entire set of tablets run were nearly identical, 99.4±5.1 for the portable Raman method and 99.2±1.2 for the chromatographic method. The results indicate that portable Raman spectrometers can be used to perform quantitative analysis of critical product attributes of finished drug products. The findings of this study indicate that portable Raman may have applications in the areas of process analytical technology and rapid pharmaceutical surveillance. Published by Elsevier B.V.

  16. Raman spectroscopy of proteins and nucleoproteins.

    PubMed

    Nemecek, Daniel; Stepanek, Josef; Thomas, George J

    2013-01-01

    A protein Raman spectrum comprises discrete bands representing vibrational modes of the peptide backbone and its side chains. The spectral positions, intensities, and polarizations of the Raman bands are sensitive to protein secondary, tertiary, and quaternary structures and to side-chain orientations and local environments. In favorable cases, the Raman spectrum serves as an empirical signature of protein three-dimensional structure, intramolecular dynamics, and intermolecular interactions. Quantitative analysis of Raman spectral series can be further boosted by advanced statistical approaches of factor analysis that allow fitting of specific theoretical models while reducing the amount of analyzed data. Here, the strengths of Raman spectroscopy are illustrated by considering recent applications from the authors' work that address (1) subunit folding and recognition in assembly of the icosahedral bacteriophages, (2) orientations of subunit main chains and side chains in native filamentous viruses, (3) roles of cysteine hydrogen bonding in the folding, assembly, and function of virus structural proteins, and (4) structural determinants of protein/DNA recognition in gene regulatory complexes. Conventional Raman and polarized Raman techniques are surveyed.

  17. Raman spectroscopy of newberyite, hannayite and struvite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Weier, Matt L.; Martens, Wayde N.; Henry, Dermot A.; Mills, Stuart J.

    2005-11-01

    The phosphate minerals hannayite, newberyite and struvite have been studied by Raman spectroscopy using a thermal stage. Hannayite and newberyite are characterised by an intense band at around 980 cm -1 assigned to the v symmetric stretching vibration of the HPO 4 units. In contrast the symmetric stretching mode is observed at 942 cm -1 for struvite. The Raman spectra are characterised by multiple v anti-symmetric stretching bands and v and v bending modes indicating strong distortion of the HPO 4 and PO 4 units. Hannayite and newberyite are defined by bands at 3382 and 3350 cm -1 attributed to HOPO 3 vibrations and hannayite and struvite by bands at 2990, 2973 and 2874 assigned to NH 4+ bands. Raman spectroscopy has proven most useful for the analysis of these 'cave' minerals where complex paragenetic relationships exist between the minerals.

  18. Time-resolved resonance Raman spectroscopy: exploring reactive intermediates.

    PubMed

    Sahoo, Sangram Keshari; Umapathy, Siva; Parker, Anthony W

    2011-10-01

    The study of reaction mechanisms involves systematic investigations of the correlation between structure, reactivity, and time. The challenge is to be able to observe the chemical changes undergone by reactants as they change into products via one or several intermediates such as electronic excited states (singlet and triplet), radicals, radical ions, carbocations, carbanions, carbenes, nitrenes, nitrinium ions, etc. The vast array of intermediates and timescales means there is no single "do-it-all" technique. The simultaneous advances in contemporary time-resolved Raman spectroscopic techniques and computational methods have done much towards visualizing molecular fingerprint snapshots of the reactive intermediates in the microsecond to femtosecond time domain. Raman spectroscopy and its sensitive counterpart resonance Raman spectroscopy have been well proven as means for determining molecular structure, chemical bonding, reactivity, and dynamics of short-lived intermediates in solution phase and are advantageous in comparison to commonly used time-resolved absorption and emission spectroscopy. Today time-resolved Raman spectroscopy is a mature technique; its development owes much to the advent of pulsed tunable lasers, highly efficient spectrometers, and high speed, highly sensitive multichannel detectors able to collect a complete spectrum. This review article will provide a brief chronological development of the experimental setup and demonstrate how experimentalists have conquered numerous challenges to obtain background-free (removing fluorescence), intense, and highly spectrally resolved Raman spectra in the nanosecond to microsecond (ns-μs) and picosecond (ps) time domains and, perhaps surprisingly, laid the foundations for new techniques such as spatially offset Raman spectroscopy. © 2011 Society for Applied Spectroscopy

  19. Raman Spectroscopy Cell-based Biosensors

    PubMed Central

    Notingher, Ioan

    2007-01-01

    One of the main challenges faced by biodetection systems is the ability to detect and identify a large range of toxins at low concentrations and in short times. Cell-based biosensors rely on detecting changes in cell behaviour, metabolism, or induction of cell death following exposure of live cells to toxic agents. Raman spectroscopy is a powerful technique for studying cellular biochemistry. Different toxic chemicals have different effects on living cells and induce different time-dependent biochemical changes related to cell death mechanisms. Cellular changes start with membrane receptor signalling leading to cytoplasmic shrinkage and nuclear fragmentation. The potential advantage of Raman spectroscopy cell-based systems is that they are not engineered to respond specifically to a single toxic agent but are free to react to many biologically active compounds. Raman spectroscopy biosensors can also provide additional information from the time-dependent changes of cellular biochemistry. Since no cell labelling or staining is required, the specific time dependent biochemical changes in the living cells can be used for the identification and quantification of the toxic agents. Thus, detection of biochemical changes of cells by Raman spectroscopy could overcome the limitations of other biosensor techniques, with respect to detection and discrimination of a large range of toxic agents. Further developments of this technique may also include integration of cellular microarrays for high throughput in vitro toxicological testing of pharmaceuticals and in situ monitoring of the growth of engineered tissues.

  20. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  1. Development and biological applications of optical tweezers and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xie, Chang'an

    Optical tweezers is a three-dimensional manipulation tool that employs a gradient force that originates from the single highly focused laser beam. Raman spectroscopy is a molecular analytical tool that can give a highly unique "fingerprint" for each substance by measuring the unique vibrations of its molecules. The combination of these two optical techniques offers a new tool for the manipulation and identification of single biological cells and microscopic particles. In this thesis, we designed and implemented a Laser-Tweezers-Raman-Spectroscopy (LTRS) system, also called the Raman-tweezers, for the simultaneous capture and analysis of both biological particles and non-biological particles. We show that microparticles can be conveniently captured at the focus of a laser beam and the Raman spectra of trapped particles can be acquired with high quality. The LTRS system overcomes the intrinsic Brownian motion and cell motility of microparticles in solution and provides a promising tool for in situ identifying suspicious agents. In order to increase the signal to noise ratio, several schemes were employed in LTRS system to reduce the blank noise and the fluorescence signal coming from analytes and the surrounding background. These techniques include near-infrared excitation, optical levitation, confocal microscopy, and frequency-shifted Raman difference. The LTRS system has been applied for the study in cell biology at the single cell level. With the built Raman-tweezers system, we studied the dynamic physiological processes of single living cells, including cell cycle, the transcription and translation of recombinant protein in transgenic yeast cells and the T cell activation. We also studied cell damage and associated biochemical processes in optical traps, UV radiations, and evaluated heating by near-infrared Raman spectroscopy. These studies show that the Raman-tweezers system is feasible to provide rapid and reliable diagnosis of cellular disorders and can be

  2. Background Elimination and Noise Reduction by Mechanical Modulation Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hinko, Kathleen; Ibeneche, Chieze; Keidel, Andrea; Bartsch, Tobias; Florin, Ernst-Ludwig

    2011-03-01

    Raman spectroscopy is widely used by biophysicists for the molecular identification of cellular substructures. However, there are high levels of background and noise associated with Raman spectra from other molecules in the microscopic detection volume. We present two methods of mechanical modulation for background subtraction and noise reduction in a Raman microscope: (1) a three-axis stage modulation for fixed objects and (2) a separate optical trap modulation for objects in solution. With our technique, we completely eliminate the background in our spectra and improve the signal-to-noise ratio by two orders of magnitude. We applied this technique to lipid vesicles and fission yeast cells in solution. Additionally, we obtained mechanical modulation Raman spectra of fission yeast in three dimensions and observed spatial differences in the molecular composition for different metabolic states of a single yeast cell.

  3. Monitoring lignocellulosic bioethanol production processes using Raman spectroscopy.

    PubMed

    Iversen, Jens A; Ahring, Birgitte K

    2014-11-01

    Process control automation in the emerging biorefinery industry may be achieved by applying effective methods for monitoring compound concentrations during the production processes. This study examines the application of Raman spectroscopy with an excitation wavelength of 785nm and an immersion probe for in situ monitoring the progression of pretreatment, hydrolysis and fermentation processes in the production of lignocellulosic ethanol. Raman signals were attenuated by light scattering cells and lignocellulosic particulates, which the quantification method to some degree could correct for by using an internal standard in the spectra. Allowing particulates to settle by using a slow stirring speed further improved results, suggesting that Raman spectroscopy should be used in combination with continuous separation when used to monitor process mixtures with large amounts of particulates. The root mean square error of prediction (RMSE) of ethanol and glucose measured in real-time was determined to be 0.98g/L and 1.91g/L respectively.

  4. Raman spectroscopy of Alzheimer's diseased tissue

    NASA Astrophysics Data System (ADS)

    Sudworth, Caroline D.; Krasner, Neville

    2004-07-01

    Alzheimer's disease is one of the most common forms of dementia, and causes steady memory loss and mental regression. It is also accompanied by severe atrophy of the brain. However, the pathological biomarkers of the disease can only be confirmed and examined upon the death of the patient. A commercial (Renishaw PLC, UK) Raman system with an 830 nm NIR diode laser was used to analyse brain samples, which were flash frozen at post-mortem. Ethical approval was sought for these samples. The Alzheimer's diseased samples contained a number of biomarkers, including neuritic plaques and tangles. The Raman spectra were examined by order to differentiate between normal and Alzheimer's diseased brain tissues. Preliminary results indicate that Alzheimer's diseased tissues can be differentiated from control tissues using Raman spectroscopy. The Raman spectra differ in terms of peak intensity, and the presence of a stronger amide I band in the 1667 cm-1 region which occurs more prominently in the Alzheimer's diseased tissue. These preliminary results indicate that the beta-amyloid protein originating from neuritic plaques can be identified with Raman spectroscopy.

  5. Detection Of Biochips By Raman And Surface Enhanced Raman Spectroscopies

    NASA Astrophysics Data System (ADS)

    Kantarovich, Keren; Tsarfati, Inbal; Gheber, Levi A.; Haupt, Karsten; Bar, Ilana

    2010-08-01

    Biochips constitute a rapidly increasing research field driven by the versatility of sensing devices and the importance of their applications in the bioanalytical field, drug development, environmental monitoring, food analysis, etc. Common strategies used for creating biochips and for reading them have extensive limitations, motivating development of miniature biochips and label-free formats. To achieve these goals we combined the nano fountain pen method, for printing microscale features with Raman spectroscopy or surface enhanced Raman spectroscopy (SERS) for reading droplets of synthetic receptors. These receptors include molecularly imprinted polymers (MIPs), which are obtained by polymerization of suitable functional and cross-linking monomers around molecular templates. MIPs are characterized by higher physical and chemical stability than biomacromolecules, and therefore are potentially very suitable as recognition elements for biosensors, or biochips. The monitored bands in the Raman and SERS spectra could be related to the taken up compound, allowing direct detection of the template, i.e., the β-blocking drug propranolol in the imprinted droplets, as well as imaging of individual and multiple dots in an array. This study shows that the combination of nanolithography techniques with SERS might open the possibility of miniaturized arrayed MIP sensors with label-free, specific and quantitative detection.

  6. Application of the Raman Spectroscopy to Identification of Titanomagnetites

    NASA Astrophysics Data System (ADS)

    Tatsumi-Petrochilos, L.; Gilder, S. A.; Zinin, P.; Hammer, J. E.; Fuller, M. D.

    2008-12-01

    The titanomagnetite-magnetite series serves as important magnetic carriers in paleomagnetic studies. Commonly Curie points are used to determine the composition of these magnetic phases. However, Curie points generally reflect bulk rock properties and do not provide insight for individual grains. Determination of individual Fe-Ti oxide grains can be done by petrography or with electron microprobe techniques. In contrast to these methods, which require special sample preparation, Raman spectroscopy can be done with minimal preparation. We have therefore investigated the Raman spectra for magnetite, TM20, TM40, and TM60, so that we can identify titanomagnetites with different Ti content in rocks. The samples were prepared following methods of Wanamaker and Moskovitz (1994). The Ti concentrations were verified by thermomagnetic analysis (Gilder and LeGoff, 2005). The Raman spectra were obtained with WITec Raman Confocal Microscope 200 using a green laser. Slight shifts and changes in relative intensities of the peaks at the characteristic wavelengths of the Raman spectra that correspond to different molecular vibrations were observed. These changes can serve to identify the composition of individual titanomagnetite grains. It also enables mapping of the variation of the composition within grains and the distribution of compositions of grains within a rock. We have applied the technique to synthetic Martian samples and found relatively uniform compositions between different grains. In contrast, variable oxide compositions are discerned using the Raman spectroscopy in natural basalts erupted from East Maui volcano.

  7. Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments

    NASA Astrophysics Data System (ADS)

    Brolly, Connor; Parnell, John; Bowden, Stephen

    2016-02-01

    Oxidation on Mars is primarily caused by the high influx of cosmic and solar radiation which interacts with the Martian surface. The evidence of this can be seen in the ubiquitous red colouration of the Martian sediment. This radiation will destroy most signals of life in the top few metres of the Martian surface. If organic carbon (one of the building blocks of life) is present within the accessible Martian sediments, it is very likely that it will have experienced some oxidation. ESA's ExoMars mission set to fly in 2018, has on board a miniaturised Raman spectrometer. As Raman spectroscopy is sensitive to carbonaceous material and will be primarily used to characterise organics, it is essential that the effect oxidation has on the Raman carbon signal is assessed. Oxidised carbonaceous shales were analysed using Raman spectroscopy to assess this issue. Results show that haematite has a band which occurs in the same frequency as the carbon D band, which cannot be distinguished from each other. This can lead to a misidentification of the carbon D band and a misinterpretation of the carbon order. Consequently, caution must be taken when applying Raman spectroscopy for organic carbon analysis in oxidised terrestrial and extraterrestrial environments, including on Mars.

  8. Raman Spectroscopy of Soft Musculoskeletal Tissues

    PubMed Central

    Esmonde-White, Karen

    2015-01-01

    Tendon, ligament, and joint tissues are important in maintaining daily function. They can be affected by disease, age, and injury. Slow tissue turnover, hierarchical structure and function, and nonlinear mechanical properties present challenges to diagnosing and treating soft musculoskeletal tissues. Understanding these tissues in health, disease, and injury is important to improving pharmacologic and surgical repair outcomes. Raman spectroscopy is an important tool in the examination of soft musculoskeletal tissues. This article highlights exciting basic science and clinical/translational Raman studies of cartilage, tendon, and ligament. PMID:25286106

  9. Candida parapsilosis biofilm identification by Raman spectroscopy.

    PubMed

    Samek, Ota; Mlynariková, Katarina; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, Filip; Holá, Veronika; Mahelová, Martina

    2014-12-22

    Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made.

  10. Candida parapsilosis Biofilm Identification by Raman Spectroscopy

    PubMed Central

    Samek, Ota; Mlynariková, Katarina; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, Filip; Holá, Veronika; Mahelová, Martina

    2014-01-01

    Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made. PMID:25535081

  11. Blood proteins analysis by Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.

    2016-04-01

    This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.

  12. The effect of aqueous solution in Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Yuan, Xiaojuan; Dong, Xiao; Gu, Huaimin

    2009-08-01

    In Raman detection, the most popular solution for the samples is tri-distilled water. But the effect of aqueous solution is barely studied in Raman spectroscopy. In fact Raman spectroscopy of solid-state and liquid-state are obvious different. In addition, FWHM of Raman spectral peaks also change evidently. In this paper, several samples were selected for the experiment; including sodium nitrate, sodium nitrite, glucose and caffeine. By comparing the Raman spectroscopy of samples at different concentrations, it is found that the concentration of the sample can affect the strength of Raman spectroscopy, but it can hardly impact FWHM of Raman spectral peaks. By comparing the Raman spectroscopy of liquid-state with the Raman spectroscopy of solid-state, it is observed that the FWHM of some Raman spectral peaks varied obviously; that may be because when the sample was dissolved into the water, the crystal lattice structure was broken, and for some samples atom form became ion form in aqueous solution. Those structural variations caused the variation of the FWHM. The Raman spectroscopy of caffeine aqueous solution at very low concentration was also detected and analyzed. Compared with the Raman spectra of solid-state samples, it is found that some Raman spectral peaks disappeared when the sample was dissolved in water. It is possible that the low concentration of the sample result in the weakening of Raman signals and the disappearing of some weak Raman spectral peaks. Then Ag nanoparticles were added into the caffeine aqueous solution, the results suggest that surface enhanced Raman spectroscopy (SERS) not only can enhance the Raman spectral signal, but also can reduce the effect of aqueous solution. It is concluded that the concentration of sample only affects the strength of Raman spectroscopy; the aqueous solution can affect the FWHM of Raman spectral peaks; and SERS can reduce the effect of aqueous solution.

  13. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma

    PubMed Central

    Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna

    2016-01-01

    Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies. PMID:27725756

  14. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma

    NASA Astrophysics Data System (ADS)

    Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna

    2016-10-01

    Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies.

  15. Detection and Quantitative Analysis of Chemical Species in Hanford Tank Materials Using Raman Spectroscopy Technology: FY94Florida State University Raman Spectroscopy Report

    SciTech Connect

    Reich, F.R.

    1997-08-11

    This report provides a summary of work completed in FY-94 by FSU to develop and investigate the feasibility of using Raman spectroscopy with Hanford tank waste materials. Raman performance impacts from sample morphology, including the effects of absorption, particle size, density, color and refractive index, are discussed. An algorithm for relative species concentration measurement from Raman data is presented. An Algorithm for applying Raman to tank waste core screening is presented and discussed. A library of absorption and Raman spectra are presented that support this work.

  16. Raman spectroscopy and imaging: promising optical diagnostic tools in pediatrics.

    PubMed

    Beleites, C; Bonifacio, A; Codrich, D; Krafft, C; Sergo, V

    2013-01-01

    This review focuses on the use of Raman spectroscopy, an analytical technique based on the inelastic scattering of harmless laser light with biological tissues, as an innovative diagnostic tool in pediatrics. After a brief introduction to explain the fundamental concepts behind Raman spectroscopy and imaging, a short summary is given of the most important and common issues arising when handling spectral data with multivariate statistics. Then, the most relevant papers in which Raman spectroscopy or imaging has been applied with diagnostic purposes to pediatric patients are reviewed, and grouped according to the type of pathology: neoplastic, inflammatory, allergic, malformative as well as other kinds. Raman spectroscopy has been used both in vivo, mostly using optical fibers for tissue illumination, as well as on ex vivo tissue sections in a microscopic imaging approach defined as "spectral histopathology". According to the results reported so far, this technique showed a huge potential for mini- or non-invasive real-time, bedside and intra-operatory diagnosis, as well as for an ex vivo imaging tool in support to pathologists. Despite many studies are limited by the small sample size, this technique is extremely promising in terms of sensitivity and specificity.

  17. Remote adjustable focus Raman spectroscopy probe

    DOEpatents

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1999-01-01

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  18. Drug Stability Analysis by Raman Spectroscopy

    PubMed Central

    Shende, Chetan; Smith, Wayne; Brouillette, Carl; Farquharson, Stuart

    2014-01-01

    Pharmaceutical drugs are available to astronauts to help them overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Here, we present a preliminary investigation of the ability of Raman spectroscopy to quantify mixtures of four drugs; acetaminophen, azithromycin, epinephrine, and lidocaine, with their primary degradation products. The Raman spectra for the mixtures were replicated by adding the pure spectra of the drug and its degradant to determine the relative percent contributions using classical least squares. This multivariate approach allowed determining concentrations in ~10 min with a limit of detection of ~4% of the degradant. These results suggest that a Raman analyzer could be used to assess drug potency, nondestructively, at the time of use to ensure crewmember safety. PMID:25533308

  19. Drug stability analysis by Raman spectroscopy.

    PubMed

    Shende, Chetan; Smith, Wayne; Brouillette, Carl; Farquharson, Stuart

    2014-12-22

    Pharmaceutical drugs are available to astronauts to help them overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Here, we present a preliminary investigation of the ability of Raman spectroscopy to quantify mixtures of four drugs; acetaminophen, azithromycin, epinephrine, and lidocaine, with their primary degradation products. The Raman spectra for the mixtures were replicated by adding the pure spectra of the drug and its degradant to determine the relative percent contributions using classical least squares. This multivariate approach allowed determining concentrations in ~10 min with a limit of detection of ~4% of the degradant. These results suggest that a Raman analyzer could be used to assess drug potency, nondestructively, at the time of use to ensure crewmember safety.

  20. Measurement of lactose crystallinity using Raman spectroscopy.

    PubMed

    Murphy, Bridget M; Prescott, Stuart W; Larson, Ian

    2005-06-01

    Raman spectroscopy (RS) was used to determine the crystallinity of lactose (a commonly used carrier in dry powder inhaler (DPI) formulations). Samples of alpha-lactose monohydrate and amorphous lactose were prepared using ethanol precipitation and lyophilisation respectively. The anomeric forms were confirmed using DSC at a rate of 10 degrees C/min and heated to 250 degrees C. The Raman spectra of both alpha-lactose monohydrate and amorphous lactose were obtained. Distinguishable differences were seen between the two spectra including peak areas and intensities. Depolarisation ratios (rho) of each form were then determined to identify the crystallinity of the lactose carrier samples. At the prominent Raman bands 865 and 1082 cm-1, significant differences in rho values were observed for crystalline (0.80+/-0.07, 0.89+/-0.06 respectively) and amorphous samples (0.44+/-0.07, 0.51+/-0.10).

  1. Remote Adjustable focus Raman Spectroscopy Probe

    SciTech Connect

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1998-07-28

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external to the probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes along working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translate the probe body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  2. Raman spectroscopy system with hollow fiber probes

    NASA Astrophysics Data System (ADS)

    Liu, Bing-hong; Shi, Yi-Wei

    2012-11-01

    A Raman remote spectroscopy system was realized using flexible hollow optical fiber as laser emittion and signal collection probes. A silver-coated hollow fiber has low-loss property and flat transmission characteristics in the visible wavelength regions. Compared with conventional silica optical fiber, little background fluorescence noise was observed with optical fiber as the probe, which would be of great advantages to the detection in low frequency Raman shift region. The complex filtering and focusing system was thus unnecessary. The Raman spectra of CaCO3 and PE were obtained by using the system and a reasonable signal to noise ratio was attained without any lens. Experiments with probes made of conventional silica optical fibers were also conducted for comparisons. Furthermore, a silver-coated hollow glass waveguide was used as sample cell to detect liquid phase sample. We used a 6 cm-long hollow fiber as the liquid cell and Butt-couplings with emitting and collecting fibers. Experiment results show that the system obtained high signal to noise ratio because of the longer optical length between sample and laser light. We also give the elementary theoretical analysis for the hollow fiber sample cell. The parameters of the fiber which would affect the system were discussed. Hollow fiber has shown to be a potential fiber probe or sample cell for Raman spectroscopy.

  3. Raman Spectroscopy for Analysis of Thorium Compounds

    SciTech Connect

    Su, Yin-Fong; Johnson, Timothy J.; Olsen, Khris B.

    2016-05-12

    The thorium fuel cycle is an alternative to the uranium fuel cycle in that when 232Th is irradiated with neutrons it is converted to 233U, another fissile isotope. There are several chemical forms of thorium which are used in the Th fuel cycle. Recently, Raman spectroscopy has become a very portable and facile analytical technique useful for many applications, including e.g. determining the chemical composition of different materials such as for thorium compounds. The technique continues to improve with the development of ever-more sensitive instrumentation and better software. Using a laboratory Fourier-transform (FT)-Raman spectrometer with a 785 nm wavelength laser, we were able to obtain Raman spectra from a series of thorium-bearing compounds of unknown origin. These spectra were compared to the spectra of in-stock-laboratory thorium compounds including ThO2, ThF4, Th(CO3)2 and Th(C2O4)2. The unknown spectra showed very good agreement to the known standards, demonstrating the applicability of Raman spectroscopy for detection and identification of these nuclear materials.

  4. Detecting changes during pregnancy with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  5. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  6. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  7. Raman Spectroscopy: Incorporating the Chemical Dimension into Dermatological Diagnosis

    PubMed Central

    Sharma, Amit; Sharma, Shruti; Zarrow, Anna; Schwartz, Robert A; Lambert, W Clark

    2016-01-01

    Raman spectroscopy provides chemical analysis of tissue in vivo. By measuring the inelastic interactions of light with matter, Raman spectroscopy can determine the chemical composition of a sample. Diseases that are visually difficult to visually distinguish can be delineated based on differences in chemical composition of the affected tissue. Raman spectroscopy has successfully found spectroscopic signatures for skin cancers and differentiated those of benign skin growths. With current and on-going advances in optics and computing, inexpensive and effective Raman systems may soon be available for clinical use. Raman spectroscopy provides direct analyses of skin lesions, thereby improving both disease diagnosis and management. PMID:26955087

  8. Perspective: Two-dimensional resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  9. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization

    NASA Astrophysics Data System (ADS)

    Wagner, Stefan; Dieing, Thomas; Centeno, Alba; Zurutuza, Amaia; Smith, Anderson D.; Östling, Mikael; Kataria, Satender; Lemme, Max C.

    2017-03-01

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between freestanding and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.

  10. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization

    PubMed Central

    2017-01-01

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between free-standing and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems. PMID:28140595

  11. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization.

    PubMed

    Wagner, Stefan; Dieing, Thomas; Centeno, Alba; Zurutuza, Amaia; Smith, Anderson D; Östling, Mikael; Kataria, Satender; Lemme, Max C

    2017-03-08

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between free-standing and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.

  12. Determination of butter adulteration with margarine using Raman spectroscopy.

    PubMed

    Uysal, Reyhan Selin; Boyaci, Ismail Hakki; Genis, Hüseyin Efe; Tamer, Ugur

    2013-12-15

    In this study, adulteration of butter with margarine was analysed using Raman spectroscopy combined with chemometric methods (principal component analysis (PCA), principal component regression (PCR), partial least squares (PLS)) and artificial neural networks (ANNs). Different butter and margarine samples were mixed at various concentrations ranging from 0% to 100% w/w. PCA analysis was applied for the classification of butters, margarines and mixtures. PCR, PLS and ANN were used for the detection of adulteration ratios of butter. Models were created using a calibration data set and developed models were evaluated using a validation data set. The coefficient of determination (R(2)) values between actual and predicted values obtained for PCR, PLS and ANN for the validation data set were 0.968, 0.987 and 0.978, respectively. In conclusion, a combination of Raman spectroscopy with chemometrics and ANN methods can be applied for testing butter adulteration.

  13. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    PubMed

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  14. Toward improving fine needle aspiration cytology by applying Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Becker-Putsche, Melanie; Bocklitz, Thomas; Clement, Joachim; Rösch, Petra; Popp, Jürgen

    2013-04-01

    Medical diagnosis of biopsies performed by fine needle aspiration has to be very reliable. Therefore, pathologists/cytologists need additional biochemical information on single cancer cells for an accurate diagnosis. Accordingly, we applied three different classification models for discriminating various features of six breast cancer cell lines by analyzing Raman microspectroscopic data. The statistical evaluations are implemented by linear discriminant analysis (LDA) and support vector machines (SVM). For the first model, a total of 61,580 Raman spectra from 110 single cells are discriminated at the cell-line level with an accuracy of 99.52% using an SVM. The LDA classification based on Raman data achieved an accuracy of 94.04% by discriminating cell lines by their origin (solid tumor versus pleural effusion). In the third model, Raman cell spectra are classified by their cancer subtypes. LDA results show an accuracy of 97.45% and specificities of 97.78%, 99.11%, and 98.97% for the subtypes basal-like, HER2+/ER-, and luminal, respectively. These subtypes are confirmed by gene expression patterns, which are important prognostic features in diagnosis. This work shows the applicability of Raman spectroscopy and statistical data handling in analyzing cancer-relevant biochemical information for advanced medical diagnosis on the single-cell level.

  15. Raman and infrared spectroscopy of selected vanadates.

    PubMed

    Frost, Ray L; Erickson, Kristy L; Weier, Matt L; Carmody, Onuma

    2005-03-01

    Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V10O28)6-. Decavanadate consists of four distinct VO6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm(-1). Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm(-1) and originate from four distinct VO6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V5O14)3- units. Barnesite is characterised by a single Raman band at 1010 cm(-1), whilst hummerite has Raman bands at 999 and 962 cm(-1). The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO6 sites. Metarossite is characterised by a strong band at 953 cm(-1). These bands are assigned to nu1 symmetric stretching modes of (V6O16)2- units and terminal VO3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm(-1) and in the 803-833 cm(-1) region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to nu3 antisymmetric stretching of (V10O28)6- units or (V5O14)3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm(-1) region and are assigned to the nu2 bending modes of (V10O28)6- units or (V5O14)3- units. Raman bands are observed in the 530-620 cm(-1) region and are assigned to the nu4 bending modes of (V10O28)6- units or (V5O14)3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are probably due to VO

  16. Raman and infrared spectroscopy of selected vanadates

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Erickson, Kristy L.; Weier, Matt L.; Carmody, Onuma

    2005-03-01

    Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V 10O 28) 6-. Decavanadate consists of four distinct VO 6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm -1. Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm -1 and originate from four distinct VO 6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V 5O 14) 3- units. Barnesite is characterised by a single Raman band at 1010 cm -1, whilst hummerite has Raman bands at 999 and 962 cm -1. The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO 6 sites. Metarossite is characterised by a strong band at 953 cm -1. These bands are assigned to ν1 symmetric stretching modes of (V 6O 16) 2- units and terminal VO 3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm -1 and in the 803-833 cm -1 region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to ν 3 antisymmetric stretching of (V 10O 28) 6- units or (V 5O 14) 3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm -1 region and are assigned to the ν2 bending modes of (V 10O 28) 6- units or (V 5O 14) 3- units. Raman bands are observed in the 530-620 cm -1 region and are assigned to the ν4 bending modes of (V 10O 28) 6- units or (V 5O 14) 3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are

  17. Hyper-Raman spectroscopy of Earth related materials

    NASA Astrophysics Data System (ADS)

    Hellwig, H.

    2004-12-01

    conventional Raman and hyper-Raman are complimentary. In many cases the combined information of both techniques can reveal all the vibrational information of a material. This information can be used to calculate thermodynamic properties, to identify mineral phases ('finger-printing'), or to investigate the dynamics related to phase transitions ('soft-modes'). First results on planetary materials will be presented, including MgO and stichovite. Corundum as another possible high pressure transmitting material is characterized as well. Further measurements are underway, including MgSiO3 and CaSiO3 perovskite. [1] A. M. Hofmeister, in: Infrared Spectroscopy in Geochemistry, Exploration Geochemistry, and Remote Sensing, Vol. 33 (ed. P. K. King, M. S. Ramsey, and G. A. Swayze), Mineralogical Society of Canada (2004) [2] P. F. McMillan, R. J. Hemley, and P. Gillet, in : Mineral Spectroscopy: A Tribute to Roger G. Burns, Vol. 5 (ed. D. Dyar, C. McCammon, and M. W. Schaefer), The Geochemical Society Special Publication (1996). [3] H. Vogt, in: Topics in Applied Physics, Vol. 50, Light scattering in solids II (ed. M. Cardonna and G. Guentherodt), Springer-Verlag, Heidelberg, New York (1982).

  18. Raman spectroscopy for diagnosis of glioblastoma multiforme

    NASA Astrophysics Data System (ADS)

    Clary, Candace Elise

    Glioblastoma multiforme (GBM), the most common and most fatal malignant brain tumor, is highly infiltrative and incurable. Although improved prognosis has been demonstrated by surgically resecting the bulk tumor, a lack of clear borders at the tumor margins complicates the selection decision during surgery. This dissertation investigates the potential of Raman spectroscopy for distinguishing between normal and malignant brain tissue and sets the groundwork for a surgical diagnostic guide for resection of gross malignant gliomas. These studies revealed that Raman spectroscopy was capable of discriminating between normal scid mouse brain tissue and human xenograft tumors induced in those mice. The spectra of normal and malignant tissue were normalized by dividing by the respective magnitudes of the peaks near 1440 cm -1. Spectral differences include the shape of the broad peaks near 1440 cm-1 and 1660 cm-1 and the relative magnitudes of the peaks at 1264 cm-1, 1287 cm-1, 1297 cm-1, 1556 cm -1, 1586 cm-1, 1614 cm-1, and 1683 cm-1. From these studies emerged questions regarding how to objectively normalize and compare spectra for future automation. Some differences in the Raman spectra were shown to be inherent in the disease states of the cells themselves via differences in the Raman spectra of normal human astrocytes in culture and cultured cells derived from GBM tumors. The spectra of astrocytes and glioma cells were normalized by dividing by the respective magnitudes of the peaks near 1450 cm-1. The differences between the Raman spectra of normal and transformed cells include the ratio of the 1450 cm-1/1650 cm-1 peaks and the relative magnitudes of the peaks at 1181 cm-1, 1191 cm-1, 1225 cm-1, 1263 cm -1, 1300 cm-1, 1336 cm-1, 1477 cm-1, 1494 cm-1, and 1695 cm -1. Previous Raman spectroscopic studies of biological cells have shown that the magnitude of the Raman signal decreases over time, indicating sample damage. Cells exposed to laser excitation at similar power

  19. [Raman spectroscopy applied to analytical quality control of injectable drugs: analytical evaluation and comparative economic versus HPLC and UV / visible-FTIR].

    PubMed

    Bourget, P; Amin, A; Vidal, F; Merlette, C; Troude, P; Corriol, O

    2013-09-01

    In France, central IV admixture of chemotherapy (CT) treatments at the hospital is now required by law. We have previously shown that the shaping of Therapeutic Objects (TOs) could profit from an Analytical Quality Assurance (AQA), closely linked to the batch release, for the three key parameters: identity, purity, and initial concentration of the compound of interest. In the course of recent and diversified works, we showed the technical superiority of non-intrusive Raman Spectroscopy (RS) vs. any other analytical option and, especially for both HPLC and vibrational method using a UV/visible-FTIR coupling. An interconnected qualitative and economic assessment strongly helps to enrich these relevant works. The study compares in operational situation, the performance of three analytical methods used for the AQC of TOs. We used: a) a set of evaluation criteria, b) the depreciation tables of the machinery, c) the cost of disposables, d) the weight of equipment and technical installations, e) the basic accounting unit (unit of work) and its composite costs (Euros), which vary according to the technical options, the weight of both human resources and disposables; finally, different combinations are described. So, the unit of work can take 12 different values between 1 and 5.5 Euros, and we provide various recommendations. A qualitative evaluation grid constantly places the SR technology as superior or equal to the 2 other techniques currently available. Our results demonstrated: a) the major interest of the non-intrusive AQC performed by RS, especially when it is not possible to analyze a TO with existing methods e.g. elastomeric portable pumps, and b) the high potential for this technique to be a strong contributor to the security of the medication circuit, and to fight the iatrogenic effects of drugs especially in the hospital. It also contributes to the protection of all actors in healthcare and of their working environment.

  20. Electronic resonances in broadband stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  1. Composition of Uranium Oxide Surface Layers Analyzed by m-Raman Spectroscopy

    SciTech Connect

    Siekhaus, W J

    2003-11-24

    Oxide thickness and composition averaged over a few square millimeter has been measured with nm thickness resolution by diffuse reflectance fourier transform infrared (FTIR) spectroscopy. {mu}-Raman spectroscopy has been done on powders and bulk samples in the past, and can now be done on surfaces layers with {micro}m lateral and depth resolution using con-focal microscopy. Here we apply con-focal-microscopy-based {mu}-Raman spectroscopy to a freshly polished/lightly oxidized and to heavily oxidized uranium to determine its sensitivity. The spectra show that {mu}-Raman spectroscopy does detect oxide thickness and oxide composition with high sensitivity.

  2. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    PubMed Central

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-01-01

    Abstract. We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ∼1.5−2  mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies. PMID:25688542

  3. Raman Spectroscopy of Blood and Blood Components.

    PubMed

    Atkins, Chad G; Buckley, Kevin; Blades, Michael W; Turner, Robin F B

    2017-05-01

    Blood is a bodily fluid that is vital for a number of life functions in animals. To a first approximation, blood is a mildly alkaline aqueous fluid (plasma) in which a large number of free-floating red cells (erythrocytes), white cells (leucocytes), and platelets are suspended. The primary function of blood is to transport oxygen from the lungs to all the cells of the body and move carbon dioxide in the return direction after it is produced by the cells' metabolism. Blood also carries nutrients to the cells and brings waste products to the liver and kidneys. Measured levels of oxygen, nutrients, waste, and electrolytes in blood are often used for clinical assessment of human health. Raman spectroscopy is a non-destructive analytical technique that uses the inelastic scattering of light to provide information on chemical composition, and hence has a potential role in this clinical assessment process. Raman spectroscopic probing of blood components and of whole blood has been on-going for more than four decades and has proven useful in applications ranging from the understanding of hemoglobin oxygenation, to the discrimination of cancerous cells from healthy lymphocytes, and the forensic investigation of crime scenes. In this paper, we review the literature in the field, collate the published Raman spectroscopy studies of erythrocytes, leucocytes, platelets, plasma, and whole blood, and attempt to draw general conclusions on the state of the field.

  4. Confocal Raman spectroscopy of whole hairs.

    PubMed

    Pudney, Paul D A; Bonnist, Eleanor Y M; Mutch, Kevin J; Nicholls, Rachel; Rieley, Hugh; Stanfield, Samuel

    2013-12-01

    This paper describes the application of Raman spectroscopy to whole hair fibers. Previously this has proved difficult because the hairs are relatively opaque, and spatial resolution diminishes with depth because of the change in refractive index. A solution is to couple confocal Raman with multivariate curve resolution (MCR) data analysis, which separates spectral differences with depth despite this reduction in resolution. Initially, it is shown that the cuticle can be separated from the cortex, showing the differences in the proteins, which can then be plotted as a function of depth, with the cuticle factor being seen only at the surface as expected. Hairs that had been treated in different ways, e.g., by bleaching, treatment with the active molecule resorcinol followed by rinsing and treatment with a full hair care product, were also examined. In all cases, changes to the hair are identified and are associated with specific parts of the fiber. Since the hair fiber is kept intact, it can be repeatedly treated and measured, hence multistep treatment processes can be followed. This method expands the potential use of Raman spectroscopy in hair research.

  5. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-05-01

    We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.

  6. Thyroid tissue analysis through Raman spectroscopy.

    PubMed

    Teixeira, Caroline S B; Bitar, Renata A; Martinho, Herculano S; Santos, André B O; Kulcsar, Marco A V; Friguglietti, Celso U M; da Costa, Ricardo B; Arisawa, Emilia A L; Martin, Airton A

    2009-11-01

    The diagnosis of thyroid pathologies is usually made by cytologic analysis of the fine needle aspiration (FNA) material. However, this procedure has a low sensitivity at times, presenting a variation of 2-37%. The application of optical spectroscopy in the characterization of alterations could result in the development of a minimally invasive and non-destructive method for the diagnosis of thyroid diseases. Thus, the objective of this work was to study the biochemical alterations of tissues and hormones (T3 and T4) of the thyroid gland by means of molecular vibrations probed by FT-Raman spectroscopy. Through the discriminative linear analysis of the Raman spectra of the tissue, it was possible to establish (in percentages) the correct classification index among the groups: goitre adjacent tissue, goitre nodular region, follicular adenoma, follicular carcinoma and papillary carcinoma. As a result of the comparison between the groups goitre adjacent tissue versus goitre nodular region, an index of 58.3% of correct classification was obtained; this percentage was considered low, and it was not possible to distinguish the Raman spectra of these groups. Between goitre (nodular region and adjacent tissue) versus papillary carcinoma, the index of correct classification was 64.9%, which was considered good. A relevant result was obtained in the analysis of the benign tissues (goitre and follicular adenoma) versus malignant tissues (papillary and follicular carcinomas), for which the index was 72.5% and considered good. It was also possible, by means of visual observation, to find similar vibrational modes in the hormones and pathologic tissues. In conclusion, some biochemical alterations, represented by the FT-Raman spectra, were identified that could possibly be used to classify histologic groups of the thyroid. However, more studies are necessary due to the difficulty in setting a standard for pathologic groups.

  7. Simultaneous Conoscopic Holography and Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    A new instrument was developed for chemical characterization of surfaces that combines the analytical power of Raman spectroscopy with the three-dimensional topographic information provided by conoscopic holography. The figure schematically depicts the proposed hybrid instrument. The output of the conoscopic holographic portion of the instrument is a topographical map of the surface; the output of the Raman portion of the instrument is hyperspectral Raman data, from which the chemical and/or biological composition of the surface would be deduced. By virtue of the basic principles of design and operation of the instrument, the hyperspectral image data would be inherently spatially registered with the topographical data. In conoscopic holography, the object and reference beams of classical holography are replaced by the ordinary and extraordinary components generated by a single beam traveling through a birefringent, uniaxial crystal. In the basic conoscopic configuration, a laser light is projected onto a specimen and the resulting illuminated spot becomes a point source of diffuse light that propagates in every direction. The laser beam is rasterscanned in two dimensions (x and y) perpendicular to the beam axis (z), and at each x,y location, the pattern of interference between the ordinary and extraordinary rays is recorded. The recorded interferogram constitutes the conoscopic hologram. Of particular significance for the proposed instrument is that the conoscopic hologram contains information on the z coordinate (height) of the illuminated surface spot. Hence, a topographical map of the specimen is constructed point-by-point by rastering the laser beam in the x and y directions and correlating the x and y coordinates with the z information obtained from the interferograms. Conoscopic imaging is an established method, and conoscopic laboratory instruments for surface metrology are commercially available. In Raman spectroscopy of a surface, one measures the spectrum

  8. Noise autocorrelation spectroscopy with coherent Raman scattering

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoji G.; Konorov, Stanislav O.; Hepburn, John W.; Milner, Valery

    2008-02-01

    Coherent anti-Stokes Raman scattering (CARS) with femtosecond laser pulses has become a widespread method in nonlinear optical spectroscopy and microscopy. As a third-order nonlinear process, femtosecond CARS exhibits high efficiency at low average laser power. High sensitivity to molecular structure enables detection of small quantities of complex molecules and non-invasive biological imaging. Temporal and spectral resolution of CARS is typically limited by the duration of the excitation pulses and their frequency bandwidth, respectively. Broadband femtosecond pulses are advantageous for time-resolved CARS spectroscopy, but offer poor spectral resolution. The latter can be improved by invoking optical or quantum interference at the expense of increasing complexity of instrumentation and susceptibility to noise. Here, we present a new approach to coherent Raman spectroscopy in which high resolution is achieved by means of deliberately introduced noise. The proposed method combines the efficiency of a coherent process with the robustness of incoherent light. It does require averaging over different noise realizations, but no temporal scanning or spectral pulse shaping as commonly used by frequency-resolved spectroscopic methods with ultrashort pulses.

  9. Exploring many body interactions with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Yao

    Many-body interactions are cornerstones of contemporary solid state physics research. Especially, phonon related interactions such as phonon-phonon coupling, spin-phonon coupling and electron-phonon coupling constantly present new challenges. To study phonon related many-body interactions, temperature dependent Raman spectroscopy is employed. Firstly, a new design and construction of a Raman microscope aimed at high collection eciency, positional and thermal stability is discussed. The application of the home-built Raman microscope is shown in the context of two types of novel materials; Cr2Ge2Te6 (spin-phonon coupling) and Bi2Te3-xSex (phonon-phonon coupling). Cr2Ge2Te6 is one of the rare class of ferromagnetic semiconductors and recent thermal transport studies suggest the spin and lattice are strongly coupled in its cousin compound Cr2Si2Te6. In this work, the spin-phonon coupling in Cr2Ge2Te6 has been revealed in multiple ways: we observed a split of two phonon modes due to the breaking of time reversal symmetry; the anomalous hardening of an additional three modes; and a dramatic enhancement of the phonon lifetimes. It is well-known that the phonon-phonon interaction plays a signicant role in determining the thermal transport properties of thermoelectrics. A comprehensive study of the phonon dynamics of Bi2Te3-xSex has been performed. We found that the unusual temperature dependence of dierent phonon modes originates from both cubic and quartic anharmonicity. These results are consistent with the resonance bonding mechanism, suggesting that the resonance bonding may be a common feature for conventional thermoelectrics. In the Raman spectra of Bi2Te2Se, the origin of the extra Raman feature has been debated for decades. Through a temperature dependent Raman study, we were able to prove the feature is generated by a Te-Se antisite induced local mode. The anomalous linewidth of the local mode as well as the anharmonic behavior were explained through a statistical

  10. Water content and water profiles in skin measured by FTIR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucassen, Gerald W.; Caspers, Peter J.; Puppels, Gerwin J.

    2000-11-01

    We present non-invasive measurements of water content in stratum corneum (SC) by FTIR spectroscopy and water content profiles across the epidermis by Raman microspectroscopy. We apply band fitting to the FTIR spectra to assess changes in SC water content following hydration. While the penetration depth of ATR-FTIR is only a few micrometers, the confocal Raman microspectrometer enables successive collection of Raman spectra at a range of depths below skin surface, with an axial resolution of ca. 5micrometers . Depth resolved water concentration measurements of the epidermis obtained by Raman spectroscopy show clear changes in the water concentration profile as a result of hydration.

  11. Raman Spectroscopy Of Glass-Crystalline Transformations

    NASA Astrophysics Data System (ADS)

    Haro, E.; Balkanski, M.

    1988-01-01

    Glass-crystalline transition is induced by laser irradiation on a GeSe bulk glass sample. The structural changes are detected by Raman spectroscopy. The speed of the crystallization process depends on the laser irradiation intensity. We have studied this crystallization process for three different powers of irradiation. It is found that the speed of crystallization increases with power. Stokes and anti-Stokes spectra were recorded during the transformation. From this data temperature was inferred at different stages of crystallization. The significance of this temperature is discussed.

  12. Characterization of Thalidomide using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cipriani, Penelope; Smith, Candace Y.

    2008-02-01

    Thalidomide is a potent anticancer therapeutic drug whose mechanism of action has not yet been elucidated. In this report, experimental Raman spectroscopy is used to determine and characterize the vibrational frequencies of the drug. These normal modes are then compared to their quantum mechanical counterparts, which have been computed using density functional theory. Upon analysis of the spectra, we found that there was a high level of agreement between the wavenumbers. As such, this spectroscopic technique may be a viable tool for examining the way in which this drug interacts with its target molecules.

  13. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    PubMed Central

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  14. Determining Gender by Raman Spectroscopy of a Bloodstain.

    PubMed

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K

    2017-02-07

    The development of novel methods for forensic science is a constantly growing area of modern analytical chemistry. Raman spectroscopy is one of a few analytical techniques capable of nondestructive and nearly instantaneous analysis of a wide variety of forensic evidence, including body fluid stains, at the scene of a crime. In this proof-of-concept study, Raman microspectroscopy was utilized for gender identification based on dry bloodstains. Raman spectra were acquired in mapping mode from multiple spots on a bloodstain to account for intrinsic sample heterogeneity. The obtained Raman spectroscopic data showed highly similar spectroscopic features for female and male blood samples. Nevertheless, support vector machines (SVM) and artificial neuron network (ANN) statistical methods applied to the spectroscopic data allowed for differentiating between male and female bloodstains with high confidence. More specifically, the statistical approach based on a genetic algorithm (GA) coupled with an ANN classification showed approximately 98% gender differentiation accuracy for individual bloodstains. These results demonstrate the great potential of the developed method for forensic applications, although more work is needed for method validation. When this method is fully developed, a portable Raman instrument could be used for the infield identification of traces of body fluids and to obtain phenotypic information about the donor, including gender and race, as well as for the analysis of a variety of other types of forensic evidence.

  15. UTI diagnosis and antibiogram using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kastanos, Evdokia; Kyriakides, Alexandros; Hadjigeorgiou, Katerina; Pitris, Constantinos

    2009-07-01

    Urinary tract infection diagnosis and antibiogram require a 48 hour waiting period using conventional methods. This results in ineffective treatments, increased costs and most importantly in increased resistance to antibiotics. In this work, a novel method for classifying bacteria and determining their sensitivity to an antibiotic using Raman spectroscopy is described. Raman spectra of three species of gram negative Enterobacteria, most commonly responsible for urinary tract infections, were collected. The study included 25 samples each of E.coli, Klebsiella p. and Proteus spp. A novel algorithm based on spectral ratios followed by discriminant analysis resulted in classification with over 94% accuracy. Sensitivity and specificity for the three types of bacteria ranged from 88-100%. For the development of an antibiogram, bacterial samples were treated with the antibiotic ciprofloxacin to which they were all sensitive. Sensitivity to the antibiotic was evident after analysis of the Raman signatures of bacteria treated or not treated with this antibiotic as early as two hours after exposure. This technique can lead to the development of new technology for urinary tract infection diagnosis and antibiogram with same day results, bypassing urine cultures and avoiding all undesirable consequences of current practice.

  16. Spontaneous transient ultrafast coherent raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Meiselman, Seth

    I explore the application of Transient Coherent Ultrafast Phonon Spectroscopy (TCUPS) to the measurement of vibrational coherence dynamics of liquid alcohols. The demonstrated technique is complementary to and, in some cases, simpler than traditional stimulated spectroscopy techniques in that it does not require more than one laser and is free of non-resonant background. I demonstrate coherence measurements of single-photon-level collective excitations: a single vibrational state at 1033 (1/cm) in; a pair of simultaneous excited vibrational states at 2834 and 2944 (1/cm) in methanol; and three simultaneous excited states at 2885, ˜2930, and 2976 (1/cm) in isopropanol. I develop a Fourier-transform-based analysis of the TCUPS data that overcomes poor signal-to-noise ratio and signal degradation due to etaloning and fluorescence. The coherence lifetimes and oscillation frequencies agree with frequency-domain line-shape measurements and femtosecond Coherent anti-Stokes Raman Scattering (CARS) measurements.

  17. Coronagraphic Notch Filter for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cohen, David; Stirbl, Robert

    2004-01-01

    A modified coronagraph has been proposed as a prototype of improved notch filters in Raman spectrometers. Coronagraphic notch filters could offer alternatives to both (1) the large and expensive double or triple monochromators in older Raman spectrometers and (2) holographic notch filters, which are less expensive but are subject to environmental degradation as well as to limitations of geometry and spectral range. Measurement of a Raman spectrum is an exercise in measuring and resolving faint spectral lines close to a bright peak: In Raman spectroscopy, a monochromatic beam of light (the pump beam) excites a sample of material that one seeks to analyze. The pump beam generates a small flux of scattered light at wavelengths slightly greater than that of the pump beam. The shift in wavelength of the scattered light from the pump wavelength is known in the art as the Stokes shift. Typically, the flux of scattered light is of the order of 10 7 that of the pump beam and the Stokes shift lies in the wave-number range of 100 to 3,000 cm 1. A notch filter can be used to suppress the pump-beam spectral peak while passing the nearby faint Raman spectral lines. The basic principles of design and operation of a coronagraph offer an opportunity for engineering the spectral transmittance of the optics in a Raman spectrometer. A classical coronagraph may be understood as two imaging systems placed end to end, such that the first system forms an intermediate real image of a nominally infinitely distant object and the second system forms a final real image of the intermediate real image. If the light incident on the first telescope is collimated, then the intermediate image is a point-spread function (PSF). If an appropriately tailored occulting spot (e.g., a Gaussian-apodized spot with maximum absorption on axis) is placed on the intermediate image plane, then the instrument inhibits transmission of light from an on-axis source. However, the PSFs of off-axis light sources are

  18. 1064nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials

    Treesearch

    Umesh P. Agarwal

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression...

  19. Controlling protected designation of origin of wine by Raman spectroscopy.

    PubMed

    Mandrile, Luisa; Zeppa, Giuseppe; Giovannozzi, Andrea Mario; Rossi, Andrea Mario

    2016-11-15

    In this paper, a Fourier Transform Raman spectroscopy method, to authenticate the provenience of wine, for food traceability applications was developed. In particular, due to the specific chemical fingerprint of the Raman spectrum, it was possible to discriminate different wines produced in the Piedmont area (North West Italy) in accordance with i) grape varieties, ii) production area and iii) ageing time. In order to create a consistent training set, more than 300 samples from tens of different producers were analyzed, and a chemometric treatment of raw spectra was applied. A discriminant analysis method was employed in the classification procedures, providing a classification capability (percentage of correct answers) of 90% for validation of grape analysis and geographical area provenance, and a classification capability of 84% for ageing time classification. The present methodology was applied successfully to raw materials without any preliminary treatment of the sample, providing a response in a very short time.

  20. Characterization and identification of contraband using UV resonant Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lacey, Richard J.; Hayward, Ian P.; Sands, H. S.; Batchelder, David N.

    1997-02-01

    A range of explosives and narcotics have been examined using Raman spectroscopy with 244 nm excitation. This wavelength of excitation eliminates the fluorescence problems associated with excitation at visible wavelengths. Comparison with spectra obtained using visible excitation reveals that resonance Raman scattering is occurring. This results in simplified spectra, and enhanced Raman scattering efficiencies.

  1. Infrared and NIR Raman spectroscopy in medical microbiology

    NASA Astrophysics Data System (ADS)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  2. In vivo Raman spectroscopy of cervix cancers

    NASA Astrophysics Data System (ADS)

    Rubina, S.; Sathe, Priyanka; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Krishna, C. Murali

    2014-03-01

    Cervix-cancer is the third most common female cancer worldwide. It is the leading cancer among Indian females with more than million new diagnosed cases and 50% mortality, annually. The high mortality rates can be attributed to late diagnosis. Efficacy of Raman spectroscopy in classification of normal and pathological conditions in cervix cancers on diverse populations has already been demonstrated. Our earlier ex vivo studies have shown the feasibility of classifying normal and cancer cervix tissues as well as responders/non-responders to Concurrent chemoradiotherapy (CCRT). The present study was carried out to explore feasibility of in vivo Raman spectroscopic methods in classifying normal and cancerous conditions in Indian population. A total of 182 normal and 132 tumor in vivo Raman spectra, from 63 subjects, were recorded using a fiberoptic probe coupled HE-785 spectrometer, under clinical supervision. Spectra were acquired for 5 s and averaged over 3 times at 80 mW laser power. Spectra of normal conditions suggest strong collagenous features and abundance of non-collagenous proteins and DNA in case of tumors. Preprocessed spectra were subjected to Principal Component-Linear Discrimination Analysis (PCLDA) followed by leave-one-out-cross-validation. Classification efficiency of ~96.7% and 100% for normal and cancerous conditions respectively, were observed. Findings of the study corroborates earlier studies and suggest applicability of Raman spectroscopic methods in combination with appropriate multivariate tool for objective, noninvasive and rapid diagnosis of cervical cancers in Indian population. In view of encouraging results, extensive validation studies will be undertaken to confirm the findings.

  3. Gated Raman Spectroscopy of Twisted Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Huang, Shengqiang; Chattrakun, Kanokporn; Yankowitz, Matthew; Sandhu, Arvinder; Leroy, Brian

    2014-03-01

    The interaction of charge carriers with lattice vibrations in graphene exhibits many intriguing physical phenomena. Raman spectroscopy is a powerful non-destructive technique to probe these interactions. In twisted bilayer graphene, the electronic band structure and phonon dispersion depend on the rotation angle between the layers. Here we present a systematic Raman spectroscopy study of twisted bilayer graphene, using a 532 nm laser, with controllable charge densities up to 2 ×1013cm-2. The twist angle is first identified by the observation of a moire pattern in STM measurements. In the angle range between 5 and 8 degrees, the R' peak softens and weakens with increasing charge density. Near 12 degrees, the G peak is enhanced due to the increased density of states in twisted bilayer graphene. However, the G peak area quickly decreases with increasing charge density. Lastly, we observed several unusual effects for the G peak for all angles from 2 to 10 degrees as a function of increasing charge density. We found that the G peak broadened, split and oscillated in position. All these results demonstrate that twisted bilayer graphene has rich optoelectronic properties.

  4. Resonant Raman spectroscopy of twisted multilayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Jiang-Bin; Zhang, Xin; Ijäs, Mari; Han, Wen-Peng; Qiao, Xiao-Fen; Li, Xiao-Li; Jiang, De-Sheng; Ferrari, Andrea C.; Tan, Ping-Heng

    2014-11-01

    Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientation have different optical and electronic properties. Probing and understanding the interface coupling is thus of primary importance for fundamental science and applications. Here we study twisted multilayer graphene flakes with multi-wavelength Raman spectroscopy. We find a significant intensity enhancement of the interlayer coupling modes (C peaks) due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. The interlayer coupling results in a Davydov splitting of the C peak in systems consisting of two equivalent graphene multilayers. This allows us to directly quantify the interlayer interaction, which is much smaller compared with Bernal-stacked interfaces. This paves the way to the use of Raman spectroscopy to uncover the interface coupling of two-dimensional hybrids and heterostructures.

  5. Combined fiber probe for fluorescence lifetime and Raman spectroscopy

    PubMed Central

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-01-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. PMID:26093843

  6. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  7. Evaluation of thyroid tissue by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Teixeira, C. S. B.; Bitar, R. A.; Santos, A. B. O.; Kulcsar, M. A. V.; Friguglietti, C. U. M.; Martinho, H. S.; da Costa, R. B.; Martin, A. A.

    2010-02-01

    Thyroid gland is a small gland in the neck consisting of two lobes connected by an isthmus. Thyroid's main function is to produce the hormones thyroxine (T4), triiodothyronine (T3) and calcitonin. Thyroid disorders can disturb the production of these hormones, which will affect numerous processes within the body such as: regulating metabolism and increasing utilization of cholesterol, fats, proteins, and carbohydrates. The gland itself can also be injured; for example, neoplasias, which have been considered the most important, causing damage of to the gland and are difficult to diagnose. There are several types of thyroid cancer: Papillary, Follicular, Medullary, and Anaplastic. The occurrence rate, in general is between 4 and 7%; which is on the increase (30%), probably due to new technology that is able to find small thyroid cancers that may not have been found previously. The most common method used for thyroid diagnoses are: anamnesis, ultrasonography, and laboratory exams (Fine Needle Aspiration Biopsy- FNAB). However, the sensitivity of those test are rather poor, with a high rate of false-negative results, therefore there is an urgent need to develop new diagnostic techniques. Raman spectroscopy has been presented as a valuable tool for cancer diagnosis in many different tissues. In this work, 27 fragments of the thyroid were collected from 18 patients, comprising the following histologic groups: goitre adjacent tissue, goitre nodular tissue, follicular adenoma, follicular carcinoma, and papillary carcinoma. Spectral collection was done with a commercial FTRaman Spectrometer (Bruker RFS100/S) using a 1064 nm laser excitation and Ge detector. Principal Component Analysis, Cluster Analysis, and Linear Discriminant Analysis with cross-validation were applied as spectral classification algorithm. Comparing the goitre adjacent tissue with the goitre nodular region, an index of 58.3% of correct classification was obtained. Between goitre (nodular region and

  8. In-line interferometric femtosecond stimulated Raman scattering spectroscopy.

    PubMed

    Dobner, Sven; Groß, Petra; Fallnich, Carsten

    2013-06-28

    We present in-line interferometric femtosecond stimulated Raman scattering (II-FSRS), a new method to measure the spectral Raman intensity and phase over a broad spectral range, potentially in a single shot. An analytic model is developed, that excellently reproduces the measured spectra. Additionally, the performance of II-FSRS is directly compared in experiments to two established techniques, namely femtosecond stimulated Raman scattering and femtosecond Raman induced Kerr-effect spectroscopy.

  9. In situ Raman spectroscopy study of oxidation of nanostructured carbons

    NASA Astrophysics Data System (ADS)

    Osswald, Sebastian

    The ability to synthesize carbon nanostructures, such as fullerenes, carbon nanotubes, nanodiamond, and mesoporous carbon; functionalize their surface; or assemble them into three-dimensional networks has opened new avenues for material design. Carbon nanostructures possess tunable optical, electrical or mechanical properties, making them ideal candidates for numerous applications ranging from composite structures and chemical sensors to electronic devices and medical implants. Unfortunately, current synthesis techniques typically lead to a mixture of different types of carbon rather than a particular nanostructure with defined size and properties. In order to fully exploit the great potential of carbon nanostructures, one needs to provide purification procedures that allow a selective separation of carbon nanostructures, and methods which enable a control of size and surface functionalization. Oxidation is a frequently used method for purification of carbon materials, but it can also damage or destroy the sample. In situ Raman spectroscopy during heating in a controlled environment allows a time-resolved investigation of the oxidation kinetics and can identify the changes in material structure and composition, thus helping to accurately determine optimal purification conditions. However, while carbon allotropes such as graphite and diamond show unique Raman signals and allow a fast and straightforward identification, the interpretation of Raman spectra recorded from nanostructures containing mixtures of sp, sp2 and sp3 bonded carbon is more complex and the origin of some peaks in Raman spectra of nanocarbons is not yet fully understood. In this study we applied in situ Raman spectroscopy to determine conditions for selective oxidation of carbon nanostructures, such as nanodiamond, nanotubes, carbide-derived carbon and carbon onions; accurately measure and control the crystal size; and improve the fundamental understanding of effects of temperature, quantum

  10. Evaluating internal maturity of tomatoes using spatially offset Raman spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Spatially offset Raman spectroscopy technique was investigated for evaluating internal maturity of intact tomatoes. A Raman spectroscopy system was assembled to acquire spatially offset spectra in the wavenumber range of 200–2500 cm–1. A 785-nm laser was used as the excitation source and the measure...

  11. The hallmarks of breast cancer by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Abramczyk, H.; Surmacki, J.; Brożek-Płuska, B.; Morawiec, Z.; Tazbir, M.

    2009-04-01

    This paper presents new biological results on ex vivo breast tissue based on Raman spectroscopy and demonstrates its power as diagnostic tool with the key advantage in breast cancer research. The results presented here demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The goal of the paper is to develop the diagnostic ability of Raman spectroscopy in order to find an optical marker of cancer in the breast tissue. Applications of Raman spectroscopy in breast cancer research are in the early stages of development in the world. To the best of our knowledge, this paper is one of the most statistically reliable reports (1100 spectra, 99 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  12. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    SciTech Connect

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs.

  13. Raman spectroscopy explores molecular structural signatures of hidden materials in depth: Universal Multiple Angle Raman Spectroscopy

    PubMed Central

    Sil, Sanchita; Umapathy, Siva

    2014-01-01

    Non-invasive 3D imaging in materials and medical research involves methodologies such as X-ray imaging, MRI, fluorescence and optical coherence tomography, NIR absorption imaging, etc., providing global morphological/density/absorption changes of the hidden components. However, molecular information of such buried materials has been elusive. In this article we demonstrate observation of molecular structural information of materials hidden/buried in depth using Raman scattering. Typically, Raman spectroscopic observations are made at fixed collection angles, such as, 90°, 135°, and 180°, except in spatially offset Raman scattering (SORS) (only back scattering based collection of photons) and transmission techniques. Such specific collection angles restrict the observations of Raman signals either from or near the surface of the materials. Universal Multiple Angle Raman Spectroscopy (UMARS) presented here employs the principle of (a) penetration depth of photons and then diffuse propagation through non-absorbing media by multiple scattering and (b) detection of signals from all the observable angles. PMID:24930768

  14. Raman spectroscopy of ion irradiated diamond

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Baratta, G. A.; Strazzulla, G.

    2004-07-01

    Ion irradiation experiments of diamond samples at room temperature have been performed by using in situ Raman spectroscopy as diagnostic technique. Different ions are used with energies of 200 or 400 keV. The area of virgin diamond Raman band (at 1332 cm-1) decreases exponentially as the ion fluence increases. This is due to changes in the optical properties of the damaged samples in the visible spectral range. Results from different ions demonstrate that this effect is correlated with the number of displacements/cm2, i.e., with the energy lost by ions through elastic collisions with target nuclei. Amorphous carbon (sp2) is formed after a threshold of about 2×1022 vacancies/cm3, or about 16 eV/C-atom deposited by elastic collisions. The peak position and full width at half maximum of the D line and G line of the synthesized amorphous carbon are studied. In particular, the G-line peak position shifts from the initial 1545 cm-1 to about 1515 cm-1 at the higher doses. The results are also discussed in view of their relevance in astrophysical environments.

  15. Measurement of clathrate hydrates via Raman spectroscopy

    USGS Publications Warehouse

    Sum, A.K.; Burruss, R.C.; Sloan, E.D.

    1997-01-01

    Raman spectra of clathrate hydrate guest molecules are presented for three known structures (I (sI), II (sII), and H (sH)) in the following systems: CH4 (sI), CO2 (sI), C3H8 (sII), CH4 + CO2 (sI), CD4 + C3H8 (sII), CH4 + N2 (sI), CH4 + THF-d8 (sII), and CH4 + C7D14 (sH). Relative occupancy of CH4 in the large and small cavities of sI were determined by deconvoluting the ??1 symmetric bands, resulting in hydration numbers of 6.04 ?? 0.03. The frequency of the ??1 bands for CH4 in structures I, II, and H differ statistically, so that Raman spectroscopy is a potential tool to identify hydrate crystal structure. Hydrate guest compositions were also measured for two vapor compositions of the CH4 + CO2 system, and they compared favorably with predictions. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities. Hydration numbers from 7.27 to 7.45 were calculated for the mixed hydrate.

  16. Raman spectroscopy of hypersonic shock waves

    PubMed

    Ramos; Mate; Tejeda; Fernandez; Montero

    2000-10-01

    Raman spectroscopy is shown to be an efficient diagnostic methodology for the study of hypersonic shock waves. As a test, absolute density and rotational population profiles have been measured across five representative normal shock waves of N2 generated in a free jet, spanning the Mach number range 7.7

  17. Urinalysis by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Lee, Yuan-Hsiang; Kwon, Hyeog; Shahriari, Mahmoud; Rainey, Petrie

    2000-01-01

    The overall objective of this Small Business Technology Transfer Research program is the development of a fiber optic sensor suitable for surface-enhanced Raman spectroscopy that provides reversible, reproducible, quantitative measurements of trace chemicals. The sensor is intended to benefit NASA and the International Space Station in several areas. For example, the sensor could provide real-time measurements for space-based research in the areas of chemistry and biotechnology, it could provide continuous water quality monitoring in the life support systems, or it could provide astronaut health monitoring through urine and blood chemical analysis. This paper describes the development of the SERS based sensor and its application to astronaut health monitoring through urinalysis. .

  18. Detection of hazardous chemicals using field-portable Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wright, Cherylyn W.; Harvey, Scott D.; Wright, Bob W.

    2003-07-01

    A major challenge confronting emergency response, border control, and other security-related functions is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Raman spectroscopy is a rapid, non-intrusive technique that can be used to confidently identify many classes of hazardous and potentially explosive compounds based on molecular vibration information. Advances in instrumentation now allow reliable field - portable measurements to be made. Before the Raman technique can be effectively applied and be accepted within the scientific community, realistic studies must be performed to develop methods, define limitations, and rigorously evaluate its effectiveness. Examples of a variety of chemicals (including neat and diluted chemical warfare [CW] agents, a CW agent precursor, a biological warfare (BW)-related compound, an illicit drug, and explosives) identified using Raman spectroscopy in various types of containers and on surfaces are given, as well as results from a blind field test of 29 unknown samples which included CW agent precursors and/or degradation products, solvents associated with CW agent production, pesticides, explosives, and BW toxins (mostly mycotoxins). Additionally, results of experimental studies to evaluate the analysis of flammable organic solvents, propellants, military explosives, mixtures containing military explosives, shock-sensitive explosives, and gun powders are described with safety guidelines. Spectral masks for screening unknown samples for explosives and nerve agents are given.

  19. Combined fiber probe for fluorescence lifetime and Raman spectroscopy.

    PubMed

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2015-11-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. Graphical Abstract An image comparison between FLIm and Raman spectroscopy acquired with the bimodal probe onseveral tissue samples.

  20. Application of Raman spectroscopy to high-temperature analytical measurements

    SciTech Connect

    Young, J.P.; Dai, S.; Lee, Y.; Xizo, H.

    1997-01-01

    There are numerous analytical applications of scatter-emission and/or absorption spectroscopy applied to liquids and solids at 0 to 350 C. This paper describes an all-silica fiberoptic probe which is useful for spectral analyses from 0 to 1600 K and can be used in harsh chemical environments. The probe has been used for Raman spectral analyses of many molten salt and solid material systems to 1000 C. It has applications for such studies at higher temperature ranges. The instrumentation required along with the demonstrated and proposed applications of the all-silica probe are presented and discussed.

  1. Raman spectroscopy of human saliva for acute myocardial infarction detection

    NASA Astrophysics Data System (ADS)

    Chen, Maowen; Chen, Yuanxiang; Wu, Shanshan; Huang, Wei; Lin, Jinyong; Weng, Guo-Xing; Chen, Rong

    2014-09-01

    Raman spectroscopy is a rapidly non-invasive technique with great potential for biomedical research. The aim of this study was to evaluate the feasibility of using Raman spectroscopy of human saliva for acute myocardial infarction (AMI) detection. Raman spectroscopy measurements were performed on two groups of saliva samples: one group from patients (n=30) with confirmed AMI and the other group from healthy controls (n=31). The diagnostic performance for differentiating AMI saliva from normal saliva was evaluated by multivariate statistical analysis. The combination of principal component analysis (PCA) and linear discriminate analysis (LDA) of the measured Raman spectra separated the spectral features of the two groups into two distinct clusters with little overlaps, rendering the sensitivity of 80.0% and specificity of 80.6%. The results from this exploratory study demonstrated that Raman spectroscopy of human saliva can serve as a potentially clinical tool for rapid AMI detection and screening.

  2. Raman spectroscopy for optical diagnosis of laryngeal cancer

    NASA Astrophysics Data System (ADS)

    Teh, Seng Khoon; Zheng, Wei; Lau, David P.; Huang, Zhiwei

    2008-02-01

    In this report, the diagnostic ability of near-infrared (NIR) Raman spectroscopy for identifying the malignant tumors from normal tissues in the larynx was studied. A rapid NIR Raman system was utilized. Multivariate statistical techniques were employed to develop effective diagnostic algorithms. Raman spectra in the range of 800-1,800 cm-1 differed significantly between normal and malignant tumor tissues. The diagnostic algorithms can yielded a diagnostic sensitivity of 92.9% and specificity 83.3% for separating malignant tumors from normal laryngeal tissues. NIR Raman spectroscopy with multivariate statistical techniques has a potential for the non-invasive detection of malignant tumors in the larynx.

  3. In situ cellular level Raman spectroscopy of the thyroid

    PubMed Central

    Law, Alan Wing Lun; Ahmed, Rafay; Cheung, Tsz Wing; Mak, Chun Yu; Lau, Condon

    2017-01-01

    We report a novel Raman spectroscopy method for in situ cellular level analysis of the thyroid. Thyroids are harvested from control and lithium treated mice. Lithium is used to treat bipolar disorder, but affects thyroid function. Raman spectra are acquired with a confocal setup (514 nm laser, 20 µm spot) focused on a follicular lumen. Raman peaks are observed at 1440, 1656, and 1746 cm−1, corresponding to tyrosine, an important amino acid for protein synthesis. Peaks are also observed at 563, 1087, 1265 and 1301 cm−1. With lithium, the tyrosine peaks increase, indicating tyrosine buildup. Raman spectroscopy can study the impact of many exogenous treatments on thyroid biochemistry. PMID:28270975

  4. In situ cellular level Raman spectroscopy of the thyroid.

    PubMed

    Law, Alan Wing Lun; Ahmed, Rafay; Cheung, Tsz Wing; Mak, Chun Yu; Lau, Condon

    2017-02-01

    We report a novel Raman spectroscopy method for in situ cellular level analysis of the thyroid. Thyroids are harvested from control and lithium treated mice. Lithium is used to treat bipolar disorder, but affects thyroid function. Raman spectra are acquired with a confocal setup (514 nm laser, 20 µm spot) focused on a follicular lumen. Raman peaks are observed at 1440, 1656, and 1746 cm(-1), corresponding to tyrosine, an important amino acid for protein synthesis. Peaks are also observed at 563, 1087, 1265 and 1301 cm(-1). With lithium, the tyrosine peaks increase, indicating tyrosine buildup. Raman spectroscopy can study the impact of many exogenous treatments on thyroid biochemistry.

  5. From Femtosecond Dynamics to Breast Cancer Diagnosis by Raman Spectroscopy

    SciTech Connect

    Abramczyk, H.; Placek, I.; Brozek-Pluska, B.; Kurczewski, K.; Morawiec, Z.; Tazbir, M.

    2007-12-26

    This paper presents new results based on Raman spectroscopy and demonstrates its utilisation as a diagnostic and development tool with the key advantage in breast cancer research. Applications of Raman spectroscopy in cancer research are in the early stages of development. However, research presented here as well as performed in a few other laboratories demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The main goals of bio-Raman spectroscopy at this stage are threefold. Firstly, the aim is to develop the diagnostic ability of Raman spectroscopy so it can be implemented in a clinical environment, producing accurate and rapid diagnoses. Secondly, the aim is to optimize the technique as a diagnostic tool for the non-invasive real time medical applications. Thirdly, the aim is to formulate some hypothesis based on Raman spectroscopy on the molecular mechanism which drives the transformation of normal human cells into highly malignant derivatives. To the best of our knowledge, this is the most statistically reliable report on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  6. The many facets of Raman spectroscopy for biomedical analysis.

    PubMed

    Krafft, Christoph; Popp, Jürgen

    2015-01-01

    A critical review is presented on the use of linear and nonlinear Raman microspectroscopy in biomedical diagnostics of bacteria, cells, and tissues. This contribution is combined with an overview of the achievements of our research group. Linear Raman spectroscopy offers a wealth of chemical and molecular information. Its routine clinical application poses a challenge due to relatively weak signal intensities and confounding overlapping effects. Nonlinear variants of Raman spectroscopy such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) have been recognized as tools for rapid image acquisition. Imaging applications benefit from the fact that contrast is based on the chemical composition and molecular structures in a label-free and nondestructive manner. Although not label-free, surface enhanced Raman scattering (SERS) has also been recognized as a complementary biomedical tool to increase sensitivity. The current state of the art is evaluated, illustrative examples are given, future developments are pointed out, and important reviews and references from the current literature are selected. The topics are identification of bacteria and single cells, imaging of single cells, Raman activated cell sorting, diagnosis of tissue sections, fiber optic Raman spectroscopy, and progress in coherent Raman scattering in tissue diagnosis. The roles of networks-such as Raman4clinics and CLIRSPEC on a European level-and early adopters in the translation, dissemination, and validation of new methods are discussed.

  7. New Applications of Portable Raman Spectroscopy in Agri-Bio-Photonics

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Scully, Rob; Sanders, Virgil

    2014-03-01

    Modern optical techniques based on Raman spectroscopy are being used to monitor and analyze the health of cattle, crops and their natural environment. These optical tools are now available to perform fast, noninvasive analysis of live animals and plants in situ. We will report new applications of a portable handheld Raman spectroscopy to identification and taxonomy of plants. In addition, detection of organic food residues will be demonstrated. Advantages and limitations of current portable instruments will be discussed with suggestions for improved performance by applying enhanced Raman spectroscopic schemes.

  8. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples.

    PubMed

    Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J

    2017-04-01

    Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.

  9. Raman spectroscopy for cancer detection and characterization in metastasis models

    NASA Astrophysics Data System (ADS)

    Koga, Shigehiro; Oshima, Yusuke; Sato, Mitsunori; Ishimaru, Kei; Yoshida, Motohira; Yamamoto, Yuji; Matsuno, Yusuke; Watanabe, Yuji

    2017-02-01

    Raman spectroscopy provides a wealth of diagnostic information to the surgeon with in situ cancer detection and label-free histopathology in clinical practice. Raman spectroscopy is a developing optical technique which can analyze biological tissues with light scattering. The difference in frequencies between the incident light and the scattering light are called Raman shifts, which correspond to the vibrational energy of the molecular bonds. Raman spectrum gives information about the molecular structure and composition in biological specimens. We had been previously reported that Raman spectroscopy could distinguish various histological types of human lung cancer cells from normal cells in vitro. However, to identify and detect cancer diagnostic biomarkers in vivo on Raman spectroscopy is still challenging, because malignancy can be characterized not only by the cancer cells but also by the environmental factors including immune cells, stroma cells, secretion vesicles and extracellular matrix. Here we investigate morphological and molecular dynamics in both cancer cells and their environment in xenograft models and spontaneous metastasis models using Raman spectroscopy combined with fluorescence microscopy and photoluminescence imaging. We are also constructing a custom-designed Raman spectral imaging system for both in vitro and in vivo assay of tumor tissues to reveal the metastasis process and to evaluate therapeutic effects of anti-cancer drugs and their drug delivery toward the clinical application of the technique.

  10. Forensic and homeland security applications of modern portable Raman spectroscopy.

    PubMed

    Izake, Emad L

    2010-10-10

    Modern detection and identification of chemical and biological hazards within the forensic and homeland security contexts may well require conducting the analysis in field while adapting a non-contact approach to the hazard. Technological achievements on both surface and resonance enhancement Raman scattering re-developed Raman spectroscopy to become the most adaptable spectroscopy technique for stand-off and non-contact analysis of hazards. On the other hand, spatially offset Raman spectroscopy proved to be very valuable for non-invasive chemical analysis of hazards concealed within non-transparent containers and packaging. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  12. Raman spectroscopy of gliomas: an exploratory study

    NASA Astrophysics Data System (ADS)

    Shenoy, Mahesh; Hole, Arti R.; Shridhar, E.; Moiyadi, Aliasgar V.; Krishna, C. Murali

    2014-03-01

    Gliomas are extremely infiltrative type of brain cancers, the borders of which are difficult to locate. Gliomas largely consist of tumors of astrocytic or oligodendroglial lineage. Usually stereotactic surgery is performed to obtain tumor tissue sample. Complete excision of these tumors with preservation of uninvolved normal areas is important during brain tumor surgeries. The present study was undertaken to explore feasibility of classifying abnormal and normal glioma tissues with Raman spectroscopy (RS). RS is a nondestructive vibrational spectroscopic technique, which provides information about molecular composition, molecular structures and molecular interactions in tissue. Postoperated 33 (20-abnormal and 13-normal) gliomas tissue samples of different grades were collected under clinical supervision. Five micron section from tissue sample was used for confirmatory histopathological diagnosis while the remaining tissue was placed on CaF2 window and spectra were acquired using a fiberoptic-probe-coupled HE-785 Raman-spectrometer. Spectral acquisition parameters were laser power-80mW, integration-20s and averaged over 3 accumulations. Spectra were pre-processed and subjected to unsupervised Principal-Component Analysis (PCA) to identify trends of classification. Supervised PC-LDA (Principal-Component-Linear-Discriminant Analysis) was used to develop standard-models using spectra of 12 normal and abnormal specimens each. Leave-one-out crossvalidation yielded classification-efficiency of 90% and 80% for normal and abnormal conditions, respectively. Evaluation with an independent-test data-set comprising of 135 spectra of 9 samples provided sensitivity of 100% and specificity of 70%. Findings of this preliminary study may pave way for objective tumor margin assessment during brain surgery.

  13. Sensitivity of Raman spectroscopy to normal patient variability

    NASA Astrophysics Data System (ADS)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  14. Real-time in vivo cancer diagnosis using Raman spectroscopy.

    PubMed

    Wang, Wenbo; Zhao, Jianhua; Short, Michael; Zeng, Haishan

    2015-07-01

    Raman spectroscopy has becoming a practical tool for rapid in vivo tissue diagnosis. This paper provides an overview on the latest development of real-time in vivo Raman systems for cancer detection. Instrumentation, data handling, as well as oncology applications of Raman techniques were covered. Optic fiber probes designs for Raman spectroscopy were discussed. Spectral data pre-processing, feature extraction, and classification between normal/benign and malignant tissues were surveyed. Applications of Raman techniques for clinical diagnosis for different types of cancers, including skin cancer, lung cancer, stomach cancer, oesophageal cancer, colorectal cancer, cervical cancer, and breast cancer, were summarized. Schematic of a real-time Raman spectrometer for skin cancer detection. Without correction, the image captured on CCD camera for a straight entrance slit has a curvature. By arranging the optic fiber array in reverse orientation, the curvature could be effectively corrected. © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sensitivity of Raman spectroscopy to normal patient variability

    PubMed Central

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-01-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease. PMID:22112136

  16. Nanoparticle Based Surface-Enhanced Raman Spectroscopy

    SciTech Connect

    Talley, C E; Huser, T R; Hollars, C W; Jusinski, L; Laurence, T; Lane, S M

    2005-01-03

    Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.

  17. Investigation of biomineralization by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Fatscher, Robert William

    Biomineralization is a process in which living organism grow composite materials consisting of inorganic and organic materials. This produces a composite material consisting of both inorganic and organic components, with superior mechanical properties. In the human body bone and dentin are both examples of biominerals. In this research Raman spectroscopy was used to characterize dentin from mice and human teeth, to determine composition. In the mouse tooth samples areas of irregular dentin were found, along the inside of the tooth, to be in the process of mineralization. By analyzing the samples along these areas we were able to determine the composition of dentin and track how it changed in these area. By analysis of the mineral to matrix ratio the areas of irregular dentin were determined to have less mineral present. Observations of other organic components and collagen in increased concentrations in this area suggested these area were in the process of biomineralization. The understanding of the structure of dentin and its biomineralization process is of crucial importance when trying reproduce dentin. Scientists and engineers are able to produce dentin minerals in vitro by culturing various dental stem cells. The ability to create dentin mineral from cells could lead to methods of repairing dentin in patients, or even lead to the creation of a completely engineered tooth. While dentin-like materials can be produced in a laboratory environment, analysis and comparison of the composition of these materials must be performed to ensure the mineral produced is consistent with dentin. Mineralized nodules from six different dental stem cell lines were cultured to produce a mineralized deposit. Utilizing Raman spectroscopy, we were able to determine cell source dependent differences in a variety of dental stem cells, and compare the mineral produced to native dentin. Orthopedic implants are implants used to replace damaged bone, examples include knee, hip and dental

  18. Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials

    NASA Technical Reports Server (NTRS)

    Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor

    2007-01-01

    This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.

  19. Clinical instrumentation and applications of Raman spectroscopy.

    PubMed

    Pence, Isaac; Mahadevan-Jansen, Anita

    2016-04-07

    Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye - direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient's skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy - light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of delivering

  20. Clinical instrumentation and applications of Raman spectroscopy

    PubMed Central

    Pence, Isaac

    2016-01-01

    Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye – direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient’s skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy – light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of

  1. Fluorescence-free biochemical characterization of cells using modulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    De Luca, Anna C.; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2010-02-01

    The use of Raman spectroscopy for biomedical applications requires overcoming the obstacle of the broad fluorescence background that is generally generated in biological samples. Recently, we have developed a new modulation method for separating the weak Raman peaks from the strong fluorescence background. The novel method is based on the periodical modulation of the excitation wavelength and uses the principle of multi-channel lock-in detection. By continuously modulating the excitation wavelength it is possible to shift the Raman peaks while the fluorescence background remains essentially constant. The powerful capabilities of this novel method are demonstrated by acquiring spectra from different location (nucleus, cytoplasm and membrane) inside a CHO cell. In fact, we show that our modulated Raman spectroscopy provides, with higher efficiency than the standard one, Raman spectra of different locations within a single cell, suggesting that this minimally invasive optical technology could be applied for bio-medical diagnosis and imaging.

  2. Detection of Cervical Cancer Analyzing Blood Samples with Raman Spectroscopy and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    González-Solís, J. L.; Rodríguez-López, J.; Martínez-Espinosa, J. C.; Frausto-Reyes, C.; Jave-Suárez, L. F.; Aguilar-Lemarroy, A. C.; Vargas-Rodríguez, H.; Martínez-Cano, E.

    2010-05-01

    The use of Raman spectroscopy to analyze blood biochemistry and hence distinguish between normal and abnormal blood was investigated. The blood samples were obtained from 20 patients who were clinically diagnosed with cervical cancer and 10 healthy volunteer. The imprint was put under the Olympus microscope and several points were chosen for Raman measurement. All spectra were collected at a Jobin-Yvon LabRAM HR800 Raman Spectrometer with NIR 830 nm laser. It is shown that the serum samples from patients with cervical cancer and from the control group can be discriminated when the multivariate statistical methods of Principal Component Analysis (PCA) and Linear Discriminated Analysis (LDA) is applied to their Raman spectra. The ratios of some band intensities were analyzed and some band ratios were significant and corresponded to proteins, phospholipids, and polysaccharides. The preliminary results suggest that Raman spectroscopy could be a new technique for the detection using just blood samples.

  3. Stage Determination of Breast Cancer Biopsy Using Raman Spectroscopy and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    González-Solís, J. L.; Aguiñaga-Serrano, B. I.; Martínez-Espinosa, J. C.; Oceguera-Villanueva, A.

    2011-08-01

    The use of Raman spectroscopy to analyze biopsy biochemistry and hence distinguish between the breast cancer stages was investigated. The biopsy samples were obtained from 13 patients who were clinically diagnosed with breast cancer. A preliminary diagnosis of some breast cancer patient was realized by pathologist of the Cancer Institute. The biopsies were put under the microscope and several points were chosen for Raman measurement. All spectra were collected at a Jobin-Yvon LabRAM HR800 Raman Spectrometer with a NIR 830 nm laser. It is shown that the breast cancer stages of biopsies can be discriminated when the Principal Components Analysis (PCA) is applied to their Raman spectra. Ratios of some band intensities were analyzed and corresponded to proteins, phospholipids, and polysaccharides. The preliminary results suggest that Raman spectroscopy could be an excellent technique for stage determination of breast cancer.

  4. Applications of spatially offset Raman spectroscopy to defense and security

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Hopkins, Rebecca

    2016-05-01

    Spatially offset Raman spectroscopy (SORS) allows for sub-surface and through barrier detection and has applications in drug analysis, cancer detection, forensic science, as well as defense and security. This paper reviews previous efforts in SORS and other through barrier Raman techniques and presents a discussion on current research in defense and security applications.

  5. Raman spectroscopy of CNC-and CNF-based nanocomposites

    Treesearch

    Umesh P. Agarwal

    2017-01-01

    In this chapter, applications of Raman spectroscopy to nanocelluloses and nanocellulose composites are reviewed, and it is shown how use of various techniques in Raman can provide unique information. Some of the most important uses consisted of identification of cellulose nanomaterials, estimation of cellulose crystallinity, study of dispersion of cellulose...

  6. Continuous gradient temperature Raman spectroscopy of unsaturated fatty acids

    USDA-ARS?s Scientific Manuscript database

    A new innovative technique gradient temperature, Raman spectroscopy (GTRS), identifies Raman frequency shifts in solid or liquid samples, and correlates them with specific temperature ranges within which flexible structures absorb heat. GTRS can easily detect changes that occur within one celcius te...

  7. Cryoprotectant redistribution along the frozen straw probed by Raman spectroscopy.

    PubMed

    Karpegina, Yu A; Okotrub, K A; Brusentsev, E Yu; Amstislavsky, S Ya; Surovtsev, N V

    2016-04-01

    The distribution of cryoprotectant (10% glycerol) and ice along the frozen plastic straw (the most useful container for freezing mammalian semen, oocytes and embryos) was studied by Raman scattering technique. Raman spectroscopy being a contactless, non-invasive tool was applied for the straws filled with the cryoprotectant solution and frozen by controlled rate programs commonly used for mammalian embryos freezing. Analysis of Raman spectra measured at different points along the straw reveals a non-uniform distribution of the cryoprotectant. The ratio between non-crystalline solution and ice was found to be increased by several times at the bottom side of the solution column frozen by the standard freezing program. The increase of the cryoprotectant fraction occurs in the area where embryos or oocytes are normally placed during their freezing. Possible effects of the cooling rate and the ice nucleation temperature on the cryoprotectant fraction at the bottom side of the solution column were considered. Our findings highlight that the ice fraction around cryopreserved embryos or oocytes can differ significantly from the averaged one in the frozen plastic straws.

  8. Raman Spectroscopy for the Investigation of Carbon Based Black Pigments

    NASA Astrophysics Data System (ADS)

    Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P.

    2014-06-01

    Carbon based black pigments play an important role among artists' materials. The disordered structure of these materials is investigated by means of Raman spectroscopy, which helps in the comprehension of their production processes.

  9. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol

    NASA Astrophysics Data System (ADS)

    Cen, Qiongyan; He, Yuhan; Xu, Mei; Wang, Jingjing; Wang, Zhaohui

    2015-03-01

    Resonance broadband stimulated Raman spectroscopy of malachite green in ethanol has been performed. With a tuning picosecond visible laser source and a broadband Raman probe, the Raman gain and loss spectra have been measured simultaneously. By scanning the Raman pump across the first absorption band of the molecule, we found that the resonant Raman bands could be only seen when the pump laser tuned in the range of the red edge of the S1←S0 transition. Dispersive lineshapes of resonant Raman bands have been observed in the Raman loss spectra, while the line shape is normal (same as spontaneous Raman) in the Raman gain spectra. Although, the resonant bands in the loss spectrum are usually stronger than that in the gain spectrum, the band intensities of both loss and gain linearly increase with the pump energy. The relative magnitude of each corresponding resonant band in the Raman loss and gain varies with the pump wavelength. Mode specified Raman excitation profiles have been obtained through broadband stimulated Raman measurement.

  10. [Identification of B jade by Raman spectroscopy].

    PubMed

    Zu, En-dong; Chen, Da-peng; Zhang, Peng-xiang

    2003-02-01

    Raman spectroscopy has been found to be a useful tool for identification of bleached and polymer-impregnated jadeites (so-called B jade). The major advantage of this system over classical methods of gem testing is the non-destructive identification of inclusions in gemstones and the determination of organic fracture filling in jade. Fissures in jadeites have been filled with oils and various resins to enhance their clarity, such as paraffin wax, paraffin oil, AB glue and epoxy resins. They show different peaks depending on their chemical composition. The characteristic spectrum ranges from 1,200-1,700 cm-1 to 2,800-3,100 cm-1. The spectra of resins show that they all have four strongest peaks related with phenyl: two C-C stretching modes at 1,116 and 1,609 cm-1, respectively, one C-H stretching mode at 3,069 cm-1, and a in-plane C-H bending mode at 1,189 cm-1. In addition, other two -CH2, -CH3 stretching modes at 2,906 and 2,869 cm-1, respectively, are very similar to paraffin. Therefore, the peaks at 1,116, 1,609, 1,189 and 3,069 cm-1 are important in distinguishing resin from paraffin, and we can identify B jade depending on them.

  11. Spatially offset Raman spectroscopy based on a line-scan hyperspectral Raman system

    USDA-ARS?s Scientific Manuscript database

    Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. The current methods of SORS measurement are typically either slow due to mechanical move...

  12. Approximate chemical analysis of volcanic glasses using Raman spectroscopy

    PubMed Central

    Morgavi, Daniele; Hess, Kai‐Uwe; Neuville, Daniel R.; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B.

    2015-01-01

    The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd PMID:27656038

  13. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide].

    PubMed

    Lin, Lei; Wu, Rui-mei; Liu, Mu-hua; Wang, Xiao-bin; Yan, Lin-yuan

    2015-02-01

    Surface-enhanced Raman spectroscopy (SERS) technique was used to analyze the Raman peaks of thiabendazole pesticides in the present paper. Surface enhanced substrates of silver nanoparticle were made based on microwave technology. Raman signals of thiabendazole were collected by laser Micro-Raman spectrometer with 514. 5 and 785 nm excitation wavelengths, respectively. The Raman peaks at different excitation wavelengths were analyzed and compared. The Raman peaks 782 and 1 012 at 785 nm excitation wavelength were stronger, which were C--H out-of-plane vibrations. While 1284, 1450 and 1592 cm(-1) at 514.5 nm excitation wavelength were stronger, which were vng and C==N stretching. The study results showed that the intensity of Raman peak and Raman shift at different excitation wavelengths were different And strong Raman signals were observed at 782, 1012, 1284, 1450 and 1592 cm(-1) at 514.5 and 785 nm excitation wavelengths. These characteristic vibrational modes are characteristic Raman peaks of carbendazim pesticide. The results can provide basis for the rapid screening of pesticide residue in agricultural products and food based on Raman spectrum.

  14. Rapid monitoring of benzylpenicillin sodium using Raman and surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Xin; Qin, Xiaoyu; Yin, Di; Gong, Mengdi; Yang, Libin; Zhao, Bing; Ruan, Weidong

    2015-04-01

    At present, fluorescence spectroscopy, ultraviolet spectroscopy and infrared spectroscopy are usually used to detect drug molecules, however the information about using Raman spectroscopy to detect drug molecules is very few. In this work normal Raman spectroscopy and surface-enhanced Raman spectroscopy were utilized to study benzylpenicillin sodium (NaBP). The results show that NaBP is close to the surface of silver substrate through the carboxyl group, and the detection limit of NaBP is reduced to 1 × 10-7 mol/L. Accordingly, the quantitative analysis of NaBP can be carried out in the range of 1 × 10-4-1 × 10-7 mol/L concentration. And it is proved that NaBP is not stable in acid and alkali conditions and the decomposition reaction is very complex.

  15. Rapid monitoring of benzylpenicillin sodium using Raman and surface enhanced Raman spectroscopy.

    PubMed

    Jiang, Xin; Qin, Xiaoyu; Yin, Di; Gong, Mengdi; Yang, Libin; Zhao, Bing; Ruan, Weidong

    2015-04-05

    At present, fluorescence spectroscopy, ultraviolet spectroscopy and infrared spectroscopy are usually used to detect drug molecules, however the information about using Raman spectroscopy to detect drug molecules is very few. In this work normal Raman spectroscopy and surface-enhanced Raman spectroscopy were utilized to study benzylpenicillin sodium (NaBP). The results show that NaBP is close to the surface of silver substrate through the carboxyl group, and the detection limit of NaBP is reduced to 1×10(-7) mol/L. Accordingly, the quantitative analysis of NaBP can be carried out in the range of 1×10(-4)-1×10(-7) mol/L concentration. And it is proved that NaBP is not stable in acid and alkali conditions and the decomposition reaction is very complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Raman spectroscopy characterization of uranium hydride and deuteride

    NASA Astrophysics Data System (ADS)

    Zhang, Guangfeng; Wang, Xiaolin; Lv, Junbo

    2015-03-01

    Raman spectroscopy has been used to characterize uranium hydride and deuteride. Raman shifts of UH3 and UD3 are evident to be inversely proportional to the square root of the mass of hydrogen isotope. The typical Raman peaks of UH3 and UD3 can be characterized by the mass difference of hydrogen isotope for one another. In addition, Raman peaks of uranium hydride and deuteride are identified to be at 725 and 938 cm-1 for UH3 and 518 and 669 cm-1 for UD3, respectively.

  17. Determination of nanotubes properties by Raman spectroscopy.

    PubMed

    Jorio, A; Saito, R; Dresselhaus, G; Dresselhaus, M S

    2004-11-15

    The basic concepts and characteristics of Raman spectra from single-wall carbon nanotubes (SWNTs, both isolated and bundled) are presented. The physical properties of the SWNTs are introduced, followed by the conceptual framework and characteristics of their Raman spectra. Each Raman feature, namely the radial breathing mode, the tangential G band, combination modes and disorder-induced bands are discussed, addressing their physical origin, as well as their capability for characterizing SWNT properties.

  18. [Rapid identification of potato cultivars using NIR-excited fluorescence and Raman spectroscopy].

    PubMed

    Dai, Fen; Bergholt, Mads Sylvest; Benjamin, Arnold Julian Vinoj; Hong, Tian-Sheng; Zhiwei, Huang

    2014-03-01

    Potato is one of the most important food in the world. Rapid and noninvasive identification of potato cultivars plays a important role in the better use of varieties. In this study, The identification ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy and NIR fluorescence spectroscopy, for invasive detection of potato cultivars was evaluated. A rapid NIR Raman spectroscopy system was applied to measure the composite Raman and NIR fluorescence spectroscopy of 3 different species of potatoes (98 samples in total) under 785 nm laser light excitation. Then pure Raman and NIR fluorescence spectroscopy were abstracted from the composite spectroscopy, respectively. At last, the partial least squares-discriminant analysis (PLS-DA) was utilized to analyze and classify Raman spectra of 3 different types of potatoes. All the samples were divided into two sets at random: the calibration set (74samples) and prediction set (24 samples), the model was validated using a leave-one-out, cross-validation method. The results showed that both the NIR-excited fluorescence spectra and pure Raman spectra could be used to identify three cultivars of potatoes. The fluorescence spectrum could distinguish the Favorita variety well (sensitivity: 1, specificity: 0.86 and accuracy: 0.92), but the result for Diamant (sensitivity: 0.75, specificity: 0.75 and accuracy: 0. 75) and Granola (sensitivity: 0.16, specificity: 0.89 and accuracy: 0.71) cultivars identification were a bit poorer. We demonstrated that Raman spectroscopy uncovered the main biochemical compositions contained in potato species, and provided a better classification sensitivity, specificity and accuracy (sensitivity: 1, specificity: 1 and accuracy: 1 for all 3 potato cultivars identification) among the three types of potatoes as compared to fluorescence spectroscopy.

  19. Dispersive Raman spectroscopy allows the identification and quantification of melanin types

    PubMed Central

    Galván, Ismael; Jorge, Alberto

    2015-01-01

    Melanins are the most prevalent pigments in animals and are involved in visual communication by producing colored traits that often evolve as intraspecific signals of quality. Identifying and quantifying melanins are therefore essential to understand the function and evolution of melanin-based signals. However, the analysis of melanins is difficult due to their insolubility and the lack of simple methods that allow the identification of their chemical forms. We recently proposed the use of Raman spectroscopy as a simple, noninvasive technique that can be used to identify and quantify melanins in feathers and hairs. Contrarily, other authors later stated that melanins are characterized by a lack of defined Raman signals. Here, we use confocal Raman microscopy to confirm previous analyses showing that the two main chemical forms of melanins (eumelanin and pheomelanin) exhibit distinct Raman signal and compare different excitation wavelengths to analyze synthetic pheomelanin and natural melanins in feathers of different species of birds. Our analyses indicate that only laser excitation wavelengths below 1064 nm are useful for the analysis of melanins by Raman spectroscopy, and only 780-nm laser in the case of melanins in feathers. These findings show that the capacity of Raman spectroscopy to distinguish different chemical forms of melanins depends on laser power and integration time. As a consequence, Raman spectroscopy should be applied after preliminar analyses using a range of these parameters, especially in fragile biological tissues such as feathers. PMID:25897382

  20. Micro-Raman spectroscopy for meat type detection

    NASA Astrophysics Data System (ADS)

    De Biasio, M.; Stampfer, P.; Leitner, R.; Huck, C. W.; Wiedemair, V.; Balthasar, D.

    2015-06-01

    The recent horse meat scandal in Europe increased the demand for optical sensors that can identify meat type. Micro-Raman spectroscopy is a promising technique for the discrimination of meat types. Here, we present micro-Raman measurements of chicken, pork, turkey, mutton, beef and horse meat test samples. The data was analyzed with different combinations of data normalization and classification approaches. Our results show that Raman spectroscopy can discriminate between different meat types. Red and white meat are easily discriminated, however a sophisticated chemometric model is required to discriminate species within these groups.

  1. On the Contribution of Raman Spectroscopy to Forensic Science

    NASA Astrophysics Data System (ADS)

    Buzzini, Patrick; Massonnet, Genevieve

    2010-08-01

    Raman spectroscopy has only recently sparked interest from forensic laboratories. The Raman technique has demonstrated important advantages such as its nondestructive nature, its fast analysis time, and especially the possibility of performing microscopical in situ analyses. In forensic applications, it is a versatile technique that covers a wide spectrum of substances such as trace evidence, illicit drugs and inks. An overview of the recent developments of Raman spectroscopy in forensic science will be discussed. Also, the requirements for an analytical technique for the examination of physical evidence will be described. Examples of casework will be depicted.

  2. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials.

    PubMed

    Li, Ying-Sing; Church, Jeffrey S

    2014-03-01

    Raman scattering is an inelastic phenomenon. Although its cross section is very small, recent advances in electronics, lasers, optics, and nanotechnology have made Raman spectroscopy suitable in many areas of application. The present article reviews the applications of Raman spectroscopy in food and drug analysis and inspection, including those associated with nanomaterials. Brief overviews of basic Raman scattering theory, instrumentation, and statistical data analysis are also given. With the advent of Raman enhancement mechanisms and the progress being made in metal nanomaterials and nanoscale metal surfaces fabrications, surface enhanced Raman scattering spectroscopy has become an extra sensitive method, which is applicable not only for analysis of foods and drugs, but also for intracellular and intercellular imaging. A Raman spectrometer coupled with a fiber optics probe has great potential in applications such as monitoring and quality control in industrial food processing, food safety in agricultural plant production, and convenient inspection of pharmaceutical products, even through different types of packing. A challenge for the routine application of surface enhanced Raman scattering for quantitative analysis is reproducibility. Success in this area can be approached with each or a combination of the following methods: (1) fabrication of nanostructurally regular and uniform substrates; (2) application of statistic data analysis; and (3) isotopic dilution.

  3. Raman Spectroscopy as an Accurate Probe of Defects in Graphene

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin; Barros, Eduardo; Saito, Riichiro; Dresselhaus, Mildred

    2014-03-01

    Raman Spectroscopy has proved to be an invaluable non-destructive technique that allows us to obtain intrinsic information about graphene. Furthermore, defect-induced Raman features, namely the D and D' bands, have previously been used to assess the purity of graphitic samples. However, quantitative studies of the signatures of the different types of defects on the Raman spectra is still an open problem. Experimental results already suggest that the Raman intensity ratio ID /ID' may allow us to identify the nature of the defects. We study from a theoretical point of view the power and limitations of Raman spectroscopy in the study of defects in graphene. We derive an analytic model that describes the Double Resonance Raman process of disordered graphene samples, and which explicitly shows the role played by both the defect-dependent parameters as well as the experimentally-controlled variables. We compare our model with previous Raman experiments, and use it to guide new ways in which defects in graphene can be accurately probed with Raman spectroscopy. We acknowledge support from NSF grant DMR1004147.

  4. Snapshot depth sensitive Raman spectroscopy in layered tissues.

    PubMed

    Liu, Wei; Ong, Yi Hong; Yu, Xiao Jun; Ju, Jian; Perlaki, Clint Michael; Liu, Lin Bo; Liu, Quan

    2016-12-12

    Depth sensitive Raman spectroscopy has been shown effective in the detection of depth dependent Raman spectra in layered tissues. However, the current techniques for depth sensitive Raman measurements based on fiber-optic probes suffer from poor depth resolution and significant variation in probe-sample contact. In contrast, those lens based techniques either require the change in objective-sample distance or suffer from slow spectral acquisition. We report a snapshot depth-sensitive Raman technique based on an axicon lens and a ring-to-line fiber assembly to simultaneously acquire Raman signals emitted from five different depths in the non-contact manner without moving any component. A numerical tool was developed to simulate ray tracing and optimize the snapshot depth sensitive setup to achieve the tradeoff between signal collection efficiency and depth resolution for Raman measurements in the skin. Moreover, the snapshot system was demonstrated to be able to acquire depth sensitive Raman spectra from not only transparent and turbid skin phantoms but also from ex vivo pork tissues and in vivo human thumbnails when the excitation laser power was limited to the maximum permissible exposure for human skin. The results suggest the great potential of snapshot depth sensitive Raman spectroscopy in the characterization of the skin and other layered tissues in the clinical setting or other similar applications such as quality monitoring of tablets and capsules in pharmaceutical industry requiring the rapid measurement of depth dependent Raman spectra.

  5. Calibration of Raman spectroscopy at 1064 nm for beeswax quantification.

    PubMed

    Pan, A; Chiussi, S; Serra, J; González, P; León, B

    2007-11-01

    In the early sixties, coating with molten beeswax was considered a valuable method for preventing the erosive action of weather and/or salinity on the surface of granite sculptures and monuments. This technique had been traditionally employed by the Galician stoneworkers for partial repair of historical monuments. For this purpose, beeswax was applied to the Renaissance Frieze in the Cloister of the Cathedral of Santiago de Compostela in Galicia (Northwest Spain). The beeswax treatment was counterproductive. An intense grain disaggregation of the granite can be observed in the Frieze, owing to the crystallization of salts. As a consequence, the restoration of the Cloister presents many problems. This fact imposes the need for an exhaustive study of the wax-stone system and the demand for a nondestructive method to measure the beeswax thickness at the stone surface. The aim of this contribution is the evaluation of a laser-based method, namely Fourier transform Raman spectroscopy, for analyzing the wax presence in specific rocky material of the Frieze to be restored. To obtain a reliable quantitative calibration, we prepared beeswax films of five different thicknesses on aluminum plates (26.6-97.2 microm). Nylon was selected as external reference to obtain the Raman emission independently from the laser beam power. The ratios of the relative intensities of the Raman bands corresponding to beeswax and nylon were used for the construction of a calibration curve used for the quantitative analysis. The intensities at 2879 cm(-1), I(c2879), and 2880 cm(-1), I(n2880), for beeswax and nylon, respectively, in the Raman spectra of each material were used. A linear dependence was found for the ratio I(c2879)/I(n2880) with the beeswax thickness. The validation of this calibration curve was tested with a second validation set of samples that spans beeswax film thicknesses both inside and outside the calibration range (12.1 to 180 mum), in order to evaluate in addition the

  6. Coherent anti-Stokes Raman spectroscopy: Understanding the essentials

    NASA Astrophysics Data System (ADS)

    Ariunbold, Gombojav O.; Altangerel, Narangerel

    2016-12-01

    This paper is a brief overview to coherent anti- Stokes Raman spectroscopic technique and introduces the strengths and barriers to its use all based on the interpretation of simple theoretical formulae. The use of the Gaussian ultrashort pulses is highlighted as a practical elucidatory reconstruction tool of coherent Raman spectra. The paper presents the integral formulae for coherent anti-Stokes and Stokes Raman scattering, and discusses the closed-form solutions, its complex error function, and the delay time formula for enhancement of the inferred pure coherent Raman spectra. As an example, the timeresolved coherent Stokes Raman scattering experimental observations are quantitatively elucidated.Understanding the essentials of coherent Raman spectroscopy, therefore, promotes the importance of a number of experiments including the ones utilizing a broadband excitation with a narrowband delayed probing for successful background suppression.

  7. Phenotypic Profiling of Antibiotic Response Signatures in Escherichia coli Using Raman Spectroscopy

    PubMed Central

    Athamneh, A. I. M.; Alajlouni, R. A.; Wallace, R. S.; Seleem, M. N.

    2014-01-01

    Identifying the mechanism of action of new potential antibiotics is a necessary but time-consuming and costly process. Phenotypic profiling has been utilized effectively to facilitate the discovery of the mechanism of action and molecular targets of uncharacterized drugs. In this research, Raman spectroscopy was used to profile the phenotypic response of Escherichia coli to applied antibiotics. The use of Raman spectroscopy is advantageous because it is noninvasive, label free, and prone to automation, and its results can be obtained in real time. In this research, E. coli cultures were subjected to three times the MICs of 15 different antibiotics (representing five functional antibiotic classes) with known mechanisms of action for 30 min before being analyzed by Raman spectroscopy (using a 532-nm excitation wavelength). The resulting Raman spectra contained sufficient biochemical information to distinguish between profiles induced by individual antibiotics belonging to the same class. The collected spectral data were used to build a discriminant analysis model that identified the effects of unknown antibiotic compounds on the phenotype of E. coli cultures. Chemometric analysis showed the ability of Raman spectroscopy to predict the functional class of an unknown antibiotic and to identify individual antibiotics that elicit similar phenotypic responses. Results of this research demonstrate the power of Raman spectroscopy as a cellular phenotypic profiling methodology and its potential impact on antibiotic drug development research. PMID:24295982

  8. Phenotypic profiling of antibiotic response signatures in Escherichia coli using Raman spectroscopy.

    PubMed

    Athamneh, A I M; Alajlouni, R A; Wallace, R S; Seleem, M N; Senger, R S

    2014-01-01

    Identifying the mechanism of action of new potential antibiotics is a necessary but time-consuming and costly process. Phenotypic profiling has been utilized effectively to facilitate the discovery of the mechanism of action and molecular targets of uncharacterized drugs. In this research, Raman spectroscopy was used to profile the phenotypic response of Escherichia coli to applied antibiotics. The use of Raman spectroscopy is advantageous because it is noninvasive, label free, and prone to automation, and its results can be obtained in real time. In this research, E. coli cultures were subjected to three times the MICs of 15 different antibiotics (representing five functional antibiotic classes) with known mechanisms of action for 30 min before being analyzed by Raman spectroscopy (using a 532-nm excitation wavelength). The resulting Raman spectra contained sufficient biochemical information to distinguish between profiles induced by individual antibiotics belonging to the same class. The collected spectral data were used to build a discriminant analysis model that identified the effects of unknown antibiotic compounds on the phenotype of E. coli cultures. Chemometric analysis showed the ability of Raman spectroscopy to predict the functional class of an unknown antibiotic and to identify individual antibiotics that elicit similar phenotypic responses. Results of this research demonstrate the power of Raman spectroscopy as a cellular phenotypic profiling methodology and its potential impact on antibiotic drug development research.

  9. Raman and surface-enhanced Raman spectroscopy for renal condition monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingting; Li, Ming; Du, Yong; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2016-03-01

    Non- and minimally-invasive techniques can provide advantages in the monitoring and clinical diagnostics in renal diseases. Although renal biopsy may be useful in establishing diagnosis in several diseases, it is an invasive approach and impractical for longitudinal disease monitoring. To address this unmet need, we have developed two techniques based on Raman spectroscopy. First, we have investigated the potential of diagnosing and staging nephritis by analyzing kidney tissue Raman spectra using multivariate techniques. Secondly, we have developed a urine creatinine sensor based on surface-enhanced Raman spectroscopy with performance near commercial assays which require relatively laborious sample preparation and longer time.

  10. Applications of Fourier transform Raman and infrared spectroscopy in forensic sciences

    NASA Astrophysics Data System (ADS)

    Kuptsov, Albert N.

    2000-02-01

    First in the world literature comprehensive digital complementary vibrational spectra collection of polymer materials and search system was developed. Non-destructive combined analysis using complementary FT-Raman and FTIR spectra followed by cross-parallel searching on digital spectral libraries, was applied in different fields of forensic sciences. Some unique possibilities of Raman spectroscopy has been shown in the fields of examination of questioned documents, paper, paints, polymer materials, gemstones and other physical evidences.

  11. Micro-Raman spectroscopy on oral tissues

    NASA Astrophysics Data System (ADS)

    Zenone, F.; Lepore, M.; Perna, G.; Carmone, P.; Riccio, R.; Gaeta, G. M.; Capozzi, V.

    2006-02-01

    Micro-Raman Spectroscopy (μ-RS) provides a unique tool in medicine for a not invasive and real time analysis of biological tissue for biopsy and "in vivo" investigation. Based on the evaluation of molecular vibration frequencies, the μ-RS is able to detect the main molecular bonds of protein constituents, as the C-H and C-C ones. Changes in frequency or in the relative intensity of the vibration modes revealed by μ-RS can be related to changes of chemical bond and of protein structure induced by pathology. The μ-RS has been performed on samples of oral tissue from informed patients, affected by pemphigus vulgaris (an oral pathology) in an advanced regression state. The biopsies were thin slices (about 1mm thick) with 6mm diameter. The sample was measured through a 170 μm thick cover-glass. The experimental set-up was mainly composed by a He-Ne laser and a monochromator equipped with a Peltier cell and with a grating of 1800 grooves/mm. The laser light was focused on the sample surface by means of a long focal length 50X optical objective. The main protein bonds are clearly detectable in the considered samples and this give important information on the integrity and on the state of tissue components (lipids and proteins), and consequently on the occurrence of pathology. The potential application of this method for in vivo analysis is an invaluable alternative to biopsy and pathological examinations for many medical application as screening diagnostic, therapy progress examination, and surgical support.

  12. Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation.

    PubMed

    Eckbreth, A C; Anderson, T J

    1986-08-01

    A new approach to pure rotational coherent anti-Stokes Raman spectroscopy (CARS) and coherent Stokes Raman spectroscopy (CSRS) is demonstrated in which the pump and broadband Stokes lasers that are mixed have a large and arbitrary spectral separation. In this method, the rotational Raman coherences are established by different frequency components within the single, broadband Stokes source. The narrow band then scatters from the excited coherences, producing CARS and CSRS simultaneously. We discuss phase matching for this new technique and its inherent advantages relative to pure rotational CARS as normally implemented.

  13. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    SciTech Connect

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-07-14

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  14. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    PubMed

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately.

  15. Raman spectroscopy for planetary exploration and characterization of extraterrestrial materials

    NASA Astrophysics Data System (ADS)

    Acosta-Maeda, Tayro E.

    The sharp spectral features of Raman spectra are widely recognized to provide unequivocal and accurate chemical characterization of organic and inorganic compounds. Therefore Raman spectroscopy can be used to detect minerals, water bearing minerals, organic and biological materials and biomarkers in the context of planetary science. This dissertation extends the applicability of the Raman technique both laboratory based micro-Raman and remote Raman sensing ahead of planetary exploration missions to Mars employing Raman spectrometers. The interpretation of Raman imaging from a meteorite taken with a micro-Raman system revealed a close correlation between the blue color in natural ringwoodite and a new observed Raman peak that shows strong resonance Raman enhancement. The data suggest that ringwoodite exists both in the spinel structure and in the partially inverse spinel structure. In the field of remote Raman, this dissertation provides carefully derived Raman cross-section values for various organic liquids and inorganic polyatomic ions in aqueous solutions that will be useful for estimating detection capabilities of 532 nm excitation remote Raman systems for planetary exploration. Suitability of remote 532 nm Raman systems for future applications is explored. A portable, compact time-resolved instrument using a 3-inch diameter telescope is used it to demonstrate daytime detection of amino acids and nucleobases from a distance of 8 m. The measurements with a larger 8-inch Raman system demonstrate that it is possible to acquire good quality Raman spectra of various materials from a 430 meter remote distance during daylight with detection times of 10 seconds, and in some cases as short as 1 second, during daylight and in a realistic outdoor context. To my knowledge, these are the only remote Raman spectra at this distance that provide unambiguous detection of compounds important for planetary science, such as water and water ice, dry ice, sulfur, sulfates, various

  16. Application of Raman spectroscopy technology to studying Sudan I

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Guoping; Chen, Chen

    2006-06-01

    Being an industrial dye, the Sudan I may have a toxic effect after oral intake on the body, and has recently been shown to cause cancer in rats, mice and rabbits. Because China and some other countries have detected the Sudan I in samples of the hot chilli powder and the chilli products, it is necessary to study the characteristics of this dye. As one kind of molecule scattering spectroscopy, Raman spectroscopy is characterized by the frequency excursion caused by interactions of molecules and photons. The frequency excursion reflects the margin between certain two vibrational or rotational energy states, and shows the information of the molecule. Because Raman spectroscopy can provides quick, easy, reproducible, and non-destructive analysis, both qualitative and quantitative, with no sample preparation required, Raman spectroscopy has been a particularly promising technique for analyzing the characteristics and structures of molecules, especially organic ones. Now, it has a broad application in biological, chemical, environmental and industrial applications. This paper firstly introduces Sudan I dye and the Raman spectroscopy technology, and then describes its application to the Sudan I. Secondly, the fingerprint spectra of the Sudan I are respectively assigned and analyzed in detail. Finally, the conclusion that the Raman spectroscopy technology is a powerful tool to determine the Sudan I is drawn.

  17. Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Kleut, D. N.; Marković, Z. M.; Holclajtner Antunović, I. D.; Dramićanin, M. D.; Kepić, D. P.; Todorović Marković, B. M.

    2014-09-01

    This paper represents results of a Raman spectroscopy study of gamma-irradiated few-layer graphene thin films at three different doses: 25, 50 and 110 kGy. Graphene thin films were deposited by the vacuum filtration method and then transferred onto glass substrate. Raman spectroscopy and atomic force microscopy analysis have shown that the average in-plane crystallite size La of graphene thin films varies slightly when an irradiation dose is applied. Raman spectroscopy revealed that gamma irradiation of graphene thin films resulted in slight p-doping of the graphene thin film surface. It was found that during gamma irradiation at a dose of 110 kGy, the graphene sheets merged. As a result, the number of incorporated defects in the graphene structure was reduced (the ID/IG ratio decreased with the increase in the applied dose).

  18. Shining light on neurosurgery diagnostics using Raman spectroscopy.

    PubMed

    Broadbent, Brandy; Tseng, James; Kast, Rachel; Noh, Thomas; Brusatori, Michelle; Kalkanis, Steven N; Auner, Gregory W

    2016-10-01

    Surgical excision of brain tumors provides a means of cytoreduction and diagnosis while minimizing neurologic deficit and improving overall survival. Despite advances in functional and three-dimensional stereotactic navigation and intraoperative magnetic resonance imaging, delineating tissue in real time with physiological confirmation is challenging. Raman spectroscopy is a promising investigative and diagnostic tool for neurosurgery, which provides rapid, non-destructive molecular characterization in vivo or in vitro for biopsy, margin assessment, or laboratory uses. The Raman Effect occurs when light temporarily changes a bond's polarizability, causing change in the vibrational frequency, with a corresponding change in energy/wavelength of the scattered photon. The recorded inelastic scattering results in a "fingerprint" or Raman spectrum of the constituent under investigation. The amount, location, and intensity of peaks in the fingerprint vary based on the amount of vibrational bonds in a molecule and their ensemble interactions with each other. Distinct differences between various pathologic conditions are shown as different intensities of the same peak, or shifting of a peak based on the binding conformation. Raman spectroscopy has potential for integration into clinical practice, particularly in distinguishing normal and diseased tissue as an adjunct to standard pathologic diagnosis. Further, development of fiber-optic Raman probes that fit through the instrument port of a standard endoscope now allows researchers and clinicians to utilize spectroscopic information for evaluation of in vivo tissue. This review highlights the need for such an instrument, summarizes neurosurgical Raman work performed to date, and discusses the future applications of neurosurgical Raman spectroscopy.

  19. Resonance Raman spectroscopy study of protonated porphyrin

    NASA Astrophysics Data System (ADS)

    Gorski, A.; Starukhin, A.; Stavrov, S.; Gawinkowski, S.; Waluk, J.

    2017-02-01

    Resonance Raman microscopy was used to study the resonance Raman scattering of the diacid (diprotonated form) of free-base porphyrin (21H,23H-porphine) in a crystal powder and KBr pellets. Intensive lines in the spectral range between 100 ÷ 1000 cm- 1 have been detected and assigned as spectral manifestation of out-of-plane modes. The Raman spectra were simulated by means of DFT methods and compared with the experimental data. It is evident from experimental and theoretical results that the activation of out-of-plane modes arises from saddle distortion of the porphyrin macrocycle upon formation of its diprotonated form.

  20. [Current views on surface enhanced Raman spectroscopy in microbiology].

    PubMed

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  1. Approximate chemical analysis of volcanic glasses using Raman spectroscopy.

    PubMed

    Di Genova, Danilo; Morgavi, Daniele; Hess, Kai-Uwe; Neuville, Daniel R; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B

    2015-12-01

    The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally-dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end-members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI-DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X-ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm(2)) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments).

  2. Wave packet theory of dynamic stimulated Raman spectra in femtosecond pump-probe spectroscopy.

    PubMed

    Sun, Zhigang; Jin, Zhongqi; Lu, J; Zhang, Dong H; Lee, Soo-Y

    2007-05-07

    The quantum theory for stimulated Raman spectroscopy from a moving wave packet using the third-order density matrix and polarization is derived. The theory applies, in particular, to the new technique of femtosecond broadband stimulated Raman spectroscopy (FSRS). In the general case, a femtosecond actinic pump pulse first prepares a moving wave packet on an excited state surface which is then interrogated with a coupled pair of picosecond Raman pump pulse and a femtosecond Raman probe pulse and the Raman gain in the direction of the probe pulse is measured. It is shown that the third-order polarization in the time domain, whose Fourier transform governs the Raman gain, is given simply by the overlap of a first-order wave packet created by the Raman pump on the upper electronic state with a second-order wave packet on the initial electronic state that is created by the coupling of the Raman pump and probe fields acting on the molecule. Calculations are performed on model potentials to illustrate and interpret the FSRS spectra.

  3. Determination of the absolute stereochemistry of limonene and alpha-santalol by Raman optical activity spectroscopy.

    PubMed

    Sakamoto, Akira; Ohya, Nao; Hasegawa, Toshio; Izumi, Hiroaki; Tokita, Nakako; Hamada, Yoshiaki

    2012-04-01

    Determining the absolute stereochemistry of organic compounds in solution remains a challenge. We investigated the use of Raman optical activity (ROA) spectroscopy to address this problem. The absolute configurations of (+)-(R)- and (-)-(S)-limonene were determined by ROA spectroscopy, which can be applied to smaller amounts of sample as compared with vibrational circular dichroism (VCD) spectroscopy. This ROA method was also applied to (+)-(E)-alpha-santalol and shown to be successful in the determination of the absolute configuration of this compound. ROA spectroscopy shows promise as a useful tool for determining the absolute stereochemistry of many natural compounds.

  4. Study of spin-ordering and spin-reorientation transitions in hexagonal manganites through Raman spectroscopy

    PubMed Central

    Chen, Xiang-Bai; Hien, Nguyen Thi Minh; Han, Kiok; Nam, Ji-Yeon; Huyen, Nguyen Thi; Shin, Seong-Il; Wang, Xueyun; Cheong, S. W.; Lee, D.; Noh, T. W.; Sung, N. H.; Cho, B. K.; Yang, In-Sang

    2015-01-01

    Spin-wave (magnon) scattering, when clearly observed by Raman spectroscopy, can be simple and powerful for studying magnetic phase transitions. In this paper, we present how to observe magnon scattering clearly by Raman spectroscopy, then apply the Raman method to study spin-ordering and spin-reorientation transitions of hexagonal manganite single crystal and thin films and compare directly with the results of magnetization measurements. Our results show that by choosing strong resonance condition and appropriate polarization configuration, magnon scattering can be clearly observed, and the temperature dependence of magnon scattering can be simple and powerful quantity for investigating spin-ordering as well as spin-reorientation transitions. Especially, the Raman method would be very helpful for investigating the weak spin-reorientation transitions by selectively probing the magnons in the Mn3+ sublattices, while leaving out the strong effects of paramagnetic moments of the rare earth ions. PMID:26300075

  5. Study of spin-ordering and spin-reorientation transitions in hexagonal manganites through Raman spectroscopy.

    PubMed

    Chen, Xiang-Bai; Hien, Nguyen Thi Minh; Han, Kiok; Nam, Ji-Yeon; Huyen, Nguyen Thi; Shin, Seong-Il; Wang, Xueyun; Cheong, S W; Lee, D; Noh, T W; Sung, N H; Cho, B K; Yang, In-Sang

    2015-08-24

    Spin-wave (magnon) scattering, when clearly observed by Raman spectroscopy, can be simple and powerful for studying magnetic phase transitions. In this paper, we present how to observe magnon scattering clearly by Raman spectroscopy, then apply the Raman method to study spin-ordering and spin-reorientation transitions of hexagonal manganite single crystal and thin films and compare directly with the results of magnetization measurements. Our results show that by choosing strong resonance condition and appropriate polarization configuration, magnon scattering can be clearly observed, and the temperature dependence of magnon scattering can be simple and powerful quantity for investigating spin-ordering as well as spin-reorientation transitions. Especially, the Raman method would be very helpful for investigating the weak spin-reorientation transitions by selectively probing the magnons in the Mn(3+) sublattices, while leaving out the strong effects of paramagnetic moments of the rare earth ions.

  6. Matrix Effects in Quantitative Assessment of Pharmaceutical Tablets Using Transmission Raman and Near-Infrared (NIR) Spectroscopy.

    PubMed

    Sparén, Anders; Hartman, Madeleine; Fransson, Magnus; Johansson, Jonas; Svensson, Olof

    2015-05-01

    Raman spectroscopy can be an alternative to near-infrared spectroscopy (NIR) for nondestructive quantitative analysis of solid pharmaceutical formulations. Compared with NIR spectra, Raman spectra have much better selectivity, but subsampling was always an issue for quantitative assessment. Raman spectroscopy in transmission mode has reduced this issue, since a large volume of the sample is measured in transmission mode. The sample matrix, such as particle size of the drug substance in a tablet, may affect the Raman signal. In this work, matrix effects in transmission NIR and Raman spectroscopy were systematically investigated for a solid pharmaceutical formulation. Tablets were manufactured according to an experimental design, varying the factors particle size of the drug substance (DS), particle size of the filler, compression force, and content of drug substance. All factors were varied at two levels plus a center point, except the drug substance content, which was varied at five levels. Six tablets from each experimental point were measured with transmission NIR and Raman spectroscopy, and their concentration of DS was determined for a third of those tablets. Principal component analysis of NIR and Raman spectra showed that the drug substance content and particle size, the particle size of the filler, and the compression force affected both NIR and Raman spectra. For quantitative assessment, orthogonal partial least squares regression was applied. All factors varied in the experimental design influenced the prediction of the DS content to some extent, both for NIR and Raman spectroscopy, the particle size of the filler having the largest effect. When all matrix variations were included in the multivariate calibrations, however, good predictions of all types of tablets were obtained, both for NIR and Raman spectroscopy. The prediction error using transmission Raman spectroscopy was about 30% lower than that obtained with transmission NIR spectroscopy.

  7. Raman spectroscopy of shocked gypsum from a meteorite impact crater

    NASA Astrophysics Data System (ADS)

    Brolly, Connor; Parnell, John; Bowden, Stephen

    2017-07-01

    Impact craters and associated hydrothermal systems are regarded as sites within which life could originate on Earth, and on Mars. The Haughton impact crater, one of the most well preserved craters on Earth, is abundant in Ca-sulphates. Selenite, a transparent form of gypsum, has been colonized by viable cyanobacteria. Basement rocks, which have been shocked, are more abundant in endolithic organisms, when compared with un-shocked basement. We infer that selenitic and shocked gypsum are more suitable for microbial colonization and have enhanced habitability. This is analogous to many Martian craters, such as Gale Crater, which has sulphate deposits in a central layered mound, thought to be formed by post-impact hydrothermal springs. In preparation for the 2020 ExoMars mission, experiments were conducted to determine whether Raman spectroscopy can distinguish between gypsum with different degrees of habitability. Ca-sulphates were analysed using Raman spectroscopy and results show no significant statistical difference between gypsum that has experienced shock by meteorite impact and gypsum, which has been dissolved and re-precipitated as an evaporitic crust. Raman spectroscopy is able to distinguish between selenite and unaltered gypsum. This shows that Raman spectroscopy can identify more habitable forms of gypsum, and demonstrates the current capabilities of Raman spectroscopy for the interpretation of gypsum habitability.

  8. Developing fibre optic Raman probes for applications in clinical spectroscopy.

    PubMed

    Stevens, Oliver; Iping Petterson, Ingeborg E; Day, John C C; Stone, Nick

    2016-04-07

    Raman spectroscopy has been shown by various groups over the last two decades to have significant capability in discriminating disease states in bodily fluids, cells and tissues. Recent development in instrumentation, optics and manufacturing approaches has facilitated the design and demonstration of various novel in vivo probes, which have applicability for myriad of applications. This review focusses on key considerations and recommendations for application specific clinical Raman probe design and construction. Raman probes can be utilised as clinical tools able to provide rapid, non-invasive, real-time molecular analysis of disease specific changes in tissues. Clearly the target tissue location, the significance of spectral changes with disease and the possible access routes to the region of interest will vary for each clinical application considered. This review provides insight into design and construction considerations, including suitable probe designs and manufacturing materials compatible with Raman spectroscopy.

  9. Histochemical analysis of biological tissues using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Manoharan, Ramasamy; Wang, Yang; Feld, Michael S.

    1996-02-01

    This paper reviews the application of the Raman spectroscopic technique for analysis of biological tissue. The advantages and disadvantages of visible, near-IR and UV excitations are described, and the problems and prospects of using these methodologies for disease diagnosis are addressed. In situ analysis of tissue proteins, lens, cornea, blood constituents, biological stones and several hard tissues is reviewed, and the potentials for diagnosing arterial disease, and cancer in gynecological tissues, soft tissues, breast, colon, bladder and brain are also presented. Recent technological advances in instrumentation allow the use of Raman spectroscopy for real time histochemical analysis of tissues. The capability of Raman microspectroscopy for providing spatial information about the distribution of biochemical constituents in tissues has been demonstrated. The work reviewed indicates the promise of Raman spectroscopy for endoscopic imaging and real-time quantitation of biochemical constituents in clinical situations.

  10. Remote cure monitoring of polymeric resins by laser Raman spectroscopy

    SciTech Connect

    Hong, K.C.; Vess, T.M.; Lyon, R.E.; Myrick, M.L.

    1993-05-01

    The validity of using Raman spectroscopy to monitor the cure chemistries of amine-cured epoxy is demonstrated by correlating NIR absorbance measurements with Raman measurements for a concentration series of bisphenol-A diglycidylether in its own reaction product with diethylamine. The intensity of a normalized Raman peak at 1240 cm{sup {minus}l}, assigned to the epoxide functionality, was found to be linearly related to the concentration of epoxide groups in the resin mixtures. Also, it is shown that the Ciba-Geigy Matrimid 5292 system can be monitored by ex-situ FT-Raman spectroscopy by observing changes in the carbonyl stretching (1773 cm{sup {minus}1}) or the C=C stretching of maleimide (1587 cm{sup {minus}1}) during the cure reaction.

  11. Surface Raman spectroscopy as a probe of surface chemistry

    NASA Astrophysics Data System (ADS)

    Child, Craig M.; Foster, Michelle; Ivanecky, J. E., III; Perry, Scott S.; Campion, Alan

    1995-09-01

    Unenhanced surface Raman spectroscopy has been used to study the chemistry of polymers adsorbed on solid surfaces and the chemical enhancement mechanism of surface-enhanced Raman scattering. The adsorption and reactions of the polyimide monomers pyromellitic dianhydride (PMDA) and oxydianiline on silver, copper and silicon surfaces under ultrahigh vacuum have been investigated. These include both nondissociative physisorption and dissociative chemisorption of the monomers, and the condensation polymerization to form adsorbed polyimide. The intermediate polyamic acid is detected for the first time in a surface experiment. PMDA adsorbed on Cu(111) shows chemical enhancement in the absence of electromagnetic enhancement. High resolution electron energy loss spectroscopy has revealed a strong charge transfer absorption near the Raman excitation frequency. This observation provides strong support for a proposed resonance Raman chemical enhancement mechanism.

  12. Monitoring the influence of antibiotic exposure using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Zemanek, Pavel; Bernatova, Silvie; Jezek, Jan; Sery, Mojmir; Jakl, Petr; Siler, Martin; Ruzicka, Filip

    2014-03-01

    Here we report on combination of the data obtained from MICs (minimum inhibitory concentrations) with infor- mation of microoragnisms fingerprint provided by Raman spectroscopy. In our feasibility study we could follow mechanisms of the bacteriostatic versus bactericidal action on biofilm-positive Staphylococcus epidermidis simply by monitoring Raman bands corresponding to DNA translating the changes introduced by selected antibiotics. The Raman spectra of Staphylococcus epidermidis treated with a bacteriostatic agent show little effect on DNA which is in contrast with the action of a bactericidal agent where decreased in dedicated Raman spectra signal strength suggests DNA fragmentation. Moreover, we demonstrate that Raman tweezers are indeed able to distinguish strains of biofilm-forming (biofilm-positive) and biofilm-negative Staphylococcus epidermidis strains using principal component analysis (PCA).

  13. Proximal and point detection of contaminated surfaces using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason A.; Christesen, Steven D.; Tripathi, Ashish; Emmons, Erik D.; Wilcox, Phillip G.; Emge, Darren K.; Pardoe, Ian J.; Fountain, Augustus W., III

    2011-11-01

    We are actively investigating the use of Raman spectroscopy for proximal standoff detection of chemicals and explosive materials on surfaces. These studies include Raman Chemical Imaging of contaminated fingerprints for forensic attribution and the assessments of commercial handheld or portable Raman instruments operating with near-infrared (IR) as well as ultraviolet (UV) laser excitation specifically developed for on-the-move reconnaissance of chemical contamination. As part of these efforts, we have measured the Raman cross sections of chemical agents, toxic industrial chemicals, and explosives from the UV to NIR. We have also measured and modeled the effect interrogation angle has on the Raman return from droplets on man-made surfaces. Realistic droplet distributions have been modeled and tested against variations in surface scan patterns and laser spot size for determining the optimum scan characteristics for detection of relevant surface contamination.

  14. Shell-isolated nanoparticle-enhanced Raman spectroscopy.

    PubMed

    Li, Jian Feng; Huang, Yi Fan; Ding, Yong; Yang, Zhi Lin; Li, Song Bo; Zhou, Xiao Shun; Fan, Feng Ru; Zhang, Wei; Zhou, Zhi You; Wu, De Yin; Ren, Bin; Wang, Zhong Lin; Tian, Zhong Qun

    2010-03-18

    Surface-enhanced Raman scattering (SERS) is a powerful spectroscopy technique that can provide non-destructive and ultra-sensitive characterization down to single molecular level, comparable to single-molecule fluorescence spectroscopy. However, generally substrates based on metals such as Ag, Au and Cu, either with roughened surfaces or in the form of nanoparticles, are required to realise a substantial SERS effect, and this has severely limited the breadth of practical applications of SERS. A number of approaches have extended the technique to non-traditional substrates, most notably tip-enhanced Raman spectroscopy (TERS) where the probed substance (molecule or material surface) can be on a generic substrate and where a nanoscale gold tip above the substrate acts as the Raman signal amplifier. The drawback is that the total Raman scattering signal from the tip area is rather weak, thus limiting TERS studies to molecules with large Raman cross-sections. Here, we report an approach, which we name shell-isolated nanoparticle-enhanced Raman spectroscopy, in which the Raman signal amplification is provided by gold nanoparticles with an ultrathin silica or alumina shell. A monolayer of such nanoparticles is spread as 'smart dust' over the surface that is to be probed. The ultrathin coating keeps the nanoparticles from agglomerating, separates them from direct contact with the probed material and allows the nanoparticles to conform to different contours of substrates. High-quality Raman spectra were obtained on various molecules adsorbed at Pt and Au single-crystal surfaces and from Si surfaces with hydrogen monolayers. These measurements and our studies on yeast cells and citrus fruits with pesticide residues illustrate that our method significantly expands the flexibility of SERS for useful applications in the materials and life sciences, as well as for the inspection of food safety, drugs, explosives and environment pollutants.

  15. Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas

    2016-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.

  16. Single bacteria identification by Raman spectroscopy.

    PubMed

    Strola, Samy Andrea; Baritaux, Jean-Charles; Schultz, Emmanuelle; Simon, Anne Catherine; Allier, Cédric; Espagnon, Isabelle; Jary, Dorothée; Dinten, Jean-Marc

    2014-01-01

    We report on rapid identification of single bacteria using a low-cost, compact, Raman spectroscope. We demonstrate that a 60-s procedure is sufficient to acquire a comprehensive Raman spectrum in the range of 600 to 3300 cm⁻¹. This time includes localization of small bacteria aggregates, alignment on a single individual, and spontaneous Raman scattering signal collection. Fast localization of small bacteria aggregates, typically composed of less than a dozen individuals, is achieved by lensfree imaging over a large field of view of 24 mm². The lensfree image also allows precise alignment of a single bacteria with the probing beam without the need for a standard microscope. Raman scattered light from a 34-mW continuous laser at 532 nm was fed to a customized spectrometer (prototype Tornado Spectral Systems). Owing to the high light throughput of this spectrometer, integration times as low as 10 s were found acceptable. We have recorded a total of 1200 spectra over seven bacterial species. Using this database and an optimized preprocessing, classification rates of ~90% were obtained. The speed and sensitivity of our Raman spectrometer pave the way for high-throughput and nondestructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic, and environmental applications.

  17. Single bacteria identification by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Strola, Samy Andrea; Baritaux, Jean-Charles; Schultz, Emmanuelle; Simon, Anne Catherine; Allier, Cédric; Espagnon, Isabelle; Jary, Dorothée; Dinten, Jean-Marc

    2014-11-01

    We report on rapid identification of single bacteria using a low-cost, compact, Raman spectroscope. We demonstrate that a 60-s procedure is sufficient to acquire a comprehensive Raman spectrum in the range of 600 to 3300. This time includes localization of small bacteria aggregates, alignment on a single individual, and spontaneous Raman scattering signal collection. Fast localization of small bacteria aggregates, typically composed of less than a dozen individuals, is achieved by lensfree imaging over a large field of view of 24. The lensfree image also allows precise alignment of a single bacteria with the probing beam without the need for a standard microscope. Raman scattered light from a 34-mW continuous laser at 532 nm was fed to a customized spectrometer (prototype Tornado Spectral Systems). Owing to the high light throughput of this spectrometer, integration times as low as 10 s were found acceptable. We have recorded a total of 1200 spectra over seven bacterial species. Using this database and an optimized preprocessing, classification rates of ˜90% were obtained. The speed and sensitivity of our Raman spectrometer pave the way for high-throughput and nondestructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic, and environmental applications.

  18. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  19. Raman spectroscopy of polyhedral carbon nano-onions

    NASA Astrophysics Data System (ADS)

    Codorniu Pujals, Daniel; Arias de Fuentes, Olimpia; Desdín García, Luis F.; Cazzanelli, Enzo; Caputi, Lorenzo S.

    2015-09-01

    The Raman spectra of polyhedral carbon nano-onions (PCO), obtained by underwater arc discharge of graphite electrodes, are studied. While the general Raman spectrum of PCO is very similar to those of other carbon nanostructures, including spherical nano-onions, the fine structure of the G and 2D bands gives valuable information that allows using Raman spectroscopy for differentiating the PCO from other carbon structures. The interpretation of the features of the fine structure of the spectra is supported by evidences obtained by TEM.

  20. Time-resolved Raman spectroscopy for in situ planetary mineralogy.

    PubMed

    Blacksberg, Jordana; Rossman, George R; Gleckler, Anthony

    2010-09-10

    Planetary mineralogy can be revealed through a variety of remote sensing and in situ investigations that precede any plans for eventual sample return. We briefly review those techniques and focus on the capabilities for on-surface in situ examination of Mars, Venus, the Moon, asteroids, and other bodies. Over the past decade, Raman spectroscopy has continued to develop as a prime candidate for the next generation of in situ planetary instruments, as it provides definitive structural and compositional information of minerals in their natural geological context. Traditional continuous-wave Raman spectroscopy using a green laser suffers from fluorescence interference, which can be large (sometimes saturating the detector), particularly in altered minerals, which are of the greatest geophysical interest. Taking advantage of the fact that fluorescence occurs at a later time than the instantaneous Raman signal, we have developed a time-resolved Raman spectrometer that uses a streak camera and pulsed miniature microchip laser to provide picosecond time resolution. Our ability to observe the complete time evolution of Raman and fluorescence spectra in minerals makes this technique ideal for exploration of diverse planetary environments, some of which are expected to contain strong, if not overwhelming, fluorescence signatures. We discuss performance capability and present time-resolved pulsed Raman spectra collected from several highly fluorescent and Mars-relevant minerals. In particular, we have found that conventional Raman spectra from fine grained clays, sulfates, and phosphates exhibited large fluorescent signatures, but high quality spectra could be obtained using our time-resolved approach.

  1. Fiber-optic Raman Spectroscopy of Joint Tissues

    PubMed Central

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Morris, Michael D.

    2011-01-01

    In this study, we report adaptation of Raman spectroscopy for arthroscopy of joint tissues using a custom-built fiber optic probe. Differentiation of healthy and damaged tissue or examination of subsurface tissue, such as subchondral bone, is a challenge in arthroscopy because visual inspection may not provide sufficient contrast. Discrimination of healthy versus damaged tissue may be improved by incorporating point spectroscopy or hyperspectral imaging into arthroscopy where contrast is based on molecular structure or chemical composition. Articular joint surfaces of knee cadaveric human tissue and tissue phantoms were examined using a custom-designed Raman fiber optic probe. Fiber-optic Raman spectra were compared against reference spectra of cartilage, subchondral bone and cancellous bone collected using Raman microspectroscopy. In fiber-optic Raman spectra of the articular surface, there was an effect of cartilage thickness on recovery of signal from subchondral bone. At sites with intact cartilage, the bone mineralization ratio decreased but there was a minimal effect in the bone mineral chemistry ratios. Tissue phantoms were prepared as experimental models of the osteochondral interface. Raman spectra of tissue phantoms suggested that optical scattering of cartilage has a large effect on the relative cartilage and bone signal. Finite element analysis modeling of light fluence in the osteochondral interface confirmed experimental findings in human cadaveric tissue and tissue phantoms. These first studies demonstrate proof of principle for Raman arthroscopic measurement of joint tissues and provide a basis for future clinical or animal model studies. PMID:21359366

  2. The substrate matters in the Raman spectroscopy analysis of cells.

    PubMed

    Mikoliunaite, Lina; Rodriguez, Raul D; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R T

    2015-08-27

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  3. The substrate matters in the Raman spectroscopy analysis of cells

    NASA Astrophysics Data System (ADS)

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  4. The substrate matters in the Raman spectroscopy analysis of cells

    PubMed Central

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R.T.

    2015-01-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research. PMID:26310910

  5. Raman spectroscopy in the diagnosis of ulcerative colitis.

    PubMed

    Veenstra, Michelle Anne; Palyvoda, Olena; Alahwal, Hazem; Jovanovski, Marko; Reisner, Luke Anthony; King, Brady; Poulik, Janet; Klein, Michael D

    2015-02-01

    At present, the diagnosis of ulcerative colitis (UC) requires the histologic demonstration of characteristic mucosal inflammatory changes. A rapid and noninvasive diagnosis would be of value, especially if it could be adapted to a simple rectal probe. Raman spectroscopy creates a molecular fingerprint of substances by detecting laser light scattered from asymmetric, vibrating, and chemical bonds. We hypothesize that Raman spectroscopy can distinguish UC from non-UC colon tissue rapidly and accurately. Colon tissue specimens were obtained from patients operated at the Children's Hospital of Michigan, United States, including UC colon and non-UC colon. The samples were examined with a Renishaw inVia Raman microscope (Gloucestershire, United Kingdom) with a 785 nm laser. Principal component analysis and discriminant function analysis were used to classify groups. Final classification was evaluated against histologic diagnoses using leave-one-out cross-validation at a spectral level. We compared Raman spectroscopy examination of colon specimens from four patients with UC and four patients without UC. A total of 801 spectra were recorded from colon specimens. We evaluated 100 spectra each from the mucosal and serosal surfaces of patients with UC and 260 spectra from the mucosal surface and 341 spectra from the serosal surface of the patients who did not have UC. For samples from the mucosal surface, the Raman analysis had a sensitivity of 82% and a specificity of 89%. For samples from the serosal surface, Raman spectroscopy had a sensitivity of 87% and a specificity of 93%. When considering each tissue sample and deciding the diagnosis based on the majority of spectra from that sample, there were no errors in the diagnosis. Raman spectroscopy can distinguish UC from normal colon tissue rapidly and accurately. This technology offers the possibility of real-time diagnosis as well as the ability to study changes in UC-afflicted colon tissue that do not appear

  6. Raman spectroscopy of blood in-vitro

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Ortiz-Lima, C. M.; Delgado-Atencio, J. A.

    2012-03-01

    We present Raman spectra from a sample of 8 volunteers that have different type of blood. The experimental data were carried out using a 785 nm excitation laser and an ocean optics spectrometer of 6 cm-1 resolution, with a used spectral region from 1000 to 1800 cm-1. We find Raman features at 1000 and 1542 cm-1 regarded with hemoglobin and its derivatives. Also we find Raman features at 1248 and 1342 cm-1 that are now regarded with pure fibrin. In this work, we use Principal Component analysis (PCA) to determine all variations of our samples, which allows us to define a classification of the influence of the blood type. Finally, we found vibrational lines of cholesterol, glucose and triglycerides that are reported in literature.

  7. Characterization of oil-producing microalgae using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Samek, O.; Zemánek, P.; Jonáš, A.; Telle, H. H.

    2011-10-01

    Raman spectroscopy offers a powerful alternative analytical method for the detection and identification of lipids/oil in biological samples, such as algae and fish. Recent research in the authors' groups, and experimental data only very recently published by us and a few other groups suggest that Raman spectroscopy can be exploited in instances where fast and accurate determination of the iodine value (associated with the degree of lipid unsaturation) is required. Here the current status of Raman spectroscopy applications on algae is reviewed, and particular attention is given to the efforts of identifying and selecting oil-rich algal strains for the potential mass production of commercial biofuels and for utilization in the food industry.

  8. Two-dimensional Raman-terahertz spectroscopy of water

    PubMed Central

    Savolainen, Janne; Ahmed, Saima; Hamm, Peter

    2013-01-01

    Two-dimensional Raman-terahertz (THz) spectroscopy is presented as a multidimensional spectroscopy directly in the far-IR regime. The method is used to explore the dynamics of the collective intermolecular modes of liquid water at ambient temperatures that emerge from the hydrogen-bond networks water forming. Two-dimensional Raman-THz spectroscopy interrogates these modes twice and as such can elucidate couplings and inhomogeneities of the various degrees of freedoms. An echo in the 2D Raman-THz response is indeed identified, indicating that a heterogeneous distribution of hydrogen-bond networks exists, albeit only on a very short 100-fs timescale. This timescale appears to be too short to be compatible with more extended, persistent structures assumed within a two-state model of water. PMID:24297930

  9. Understanding the application of Raman spectroscopy to the detection of traces of life.

    PubMed

    Marshall, Craig P; Edwards, Howell G M; Jehlicka, Jan

    2010-03-01

    Investigating carbonaceous microstructures and material in Earth's oldest sedimentary rocks is an essential part of tracing the origins of life on our planet; furthermore, it is important for developing techniques to search for traces of life on other planets, for example, Mars. NASA and ESA are considering the adoption of miniaturized Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for fossil or extant biomolecules. Recently, Raman spectroscopy has been used to infer a biological origin of putative carbonaceous microfossils in Early Archean rocks. However, it has been demonstrated that the spectral signature obtained from kerogen (of known biological origin) is similar to spectra obtained from many poorly ordered carbonaceous materials that arise through abiotic processes. Yet there is still confusion in the literature as to whether the Raman spectroscopy of carbonaceous materials can indeed delineate a signature of ancient life. Despite the similar nature in spectra, rigorous structural interrogation between the thermal alteration products of biological and nonbiological organic materials has not been undertaken. Therefore, we propose a new way forward by investigating the second derivative, deconvolution, and chemometrics of the carbon first-order spectra to build a database of structural parameters that may yield distinguishable characteristics between biogenic and abiogenic carbonaceous material. To place Raman spectroscopy as a technique to delineate a biological origin for samples in context, we will discuss what is currently accepted as a spectral signature for life; review Raman spectroscopy of carbonaceous material; and provide a historical overview of Raman spectroscopy applied to Archean carbonaceous materials, interpretations of the origin of the ancient carbonaceous material, and a future way forward for Raman spectroscopy.

  10. Dengue blood analysis by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Rehman, A.; Anwar, S.; Firdous, S.; Ahmed, M.; Rasheed, R.; Nawaz, M.

    2012-06-01

    In this work Raman spectra of normal and dengue infected serum and whole blood were analyzed. In normal whole blood and serum characteristic peaks were observed when excited at 442 and 532 nm. In dengue whole blood and serum all peaks found to be blue shifted with reduced Raman intensity. Dengue whole blood and serum shows two peaks at 1614 and 1750 cm-1 which are due to presence of Immunoglobulin antibodies IgG and IgM. Whole study provides a route of information for diagnosis of dengue viral infection.

  11. Metallized Capillaries as Probes for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pelletier, Michael

    2003-01-01

    A class of miniature probes has been proposed to supplant the fiber-optic probes used heretofore in some Raman and fluorescence spectroscopic systems. A probe according to the proposal would include a capillary tube coated with metal on its inside to make it reflective. A microlens would be hermetically sealed onto one end of the tube. A spectroscopic probe head would contain a single such probe, which would both deliver laser light to a sample and collect Raman or fluorescent light emitted by the sample.

  12. Pulsed resonance spectroscopy applied to turbulent combustion flows

    NASA Technical Reports Server (NTRS)

    Daily, J. W.

    1976-01-01

    The application of pulsed resonance spectroscopy to the measurement of species concentrations in chemically reacting turbulent flows is discussed. The theory of such measurements is developed. An uncertainty analysis is performed, and the results are applied to typical combustion conditions. Experimental aspects are discussed. The method shows a significant theoretical improvement in accuracy over Raman and Reyleigh scattering techniques, and no significant barriers appear to block its development.

  13. Characterization of propellants under thermal stress by Raman Spectroscopy

    SciTech Connect

    Fell, N.F. Jr.; McNesby, K.L.

    1995-12-31

    Raman spectroscopy is used in the characterization of propellant temperatures. Both FT-Raman grains during exposure to elevate with NIR (1064 nm, Nd:YAG) excitation and a dispersive system with visible (514.5 nm, Ar+ laser) excitation are used and compared. Raman spectroscopy permits the in situ examination of propellants during the heating process. By looking at the Raman spectra of the various propellants as a function of temperature, it is possible to evaluate effects of binders and plasticizers on the thermal behavior of the propellants. Such information may be useful for estimating the effective shelf lives of propellants. The scattering intensity decreases as a function of temperature as a result of the loss in crystallinity of the principal component of the formulation as it is heated above its melting point. Since the gas-phase decomposition products are not observed and therefore do not interfere with the collection of the scattered emission from the condensed-phase products, Raman spectroscopy also allows the examination of only the condensed-phase decomposition products. This is a significant advantage over absorption spectroscopies, such as FTIR and UV-VIS absorption, which are sensitive to all of the components in the beam path. The use of visible wavelength excitation should prevent thermal damage to the sample observed with the NIR laser. A slight red shift of the features below 500 cm-1, especially in the feature at 150 cm-1, is observed. The peaks also broaden with increasing temperature, as would be expected.

  14. Detection of Raman spectra in ocular drugs for potential in vivo application of Raman spectroscopy.

    PubMed

    Elshout, Mari; Erckens, Roel J; Webers, Carroll A; Beckers, Henny J; Berendschot, Tos T; de Brabander, John; Hendrikse, Fred; Schouten, Jan S

    2011-10-01

    Raman spectroscopy holds potential for the assessment of intraocular pharmacokinetics. Raman spectra of ocular drugs were acquired, to determine the drug-specific Raman signature. The ability of the Raman technique to quantify drug concentrations was also investigated. The experimental setup was based on a High Performance Raman Module 2500 Raman module, designed for 180° "backscatter" signal detection in the wavenumber range of 400-1,800 cm(-1). Excitation source was a diode laser emitting a beam with a wavelength of 785 nm and a power of 10 mW. Laser light was focused in the sample with a long-working-distance microscope objective (25×/0.50). Samples were measured in quartz cuvettes in 10 sequential measurements, with exposure time 30 s. The total number of measured drugs was 49. To determine whether signal intensity and drug concentration correlate, 2 drugs were diluted in water and measured with 120 s exposure time at different concentrations. An active ingredient-specific Raman signature was detected in 4 glaucoma drugs, 6 mydriatics, 5 antibiotics, 4 anesthetics, 3 anti-inflammatory drugs, 2 types of artificial tears, and 5 other drugs. In 20 drugs, no specific Raman signature was detected. Linear correlation of drug concentration with signal intensity was high (R(2)≥0.94). Using low laser powers, Raman signatures for 29 commonly used ocular drugs were detected. Correlation of drug concentration with signal intensity is high, which is essential for monitoring drug concentration in ocular media. The presented results encourage the use of Raman spectroscopy to acquire detailed information on the pharmacokinetics of these ocular drugs.

  15. Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods

    PubMed Central

    McCamant, David W.; Kukura, Philipp; Yoon, Sangwoon; Mathies, Richard A.

    2005-01-01

    The laser, detection system, and methods that enable femtosecond broadband stimulated Raman spectroscopy (FSRS) are presented in detail. FSRS is a unique tool for obtaining high time resolution (<100 fs) vibrational spectra with an instrument response limited frequency resolution of <10 cm–1. A titanium:Sapphire-based laser system produces the three different pulses needed for FSRS: (1) A femtosecond visible actinic pump that initiates the photochemistry, (2) a narrow bandwidth picosecond Raman pump that provides the energy reservoir for amplification of the probe, and (3) a femtosecond continuum probe that is amplified at Raman resonances shifted from the Raman pump. The dependence of the stimulated Raman signal on experimental parameters is explored, demonstrating the expected exponential increase in Raman intensity with concentration, pathlength, and Raman pump power. Raman spectra collected under different electronic resonance conditions using highly fluorescent samples highlight the fluorescence rejection capabilities of FSRS. Data are also presented illustrating our ability: (i) To obtain spectra when there is a large transient absorption change by using a shifted excitation difference technique and (ii) to obtain high time resolution vibrational spectra of transient electronic states. PMID:17183413

  16. Characterization of uranium tetrafluoride (UF4) with Raman spectroscopy

    DOE PAGES

    Villa-Aleman, Eliel; Wellons, Matthew S.

    2016-03-22

    The Raman spectrum of uranium tetrafluoride (UF4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF4 demonstrates 16 distinct Raman bands within the 50-400 cm-1 region. The observed Raman bands are representative of various F-F vibrational modes. UF4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF4 spectrum with the ZrF4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanning electron microscopy (SEM) and in situmore » Raman spectroscopy microanalytical measurements of UF4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less

  17. Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Stephanidis, B.; Zenobi, R.; Wain, A. J.; Roy, D.

    2015-04-01

    Chemical mapping of a photocatalytic reaction with nanoscale spatial resolution is demonstrated for the first time using tip-enhanced Raman spectroscopy (TERS). An ultrathin alumina film applied to the Ag-coated TERS tip blocks catalytic interference whilst maintaining near-field electromagnetic enhancement, thus enabling spectroscopic imaging of catalytic activity on nanostructured Ag surfaces.

  18. Resonance Raman Spectroscopy of Beta-Carotene and Lycopene: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Hoskins, L. C.

    1984-01-01

    Discusses the theory of resonance Raman (RR) spectroscopy as it applies to beta-carotene and lycopene pigments (found in tomatoes and carrots, respectively). Also discusses an experiment which demonstrates the theoretical principles involved. The experiment has been tested over a three-year period and has received excellent acceptance by physical…

  19. Resonance Raman Spectroscopy of Beta-Carotene and Lycopene: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Hoskins, L. C.

    1984-01-01

    Discusses the theory of resonance Raman (RR) spectroscopy as it applies to beta-carotene and lycopene pigments (found in tomatoes and carrots, respectively). Also discusses an experiment which demonstrates the theoretical principles involved. The experiment has been tested over a three-year period and has received excellent acceptance by physical…

  20. Picosecond Raman Spectroscopy: A Two Dye Laser Synchronously Pumped Raman System

    NASA Astrophysics Data System (ADS)

    Chung, Y. C.; Hopkins, J. B.; Rentzepis, P. M.

    1986-11-01

    Raman spectroscopy is a mature field of science that does not need introduction nor rationalization for its use. The majority of the Raman spectroscopy literature is concerned with C.W. high resolution spectroscopy. The Raman Scattering instruments utilize almost exclusively laser light sources, and lately nanosecond and picosecond data on time resolved spectra have made their entrance into the scientific journals. The difficulty in most of these resonance Raman experiments is that they do not provide any more time dependent information than fluorescence. This is due to the limitation that a single laser, quite often, a dye laser and its second harmonic are the only two frequencies available for excitation and resonance probe of the excited state. In this scenario, a Raman Scattering signal is emitted and detected only during the lifetime of the excited state. As the excited state decays to either the ground state or other transient species which absorb at a different wavelength, the resonance with the probe wavelength disappears at the same rate as the population of the excited state decays. This rate of depopulation is also portrayed in an identical fashion. These systems are therefore drastically limited in their use as means for the measurement of the evolution of a chemical intermediate. An additional interesting aspect is that of the understanding of the process itself which is being studied, namely the majority of the research papers presented do not address the possibility of the data depicting stimulated emission gain rather than Raman Scattering.

  1. Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development.

    PubMed

    Gala, Urvi; Chauhan, Harsh

    2015-02-01

    In recent years, Raman spectroscopy has become increasingly important as an analytical technique in various scientific areas of research and development. This is partly due to the technological advancements in Raman instrumentation and partly due to detailed fingerprinting that can be derived from Raman spectra. Its versatility of applications, rapidness of collection and easy analysis have made Raman spectroscopy an attractive analytical tool. The following review describes Raman spectroscopy and its application within the pharmaceutical industry. The authors explain the theory of Raman scattering and its variations in Raman spectroscopy. The authors also highlight how Raman spectra are interpreted, providing examples. Raman spectroscopy has a number of potential applications within drug discovery and development. It can be used to estimate the molecular activity of drugs and to establish a drug's physicochemical properties such as its partition coefficient. It can also be used in compatibility studies during the drug formulation process. Raman spectroscopy's immense potential should be further investigated in future.

  2. Interferometric background reduction for femtosecond stimulated Raman scattering loss spectroscopy.

    PubMed

    Dobner, Sven; Cleff, Carsten; Fallnich, Carsten; Groß, Petra

    2012-11-07

    We present a purely optical method for background suppression in nonlinear spectroscopy based on linear interferometry. Employing an unbalanced Sagnac interferometer, an unprecedented background reduction of 17  dB over a broad bandwidth of 60  THz (2000  cm(-1)) is achieved and its application to femtosecond stimulated Raman scattering loss spectroscopy is demonstrated. Apart from raising the signal-to-background ratio in the measurement of the Raman intensity spectrum, this interferometric method grants access to the spectral phase of the resonant χ(3) contribution. The spectral phase becomes apparent as a dispersive lineshape and is reproduced numerically with a simple oscillator model.

  3. Doping, Strain, Orientation and Disorder of Graphene by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferrari, Andrea C.

    2009-03-01

    Raman spectroscopy is a fast and non-destructive method for the characterization of carbons [1]. These show two features: the G and D peaks, around 1580 and 1350cm-1 respectively. The G peak corresponds to the doubly degenerate E2g phonon at the Brillouin zone centre. The D peak is due to the breathing modes of sp^2 atoms and requires a defect for its activation [1-5]. It is common for as-prepared graphene not to have enough structural defects for the D peak to be seen [4,6], so that it can only be detected at the edges [6]. The most prominent feature in graphene is the second order 2D peak [6]. This is always seen, since no defects are required for its activation. Its shape distinguishes single and multi-layers [6]. Raman spectroscopy also monitors doping [7-9]. We report the evolution of the Raman spectra of single [7,8] and bi-layer [9] graphene as a function of doping. A Fermi level shift is induced either by applying a bottom gate [7], or by a polymeric top gate [8,9], or naturally happens as a result of charged impurities [10]. This induces a stiffening of the Raman G peak for both hole and electron doping [7]. This is explained including dynamic corrections to the adiabatic Born-Oppenheimer approximation [7]. The phonon renormalization of bilayer graphene has characteristic features compared to single layer. This allows a direct estimation of the interlayer coupling [7-9]. We then consider the effects strain. Uniaxial strain lifts the E2g degeneracy and splits the G peak in two: G^+ and G^-. The peaks downshift as a function of strain allows a direct measurement of the Gruneisen parameter [10]. The polarization dependence of the G^+/G^- modes is a probe of the crystallographic orientation of the sample [10]. Finally, we consider the effect of disorder [3,4,11] and show how to discriminate between disorder, strain and doping [11]. We will also discuss how the D peak is a signature of π electron localisation, and, thus, of gap opening in chemically modified

  4. Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.

  5. Raman spectroscopy of garnet-group minerals

    USGS Publications Warehouse

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  6. Dual modal endoscopic cancer detection based on optical pH sensing and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Soogeun; Kim, ByungHyun; Sohn, Won Bum; Byun, Kyung Min; Lee, Soo Yeol

    2017-02-01

    To discriminate between normal and cancerous tissue, a dual modal approach using Raman spectroscopy and pH sensor was designed and applied. Raman spectroscopy has demonstrated the possibility of using as diagnostic method for the early detection of precancerous and cancerous lesions in vivo. It also can be used in identifying markers associated with malignant change. However, Raman spectroscopy lacks sufficient sensitivity due to very weak Raman scattering signal or less distinctive spectral pattern. A dual modal approach could be one of the solutions to solve this issue. The level of extracellular pH in cancer tissue is lower than that in normal tissue due to increased lactic acid production, decreased interstitial fluid buffering and decreased perfusion. High sensitivity and specificity required for accurate cancer diagnosis could be achieved by combining the chemical information from Raman spectrum with metabolic information from pH level. Raman spectra were acquired by using a fiber optic Raman probe, a cooled CCD camera connected to a spectrograph and 785 nm laser source. Different transmission spectra depending on tissue pH were measured by a lossy-mode resonance sensor based on fiber optic. The discriminative capability of pH-Raman dual modal method was evaluated using principal component analysis (PCA). The obtained results showed that the pH-Raman dual modal approach can improve discriminative capability between normal and cancerous tissue, which can lead to very high sensitivity and specificity. The proposed method for cancer detection is expected to be used in endoscopic diagnosis later.

  7. Kerr-gated picosecond Raman spectroscopy and Raman photon migration of equine bone tissue with 400-nm excitation

    NASA Astrophysics Data System (ADS)

    Morris, Michael D.; Goodship, Allen E.; Draper, Edward R. C.; Matousek, Pavel; Towrie, Michael; Parker, Anthony W.

    2004-07-01

    We show that Raman spectroscopy with visible lasers, even in the deep blue is possible with time-gated Raman spectroscopy. A 4 picosec time gate allows efficient fluorescence rejection, up to 1000X, and provides almost background-free Raman spectra with low incident laser power. The technology enables spectroscopy with better than 10X higher scattering efficiency than is possible with the NIR (785 nm and 830 nm) lasers that are conventionally used. Raman photon migration is shown to allow depth penetration. We show for the first time that Kerr-gated Raman spectra of bone tissue with blue laser excitation enables both fluorescence rejection and depth penetration.

  8. [Detection of Cinnabars in Mongolian Medicines Using Raman Spectroscopy].

    PubMed

    Han, Siqingaowa; Hasi, Wuliji; Lin, Xiang; Lin, Shuang; Yang, Fang; Lou, Xiu-tao; Lu, Zhi-wei

    2015-10-01

    Cinnabar could soothe the nerves and the powder of cinnabar is always added in traditional Chinese medicine or mongolian medicines. The surface-enhanced Raman spectrum of cinnabar was identified using a portable Raman spectrometer and most structure vibration information was obtained. The results show that the Raman peaks of cinnabars were located at 253, 290, 343 cm(-1) and this three Raman characteristic peaks were selected for cinnabar identification. Meanwhile, the Raman spectra of several mongolian medicines were collected. The results showed that Raman signal of cinnabar could be observed in several mongolian medicines which contain cinnabar and Raman signal of cinnabar couldn't be detected in several mongolian medicines without cinnabar. In addition, the cinnabar in the oral ulcer powder was semi-quantitative analyzed and the limit of detection could reach to 10% of mass fraction. The relationship between the doped amount of cinnabar in the oral ulcer powder and the Raman intensity of characteristic peak was fitted and the correlation coefficient (r) was 0.995 9, which validated the accuracy of the result. This Raman analysis method for cinnabar detection is rapid, simple and accurate and it can be applied widely in mongolian medicines determination.

  9. Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Galván, Ismael; Jorge, Alberto; Solano, Francisco; Wakamatsu, Kazumasa

    2013-06-01

    We characterize for the first time the vibrational state of natural pheomelanin using Raman spectroscopy and model pigment synthesized from 5-S-cysteinyldopa. The shape of the Raman spectrum was very different from that of eumelanin. Four Raman bands were visible in the 500-2000 cm-1 wavenumber region about 500, 1150, 1490 and 2000 cm-1, which we assigned to the out-of-plane deformation and the stretching vibration of the phenyl rings, to the stretching vibration of C-N bonds or the stretching and wagging vibration of CH2, and to overtone or combination bands. Interestingly, we also show that the Raman spectrum of synthetic trichochrome F, a pigment that may be produced along with pheomelanin during pheomelanogenesis, is different from that of pheomelanin and similar to the spectrum of eumelanin. We could detect Raman signal of both eumelanin and pheomelanin in feathers and hairs where both pigments simultaneously occur without the need of isolating the pigment. This indicates that Raman spectroscopy represents a non-invasive method to detect pheomelanin and distinguish it from other pigments. This may be especially relevant to detect pheomelanin in animal skin including humans, where it has been associated with animal appearance and classification, human phototypes, prevention of skin diseases and cancer risk.

  10. Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy.

    PubMed

    Galván, Ismael; Jorge, Alberto; Solano, Francisco; Wakamatsu, Kazumasa

    2013-06-01

    We characterize for the first time the vibrational state of natural pheomelanin using Raman spectroscopy and model pigment synthesized from 5-S-cysteinyldopa. The shape of the Raman spectrum was very different from that of eumelanin. Four Raman bands were visible in the 500-2000 cm(-1) wavenumber region about 500, 1150, 1490 and 2000 cm(-1), which we assigned to the out-of-plane deformation and the stretching vibration of the phenyl rings, to the stretching vibration of C-N bonds or the stretching and wagging vibration of CH2, and to overtone or combination bands. Interestingly, we also show that the Raman spectrum of synthetic trichochrome F, a pigment that may be produced along with pheomelanin during pheomelanogenesis, is different from that of pheomelanin and similar to the spectrum of eumelanin. We could detect Raman signal of both eumelanin and pheomelanin in feathers and hairs where both pigments simultaneously occur without the need of isolating the pigment. This indicates that Raman spectroscopy represents a non-invasive method to detect pheomelanin and distinguish it from other pigments. This may be especially relevant to detect pheomelanin in animal skin including humans, where it has been associated with animal appearance and classification, human phototypes, prevention of skin diseases and cancer risk. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Raman Spectroscopy Study of Prostatic Adenocarcinoma Bulk Tissues

    NASA Astrophysics Data System (ADS)

    Devpura, S.; Dai, H.; Thakur, J. S.; Naik, R.; Cao, A.; Pandya, A.; Auner, G. W.; Sarkar, F.; Sakr, W.; Naik, V.

    2009-03-01

    Prostate cancer is one of the most common types of cancer among men. The mortality rate for this disease can be dramatically reduced if it can be diagnosed in its early stages. Raman spectroscopy is one of the optical techniques which can provide fingerprints of a disease in terms of its molecular composition which changes due to the onset of disease. The aim of this project is to investigate the differences in the Raman spectra to identify benign epithelium (BE), prostatic intraepithelial neoplasia (PIN) and adenocarcinoma of various Gleason grades in archived bulk tissues embedded in paraffin wax. For each tissue, two adjacent tissue sections were cut and dewaxed, where one of the sections was stained using haematoxylin and eosin for histological examination and the other unstained adjacent section was used for Raman spectroscopic studies. We have collected Raman spectra from 10 prostatic adenocarcinoma dewaxed tissue sections using Raman microscope (785 nm excitation laser). The data were analyzed using statistical methods of principal component analysis and discriminant function analysis to classify the tissue regions. The results indicate that Raman Spectroscopy can differentiate between BE, PIN and Cancer regions.

  12. [Study on the treatment turquoise using Raman spectroscopy].

    PubMed

    Chen, Quan-li; Yuan, Xin-qiang; Chen, Jing-zhong; Qi, Li-jian

    2010-07-01

    Due to a variety of the enhancement and treatment turquoises discovered in gem markets, the identification of turquoise is becoming more and more difficult. By using laser Raman spectroscopy analysis, the characteristics of Raman spectra of the pressed and filled turquoises were studied. The results show that laser Raman spectroscopy is an effective technique to identify the enhancement and treatment turquoises and the natural ones, moreover, it's a non-destructive testing method. The Raman spectra of the enhancement and treatment turquoises are resulted mainly from the vibrational mode and frequency of water, hydroxyl units, PO4 tetrahedron and CH2 units. Besides, they have the characteristic Raman spectra peaks at 2,937, 2,883 and 1,451 cm(-1) which are attributed to the stretching vibration and the bending vibration of CH2, respectively. These characteristic Raman vibration bands, it will help to distinguish the natural turquoises and the treatment ones. The study provides a new train of thought on the rapid, accurate, and non-destructive identification of turquoise.

  13. 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials

    PubMed Central

    Agarwal, Umesh P.

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression can be achieved, the utility of the Raman investigations has increased significantly. Moreover, the development of several new capabilities such as estimation of cellulose-crystallinity, ability to analyze changes in cellulose conformation at the local and molecular level, and examination of water-cellulose interactions have made this technique essential for research in the field of plant science. The FT-Raman method has also been applied to research studies in the arenas of biofuels and nanocelluloses. Moreover, the ability to investigate plant lignins has been further refined with the availability of near-IR Raman. In this paper, we present 1064-nm FT-Raman spectroscopy methodology to investigate various compositional and structural properties of plant material. It is hoped that the described studies will motivate the research community in the plant biomass field to adapt this technique to investigate their specific research needs. PMID:25295049

  14. Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique

    NASA Astrophysics Data System (ADS)

    Li, Shao-Xin; Chen, Qiu-Yan; Zhang, Yan-Jiao; Liu, Zhi-Ming; Xiong, Hong-Lian; Guo, Zhou-Yi; Mai, Hai-Qiang; Liu, Song-Hao

    2012-12-01

    Raman spectroscopy (RS) and a genetic algorithm (GA) were applied to distinguish nasopharyngeal cancer (NPC) from normal nasopharyngeal tissue. A total of 225 Raman spectra are acquired from 120 tissue sites of 63 nasopharyngeal patients, 56 Raman spectra from normal tissue and 169 Raman spectra from NPC tissue. The GA integrated with linear discriminant analysis (LDA) is developed to differentiate NPC and normal tissue according to spectral variables in the selected regions of 792-805, 867-880, 996-1009, 1086-1099, 1288-1304, 1663-1670, and 1742-1752 cm-1 related to proteins, nucleic acids and lipids of tissue. The GA-LDA algorithms with the leave-one-out cross-validation method provide a sensitivity of 69.2% and specificity of 100%. The results are better than that of principal component analysis which is applied to the same Raman dataset of nasopharyngeal tissue with a sensitivity of 63.3% and specificity of 94.6%. This demonstrates that Raman spectroscopy associated with GA-LDA diagnostic algorithm has enormous potential to detect and diagnose nasopharyngeal cancer.

  15. 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials.

    PubMed

    Agarwal, Umesh P

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression can be achieved, the utility of the Raman investigations has increased significantly. Moreover, the development of several new capabilities such as estimation of cellulose-crystallinity, ability to analyze changes in cellulose conformation at the local and molecular level, and examination of water-cellulose interactions have made this technique essential for research in the field of plant science. The FT-Raman method has also been applied to research studies in the arenas of biofuels and nanocelluloses. Moreover, the ability to investigate plant lignins has been further refined with the availability of near-IR Raman. In this paper, we present 1064-nm FT-Raman spectroscopy methodology to investigate various compositional and structural properties of plant material. It is hoped that the described studies will motivate the research community in the plant biomass field to adapt this technique to investigate their specific research needs.

  16. Identifying a common origin of toner printed counterfeit banknotes by micro-Raman spectroscopy.

    PubMed

    Skenderović Božičević, Martina; Gajović, Andreja; Zjakić, Igor

    2012-11-30

    This study explores the applicability of micro-Raman spectroscopy as a non-destructive technique for the analysis of color toner printed counterfeits. The main aim of the research paper was to find out whether Raman spectroscopy is a suitable method for establishing the connection between different specimens of counterfeits suspected to be printed with the same toner on the same machine. Specimens of different types of toners printed on different types of paper are analyzed by means of the micro-Raman spectroscopy system with the excitation line at 514.5 nm. For each specimen cyan, magenta and yellow toners are analyzed separately. The yellow toners displayed the most distinctive Raman spectra. The results show that micro-Raman spectroscopy can be successfully applied as a method for the analysis of color toner printed counterfeits, such as banknotes and documents, in order to establish links between more or less different specimens of counterfeits by measuring the properties of a color toner.

  17. Remote temperature monitoring in ocular tissue using confocal Raman spectroscopy.

    PubMed

    Bauer, Noel J C; Motamedi, Massoud; Hendrikse, Fred; Wicksted, James P

    2005-01-01

    We demonstrated the feasibility of Raman spectroscopy for remote temperature monitoring within the aqueous humor of the rabbit eye in vivo. Using a confocal Raman spectroscopy system, Raman spectra from 2580 to 3800 cm(-1) were recorded in HPLC-grade water and in the aqueous humor of the rabbit eye under in vivo and ex vivo conditions within a temperature range of 14-34 degrees C. The ratio between the integrated Raman intensities of two temperature dependent OH-vibrational regions (OH2/OH1) in the spectra of water showed high linear dependence on temperature both in pure water [0.0049(+/-1.2%)T+0.4522(+/-0.5%), R2=0.99, n=50, p<0.05], as well as in the rabbit aqueous humor [0.0036(+/-2.8%)T+0.4966(+/-0.6%), R2=0.98, n=162, p<0.05] with a high degree of reproducibility and sensitivity ( approximately 0.2-0.7 degrees C). Raman spectroscopy can be used for high resolution and remote monitoring of temperature in the aqueous humor under in vivo conditions.

  18. Raman spectroscopy for bacterial identification and characterization

    NASA Astrophysics Data System (ADS)

    Bernatová, Silvie; Samek, Ota; Pilát, Zdeněk.; Šerý, Mojmír.; Ježek, Jan; Krzyžánek, Vladislav; Zemánek, Pavel; Ružička, Filip

    2012-01-01

    The main goal of our investigation is to use Raman tweezers technique so that the responce of Raman scattering on microorganisms suspended in liquid media (bacteria, algae and yeast cells in microfluidic chips) can be used to identify different species. The investigations presented here include identification of different bacteria strains (biofilm-positive and biofilm-negative) and yeast cells by using principal component analysis (PCA). The main driving force behind our investigation was a common problem in the clinical microbiology laboratory - how to distinguish between contaminant and invasive isolates. Invasive bacterial/yeast isolates can be assumed to form a biofilm, while isolates which do not form a biofilm can be treated as contaminant. Thus, the latter do not represent an important virulence factor.

  19. Resonance Raman spectroscopy in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Righi, A.; Venezuela, P.; Chacham, H.; Costa, S. D.; Fantini, C.; Ruoff, R. S.; Colombo, L.; Bacsa, W. S.; Pimenta, M. A.

    2013-12-01

    In this work we study the Raman spectra of twisted bilayer graphene samples, with different twisting angles, by changing the incident laser energy between 2.54 and 4.14 eV. The spectra exhibit a number of extra peaks, classified in different families, each one associated with bilayer graphenes with different twisting rotational angles. We theoretically analyze the laser energy dependence of these extra peaks considering a set of discrete wavevectors within the interior of the Brillouin zone of graphene, which activate special double-resonance Raman processes. Our result show a nice qualitative agreement between the experimental and simulated spectra, demonstrating that these extra peaks are indeed ascribed to an umklapp double-resonance process in graphene systems.

  20. Raman spectroscopy and oral exfoliative cytology

    NASA Astrophysics Data System (ADS)

    Sahu, Aditi; Shah, Nupur; Mahimkar, Manoj; Garud, Mandavi; Pagare, Sandeep; Nair, Sudhir; Krishna, C. Murali

    2014-03-01

    Early detection of oral cancers can substantially improve disease-free survival rates. Ex vivo and in vivo Raman spectroscopic (RS) studies on oral cancer have demonstrated the applicability of RS in identifying not only malignant and premalignant conditions but also cancer-field-effects: the earliest events in oral carcinogenesis. RS has also been explored for cervical exfoliated cells analysis. Exfoliated cells are associated with several advantages like non-invasive sampling, higher patient compliance, transportation and analysis at a central facility: obviating need for on-site instrumentation. Thus, oral exfoliative cytology coupled with RS may serve as a useful adjunct for oral cancer screening. In this study, exfoliated cells from healthy controls with and without tobacco habits, premalignant lesions (leukoplakia and tobacco-pouch-keratosis) and their contralateral mucosa were collected using a Cytobrush. Cells were harvested by vortexing and centrifugation at 6000 rpm. The cellular yield was ascertained using Neubauer's chamber. Cell pellets were placed on a CaF2 window and Raman spectra were acquired using a Raman microprobe (40X objective) coupled HE-785 Raman spectrometer. Approximately 7 spectra were recorded from each pellet, following which pellet was smeared onto a glass slide, fixed in 95% ethanol and subjected to Pap staining for cytological diagnosis (gold standard). Preliminary PC-LDA followed by leave-one-out cross validation indicate delineation of cells from healthy and all pathological conditions. A tendency of classification was also seen between cells from contralateral, healthy tobacco and site of premalignant lesions. These results will be validated by cytological findings, which will serve as the basis for building standard models of each condition.

  1. Time-resolved inverse Raman spectroscopy.

    PubMed

    Rahn, L A

    1982-02-01

    A technique for obtaining sensitive, highly reproducible, time-resolved inverse Raman measurements is reported. Experimental results are presented for the nitrogen vibrational Q branch at a pressure of 10 atm. For these measurements the signal, normalized to the pump-laser energy, exhibits fluctuations of 1.4% (rms) about the average of 500 measurements; these deviations are within a factor of 2 of the quantum noise limit.

  2. Tip Enhanced Raman Spectroscopy and Imaging: an Apical Illumination Geometry

    PubMed Central

    Schultz, Zachary D.; Stranick, Stephan J.; Levin, Ira W.

    2009-01-01

    Results are presented illustrating the use of tip enhanced Raman spectroscopy and imaging in a top-illumination geometry. A radially polarized beam is used to generate an electric field component in the direction of beam propagation, normal to the surface, resulting in a 5× increased enhancement compared to a linearly polarized beam. This multiplicative enhancement facilitates a discrimination of the near field signal from the far field Raman background. The top illumination configuration facilitates the application of TERS for investigating molecules on a variety of surfaces, such as Au, glass, and Si. The near field Raman spectrum is presented of Si(100), rhodamine B, brilliant cresyl blue, and single wall carbon nanotubes. Sufficient enhancement is obtained to permit a sub-diffraction limited resolution Raman imaging of the surface distribution of large bundles of carbon nanotubes of various diameters. PMID:19007457

  3. Remote sensing of subsurface water temperature by laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.; Caputo, B.; Guagliardo, J. L.; Hoge, F. E.

    1980-01-01

    This paper describes experimental remote sensing of subsurface water temperature using the Raman spectroscopic technique. By the use of a pulsed laser and range gating detection techniques, Raman scattering is analyzed as a function of depth in a radar-like echo mode, and thus subsurface profiles of temperature and transmission are obtained. Experiments are described in which Raman data using polarization spectroscopy has been obtained from a ship as a function of depth in ocean water near Grand Bahama Island. A spectral temperature accuracy of + or - 1 C has been obtained from this data in the first two optical attenuation lengths. Raman data obtained from ocean water using the NASA airborne oceanographic lidar is also presented.

  4. Remote sensing of subsurface water temperature by laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.; Caputo, B.; Guagliardo, J. L.; Hoge, F. E.

    1980-01-01

    This paper describes experimental remote sensing of subsurface water temperature using the Raman spectroscopic technique. By the use of a pulsed laser and range gating detection techniques, Raman scattering is analyzed as a function of depth in a radar-like echo mode, and thus subsurface profiles of temperature and transmission are obtained. Experiments are described in which Raman data using polarization spectroscopy has been obtained from a ship as a function of depth in ocean water near Grand Bahama Island. A spectral temperature accuracy of + or - 1 C has been obtained from this data in the first two optical attenuation lengths. Raman data obtained from ocean water using the NASA airborne oceanographic lidar is also presented.

  5. High resolution, temperature dependent Raman spectroscopy of graphene

    NASA Astrophysics Data System (ADS)

    Rémi, Sebastian; Metzger, Constanze; Hubbard, Billy; Thomas, Claire; Goldberg, Bennett B.; Swan, Anna

    2008-03-01

    Single and bi-layer graphene are studied with high resolution, temperature dependent Raman scattering. The electron-phonon coupling in graphene depends sensitively on both the concentration of charge carriers and the temperature. Raman spectroscopy directly probes electron-phonon coupling, and has been used to examine the stiffening of the G-band, phonon damping [1] and spatial inhomogeneities in the carrier density [2]. Our measurements are performed between room temperature and 4K in a confocal scanning Raman system. The samples are back-gated, allowing us to tune the carrier density and spectroscopically map the Raman response. We will discuss our recent measurements. [1] J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett, 98, 166802 (2007) [2] C. Stampfer, et al. Arxiv, cond-mat 0709.4156v1

  6. X-ray resonant Raman spectroscopy

    SciTech Connect

    Cowan, P.L.; LeBrun, T.; Deslattes, R.D.

    1995-08-01

    X-ray resonant Raman scattering presents great promise as a high-resolution spectroscopic probe of the electronic structure of matter. Unlike other methods, the technique avoids the loss of energy resolution resulting from the lifetime broadening of short-lived core-excited states. In addition, measurements of polarization and angular anisotropies yield information on the symmetries of electronic states of atoms and molecules. We studied the L{sub 3} edge of xenon, where the lifetime broadening is a major feature of the spectra recorded previously. X-ray fluorescence spectra were taken of both the L{alpha}{sub l,2} and L{beta}{sub 2,15} peaks over a range of energies from 10 eV below the edge to 40 eV above. These spectra show the evolution of resonant Raman scattering into characteristic fluorescence as the photon energy is scanned across the edge, and confirm several features of these spectra such as asymmetries in resonant peak shapes due to the onset of the ionization continuum. These results constitute the most comprehensive study of X-ray resonant Raman scattering to date, and were submitted for publication. Studies of other cases are under way, and new instruments that would match the unique characteristics of the APS - and thus render a new range of experiments possible - are under consideration.

  7. Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy.

    PubMed

    Mazilu, Michael; De Luca, Anna Chiara; Riches, Andrew; Herrington, C Simon; Dholakia, Kishan

    2010-05-24

    Raman spectroscopy permits probing of the molecular and chemical properties of the analyzed sample. However, its applicability has been seriously limited to specific applications by the presence of a strong fluorescence background. In our recent paper [Anal. Chem. 82, 738 (2010)], we reported a new modulation method for separating Raman scattering from fluorescence. By continuously changing the excitation wavelength, we demonstrated that it is possible to continuously shift the Raman peaks while the fluorescence background remains essentially constant. In this way, our method allows separation of the modulated Raman peaks from the static fluorescence background with important advantages when compared to previous work using only two [Appl. Spectrosc. 46, 707 (1992)] or a few shifted excitation wavelengths [Opt. Express 16, 10975 (2008)]. The purpose of the present work is to demonstrate a significant improvement of the efficacy of the modulated method by using different processing algorithms. The merits of each algorithm (Standard Deviation analysis, Fourier Filtering, Least-Squares fitting and Principal Component Analysis) are discussed and the dependence of the modulated Raman signal on several parameters, such as the amplitude and the modulation rate of the Raman excitation wavelength, is analyzed. The results of both simulation and experimental data demonstrate that Principal Component Analysis is the best processing algorithm. It improves the signal-to-noise ratio in the treated Raman spectra, reducing required acquisition times. Additionally, this approach does not require any synchronization procedure, reduces user intervention and renders it suitable for real-time applications.

  8. Fluorescence suppression using micro-scale spatially offset Raman spectroscopy.

    PubMed

    Conti, Claudia; Botteon, Alessandra; Colombo, Chiara; Realini, Marco; Matousek, Pavel

    2016-09-21

    We present a new concept of fluorescence suppression in Raman microscopy based on micro-spatially offset Raman spectroscopy which is applicable to thin stratified turbid (diffusely scattering) matrices permitting the retrieval of the Raman signals of sublayers below intensely fluorescing turbid over-layers. The method is demonstrated to yield good quality Raman spectra with dramatically suppressed fluorescence backgrounds enabling the retrieval of Raman sublayer signals even in situations where conventional Raman microscopy spectra are fully overwhelmed by intense fluorescence. The concept performance was studied theoretically using Monte Carlo simulations indicating the potential of up to an order or two of magnitude suppression of overlayer fluorescence backgrounds relative to the Raman sublayer signals. The technique applicability was conceptually demonstrated on layered samples involving paints, polymers and stones yielding fluorescence suppression factors between 12 to above 430. The technique has potential applications in a number of analytical areas including cultural heritage, archaeology, polymers, food, pharmaceutical, biological, biomedical, forensics and catalytic sciences and quality control in manufacture.

  9. Low wavenumber Raman spectroscopy using atomic filters (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xue, Xiaobo; Janisch, Corey; Chen, Yizhu; Liu, Zhiwen; Chen, Jingbiao

    2016-10-01

    Low-wavenumber Raman spectroscopy has long been demonstrated as a method of optical characterization in a variety of applications, such as thermal detection and semiconductor analysis. However, accessing low-wavenumber Raman shifts remains a challenge, usually requiring an expensive and complex multi-stage spectrographic system to measure several cm-1 Raman shifts. In this work, we demonstrate a method to measure low-wavenumber Raman shifts down to 1 cm-1 using atomic filters. By using a narrow-band Faraday anomalous dispersion optical filter to remove spontaneous emission noise from the laser cavity and a heated atomic cell as a notch filter to remove the excitation laser, the system is able to measure low Raman shifts (down to 1 cm-1). To demonstrate the capabilities, we measure the broadband Raman spectrum from a silica optical fiber with approximately 0.3 cm-1 resolution, detecting both Stokes and Anti-Stokes Raman shift as low as 0.7 cm-1.

  10. In situ Raman spectroscopy of lithium electrode surface in ambient temperature lithium secondary battery. Final report

    SciTech Connect

    Tachikawa, Hiroyasu

    1992-09-01

    Raman spectroscopy was used to characterize surface layers on lithium electrodes in different solvents such as propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and polyethylene glycol 400 dimethyl ether (PEG400DME). Both DMC and DEC were used singly, and also mixed with either methyl acetate (MA) or methyl formate (MF). The Raman spectra showed that passive films formed on the Li surface in different solvents may have different chemical structures, which changed during the charging and discharging processes. Raman spectroscopy was also applied to characterize zinc electrode surfaces in alkaline solutions. The results suggested that ZnO and Zn(OH){sub 2} formed on the Zn electrode when a passive potential was applied. A solid film of fullerene C{sub 60}, which could be used as a cathode in Li rechargeable batteries, was examined in the PEG400DME solution by both electrochemical and Raman spectroscopy. Cyclic voltammograms (CVs) showed five redox peaks which suggested the formation of C{sub 60}{sup {minus}}, C{sub 60}{sup 2{minus}}, C{sub 60}{sup 3{minus}}, C{sub 60}{sup 4{minus}}, and C{sub 60}{sup 5{minus}}. Raman spectra obtained from a thin C{sub 60} film indicated that the thin fulleride film dissolved in the PEG400DME/LiClO{sub 4} solution at negative potentials.

  11. THz-Raman spectroscopy for explosives, chemical, and biological detection

    NASA Astrophysics Data System (ADS)

    Carriere, James T. A.; Havermeyer, Frank; Heyler, Randy A.

    2013-05-01

    Raman and Terahertz spectroscopy are both widely used for their ability to safely and remotely identify unknown materials. Each approach has its advantages and disadvantages. Traditional Raman spectroscopy typically measures molecular energy transitions in the 200-5000cm-1 region corresponding to sub-molecular stretching or bending transitions, while Terahertz spectroscopy measures molecular energy transitions in the 1-200cm-1 region (30GHz - 6THz) that correspond to low energy rotational modes or vibrational modes of the entire molecule. Many difficult to detect explosives and other hazardous chemicals are known to have multiple relatively strong transitions in this "Terahertz" (<200cm-1, <6THz) regime, suggesting this method as a powerful complementary approach for identification. However, THz signal generation is often expensive, many THz spectroscopy systems are limited to just a few THz range, and strong water absorption bands in this region can act to mask certain transitions if great care isn't taken during sample preparation. Alternatively, low-frequency or "THz-Raman" spectroscopy, which covers the ~5cm-1 to 200cm-1 (150GHz - 6 THz) regions and beyond, offers a powerful, compact and economical alternative to probe these low energy transitions. We present results from a new approach for extending the range of Raman spectroscopy into the Terahertz regime using an ultra-narrow-band volume holographic grating (VHG) based notch filter system. An integrated, compact Raman system is demonstrated utilizing a single stage spectrometer to show both Stokes and anti-Stokes measurements down to <10cm-1 on traditionally difficult to detect explosives, as well as other chemical and biological samples.

  12. Imaging EGFR distribution using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucas, L.; Chen, X. K.; Smith, A.; Korbelik, M.; Zeng, H.; Lee, P. W. K.; Hewitt, K. C.

    2009-02-01

    The purpose of this study is to explore the feasibility of using Surface Enhanced Raman Spectroscopy (SERS) to image the distribution of Epidermal Growth Factor Receptor (EGFR) in cells. To accomplish this task, 30 nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per ml) are incubated with cells (106 per ml) of the A431 human epidermoid carcinoma cell line and normal human bronchial epithelial (NHBE) cells. Using the 632.8 nm excitation line of a He-Ne laser, Raman spectroscopy measurements are performed using a point mapping scheme. SERS signals are observed with an overall enhancement of 4-7 orders of magnitude. Raman intensity maps of the 1480 and 1583 cm-1 peaks correlate well with the expected distribution of AuNPs and EGFR. Normal cells show little to no enhancement. The results therefore present a simple yet effective means to image EGFR over-expression.

  13. Raman spectroscopy for in-situ monitoring of electrode processes

    SciTech Connect

    Varma, R; Cook, G M; Yao, N P

    1982-04-01

    The theoretical and experimental applications of Raman spectroscopic techniques to the study of battery electrode processes are described. In particular, the potential of Raman spectroscopy as an in-situ analytical tool for the characterization of the structure and composition of electrode surface layers at electrode-electrolyte interfaces during electrolysis is examined. It is anticipated that this understanding of the battery electrode processes will be helpful in designing battery active material with improved performance. The applications of Raman spectroscopy to the in-situ study of electrode processes has been demonstrated in a few selected areas, including: (1) the anodic corrosion of lead in sulfuric acid and (2) the anodization and sulfation of tetrabasicleadsulfate in sulfuric acid. Preliminary results on the anodization of iron and on the electrochemical behavior of nickel positive-electrode active material in potassium hydroxide electrolytes are presented in the Appendix.

  14. Raman scattering excitation spectroscopy of monolayer WS2.

    PubMed

    Molas, Maciej R; Nogajewski, Karol; Potemski, Marek; Babiński, Adam

    2017-07-11

    Resonant Raman scattering is investigated in monolayer WS2 at low temperature with the aid of an unconventional technique, i.e., Raman scattering excitation (RSE) spectroscopy. The RSE spectrum is made up by sweeping the excitation energy, when the detection energy is fixed in resonance with excitonic transitions related to either neutral or charged excitons. We demonstrate that the shape of the RSE spectrum strongly depends on the selected detection energy. The resonance of outgoing light with the neutral exciton leads to an extremely rich RSE spectrum, which displays several Raman scattering features not reported so far, while no clear effect on the associated background photoluminescence is observed. Instead, when the outgoing photons resonate with the negatively charged exciton, a strong enhancement of the related emission occurs. Presented results show that the RSE spectroscopy can be a useful technique to study electron-phonon interactions in thin layers of transition metal dichalcogenides.

  15. Noninvasive detection of filaggrin gene mutations using Raman spectroscopy.

    PubMed

    González, Francisco J; Valdes-Rodríguez, Rodrigo; Ramírez-Elías, Miguel G; Castillo-Martínez, Claudio; Saavedra-Alanis, Victor M; Moncada, Benjamín

    2011-12-01

    Knowledge of the existence of filaggrin (FLG) gene mutations might be helpful for a subclassification of patients with atopic dermatitis (AD) which can be used to introduce individualized treatments. In this work the filaggrin content in the skin is assessed using Raman spectroscopy and the results are compared to FLG genotyping of Mexican-mestizo patients. Results showed that the 2282del4 and R501X mutations present in the European population but absent in people of Asian or African descent are also present in the Mexican-mestizo population. The results also showed that patients with filaggrin gene mutations presented lower filaggrin concentrations measured using the vector correlation of their skin Raman spectra and a fixed spectrum of pure human recombinant filaggrin, these results indicate that Raman spectroscopy may be used as a noninvasive tool to detect FLG gene mutations.

  16. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOEpatents

    Kyle, Kevin R.; Brown, Steven B.

    2000-01-01

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  17. Noninvasive detection of filaggrin gene mutations using Raman spectroscopy

    PubMed Central

    González, Francisco J.; Valdes-Rodríguez, Rodrigo; Ramírez-Elías, Miguel G.; Castillo-Martínez, Claudio; Saavedra-Alanis, Victor M.; Moncada, Benjamín

    2011-01-01

    Knowledge of the existence of filaggrin (FLG) gene mutations might be helpful for a subclassification of patients with atopic dermatitis (AD) which can be used to introduce individualized treatments. In this work the filaggrin content in the skin is assessed using Raman spectroscopy and the results are compared to FLG genotyping of Mexican-mestizo patients. Results showed that the 2282del4 and R501X mutations present in the European population but absent in people of Asian or African descent are also present in the Mexican-mestizo population. The results also showed that patients with filaggrin gene mutations presented lower filaggrin concentrations measured using the vector correlation of their skin Raman spectra and a fixed spectrum of pure human recombinant filaggrin, these results indicate that Raman spectroscopy may be used as a noninvasive tool to detect FLG gene mutations. PMID:22162825

  18. Analysis of milk by FT-Raman spectroscopy.

    PubMed

    Mazurek, Sylwester; Szostak, Roman; Czaja, Tomasz; Zachwieja, Andrzej

    2015-06-01

    Fat, protein, carbohydrates and dry matter were quantified in commercial bovine milk samples, with the relative standard errors of prediction (RSEP) in the 3.4-6.1% range, using the partial least squares (PLS) method based on Raman spectra of liquid milk samples. Results of a better quality were obtained from a PLS model derived from IR spectra registered using single reflection ATR diamond accessory, which yielded RSEP values of 2.4-4.4%. The data indicated IR single reflection ATR spectroscopy and Raman spectroscopy in combination with multivariate modelling using the PLS method, allowed for the reliable, simultaneous quantitative determination of macronutrients in milk. The low signal to noise ratio of Raman spectra affects the quality of fat quantification especially for strongly defatted milk samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. [Near-infrared Raman spectroscopy for diagnosis of gastric cancer].

    PubMed

    Jin, Shaoqin; Mao, Hua

    2014-03-01

    To establish a method for early diagnosis of gastric cancer using near-infrared Raman spectroscopy. A rapid near-infrared Raman system was used to examine the tissue specimens of pathologically confirmed gastric cancer (33 cases), gastric precancerous lesions (27 cases), and normal gastric mucosa (45 cases). All the specimens were obtained from 105 patients undergoing gastrectomy or endoscopic biopsy of suspected gastric lesions. High-quality Raman spectra ranging from 700 to 1800 cm(-1) were acquired from the gastric tissues within 5 s. The distribution pattern of Raman spectra in gastric cancer differed significantly from those of gastric precancerous lesions and normal gastric mucosa, particularly in the spectral ranges of 853 cm(-1), 936 cm(-1), 1003 cm(-1), 1032 cm(-1), 1174 cm(-1), 1208 cm(-1), 1323 cm(-1), 1335 cm(-1), 1450 cm(-1), and 1655 cm(-1), which contained signals related to proteins, nucleic acids and lipids. The diagnostic decision algorithm based on the Raman peak intensity ratios of I1003/ I1337, I1003/I1445, I1003/I1655, and I1156/I1655 yielded remarkable differences in gastric cancer from gastric precancerous lesions and normal gastric mucosa, and the ratios were significantly higher in normal gastric tissues (P<0.05). The discrimination based on near-infrared Raman spectroscopy using PCA-LDA algorithms associated with leave- one-out and cross-validation method showed diagnostic sensitivities of 81.5%, 85.3%, and 100%, and specificities of 86.4%, 100%, and 97.4% for normal gastric mucosa, precancerous lesions and gastric cancer, respectively. near-infrared Raman spectroscopy in conjunction with intensity ratio algorithms shows the potential for noninvasive diagnosis and detection of gastric malignancy at the molecular level.

  20. Novel microfluidic devices for Raman spectroscopy and optical trapping

    NASA Astrophysics Data System (ADS)

    Ottevaere, Heidi; Liu, Qing; de Coster, Diane; Van Erps, Jürgen; Vervaeke, Michael; Thienpont, Hugo

    2016-09-01

    Traditionally, Raman spectroscopy is done in a specialized lab, with considerable requirements in terms of equipment, time and manual sampling of substances of interest. We present the modeling, the design and the fabrication process of a microfluidic device incorporation Raman spectroscopy, from which one enables confocal Raman measurements on-chip. The latter is fabricated using ultra precision diamond tooling and is tested in a proof-of-concept setup, by for example measuring Raman spectra of urea solutions with various concentrations. If one wants to analyze single cells instead of a sample solution, precautions need to be taken. Since Raman scattering is a weak process, the molecular fingerprint of flowing particles would be hard to measure. One method is to stably position the cell under test in the detection area during acquisition of the Raman scattering such that the acquisition time can be increased. Positioning of cells can be done through optical trapping and leads to an enhanced signal-to-noise ratio and thus a more reliable cell identification. Like Raman spectroscopy, optical trapping can also be miniaturized. We present the modeling, design process and fabrication of a mass-manufacturable polymer microfluidic device for dual fiber optical trapping using two counterpropagating singlemode beams. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we characterize the trapping capabilities of the hot embossed chip.

  1. Raman-spectroscopy-based biosensing for applications in ophthalmology

    NASA Astrophysics Data System (ADS)

    Rusciano, Giulia; Capriglione, Paola; Pesce, Giuseppe; Zito, Gianluigi; Del Prete, Antonio; Cennamo, Giovanni; Sasso, Antonio

    2013-05-01

    Cell-based biosensors rely on the detection and identification of single cells as well as monitoring of changes induced by interaction with drugs and/or toxic agents. Raman spectroscopy is a powerful tool to reach this goal, being non-destructive analytical technique, allowing also measurements of samples in aqueous environment. In addition, micro-Raman measurements do not require preliminary sample preparation (as in fluorescence spectroscopy), show a finger-print spectral response, allow a spatial resolution below typical cell sizes, and are relatively fast (few s or even less). All these properties make micro-Raman technique particularly promising for high-throughput on-line analysis integrated in lab-on-a-chip devices. Herein, we demonstrate some applications of Raman analysis in ophthalmology. In particular, we demonstrate that Raman analysis can provide useful information for the therapeutic treatment of keratitis caused by Acanthamoeba Castellanii (A.), an opportunistic protozoan that is widely distributed in the environment and is known to produce blinding keratitis and fatal encephalitis. In particular, by combining Raman analysis with Principal Component Analysis (PCA), we have demonstrated that is possible to distinguish between live and dead cells, enabling, therefore to establish the effectiveness of therapeutic strategies to vanquish the protozoa. As final step, we have analyzed the presence of biochemical differences in the conjunctival epithelial tissues of patients affected by keratitis with respect to healthy people. As a matter of facts, it is possible to speculate some biochemical alterations of the epithelial tissues, rendering more favorable the binding of the protozoan. The epithelial cells were obtained by impression cytology from eyes of both healthy and keratitis-affected individuals. All the samples were analyzed by Raman spectroscopy within a few hours from cells removal from eyes. The results of this analysis are discussed.

  2. Characterization method for relative Raman enhancement for surface-enhanced Raman spectroscopy using gold nanoparticle dimer array

    NASA Astrophysics Data System (ADS)

    Sugano, Koji; Ikegami, Kohei; Isono, Yoshitada

    2017-06-01

    In this paper, a characterization method for Raman enhancement for highly sensitive and quantitative surface-enhanced Raman spectroscopy (SERS) is reported. A particle dimer shows a marked electromagnetic enhancement when the particle connection direction is matched to the polarization direction of incident light. In this study, dimers were arrayed by nanotrench-guided self-assembly for a marked total Raman enhancement. By measuring acetonedicarboxylic acid, the fabricated structures were characterized for SERS depending on the polarization angle against the particle connection direction. This indicates that the fabricated structures cause an effective SERS enhancement, which is dominated by the electromagnetic enhancement. Then, we measured 4,4‧-bipyridine, which is a pesticide material, for quantitative analysis. In advance, we evaluated the enhancement of the particle structure by the Raman measurement of acetonedicarboxylic acid. Finally, we compared the Raman intensities of acetonedicarboxylic acid and 4,4‧-bipyridine. Their intensities showed good correlation. The advantage of this method for previously evaluating the enhancement of the substrate was demonstrated. This developed SERS characterization method is expected to be applied to various quantitative trace analyses of molecules with high sensitivity.

  3. Analysis of scorpion venom composition by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Martínez-Zérega, Brenda E.; González-Solís, José L.

    2015-01-01

    In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.

  4. Determination of cellulose I crystallinity by FT-Raman spectroscopy

    Treesearch

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2009-01-01

    Two new methods based on FT-Raman spectroscopy, one simple, based on band intensity ratio, and the other, using a partial least-squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in semicrystalline cellulose I samples was determined based on univariate regression that was first developed using the...

  5. Raman spectroscopy towards clinical application: drug monitoring and pathogen identification.

    PubMed

    Neugebauer, Ute; Rösch, Petra; Popp, Jürgen

    2015-12-01

    Raman spectroscopy is a label-free method that measures quickly and contactlessly, providing detailed information from the sample, and has proved to be an ideal tool for medical and life science research. In this review, recent advances of the technique towards drug monitoring and pathogen identification by the Jena Research Groups are reviewed. Surface-enhanced Raman spectroscopy (SERS) and ultraviolet resonance Raman spectroscopy in hollow-core optical fibres enable the detection of drugs at low concentrations as shown for the metabolites of the immunosuppressive drug 6-mercaptopurine as well as antimalarial agents. Furthermore, Raman spectroscopy can be used to characterise pathogenic bacteria in infectious diseases directly from body fluids, making time-consuming cultivation processes dispensable. Using the example of urinary tract infection, it is shown how bacteria can be identified from patients' urine samples within <1 h. The methods cover both single-cell analysis and dielectrophoretic capturing of bacteria in suspension. The latter method could also be used for fast (<3.5 h) identification of antibiotic resistance as shown exemplarily for vancomycin-resistant enterococci. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  6. Raman spectroscopy for monitoring protein structure in muscle food systems.

    PubMed

    Herrero, Ana M

    2008-06-01

    Raman spectroscopy offers structural information about complex solid systems such as muscle food proteins. This spectroscopic technique is a powerful and a non-invasive method for the study of protein changes in secondary structure, mainly quantified, analysing the amide I (1650-1680 cm(- 1)) and amide III (1200-1300 cm(- 1)) regions and C-C stretching band (940 cm(- 1)), as well as modifications in protein local environments (tryptophan residues, tyrosil doublet, aliphatic aminoacids bands) of muscle food systems. Raman spectroscopy has been used to determine structural changes in isolated myofibrillar and connective tissue proteins by the addition of different compounds and by the effect of the conservation process such as freezing and frozen storage. It has been also shown that Raman spectroscopy is particularly useful for monitoring in situ protein structural changes in muscle food during frozen storage. Besides, the possibilities of using protein structural changes of intact muscle to predict the protein functional properties and the sensory attributes of muscle foods have been also investigated. In addition, the application of Raman spectroscopy to study changes in the protein structure during the elaboration of muscle food products has been demonstrated.

  7. Stress Analysis of SiC MEMS Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ness, Stanley J.; Marciniak, M. A.; Lott, J. A.; Starman, L. A.; Busbee, J. D.; Melzak, J. M.

    2003-03-01

    During the fabrication of Micro-Electro-Mechanical Systems (MEMS), residual stress is often induced in the thin films that are deposited to create these systems. These stresses can cause the device to fail due to buckling, curling, or fracture. Industry is looking for ways to characterize the stress during the deposition of thin films in order to reduce or eliminate device failure. Micro-Raman spectroscopy has been successfully used to characterize poly-Si MEMS devices made with the MUMPS® process. Raman spectroscopy was selected because it is nondestructive, fast and has the potential for in situ stress monitoring. This research attempts to use Raman spectroscopy to analyze the stress in SiC MEMS made with the MUSiC® process. Raman spectroscopy is performed on 1-2-micron-thick SiC thin films deposited on silicon, silicon nitride, and silicon oxide substrates. The most common poly-type of SiC found in thin film MEMS made with the MUSiC® process is 3C-SiC. Research also includes baseline spectra of 6H, 4H, and 15R poly-types of bulk SiC.

  8. Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy.

    PubMed

    Shin, W S; Li, X F; Schwartz, B; Wunder, S L; Baran, G R

    1993-09-01

    FT-IR spectroscopy has traditionally been used to determine the degree of conversion of dental resins. FT-Raman scattering provided an alternate method of obtaining degrees of conversion for these systems and was particularly useful for measuring spectra of materials without any sample preparation. Raman and FT-Raman spectroscopy gave identical results, but the latter technique was preferred for the highly fluorescent samples often encountered in commercial composites. Linear calibration curves were obtained for the aromatic mixtures Bis-GMA/TEGDMA and Bisphenol-A/TEGDMA using C = C/phi, and for the wholly aliphatic mixture EGDMA/EGDA using C = C/C = O, over a wide range of mole ratios. If both the mole and intensity ratios [C = C/phi or C = C/C = O] were known for an uncured dental resin, then the degrees of conversion could be obtained for the cured materials using Raman spectroscopy. However, if the mole ratios for the uncured resin were unknown, then the degree of conversion depended on the calibration curve, since the Raman scattering cross section of the vibrational modes depended on the molecules to which they were attached.

  9. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.

    PubMed

    Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth

    2016-11-10

    Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags(1). Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.

  10. THz-Raman: accessing molecular structure with Raman spectroscopy for enhanced chemical identification, analysis, and monitoring

    NASA Astrophysics Data System (ADS)

    Heyler, Randy A.; Carriere, James T. A.; Havermeyer, Frank

    2013-05-01

    Structural analysis via spectroscopic measurement of rotational and vibrational modes is of increasing interest for many applications, since these spectra can reveal unique and important structural and behavioral information about a wide range of materials. However these modes correspond to very low frequency (~5cm-1 - 200cm-1, or 150 GHz-6 THz) emissions, which have been traditionally difficult and/or expensive to access through conventional Raman and Terahertz spectroscopy techniques. We report on a new, inexpensive, and highly efficient approach to gathering ultra-low-frequency Stokes and anti-Stokes Raman spectra (referred to as "THz-Raman") on a broad range of materials, opening potential new applications and analytical tools for chemical and trace detection, identification, and forensics analysis. Results are presented on explosives, pharmaceuticals, and common elements that show strong THz-Raman spectra, leading to clear discrimination of polymorphs, and improved sensitivity and reliability for chemical identification.

  11. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules

    PubMed Central

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin

    2017-01-01

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-Mx (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-Mx complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS. PMID:28767053

  12. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    PubMed

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  13. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    PubMed

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in

  14. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    SciTech Connect

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well known stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.

  15. A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Conventional methods of spatially offset Raman spectroscopy (SORS) typically use single-fiber optical measurement probes to slowly and incrementally collect a series of spatially offset point measurements moving away from the laser excitation point on the sample surface, or arrays of multiple fiber ...

  16. Remote detection of trace effluents using Resonance Raman spectroscopy: Field results and evaluation

    SciTech Connect

    Sedlacek, A.J.; Chen, C.L.

    1995-10-01

    Resonance Raman spectroscopy (RRS) possesses many characteristics that are important for detecting, identifying and monitoring chemical effluents. Raman scattering is a coherent, inelastic, two-photon scattering process where an exciting photon of energy h{nu} promotes a molecule to a virtual level and the subsequently emitted photon is shifted in frequency in accordance with the rotational-vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. Under resonance enhancement, the Raman scattering cross-sections have been observed to increase up to 6 orders of magnitude above the normal scattering cross-sections, thereby providing the practical basis for a remote chemical sensor. Some of the other advantages that a Raman sensor possesses are: (1) very high selectivity (chemical specific fingerprints), (2) independence of the spectral fingerprint on the excitation wavelength (ability to monitor in the solar blind region), (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk), (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid or solutions), (5) no absolute calibration is necessary because all Raman signals observed from a given species can be compared with the Raman signal for N{sub 2}, whose concentration is known very accurately, and (6) insensitivity of the Raman signature to environmental conditions (no quenching, or interference from water vapor). In this presentation, the technology of resonance Raman spectroscopy as applied to the detection of narcotics production activities will be presented along with some recent experimental results.

  17. Investigation for the differentiation process of mouse ES cells by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yoshinori; El-Hagrasy, Maha A.; Shimizu, Eiichi; Saito, Masato; Tamiya, Eiichi

    2012-03-01

    The arrangement of differentiated pluripotent embryonic stem cells into three-dimensional aggregates, which are known as embryonic bodies, is a main step for progressing the embryonic stem cells differentiation. In this work, embryonic stem cells that were directly produced from the hanging drop step as a three-dimensional structure with no further twodimensional differentiation were diagnosed with Raman spectroscopy as a non-invasive and label-free technique. Raman spectroscopy was employed to discriminate between mouse embryonic bodies of different degrees of maturation. EBs were prepared applying the hanging drop method. The Raman scattering measurements were obtained in vitro with a Nanophoton RAMAN-11 micro-spectrometer (Japan: URL: www.nanophoton.jp equipped with an Olympus XLUM Plan FLN 20X/NA= 1.0 objective lens. Spectral data were smoothed, baseline corrected and normalized to the a welldefined intense 1003 cm-1 band (phenylalanine) which is insensitive to changes in conformation or environment. The differentiation process of embryonic stem cells is initiated by the removal of LIF from culture medium. 1, 7 and 17-dayold embryonic stem cells were collected and investigated by Raman spectroscopy. The main differences involve bands which decreased with maturation such as: 784 cm-1 (U, T, C ring br DNA/RNA, O-P-O str); 1177 cm-1 (cytosine, guanine) and 1578 cm-1 (G, A). It was found that with the progress of differentiation the protein content was amplified. The increase of protein to nucleic acid ratio was also previously observed with the progress of the differentiation process. Raman spectroscopy has the potential to distinguish between the Raman signatures of live embryonic stem cells with different degrees of maturation.

  18. Coherent Raman dual-comb spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Ideguchi, Takuro; Holzner, Simon; Bernhardt, Birgitta; Guelachvili, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2014-11-01

    The invention of the optical frequency comb technique has revolutionized the field of precision spectroscopy, providing a way to measure the absolute frequency of any optical transition. Since, frequency combs have become common equipment for frequency metrology. In the last decade, novel applications for the optical frequency comb have been demonstrated beyond its original purpose. Broadband molecular spectroscopy is one of those. One such technique of molecular spectroscopy with frequency combs, dual-comb Fourier transform spectroscopy provides short measurement times with resolution and accuracy. Two laser frequency combs with slightly different repetition frequencies generate pairs of pulses with a linearly-scanned delay between pulses in a pair. The system without moving parts mimics a fast scanning Fourier transform interferometer. The measurement speed may be several orders of magnitude faster than that of a Michelson-based Fourier transform spectrometer, which opens up new opportunities for broadband molecular spectroscopy. Recently, dual-comb spectroscopy has been extended to nonlinear phenomena. A broadband Raman spectrum of molecular fingerprints may be measured within a few tens of microseconds with coherent Raman dual-comb spectroscopy. Raster scanning the sample leads to hyperspectral images. This rapid and broadband label-free vibrational spectroscopy and imaging technique might provide new diagnostic methods in a variety of scientific and industrial fields.

  19. Efficient procedure for the measurement of preresonant excitation profiles in UV Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Höhl, Martin; Roth, Bernhard; Morgner, Uwe; Meinhardt-Wollweber, Merve

    2017-07-01

    Resonance Raman spectroscopy (RRS) is a promising technique for investigating samples with low concentrations of single constituents or many different constituents. The wavelength dependent resonance enhancement (resonance profile) of the respective molecule yields information about the targeted species and reveals the optimal wavelength for high resolution RRS. A significant increase of the Raman scattered intensity can already be achieved in the vicinity of the molecules' absorption band (preresonance). Measuring such preresonance and resonance profiles requires precise control of excitation conditions and careful assessment of the spectral accuracy of the setup. We present a comprehensive procedure for the acquisition of preresonance profiles in Raman spectroscopy. An experimental setup for recording the single spectra is combined with an efficient algorithm for data postprocessing. The procedure is demonstrated on amino acids measured in the UV and can be applied to any molecule and wavelength range.

  20. Application of infrared reflection and Raman spectroscopy for quantitative determination of fat in potato chips

    NASA Astrophysics Data System (ADS)

    Mazurek, Sylwester; Szostak, Roman; Kita, Agnieszka

    2016-12-01

    Potato chips are important products in the snack industry. The most significant parameter monitored during their quality control process is fat content. The Soxhlet method, which is applied for this purpose, is time consuming and expensive. We demonstrate that both infrared and Raman spectroscopy can effectively replace the extraction method. Raman, mid-infrared (MIR) and near-infrared (NIR) spectra of the homogenised laboratory-prepared chips were recorded. On the basis of obtained spectra, partial least squares (PLS) calibration models were constructed. They were characterised by the values of relative standard errors of prediction (RSEP) in the 1.0-1.9% range for both calibration and validation data sets. Using the developed models, six commercial products were successfully quantified with recovery in the 98.5-102.3% range against the AOAC extraction method. The proposed method for fat quantification in potato chips based on Raman spectroscopy can be easily adopted for on-line product analysis.

  1. The discrimination of fish egg quality and viability by using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishigaki, Mika; Sato, Hidetoshi

    2014-03-01

    Sexual reproductive body can be produced from a fertilized ovum. Once the ovum is fertilized with sperm, it runs through the cell division, differentiates to all kinds of cells, and goes to make a complete body. However, not all of them are viable and some of them stop to ontogenesis showing the developmental abnormality. In order to discriminate the egg quality, we apply Raman spectroscopy for fish egg. After the measurement, these Raman data are checked up with the information about the eggs can survive or not, and we examine what factors are important in egg components to distinguish between "good quality" and "not good quality". We present the results of assessment of egg quality, and investigate whether Raman spectroscopy can be used to a discriminate of egg quality.

  2. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    PubMed Central

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-01

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses. PMID:25580902

  3. Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes.

    PubMed

    Wang, Qi; Grozdanic, Sinisa D; Harper, Matthew M; Hamouche, Nicolas; Kecova, Helga; Lazic, Tatjana; Yu, Chenxu

    2011-10-01

    Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.

  4. Spatially offset Raman spectroscopy (SORS) for liquid screening

    NASA Astrophysics Data System (ADS)

    Loeffen, Paul W.; Maskall, Guy; Bonthron, Stuart; Bloomfield, Matthew; Tombling, Craig; Matousek, Pavel

    2011-11-01

    Recently, Spatially Offset Raman Spectroscopy (SORS) has been discussed as a novel method for the screening of liquids, aerosols and gels (LAGs) at airports and for other security applications. SORS is an optical spectroscopic method which enables the precise chemical identification of substances from a reference list and, due to the rich spectral information, has an inherently high probability of detection and low false alarm rate. The method is generally capable of screening substances inside non-metallic containers such as plastic and glass bottles. SORS is typically successful through opaque plastic and coloured glass, which are often challenging for conventional backscatter Raman spectroscopy. SORS is performed in just a few seconds by shining a laser light onto the container and then measuring the Raman signal at the excitation point but also at one or more offset positions. Each measurement has different relative orthogonal contributions from the container and contents Raman spectra, so that, with no prior knowledge, the pure Raman spectra of both the container and contents can be extracted - either by scaled subtraction or via multivariate statistical methods in an automated process. In this paper, the latest results will be described from a prototype SORS device designed for aviation security and the advantages and limitations of SORS will be discussed.

  5. Characterization of a superlubricity nanometer interface by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shi, Yunsheng; Yang, Xing; Liu, Bingqi; Dong, Hualai; Zheng, Quanshui

    2016-08-01

    Despite being known for almost two decades, the use of micro-/nano-electromechanical systems in commercial applications remains a challenge because of stiction, friction, and the wear of the interface. Superlubricity may be the solution to these challenges. In this paper, we study factors affecting the realization of superlubricity. Raman spectroscopy and other methods were used to characterize a graphite interface which can realize superlubricity and another graphite interface which cannot realize superlubricity. Raman spectra of the interfaces were obtained with the mapping mode and then processed to obtain the Raman images of the characteristic peaks. The Raman spectra provided the distribution of the surface defects and probed defects. Combined with atomic force microscopy and x-ray photoelectron spectroscopy, the Raman spectra show that the sp3 carbons and carbon-oxygen bond stuck at the edge of the graphite mesa are some of the determinants of large-area superlubricity realization. The characterization results can also be used to understand the friction and wear of large-area superlubricity, which are important for development and application of superlubricity. Furthermore, the methods used in this study are useful techniques and tools for the mechanism analysis of other nanometer interfaces.

  6. Raman spectroscopy of Bacillus thuringiensis physiology and inactivation

    NASA Astrophysics Data System (ADS)

    Morrow, J. B.; Almeida, J.; Cole, K. D.; Reipa, V.

    2012-12-01

    The ability to detect spore contamination and inactivation is relevant to developing and determining decontamination strategy success for food and water safety. This study was conducted to develop a systematic comparison of nondestructive vibrational spectroscopy techniques (Surface-Enhanced Raman Spectroscopy, SERS, and normal Raman) to determine indicators of Bacillus thuringiensis physiology (spore, vegetative, outgrown, germinated and inactivated spore forms). SERS was found to provide better resolution of commonly utilized signatures of spore physiology (dipicolinic acid at 1006 cm-1 and 1387 cm-1) compared to normal Raman and native fluorescence indigenous to vegetative and outgrown cell samples was quenched in SERS experiment. New features including carotenoid pigments (Raman features at 1142 cm-1, 1512 cm-1) were identified for spore cell forms. Pronounced changes in the low frequency region (300 cm-1 to 500 cm-1) in spore spectra occurred upon germination and inactivation (with both free chlorine and by autoclaving) which is relevant to guiding decontamination and detection strategies using Raman techniques.

  7. Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Grozdanic, Sinisa D.; Harper, Matthew M.; Hamouche, Nicolas; Kecova, Helga; Lazic, Tatjana; Yu, Chenxu

    2011-10-01

    Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.

  8. Raman spectroscopy for the characterization of algal cells

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Jonáš, Alexandr; Pilát, Zdeněk; Zemánek, Pavel; Nedbal, Ladislav; Tříska, Jan; Kotas, Petr; Trtílek, Martin

    2010-12-01

    Raman spectroscopy can elucidate fundamental questions about intercellular variability and what governs it. Moreover, knowing the metabolic response on single cell level this can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy is capable to measure nutrient dynamics and metabolism in vivo, in real-time, label free making it possible to monitor/evaluate population variability. Also, degree of unsaturation of the algae oil (iodine value) can be measured using Raman spectra obtained from single microalgae. The iodine value is the determination of the amount of unsaturation contained in fatty acids (in the form of double bonds). Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm-1 (cis C=C stretching mode) and 1,445 cm-1 (CH2 scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids.

  9. Characterization of a superlubricity nanometer interface by Raman spectroscopy.

    PubMed

    Shi, Yunsheng; Yang, Xing; Liu, Bingqi; Dong, Hualai; Zheng, Quanshui

    2016-08-12

    Despite being known for almost two decades, the use of micro-/nano-electromechanical systems in commercial applications remains a challenge because of stiction, friction, and the wear of the interface. Superlubricity may be the solution to these challenges. In this paper, we study factors affecting the realization of superlubricity. Raman spectroscopy and other methods were used to characterize a graphite interface which can realize superlubricity and another graphite interface which cannot realize superlubricity. Raman spectra of the interfaces were obtained with the mapping mode and then processed to obtain the Raman images of the characteristic peaks. The Raman spectra provided the distribution of the surface defects and probed defects. Combined with atomic force microscopy and x-ray photoelectron spectroscopy, the Raman spectra show that the sp(3) carbons and carbon-oxygen bond stuck at the edge of the graphite mesa are some of the determinants of large-area superlubricity realization. The characterization results can also be used to understand the friction and wear of large-area superlubricity, which are important for development and application of superlubricity. Furthermore, the methods used in this study are useful techniques and tools for the mechanism analysis of other nanometer interfaces.

  10. Femtosecond stimulated Raman spectroscopy by six-wave mixing

    SciTech Connect

    Molesky, Brian P.; Guo, Zhenkun; Moran, Andrew M.

    2015-06-07

    Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that “forbidden” steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in

  11. Femtosecond stimulated Raman spectroscopy by six-wave mixing.

    PubMed

    Molesky, Brian P; Guo, Zhenkun; Moran, Andrew M

    2015-06-07

    Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that "forbidden" steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in this

  12. Femtosecond stimulated Raman spectroscopy by six-wave mixing

    NASA Astrophysics Data System (ADS)

    Molesky, Brian P.; Guo, Zhenkun; Moran, Andrew M.

    2015-06-01

    Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that "forbidden" steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in this

  13. Optical diagnostic of hepatitis B (HBV) and C (HCV) from human blood serum using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Anwar, Shahzad; Firdous, Shamaraz

    2015-06-01

    Hepatitis is the second most common disease worldwide with half of the cases arising in the developing world. The mortality associated with hepatitis B and C can be reduced if the disease is detected at the early stages of development. The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying hepatitis progression. Raman spectra were acquired from 20 individuals with six hepatitis B infected patients, six hepatitis C infected patients and eight healthy patients in order to gain an insight into the determination of biochemical changes for early diagnostic. The human blood serum was examined at a 532 nm excitation laser source. Raman characteristic peaks were observed in normal sera at 1006, 1157 and 1513 cm-1, while in the case of hepatitis B and C these peaks were found to be blue shifted with decreased intensity. New Raman peaks appeared in HBV and HCV infected sera at 1194, 1302, 844, 905, 1065 and 1303 cm-1 respectively. A Mat lab subroutine and frequency domain filter program is developed and applied to signal processing of Raman scattering data. The algorithms have been successfully applied to remove the signal noise found in experimental scattering signals. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in blood sera during disease progression resulting in exceptional prediction accuracy when discriminating between normal and malignant. Raman spectroscopy shows enormous clinical potential as a rapid non-invasive diagnostic tool for hepatitis and other infectious diseases.

  14. Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential

    PubMed Central

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  15. Raman spectroscopy for in-line water quality monitoring--instrumentation and potential.

    PubMed

    Li, Zhiyun; Deen, M Jamal; Kumar, Shiva; Selvaganapathy, P Ravi

    2014-09-16

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.

  16. Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy.

    PubMed

    Wang, Zilong; Pearce, Stuart J; Lin, Yung-Chun; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-08-01

    Waveguide-enhanced Raman spectroscopy (WERS) is emerging as an attractive alternative to plasmonic surface-enhanced Raman spectroscopy approaches as it can provide more reproducible quantitative spectra on a robust chip without the need for nanostructured plasmonic materials. Realizing portable WERS systems with high sensitivity using low-cost laser diodes and compact spectrometers requires a detailed analysis of the power budget from laser to spectrometer chip. In this paper, we describe theoretical optimization of planar waveguides for maximum Raman excitation efficiency, demonstrate WERS for toluene on a silicon process compatible high index contrast tantalum pentoxide waveguide, measure the absolute conversion efficiency from pump power to received power in an individual Raman line, and compare this with a power budget analysis of the complete system including collection with an optical fiber and interfacing to a compact spectrometer. Optimized 110 nm thick Ta2O5 waveguides on silica substrates excited at a wavelength of 637 nm are shown experimentally to yield overall system power conversion efficiency of ∼0.5 × 10(-12) from the pump power in the waveguide to the collected Raman power in the 1002 cm(-1) Raman line of toluene, in comparison with a calculated efficiency of 3.9 × 10(-12) Collection efficiency is dictated by the numerical and physical apertures of the spectral detection system but may be improved by further engineering the spatial and angular Raman scattering distributions. © The Author(s) 2016.

  17. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wehrmeyer, Joseph A.; Osborne, Robin J.; Trinh, Huu P.

    2003-09-01

    Optically accessible, high-pressure, hot-fire test articles are available at NASA-Marshall for use in development of advanced rocket-engine propellant injectors. Single laser-pulse UV Raman spectroscopy has been used, in the past, in these devices for analysis of high pressure H2- and CH4-fueled combustion, but relies on an independent pressure measurement in order to provide temperature information. A variation of UV Raman (High Resolution Hydrogen Raman Spectroscopy) is under development and will allow temperature measurement without the need for an independent pressure measurement, useful for flows where local pressure may not be accurately known. The technique involves the use of a spectrometer with good spectral resolution, requiring a small entrance slit for the spectrometer. The H2 Raman spectrum, when created by a narrow-linewidth laser source and obtained from a good spectral resolution spectrograph, has a spectral shape related to temperature. By best-fit matching an experimental spectrum to theoretical spectra at various temperatures, a temperature measurement is obtained. The spectral model accounts for collisional narrowing, collisional broadening, Doppler broadening, and collisional line shifting of each Raman line making up the H2 Stokes vibrational Q-branch spectrum. At pressures from atmospheric up to those associated with advanced preburner components (5500 psia), collisional broadening, though present, does not cause significant overlap of the Raman lines, allowing high resolution H2 Raman to be used for temperature measurements in plumes and in high pressure test articles. Experimental demonstrations of the technique are performed for rich H2-air flames at atmospheric pressure. Spectrometer imaging quality is identified as being critical for successful implementation of the technique.

  18. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Osborne, Robin J.; Trinh, Huu P.; Turner, James (Technical Monitor)

    2001-01-01

    Optically accessible, high pressure, hot fire test articles are available at NASA Marshall for use in development of advanced rocket engine propellant injectors. Single laser-pulse ultraviolet (UV) Raman spectroscopy has been used in the past in these devices for analysis of high pressure H2- and CH4-fueled combustion, but relies on an independent pressure measurement in order to provide temperature information. A variation of UV Raman (High Resolution Hydrogen Raman Spectroscopy) is under development and will allow temperature measurement without the need for an independent pressure measurement, useful for flows where local pressure may not be accurately known. The technique involves the use of a spectrometer with good spectral resolution, requiring a small entrance slit for the spectrometer. The H2 Raman spectrum, when created by a narrow linewidth laser source and obtained from a good spectral resolution spectrograph, has a spectral shape related to temperature. By best-fit matching an experimental spectrum to theoretical spectra at various temperatures, a temperature measurement is obtained. The spectral model accounts for collisional narrowing, collisional broadening, Doppler broadening, and collisional line shifting of each Raman line making up the H2 Stokes vibrational Q-branch spectrum. At pressures from atmospheric up to those associated with advanced preburner components (5500 psia), collisional broadening though present does not cause significant overlap of the Raman lines, allowing high resolution H2 Raman to be used for temperature measurements in plumes and in high pressure test articles. Experimental demonstrations of the technique are performed for rich H2-air flames at atmospheric pressure and for high pressure, 300 K H2-He mixtures. Spectrometer imaging quality is identified as being critical for successful implementation of technique.

  19. Transcutaneous Raman Spectroscopy of Murine Bone In Vivo

    PubMed Central

    Schulmerich, Matthew V.; Cole, Jacqueline H.; Kreider, Jaclynn M.; Esmonde-White, Francis; Dooley, Kathryn A.; Goldstein, Steven A.; Morris, Michael D.

    2009-01-01

    Raman spectroscopy can provide valuable information about bone tissue composition in studies of bone development, biomechanics, and health. In order to study the Raman spectra of bone in vivo, instrumentation that enhances the recovery of subsurface spectra must be developed and validated. Five fiber-optic probe configurations were considered for transcutaneous bone Raman spectroscopy of small animals. Measurements were obtained from the tibia of sacrificed mice, and the bone Raman signal was recovered for each probe configuration. The configuration with the optimal combination of bone signal intensity, signal variance, and power distribution was then evaluated under in vivo conditions. Multiple in vivo transcutaneous measurements were obtained from the left tibia of 32 anesthetized mice. After collecting the transcutaneous Raman signal, exposed bone measurements were collected and used as a validation reference. Multivariate analysis was used to recover bone spectra from transcutaneous measurements. To assess the validity of the transcutaneous bone measurements cross-correlations were calculated between standardized spectra from the recovered bone signal and the exposed bone measurements. Additionally, the carbonate-to-phosphate height ratios of the recovered bone signals were compared to the reference exposed bone measurements. The mean cross-correlation coefficient between the recovered and exposed measurements was 0.96, and the carbonate-to-phosphate ratios did not differ significantly between the two sets of spectra (p > 0.05). During these first systematic in vivo Raman measurements, we discovered that probe alignment and animal coat color influenced the results and thus should be considered in future probe and study designs. Nevertheless, our noninvasive Raman spectroscopic probe accurately assessed bone tissue composition through the skin in live mice. PMID:19281644

  20. FT-Raman spectroscopy study of human breast tissue

    NASA Astrophysics Data System (ADS)

    Bitar Carter, Renata A.; Martin, Airton A.; Netto, Mario M.; Soares, Fernando A.

    2004-07-01

    Optical spectroscopy has been extensively studied as a potential in vivo diagnostic tool to provide information about the chemical and morphologic structure of tissue. Raman Spectroscpy is an inelastic scattering process that can provide a wealth of spectral features that can be related to the specific molecular structure of the sample. This article reports results of an in vitro study of the FT-Raman human breast tissue spectra. An Nd:YAG laser at 1064nm was used as the excitation source in the FT-Raman Spectrometer. The neoplastic human breast samples, both Fibroadenoma and ICD, were obtained during therapeutical routine medical procedures required by the primary disease, and the non-diseased human tissue was obtained in plastic surgery. No sample preparation was needed for the FT-Raman spectra collection. The FT-Raman spectra were recorded from normal, benign (Fibroadenomas) and malignant (IDC-Intraductal Carcinoma) samples, adding up 51 different areas. The main spectral differences of a typical FT-Raman spectra of a Normal (Non-diseased), Fibroadenoma, and Infiltrating Ductal Carcinoma (IDC) breast tissue at the interval of 600 to 1800cm-1, which may differentiate diagnostically the sample, were found in the bands of 1230 to 1295cm-1, 1440 to 1460 cm-1 and 1650 to 1680 cm-1, assigned to the vibrational bands of the carbohydrate-amide III, proteins and lipids, and carbohydrate-amide I, respectively.

  1. Raman spectroscopy for cancer detection: instrument development and tissue diagnosis

    NASA Astrophysics Data System (ADS)

    Manoharan, Ramasamy; Wang, Yang; Boustany, Nada N.; Brennan, James F., III; Baraga, Joseph J.; Dasari, Ramachandra R.; Van Dam, Jacques; Singer, Samuel; Feld, Michael S.

    1994-12-01

    Raman spectroscopy can provide quantitative molecular information about the biochemical composition of human tissues exhibiting various stages of disease. Fluorescence interference is ubiquitous in Raman spectra of biological samples excited with visible light. However, it can be avoided by using near-infrared (NIR) or ultraviolet (UV) excitation. We are exploring the potential of these methods for detecting precancerous/cancerous changes in human tissues. The NIR studies use 830 nm excitation from a Ti:sapphire laser. Raman signals are collected by an imaging spectrograph/deep-depletion CCD detection system. High quality tissue spectra can be obtained in a few seconds or less. The UV resonance Raman studies employ wavelengths below 300 nm for selective excitation of nucleic acids, proteins and lipids. Excitation is provided by a frequency tripled/quadrupled mode-locked Ti:sapphire laser, and Raman light is collected by a one meter spectrograph/UV-enhanced CCD detector. The two systems can be coupled to appropriate microscopes for extracting morphological and biochemical information at the cellular level, which is important for understanding the origin of the Raman spectra of bulk tissue. The results of the initial studies for cancer detection in various human tissues are reported here.

  2. Raman spectroscopy and immunohistochemistry for schwannoma characterization: a case study

    NASA Astrophysics Data System (ADS)

    Neto, Lazaro P. M.; das Chagas, Maurilio J.; Carvalho, Luis Felipe C. S.; Ferreira, Isabelle; dos Santos, Laurita; Haddad, Marcelo; Loddi, Vinicius; Martin, Airton A.

    2016-03-01

    The schwannomas is a tumour of the tissue that covers nerves, called the nerve sheath. Schwannomas are often benign tumors of the Schwan cells, which are the principal glia of the peripheral nervous system (PNS). Preoperative diagnosis of this lesion usually is difficult, therefore, new techniques are being studied as pre surgical evaluation. Among these, Raman spectroscopy, that enables the biochemical identification of the tissue analyzed by their optical properties, may be used as a tool for schwannomas diagnosis. The aim of this study was to discriminate between normal nervous tissue and schwannoma through the confocal Raman spectroscopy and Raman optical fiber-based techniques combined with immunohistochemical analysis. Twenty spectra were analyzed from a normal nerve tissue sample (10) and schwannoma (10) by Holospec f / 1.8 (Kayser Optical Systems) coupled to an optical fiber with a 785nm laser line source. The data were pre-processed and vector normalized. The average analysis and standard deviation was performed associated with cluster analysis. AML, 1A4, CD34, Desmin and S-100 protein markers were used for immunohistochemical analysis. Immunohistochemical analysis was positive only for protein S-100 marker which confirmed the neural schwanomma originality. The immunohistochemistry analysis were important to determine the source of the injury, whereas Raman spectroscopy were able to differentiated tissues types indicating important biochemical changes between normal and benign neoplasia.

  3. Quantitative polarized Raman spectroscopy in highly turbid bone tissue

    PubMed Central

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim∕oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim∕oim bones (28±3 deg) compared to wild-type bones (22±3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76±2 deg and in oim∕oim mice, it is 72±4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy. PMID:20615030

  4. Perspective: Echoes in 2D-Raman-THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Hamm, Peter; Shalit, Andrey

    2017-04-01

    Recently, various spectroscopic techniques have been developed, which can measure the 2D response of the inter-molecular degrees of freedom of liquids in the THz regime. By employing hybrid Raman-THz pulse sequences, the inherent experimental problems of 2D-Raman spectroscopy are circumvented completely, culminating in the recent measurement of the 2D-Raman-THz responses of water and aqueous salt solutions. This review article focuses on the possibility to observe echoes in such experiments, which would directly reveal the inhomogeneity of the typically extremely blurred THz bands of liquids, and hence the heterogeneity of local structures that are transiently formed, in particular, in a hydrogen-bonding liquid such as water. The generation mechanisms of echoes in 2D-Raman-THz spectroscopy are explained, which differ from those in "conventional" 2D-IR spectroscopy in a subtle but important manner. Subsequently, the circumstances are discussed, under which echoes are expected, revealing a physical picture of the information content of an echo. That is, the echo decay reflects the lifetime of local structures in the liquid on a length scale that equals the delocalization length of the intermolecular modes. Finally, recent experimental results are reviewed from an echo perspective.

  5. Quantitative polarized Raman spectroscopy in highly turbid bone tissue

    NASA Astrophysics Data System (ADS)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-05-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  6. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states.

    PubMed

    Gelin, Maxim F; Domcke, Wolfgang; Rao, B Jayachander

    2016-05-14

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  7. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Gelin, Maxim F.; Domcke, Wolfgang; Rao, B. Jayachander

    2016-05-01

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  8. Raman Spectroscopy: A New Proposal for the Detection of Leukemia Using Blood Samples

    SciTech Connect

    Martinez-Espinosa, J. C.; Gonzalez-Solis, J. L.; Miranda-Beltran, M. L.; Soria-Fregoso, C.; Medina-Valtierra, J.; Sanchez-Gomez, R.

    2008-08-11

    The use of Raman spectroscopy to analyze blood biochemistry and hence distinguish between normal and abnormal blood was investigated. The blood samples were obtained from 6 patients who were clinically diagnosed with leukemia and 6 healthy volunteer. The imprint was put under the microscope and several points were chosen for Raman measurement. All spectra were collected at confocal Raman micro-spectroscopy (Renishaw) with NIR 830 nm laser. It is shown that the serum samples from patients with leukemia and from the control group can be discriminated when the multivariate statistical methods of principal component analysis (PCA) and linear discriminated analysis (LDA) is applied to their Raman spectra. The ratios of some band intensities were analyzed and some band ratios were significant and corresponded to proteins, phospholipids, and polysaccharides. In addition, currently the degree of damage to the bone marrow is estimated through biopsies and therefore it is a very procedure painful. The preliminary results suggest that Raman spectroscopy could be a new technique to study the bone marrow using just blood samples.

  9. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Wood, Sebastian; Razzell Hollis, Joseph; Kim, Ji-Seon

    2017-02-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π-electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices.

  10. Raman Spectroscopy: A New Proposal for the Detection of Leukemia Using Blood Samples

    NASA Astrophysics Data System (ADS)

    Martínez-Espinosa, J. C.; González-Solís, J. L.; Frausto-Reyes, C.; Miranda-Beltrán, M. L.; Soria-Fregoso, C.; Medina-Valtierra, J.; Sánchez-Gómez, R.

    2008-08-01

    The use of Raman spectroscopy to analyze blood biochemistry and hence distinguish between normal and abnormal blood was investigated. The blood samples were obtained from 6 patients who were clinically diagnosed with leukemia and 6 healthy volunteer. The imprint was put under the microscope and several points were chosen for Raman measurement. All spectra were collected at confocal Raman micro-spectroscopy (Renishaw) with NIR 830 nm laser. It is shown that the serum samples from patients with leukemia and from the control group can be discriminated when the multivariate statistical methods of principal component analysis (PCA) and linear discriminated analysis (LDA) is applied to their Raman spectra. The ratios of some band intensities were analyzed and some band ratios were significant and corresponded to proteins, phospholipids, and polysaccharides. In addition, currently the degree of damage to the bone marrow is estimated through biopsies and therefore it is a very procedure painful. The preliminary results suggest that Raman spectroscopy could be a new technique to study the bone marrow using just blood samples.

  11. Detection of Leukemia with Blood Samples Using Raman Spectroscopy and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Martínez-Espinosa, J. C.; González-Solís, J. L.; Frausto-Reyes, C.; Miranda-Beltrán, M. L.; Soria-Fregoso, C.; Medina-Valtierra, J.

    2009-06-01

    The use of Raman spectroscopy to analyze blood biochemistry and hence distinguish between normal and abnormal blood was investigated. Blood samples were obtained from 6 patients who were clinically diagnosed with leukemia and 6 healthy volunteers. The imprint was put under the microscope and several points were chosen for Raman measurement. All the spectra were collected by a confocal Raman micro-spectroscopy (Renishaw) with a NIR 830 nm laser. It is shown that the serum samples from patients with leukemia and from the control group can be discriminated when the multivariate statistical methods of principal component analysis (PCA) and linear discriminated analysis (LDA) are applied to their Raman spectra. The ratios of some band intensities were analyzed and some band ratios were significant and corresponded to proteins, phospholipids, and polysaccharides. The preliminary results suggest that Raman Spectroscopy could be a new technique to study the degree of damage to the bone marrow using just blood samples instead of biopsies, treatment very painful for patients.

  12. Fast and sensitive recognition of various explosive compounds using Raman spectroscopy and principal component analysis

    NASA Astrophysics Data System (ADS)

    Hwang, Joonki; Park, Aaron; Chung, Jin Hyuk; Choi, Namhyun; Park, Jun-Qyu; Cho, Soo Gyeong; Baek, Sung-June; Choo, Jaebum

    2013-06-01

    Recently, the development of methods for the identification of explosive materials that are faster, more sensitive, easier to use, and more cost-effective has become a very important issue for homeland security and counter-terrorism applications. However, limited applicability of several analytical methods such as, the incapability of detecting explosives in a sealed container, the limited portability of instruments, and false alarms due to the inherent lack of selectivity, have motivated the increased interest in the application of Raman spectroscopy for the rapid detection and identification of explosive materials. Raman spectroscopy has received a growing interest due to its stand-off capacity, which allows samples to be analyzed at distance from the instrument. In addition, Raman spectroscopy has the capability to detect explosives in sealed containers such as glass or plastic bottles. We report a rapid and sensitive recognition technique for explosive compounds using Raman spectroscopy and principal component analysis (PCA). Seven hundreds of Raman spectra (50 measurements per sample) for 14 selected explosives were collected, and were pretreated with noise suppression and baseline elimination methods. PCA, a well-known multivariate statistical method, was applied for the proper evaluation, feature extraction, and identification of measured spectra. Here, a broad wavenumber range (200- 3500 cm-1) on the collected spectra set was used for the classification of the explosive samples into separate classes. It was found that three principal components achieved 99.3 % classification rates in the sample set. The results show that Raman spectroscopy in combination with PCA is well suited for the identification and differentiation of explosives in the field.

  13. Near-field enhanced Raman spectroscopy using side illumination optics

    NASA Astrophysics Data System (ADS)

    Hayazawa, Norihiko; Tarun, Alvarado; Inouye, Yasushi; Kawata, Satoshi

    2002-12-01

    We demonstrate near-field enhanced Raman spectroscopy with the use of a metallized cantilever tip and highly p-polarized light directed onto the tip with side illumination optics using a long working distance objective lens. The highly p-polarized light field excites surface plasmon polaritons localized at the tip apex, which results in the enhanced near-field Raman scattering. In this article, we achieved an enhancement factor of 4000 for Rhodamine 6G molecules adsorbed on a silver island film. The side illumination is also applicable to an opaque sample and to near-field photolithography.

  14. Commercial anesthetic-respiratory gas monitor utilizing Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gregonis, Donald E.; Van Wagenen, Richard A.; Coleman, D.; Mitchell, John R.

    1990-11-01

    A commercial gas monitor which utilizes Raman Spectroscopy has been developed to monitor anesthetic and respiratory gases in the hospital operating room. The instrument measures all molecular gases administered by the anesthesiologist in real time with fast response of breath waveform. These gases include carbon dioxide, nitrous oxide, oxygen, nitrogen and various volatile halogenated organic anesthetics, e.g. halothane, isoflurane, enflurane, sevoflurane and desflurane. The key feature of this instrument which allows it to produce adequate Raman signals with a low cost argon ion laser is measuring these gases inside the laser resonant cavity.

  15. Raman spectroscopy on ice cores from Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Weikusat, C.; Kipfstuhl, S.

    2012-04-01

    Ice cores are invaluable archives for the reconstruction of the climatic history of the earth. Besides the analysis of various climatic processes from isotopes and chemical signatures they offer the unique possibility of directly extracting the past atmosphere from gaseous inclusions in the ice. Many aspects of the formation and alterations of these inclusions, e.g. the entrapment of air at the firn-ice-transition, the formation of crystalline gas hydrates (clathrates) from the bubbles or the structural relaxation during storage of the cores, need to be better understood to enable reliable interpretations of the obtained data. Modern micro Raman spectroscopy is an excellent tool to obtain high-quality data for all of these aspects. It has been productively used for phase identification of solid inclusions [1], investigation of air clathrates [2] and high-resolution measurements of N2/O2 mixing ratios inside individual air bubbles [3,4]. Detailed examples of the various uses of Raman spectroscopy will be presented along with practical information about the techniques required to obtain high-quality spectra. Retrieval and interpretation of quantitative data from the spectra will be explained. Future possibilities for advanced uses of Raman spectroscopy for ice core research will be discussed. [1] T. Sakurai et al., 2009, Direct observation of salts as micro-inclusions in the Greenland GRIP ice core. Journal of Glaciology, 55, 777-783. [2] F. Pauer et al., 1995, Raman spectroscopic study of nitrogen/oxygen ratio in natural ice clathrates in the GRIP ice core. Geophysical Research Letters, 22, 969-971. [3] T. Ikeda-Fukazawa et al., 2001, Variation in N2/O2 ratio of occluded air in Dome Fuji antarctic ice. Journal of Geophysical Research, 106, 17799-17810. [4] C. Weikusat et al., Raman spectroscopy of gaseous inclusions in EDML ice core: First results - microbubbles. Journal of Glaciology, accepted.

  16. Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Juan; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei; Dhakal, Sagar; Xu, Tianfeng

    2015-05-01

    Benzoyl peroxide is a common flour additive that improves the whiteness of flour and the storage properties of flour products. However, benzoyl peroxide adversely affects the nutritional content of flour, and excess consumption causes nausea, dizziness, other poisoning, and serious liver damage. This study was focus on detection of the benzoyl peroxide added in wheat flour. A Raman scattering spectroscopy system was used to acquire spectral signal from sample data and identify benzoyl peroxide based on Raman spectral peak position. The optical devices consisted of Raman spectrometer and CCD camera, 785 nm laser module, optical fiber, prober, and a translation stage to develop a real-time, nondestructive detection system. Pure flour, pure benzoyl peroxide and different concentrations of benzoyl peroxide mixed with flour were prepared as three sets samples to measure the Raman spectrum. These samples were placed in the same type of petri dish to maintain a fixed distance between the Raman CCD and petri dish during spectral collection. The mixed samples were worked by pretreatment of homogenization and collected multiple sets of data of each mixture. The exposure time of this experiment was set at 0.5s. The Savitzky Golay (S-G) algorithm and polynomial curve-fitting method was applied to remove the fluorescence background from the Raman spectrum. The Raman spectral peaks at 619 cm-1, 848 cm-1, 890 cm-1, 1001 cm-1, 1234 cm-1, 1603cm-1, 1777cm-1 were identified as the Raman fingerprint of benzoyl peroxide. Based on the relationship between the Raman intensity of the most prominent peak at around 1001 cm-1 and log values of benzoyl peroxide concentrations, the chemical concentration prediction model was developed. This research demonstrated that Raman detection system could effectively and rapidly identify benzoyl peroxide adulteration in wheat flour. The experimental result is promising and the system with further modification can be applicable for more products in near

  17. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  18. Cell identification using Raman spectroscopy in combination with optical trapping and microfluidics

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Dochow, Sebastian; Beleites, Claudia; Popp, Jürgen

    2014-03-01

    Cell identification by Raman spectroscopy has evolved to be an attractive complement to established optical techniques. Raman activated cell sorting (RACS) offers prospects to complement the widely applied fluorescence activated cell sorting. RACS can be realized by combination with optical traps and microfluidic devices. The progress of RACS is reported for a cellular model system that can be found in peripheral blood of tumor patients. Lymphocytes and erythrocytes were extracted from blood samples. Breast carcinoma derived tumor cells (MCF-7, BT-20) and acute myeloid leukemia cells (OCI-AML3) were grown in cell cultures. First, Raman images were collected from dried cells on calcium fluoride slides. Support vector machines (SVM) classified 99.7% of the spectra to the correct cell type. Second, a 785 nm laser was used for optical trapping of single cells in aqueous buffer and for excitation of the Raman spectrum. SVM distinguished 1210 spectra of tumor and normal cells with a sensitivity of >99.7% and a specificity of >99.5%. Third, a microfluidic glass chip was designed to inject single cells, modify the flow speed, accommodate fibers of an optical trap and sort single cells after Raman based identification with 514 nm for excitation. Forth, the microfluidic chip was fabricated by quartz which improved cell identification results with 785 nm excitation. Here, partial least squares discriminant analysis gave classification rates of 98%. Finally, a Raman-on-chip approach was developed that integrates fibers for trapping, Raman excitation and signal detection in a single compact unit.

  19. Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides.

    PubMed

    Wei, Fang; Zhang, Dongmao; Halas, Naomi J; Hartgerink, Jeffrey D

    2008-07-31

    Raman and surface-enhanced Raman spectroscopies (SERS) are potentially important tools in the characterization of biomolecules such as proteins and DNA. In this work, SERS spectra of three cysteine-containing aromatic peptides: tryptophan-cysteine, tyrosine-cysteine, and phenylalanine-cysteine, bound to Au nanoshell substrates, were obtained, and compared to their respective normal Raman spectra. While the linewidths of the SERS peaks are significantly broadened (up to 70%), no significant spectral shifts (<6 cm (-1)) of the major Stokes modes were observed between the two modalities. We show that the Raman and SERS spectra of penetratin, a cell-penetrating peptide oligomer, can be comprised quite reliably from the spectra of its constituent aromatic amino acids except in the backbone regions where the spectral intensities are critically dependent on the length and conformations of the probed molecules. From this study we conclude that, together with protein backbone groups, aromatic amino acid residues provide the overwhelmingly dominant features in the Raman and SERS spectra of peptides and proteins when present. It follows that the Raman modes of these three small constructed peptides may likely apply to the assignment of Raman and SERS features in the spectra of other peptides and proteins.

  20. Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy.

    PubMed

    Mehlenbacher, Randy D; Lyons, Brendon; Wilson, Kristina C; Du, Yong; McCamant, David W

    2009-12-28

    We present a classical theoretical treatment of a two-dimensional Raman spectroscopy based on the initiation of vibrational coherence with an impulsive Raman pump and subsequent probing by two-pulse femtosecond stimulated Raman spectroscopy (FSRS). The classical model offers an intuitive picture of the molecular dynamics initiated by each laser pulse and the generation of the signal field traveling along the probe wave vector. Previous reports have assigned the observed FSRS signals to anharmonic coupling between the impulsively driven vibration and the higher-frequency vibration observed with FSRS. However, we show that the observed signals are not due to anharmonic coupling, which is shown to be a fifth-order coherent Raman process, but instead due to cascades of coherent Raman signals. Specifically, the observed vibrational sidebands are generated by parallel cascades in which a coherent anti-Stokes or Stokes Raman spectroscopy (i.e., CARS or CSRS) field generated by the coherent coupling of the impulsive pump and the Raman pump pulses participates in a third-order FSRS transition. Additional sequential cascades are discussed that will give rise to cascade artifacts at the fundamental FSRS frequencies. It is shown that the intended fifth-order FSRS signals, generated by an anharmonic coupling mechanism, will produce signals of approximately 10(-4) DeltaOD (change in the optical density). The cascading signals, however, will produce stimulated Raman signal of approximately 10(-2) DeltaOD, as has been observed experimentally. Experiments probing deuterochloroform find significant sidebands of the CCl(3) bend, which has an E type symmetry, shifted from the A(1) type C-D and C-Cl stretching modes, despite the fact that third-order anharmonic coupling between these modes is forbidden by symmetry. Experiments probing a 50:50 mixture of chloroform and d-chloroform find equivalent intensity signals of low-frequency CDCl(3) modes as sidebands shifted from both the C

  1. [Joint Analyses of Na2SO4 Solution by Laser Induced Breakdown Spectroscopy and Raman Spectroscopy].

    PubMed

    Guo, Jin-jia; Lu, Yuan; Liu, Chun-hao; Zheng, Rong-er

    2016-01-01

    Spectroscopic sensor is becoming an important issue for the deep-sea exploration due to the advantages of multi-specie, multi-phases and stand-off detection. Different approach have been developing in recent years based on LIBS (Laser Induced Breakdown Spectroscopy) and Raman spectroscopy since Raman-LIBS are complementary techniques with the similar components and the capability of molecular and elementary analysis. In this work, we built a LIBS-Raman system and detected Na2SO4 in aqueous solution to evaluate the potential ocean application. With the same laser, spectrometer and detector, a hybrid of Raman and LIBS system was developed to realize the detection of anions and cations in the seawater. The optics was composed by two parts. Raman channel and LIBS channel, and the signal was collected by a Y type optical fiber bundle. The signal from two channels was separated by imaging on different arrays of the CCD detector. The Raman spectra of SO4(2-) and LIBS spectra of Na was successfully detected simultaneously when the pulse energy was above 3.6 mJ. However, due to the strong bremsstrahlung radiation of LIBS, the signal to noise ratio of Raman was significantly decreased as the laser energy increasing. The results manifested the great potential of Raman-LIBS combination for the underwater detection.

  2. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy

    SciTech Connect

    Lupoi, Jason S.; Gjersing, Erica; Davis, Mark F.

    2015-04-20

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrational spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. Finally, this review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring.

  3. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy

    DOE PAGES

    Lupoi, Jason S.; Gjersing, Erica; Davis, Mark F.

    2015-04-20

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrationalmore » spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. Finally, this review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring.« less

  4. Evaluating Lignocellulosic Biomass, Its Derivatives, and Downstream Products with Raman Spectroscopy

    PubMed Central

    Lupoi, Jason S.; Gjersing, Erica; Davis, Mark F.

    2015-01-01

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrational spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. This review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring. PMID:25941674

  5. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy.

    PubMed

    Lupoi, Jason S; Gjersing, Erica; Davis, Mark F

    2015-01-01

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrational spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. This review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring.

  6. Development of Raman Spectroscopy as a Clinical Diagnostic Tool

    NASA Astrophysics Data System (ADS)

    Borel, Santa

    Raman spectroscopy is the collection of inelastically scattered light in which the spectra contain biochemical information of the probed cells or tissue. This work presents both targeted and untargeted ways that the technique can be exploited in biological samples. First, surface enhanced Raman scattering (SERS) gold nanoparticles conjugated to targeting antibodies were shown to be successful for multiplexed detection of overexpressed surface antigens in lung cancer cell lines. Further work will need to optimize the conjugation technique to preserve the strong binding affinity of the antibodies. Second, untargeted Raman microspectroscopy combined with multivariate statistical analysis was able to successfully differentiate mouse ovarian surface epithelial (MOSE) cells and spontaneously transformed ovarian surface epithelial (STOSE) cells with high accuracy. The differences between the two groups were associated with increased nucleic acid content in the STOSE cells. This shows potential for single cell detection of ovarian cancer.

  7. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    PubMed

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  8. Raman Spectroscopy of Mineral Inclusions in Diamonds from Yakutia

    NASA Astrophysics Data System (ADS)

    Ugap'eva, Sargylana; Goryainov, Sergey; Afanasiev, Valentine

    2016-10-01

    New data on the study of residual pressure in mineral inclusions in diamonds from kimberlite pipes and placers of Yakutia obtained using Raman Spectroscopy are presented. Calculated values of residual pressure in olivine and coesite inclusions in kimberlite diamonds according to works of Israeli et al [1] and Sobolev et al [2] indicate that the host crystal crystallized at the depth not less than 165 km, at pressure of 4.8-5.0 GPa and temperature T=1200 °C. Comparative analysis of Raman spectra of olivine inclusions in diamonds from placers of Ebelyakh river on inclusions, contained in diamond and then brought to the surface, showed that olivine inclusions are less stressed. The structural orientation of olivine inclusions in diamonds from placers of Ebelyakh river possibly plays a role in these differences of Raman spectra.

  9. Pre-Resonance Raman Spectroscopy-Based Explosives Detector

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Kumar, A.; Gambhir, V.; Reddy, M. N.

    2017-01-01

    A pre-resonance Raman spectroscopy based explosives detection system has been developed using UV laser at wavelength 266 nm having pulse energy of 30 mJ and repetition rate of 20 Hz. A 4-inch UV-enhanced collection optics and back-thinned UV-enhanced charged coupled device (CCD) coupled spectrometer has been used for analysis of the Raman signal. Spectral peak matching software has been developed indigenously for identification of explosives. A compact, tripod mounted and man-portable Raman system is developed for field applications. The system has capability to detect explosives and explosive derivatives over a range up to 40 m and has a sensitivity of 0.1% weight/volume.

  10. Comparison of Raman spectroscopy equipment for tissues and biofluids analysis

    NASA Astrophysics Data System (ADS)

    Khristoforova, Yu. A.; Bratchenko, I. A.; Myakinin, O. O.; Artemyev, D. N.; Zakharov, V. P.

    2016-04-01

    In this study we demonstrate a comparative analysis of blood serum and normal human skin by Raman spectroscopy with application of different spectroscopic equipment. For serum analysis we measure a total concentration of proteins and compared it with intensity of 1002 cm-1 Raman peak. Standard deviation for protein control in blood serum differed from 7.4% to 19% for different spectroscopic setups. For human skin control we used three Raman peaks near 1340, 1450 and 1650 cm-1. Measurements of different skin samples were analyzed on the phase plane to find areas corresponding to the normal skin. Taking into account the different sensitivities of the detected signal with different detectors in the spectral range 810-950 nm we calculated correction coefficients allowed for making comparison of spectral measurements made on different spectrometers with ranging not exceeding 21%.

  11. Carbon: The Material and its Characterization by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Behera, S. N.

    2008-10-01

    A brief review of the different aspects of carbon will be presented to demonstrate how the physics associated with this material is full of surprises even though it is probably one of the oldest materials known to human civilization. An understanding of the properties of different forms of carbon starting from its commonly known forms to some of its well established stable forms, such as graphite and diamond, and to those of more recent origin, namely the Fullerenes, Carbon Nanotubes, and the Graphene has drawn considerable attention of scientists at the present time. Attempts will be made to high light some of these feature. One of the established methods of characterizing any form of carbon is to take recourse to Raman spectroscopy. With a brief and qualitative outline of the principles of Raman scattering, the Raman data on different forms of carbon will be discussed to demonstrate some of the puzzling aspects of the material.

  12. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

    PubMed Central

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-01-01

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar. PMID:26610516

  13. Optical Coherence Tomography and Raman Spectroscopy of the retina

    SciTech Connect

    Evans, J W; Zawadzki, R J; Liu, R; Chan, J; Lane, S; Werner, J S

    2009-01-16

    Imaging the structure and correlating it with the biochemical content of the retina holds promise for fundamental research and for clinical applications. Optical coherence tomography (OCT) is commonly used to image the 3D structure of the retina and while the added functionality of biochemical analysis afforded by Raman scattering could provide critical molecular signatures for clinicians and researchers, there are many technical challenges to combining these imaging modalities. We present an ex vivo OCT microscope combined with Raman spectroscopy capable of collecting morphological and molecular information about a sample simultaneously. The combined instrument will be used to investigate remaining technical challenges to combine these imaging modalities, such as the laser power levels needed to achieve a Raman signal above the noise level without damaging the sample.

  14. FT-RAMAN and FTIR spectroscopy of intercalated kaolinites

    NASA Astrophysics Data System (ADS)

    Frost, R. L.; Paroz, G. N.; Tran, T. H.; Kristof, J.

    1998-06-01

    Changes in the molecular structure of a low defect structured kaolinite, intercalated with potassium and cesium acetates have been studied using FTIR reflectance and FT-Raman spectroscopy. Additional Raman bands, attributed to the inner surface hydroxyl groups strongly hydrogen bonded to the acetate, are observed at ~3605 cm-1 for the potassium and at 3598 and 3606 cm-1 for cesium acetate intercalates with the consequential loss of intensity in the bands at 3652, 3670, 3684 and 3693 cm-1. Changes in the position of the band assigned to the inner hydroxyl group are observed upon the formation of the cesium acetate intercalate. DRIFT results are complementary to the Raman microscopic investigations and have proven particularly useful in the study of the hydration sphere of the intercalating cation and the possible effect of the cation on the position of the band assigned to the inner hydroxyl group.

  15. Low-frequency shift Raman spectroscopy using atomic filters.

    PubMed

    Xue, Xiaobo; Janisch, Corey; Chen, Yizhu; Liu, Zhiwen; Chen, Jingbiao

    2016-11-15

    A Faraday anomalous dispersion optical filter (FADOF) and an atomic resonant absorption filter are used in tandem to demonstrate a low-frequency shift Raman measurement down to few cm-1. The FADOF, with an ultralow bandwidth of 0.08  cm-1 at 780 nm, serves as a bandpass filter, while the rubidium atomic cell acts as a notch filter which has a bandwidth of 0.3  cm-1. A proof-of-concept study to measure a Raman signal generated from a silica optical fiber is performed, demonstrating a low-frequency measurement of both the Stokes and the anti-Stokes shift down to 3  cm-1 at an equivalent signal level. These results indicate the prospect for gigahertz-terahertz low-energy Raman spectroscopy based on atomic filters.

  16. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.

    PubMed

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-11-24

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  17. Structure Studies of Silicate Glasses by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Han, Chen; Chen, Mao; Rasch, Ron; Yu, Ying; Zhao, Baojun

    Silicate slags are widely used in many pyrometallurgical processes. The physiochemical properties of the slags, particularly viscosity, are closely related to their internal structures at operating conditions. To fundamentally investigate the correlation between slag structures and viscosities, the glassy samples in SiO2-CaO, SiO2-CaO-MgO and SiO2-CaO-Al2O3 systems were prepared by directly quenching to water. The quenched slags that maintain structures at high temperature were analyzed quantitatively by Raman spectrometer. The appropriate conditions of Raman spectroscopy measurements have been evaluated to obtain a better spectra for quantitative analysis. The proportions of four types of Si with different coordination can be clearly revealed from the analyses of the Raman peaks. The viscosities of the slags are correlated with the changes of the characteristic peak positions and areas.

  18. Molecule-surface interactions probed by optimized surface-enhanced coherent Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Sinyukov, Alexander; Hua, Xia; Zhang, Guowan; Yang, Wenlong; Wang, Kai; Jha, Pankaj; Welch, George; Sokolov, Alexei; Scully, Marlan

    2012-06-01

    Nanoscale molecular sensing is carried out using a time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy with optimized laser pulse configurations. This novel technique combines the advantages of an improved spectral resolution, suppressed non-resonant background and near-field surface enhancement of the Raman signal. We detect two species of pyridine in a vicinity of aggregated gold nanoparticles and measure their vibrational dephasing times which reveal the effects of surface environment and molecule-surface interactions on the ultrafast molecular dynamics. This technique may be applied to a variety of artificial and biological systems and complex molecular mixtures and has a potential for nanophotonic sensing applications.

  19. Application of Raman spectroscopy for direct analysis of Carlina acanthifolia subsp. utzka root essential oil.

    PubMed

    Strzemski, Maciej; Wójciak-Kosior, Magdalena; Sowa, Ireneusz; Agacka-Mołdoch, Monika; Drączkowski, Piotr; Matosiuk, Dariusz; Kurach, Łukasz; Kocjan, Ryszard; Dresler, Sławomir

    2017-11-01

    Carlina genus plants e.g. Carlina acanthifolia subsp. utzka have been still used in folk medicine of many European countries and its biological activity is mostly associated with root essential oils. In the present paper, Raman spectroscopy (RS) was applied for the first time for evaluation of essential oil distribution in root of C. acnthifolia subsp. utzka and identification of root structures containing the essential oil. Furthermore, RS technique was applied to assess chemical stability of oil during drying of plant material or distillation process. Gas chromatography-mass spectrometry was used for qualitative and quantitative analysis of the essential oil. The identity of compounds was confirmed using Raman, ATR-IR and NMR spectroscopy. Carlina oxide was found to be the main component of the oil (98.96% ± 0.15). The spectroscopic study showed the high stability of essential oil and Raman distribution analysis indicated that the oil reservoirs were localized mostly in the structures of outer layer of the root while the inner part showed nearly no signal assigned to the oil. Raman spectroscopy technique enabled rapid, non-destructive direct analysis of plant material with minimal sample preparation and allowed straightforward, unambiguous identification of the essential oil in the sample. Copyright © 2017. Published by Elsevier B.V.

  20. In vivo confocal Raman spectroscopy study of the vitamin A derivative perfusion through human skin

    NASA Astrophysics Data System (ADS)

    dos Santos, Laurita; Téllez Soto, Claudio A.; Favero, Priscila P.; Martin, Airton A.

    2016-03-01

    In vivo confocal Raman spectroscopy is a powerful non-invasive technique able to analyse the skin constituents. This technique was applied to transdermal perfusion studies of the vitamin A derivative in human skin. The composition of the stratum corneum (lipid bilayer) is decisive for the affinity and transport of the vitamin through skin. The vitamin A is significantly absorbed by human skin when applied with water in oil emulsion or hydro-alcoholic gel. The purpose of this study is to elucidate the behaviour of vitamin A derivative into human skin without the presence of enhancers. The results showed that the intensity band of the derivative (around 1600 cm-1), which represents the -C=O vibrational mode, was detected in different stratum corneum depths (up to 20 μm). This Raman peak of vitamin A derivative has non-coincident band with the Raman spectra of the skin epidermis, demonstrating that compound penetrated in forearm skin.

  1. Modern Raman Imaging: Vibrational Spectroscopy on the Micrometer and Nanometer Scales

    NASA Astrophysics Data System (ADS)

    Opilik, Lothar; Schmid, Thomas; Zenobi, Renato

    2013-06-01

    Raman microscopes are currently used in various fields of research because they allow for label-free sample investigation. Moreover, the inherently low scattering cross section of Raman spectroscopy, as well as its diffraction-limited lateral resolution, has been overcome by new Raman microscopy techniques. Nonlinear methods such as coherent anti-Stokes Raman spectroscopy and stimulated Raman spectroscopy reduce measurement times and improve z resolution, allowing for three-dimensional spectroscopic imaging of biological samples. Moreover, tip-enhanced Raman spectroscopy, a near-field optical technique that combines scanning-probe microscopy with the enhancement offered by surface-enhanced Raman scattering, enables Raman spectroscopic imaging far below the optical diffraction limit. We cover the theoretical and technical aspects of Raman microscopy and related new imaging techniques and review some very recent applications in graphene research and cell biology.

  2. Amino acid quantification in bulk soybeans by transmission Raman spectroscopy.

    PubMed

    Schulmerich, Matthew V; Gelber, Matthew K; Azam, Hossain M; Harrison, Sandra K; McKinney, John; Thompson, Dennis; Owen, Bridget; Kull, Linda S; Bhargava, Rohit

    2013-12-03

    Soybeans are a commodity crop of significant economic and nutritional interest. As an important source of protein, buyers of soybeans are interested in not only the total protein content but also in the specific amino acids that comprise the total protein content. Raman spectroscopy has the chemical specificity to measure the twenty common amino acids as pure substances. An unsolved challenge, however, is to quantify varying levels of amino acids mixed together and bound in soybeans at relatively low concentrations. Here we report the use of transmission Raman spectroscopy as a secondary analytical approach to nondestructively measure specific amino acids in intact soybeans. With the employment of a transmission-based Raman instrument, built specifically for nondestructive measurements from bulk soybeans, spectra were collected from twenty-four samples to develop a calibration model using a partial least-squares approach with a random-subset cross validation. The calibration model was validated on an independent set of twenty-five samples for oil, protein, and amino acid predictions. After Raman measurements, the samples were reduced to a fine powder and conventional wet chemistry methods were used for quantifying reference values of protein, oil, and 18 amino acids. We found that the greater the concentrations (% by weight component of interest), the better the calibration model and prediction capabilities. Of the 18 amino acids analyzed, 13 had R(2) values greater than 0.75 with a standard error of prediction c.a. 3-4% by weight. Serine, histidine, cystine, tryptophan, and methionine showed poor predictions (R(2) < 0.75), which were likely a result of the small sampling range and the low concentration of these components. It is clear from the correlation plots and root-mean-square error of prediction that Raman spectroscopy has sufficient chemical contrast to nondestructively quantify protein, oil, and specific amino acids in intact soybeans.

  3. Raman Spectroscopy-Compatible Inactivation Method for Pathogenic Endospores▿

    PubMed Central

    Stöckel, S.; Schumacher, W.; Meisel, S.; Elschner, M.; Rösch, P.; Popp, J.

    2010-01-01

    Micro-Raman spectroscopy is a fast and sensitive tool for the detection, classification, and identification of biological organisms. The vibrational spectrum inherently serves as a fingerprint of the biochemical composition of each bacterium and thus makes identification at the species level, or even the subspecies level, possible. Therefore, microorganisms in areas susceptible to bacterial contamination, e.g., clinical environments or food-processing technology, can be sensed. Within the scope of point-of-care-testing also, detection of intentionally released biosafety level 3 (BSL-3) agents, such as Bacillus anthracis endospores, or their products is attainable. However, no Raman spectroscopy-compatible inactivation method for the notoriously resistant Bacillus endospores has been elaborated so far. In this work we present an inactivation protocol for endospores that permits, on the one hand, sufficient microbial inactivation and, on the other hand, the recording of Raman spectroscopic signatures of single endospores, making species-specific identification by means of highly sophisticated chemometrical methods possible. Several physical and chemical inactivation methods were assessed, and eventually treatment with 20% formaldehyde proved to be superior to the other methods in terms of sporicidal capacity and information conservation in the Raman spectra. The latter fact has been verified by successfully using self-learning machines (such as support vector machines or artificial neural networks) to identify inactivated B. anthracis-related endospores with adequate accuracies within the range of the limited model database employed. PMID:20208030

  4. Rapid Identification of Biotherapeutics with Label-Free Raman Spectroscopy.

    PubMed

    Paidi, Santosh Kumar; Siddhanta, Soumik; Strouse, Robert; McGivney, James B; Larkin, Christopher; Barman, Ishan

    2016-04-19

    Product identification is a critical and required analysis for biotheraputics. In addition to regulatory requirements for identity testing on final drug products, in-process identity testing is implemented to reduce business risks associated with fill operations and can also be used as a tool against counterfeiting. Biotherapeutics, in particular monoclonal antibodies, represent a challenging cohort for identity determination because of their similarity in chemical structure. Traditional methods used for product identification can be time and labor intensive, creating a need for quick, inexpensive and reliable methods of drug identification. Here, driven by its molecular-specific and nonperturbative nature, we present Raman spectroscopy as an alternate analytical tool for identity testing. By exploiting subtle differences in vibrational modes of the biologics, we have developed partial least-squares-discriminant analysis derived decision algorithms that offer excellent differentiation capability using spontaneous Raman spectra as well as label-free plasmon-enhanced Raman spectra. Coupled with the robustness to spurious correlations due to its high information content, our results highlight the potential of Raman spectroscopy as a powerful method for rapid, on-site biotherapeutic product identification.

  5. Raman spectroscopy: troubleshooting in the manufacture of Nadolol

    NASA Astrophysics Data System (ADS)

    Melton, Jack; Collazo, Luis; Rodriguez, Christiane; Findlay, Paul

    1999-04-01

    The manufacture of Nadalol at our facilities in Humacao, Puerto Rico, poses a difficult challenge for process analysis because the highly toxic epichlorohydrin makes routine analysis of the chemistry very hazardous. Raman spectroscopy enables us to gather potentially quantifiable and irrefutable data from samples without exposing manufacturing personnel to any hazard. The reaction of epichlorohydrin and sodium (CTA) phenolate monitored by Raman spectroscopy measures both the presence of CTA, epichlorohydrin and tert-butylamine. The Raman shifts of epichlorohydrin at 400-350 cm-1 and sodium at 1630- 1560 cm-1 were easily discernible and useful. On one occasion, the increase of moisture in this mixture alerted plant operators to verify the extent of this unexpected contamination. In a short time, optimization of these three aspects with one technique resulted in reliable performance for this stage of the process. The final stage of the process is isolation of the drug substance by crystallization and we learned that this step is strongly influenced by residual tert-butylamine. Using the Raman technique, the presence of this amine is easily detected and accommodated in real time prior to crystallization.

  6. Advances in Raman spectroscopy for explosive identification in aviation security

    NASA Astrophysics Data System (ADS)

    Santillán, Javier D.; Brown, Christopher D.; Jalenak, Wayne

    2007-04-01

    In the operational airport environment, the rapid identification of potentially hazardous materials such as improvised explosive devices, chemical warfare agents and flammable and explosive liquids is increasingly critical. Peroxide-based explosives pose a particularly insidious threat because they can be made from commonly available and relatively innocuous household chemicals, such as bleach and hydrogen peroxide. Raman spectroscopy has been validated as a valuable tool for rapid identification of chemicals, explosives, and narcotics and their precursors while allowing "line-of-sight" interrogation through bottles or other translucent containers. This enables safe identification of both precursor substances, such as acetone, and end-products, such as TATP, without direct sampling, contamination and exposure by security personnel. To date, Raman systems have been laboratory-based, requiring careful operation and maintenance by technology experts. The capital and ongoing expenses of these systems is also significant. Recent advances in Raman component technologies have dramatically reduced the footprint and cost, while improving the reliability and ease of use of Raman spectroscopy systems. Such technologies are not only bringing the lab to the field, but are also protecting civilians and security personnel in the process.

  7. Using Raman Spectroscopy to Study Diamond Thin Films

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsuan; Zwicker, Andrew

    2011-10-01

    Diamond thin films (DTF), due to their extreme hardness, low electrical conductivity and chemical inertness, have various applications in semiconductor and machining industry. DTF strengthen machining and cutting tools that demand more precision and resist chemical corrosions as electrodes. The DTF created in this investigation were produced using a hybrid physical-chemical vapor deposition process in an electron cyclotron resonance sputter source. The samples formed can be amorphous carbon, graphite, or diamond. A method to test whether the sputter source successfully created diamond is Raman spectroscopy, a non-invasive technique that utilizes photo excitation and Raman scattering of monochromatic light. A sharp peak at 1332 inverse cm indicates the signature Raman shift of the sp3 C-C bond of pure diamond in these spectra. Graphite and amorphous carbon have their signature peaks near 1580 inverse cm and 1343 inverse cm. The technique is used to study wafer quality as a function of plasma parameters. Results will ultimately be benchmarked against Raman spectroscopy system at The College of New Jersey, and more samples will be produced to ensure the uniformity of the sputter source.

  8. Determination of human coronary artery composition by Raman spectroscopy.

    PubMed

    Brennan, J F; Römer, T J; Lees, R S; Tercyak, A M; Kramer, J R; Feld, M S

    1997-07-01

    We present a method for in situ chemical analysis of human coronary artery using near-infrared Raman spectroscopy. It is rapid and accurate and does not require tissue removal; small volumes, approximately 1 mm3, can be sampled. This methodology is likely to be useful as a tool for intravascular diagnosis of artery disease. Human coronary artery segments were obtained from nine explanted recipient hearts within 1 hour of heart transplantation. Minces from one or more segments were obtained through grinding in a mortar and pestle containing liquid nitrogen. Artery segments and minces were excited with 830 nm near-infrared light, and Raman spectra were collected with a specially designed spectrometer. A model was developed to analyze the spectra and quantify the amounts of cholesterol, cholesterol esters, triglycerides and phospholipids, and calcium salts present. The model provided excellent fits to spectra from the artery segments, indicating its applicability to intact tissue. In addition, the minces were assayed chemically for lipid and calcium salt content, and the results were compared. The relative weights obtained using the Raman technique agreed with those of the standard assays within a few percentage points. The chemical composition of coronary artery can be quantified accurately with Raman spectroscopy. This opens the possibility of using histochemical analysis to predict acute events such as plaque rupture, to follow the progression of disease, and to select appropriate therapeutic interventions.

  9. Breast cancer diagnosis using FT-RAMAN spectroscopy

    NASA Astrophysics Data System (ADS)

    Bitar, Renata A.; Martin, Airton A.; Criollo, Carlos J. T.; Ramalho, Leandra N. Z.

    2005-04-01

    In this study FT-RAMAN spectra of breast tissue from 35 patients were obtained and separated into nine groups for histopathologic analysis, which are as follows: normal breast tissue, fibrocystic condition, in situ ductal carcinoma, in situ ductal carcinoma with necrosis, infiltrate ductal carcinoma, infiltrate inflammatory ductal carcinoma, infiltrate medullar ductal carcinoma, infiltrate colloid ductal carcinoma, and infiltrate lobular carcinoma. Using spectrum averages taken from each group a qualitative analysis was performed to compare these molecular compositions to those known to be present in abnormal concentrations in pathological situations, e.g. the development of desmoplastic lesions with a stroma of dense collagen in tumoral breast tissues which substitute adipose stroma of non-diseased breast tissue. The band identified as amino acids, offered basis for observation in the existence of alterations in the proteins, thus proving Raman Spectroscopic capacity in identification of primary structures of proteins; secondary protein structure was also identified through the peptic links, Amide I and Amide III, which have also been identified by various authors. Alterations were also identified in the peaks and bandwidths of nucleic acids demonstrating the utilization of Raman Spectroscopy in the analysis of the cells nucleus manifestations. All studies involving Raman Spectroscopy and breast cancer have shown excellent result reliability and therefore a basis for the technical theory.

  10. In vivo infrared and Raman spectroscopy of human stratum corneum

    NASA Astrophysics Data System (ADS)

    Lucassen, Gerald W.; Caspers, Peter J.; Puppels, Gerwin J.

    1998-04-01

    ATR-FTIR spectroscopy and Raman spectroscopy were employed to obtain information about the molecular composition and hydration of skin in vivo. Both techniques enable the in vivo acquisition of high quality spectra within 10-30s at a spectral resolution of 8cm-1. The penetration depth of ATR-FTIR is about 1.5 (Mu) m. Raman spectra could be obtained with a resolution of about 5 micrometers . ATR-FTIR spectra of hydrated stratum corneum were analyzed using a band fitting algorithm. By means of this algorithm the signal contributions of water relative to protein signal contributions could be determined. The results of Raman microspectroscopic experiments on frozen sections and isolated skin components were used for the interpretation of Raman spectra obtained in vivo. Information was obtained about lipid components present in the stratum corneum. These were shown to vary widely between individuals and between different locations on the body. The combination of these spectroscopic techniques may prove to be valuable for applications in dermatology and skin care.

  11. Screening and classification of ordinary chondrites by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pittarello, Lidia; Baert, Kitty; Debaille, Vinciane; Claeys, Philippe

    2015-10-01

    Classification of ordinary chondrite meteorites generally implies (1) determining the chemical group by the composition in endmembers of olivine and pyroxene, and (2) identifying the petrologic group by microstructural features. The composition of olivine and pyroxene is commonly obtained by microprobe analyses or oil immersion of mineral separates. We propose Raman spectroscopy as an alternative technique to determine the endmember content of olivine and pyroxene in ordinary chondrites, by using the link between the wavelength shift of selected characteristic peaks in the spectra of olivine and pyroxene and the Mg/Fe ratio in these phases. The existing correlation curve has been recalculated from the Raman spectrum of reference minerals of known composition and further refined for the range of chondritic compositions. Although the technique is not as accurate as the microprobe for determining the composition of olivine and pyroxene, for most of the samples the chemical group can be easily determined by Raman spectroscopy. Blind tests with ordinary chondrites of different provenance, weathering, and shock stages have confirmed the potential of the method. Therefore, we suggest that a preliminary screening and the classification of most of the equilibrated ordinary chondrites can be carried out using an optical microscope equipped with a Raman spectrometer.

  12. Characterisation of DNA methylation status using spectroscopy (mid-IR versus Raman) with multivariate analysis.

    PubMed

    Kelly, Jemma G; Najand, Ghazal M; Martin, Francis L

    2011-05-01

    Methylation status plays important roles in the regulation of gene expression and significantly influences the dynamics, bending and flexibility of DNA. The aim of this study was to determine whether attenuated total reflection Fourier-transform infrared (ATR-FTIR) or Raman spectroscopy with subsequent multivariate analysis could determine methylation patterning in oligonucleotides variously containing 5-methylcytosine, cytosine and guanine bases. Applied to Low-E reflective glass slides, 10 independent spectral acquisitions were acquired per oligonucleotide sample. Resultant spectra were baseline-corrected and vector normalised over the 1750 cm(-1) -760 cm(-1) (for ATR-FTIR spectroscopy) or the 1750 cm(-1) -600 cm(-1) (for Raman spectroscopy) regions. Data were then analysed using principal component analysis (PCA) coupled with linear discriminant analysis (LDA). Exploiting this approach, biomolecular signatures enabling sensitive and specific discrimination of methylation patterning were derived. For DNA sequence and methylation analysis, this approach has the potential to be an important tool, especially when material is scarce.

  13. Challenges Analyzing Gypsum on Mars by Raman Spectroscopy.

    PubMed

    Marshall, Craig P; Olcott Marshall, Alison

    2015-09-01

    Raman spectroscopy can provide chemical information about organic and inorganic substances quickly and nondestructively with little to no sample preparation, thus making it an ideal instrument for Mars rover missions. The ESA ExoMars planetary mission scheduled for launch in 2018 will contain a miniaturized Raman spectrometer (RLS) as part of the Pasteur payload operating with a continuous wave (CW) laser emitting at 532 nm. In addition, NASA is independently developing two miniaturized Raman spectrometers for the upcoming Mars 2020 rover mission, one of which is a remote (stand-off) Raman spectrometer that uses a pulse-gated 532 nm excitation system (SuperCam). The other is an in situ Raman spectrometer that employs a CW excitation laser emitting at 248.6 nm (SHERLOC). Recently, it has been shown with analyses by Curiosity that Gale Crater contains significantly elevated concentrations of transition metals such as Cr and Mn. Significantly, these transition metals are known to undergo fluorescence emission in the visible portion of the electromagnetic spectrum. Consequently, samples containing these metals could be problematic for the successful acquisition of fluorescence-free Raman spectra when using a CW 532 nm excitation source. Here, we investigate one analog environment, with a similar mineralogy and sedimentology to that observed in martian environments, as well as elevated Cr contents, to ascertain the best excitation wavelength to successfully collect fluorescence-free spectra from Mars-like samples. Our results clearly show that CW near-infrared laser excitation emitting at 785 nm is better suited to the collection of fluorescence-free Raman spectra than would be a CW laser emitting at 532 nm.

  14. Surface enhanced Raman spectroscopy in breast cancer cells

    PubMed Central

    González-Solís, JL; Luévano-Colmenero, GH; Vargas-Mancilla, J

    2013-01-01

    Background and aims: Raman spectroscopy is a vibrational technique which provides information about the chemical structure. Nevertheless, since many chemicals are present in a cell at very low concentration, the Raman signal observed from a single cell is extremely weak. In surface enhanced Raman scattering (SERS), Raman signals can be enhanced by many orders of magnitude when nanoparticles are incorporated into the cell. Materials (subjects) and methods: The tumor biopsies were obtained from 5 patients who were clinically diagnosed with breast cancer. Breast cancer cells isolated from the biopsy were washed, centrifuged and seeded out. Cultivation took place in DMEM at 37°C in a humidified of 5% CO2 in air with addition of colloidal silver nanoparticles of 40 nm into the cell by sonication. Immediately, the washed cells were analyzed in phosphate buffered saline (PBS) at pH 7. Raman analysis was carried out on the Jobin-Yvon LabRAM HR800 microscope system, with a NIR 830 nm laser excitation source. Results: The strongly enhanced Raman signals allow Raman measurements of a single cell in the 200–1800 cm−1 range in relatively short collection times (5 second) using 17 mW near-infrared excitation. Observed spectral features differed across the cell, but chemical constituents in the cell nucleus and cytoplasm, such as DNA, RNA, and amino acids tyrosine and phenylalanine can be identified. Conclusions: Particularly strong field enhancement can be observed when nanoparticles form colloidal clusters. The results suggest that SERS could be a new technique for the identification of breast cancer cell. PMID:24155548

  15. Biophysical basis for noninvasive skin cancer detection using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Moy, Austin J.; Markey, Mia K.; Fox, Matthew C.; Reichenberg, Jason S.; Tunnell, James W.

    2016-03-01

    Raman spectroscopy (RS) is proving to be a valuable tool for real time noninvasive skin cancer detection via optical fiber probe. However, current methods utilizing RS for skin cancer diagnosis rely on statistically based algorithms to provide tissue classification and do not elucidate the underlying biophysical changes of skin tissue. Therefore, we aim to use RS to explore skin biochemical and structural characteristics and then correlate the Raman spectrum of skin tissue with its disease state. We have built a custom confocal micro-Raman spectrometer system with an 830nm laser light. The high resolution capability of the system allows us to measure spectroscopic features from individual tissue components in situ. Raman images were collected from human skin samples from Mohs surgical biopsy, which were then compared with confocal laser scanning, two-photon fluorescence and hematoxylin and eosin-stained images to develop a linear model of skin tissue Raman spectra. In this model, macroscopic tissue spectra obtained from RS fiber probe were fit into a linear combination of individual basis spectra of primary skin constituents. The fit coefficient of the model explains the biophysical changes spanning a range of normal and various disease states. The model allows for determining parameters similar to that a pathologist is familiar reading and will be a significant guidance in developing RS diagnostic decision schemes.

  16. Non-label immune cell state prediction using Raman spectroscopy

    PubMed Central

    Ichimura, Taro; Chiu, Liang-da; Fujita, Katsumasa; Machiyama, Hiroaki; Yamaguchi, Tomoyuki; Watanabe, Tomonobu M.; Fujita, Hideaki

    2016-01-01

    The acquired immune system, mainly composed of T and B lymphocytes, plays a key role in protecting the host from infection. It is important and technically challenging to identify cell types and their activation status in living and intact immune cells, without staining or killing the cells. Using Raman spectroscopy, we succeeded in discriminating between living T cells and B cells, and visualized the activation status of living T cells without labeling. Although the Raman spectra of T cells and B cells were similar, they could be distinguished by discriminant analysis of the principal components. Raman spectra of activated T cells with anti-CD3 and anti-CD28 antibodies largely differed compared to that of naïve T cells, enabling the prediction of T cell activation status at a single cell level. Our analysis revealed that the spectra of individual T cells gradually change from the pattern of naïve T cells to that of activated T cells during the first 24 h of activation, indicating that changes in Raman spectra reflect slow changes rather than rapid changes in cell state during activation. Our results indicate that the Raman spectrum enables the detection of dynamic changes in individual cell state scattered in a heterogeneous population. PMID:27876845

  17. NIR Raman spectroscopy in medicine and biology: results and aspects

    NASA Astrophysics Data System (ADS)

    Schrader, B.; Dippel, B.; Erb, I.; Keller, S.; Löchte, T.; Schulz, H.; Tatsch, E.; Wessel, S.

    1999-05-01

    Analyses of biomaterial by 'classical' Raman spectroscopy with excitation in the visible range has not been possible since the fluorescence of many essential constituents of all animal and plant cells and tissues overlays the Raman spectra completely. Fluorescence, however, is virtually avoided, when Raman spectra are excited with the Nd : YAG laser line at 1064 nm. Within seven dissertations we explored different fields of potential applications to medical diagnostics. Identification and qualification of tissues and cells is possible. Tumors show small but significant differences to normal tissues; in order to develop a reliable tool for tumor diagnostics more research is necessary, especially a collection of reference spectra in a data bank is needed. Raman spectra of biomineralization structures in teeth and bones show pathological tissues as well as the development of new mineralized structures. NIR Raman spectra of flowers, leaves, and fruit show, without special preparation, their constituents: alkaloids, the essential oils, natural dyes, flavors, spices and drugs. They allow application to taxonomy, optimizing plant breeding and control of food.

  18. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level.

    PubMed

    De Luca, Anna Chiara; Dholakia, Kishan; Mazilu, Michael

    2015-06-11

    Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting.

  19. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level

    PubMed Central

    De Luca, Anna Chiara; Dholakia, Kishan; Mazilu, Michael

    2015-01-01

    Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting. PMID:26110401

  20. Normal and Enhanced Raman Spectroscopy of Carbon Electrode Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yan

    This thesis discusses the relationship between the microstructure and the electrochemical properties of carbon electrodes. First, a near infrared Raman spectrometer with a diode laser coupled to a charge coupled device was developed to overcome intrinsic limitations in the Raman scattering process. The spectrometer was evaluated in sensitivity, limit of detection, dynamic range, and fluorescence rejection ability. The experimental results indicate that this spectrometer is more sensitive than the existing FT -Raman technique and provides a viable alternative for near infrared region Raman techniques. This system was then applied in a comprehensive Raman study of the vibrational microstructure of several carbon electrodes over a wide incident laser wavelength region. Based on a lattice dynamics model, a wide range of experimental data were used to clarify the controversy of the Raman feature at ca. 1350 cm^{ -1} (D band). It has been attributed to an intrinsic lattice vibration mode which becomes active if the wavevector selection rule breakdowns. Further, the laser wavelength dependent effect of the D band position and relative intensity was investigated. Four vibrational modes were discovered and assigned to lattice vibration modes. The assignment was assisted by their laser wavelength position dependence. Finally, to better understand the relationship between the surface microstructure and the electrochemical properties, a surface enhanced Raman scattering technique was developed and applied. In this technique, the carbon surfaces were studied through electrochemically depositing silver in situ on the carbon electrode surface. The technique was proven to be surface sensitive and applied to the study of many modified carbon electrodes. The experimental results provide strong evidence to link electrochemical activity of carbon electrodes with grain boundaries or defects in the microstructure of the electrodes. With this knowledge a better understanding of carbon

  1. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  2. Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis

    PubMed Central

    2016-01-01

    Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) techniques exhibit highly localized chemical sensitivity, making them ideal for studying chemical reactions, including processes at catalytic surfaces. Catalyst structures, adsorbates, and reaction intermediates can be observed in low quantities at hot spots where electromagnetic fields are the strongest, providing ample opportunities to elucidate reaction mechanisms. Moreover, under ideal measurement conditions, it can even be used to trigger chemical reactions. However, factors such as substrate instability and insufficient signal enhancement still limit the applicability of SERS and TERS in the field of catalysis. By the use of sophisticated colloidal synthesis methods and advanced techniques, such as shell-isolated nanoparticle-enhanced Raman spectroscopy, these challenges could be overcome. PMID:27075515

  3. Identification of active fluorescence stained bacteria by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krause, Mario; Beyer, Beatrice; Pietsch, Christian; Radt, Benno; Harz, Michaela; Rösch, Petra; Popp, Jürgen

    2008-04-01

    Microorganisms can be found everywhere e.g. in food both as useful ingredients or harmful contaminations causing food spoilage. Therefore, a fast and easy to handle analysis method is needed to detect bacteria in different kinds of samples like meat, juice or air to decide if the sample is contaminated by harmful microorganisms. Conventional identification methods in microbiology require always cultivation and therefore are time consuming. In this contribution we present an analysis approach to identify fluorescence stained bacteria on strain level by means of Raman spectroscopy. The stained bacteria are highlighted and can be localized easier against a complex sample environment e.g. in food. The use of Raman spectroscopy in combination with chemometrical methods allows the identification of single bacteria within minutes.

  4. Crystallographic Transitions in Perovskite Crystals Observed with Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Castillo-Andaeta, F.; Mura-Mardones, J.; Cabrera, G. B.; Cabrera, A. L.; Altamirano-Busschots, L. A.

    2001-03-01

    We have studied the interaction of carbon dioxide with the surface of ferroelectric oxides such as barium titanate and potassium niobate. The surface chemistry of KNbO3 towards CO2 changes when the oxide particles become smaller than 100 microns. We have used Micro-Raman spectroscopy to determine if the structure of the grains change depending on their size and temperature. We have been able of observing crystallographic transition in small grains of the Perovskite with Raman spectroscopy. Small grains of 50 microns BaTiO3 undergo a transition at 133 degree C and small grains of 50 microns KNbO3 undergo a transition around 224 and 408 degrees C. A correlation between CO2 desorption and crystallographic changes can be observed. References: [1] A. L. Cabrera, F. Vargas and R. Zarate J. Phys. Chem. Sol. 55 (1994) 1303. [2] A. L. Cabrera, F. Vargas and J. J. Albers, Surf. Sci. 336 (1995) 280.

  5. Raman spectroscopy as a tool for ecology and evolution

    PubMed Central

    Kumar, Vipin; Ichimura, Taro; Moreau, Jerome; Furusawa, Chikara; Fujita, Hideaki; Watanabe, Tomonobu M.

    2017-01-01

    Scientists are always on the lookout for new modalities of information which could reveal new biological features that are useful for deciphering the complexity of biological systems. Here, we introduce Raman spectroscopy as a prime candidate for ecology and evolution. To encourage the integration of this microscopy technique in the field of ecology and evolution, it is crucial to discuss first how Raman spectroscopy fits within the conceptual, technical and pragmatic considerations of ecology and evolution. In this paper, we show that the spectral information holds reliable indicators of intra- and interspecies variations, which can be related to the environment, selective pressures and fitness. Moreover, we show how the technical and pragmatic aspects of this modality (non-destructive, non-labelling, speed, relative low cost, etc.) enable it to be combined with more conventional methodologies. With this paper, we hope to open new avenues of research and extend the scope of available methodologies used in ecology and evolution. PMID:28592661

  6. Raman/FTIR spectroscopy of oil shale retort gases

    SciTech Connect

    Richardson, J H; Monaco, S B; Sanborn, R H; Hirschfeld, T B; Taylor, J R

    1982-08-01

    A Raman facility was assembled in order to aid in the evaluation of the feasibility of using Raman or FTIR spectroscopy for analyzing gas mixtures of interest in oil shale. Applications considered in oil shale research included both retort monitoring and laboratory kinetic studies. Both techniques gave limits of detection between 10 and 1000 ppM for ten representative pertinent gases. Both techniques are inferior as a general analytical technique for oil shale gas analysis in comparison with mass spectroscopy, which had detection limits between 1 and 50 ppM for the same gases. The conclusion of the feasibility study was to recommend that mass spectroscopic techniques be used for analyzing gases of interest to oil shale.

  7. Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry; Murawski, Robert K.; Ariunbold, Gombojav O.; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V.; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Dogariu, Arthur; Huang, Yu; Scully, Marlan O.

    2007-04-01

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

  8. Optimizing the laser-pulse configuration for coherent Raman spectroscopy.

    PubMed

    Pestov, Dmitry; Murawski, Robert K; Ariunbold, Gombojav O; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Dogariu, Arthur; Huang, Yu; Scully, Marlan O

    2007-04-13

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

  9. Tip-enhanced Raman spectroscopy: From concepts to practical applications

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Kurouski, Dmitry; Pozzi, Eric A.; Chiang, Naihao; Hersam, Mark C.; Van Duyne, Richard P.

    2016-08-01

    Tip-enhanced Raman spectroscopy (TERS) is a powerful technique that integrates the vibrational fingerprinting of Raman spectroscopy and the sub-nanometer resolution of scanning probe microscopy (SPM). As a result, TERS is capable of obtaining chemical maps of analyzed specimens with exceptional lateral resolution. This is extremely valuable for the study of interactions between molecules and substrates, in addition to structural characterization of biological objects, such as viruses and amyloid fibrils, 2D polymeric materials, and monitoring electrochemical and photo-catalytic processes. In this mini-review, we discuss the most significant advances of TERS, including: super high resolution chemical imaging, monitoring of catalytic processes, incorporation of pulsed-excitation techniques, single-site electrochemistry, biosensing, and art conservation. We begin with a short overview of TERS, comparing it with other surface analytical techniques, followed by an overview of recent developments and future applications in TERS.

  10. Exploitation of resonance Raman spectroscopy as a remote chemical sensor

    SciTech Connect

    Sedlacek, A.J.; Chen, C.L.

    1995-08-01

    We have discussed recent experimental results using a resonance-Raman-based LIDAR system as a remote chemical sensor. This spectroscopy has the fundamental advantage that it is based on optical fingerprints that are insensitive to environmental perturbations. By taking advantage of resonance enhancement, which 6 orders-of-magnitude, can be as large as 4 to an increased sensing range for a given chemical concentration or lower detection limit for a given stand-off distance can be realized. The success discussed above can in part be traced back to the use of new state-of-the-art technologies which, only recently, have allowed the phenomenon of resonance-enhanced Raman spectroscopy to be fully exploited as a remote chemical sensor platform. Since many chemicals have electronic transitions in the UV/IS, it is expected that many will have pronounced resonance enhancements.

  11. Two-dimensional femtosecond stimulated Raman spectroscopy: Observation of cascading Raman signals in acetonitrile.

    PubMed

    Wilson, Kristina C; Lyons, Brendon; Mehlenbacher, Randy; Sabatini, Randy; McCamant, David W

    2009-12-07

    A new methodology for two-dimensional Raman spectroscopy-termed two-dimensional femtosecond stimulated Raman spectroscopy (2D-FSRS)-is presented and experimental results for acetonitrile are discussed. 2D-FSRS can potentially observe molecular anharmonicity by measuring the modulation of the frequency of a probed Raman mode, at frequency omega(hi), by the coherent motion of an impulsively driven mode, at frequency omega(low). In acetonitrile, the signal is generated by driving the CCN bend (379 cm(-1)) and CC stretch (920 cm(-1)) into coherence via impulsive stimulated Raman scattering and subsequently probing the stimulated Raman spectrum of the CC stretch, the CN stretch (2250 cm(-1)) and the CH stretch (2942 cm(-1)). The resultant signal can be generated by two alternative mechanisms: a fifth-order Raman process that would directly probe anharmonic coupling between the two modes, or a third-order cascade in which a third-order coherent Raman process produces a field that goes on to participate in a third-order stimulated Raman transition. The third-order cascade is shown to dominate the 2D-FSRS spectrum as determined by comparison with the predicted magnitude of the two signals, the 2D spectrum of a mixed isotope experiment, and the concentration dependence of the signal. In acetonitrile, theoretical calculations of the vibrational anharmonicity indicate that the third-order cascade signal should be 10(4) times larger than the fifth-order Raman signal. 2D-FSRS signals are observed between acetonitrile's CCN bend, of E symmetry, and several different A(1) modes but are forbidden by symmetry in the fifth-order pathway. A 2D-FSRS spectrum of a 50:50 mixture of acetonitrile and d(3)-acetonitrile shows equivalent intensity for intramolecular coupling peaks and intermolecular coupling peaks, indicating that the observed signal cannot be probing molecular anharmonicity. Finally, the magnitudes of the 2D-FSRS peaks are observed to be proportional to the square of the

  12. Testing of Raman spectroscopy method for assessment of skin implants

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Timchenko, P. E.; Volova, L. T.; Pershutkina, S. V.; Shalkovskaya, P. Y.

    2016-11-01

    Results of studies of testing of Raman spectroscopy (RS) method for assessment of skin implants are presented. As objects of study were used samples of rat's skin material. The main spectral differences of implants using various types of their processing appear at wavenumbers 1062 cm-1, 1645 cm-1, 1553 cm-1, 851 cm-1, 863 cm-1, 814 cm-1 and 1410 cm-1. Optical coefficients for assessment of skin implants were introduced. The research results are confirmed by morphological analysis.

  13. Surface-enhanced Raman Spectroscopy for Astrobiology Exploration on Mars

    DTIC Science & Technology

    2012-10-01

    oxalates and perhaps acetatemay have been formed on the sur- face of Mars through oxidation of meteorite-delivered organics and these are largely...invisible to the analytic instruments onboard Viking lander. Salts of these or- ganic acids are resistant to further oxidation and may be present in...as described in the following section. Surface enhanced Raman spectroscopy (SERS): The surface-enhancing effect was discovered by Fleischmann et

  14. Application of Raman spectroscopy method for analysis of biopolymer materials

    NASA Astrophysics Data System (ADS)

    Timchenko, Elena V.; Timchenko, Pavel E.; Volchkov, S. E.; Mahortova, Alexsandra O.; Asadova, Anna A.; Kornilin, Dmitriy V.

    2016-10-01

    This work presents the results of spectral analysis of biopolymer materials that are implemented in medical sphere. Polymer samples containing polycaprolactone and iron oxides of different valence were used in the studies. Raman spectroscopy method was used as a main control method. Relative content of iron and polycaprolactone in studied materials was assessed using ratio of RS intensities values at 604 cm-1 and 1726 cm-1 wavenumbers to intensity value of 1440 cm-1 line.

  15. Studies of cartilaginous tissue using Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Timchenko, Pavel E.; Timchenko, Elena V.; Volova, Larisa T.; Dolgyshkin, Dmitry A.; Markova, Maria D.; Kylabyhova, A. Y.; Kornilin, Dmitriy V.

    2016-10-01

    The work presents the results of studies of samples of human articular surface of the knee joint, obtained by Raman spectroscopy implementedduring endoprosthesis replacement surgery . The main spectral characteristics of articular surface areas with varying degrees of cartilage damage were detected at 956 cm-1, 1066 cm-1 wavenumbers, corresponding to phosphate and carbonate, and at 1660 cm-1, 1271 cm-1 wavenumbers, corresponding to amide I and amide III. Criteria allowing to identify the degree of articular hyaline cartilage damage were introduced.

  16. Assessment of Raman Spectroscopy as a Silicone Pad Production Diagnostic

    SciTech Connect

    Saab, A P; Balazs, G B; Maxwell, R S

    2005-05-05

    Silicone pressure pads are currently deployed in the W80. The mechanical properties of these pads are largely based on the degree of crosslinking between the polymer components that comprise the raw gumstock from which they are formed. Therefore, it is desirable for purposes of both production and systematic study of these materials to have a rapid, reliable means of assaying the extent of crosslinking. The present report describes the evaluation of Raman spectroscopy in this capacity.

  17. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2000-11-21

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  18. Fourier-Transform Raman Spectroscopy Of Biological Assemblies

    NASA Astrophysics Data System (ADS)

    Levin, Ira W.; Lewis, E. Neil

    1989-12-01

    Although the successful coupling of Raman scattered near-infrared radiation to a Michelson interferometer has recently created an outburst of intense interest in Fourier-transform (FT) Raman spectrometry," extended applications of the technique to macromolecular assemblies of biochemical and biophysical relevance have not progressed as rapidly as studies directed primarily at more conventional chemical characterizations. Since biological materials sampled with visible laser excitation sources typically emit a dominant fluorescence signal originating either from the intrinsic fluorescence of the molecular scatterer or from unrelenting contaminants, the use of near-infrared Nd:YAG laser excitation offers a convenient approach for avoiding this frequently overwhelming effect. In addition, the FT-Raman instrumentation provides a means of eliminating the deleterious resonance and decomposition effects often observed with the more accessible green and blue laser emissions. However, in choosing the incident near-infrared wavelength at, for example, 1064nm, the Raman scattered intensity decreases by factors of eighteen to forty from the Raman emissions induced by the shorter, visible excitations. Depending upon the experiment, this disadvantage is offset by the throughput and multiplex advantages afforded by the interferometric design. Thus, for most chemical systems, near-infrared FT-Raman spectroscopy, clearly provides a means for obtaining vibrational Raman spectra from samples intractable to the use of visible laser sources. In particular, for neat liquids, dilute solutions or polycrystalline materials, the ability to achieve high quality, reproducible spectra is, with moderate experience and perhaps relatively high laser powers, as straightforward as the conventional methods used to obtain Raman spectra with visible excitation and dispersive monochromators. In using near-infrared FT techniques to determine the Raman spectra of biological samples, one encounters new

  19. Spectroscopic characterization of sixteenth century panel painting references using Raman, surface-enhanced Raman spectroscopy and helium-Raman system for in situ analysis of Ibero-American Colonial paintings.

    PubMed

    García-Bucio, María Angélica; Casanova-González, Edgar; Ruvalcaba-Sil, José Luis; Arroyo-Lemus, Elsa; Mitrani-Viggiano, Alejandro

    2016-12-13

    Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  20. Spectroscopic characterization of sixteenth century panel painting references using Raman, surface-enhanced Raman spectroscopy and helium-Raman system for in situ analysis of Ibero-American Colonial paintings

    NASA Astrophysics Data System (ADS)

    García-Bucio, María Angélica; Casanova-González, Edgar; Ruvalcaba-Sil, José Luis; Arroyo-Lemus, Elsa; Mitrani-Viggiano, Alejandro

    2016-12-01

    Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  1. Characterization of early dental caries by polarized Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Choo-Smith, Lin-P'ing; Ko, Alex C.-T.; Hewko, Mark D.; Dong, Cecilia C.; Cleghorn, Blaine M.; Sowa, Michael G.

    2006-02-01

    The early approximal caries lesion in enamel is observed clinically as a white spot and is difficult to detect and/or monitor with current methods available to dentists. New methods with high sensitivity and specificity are required to enable improved early dental caries diagnosis. Using unpolarized Raman spectroscopy to examine unsectioned teeth, peak intensity changes in the phosphate (PO 4 3-) vibrations (ν II, ν 3 and ν 4) were observed between spectra of sound and carious enamel. However, there is little change in the ν I vibration with this approach. In contrast, when tooth sections were examined by unpolarized Raman spectroscopy, marked changes in the ν I peak at 959 cm -1 were noted between healthy and carious enamel. These differences suggest that sampling orientation play a role in understanding the spectral changes. Using polarized Raman spectroscopy to examine unsectioned samples, cross polarized measurements from sound enamel exhibited significant reduction of the ν I peak compared with parallel polarized measurements. A similar reduction was observed with carious enamel, however, the reduction was not as prominent. By calculating the depolarization ratio of the area under the ν I peak, sound enamel can be clearly distinguished from demineralized regions. The spectral changes observed are attributed to changes in the structure and/or orientation of the apatite crystals as a result of the acid demineralization process.

  2. Medical applications of atomic force microscopy and Raman spectroscopy.

    PubMed

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  3. Detection of propofol concentrations in blood by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; UrniaŻ, R.; Myllylä, T. S.; Jedrzejewska-Szczerska, M.

    2015-07-01

    In this paper we present a proof-of-concept of a Raman spectroscopy-based approach for measuring the content of propofol, a common anesthesia drug, in whole human blood, and plasma, which is intended for use during clinical procedures. This method utilizes the Raman spectroscopy as a chemically-sensitive method for qualitative detection of the presence of a drug and a quantitative determination of its concentration. A number of samples from different patients with added various concentrations of propofol IV solution were measured. This is most equivalent to a real in-vivo situation. Subsequent analysis of a set of spectra was carried out to extract qualitative and quantitative information. We conclude, that the changes in the spectra of blood with propofol, overlap with the most prominent lines of the propofol solution, especially at spectral regions: 1450 cm-1, 1250- 1260 cm-1, 1050 cm-1, 875-910 cm-1, 640 cm-1. Later, we have introduced a quantitative analysis program based on correlation matrix closest fit, and a LOO cross-validation. We have achieved 36.67% and 60% model precision when considering full spectra, or specified bands, respectively. These results prove the possibility of using Raman spectroscopy for quantitative detection of propofol concentrations in whole human blood.

  4. Summary report of FY 1995 Raman spectroscopy technology development

    SciTech Connect

    Douglas, J.G.

    1995-11-01

    US DOE is sponsoring development of remote, fiber-optic Raman spectroscopy for rapid chemical characterization of Hanford high-level radioactive tank waste. Deployment targets for this technology are analytical hot cells and, via the Light-Duty Utility Arm and cone penetrometer, the waste tanks themselves. Perceived benefits of fiber-optic Raman spectroscopy are (1) rapid generation of tank-waste safety-related data, (2) reduced personnel exposure to highly radioactive waste, (3) reduced tank-waste sampling and analysis costs, and (4) reduced radioactive analytical waste. This document presents the results from the investigation of two dispersive, transmission-grating Raman systems and four fiber-optic Raman probe designs with non-radioactive tank waste simulants. One Raman system used a 532-nm, 400 mW, solid-state laser; the other used a 785-nm, 500 mW, solid-state diode laser. We found (1) the transmission-grating systems had better wavelength stability than previously tried Czerny-Turner-Based systems and (2) the 785-nm system`s specie detection limits in the spectral fingerprint regiion were at least as good as those for the 532-nm system. Based on these results, and the fact that some tank wastes luminesce with 514.5nm excitation, we selected the 785-nm system for hot-cell use. Of the four probes tested, three had a ``six-around-on`` fiber probe design; the fourth probe was a one-fiber-in-one-fiber-out, diffuse-relectance design. Comparison of the four probes` signal-to-noise rations, rations, transmission/collection efficiencies, and probe-silica Raman backgrounds showed that the best probe for use with Hanford-Site tank waste should (1) be filtered as close to the probe tip as possible to reduce the probe-silica Raman background and (2) have multiple collection fibers. The responses of all the probes tested showed a strong dependence on probe-sample distance, and the presence of a probe window appeared to increase the probe`s silica Raman background.

  5. Tissue-engineered constructs of human oral mucosa examined by Raman spectroscopy.

    PubMed

    Khmaladze, Alexander; Ganguly, Arindam; Kuo, Shiuhyang; Raghavan, Mekhala; Kainkaryam, Raghu; Cole, Jacqueline H; Izumi, Kenji; Marcelo, Cynthia L; Feinberg, Stephen E; Morris, Michael D

    2013-04-01

    A noninvasive quality monitoring of tissue-engineered constructs is a required component of any successful tissue-engineering technique. During a 2-week production period, ex vivo produced oral mucosa-equivalent constructs (EVPOMEs) may encounter adverse culturing conditions that might compromise their quality and render them ineffective. We demonstrate the application of near-infrared Raman spectroscopy to in vitro monitoring of EVPOMEs during their manufacturing process, with the ultimate goal of applying this technology in situ to monitor the grafted EVPOMEs. We identify Raman spectroscopic failure indicators for less-than optimal EVPOMEs that are stressed by higher temperature and exposure to higher than normal concentration of calcium ions. Raman spectra of EVPOMEs exposed to thermal and calcium stress showed correlation of the band height ratio of CH(2) deformation to phenylalanine ring breathing modes, providing a Raman metric to distinguish between viable and nonviable constructs. We compared these results to histology and glucose consumption measurements, demonstrating that Raman spectroscopy is more sensitive and specific to changes in proteins' secondary structure not visible by H&E histology. We also exposed the EVPOMEs to rapamycin, a cell growth inhibitor and cell proliferation capacity preserver, and distinguished between EVPOMEs pretreated with 2 nM rapamycin and controls, using the ratio of the Amide III envelope to the phenylalanine band as an indicator.

  6. Raman spectroscopy and imaging to detect contaminants for food safety applications

    NASA Astrophysics Data System (ADS)

    Chao, Kuanglin; Qin, Jianwei; Kim, Moon S.; Peng, Yankun; Chan, Diane; Cheng, Yu-Che

    2013-05-01

    This study presents the use of Raman chemical imaging for the screening of dry milk powder for the presence of chemical contaminants and Raman spectroscopy for quantitative assessment of chemical contaminants in liquid milk. For image-based screening, melamine was mixed into dry milk at concentrations (w/w) between 0.2% and 10.0%, and images of the mixtures were analyzed by a spectral information divergence algorithm. Ammonium sulfate, dicyandiamide, and urea were each separately mixed into dry milk at concentrations (w/w) between 0.5% and 5.0%, and an algorithm based on self-modeling mixture analysis was applied to these sample images. The contaminants were successfully detected and the spatial distribution of the contaminants within the sample mixtures was visualized using these algorithms. Liquid milk mixtures were prepared with melamine at concentrations between 0.04% and 0.30%, with ammonium sulfate and with urea at concentrations between 0.1% and 10.0%, and with dicyandiamide at concentrations between 0.1% and 4.0%. Analysis of the Raman spectra from the liquid mixtures showed linear relationships between the Raman intensities and the chemical concentrations. Although further studies are necessary, Raman chemical imaging and spectroscopy show promise for use in detecting and evaluating contaminants in food ingredients.

  7. Tissue-Engineered Constructs of Human Oral Mucosa Examined by Raman Spectroscopy

    PubMed Central

    Khmaladze, Alexander; Ganguly, Arindam; Kuo, Shiuhyang; Raghavan, Mekhala; Kainkaryam, Raghu; Cole, Jacqueline H.; Izumi, Kenji; Marcelo, Cynthia L.; Feinberg, Stephen E.

    2013-01-01

    A noninvasive quality monitoring of tissue-engineered constructs is a required component of any successful tissue-engineering technique. During a 2-week production period, ex vivo produced oral mucosa-equivalent constructs (EVPOMEs) may encounter adverse culturing conditions that might compromise their quality and render them ineffective. We demonstrate the application of near-infrared Raman spectroscopy to in vitro monitoring of EVPOMEs during their manufacturing process, with the ultimate goal of applying this technology in situ to monitor the grafted EVPOMEs. We identify Raman spectroscopic failure indicators for less-than optimal EVPOMEs that are stressed by higher temperature and exposure to higher than normal concentration of calcium ions. Raman spectra of EVPOMEs exposed to thermal and calcium stress showed correlation of the band height ratio of CH2 deformation to phenylalanine ring breathing modes, providing a Raman metric to distinguish between viable and nonviable constructs. We compared these results to histology and glucose consumption measurements, demonstrating that Raman spectroscopy is more sensitive and specific to changes in proteins' secondary structure not visible by H&E histology. We also exposed the EVPOMEs to rapamycin, a cell growth inhibitor and cell proliferation capacity preserver, and distinguished between EVPOMEs pretreated with 2 nM rapamycin and controls, using the ratio of the Amide III envelope to the phenylalanine band as an indicator. PMID:22992065

  8. Non-invasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization

    NASA Astrophysics Data System (ADS)

    Wagner, Stefan; Dieing, Thomas; Centeno, Alba; Zurutuza, Amaia; Smith, Anderson D.; Östling, Mikael; Kataria, Satender; Lemme, Max C.

    2017-02-01

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between freestanding and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.

  9. An intraoperative diagnosis of parotid gland tumors using Raman spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Wen, Zhining; Li, Yi; Li, Longjiang; Xue, Lili

    2014-11-01

    The preoperative and intraoperative diagnosis of parotid gland tumors is difficult, but is important for their surgical management. In order to explore an intraoperative diagnostic method, Raman spectroscopy is applied to detect the normal parotid gland and tumors, including pleomorphic adenoma, Warthin’s tumor and mucoepidermoid carcinoma. In the 600-1800 cm-1 region of the Raman shift, there are numerous spectral differences between the parotid gland and tumors. Compared with Raman spectra of the normal parotid gland, the Raman spectra of parotid tumors show an increase of the peaks assigned to nucleic acids and proteins, but a decrease of the peaks related to lipids. Spectral differences also exist between the spectra of parotid tumors. Based on these differences, a remarkable classification and diagnosis of the parotid gland and tumors are carried out by support vector machine (SVM), with high accuracy (96.7~100%), sensitivity (93.3~100%) and specificity (96.7~100%). Raman spectroscopy combined with SVM has a great potential to aid the intraoperative diagnosis of parotid tumors and could provide an accurate and rapid diagnostic approach.

  10. Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bicchieri, M.; Nardone, M.; Russo, P. A.; Sodo, A.; Corsi, M.; Cristoforetti, G.; Palleschi, V.; Salvetti, A.; Tognoni, E.

    2001-06-01

    The most commonly used blue pigments in medieval manuscripts are azurite and lapis-lazuli. The first one is a copper-based pigment; the coloring compound of the latter is lazurite, a sodium silicoaluminate in a sulfur matrix. Knowledge of the chemical composition of the materials is essential for the study of illuminated manuscripts. In this paper, micro-Raman and LIBS have been used for the study of azurite and lapis-lazuli, as well as different mixtures of these pigments applied to parchment to simulate an illuminated manuscript. The results of our work show the importance of using more than one technique for a good comprehension of a manuscript. In particular, the opportunity of combining elemental information (obtained from laser induced breakdown spectroscopy) and vibrational spectroscopy information (obtained from Raman) will be fully exploited.

  11. Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces.

    PubMed

    Conti, Claudia; Botteon, Alessandra; Bertasa, Moira; Colombo, Chiara; Realini, Marco; Sali, Diego

    2016-08-07

    We present the first validation and application of portable Sequentially Shifted Excitation (SSE) Raman spectroscopy for the survey of painted layers in art. The method enables the acquisition of shifted Raman spectra and the recovery of the spectral data through the application of a suitable reconstruction algorithm. The technique has a great potentiality in art where commonly a strong fluorescence obscures the Raman signal of the target, especially when conventional portable Raman spectrometers are used for in situ analyses. Firstly, the analytical capability of portable SSE Raman spectroscopy is critically discussed using reference materials and laboratory specimens, comparing its results with other conventional high performance laboratory instruments (benchtop FT-Raman and dispersive Raman spectrometers with an external fiber optic probe); secondly, it is applied directly in situ to study the complex polychromy of Italian prestigious terracotta sculptures of the 16(th) century. Portable SSE Raman spectroscopy represents a new investigation modality in art, expanding the portfolio of non-invasive, chemically specific analytical tools.

  12. Early Detection of Burn Induced Heterotopic Ossification using Transcutaneous Raman Spectroscopy

    PubMed Central

    Peterson, Jonathan R.; Okagbare, Paul I.; De La Rosa, Sara; Cilwa, Katherine E.; Perosky, Joseph E.; Eboda, Oluwatobi N.; Donneys, Alexis; Su, Grace L.; Buchman, Steven R.; Cederna, Paul S.; Wang, Stewart C.; Kozloff, Kenneth M.; Morris, Michael D; Levi, Benjamin

    2013-01-01

    Introduction Heterotopic ossification (HO), or the abnormal formation of bone in soft tissue, occurs in over 60% of major burn injuries and blast traumas. A significant need exists to improve the current diagnostic modalities for HO which are inadequate to diagnose and intervene on HO at early time-points. Raman spectroscopy has been used in previous studies to report on changes in bone composition during bone development but has not yet been applied to burn induced HO. In this study, we validate transcutaneous, in-vivo Raman spectroscopy as a methodology for early diagnosis of HO in mice following a burn injury. Methods An Achilles tenotomy model was used to study HO formation. Following tenotomy, mice were divided into burn and sham groups with exposure of 30% surface area on the dorsum to 60° water or 30° water for 18 seconds respectively. In-vivo, transcutaneous Raman spectroscopy was performed at early time points (5 days, 2 and 3 weeks) and a late time point (3 months) on both the tenotomized and non-injured leg. These same samples were then dissected down to the bone and ex-vivo Raman measurements were performed on the excised tissue. Bone formation was verified with Micro CT and histology at corresponding time-points. Results Our Raman probe allowed non-invasive, transcutaneous evaluation of heterotopic bone formation. Raman data showed significantly increased bone mineral signaling in the tenotomy compared to control leg at 5 days post injury, with the difference increasing over time whereas Micro CT did not demonstrate heterotopic bone until three weeks. Ex-vivo Raman measurements showed significant differences in the amount of HO in the burn compared to sham groups and also showed differences in the spectra of new, ectopic bone compared to pre-existing cortical bone. Conclusions Burn injury increases the likelihood of developing HO when combined with traumatic injury. In our in-vivo mouse model, Raman spectroscopy allowed for detection of HO formation

  13. Raman Spectroscopy and instrumentation for monitoring soil carbon systems.

    SciTech Connect

    Stokes, D.L.

    2003-12-08

    This work describes developments in the application of Raman scattering and surface-enhanced Raman scattering (SERS) towards the assessment/characterization of carbon in soil. In the past, the nonspecific total carbon mass content of soil samples has generally been determined through mass loss techniques and elemental analysis. However, because of the concern over CO{sub 2} buildup in the atmosphere and its possible role in the ''Greenhouse Effect,'' there is a need for better-defined models of global cycling of carbon. As a means towards this end, there is a need to know more about the structure and functionality of organic materials in soil. Raman spectroscopy may therefore prove to be an exceptional tool in soil carbon analysis. Based on vibrational transitions of irradiated molecules, it provides structural information that is often suitable for sample identification. Furthermore, Raman scattering yields very fine spectral features which offer the potential for multicomponent sample analysis with minimal or no sample pretreatment. Although the intensity of Raman scattering is generally extremely low, the surface-enhanced Raman scattering (SERS) effect can greatly enhance Raman signals (10{sup 6}-10{sup 8} range) through the adsorption of compounds on specially roughened metal surfaces. In our laboratory, we have investigated copper, gold and silver as possible substrate metals in the fabrication of SERS substrates. These substrates have included metal-coated microparticles, metal island films, and redox-roughened metal foils. We have evaluated several laser excitation sources spanning the 515-785 nm range for both Raman and SERS analysis. For this particular study, we have selected fulvic and humic acids as models for establishing the feasibility of using Raman and SERS in soil carbon analysis. Our studies thus far have demonstrated that copper substrates perform best in the SERS detection of humic and fulvic acids, particularly when coupled to electrochemical

  14. Diagnosis of atherosclerosis in human carotid artery by FT-Raman spectroscopy: Principal Components Analysis algorithm

    NASA Astrophysics Data System (ADS)

    Nogueira, Grazielle V.; Silveira, Landulfo, Jr.; Martin, Airton A.; Zangaro, Renato A.; Pacheco, Marcos T.; Chavantes, Maria C.; Zampieri, Marcelo; Pasqualucci, Carlos A. G.

    2004-07-01

    FT- Raman Spectroscopy (FT-Raman) could allow identification and evaluation of human atherosclerotic lesions. A Raman spectrum can provide biochemical information of arteries which can help identifying the disease status and evolution. In this study, it is shown the results of FT-Raman for identification of human carotid arteries in vitro. Fragments of human carotid arteries were analyzed using a FT-Raman spectrometer with a Nd:YAG laser at 1064nm operating at an excitation power of 300mW. Spectra were obtained with 250 scans and spectral resolution of 4 cm-1. Each collection time was approximately 8 min. A total of 75 carotid fragments were spectroscopically scanned and FT-Raman results were compared with histopathology. Principal Components Analysis (PCA) was used to model an algorithm for tissue classification into three categories: normal, atherosclerotic plaque without calcification and atherosclerotic plaque with calcification. Non-atherosclerotic (normal) artery, atherosclerotic plaque and calcified plaque exhibit different spectral signatures related to biochemicals presented in each tissue type, such as, bands of collagen and elastin (proteins), cholesterol and its esters and calcium hydroxyapatite and carbonate apatite respectively. Results show that there is 96% match between classifications based on PCA algorithm and histopathology. The diagnostic applied over all 75 samples had sensitivity and specificity of about 89% and 100%, respectively, for atherosclerotic plaque and 100% and 98% for calcified plaque.

  15. Raman spectroscopy - in situ characterization of growth and surface processes

    NASA Astrophysics Data System (ADS)

    Perkins, James Robert

    The goal of this thesis is to expand on the usefulness of Raman spectroscopy as an in situ probe to aid in the growth and implementation of electronic, optical, and biodetection materials. We accomplish this goal by developing two diverse optical characterization projects. In the first project, an autoclave similar to those used in solvothermal growth which has been outfitted with an optical window is used to collect vibrational spectra of solvents and mineralizers commonly used in the ammonothermal growth of gallium nitride. Secondly, novel silver nanowires created by ferroelectric lithography are evaluated by surface enhanced micro-Raman spectroscopy for use as surface enhanced substrates for low detection limit or single molecule bio-detectors. Raman spectroscopy is already a widely accepted method to characterize and identify a wide variety of materials. Vibrational spectra can yield much information on the presence of chemical species as well as information regarding the phase and interactive properties. Because Raman spectroscopy is a generally non-intrusive technique it is ideal for analysis of hazardous or far-from-ambient liquids, gases, or solids. This technique is used in situ to characterize crystal growth and surface enhanced photochemistry. The phenomenon of Surface Enhanced Raman Spectroscopy (SERS) has been observed in many systems but some fundamental understanding is still lacking and the technique has been slow to transition from the laboratory to the industry. Aggregated colloids and lithographically created islands have shown the best success as reproducible substrates for SERS detection. These techniques, however, lack control over shape, size, and position of the metal nanoparticles which leave them reliant on hotspots. Because of the potential for control of the position of aggregates, ferroelectric lithographically created silver nanowires are evaluated as a potential SERS substrate using pyridine, benzoic acid, and Rhodamine 6g. Surface

  16. Bacterial identification in real samples by means of micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Rösch, Petra; Stöckel, Stephan; Meisel, Susann; Bossecker, Anja; Münchberg, Ute; Kloss, Sandra; Schumacher, Wilm; Popp, Jürgen

    2011-07-01

    Pathogen detection is essential without time delay especially for severe diseases like sepsis. Here, the survival rate is dependent on a prompt antibiosis. For sepsis three hours after the onset of shock the survival rate of the patient drops below 60 %. Unfortunately, the results from standard diagnosis methods like PCR or microbiology can normally be received after 12 or 36 h, respectively. Therefore diagnosis methods which require less cultivation or even no cultivation at all have to be established for medical diagnosis. Here, Raman spectroscopy, as a vibrational spectroscopic method, is a very sensitive and selective approach and monitors the biochemical composition of the investigated sample. Applying micro-Raman spectroscopy allows for a spatial resolution below 1 μm and is therefore in the size range of bacteria. Raman spectra of bacteria depend on the physiological status. Therefore, the databases require the inclusion of the necessary environmental parameters such as temperature, pH, nutrition, etc. Such large databases therefore require a specialized chemometric approach, since the variation between different strains is small. In this contribution we will demonstrate the capability of Raman spectroscopy to identify pathogens without cultivation even from real environmental or medical samples.

  17. Four-dimensional coherent electronic Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Harel, Elad

    2017-04-01

    The correlations between different quantum-mechanical degrees of freedom of molecular species dictate their chemical and physical properties. Generally, these correlations are reflected in the optical response of the system but in low-order or low-dimensionality measurement the signals are highly averaged. Here, we describe a novel four-dimensional coherent spectroscopic method that directly correlates within and between the manifold of electronic and vibrational states. The optical response theory is developed in terms of both resonant and non-resonant field-matter interactions. Using resonance to select coherences on specific electronic states creates opportunities to directly distinguish coherent dynamics on the ground and electronically excited potentials. Critically, this method is free from lower-order signals that have plagued other electronically non-resonant vibrational spectroscopies. The theory presented here compliments recent work on the experimental demonstration of the 4D spectroscopic method described. We highlight specific means by which non-trivial effects such as anharmonicity (diagonal and off-diagonal), mode-specific vibronic coupling, and curvature of the excited states manifest in different projections of the 4D spectrum.

  18. Single-cell Raman spectroscopy of irradiated tumour cells

    NASA Astrophysics Data System (ADS)

    Matthews, Quinn

    This work describes the development and application of a novel combination of single-cell Raman spectroscopy (RS), automated data processing, and principal component analysis (PCA) for investigating radiation induced biochemical responses in human tumour cells. The developed techniques are first validated for the analysis of large data sets (˜200 spectra) obtained from single cells. The effectiveness and robustness of the automated data processing methods is demonstrated, and potential pitfalls that may arise during the implementation of such methods are identified. The techniques are first applied to investigate the inherent sources of spectral variability between single cells of a human prostate tumour cell line (DU145) cultured in vitro. PCA is used to identify spectral differences that correlate with cell cycle progression and the changing confluency of a cell culture during the first 3-4 days after sub-culturing. Spectral variability arising from cell cycle progression is (i) expressed as varying intensities of protein and nucleic acid features relative to lipid features, (ii) well correlated with known biochemical changes in cells as they progress through the cell cycle, and (iii) shown to be the most significant source of inherent spectral variability between cells. This characterization provides a foundation for interpreting spectral variability in subsequent studies. The techniques are then applied to study the effects of ionizing radiation on human tumour cells. DU145 cells are cultured in vitro and irradiated to doses between 15 and 50 Gy with single fractions of 6 MV photons from a medical linear accelerator. Raman spectra are acquired from irradiated and unirradiated cells, up to 5 days post-irradiation. PCA is used to distinguish radiation induced spectral changes from inherent sources of spectral variability, such as those arising from cell cycle. Radiation induced spectral changes are found to correlate with both the irradiated dose and the

  19. Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies

    PubMed Central

    2016-01-01

    The major structural components of protective mucus hydrogels on mucosal surfaces are the secreted polymeric gel-forming mucins. The very high molecular weight and extensive O-glycosylation of gel-forming mucins, which are key to their viscoelastic properties, create problems when studying mucins using conventional biochemical/structural techniques. Thus, key structural information, such as the secondary structure of the various mucin subdomains, and glycosylation patterns along individual molecules, remains to be elucidated. Here, we utilized Raman spectroscopy, Raman optical activity (ROA), circular dichroism (CD), and tip-enhanced Raman spectroscopy (TERS) to study the structure of the secreted polymeric gel-forming mucin MUC5B. ROA indicated that the protein backbone of MUC5B is dominated by unordered conformation, which was found to originate from the heavily glycosylated central mucin domain by isolation of MUC5B O-glycan-rich regions. In sharp contrast, recombinant proteins of the N-terminal region of MUC5B (D1-D2-D′-D3 domains, NT5B), C-terminal region of MUC5B (D4-B-C-CK domains, CT5B) and the Cys-domain (within the central mucin domain of MUC5B) were found to be dominated by the β-sheet. Using these findings, we employed TERS, which combines the chemical specificity of Raman spectroscopy with the spatial resolution of atomic force microscopy to study the secondary structure along 90 nm of an individual MUC5B molecule. Interestingly, the molecule was found to contain a large amount of α-helix/unordered structures and many signatures of glycosylation, pointing to a highly O-glycosylated region on the mucin. PMID:27791356

  20. High Resolution Analysis of Selected Organic Compounds in Icy Terrains, Using Surface-enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parnell, J.; Bowden, S. A.; Phillips, S. J.; Wilson, R.; Cooper, J. M.

    2008-03-01

    Surface-enhanced Raman spectroscopy will increase sensitivity by several orders of magnitude over conventional Raman, and should be considered for future missions. We demonstrate detection of organic pigments from ice containing snow algae.

  1. Dimethylnitrosamine Detection and Measurement Using Laser Raman Spectroscopy

    DTIC Science & Technology

    1976-12-10

    instrumental APPLIED SPECTROSCOPY 517 . , ! , ,, - ..... ... . .T r ,,d .I I,. *, L *i, - 7 ...... settings, solution preparation, and actual measurement each...nitrosamines; however, these other interferents 5. P Rodemacher and W Luttke, Spectrochim Acta 27, 715 (1971) 59 518 Volume 31 Number 6, 1977 APPLIED SPECTROSCOPY

  2. Probing the Pairing Interaction and Multiple Bardasis-Schrieffer Modes Using Raman Spectroscopy

    SciTech Connect

    Maiti, S.; Maier, T. A.; Böhm, T.; Hackl, R.; Hirschfeld, P. J.

    2016-12-15

    In unconventional superconductors, understanding the form of the pairing interaction is the primary goal. In this regard, Raman spectroscopy is a very useful tool, as it identifies the ground state and also the subleading pairing channels by probing collective modes. We propose a general theory for a multiband Raman response and identify new features in the spectrum that can provide a robust test for a pairing theory. We also identify multiple Bardasis-Schrieffer type collective modes and connect the weights of these modes to the subleading gap structures within a microscopic pairing theory. Furthermore, while our conclusions are completely general, we apply our approach to interpret the specific case of B 1 g Raman scattering in hole-doped BaFe 2 As 2 .

  3. Probing the Pairing Interaction and Multiple Bardasis-Schrieffer Modes Using Raman Spectroscopy

    DOE PAGES

    Maiti, S.; Maier, T. A.; Böhm, T.; ...

    2016-12-15

    In unconventional superconductors, understanding the form of the pairing interaction is the primary goal. In this regard, Raman spectroscopy is a very useful tool, as it identifies the ground state and also the subleading pairing channels by probing collective modes. We propose a general theory for a multiband Raman response and identify new features in the spectrum that can provide a robust test for a pairing theory. We also identify multiple Bardasis-Schrieffer type collective modes and connect the weights of these modes to the subleading gap structures within a microscopic pairing theory. Furthermore, while our conclusions are completely general, wemore » apply our approach to interpret the specific case of B 1 g Raman scattering in hole-doped BaFe 2 As 2 .« less

  4. Probing the Pairing Interaction and Multiple Bardasis-Schrieffer Modes Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maiti, S.; Maier, T. A.; Böhm, T.; Hackl, R.; Hirschfeld, P. J.

    2016-12-01

    In unconventional superconductors, understanding the form of the pairing interaction is the primary goal. In this regard, Raman spectroscopy is a very useful tool, as it identifies the ground state and also the subleading pairing channels by probing collective modes. Here, we propose a general theory for a multiband Raman response and identify new features in the spectrum that can provide a robust test for a pairing theory. We identify multiple Bardasis-Schrieffer type collective modes and connect the weights of these modes to the subleading gap structures within a microscopic pairing theory. While our conclusions are completely general, we apply our approach to interpret the specific case of B1 g Raman scattering in hole-doped BaFe2 As2 .

  5. Microsystem light source at 488 nm for shifted excitation resonance Raman difference spectroscopy.

    PubMed

    Maiwald, Martin; Schmidt, Heinar; Sumpf, Bernd; Güther, Reiner; Erbert, Götz; Kronfeldt, Heinz-Detlef; Tränkle, Günther

    2009-11-01

    A microsystem light source emitting at 488 nm was tested and applied as a light source for shifted excitation resonance Raman difference spectroscopy (SERRDS). A nonlinear frequency conversion using a distributed feedback (DFB) diode laser emission at 976 nm and a periodically poled lithium niobate (PPLN) waveguide crystal was realized on a micro-optical bench with a footprint of 25 mm x 5 mm. Joint temperature management via the microbench is used for wavelength tuning. Two emission lines at 487.61 nm and 487.91 nm are used for the SERRDS experiments. The Raman spectra of the test sample polystyrene demonstrate that a laser bandpass filter did not need to be implemented. Resonance Raman spectra of Tartrazine (FD&C Yellow 5, E 102) in distilled water are presented to demonstrate the suitability of this light source for SERRDS in, e.g., food safety control.

  6. New insight into UO2F2 particulate structure by micro-Raman spectroscopy

    DOE PAGES

    Stefaniak, Elzbieta A.; Darchuk, Larysa; Sapundjiev, Danislav; ...

    2013-02-19

    Uranyl fluoride particles produced via hydrolysis of uranium hexafluoride have been deposited on different substrates: polished graphite disks, silver foil, stainless steel and gold-coated silicon wafer, and measured with micro-Raman spectroscopy (MRS). All three metallic substrates enhanced the Raman signal delivered by UO2F2 in comparison to graphite. The fundamental stretching of the U–O band appeared at 867 cm–1 in case of the graphite substrate, while in case of the others it was shifted to lower frequencies (down to 839 cm–1). All applied metallic substrates showed the expected effect of Raman signal enhancement; however the gold layer appeared to be mostmore » effective. Lastly, application of new substrates provides more information on the molecular structure of uranyl fluoride precipitation, which is interesting for nuclear safeguards and nuclear environmental analysis.« less

  7. Towards optical fibre based Raman spectroscopy for the detection of surgical site infection

    NASA Astrophysics Data System (ADS)

    Thompson, Alex J.; Koziej, Lukasz; Williams, Huw D.; Elson, Daniel S.; Yang, Guang-Zhong

    2016-03-01

    Surgical site infections (SSIs) are common post-surgical complications that remain significant clinical problems, as they are associated with substantial mortality and morbidity. As such, there is significant interest in the development of minimally invasive techniques that permit early detection of SSIs. To this end, we are applying a compact, clinically deployable Raman spectrometer coupled to an optical fibre probe to the study of bacteria, with the long term goal of using Raman spectroscopy to detect infection in vivo. Our system comprises a 785 nm laser diode for excitation and a commercial (Ocean Optics, Inc.) Raman spectrometer for detection. Here we discuss the design, optimisation and validation of this system, and describe our first experiences interrogating bacterial cells (Escherichia coli) in vitro.

  8. New insight into UO2F2 particulate structure by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Stefaniak, Elżbieta A.; Darchuk, Larysa; Sapundjiev, Danislav; Kips, Ruth; Aregbe, Yetunde; Van Grieken, René

    2013-05-01

    Uranyl fluoride particles produced via hydrolysis of uranium hexafluoride have been deposited on different substrates: polished graphite disks, silver foil, stainless steel and gold-coated silicon wafer, and measured with micro-Raman spectroscopy (MRS). All three metallic substrates enhanced the Raman signal delivered by UO2F2 in comparison to graphite. The fundamental stretching of the U-O band appeared at 867 cm-1 in case of the graphite substrate, while in case of the others it was shifted to lower frequencies (down to 839 cm-1). All applied metallic substrates showed the expected effect of Raman signal enhancement; however the gold layer appeared to be most effective. Application of new substrates provides more information on the molecular structure of uranyl fluoride precipitation, which is interesting for nuclear safeguards and nuclear environmental analysis.

  9. Frequency modulated femtosecond stimulated Raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer.

    PubMed

    Grumstrup, Erik M; Chen, Zhuo; Vary, Ryan P; Moran, Andrew M; Schanze, Kirk S; Papanikolas, John M

    2013-07-11

    A Raman-pump frequency modulation scheme and an automated signal-processing algorithm are developed for improved collection of time-resolved femtosecond stimulated Raman spectra. Together, these two advancements remove the broad background signals endemic to FSRS measurements and retrieve signals with high sensitivity. We apply this frequency-modulated femtosecond stimulated Raman spectroscopy (FM-FSRS) to the characterization of ultrafast energy transport in a copolymer comprised of polystyrene linked oligo(phenylene-ethynylene) donor and thiophene-benzothiadiazole acceptor chromophores. After photoexcitation of the donor, ultrafast energy transfer is monitored by the decay of donor vibrational modes and simultaneous growth of acceptor modes. The FM-FSRS method shows clear advantages in signal-to-noise levels, mitigation of artifact features, and ease of data processing over the conventional FSRS technique.

  10. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.

    PubMed

    Li, Jian-Feng; Zhang, Yue-Jiao; Ding, Song-Yuan; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2017-03-08

    Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.

  11. Probing single cells of purple sulfur bacteria with Raman spectroscopy: carotenoids and elemental sulfur.

    PubMed

    Oren, Aharon; Mana, Lily; Jehlička, Jan

    2015-03-01

    We explored the use of Raman spectroscopy to simultaneously monitor the presence of different biomarkers (carotenoids, elemental sulfur) within single cells of the purple sulfur photosynthetic bacteria Allochromatium vinosum and A. warmingii. Raman microspectrometry using excitation at 532 nm allowed the detection of different carotenoids. Raman signals of elemental sulfur appeared soon after feeding starved cells with sulfide. Raman spectroscopy is thus a convenient and sensitive technique to qualitatively and semiquantitatively assess the presence of different compounds of interest within single bacterial cells.

  12. Classification and identification of pigmented cocci bacteria relevant to the soil environment via Raman spectroscopy.

    PubMed

    Kumar, Vinay; Kampe, Bernd; Rösch, Petra; Popp, Jürgen

    2015-12-01

    A soil habitat consists of a significant number of bacteria that cannot be cultivated by conventional means, thereby posing obvious difficulties in their classification and identification. This difficulty necessitates the need for advanced techniques wherein a well-compiled biomolecular database consisting of the already cultivable bacteria can be used as a reference in an attempt to link the noncultivable bacteria to their closest phylogenetic groups. Raman spectroscopy has been successfully applied to taxonomic studies of many systems like bacteria, fungi, and plants relying on spectral differences contributed by the variation in their overall biomolecular composition. However, these spectral differences can be obscured due to Raman signatures from photosensitive microbial pigments like carotenoids that show enormous variation in signal intensity hindering taxonomic investigations. In this study, we have applied laser-induced photobleaching to expel the carotenoid signatures from pigmented cocci bacteria. Using this method, we have investigated 12 species of pigmented bacteria abundant in soil habitats belonging to three genera mainly Micrococcus, Deinococcus, and Kocuria based on their Raman spectra with the assistance of a chemometric tool known as the radial kernel support vector machine (SVM). Our results demonstrate the potential of Raman spectroscopy as a minimally invasive taxonomic tool to identify pigmented cocci soil bacteria at a single-cell level.

  13. Reductive unfolding of serum albumins uncovered by Raman spectroscopy.

    PubMed

    David, Catalina; Foley, Sarah; Mavon, Christophe; Enescu, Mironel

    2008-07-01

    The reductive unfolding of bovine serum albumin (BSA) and human serum albumin (HSA) induced by dithiothreitol (DTT) is investigated using Raman spectroscopy. The resolution of the S-S Raman band into both protein and oxidized DTT contributions provides a reliable basis for directly monitoring the S-S bridge exchange reaction. The related changes in the protein secondary structure are identified by analyzing the protein amide I Raman band. For the reduction of one S-S bridge of BSA, a mean Gibbs free energy of -7 kJ mol(-1) is derived by studying the reaction equilibrium. The corresponding value for the HSA S-S bridge reduction is -2 kJ mol(-1). The reaction kinetics observed via the S-S or amide I Raman bands are identical giving a reaction rate constant of (1.02 +/- 0.11) M(-1) s(-1) for BSA. The contribution of the conformational Gibbs free energy to the overall Gibbs free energy of reaction is further estimated by combining experimental data with ab initio calculations.

  14. New techniques in antibiotic discovery and resistance: Raman spectroscopy.

    PubMed

    Carey, Paul R; Heidari-Torkabadi, Hossein

    2015-09-01

    Raman spectroscopy can play a role in both antibiotic discovery and understanding the molecular basis of resistance. A major challenge in drug development is to measure the population of the drug molecules inside a cell line and to follow the chemistry of their reactions with intracellular targets. Recently, a protocol based on Raman microscopy has been developed that achieves these goals. Drug candidates are soaked into live bacterial cells and subsequently the cells are frozen and freeze-dried. The samples yield exemplary (nonresonance) Raman data that provide a measure of the number of drug molecules within each cell, as well as details of drug-target interactions. Results are discussed for two classes of compounds inhibiting either β-lactamase or dihydrofolate reductase enzymes in a number of Gram-positive or Gram-negative cell lines. The advantages of the present protocol are that it does not use labels and it can measure the kinetics of cell-compound uptake on the time scale of minutes. Spectroscopic interpretation is supported by in vitro Raman experiments. Studying drug-target interactions in aqueous solution and in single crystals can provide molecular level insights into drug-target interactions, which, in turn, provide the underpinnings of our understanding of data from bacterial cells. Thus, the applicability of X-ray crystallographic-derived data to in-cell chemistry can be tested. © 2015 New York Academy of Sciences.

  15. Genomic DNA characterization of pork spleen by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guzmán-Embús, D. A.; Orrego Cardozo, M.; Vargas-Hernández, C.

    2013-11-01

    In this paper, the study of Raman signal enhancement due to interaction between ZnO rods and pork spleen DNA is reported. ZnO