Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University
NASA Astrophysics Data System (ADS)
Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong
2012-06-01
A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.
Ultralong fibre-optic distributed Raman temperature sensor
NASA Astrophysics Data System (ADS)
Kuznetsov, A. G.; Kharenko, D. S.; Babin, S. A.; Tsydenzhapov, I. B.; Shelemba, I. S.
2017-11-01
We have demonstrated an ultralong (up to 85 km in length) all-fibre Raman temperature sensor which utilises SMF-28 standard single-mode telecom fibre and a 1.63-μm probe signal source. The probe signal from the laser diode is amplified by a Raman fibre amplifier. The temperature along a 85-km-long fibre line has been measured with an accuracy of 8°C and spatial resolution of 800 m or better.
Taki, M; Signorini, A; Oton, C J; Nannipieri, T; Di Pasquale, F
2013-10-15
We experimentally demonstrate the use of cyclic pulse coding for distributed strain and temperature measurements in hybrid Raman/Brillouin optical time-domain analysis (BOTDA) optical fiber sensors. The highly integrated proposed solution effectively addresses the strain/temperature cross-sensitivity issue affecting standard BOTDA sensors, allowing for simultaneous meter-scale strain and temperature measurements over 10 km of standard single mode fiber using a single narrowband laser source only.
NASA Astrophysics Data System (ADS)
Gorshkov, B. G.; Taranov, M. A.
2018-02-01
A new type of sensor for simultaneous measurements of strain and temperature changes in an optical fibre is proposed. Its operation builds on the use of Raman optical time-domain reflectometry and wavelength-tunable quasi-monochromatic Rayleigh reflectometry implemented using a microelectromechanical filter (MEMS). The sensor configuration includes independent Raman and Rayleigh scattering channels. Our experiments have demonstrated that, at a sensing fibre length near 8 km, spatial resolution of 1-2 m, and measurement time of 10 min, the noise level (standard deviation) is 1.1 μɛ (μm m-1) for the measured tension change (at small temperature deviations) and 0.04 °C for the measured temperature change, which allows for effective sensing of mechanical and temperature influences with improved accuracy.
NASA Astrophysics Data System (ADS)
Soto, M. A.; Sahu, P. K.; Faralli, S.; Sacchi, G.; Bolognini, G.; Di Pasquale, F.; Nebendahl, B.; Rueck, C.
2007-07-01
The performance of distributed temperature sensor systems based on spontaneous Raman scattering and coded OTDR are investigated. The evaluated DTS system, which is based on correlation coding, uses graded-index multimode fibers, operates over short-to-medium distances (up to 8 km) with high spatial and temperature resolutions (better than 1 m and 0.3 K at 4 km distance with 10 min measuring time) and high repeatability even throughout a wide temperature range.
Schmidt, Christian; Chou, I-Ming; Dubessy, Jean; Caumon, Marie-Camille; Pérez, Fernando Rull
2012-01-01
In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ⬚~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.
Schmidt, Christian; Chou, I-Ming; Dubessy, J.; Caumon, M.-C.; Rull, F.
2012-01-01
In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.
Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan
2013-04-01
Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.
Field test of optical and electrical fire detectors in simulated fire scenes in a cable tunnel
NASA Astrophysics Data System (ADS)
Fan, Dian; Ding, Hongjun; Wang, Dorothy Y.; Jiang, Desheng
2014-06-01
This paper presents the testing results of three types of fire detectors: electrical heat sensing cable, optical fiber Raman temperature sensing detector, and optical fiber Bragg grating (FBG) temperature sensing detector, in two simulated fire scenes in a cable tunnel. In the small-scale fire with limited thermal radiation and no flame, the fire alarm only comes from the heat sensors which directly contact with the heat source. In the large-scale fire with about 5 °C/min temperature rising speed within a 3-m span, the fire alarm response time of the fiber Raman sensor and FBG sensors was about 30 seconds. The test results can be further used for formulating regulation for early fire detection in cable tunnels.
Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon
NASA Astrophysics Data System (ADS)
Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-03-01
Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.
Fiber optic sensors; Proceedings of the Meeting, Cannes, France, November 26, 27, 1985
NASA Technical Reports Server (NTRS)
Arditty, Herve J. (Editor); Jeunhomme, Luc B. (Editor)
1986-01-01
The conference presents papers on distributed sensors and sensor networks, signal processing and detection techniques, temperature measurements, chemical sensors, and the measurement of pressure, strain, and displacements. Particular attention is given to optical fiber distributed sensors and sensor networks, tactile sensing in robotics using an optical network and Z-plane techniques, and a spontaneous Raman temperature sensor. Other topics include coherence in optical fiber gyroscopes, a high bandwidth two-phase flow void fraction fiber optic sensor, and a fiber-optic dark-field microbend sensor.
Moody, J. D.; Strozzi, D. J.; Divol, L.; ...
2013-07-09
Stimulated Raman backscatter is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching stimulated Raman backscatter between a shot reducing outer versus a shot reducing inner power we infer that about half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. Furthermore, this is the first instantaneous nondisruptive measure of power transfer in an indirect drive NIF experiment using optical measurements.
NASA Astrophysics Data System (ADS)
Kuznetsov, A. G.; Babin, Sergei A.; Shelemba, Ivan S.
2009-11-01
We demonstrate a Raman-based all-fibre temperature sensor utilising a pulsed erbium fibre laser. The sensor is made of a standard single-mode telecom fibre, SMF-28, and includes a number of directional couplers as band-pass filters. The temperature profile along a 7-km fibreoptic line is measured with an accuracy of 2oC and a spatial resolution of 10 m. In data processing, we take into account the difference in attenuation between the spectral components of the backscatter signal.
Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challener, William A
2014-12-04
The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber,more » and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.« less
Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor.
Zhao, Yuxi; Song, Jeong-Gyu; Ryu, Gyeong Hee; Ko, Kyung Yong; Woo, Whang Je; Kim, Youngjun; Kim, Donghyun; Lim, Jun Hyung; Lee, Sunhee; Lee, Zonghoon; Park, Jusang; Kim, Hyungjun
2018-05-08
The efficient synthesis of two-dimensional molybdenum disulfide (2D MoS2) at low temperatures is essential for use in flexible devices. In this study, 2D MoS2 was grown directly at a low temperature of 200 °C on both hard (SiO2) and soft substrates (polyimide (PI)) using chemical vapor deposition (CVD) with Mo(CO)6 and H2S. We investigated the effect of the growth temperature and Mo concentration on the layered growth by Raman spectroscopy and microscopy. 2D MoS2 was grown by using low Mo concentration at a low temperature. Through optical microscopy, Raman spectroscopy, X-ray photoemission spectroscopy, photoluminescence, and transmission electron microscopy measurements, MoS2 produced by low-temperature CVD was determined to possess a layered structure with good uniformity, stoichiometry, and a controllable number of layers. Furthermore, we demonstrated the realization of a 2D MoS2-based flexible gas sensor on a PI substrate without any transfer processes, with competitive sensor performance and mechanical durability at room temperature. This fabrication process has potential for burgeoning flexible and wearable nanotechnology applications.
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
NASA Astrophysics Data System (ADS)
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-02-01
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
Hwang, Dusun; Yoon, Dong-Jin; Kwon, Il-Bum; Seo, Dae-Cheol; Chung, Youngjoo
2010-05-10
A novel method for auto-correction of fiber optic distributed temperature sensor using anti-Stokes Raman back-scattering and its reflected signal is presented. This method processes two parts of measured signal. One part is the normal back scattered anti-Stokes signal and the other part is the reflected signal which eliminate not only the effect of local losses due to the micro-bending or damages on fiber but also the differential attenuation. Because the beams of the same wavelength are used to cancel out the local variance in transmission medium there is no differential attenuation inherently. The auto correction concept was verified by the bending experiment on different bending points. (c) 2010 Optical Society of America.
Material for surface-enhanced Raman spectroscopy, and SER sensors and method for preparing same
NASA Technical Reports Server (NTRS)
Farquharson, Stuart (Inventor); Nelson, Chad (Inventor); Lee, Yuan-Hsiang (Inventor)
2003-01-01
Metal-doped sol-gel materials, suitable for use as sensors for surface-enhanced Raman spectroscopic analysis for trace chemical detection, are produced by effecting gelation and solvent removal of a doped sol-gel under mild temperature conditions. At least in certain instances reaction and drying will desirably be effected in an oxygen-starved environment. The metal of the sol-gel material functions, when irradiated, to produce a plasmon field for interaction with molecules of an analyte in contact therewith, increasing by orders of magnitude Raman photons that are generate by excitation radiation, and the method allows matching of the metal and metal particle size to a wavelength of light (or incident radiation, e.g., laser radiation) to generate surface plasmons. The porosity of the sol-gel material dramatically increases the surface area, and thereby the amount of metal exposed for analyte interaction. The sensors provided may be in the form of glass vials, fiber optics, multi-well micro-sample plates, etc., having surface coatings of the doped sol-gel material, to provide sampling systems for use in a Raman instrument.
NASA Astrophysics Data System (ADS)
Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.
2015-10-01
Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.
Experimental study of low-cost fiber optic distributed temperature sensor system performance
NASA Astrophysics Data System (ADS)
Dashkov, Michael V.; Zharkov, Alexander D.
2016-03-01
The distributed control of temperature is an actual task for various application such as oil & gas fields, high-voltage power lines, fire alarm systems etc. The most perspective are optical fiber distributed temperature sensors (DTS). They have advantages on accuracy, resolution and range, but have a high cost. Nevertheless, for some application the accuracy of measurement and localization aren't so important as cost. The results of an experimental study of low-cost Raman based DTS based on standard OTDR are represented.
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo
2015-02-02
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in ordermore » to evaluate their potential use as temperature sensors for acoustic phonons.« less
Elashnikov, R; Mares, D; Podzimek, T; Švorčík, V; Lyutakov, O
2017-08-07
A smart plasmonic sensor, comprising a layer of a stimuli-responsive polymer sandwiched between two gold layers, is reported. As a stimuli-responsive material, a monolayer of poly(N-isopropylacrylamide) (PNIPAm) crosslinked globules is used. A quasi-periodic structure of the top gold layer facilitates efficient excitation and serves as a support for plasmon excitation and propagation. The intermediate layer of PNIPAm efficiently entraps targeted molecules from solutions. The sensor structure was optimized for efficient light focusing in the "active" PNIPAm layer. The optimization was based on the time-resolved finite-element simulations, which take into account the thickness of gold layers, size of PNIPAm globules and Raman excitation wavelength (780 nm). The prepared structures were characterized using SEM, AFM, UV-Vis refractometry and goniometry. Additional AFM scans were performed in water at two temperatures corresponding to the collapsed and swollen PNIPAm states. The Raman measurements demonstrate a high detection limit and perfect reproducibility of the Raman scattering signal for the prepared sensor. In addition, the use of created SERS structures for the detection of relevant molecules in the medical, biological and safety fields was demonstrated.
Pawlak, Ryszard; Lebioda, Marcin; Rymaszewski, Jacek; Szymanski, Witold; Kolodziejczyk, Lukasz; Kula, Piotr
2016-01-01
Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common −65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications—superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor). PMID:28036036
Pawlak, Ryszard; Lebioda, Marcin; Rymaszewski, Jacek; Szymanski, Witold; Kolodziejczyk, Lukasz; Kula, Piotr
2016-12-28
Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common -65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications-superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor).
Chelliah, Pandian; Murgesan, Kasinathan; Samvel, Sosamma; Chelamchala, Babu Rao; Tammana, Jayakumar; Nagarajan, Murali; Raj, Baldev
2010-07-10
Optical-fiber-based sensors have inherent advantages, such as immunity to electromagnetic interference, compared to the conventional sensors. Distributed optical fiber sensor (DOFS) systems, such as Raman and Brillouin distributed temperature sensors are used for leak detection. The inherent noise of fiber-based systems leads to occasional false alarms. In this paper, a methodology is proposed to overcome this. This uses a looped back fiber mode in DOFS and voting logic is employed to considerably reduce the false alarm rate.
Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection.
Lee, Soo-Keun; Chang, Daeic; Kim, Sang Wook
2014-03-15
Carbon nanoflake (CNFL) was obtained from graphite pencil by using the electrochemical method and the CNFL/SnO2 composite material assessed its potential as an ammonia gas sensor. A thin film resistive gas sensor using the composite material was manufactured by the drop casting method, and the sensor was evaluated to test in various ammonia concentrations and operating temperatures. Physical and chemical characteristics of the composite material were assessed using SEM, TEM, SAED, EDS and Raman spectroscopy. The composite material having 10% of SnO2 showed 3 times higher sensor response and better repeatability than the gas sensor using pristine SnO2 nano-particle at the optimal temperature of 350°C. Copyright © 2013 Elsevier B.V. All rights reserved.
Real-time Raman spectroscopy of optically trapped living cells and organelles
NASA Astrophysics Data System (ADS)
Xie, Changan; Goodman, Charles; Dinno, Mumtaz A.; Li, Yong-Qing
2004-12-01
We report on real-time Raman spectroscopic studies of optically trapped living cells and organelles using an inverted confocal laser-tweezers-Raman-spectroscopy (LTRS) system. The LTRS system was used to hold a single living cell in a physiological solution or to hold a functional organelle within a living cell and consequently measured its Raman spectra. We have measured the changes in Raman spectra of a trapped yeast cell as the function of the temperature of the bathing solution and studied the irreversible cell degeneration during the heat denaturation. In addition, we measured the in-vitro Raman spectra of the nuclei within living pine cells and B. sporeformer, Strep. salivarius, and E. coli bacteria suspended in solution and showed the possibility of using LTRS system as a sensor for rapid identification of microbes in a fluid.
High-resolution distributed temperature sensing with the multiphoton-timing technique
NASA Astrophysics Data System (ADS)
Höbel, M.; Ricka, J.; Wüthrich, M.; Binkert, Th.
1995-06-01
We report on a multiphoton-timing distributed temperature sensor (DTS) based on the concept of distributed anti-Stokes Raman thermometry. The sensor combines the advantage of very high spatial resolution (40 cm) with moderate measurement times. In 5 min it is possible to determine the temperature of as many as 4000 points along an optical fiber with an accuracy Delta T less than 2 deg C. The new feature of the DTS system is the combination of a fast single-photon avalanche diode with specially designed real-time signal-processing electronics. We discuss various parameters that affect the operation of analog and photon-timing DTS systems. Particular emphasis is put on the consequences of the nonideal behavior of sensor components and the corresponding correction procedures.
Fiber optic sensors for nuclear power plant applications
NASA Astrophysics Data System (ADS)
Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana
2012-05-01
Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.
A New Probe to Change Curie Temperature of PbTiO3 Sensors
NASA Technical Reports Server (NTRS)
Katiyar, R. S.; Jinfang, Meng
1997-01-01
High temperature Raman spectra of nanocrystalline Pb(0.8)Ba(0.2)TiO3, Pb(0.8)Sr(0.2) TiO3, Pb(0.8)La(0.2)TiO3 and Pb(0.8)Ba(0.2)TiO3, have been measured, as a function of particle size. There appears respectively a distinct temperature-induced soft mode phase transition in every sample whose Curie temperature can be determined from the mean-field theory. The detailed Curie temperature shift in modified PbTi03 ceramics by Ba, Sr, La, and Zr, has also been investigated as a function of particle size. This study will favor preparations of high efficiency PbTi03 sensors with an adjustable Curie temperature.
Application of based on improved wavelet algorithm in fiber temperature sensor
NASA Astrophysics Data System (ADS)
Qi, Hui; Tang, Wenjuan
2018-03-01
It is crucial point that accurate temperature in distributed optical fiber temperature sensor. In order to solve the problem of temperature measurement error due to weak Raman scattering signal and strong noise in system, a new based on improved wavelet algorithm is presented. On the basis of the traditional modulus maxima wavelet algorithm, signal correlation is considered to improve the ability to capture signals and noise, meanwhile, combined with wavelet decomposition scale adaptive method to eliminate signal loss or noise not filtered due to mismatch scale. Superiority of algorithm filtering is compared with others by Matlab. At last, the 3km distributed optical fiber temperature sensing system is used for verification. Experimental results show that accuracy of temperature generally increased by 0.5233.
Zinc phthalocyanine nanowires based flexible sensor for room temperature Cl2 detection
NASA Astrophysics Data System (ADS)
Devi, Pooja; Saini, Rajan; Singh, Rajinder; Mahajan, A.; Bedi, R. K.; Aswal, D. K.; Debnath, A. K.
2018-04-01
We have fabricated highly sensitive and Cl2 selective flexible sensor by depositing solution processed zinc phthalocyanine nanowires onto the flexible PET substrate and studied its Cl2 sensing characteristics in Cl2 concentration range 5-1500 ppb. The flexible sensor has a minimum detection limit as low as 5 ppb of Cl2 and response as high as 550% within 10 seconds. Interestingly, the sensor exhibited enhanced and faster response kinetics under bending conditions. The gas sensing mechanism of sensor has been discussed on the basis of XPS and Raman spectroscopic studies which revealed that zinc ions were the preferred sites for Cl2 interactions.
Development of a fieldable rugged TATP surface-enhanced Raman spectroscopy sensor
NASA Astrophysics Data System (ADS)
Spencer, Kevin M.; Clauson, Susan L.; Sylvia, James M.
2011-06-01
Surface-enhanced Raman spectroscopy (SERS) has repeatedly been shown to be capable of single molecule detection in laboratory controlled environments. However, superior detection of desired compounds in complex situations requires optimization of factors in addition to sensitivity. For example, SERS sensors are metals with surface roughness in the nm scale. This metallic roughness scale may not adsorb the analyte of interest but instead cause a catalytic reaction unless stabilization is designed into the sensor interface. In addition, the SERS sensor needs to be engineered sensitive only to the desired analyte(s) or a small subset of analytes; detection of every analyte would saturate the sensor and make data interpretation untenable. Finally, the SERS sensor has to be a preferable adsorption site in passive sampling applications, whether vapor or liquid. In this paper, EIC Laboratories will discuss modifications to SERS sensors that increase the likelihood of detection of the analyte of interest. We will then demonstrate data collected for TATP, a compound that rapidly decomposes and is undetected on standard silver SERS sensors. With the modified SERS sensor, ROC curves for room temperature TATP vapor detection, detection of TATP in a non equilibrium vapor environment in 30 s, detection of TATP on a sensor exposed to a ventilation duct, and detection of TATP in the presence of fuel components were all created and will be presented herein.
Sharma, Bharat; Kim, Jung-Sik
2018-04-12
A low power, dual-gate field-effect transistor (FET) hydrogen gas sensor with graphene decorated Pd-Ag for hydrogen sensing applications was developed. The FET hydrogen sensor was integrated with a graphene-Pd-Ag-gate FET (GPA-FET) as hydrogen sensor coupled with Pt-gate FET as a reference sensor on a single sensor platform. The sensing gate electrode was modified with graphene by an e-spray technique followed by Pd-Ag DC/MF sputtering. Morphological and structural properties were studied by FESEM and Raman spectroscopy. FEM simulations were performed to confirm the uniform temperature control at the sensing gate electrode. The GPA-FET showed a high sensing response to hydrogen gas at the temperature of 25~254.5 °C. The as-proposed FET H 2 sensor showed the fast response time and recovery time of 16 s, 14 s, respectively at the operating temperature of 245 °C. The variation in drain current was positively related with increased working temperature and hydrogen concentration. The proposed dual-gate FET gas sensor in this study has potential applications in various fields, such as electronic noses and automobiles, owing to its low-power consumption, easy integration, good thermal stability and enhanced hydrogen sensing properties.
Optical fiber distributed temperature sensor in cardiological surgeries
NASA Astrophysics Data System (ADS)
Skapa, Jan; Látal, Jan; Penhaker, Marek; Koudelka, Petr; Hancek, František; Vasinek, Vladimír
2010-04-01
In those days a lot of cardiological surgeries is made every day. It is a matter of very significant importance keeping the temperature of the hearth low during the surgery because it decides whether the cells of the muscle will die or not. The hearth is cooled by the ice placed around the hearth muscle during the surgery and cooling liquid is injected into the hearth also. In these days the temperature is measured only in some points of the hearth using sensors based on the pH measurements. This article describes new method for measurement of temperature of the hearth muscle during the cardiological surgery. We use a multimode optical fiber and distributed temperature sensor (DTS) based on the stimulated Raman scattering in temperature measurements. This principle allows us to measure the temperature and to determine where the temperature changes during the surgery. Resolution in the temperature is about 0.1 degrees of Celsius. Resolution in length is about 1 meter. The resolution in length implies that the fiber must be wound to ensure the spatial resolution about 5 by 5 centimeters.
Penza, M; Rossi, R; Alvisi, M; Serra, E
2010-03-12
Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 degrees C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO(2), CH(4), H(2), NH(3), CO and NO(2) has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO(2) presence in the multicomponent mixture LFG. The NO(2) gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO(2) concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO(2) gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 degrees C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 microm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by providing minimal sub-ppm level detection, e.g., download up to 100 ppb NO(2), at the sensor temperature of 150 degrees C. The gas sensitivity of the CNT sensor array depends on operating temperature, showing a lower optimal temperature of maximum sensitivity for the metal-decorated CNT sensors compared to unmodified CNT sensors. Results indicate that the recovery mechanisms in the CNT chemiresistors can be altered by a rapid heating pulse from room temperature to about 110 degrees C. A comparison of the NO(2) gas sensitivity for the chemiresistors based on disorderly networked CNTs and vertically aligned CNTs is also reported. Cross-sensitivity towards relative humidity of the CNT sensors array is investigated. Finally, the sensing properties of the metal-decorated and vertically aligned CNT sensor arrays are promising to monitor gas events in the LFG for practical applications with low power consumption and moderate sensor temperature.
NASA Astrophysics Data System (ADS)
Gomer, Nathaniel R.; Gardner, Charles W.
2014-05-01
In order to combat the threat of emplaced explosives (land mines, etc.), ChemImage Sensor Systems (CISS) has developed a multi-sensor, robot mounted sensor capable of identification and confirmation of potential threats. The system, known as STARR (Shortwave-infrared Targeted Agile Raman Robot), utilizes shortwave infrared spectroscopy for the identification of potential threats, combined with a visible short-range standoff Raman hyperspectral imaging (HSI) system for material confirmation. The entire system is mounted onto a Talon UGV (Unmanned Ground Vehicle), giving the sensor an increased area search rate and reducing the risk of injury to the operator. The Raman HSI system utilizes a fiber array spectral translator (FAST) for the acquisition of high quality Raman chemical images, allowing for increased sensitivity and improved specificity. An overview of the design and operation of the system will be presented, along with initial detection results of the fusion sensor.
NASA Astrophysics Data System (ADS)
Kumar, Ramesh; Kaur, Amarjeet
2016-05-01
The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm-1 respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp2 hybridisation of carbon atoms at 1560 cm-1. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.
Laser remote sensing of an algal bloom in a freshwater reservoir
NASA Astrophysics Data System (ADS)
Grishin, M. Ya; Lednev, V. N.; Pershin, S. M.; Bunkin, A. F.; Kobylyanskiy, V. V.; Ermakov, S. A.; Kapustin, I. A.; Molkov, A. A.
2016-12-01
Laser remote sensing of an algal bloom in a freshwater reservoir on the Volga River in central Russia was carried out. The compact Raman lidar was installed on a small ship to probe the properties of the surface water layer in different typical regions of Gorky Water Reservoir. Elastic and Raman scattering as well as chlorophyll fluorescence were quantified, mapped and compared with data acquired by a commercial salinity, temperature and depth probe (STD probe) equipped with a blue-green algae sensor. Good correlation between lidar and STD measurements was established.
Design and measurement technique of surface-enhanced Raman scattering for detection of bisphenol A
NASA Astrophysics Data System (ADS)
Abu Bakar, Norhayati; Mat Salleh, Muhamad; Umar, Akrajas Ali; Shapter, Joseph George
2017-06-01
Surface-enhanced Raman scattering (SERS) is a highly sensitive measurement technique that provides Raman peaks at different Raman shift for different molecule structures. The SERS sensor is potentially used to detect food contamination and monitor environmental pollutants. A self-developed SERS system for specific analysis with low development cost is a challenging issue. This study attempts to develop a simple SERS sensor system for detection of bisphenol A (BPA) molecule using SERS substrate of silver nanoplate film. A SERS sensor system was developed, consisting of a light source to excite analyte molecules, Inphotonic Raman probe, sensor chamber and spectrophotometer as an analyser system. A duplex fibre optic is used to transmit light from the source to the probe and from the probe to the spectrophotometer. For SERS measurement, BPA detection was done by comparing the Raman signal spectra of the BPA on the quartz substrate and BPA on the silver nanoplate film. This SERS sensor successfully sensed BPA with SERS enhancement factor (EF) 5.55 × 103 and a detection limit of BPA concentration at 1 mM.
Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Pearce, Stuart J.; Pollard, Michael E.; Oo, SweZin; Chen, Ruiqi; Kalsi, Sumit; Charlton, Martin D. B.
2014-01-01
Limitations of current sensors include large dimensions, sometimes limited sensitivity and inherent single-parameter measurement capability. Surface-enhanced Raman spectroscopy can be utilized for environment and pharmaceutical applications with the intensity of the Raman scattering enhanced by a factor of 10. By fabricating and characterizing an integrated optical waveguide beneath a nanostructured precious metal coated surface a new surface-enhanced Raman spectroscopy sensing arrangement can be achieved. Nanostructured sensors can provide both multiparameter and high-resolution sensing. Using the slab waveguide core to interrogate the nanostructures at the base allows for the emission to reach discrete sensing areas effectively and should provide ideal parameters for maximum Raman interactions. Thin slab waveguide films of silicon oxynitride were etched and gold coated to create localized nanostructured sensing areas of various pitch, diameter, and shape. These were interrogated using a Ti:Sapphire laser tuned to 785-nm end coupled into the slab waveguide. The nanostructured sensors vertically projected a Raman signal, which was used to actively detect a thin layer of benzyl mercaptan attached to the sensors.
Improved Sensitivity Spontaneous Raman Scattering Multi-Gas Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buric, Michael P.; Chen, Kevin P.; Falk, Joel
2009-01-01
We report a backward-wave spontaneous-Raman multi-gas sensor employing a hollow-core photonic-bandgap-fiber to contain gasses and increase interaction length. Silica Raman noise and detection speed are reduced using a digital spatial filter and a cladding seal.
Morán-Lázaro, Juan Pablo; Guillen-López, Erwin Said; López-Urias, Florentino; Muñoz-Sandoval, Emilio; Blanco-Alonso, Oscar; Guillén-Bonilla, Héctor; Guillén-Bonilla, Alex; Rodríguez-Betancourtt, Verónica María; Sanchez-Tizapa, Marciano; Olvera-Amador, María de la Luz
2018-02-27
Spinel-type ZnMn₂O₄ nanoparticles were synthesized via a simple and inexpensive microwave-assisted colloidal route. Structural studies by X-ray diffraction showed that a spinel crystal phase of ZnMn₂O₄ was obtained at a calcination temperature of 500 °C, which was confirmed by Raman and UV-vis characterizations. Spinel-type ZnMn₂O₄ nanoparticles with a size of 41 nm were identified by transmission electron microscopy. Pellet-type sensors were fabricated using ZnMn₂O₄ nanoparticles as sensing material. Sensing measurements were performed by exposing the sensor to different concentrations of propane or carbon monoxide at temperatures in the range from 100 to 300 °C. Measurements performed at an operating temperature of 300 °C revealed a good response to 500 ppm of propane and 300 ppm of carbon monoxide. Hence, ZnMn₂O₄ nanoparticles possess a promising potential in the gas sensors field.
NASA Technical Reports Server (NTRS)
Evans, Keith D.; Demoz, Belay B.; Cadirola, Martin P.; Melfi, S. H.; Whiteman, David N.; Schwemmer, Geary K.; Starr, David OC.; Schmidlin, F. J.; Feltz, Wayne
2000-01-01
The NAcA/Goddard Space Flight Center Scanning Raman Lidar has made measurements of water vapor and aerosols for almost ten years. Calibration of the water vapor data has typically been performed by comparison with another water vapor sensor such as radiosondes. We present a new method for water vapor calibration that only requires low clouds, and surface pressure and temperature measurements. A sensitivity study was performed and the cloud base algorithm agrees with the radiosonde calibration to within 10- 15%. Knowledge of the true atmospheric lapse rate is required to obtain more accurate cloud base temperatures. Analysis of water vapor and aerosol measurements made in the vicinity of Hurricane Bonnie are discussed.
Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering
Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.
2007-11-27
Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ramesh, E-mail: rameshphysicsdu@gmail.com; Kaur, Amarjeet, E-mail: amarkaur@physics.du.ac.in
The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm{sup −1} respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp{sup 2} hybridisation of carbon atoms at 1560 cm{sup −1}. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such asmore » methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.« less
NASA Astrophysics Data System (ADS)
Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi
2017-04-01
This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.
Few-mode optical fiber based simultaneously distributed curvature and temperature sensing.
Wu, Hao; Tang, Ming; Wang, Meng; Zhao, Can; Zhao, Zhiyong; Wang, Ruoxu; Liao, Ruolin; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-05-29
The few-mode fiber (FMF) based Brillouin sensing operated in quasi-single mode (QSM) has been reported to achieve the distributed curvature measurement by monitoring the bend-induced strain variation. However, its practicality is limited by the inherent temperature-strain cross-sensitivity of Brillouin sensors. Here we proposed and experimentally demonstrated an approach for simultaneously distributed curvature and temperature sensing, which exploits a hybrid QSM operated Raman-Brillouin system in FMFs. Thanks to the larger spot size of the fundamental mode in the FMF, the Brillouin frequency shift change of the FMF is used for curvature estimation while the temperature variation is alleviated through Raman signals with the enhanced signal-to-noise ratio (SNR). Within 2 minutes measuring time, a 1.5 m spatial resolution is achieved along a 2 km FMF. The worst resolution of the square of fiber curvature is 0.333 cm -2 while the temperature resolution is 1.301 °C at the end of fiber.
Growth of single wall carbon nanotubes using PECVD technique: An efficient chemiresistor gas sensor
NASA Astrophysics Data System (ADS)
Lone, Mohd Yaseen; Kumar, Avshish; Husain, Samina; Zulfequar, M.; Harsh; Husain, Mushahid
2017-03-01
In this work, the uniform and vertically aligned single wall carbon nanotubes (SWCNTs) have been grown on Iron (Fe) deposited Silicon (Si) substrate by plasma enhanced chemical vapor deposition (PECVD) technique at very low temperature of 550 °C. The as-grown samples of SWCNTS were characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM) and Raman spectrometer. SWCNT based chemiresistor gas sensing device was fabricated by making the proper gold contacts on the as-grown SWCNTs. The electrical conductance and sensor response of grown SWCNTs have been investigated. The fabricated SWCNT sensor was exposed to ammonia (NH3) gas at 200 ppm in a self assembled apparatus. The sensor response was measured at room temperature which was discussed in terms of adsorption of NH3 gas molecules on the surface of SWCNTs. The achieved results are used to develope a miniaturized gas sensor device for monitoring and control of environment pollutants.
NASA Astrophysics Data System (ADS)
Schmidt, Heinar; Sowoidnich, Kay; Maiwald, Martin; Sumpf, Bernd; Kronfeldt, Heinz-Detlef
2009-05-01
A hand-held Raman sensor head was developed for the in-situ characterization of meat quality. As light source, a microsystem based external cavity diode laser module (ECDL) emitting at 671 nm was integrated in the sensor head and attached to a miniaturized optical bench which contains lens optics for excitation and signal collection as well as a Raman filter stage for Rayleigh rejection. The signal is transported with an optical fiber to the detection unit which was in the initial phase a laboratory spectrometer with CCD detector. All elements of the ECDL are aligned on a micro optical bench with 13 x 4 mm2 footprint. The wavelength stability is provided by a reflection Bragg grating and the laser has an optical power of up to 200 mW. However, for the Raman measurements of meat only 35 mW are needed to obtain Raman spectra within 1 - 5 seconds. Short measuring times are essential for the hand-held device. The laser and the sensor head are characterized in terms of stability and performance for in-situ Raman investigations. The function is demonstrated in a series of measurements with raw and packaged pork meat as samples. The suitability of the Raman sensor head for the quality control of meat and other products will be discussed.
SERS diagnostic platforms, methods and systems microarrays, biosensors and biochips
Vo-Dinh, Tuan [Knoxville, TN
2007-09-11
A Raman integrated sensor system for the detection of targets including biotargets includes at least one sampling platform, at least one receptor probe disposed on the sampling platform, and an integrated circuit detector system communicably connected to the receptor. The sampling platform is preferably a Raman active surface-enhanced scattering (SERS) platform, wherein the Raman sensor is a SERS sensor. The receptors can include at least one protein receptor and at least one nucleic acid receptor.
Design and build a compact Raman sensor for identification of chemical composition
NASA Astrophysics Data System (ADS)
Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Sandford, Stephen P.; Elsayed-Ali, Hani
2008-04-01
A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified CCD camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials.
Design and Build a Compact Raman Sensor for Identification of Chemical Composition
NASA Technical Reports Server (NTRS)
Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Sandford, Stephen P.; Elsayed-Ali, Hani
2008-01-01
A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified charge-coupled devices (CCD) camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials.
NASA Technical Reports Server (NTRS)
Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.
2012-01-01
The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.
Recent progress in distributed fiber optic sensors.
Bao, Xiaoyi; Chen, Liang
2012-01-01
Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.
Recent Progress in Distributed Fiber Optic Sensors
Bao, Xiaoyi; Chen, Liang
2012-01-01
Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices. PMID:23012508
Jiang, Chuanxing; Yin, Nailiang; Yao, Yao; Shaymurat, Talgar; Zhou, Xiaoyan
2017-01-01
This paper demonstrates an acetylene gas sensor based on an Ag-decorated tin dioxide/reduced graphene oxide (Ag–SnO2/rGO) nanocomposite film, prepared by layer-by-layer (LbL) self-assembly technology. The as-prepared Ag–SnO2/rGO nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectrum. The acetylene sensing properties were investigated using different working temperatures and gas concentrations. An optimal temperature of 90 °C was determined, and the Ag–SnO2/rGO nanocomposite sensor exhibited excellent sensing behaviors towards acetylene, in terms of response, repeatability, stability and response/recovery characteristics, which were superior to the pure SnO2 and SnO2/rGO film sensors. The sensing mechanism of the Ag–SnO2/rGO sensor was attributed to the synergistic effect of the ternary nanomaterials, and the heterojunctions created at the interfaces between SnO2 and rGO. This work indicates that the Ag–SnO2/rGO nanocomposite is a good candidate for constructing a low-temperature acetylene sensor. PMID:28927021
A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics.
Ashok, Praveen C; Giardini, Mario E; Dholakia, Kishan; Sibbett, Wilson
2014-01-01
We report the development of a fiber-based Raman sensor to be used in tumour margin identification during endoluminal robotic surgery. Although this is a generic platform, the sensor we describe was adapted for the ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery) robotic platform. On such a platform, the Raman sensor is intended to identify ambiguous tissue margins during robot-assisted surgeries. To maintain sterility of the probe during surgical intervention, a disposable sleeve was specially designed. A straightforward user-compatible interface was implemented where a supervised multivariate classification algorithm was used to classify different tissue types based on specific Raman fingerprints so that it could be used without prior knowledge of spectroscopic data analysis. The protocol avoids inter-patient variability in data and the sensor system is not restricted for use in the classification of a particular tissue type. Representative tissue classification assessments were performed using this system on excised tissue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selective chloroform sensor using thiol functionalized reduced graphene oxide at room temperature
NASA Astrophysics Data System (ADS)
Midya, Anupam; Mukherjee, Subhrajit; Roy, Shreyasee; Santra, Sumita; Manna, Nilotpal; Ray, Samit K.
2018-02-01
This paper presents a highly selective chloroform sensor using functionalised reduced graphene oxide (RGO) as a sensing layer. Thiol group is covalently attached on the basal plan of RGO film by a simple one-step aryl diazonium chemistry to improve its selectivity. Several spectroscopic techniques like X-ray photoelectron, Raman and Fourier transform infrared spectroscopy confirm successful thiol functionalization of RGO. Finally, the fabricated chemiresistor type sensor is exposed to chloroform in the concentration range 200-800 ppm (parts per million). The sensor shows a 4.3% of response towards 800 ppm chloroform. The selectivity of the sensor is analyzed using various volatile organic compounds as well. The devices show enhanced response and faster recovery attributed to the physiosorption of chloroform onto thiol functionalized graphene making them attractive for 2D materials based sensing applications.
A new generation of high temperature oxygen sensors
NASA Astrophysics Data System (ADS)
Spirig, John V.
Potentiometric internal reference oxygen sensors were created by embedding a metal/metal oxide mixture within an yttria-stabilized zirconia oxygen-conducting ceramic superstructure. A static internal reference oxygen pressure was produced inside the reference chamber of the sensor at the target application temperature. The metal/metal oxide-containing reference chamber was sealed within the stabilized zirconia ceramic superstructure by a high pressure (3-6 MPa) and high temperature (1200-1300°C) bonding method that initiated grain boundary sliding between the ceramic components. The bonding method created ceramic joints that were pore-free and indistinguishable from the bulk ceramic. The oxygen sensor presented in this study is capable of long-term operation and is resistant to the strains of thermal cycling. The temperature ceiling of this device was limited to 800°C by the glass used to seal the sensor package where the lead wire breached the inner-to-outer environment. Were it possible to create a gas-tight joint between an electron carrier and stabilized zirconia, additional sealing agents would not be necessary during sensor construction. In order to enable this enhancement it is necessary to make a gas-tight joint between two dissimilar materials: a ceramic electrolyte and an efficient ceramic electron carrier. Aluminum-doped lanthanum strontium manganese oxide, La0.77Sr 0.20Al0.9Mn0.1O3, was joined to stabilized tetragonal zirconia polymorph YTZP (ZrO2)0.97(Y 2O3)0.03 by a uniaxial stress (3-6 MPa) and high-temperature (1250-1350°C) bonding method that initiated grain-boundary sliding between the ceramic components. An analysis of reactivity between different Al-dopings of LaxSr1-xAlyMn1-yO3 indicated that the Al:Mn ratio must be high to diminish the reaction between LaxSr1-xAlyMn1-yO3 and stabilized zirconia. While the resulting compound, La0.77Sr 0.20Al0.9Mn0.1O3, was an inefficient electron carrier, the successful bond between an aluminum-doped manganate perovskite and stabilized zirconia, served as a model system for joining electron carriers to an electrolyte without the creation of undesirable interlayers. Electron microscopy confirmed that intergranular penetration occurred at the joining plane leading to effective bonding between the two dissimilar ceramics. Raman spectral maps of the joining planes obtained with 2-D Raman microscopy demonstrated the absence of any new phases at the interface. A conducting perovskite with a lower Al:Mn ratio, but compensating A-site deficiency, La0.69Sr0.18Al0.45Mn0.55 O3, was joined to YTZP at 1250°C. X-ray diffraction was used to gain structural information on this A-site deficient perovskite. Room temperature resistivity measurements of the electroceramics were performed on joined and unjoined samples to determine the extent to which joining altered electron conduction within the LSAM. Electron microscopy confirmed that intergranular penetration occurred at the joining plane leading to effective bonding between the two dissimilar ceramics. Raman spectral maps of the joined samples demonstrated that joining temperature determines the extent to which interlayers begin to form in the joining plane. X-ray microdiffraction of the joining planes confirmed a threshold temperature for operation of a device created from these materials at 1350°C. A new material with diminished reactivity and high conductivity is presented to serve as a replacement for metal electrodes. In this manner, the model for a new generation of high-temperature oxygen sensors with internal references and ceramic wires is elucidated.
Plasmonic nanocarrier grid-enhanced Raman sensor for studies of anticancer drug delivery.
Kurzątkowska, Katarzyna; Santiago, Ty; Hepel, Maria
2017-05-15
Targeted drug delivery systems using nanoparticle nanocarriers offer remarkable promise for cancer therapy by discriminating against devastating cytotoxicity of chemotherapeutic drugs to healthy cells. To aid in the development of new drug nanocarriers, we propose a novel plasmonic nanocarrier grid-enhanced Raman sensor which can be applied for studies and testing of drug loading onto the nanocarriers, attachment of targeting ligands, dynamics of drug release, assessment of nanocarrier stability in biological environment, and general capabilities of the nanocarrier. The plasmonic nanogrid sensor offers strong Raman enhancement due to the overlapping plasmonic fields emanating from the nearest-neighbor gold nanoparticle nanocarriers and creating the enhancement "hot spots". The sensor has been tested for immobilization of an anticancer drug gemcitabine (2',2'-difluoro-2'-deoxycytidine, GEM) which is used in treatment of pancreatic tumors. The drawbacks of currently applied treatment include high systemic toxicity, rapid drug decay, and low efficacy (ca. 20%). Therefore, the development of a targeted GEM delivery system is highly desired. We have demonstrated that the proposed nanocarrier SERS sensor can be utilized to investigate attachment of targeting ligands to nanocarriers (attachment of folic acid ligand recognized by folate receptors of cancer cells is described). Further testing of the nanocarrier SERS sensor involved drug release induced by lowering pH and increasing GSH levels, both occurring in cancer cells. The proposed sensor can be utilized for a variety of drugs and targeting ligands, including those which are Raman inactive, since the linkers can act as the Raman markers, as illustrated with mercaptobenzoic acid and para-aminothiophenol. Copyright © 2017 Elsevier B.V. All rights reserved.
Surface Plasmon Resonance Sensors on Raman and Fluorescence Spectroscopy
Wang, Jiangcai; Lin, Weihua; Cao, En; Xu, Xuefeng; Liang, Wenjie; Zhang, Xiaofang
2017-01-01
The performance of chemical reactions has been enhanced immensely with surface plasmon resonance (SPR)-based sensors. In this review, the principle and application of SPR sensors are introduced and summarized thoroughly. We introduce the mechanism of the SPR sensors and present a thorough summary about the optical design, including the substrate and excitation modes of the surface plasmons. Additionally, the applications based on SPR sensors are described by the Raman and fluorescence spectroscopy in plasmon-driven surface catalytic reactions and the measurement of refractive index sensing, especially. PMID:29212139
NO2 sensing at room temperature using vertically aligned MoS2 flakes network
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Goel, Neeraj; Kumar, Mahesh
2018-04-01
To exploit the role of alignment of MoS2 flake in chemical sensing, here, we have synthesized the horizontally and vertically aligned MoS2 flake network using conventional chemical vapor deposition technique. The morphology and number of layers were confirmed by SEM and Raman spectroscopy, respectively. The sensing performance of horizontally aligned and vertically aligned flake network was investigated to NO2 at room temperature. Vertically aligned MoS2 based sensor showed higher sensitivity 51.54 % and 63.2 % compared to horizontally aligned MoS2 sensor' sensitivity of 35.32 % and 45.2 % to 50 ppm and 100 ppm NO2, respectively. This high sensitivity attributed to the high aspect ratio and high adsorption energy on the edge site of vertically aligned MoS2.
Li, Ming; Cushing, Scott K.; Zhang, Jianming; Suri, Savan; Evans, Rebecca; Petros, William P.; Gibson, Laura F.; Ma, Dongling; Liu, Yuxin; Wu, Nianqiang
2013-01-01
A three-dimensional (3D) hierarchical plasmonic nano-architecture has been designed for a sensitive surface-enhanced Raman scattering (SERS) immuno-sensor for protein biomarker detection. The capture antibody molecules are immobilized on a plasmonic gold triangle nano-array pattern. On the other hand, the detection antibody molecules are linked to the gold nano-star@Raman-reporter@silica sandwich nanoparticles. When protein biomarkers are present, the sandwich nanoparticles are captured over the gold triangle nano-array, forming a confined 3D plasmonic field, leading to the enhanced electromagnetic field in intensity and in 3D space. As a result, the Raman reporter molecules are exposed to a high density of “hot spots”, which amplifies the Raman signal remarkably, improving the sensitivity of the SERS immuno-sensor. This SERS immuno-sensor exhibits a wide linear range (0.1 pg/mL to 10 ng/mL), and a low limit of detection (7 fg/mL) toward human immunoglobulin G (IgG) protein in the buffer solution. This biosensor has been successfully used for detection of the vascular endothelial growth factor (VEGF) in the human blood plasma from clinical breast cancer patient samples. PMID:23659430
Performance comparison of single and dual-excitation-wavelength resonance-Raman explosives detectors
NASA Astrophysics Data System (ADS)
Yellampalle, Balakishore; Martin, Robert; Witt, Kenneth; McCormick, William; Wu, Hai-Shan; Sluch, Mikhail; Ice, Robert; Lemoff, Brian
2017-05-01
Deep-ultraviolet Raman spectroscopy is a very useful approach for standoff detection of explosive traces. Using two simultaneous excitation wavelengths improves the specificity and sensitivity to standoff explosive detection. The High Technology Foundation developed a highly compact prototype of resonance Raman explosives detector. In this work, we discuss the relative performance of a dual-excitation sensor compared to a single-excitation sensor. We present trade space analysis comparing three representative Raman systems with similar size, weight, and power. The analysis takes into account, cost, spectral resolution, detection/identification time and the overall system benefit.
NASA Astrophysics Data System (ADS)
Lu, Xiaojing; Song, Xinjie; Gu, Cuiping; Ren, Haibo; Sun, Yufeng; Huang, Jiarui
2018-05-01
Quick and efficient detection of low concentrations of hydrogen remains a challenge because of the stability of hydrogen. A sensor based on reduced oxide graphene functionalized with Pt nanoparticles is successfully fabricated using a freeze-drying method followed by heat treatment. The structure and morphology of the Pt@rGO nanocomposites are well analyzed by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The as-prepared Pt@rGO nanocomposites show excellent hydrogen gas sensing properties at a low working temperature of 50 °C. The sensitivity toward 0.5% hydrogen is 8%. The response and recovery times of the sensor exposed to 0.5% hydrogen are 63 and 104 s, respectively. The gas-sensing mechanism of Pt@rGO sensor is also discussed.
Electronic and mechanical response of graphene on BaTiO3 at martensitic phase transitions
NASA Astrophysics Data System (ADS)
Verhagen, Tim; Vales, Vaclav; Kalbac, Martin; Vejpravova, Jana
2018-02-01
Graphene is extremely sensitive to optical, electrical and mechanical stimuli, which cause a significant variation of the band structure, thus the physiochemical properties. In our work, we report on changes of strain and doping in graphene grown by chemical vapor deposition on copper and transferred onto a BaTiO3(1 0 0) (BTO) single-crystal. The BTO is known as a ferroelectric material, which undergoes several thermoelastic martensitic phase transitions when it is cooled from 300 K to 10 K. In order to enhance the very weak Raman signal of the graphene monolayer (ML) on the BTO, a 15 nm thin gold layer was deposited on top of the graphene ML to benefit from the surface enhanced Raman scattering. Using temperature dependent Raman spectral mapping, the principal Raman modes (D, G and 2D) of the graphene ML were followed in situ. From a careful analysis of these Raman modes, we conclude that the induced strain and doping of the graphene ML follows the martensitic phase transitions of the BTO crystal. Our study suggests potential exploitation of the graphene as a highly sensitive opto-mechanical sensor or transducer.
Few-mode fiber based Raman distributed temperature sensing.
Wang, Meng; Wu, Hao; Tang, Ming; Zhao, Zhiyong; Dang, Yunli; Zhao, Can; Liao, Ruolin; Chen, Wen; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-03-06
We proposed and experimentally demonstrated a few mode fiber (FMF) based Raman distributed temperature sensor (RDTS) to extend the sensing distance with enhanced signal-to-noise ratio (SNR) of backscattered anti-Stokes spontaneous Raman scattering. Operating in the quasi-single mode (QSM) with efficient fundamental mode excitement, the FMF allows much larger input pump power before the onset of stimulated Raman scattering compared with the standard single mode fiber (SSMF) and mitigates the detrimental differential mode group delay (DMGD) existing in the conventional multimode fiber (MMF) based RDTS system. Comprehensive theoretical analysis has been conducted to reveal the benefits of RDTS brought by QSM operated FMFs with the consideration of geometric/optical parameters of different FMFs. The measurement uncertainty of FMF based scheme has also been evaluated. Among fibers being investigated and compared (SSMF, 2-mode and 4-mode FMFs, respectively), although an ideal 4-mode FMF based RDTS has the largest SNR enhancement in principle, real fabrication imperfections and larger splicing loss degrade its performance. While the 2-mode FMF based system outperforms in longer distance measurement, which agrees well with the theoretical calculations considering real experimental parameters. Using the conventional RDTS hardware, a 30-ns single pulse at 1550nm has been injected as the pump; the obtained temperature resolutions at 20km distance are estimated to be about 10°C, 7°C and 6°C for the SSMF, 4-mode and 2-mode FMFs, respectively. About 4°C improvement over SSMF on temperature resolution at the fiber end with 3m spatial resolution within 80s measuring time over 20km 2-mode FMFs have been achieved.
A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy.
Chen, Jiwei; Jiang, Jianhui; Gao, Xing; Liu, Guokun; Shen, Guoli; Yu, Ruqin
2008-01-01
The present study reports the proof of principle of a reagentless aptameric sensor based on surface-enhanced Raman scattering (SERS) spectroscopy with "signal-on" architecture using a model target of cocaine. This new aptameric sensor is based on the conformational change of the surface-tethered aptamer on a binding target that draws a certain Raman reporter in close proximity to the SERS substrate, thereby increasing the Raman scattering signal due to the local enhancement effect of SERS. To improve the response performance, the sensor is fabricated from a cocaine-templated mixed self-assembly of a 3'-terminal tetramethylrhodamine (TMR)-labeled DNA aptamer on a silver colloid film by means of an alkanethiol moiety at the 5' end. This immobilization strategy optimizes the orientation of the aptamer on the surface and facilitates the folding on the binding target. Under optimized assay conditions, one can determine cocaine at a concentration of 1 muM, which compares favorably with analogous aptameric sensors based on electrochemical and fluorescence techniques. The sensor can be readily regenerated by being washed with a buffer. These results suggest that the SERS-based transducer might create a new dimension for future development of aptameric sensors for sensitive determination in biochemical and biomedical studies.
Effect of pressure on Zircon's (ZrSiO4) Raman active modes: a first-principles study
NASA Astrophysics Data System (ADS)
Sheremetyeva, Natalya; Cherniak, Daniele; Watson, Bruce; Meunier, Vincent
Zircon is a mineral commonly found in the Earth crust. Its remarkable properties have given rise to considerable attention. This includes possible inclusion of radioactive elements in natural samples, which allows for geochronological investigations. Subsequently, Zircon was proposed as possible host material for radioactive waste management. Internal radiation damage in zircon leads to the destruction of its crystal structure (an effect known as metamictization) which is subject to ongoing research. Recently, the effect of pressure and temperature on synthetic zircon has been analyzed experimentally using Raman spectroscopy which led to the calibration of zircon as a pressure sensor in diamond-anvil cell experiments. While there have been a number of theoretical studies, the effect of pressure on the Raman active modes of zircon has not been investigated theoretically. Here we present a first-principles pressure calibration of the Raman active modes in Zircon employing density-functional theory (DFT). We find excellent quantitative agreement of the slopes ∂ω / ∂P with the experimental ones and are able to rationalize the ω vs. P behavior based on the details of the vibrational modes.
Next generation in-situ optical Raman sensor for seawater investigations
NASA Astrophysics Data System (ADS)
Kolomijeca, A.; Kwon, Y.-H.; Ahmad, H.; Kronfeldt, H.-D.
2012-04-01
We introduce the next generation of optical sensors based on a combination of surfaced enhanced Raman scattering (SERS) and shifted excitation Raman difference spectroscopy (SERDS) suited for investigations of tiny concentrations of pollutions in the seawater. First field measurements were carried out in the Arctic area which is of global interest since it is more affected by global warming caused climatic changes than any other areas of our planet and it is a recipient for many toxic organic pollutants. A significant long-range atmospheric transport of pollutants to Svalbard is mainly originated from industrialized countries in Europe and North America during the last decades. Therefore, the main interest is to investigate the Arctic water column and also the sediments. Standard chemical methods for water/sediment analysis are extremely accurate but complex and time-consuming. The primary objective of our study was to develop a fast response in-situ optical sensor for easy to use and quick analysis. The system comprises several components: a handheld measurement head containing a 671 nm microsystem diode laser and the Raman optical bench, a laser driver electronics board, a custom-designed miniature spectrometer with an optical resolution of 8 cm-1 and a netbook to control the spectrometer as well as for data evaluation. We introduced for the first time the portable Raman sensor system on an Artic sea-trial during a three week cruise on board of the James Clark Ross research vessel in August 2011. Numerous Raman and SERS measurements followed by SERDS evaluations were taken around locations 78° N and 9° E. Different SERS substrates developed for SERS measurements in sea-water were tested for their capability to detect different substances (PAHs) in the water down to very small (nmol/l) concentrations. Stability tests of the substrates were carried out also for the applicability of our system e.g. on a mooring. Details of the in-situ Raman sensor were presented together with the measurements results from the Arctic area.
NASA Technical Reports Server (NTRS)
Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie
2012-01-01
An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX
Analysis of vibrational response in graphite oxide nanoplatelets
NASA Astrophysics Data System (ADS)
Prias Barragan, Jhon Jairo; Gross, Katherine; Lajaunie, Luc; Arenal, Raul; Ariza Calderon, Hernando; Prieto, Pedro
In this work, we present a new low-cost fabrication process to obtain graphite oxide nanoplatelets from bamboo pyroligneous acid (GO-BPA) by thermal decomposition method using a pyrolysis system for different carbonization temperatures from 673 to 973 K. The GO-BPA samples were characterized by using Raman, FTIR, XRD, SEM and TEM techniques, whose results suggest that increased carbonization temperature increases graphite conversion, boundary defects, desorption of some organic compounds and phonon response, respectively. We discuss potential applications of the GO-BPA samples involving phonon response that would benefit from a fully scaled technology, advanced electronic sensors and devices.
The Anvils as Pressure Calibrants in the Hydrothermal Diamond Anvil Cell
NASA Astrophysics Data System (ADS)
Davis, M. K.; Panero, W. R.; Stixrude, L. P.
2003-12-01
Throughout the crust and the upper part of the mantle, water is an important agent of heat and mass transport in processes ranging from metasomatism to magma generation in arc environments. One of the important properties of water in this regime: its ability to dissolve significant amounts of solids, presents a substantial challenge to the experimental study of water-rich systems. Many commonly used pressure standards, such as quartz and ruby, dissolve in water under the conditions accessible to the hydrothermal diamond anvil cell (up to 1200 K and 5 GPa). For this reason, it is important to develop alternative pressure calibrants. Two methods have been developed by other groups for pressure calibration in the HDAC in the presence of water. One method relies on the equation of state of the ambient fluid and the observation that the sample chamber remains approximately isochoric on heating. Disadvantages of this method include our imperfect knowledge of the equation of state of water over the relevant pressure-temperature interval, possible changes in fluid composition, and sample chamber assembly relaxation at temperatures above 800 K. The second method is based on the Raman signal from diamond chips loaded with the sample. Synthetic 13C diamond is used to avoid overlap with the much stronger signal from the anvils. Diamond is an ideal pressure sensor since it is chemically inert and unaffected by water. Therefore, we use the tips of the diamond anvils as "internal" sensors. The primary disadvantage of this method is that the stress distribution inside the anvils is non-hydrostatic and inhomogeneous, although the normal stress across the diamond-sample interface must be continuous. Using confocal micro-Raman spectroscopy we are able to characterize both the inhomogeneity and the non-hydrostaticity of the diamond stress field by combining axial and radial transects with peak shapes. We find that on room temperature loading there is substantial inhomogeneity in the diamond stress field: variations of up to 2.3 cm-1 or about 0.8 GPa over a pressure range of 0 to 3.5 GPa. However, heating substantially reduces inhomogeneity in the vicinity of the diamond-sample interface allowing the derivation of a useful pressure calibration. Preliminary results show that the primary Raman line of diamond shifts with respect to temperature according to the equation 1332.15 - 0.0016x - 3.5e-5x2 + 7.1e-11x3 where x is temperature. The same Raman line of diamond shifts with pressure according to the equation 1332.15 + 3.4*P where the pressure, P, is in GPa. We find that the effects of temperature and pressure are independent of one another so that an independent measurement of temperature (with thermocouples) together with the measured Raman shift determines the pressure with an accuracy of 0.27 GPa at 800K and 2 GPa. We compare our calibration to the quartz and ruby calibration scales over the range where they are stable. We also compare our calibration to previous experiments using independent pressure calibrants.
Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui
2006-09-15
A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of approximately 60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of approximately 170 mW at a wavelength of 1455 nm and a low EDFA pump power of approximately 40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge.
Advanced end-to-end fiber optic sensing systems for demanding environments
NASA Astrophysics Data System (ADS)
Black, Richard J.; Moslehi, Behzad
2010-09-01
Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: " Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). " Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.
NASA Astrophysics Data System (ADS)
Tiwari, Vidhu S.; Kalluru, Rajamohan R.; Yueh, Fang Y.; Singh, Jagdish P.; St. Cyr, William; Khijwania, Sunil K.
2007-06-01
A spontaneous Raman scattering optical fiber sensor was developed for a specific need of the National Aeronautics and Space Administration (NASA) for long-term detection and monitoring of the purity of liquid oxygen (LO2) in the oxidizer feed line during ground testing of rocket engines. The Raman peak intensity ratios for liquid nitrogen (LN2) and LO2 with varied weight ratios (LN2/LO2) were analyzed for their applicability to impurity sensing. The study of the sensor performance with different excitation light sources has helped to design a miniaturized, cost-effective system for this application. The optimal system response time of this miniaturized sensor for LN2/LO2 measurement was found to be in the range of a few seconds. It will need to be further reduced to the millisecond range for real-time, quantitative monitoring of the quality of cryogenic fluids in a harsh envioronment.
NASA Astrophysics Data System (ADS)
Agrawal, A. V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Zhu, Z.; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh
2017-08-01
The increased usage of hydrogen as a next generation clean fuel strongly demands the parallel development of room temperature and low power hydrogen sensors for their safety operation. In this work, we report strong evidence for preferential hydrogen adsorption at edge-sites in an edge oriented vertically aligned 3-D network of MoS2 flakes at room temperature. The vertically aligned edge-oriented MoS2 flakes were synthesised by a modified CVD process on a SiO2/Si substrate and confirmed by Scanning Electron Microscopy. Raman spectroscopy and PL spectroscopy reveal the signature of few-layer MoS2 flakes in the sample. The sensor's performance was tested from room temperature to 150 °C for 1% hydrogen concentration. The device shows a fast response of 14.3 s even at room temperature. The sensitivity of the device strongly depends on temperature and increases from ˜1% to ˜11% as temperature increases. A detail hydrogen sensing mechanism was proposed based on the preferential hydrogen adsorption at MoS2 edge sites. The proposed gas sensing mechanism was verified by depositing ˜2-3 nm of ZnO on top of the MoS2 flakes that partially passivated the edge sites. We found a decrease in the relative response of MoS2-ZnO hybrid structures. This study provides a strong experimental evidence for the role of MoS2 edge-sites in the fast hydrogen sensing and a step closer towards room temperature, low power (0.3 mW), hydrogen sensor development.
NASA Astrophysics Data System (ADS)
Sharma, Vikram
2017-11-01
This is the first time the graphene sample has been functionalized with metal oxide nanoparticles by thermal decomposition process. In this paper, graphene has been synthesized from natural resources using flower petals as carbon feedstock by thermal exfoliation technique at temperatures 1300 °C and the synthesis of graphene-tin oxide (SnO2) nanocomposites has been done using chemical treatment followed by thermal decomposition method. The response versus time condition has been investigated for the fabricated sample. The electrical resistance w.r.t. temperature could be explained by the thermal generation of electron-hole pairs and carrier scattering by acoustic phonons. The structural, morphological and chemical composition studies of the nanocomposites were carried out by the Raman spectroscopy, x-ray diffraction spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy (HRTEM). The evidence of good-quality graphene is obtained from Raman spectroscopy studies. The SEM and HRTEM images have shown that SnO2 nanoparticles are well distributed in the multilayer electron transparent graphene films. The sensor response was found to lie between 8.25 and 9.36% at 500 ppm of nitrogen dioxide, and also resistance recovered quickly without any application of heat. We believe such chemical treatment of graphene could potentially be used to manufacture a new generation of low-power nano-NO2 sensors.
Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyle, K.R.; Mayes, E.L.
1994-07-29
Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. Thismore » work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).« less
NASA Astrophysics Data System (ADS)
Gomer, Nathaniel R.; Tazik, Shawna; Gardner, Charles W.; Nelson, Matthew P.
2017-05-01
Hyperspectral imaging (HSI) is a valuable tool for the detection and analysis of targets located within complex backgrounds. HSI can detect threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Unfortunately, current generation HSI systems have size, weight, and power limitations that prohibit their use for field-portable and/or real-time applications. Current generation systems commonly provide an inefficient area search rate, require close proximity to the target for screening, and/or are not capable of making real-time measurements. ChemImage Sensor Systems (CISS) is developing a variety of real-time, wide-field hyperspectral imaging systems that utilize shortwave infrared (SWIR) absorption and Raman spectroscopy. SWIR HSI sensors provide wide-area imagery with at or near real time detection speeds. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focusing on sensor design and detection results.
NASA Astrophysics Data System (ADS)
Hug, William F.; Bhartia, Rohit; Taspin, Alexandre; Lane, Arthur; Conrad, Pamela; Sijapati, Kripa; Reid, Ray D.
2005-11-01
Laser induced native fluorescence (LINF) is the most sensitive method of detection of biological material including microorganisms, virus', and cellular residues. LINF is also a sensitive method of detection for many non-biological materials as well. The specificity with which these materials can be classified depends on the excitation wavelength and the number and location of observation wavelengths. Higher levels of specificity can be obtained using Raman spectroscopy but a much lower levels of sensitivity. Raman spectroscopy has traditionally been employed in the IR to avoid fluorescence. Fluorescence rarely occurs at wavelength below about 270nm. Therefore, when excitation occurs at a wavelength below 250nm, no fluorescence background occurs within the Raman fingerprint region for biological materials. When excitation occurs within electronic resonance bands of the biological target materials, Raman signal enhancement over one million typically occurs. Raman sensitivity within several hundred times fluorescence are possible in the deep UV where most biological materials have strong absorption. Since the Raman and fluorescence emissions occur at different wavelength, both spectra can be observed simultaneously, thereby providing a sensor with unique sensitivity and specificity capability. We will present data on our integrated, deep ultraviolet, LINF/Raman instruments that are being developed for several applications including life detection on Mars as well as biochemical warfare agents on Earth. We will demonstrate the ability to discriminate organic materials based on LINF alone. Together with UV resonance Raman, higher levels of specificity will be demonstrated. In addition, these instruments are being developed as on-line chemical sensors for industrial and municipal waste streams and product quality applications.
Mullen, Max R.; Spirig, John V.; Hoy, Julia; ...
2014-11-01
Nanocrystalline La0.8Sr0.2Al0.9Mn0.1O3 (LSAM) was synthesized by a microwave-assisted citrate method, and characterized by electron microscopy and X-ray diffraction. Electrical behavior of LSAM was investigated by impedance spectroscopy and activation energy of conduction was obtained. Joining of sintered bodies of LSAM and yttria-stabilized tetragonal zirconia polycrystals (YTZP), an extensively studied oxygen ion conducting electrolyte, was examined by isostatic hot pressing methods. Characteristics of the joining region were evaluated with microprobe Raman spectroscopy, and products formed at the interface, primarily strontium zirconate, was confirmed by examination of high temperature chemical reaction between LSAM and YTZP powders. Finally, the electrical properties of themore » LSAM were exploited for development of a high temperature oxygen sensor in which LSAM functioned as the electrode and YTZP as electrolyte.« less
High-sensitivity explosives detection using dual-excitation-wavelength resonance-Raman detector
NASA Astrophysics Data System (ADS)
Yellampalle, Balakishore; McCormick, William B.; Wu, Hai-Shan; Sluch, Mikhail; Martin, Robert; Ice, Robert V.; Lemoff, Brian
2014-05-01
A key challenge for standoff explosive sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have interfering spectral peaks. To meet this challenge a sensor needs to exhibit high specificity and high sensitivity in detection at low signal-to-noise ratio levels. We had proposed a Dual-Excitation- Wavelength Resonance-Raman Detector (DEWRRED) to address this need. In our previous work, we discussed various components designed at WVHTCF for a DEWRRED sensor. In this work, we show a completely assembled laboratory prototype of a DEWRRED sensor and utilize it to detect explosives from two standoff distances. The sensor system includes two novel, compact CW deep-Ultraviolet (DUV) lasers, a compact dual-band high throughput DUV spectrometer, and a highly-sensitive detection algorithm. We choose DUV excitation because Raman intensities from explosive traces are enhanced and fluorescence and solar background are not present. The DEWRRED technique exploits the excitation wavelength dependence of Raman signal strength, arising from complex interplay of resonant enhancement, self-absorption and laser penetration depth. We show measurements from >10 explosives/pre-cursor materials at different standoff distances. The sensor showed high sensitivity in explosive detection even when the signalto- noise ratio was close to one (~1.6). We measured receiver-operating-characteristics, which show a clear benefit in using the dual-excitation-wavelength technique as compared to a single-excitation-wavelength technique. Our measurements also show improved specificity using the amplitude variation information in the dual-excitation spectra.
Hydrogen sensor based on Sm-doped SnO{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Gurpreet; Hastir, Anita; Singh, Ravi Chand, E-mail: ravichand.singh@gmail.com
2016-05-23
In this paper the effect of samarium doping on the structural and hydrogen gas sensing properties of SnO{sub 2} nanoparticles has been reported. X-ray Diffraction (XRD) results revealed tetragonal rutile structure of both undoped and Sm-doped SnO{sub 2} nanoparticles. It has been observed that doping with samarium led to reduction in crystallite size of SnO{sub 2} nanoparticles which was confirmed from XRD analysis. Shifting and broadening of Raman peaks in case of doped nanoparticles has been explained by well-known phonon confinement model. The optimum operable temperature of both the sensors was found to 400 °C and the sensor response towardsmore » hydrogen gas has been improved after doping with samarium which was attributed to increase in sensing sites for the gas adsorption.« less
Raman Life Detection Instrument Development for Icy Worlds
NASA Technical Reports Server (NTRS)
Thomson, Seamus; Allen, A'Lester; Gutierrez, Daniel; Quinn, Richard C.; Chen, Bin; Koehne, Jessica E.
2017-01-01
The objective of this project is to develop a compact, high sensitivity Raman sensor for detection of life signatures in a flow cell configuration to enable bio-exploration and life detection during future mission to our Solar Systems Icy Worlds. The specific project objectives are the following: 1) Develop a Raman spectroscopy liquid analysis sensor for biosignatures; 2) Demonstrate applicability towards a future Enceladus or other Icy Worlds missions; 3) Establish key parameters for integration with the ARC Sample Processor for Life on Icy Worlds (SPLIce); 4) Position ARC for a successful response to upcoming Enceladus or other Icy World mission instrument opportunities.
An in vivo quantitative Raman-pH sensor of arterial blood based on laser trapping of erythrocytes.
Lin, Manman; Xu, Bin; Yao, Huilu; Shen, Aiguo; Hu, Jiming
2016-05-10
We report on a continuous and non-invasive approach in vivo to monitor arterial blood pH based on the laser trapping and Raman detection of single live erythrocytes. A home-built confocal laser tweezers Raman system (LTRS) is applied to trace the live erythrocytes at different pH values of the extracellular environment to record their corresponding Raman changes in vitro and in vivo. The analysis results in vitro show that when the extracellular environment pH changes from 6.5 to 9.0, the Raman intensity ratio (R1603, 1616 = I1603/I1616) of single erythrocytes decrease regularly; what is more, there is a good linear relationship between these two variables, and the linearity is 0.985, which is also verified successfully via in vivo Raman measurements. These results demonstrate that the Raman signal of single live erythrocytes is possible as a marker of the extracellular pH value. This in vivo and quantitative Raman-pH sensor of arterial blood will be an important candidate for monitoring the acid-base status during the treatment of ill patients and in some major surgeries because of its continuous and non-invasive characters.
Plasmon-Enhanced Optical Sensors: A Review
Li, Ming; Cushing, Scott K
2014-01-01
Surface plasmon resonance (SPR) has found extensive applications in chemi-sensors and biosensors. Plasmons play different roles in different types of optical sensors. SPR transduces a signal in a colorimetric sensor through shifts in the spectral position and intensity in response to external stimuli. SPR can also concentrate the incident electromagnetic field in a nanostructure, modulating fluorescence emission and enabling plasmon-enhanced fluorescence to be used for ultrasensitive detection. Furthermore, plasmons have been extensively used for amplifying a Raman signal in a surface-enhanced Raman scattering sensor. This paper presents a review of recent research progress in plasmon-enhanced optical sensing, giving an emphasis on the physical basis of plasmon-enhanced sensors and how these principles guide the design of sensors. In particular, this paper discusses the design strategies for nanomaterials and nanostructures to plasmonically enhance optical sensing signals, also highlighting the applications of plasmon-enhanced optical sensors in health care, homeland security, food safety and environmental monitoring. PMID:25365823
High performance NO2 sensor using MoS2 nanowires network
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Goel, Neeraj; Kumar, Mahesh
2018-01-01
We report on a high-performance NO2 sensor based on a one dimensional MoS2 nanowire (NW) network. The MoS2 NW network was synthesized using chemical transport reaction through controlled turbulent vapor flow. The crystal structure and surface morphology of MoS2 NWs were confirmed by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Further, the sensing behavior of the nanowires was investigated at different temperatures for various concentrations of NO2 and the sensor exhibited about 2-fold enhanced sensitivity with a low detection limit of 4.6 ppb for NO2 at 60 °C compared to sensitivity at room temperature. Moreover, it showed a fast response (16 s) with complete recovery (172 s) at 60 °C, while sensitivity of the device was decreased at 120 °C. The efficient sensing with reliable selectivity toward NO2 of the nanowires is attributed to a combination of abundant active edge sites along with a large surface area and tuning of the potential barrier at the intersections of nanowires during adsorption/desorption of gas molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.
Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching withmore » temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.« less
NASA Astrophysics Data System (ADS)
Kaur, Jasmeet; Anand, Kanica; Kohli, Nipin; Kaur, Amanpreet; Singh, Ravi Chand
2018-06-01
Reduced graphene oxide (RGO) and Pd doped WO3 nanocomposites were fabricated by employing electrostatic interactions between poly (diallyldimethylammonium chloride) (PDDA) modified Pd doped WO3 nanostructures and graphite oxide (GO) and studied for their gas sensing application. XRD, Raman, FTIR, FESEM-EDX, TEM, TGA, XPS and Photoluminescence techniques were used for characterization of as-synthesized samples. Gas sensing studies revealed that the sensor with optimized doping of 1.5 mol% Pd and 1 wt% GO shows temperature dependent selectivity towards hydrogen and acetone. The role of WO3, Pd and RGO has been discussed in detail for enhanced sensing performance.
Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.
Qi, Guohua; Wang, Yi; Zhang, Biying; Sun, Dan; Fu, Cuicui; Xu, Weiqing; Xu, Shuping
2016-10-01
Glucose oxidase (GOx) possessing a Raman-active chromophore (flavin adenine dinucleotide) is used as a signal reporter for constructing a highly specific "turn off" surface-enhanced Raman scattering (SERS) sensor for glucose. This sensing chip is made by the electrostatic assembly of GOx over silver nanoparticle (Ag NP)-functionalized SERS substrate through a positively charged polyelectrolyte linker under the pH of 6.86. To trace glucose in blood serum, owing to the reduced pH value caused by the production of gluconic acid in the GOx-catalyzed oxidation reaction, the bonding force between GOx and polyelectrolyte weakens, making GOx drop off from the sensing chip. As a result, the SERS intensity of GOx on the chip decreases along with the concentration of glucose. This glucose SERS sensor exhibits excellent selectivity based on the specific GOx/glucose catalysis reaction and high sensitivity to 1.0 μM. The linear sensing range is 2.0-14.0 mM, which also meets the requirement on the working range of the human blood glucose detection. Using GOx as a probe shows superiority over other organic probes because GOx almost has no toxicity to the biological system. This sensing mechanism can be applied for intracellular in vivo SERS monitoring of glucose in the future. Graphical abstract Glucose oxidase is used as a Raman signal reporter for constructing a highly specific glucose surface-enhanced Raman scattering (SERS) sensor.
NASA Astrophysics Data System (ADS)
Maiwald, M.; Müller, A.; Sumpf, B.
2017-02-01
In-situ shifted excitation Raman difference spectroscopy (SERDS) experiments are presented using a portable sensor system. Key elements of this system are an in-house developed handheld probe with an implemented dual-wavelength diode laser at 785 nm. An optical power of 120 mW is achieved ex probe. Raman experiments are carried out in the laboratory for qualification using polystyrene as test sample. Here, a shot-noise limited signal-to-noise ratio (SNR) of 120 is achieved. Stability tests were performed and show a stable position of the Raman line under study within 0.1 cm-1 and a stable Raman intensity better +/- 2% mainly limited by shot noise interference. SERDS experiments are carried out in an apple orchard for demonstration. Green apple leafs are used as test samples. The Raman spectra show huge background interferences by fluorescence and ambient daylight which almost obscure Raman signals from green leafs. The selected excitation power is 50 mW and the exposure time is 0.2 s to avoid detector saturation. SERDS efficiently separates the Raman signals from fluorescence and daylight contributions and generates an 11-fold improvement of the signal-to-background noise with respect to the measured Raman signals. The results demonstrate the capability of the portable SERDS system and enable rapid in-situ and undisturbed Raman investigations under daylight conditions.
NASA Astrophysics Data System (ADS)
Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang
2016-09-01
Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R = 0.83) as well as for lycopene (R = 0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to + 30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R = 0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.
NASA Technical Reports Server (NTRS)
Tiwari, Vidhu S.; Kalluru, Rajamohan R.; Yueh, Fang-Yu; Singh, Jagdish P.; SaintCyr, William
2007-01-01
A spontaneous Raman scattering optical fiber sensor is developed for a specific need of NASA/SSC for long-term detection and monitoring of the quality of liquid oxygen (LOX) in the delivery line during ground testing of rocket engines. The sensor performance was tested in the laboratory and with different excitation light sources. To evaluate the sensor performance with different excitation light sources for the LOX quality application, we have used the various mixtures of liquid oxygen and liquid nitrogen as samples. The study of the sensor performance shows that this sensor offers a great deal of flexibility and provides a cost effective solution for the application. However, an improved system response time is needed for the real-time, quantitative monitoring of the quality of cryogenic fluids in harsh environment.
Vandenabeele, Peter; Conti, Claudia; Rousaki, Anastasia; Moens, Luc; Realini, Marco; Matousek, Pavel
2017-09-05
Microspatially offset Raman spectroscopy (micro-SORS) has been proposed as a valuable approach to sample molecular information from layers that are covered by a turbid (nontransparent) layer. However, when large magnifications are involved, the approach is not straightforward, as spatial constraints exist to position the laser beam and the objective lens with the external beam delivery or, with internal beam delivery, the maximum spatial offset achievable is restricted. To overcome these limitations, we propose here a prototype of a new micro-SORS sensor, which uses bare glass fibers to transfer the laser radiation to the sample and to collect the Raman signal from a spatially offset zone to the Raman spectrometer. The concept also renders itself amenable to remote delivery and to the miniaturization of the probe head which could be beneficial for special applications, e.g., where access to sample areas is restricted. The basic applicability of this approach was demonstrated by studying several layered structure systems. Apart from proving the feasibility of the technique, also, practical aspects of the use of the prototype sensor are discussed.
Real-time biochemical sensor based on Raman scattering with CMOS contact imaging.
Muyun Cao; Yuhua Li; Yadid-Pecht, Orly
2015-08-01
This work presents a biochemical sensor based on Raman scattering with Complementary metal-oxide-semiconductor (CMOS) contact imaging. This biochemical optical sensor is designed for detecting the concentration of solutions. The system is built with a laser diode, an optical filter, a sample holder and a commercial CMOS sensor. The output of the system is analyzed by an image processing program. The system provides instant measurements with a resolution of 0.2 to 0.4 Mol. This low cost and easy-operated small scale system is useful in chemical, biomedical and environmental labs for quantitative bio-chemical concentration detection with results reported comparable to a highly cost commercial spectrometer.
Next-generation Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection
2012-09-01
Next-generation Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection by Mikella E. Farrell, Ellen L. Holthoff and Paul M...Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection Mikella E. Farrell, Ellen L. Holthoff and Paul M. Pellegrino Sensors and...DD-MM-YYYY) September 2012 2. REPORT TYPE Reprint 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Next-generation Surface Enhanced Raman
Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani
2009-01-01
A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.
Gas Sensor for Volatile Anesthetic Agents Based on Raman Scattering
NASA Astrophysics Data System (ADS)
Schlüter, Sebastian; Popovska-Leipertz, Nadejda; Seeger, Thomas; Leipertz, Alfred
Continuous monitoring of respiratory and anesthetic gases during a surgery is of vital importance for the patient safety. Commonly the gas composition is determined by gas chromatography or a combination of IR-spectroscopy and electrochemical sensors. This study presents a concept for an optical sensor based on spontaneous Raman scattering which offers several advantages compared to established systems. All essential components can be detected simultaneously, no sample preparation is necessary and it provides fast response times. To reach the performance of a commonly used gas monitor signal gain has to be increased e.g. by using a multi pass setup.
Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors
NASA Technical Reports Server (NTRS)
Turner, D. D.; Feltz, W. F.; Ferrare, R. A.
2000-01-01
The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.
Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators
NASA Technical Reports Server (NTRS)
Anderson, Mark S.
2013-01-01
The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.
OCEANET-Atmosphere - The Autonomous Measurement Container
NASA Astrophysics Data System (ADS)
Kalisch, John; Macke, Andreas; Althausen, Dietrich; Bumke, Karl; Engelmann, Ronny; Kanitz, Thomas; Kleta, Henry; Zoll, Yann
2010-05-01
OCEANET-Atmosphere is a joint venture project of IFM-GEOMAR and IFT to study the mass and energy transfer of ocean and atmosphere by introducing a special measurement container, which is suitable to perform a large spectrum of atmospheric underway measurements on offshore research vessels and cargo ships. The container combines state-of-the-art measurement devices and connect them to its own computer network to realize a comprehensive system for remote sensing. A Raman-lidar measures marine and anthropogenic optical aerosol properities by analyzing the elastic signal and the vibration-rotation Raman signal of nitrogen. Our passive microwave radiometer determines the integrated water vapor and the liquid water path of the atmospheric column, as well as vertical temperature and humidity profiles. Carbon dioxide is measured high-frequent. Turbulence measurements are performed by means of a sonic anemometer. In combination with fast humidity sensors the fluxes of momentum, latent and sensible heat are derived. An automatic full sky imager monitors the state of the cloudy sky. A selection of standard meteorological devices measure air temperature, humidity, wind velocity, wind speed and downward shortwave and longwave radiative fluxes. The GPS sensors register navigational data. For an almost real time monitoring of a data subset our telemetry system is sending short hourly data reports via satellite. OCEANET-Atmosphere is set up to improve the quantity and the quality of atmospheric data sets on intercontinental oceanic transects, where the previous data base is still weak. A first research mission has been performed onboard RV Polarstern at ANT XXVI/1.
Conductivity for soot sensing: possibilities and limitations.
Grob, Benedikt; Schmid, Johannes; Ivleva, Natalia P; Niessner, Reinhard
2012-04-17
In this study we summarize the possibilities and limitations of a conductometric measurement principle for soot sensing. The electrical conductivity of different carbon blacks (FW 200, lamp black 101, Printex 30, Printex U, Printex XE2, special black 4, and special black 6), spark discharge soot (GfG), and graphite powder was measured by a van der Pauw arrangement. Additionally the influence of inorganic admixtures on the conductivity of carbonaceous materials was proven to follow the percolation theory. Structural and oxidation characteristics obtained with Raman microspectroscopy and temperature programmed oxidation, respectively, were correlated with the electrical conductivity data. Moreover, a thermophoretic precipitator has been applied to deposit soot particles from the exhaust stream between interdigital electrodes. This combines a controlled and size independent particle collection method with the conductivity measurement principle. A test vehicle was equipped with the AVL Micro Soot Sensor (photoacoustic soot sensor) to prove the conductometric sensor principle with an independent and reliable technique. Our results demonstrate promising potential of the conductometric sensor for on-board particle diagnostic. Furthermore this sensor can be applied as a simple, rapid, and cheap analytical tool for characterization of soot structure.
Remote Raman Spectroscopy of Minerals at Elevated Temperature Relevant to Venus Exploration
NASA Technical Reports Server (NTRS)
Sharma, Shiv K.; Misra, Anupam K.; Singh, Upendra N.
2008-01-01
We have used a remote time-resolved telescopic Raman system equipped with 532 nm pulsed laser excitation and a gated intensified CCD (ICCD) detector for measuring Raman spectra of a number of minerals at high temperature to 970 K. Remote Raman measurements were made with samples at 9-meter in side a high-temperature furnace by gating the ICCD detector with 2 micro-sec gate to minimize interference from blackbody emission from mineral surfaces at high temperature as well as interference from ambient light. A comparison of Raman spectra of gypsum (CaSO4.2H2O), dolomite (CaMg(CO3)2), and olivine (Mg2Fe2-xSiO4), as a function of temperature shows that the Raman lines remains sharp and well defined even in the high-temperature spectra. In the case of gypsum, Raman spectral fingerprints of CaSO4.H2O at 518 K were observed due to dehydration of gypsum. In the case of dolomite, partial mineral dissociation was observed at 973 K at ambient pressure indicating that some of the dolomite might survive on Venus surface that is at approximately 750 K and 92 atmospheric pressure. Time-resolved Raman spectra of low clino-enstatite (MgSiO3) measured at 75 mm from the sample in side the high-temperature furnace also show that the Raman lines remains sharp and well defined in the high temperature spectra. These high-temperature remote Raman spectra of minerals show that time-resolved Raman spectroscopy can be used as a potential tool for exploring Venus surface mineralogy at shorter (75 mm) and long (9 m) distances from the samples both during daytime and nighttime. The remote Raman system could also be used for measuring profiles of molecular species in the dense Venus atmosphere during descent as well as on the surface.
NASA Astrophysics Data System (ADS)
Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.
2016-05-01
Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.
Moros, J; Lorenzo, J A; Laserna, J J
2011-07-01
In general, any standoff sensor for the effective detection of explosives must meet two basic requirements: first, a capacity to detect the response generated from only a small amount of material located at a distance of several meters (high sensitivity) and second, the ability to provide easily distinguishable responses for different materials (high specificity). Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) are two analytical techniques which share similar instrumentation and, at the same time, generate complementary data. These factors have been taken into account recently for the design of sensors used in the detection of explosives. Similarly, research on the proper integration of both techniques has been around for a while. A priori, the different operational conditions required by the two techniques oblige the acquisition of the response for each sensor through sequential analysis, previously necessary to define the proper hierarchy of actuation. However, such an approach does not guarantee that Raman and LIBS responses obtained may relate to each other. Nonetheless, the possible advantages arising from the integration of the molecular and elemental spectroscopic information come with an obvious underlying requirement, simultaneous data acquisition. In the present paper, strong and weak points of Raman spectroscopy and LIBS for solving explosives detection problems, in terms of selectivity, sensitivity, and throughput, are critically examined, discussed, and compared for assessing the ensuing options on the fusion of the responses of both sensing technologies.
Zheng, Peng; Li, Ming; Jurevic, Richard; Cushing, Scott K.; Liu, Yuxin
2015-01-01
A surface-enhanced Raman scattering (SERS) biosensor has been developed by incorporating a gold nanohole array with a SERS probe (a gold nanostar@Raman-reporter@silica sandwich structure) into a single detection platform via DNA hybridization, which circumvents the nanoparticle aggregation and the inefficient Raman scattering issues. Strong plasmonic coupling between the Au nanostar and the Au nanohole array results in a large enhancement of the electromagnetic field, leading to amplification of the SERS signal. The SERS sensor has been used to detect Ag(i) and Hg(ii) ions in human saliva because both the metal ions could be released from dental amalgam fillings. The developed SERS sensor can be adapted as a general detection platform for non-invasive measurements of a wide range of analytes such as metal ions, small molecules, DNA and proteins in body fluids. PMID:26008641
NASA Astrophysics Data System (ADS)
Jiang, JianJun; Li, HePing; Dai, LiDong; Hu, HaiYing; Zhao, ChaoShuai
2016-03-01
The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC), to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E2 g 1 ,A1g, and 2LA(M)). Over our experimental temperature and pressure range (300-600 K and 1 atm-18.5 GPa), the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3-4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.
NASA Astrophysics Data System (ADS)
Yue, Yanfei; Bai, Yun; Basheer, P. A. Muhammed; Boland, John J.; Wang, Jing Jing
2013-04-01
Formation of ettringite and gypsum from sulfate attack together with carbonation and chloride ingress have been considered as the most serious deterioration mechanisms of concrete structures. Although Electrical Resistance Sensors and Fibre Optic Chemical Sensors could be used to monitoring the latter two mechanisms in situ, currently there is no system for monitoring the deterioration mechanisms of sulfate attack and hence still needs to be developed. In this paper, a preliminary study was carried out to investigate the feasibility of monitoring the sulfate attack with optical fibre Raman spectroscopy through characterizing the ettringite and gypsum formed in deteriorated cementitious materials under an `optical fibre excitation + spectroscopy objective collection' configuration. Bench-mounted Raman spectroscopy analysis was also used to validate the spectrum obtained from the fibre-objective configuration. The results showed that the expected Raman bands of ettringite and gypsum in the sulfate attacked cement paste have been clearly identified by the optical fibre Raman spectroscopy and are in good agreement with those identified from bench-mounted Raman spectroscopy. Therefore, based on these preliminary results, there is a good potential of developing an optical fibre Raman spectroscopy-based system for monitoring the deterioration mechanisms of concrete subjected to the sulfate attack in the future.
Kim, Saetbyeol; Tran Ngoc, Huan; Kim, Joohoon; Yoo, So Young; Chung, Hoeil
2015-07-23
A simple and sensitive surface enhanced Raman scattering (SERS)-based DNA sensor that utilizes the toehold-mediated DNA displacement reaction as a target-capturing scheme has been demonstrated. For a SERS substrate, Au-Ag bimetallic nanodendrites were electrochemically synthesized and used as a sensor platform. The incorporation of both Ag and Au was employed to simultaneously secure high sensitivity and stability of the substrate. An optimal composition of Ag and Au that satisfied these needs was determined. A double-strand composed of 'a probe DNA (pDNA)' complementary to 'a target DNA (tDNA)' and 'an indicator DNA tagged with a Raman reporter (iDNA)' was conjugated on the substrate. The conjugation made the reporter molecule close to the surface and induced generation of the Raman signal. The tDNA released the pre-hybridized iDNA from the pDNA via toehold-mediated displacement, and the displacement of the iDNA resulted in the decrease of Raman intensity. The variation of percent intensity change was sensitive and linear in the concentration range from 200fM to 20nM, and the achieved limit of detection (LOD) was 96.3fM, superior to those reported in previous studies that adopted different signal taggings based on such as fluorescence and electrochemistry. Copyright © 2015 Elsevier B.V. All rights reserved.
Aptamer-based SERRS Sensor for Thrombin Detection
Cho, Hansang; Baker, Brian R.; Wachsmann-Hogiu, Sebastian; Pagba, Cynthia V.; Laurence, Ted A.; Lane, Stephen M.; Lee, Luke P.; Tok, Jeffrey B.-H.
2012-01-01
We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human α-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5'-capped, 3'-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes. PMID:19367849
NASA Astrophysics Data System (ADS)
Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh
2016-11-01
Synthesis of orthorhombic (α) MoO3 nano-flakes by dry oxidation of RF sputtered Mo thin film is presented. The influence of Mo thickness variation, oxidation temperature and time on the crystallographic structure, surface morphology and roughness of MoO3 thin films was studied using SEM, AFM, XRD and Raman spectroscopy. A structural study shows that MoO3 is polycrystalline in nature with an α phase. It was noticed that oxidation temperature plays an important role in the formation of nano-flakes. The synthesis technique proposed is simple and suitable for large scale productions. The synthesis parameters were optimized for the fabrication of sensors. Chrome gold-based IDE (interdigitated electrodes) structures were patterned for the electrical detection of organic vapors. Sensors were exposed to wide range 5-100 ppm of organic vapors like ethanol, acetone, IPA (isopropanol alcohol) and water vapors. α-MoO3 nano-flakes have demonstrated selective sensing to acetone in the range of 10-100 ppm at 150 °C. The morphology of such nanostructures has potential in applications such as sensor devices due to their high surface area and thermal stability.
Extreme temperature stability of thermally insulating graphene-mesoporous-silicon nanocomposite
NASA Astrophysics Data System (ADS)
Kolhatkar, Gitanjali; Boucherif, Abderraouf; Rahim Boucherif, Abderrahim; Dupuy, Arthur; Fréchette, Luc G.; Arès, Richard; Ruediger, Andreas
2018-04-01
We demonstrate the thermal stability and thermal insulation of graphene-mesoporous-silicon nanocomposites (GPSNC). By comparing the morphology of GPSNC carbonized at 650 °C as-formed to that after annealing, we show that this nanocomposite remains stable at temperatures as high as 1050 °C due to the presence of a few monolayers of graphene coating on the pore walls. This does not only make this material compatible with most thermal processes but also suggests applications in harsh high temperature environments. The thermal conductivity of GPSNCs carbonized at temperatures in the 500 °C-800 °C range is determined through Raman spectroscopy measurements. They indicate that the thermal conductivity of the composite is lower than that of silicon, with a value of 13 ± 1 W mK-1 at room temperature, and not affected by the thin graphene layer, suggesting a role of the high concentration of carbon related-defects as indicated by the high intensity of the D-band compared to G-band of the Raman spectra. This morphological stability at high temperature combined with a high thermal insulation make GPSNC a promising candidate for a broad range of applications including microelectromechanical systems and thermal effect microsystems such as flow sensors or IR detectors. Finally, at 120 °C, the thermal conductivity remains equal to that at room temperature, attesting to the potential of using our nanocomposite in devices that operate at high temperatures such as microreactors for distributed chemical conversion, solid oxide fuel cells, thermoelectric devices or thermal micromotors.
Enhanced Uranium Ore Concentrate Analysis by Handheld Raman Sensor: FY15 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Samuel A.; Johnson, Timothy J.; Orton, Christopher R.
2015-11-11
High-purity uranium ore concentrates (UOC) represent a potential proliferation concern. A cost-effective, “point and shoot” in-field analysis capability to identify ore types, phases of materials present, and impurities, as well as estimate the overall purity would be prudent. Handheld, Raman-based sensor systems are capable of identifying chemical properties of liquid and solid materials. While handheld Raman systems have been extensively applied to many other applications, they have not been broadly studied for application to UOC, nor have they been optimized for this class of chemical compounds. PNNL was tasked in Fiscal Year 2015 by the Office of International Safeguards (NA-241)more » to explore the use of Raman for UOC analysis and characterization. This report summarizes the activities in FY15 related to this project. The following tasks were included: creation of an expanded library of Raman spectra of a UOC sample set, creation of optimal chemometric analysis methods to classify UOC samples by their type and level of impurities, and exploration of the various Raman wavelengths to identify the ideal instrument settings for UOC sample interrogation.« less
NASA Astrophysics Data System (ADS)
Sowoidnich, Kay; Schmidt, Heinar; Schwägele, Fredi; Kronfeldt, Heinz-Detlef
2011-05-01
Based on a miniaturized optical bench with attached 671 nm microsystem diode laser we present a portable Raman system for the rapid in-situ characterization of meat spoilage. It consists of a handheld sensor head (dimensions: 210 x 240 x 60 mm3) for Raman signal excitation and collection including the Raman optical bench, a laser driver, and a battery pack. The backscattered Raman radiation from the sample is analyzed by means of a custom-designed miniature spectrometer (dimensions: 200 x 190 x 70 mm3) with a resolution of 8 cm-1 which is fiber-optically coupled to the sensor head. A netbook is used to control the detector and for data recording. Selected cuts from pork (musculus longissimus dorsi and ham) stored refrigerated at 5 °C were investigated in timedependent measurement series up to three weeks to assess the suitability of the system for the rapid detection of meat spoilage. Using a laser power of 100 mW at the sample meat spectra can be obtained with typical integration times of 5 - 10 seconds. The complex spectra were analyzed by the multivariate statistical tool PCA (principal components analysis) to determine the spectral changes occurring during the storage period. Additionally, the Raman data were correlated with reference analyses performed in parallel. In that way, a distinction between fresh and spoiled meat can be found in the time slot of 7 - 8 days after slaughter. The applicability of the system for the rapid spoilage detection of meat and other food products will be discussed.
Dual modal endoscopic cancer detection based on optical pH sensing and Raman spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Soogeun; Kim, ByungHyun; Sohn, Won Bum; Byun, Kyung Min; Lee, Soo Yeol
2017-02-01
To discriminate between normal and cancerous tissue, a dual modal approach using Raman spectroscopy and pH sensor was designed and applied. Raman spectroscopy has demonstrated the possibility of using as diagnostic method for the early detection of precancerous and cancerous lesions in vivo. It also can be used in identifying markers associated with malignant change. However, Raman spectroscopy lacks sufficient sensitivity due to very weak Raman scattering signal or less distinctive spectral pattern. A dual modal approach could be one of the solutions to solve this issue. The level of extracellular pH in cancer tissue is lower than that in normal tissue due to increased lactic acid production, decreased interstitial fluid buffering and decreased perfusion. High sensitivity and specificity required for accurate cancer diagnosis could be achieved by combining the chemical information from Raman spectrum with metabolic information from pH level. Raman spectra were acquired by using a fiber optic Raman probe, a cooled CCD camera connected to a spectrograph and 785 nm laser source. Different transmission spectra depending on tissue pH were measured by a lossy-mode resonance sensor based on fiber optic. The discriminative capability of pH-Raman dual modal method was evaluated using principal component analysis (PCA). The obtained results showed that the pH-Raman dual modal approach can improve discriminative capability between normal and cancerous tissue, which can lead to very high sensitivity and specificity. The proposed method for cancer detection is expected to be used in endoscopic diagnosis later.
In Vivo and Ex Vivo Transcutaneous Glucose Detection Using Surface-Enhanced Raman Spectroscopy
NASA Astrophysics Data System (ADS)
Ma, Ke
Diabetes mellitus is widely acknowledged as a large and growing health concern. The lack of practical methods for continuously monitoring glucose levels causes significant difficulties in successful diabetes management. Extensive validation work has been carried out using surface-enhanced Raman spectroscopy (SERS) for in vivo glucose sensing. This dissertation details progress made towards a Raman-based glucose sensor for in vivo, transcutaneous glucose detection. The first presented study combines spatially offset Raman spectroscopy (SORS) with SERS (SESORS) to explore the possibility of in vivo, transcutaneous glucose sensing. A SERS-based glucose sensor was implanted subcutaneously in Sprague-Dawley rats. SERS spectra were acquired transcutaneously and analyzed using partial least-squares (PLS). Highly accurate and consistent results were obtained, especially in the hypoglycemic range. Additionally, the sensor demonstrated functionality at least17 days after implantation. A subsequent study further extends the application of SESORS to the possibility of in vivo detection of glucose in brain through skull. Specifically, SERS nanoantennas were buried in an ovine tissue behind a bone with 8 mm thickness and detected by using SESORS. In addition, quantitative detection through bones by using SESORS was also demonstrated. A device that could measure glucose continuously as well as noninvasively would be of great use to patients with diabetes. The inherent limitation of the SESORS approach may prevent this technique from becoming a noninvasive method. Therefore, the prospect of using normal Raman spectroscopy for glucose detection was re-examined. Quantitative detection of glucose and lactate in the clinically relevant range was demonstrated by using normal Raman spectroscopy with low power and short acquisition time. Finally, a nonlinear calibration method called least-squares support vector machine regression (LS-SVR) was investigated for analyzing spectroscopic data sets of glucose detection. Comparison studies were demonstrated between LS-SVR and PLS. LS-SVR demonstrated significant improvements in accuracy over PLS for glucose detection, especially when a global calibration model was required. The improvements imparted by LS-SVR open up the possibility of developing an accurate prediction algorithm for Raman-based glucose sensing applicable to a large human population. Overall, these studies show the high promise held by the Raman-based sensor for the challenge of optimal glycemic control.
The research of digital circuit system for high accuracy CCD of portable Raman spectrometer
NASA Astrophysics Data System (ADS)
Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin
2013-08-01
The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated double sampler; a digitally controlled variable gain amplifier and a 16-bit A/D converter which can help improve the data quality. And the acquired digital signals are transmitted into the computer via USB 2.0 data port. Our spectrometer with SHINERS technology can acquire the Raman spectrum signals efficiently in long time integration and weak signal environment, and the size of our system is well controlled for portable application.
Continuous gradient temperature Raman spectroscopy of unsaturated fatty acids
USDA-ARS?s Scientific Manuscript database
A new innovative technique gradient temperature, Raman spectroscopy (GTRS), identifies Raman frequency shifts in solid or liquid samples, and correlates them with specific temperature ranges within which flexible structures absorb heat. GTRS can easily detect changes that occur within one celcius te...
USDA-ARS?s Scientific Manuscript database
Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...
NASA Astrophysics Data System (ADS)
Adliha Abdullah, Nur; Abu Bakar, Norhayati; Shapter, Joseph G.; Mat Salleh, Muhamad; Umar, Akrajas Ali
2017-06-01
Creatinine is one of the most commonly used bio markers of renal function. This paper reports a study on detection of creatinine using silver-platinum (AgPt) nanoferns substrates to fabricate a surface-enhanced Raman spectroscopy (SERS) sensor. The AgPt nanoferns were synthesized by liquid phase deposition (LPD) where the morphology structures and thickness of the AgPt nanoferns were controlled by varying the concentration of formic acid which was acting as the reducing agent. We have obtained four different nanoferns structures and thicknesses. This study showed that the AgPt nanoferns structure synthesized with 40 mM formic acid give the highest Raman peak intensity for a 0.05 M creatinine sample.
SERS-based pesticide detection by using nanofinger sensors
NASA Astrophysics Data System (ADS)
Kim, Ansoon; Barcelo, Steven J.; Li, Zhiyong
2015-01-01
Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.
NASA Astrophysics Data System (ADS)
Sharma, S. K.; Misra, A. K.; Clegg, S. M.; Barefield, J. E.; Wiens, R. C.; Acosta, T.
2009-12-01
We have used a remote time-resolved (TR) telescopic Raman system equipped with 532 nm pulsed laser excitation and a gated intensified CCD (ICCD) detector for measuring Raman spectra of a number of minerals under two sets of conditions. The first set of experiments involved probing samples as a function of temperature ranging from 300 to 973 K at 1 atm. These experiments involve a 5x beam expander to focus the 532 nm (30 mJ/pulse 20 Hz) laser beams onto the sample at 9 m from the remote Raman system. The second set of experiments involved placing the samples in a high pressure vessel with a sapphire window containing supercritical CO2 at pressures up to 93 atm and 423 K. At high temperatures and ambient pressure, the remote Raman measurements were made with samples at 9 meter distance inside a high temperature furnace by gating the ICCD detector with 2 micro-s gate to minimize interference from blackbody emission from mineral surfaces at high temperature as well as interference from ambient light. A comparison of Raman spectra of gypsum (CaSO4.2H2O), dolomite (CaMg(CO3)2), and olivine (Mg2Fe2-xSiO4), as a function of temperature shows that the Raman lines remains sharp and well defined even in the high temperature spectra. In the pressure vessel, Cr3+ fluorescence from sapphire window interfere with the Raman spectra of hydrous minerals in the high-frequency region (2500-4500 cm-1). With time-resolved Raman measurements the interference of the fluorescence in the Raman spectra on minerals was minimized by gating ICCD to <100 ns. The Fermi resonance doublet of CO2 molecules consisting of Raman lines at 1285 (2ν2) and 1388 (ν1) cm-1 does not interfere with the major Raman fingerprints of silicates, carbonate, sulfates minerals. With suitable time delay of the ICCD detector, the Raman bands from supercritical CO2 atmosphere can be minimized providing pure Raman spectra of the mineral targets. We will present remote Raman data on silicates (olivine, pyroxene, quartz, feldspars and talc), dolomite, gypsum, hydrous iron sulfate and barite under supercritical CO2 environment. With TR remote Raman system using 532 nm (15 mJ/pulse, 20Hz) laser excitation, a large varieties of minerals could be easily identified from their respective Raman fingerprints typically in 1s. Minerals with low Raman cross section (e.g., feldspars, pyroxene, olivine, talc, etc) can be detected and quantified from their respective Raman spectra in 10 to 30 s. These results show that time-resolve remote Raman system is capable of making spectral measurements at several hundred to thousand target points on Venus surface within limited (a few hours) expected lifetime of a lander because of extreme temperature and pressure conditions.
Temperature dependence of sapphire fiber Raman scattering
Liu, Bo; Yu, Zhihao; Tian, Zhipeng; ...
2015-04-27
Anti-Stokes Raman scattering in sapphire fiber has been observed for the first time. Temperature dependence of Raman peaks’ intensity, frequency shift, and linewidth were also measured. Three anti-Stokes Raman peaks were observed at temperatures higher than 300°C in a 0.72-m-long sapphire fiber excited by a second-harmonic Nd YAG laser. The intensity of anti-Stokes peaks are comparable to that of Stokes peaks when the temperature increases to 1033°C. We foresee the combination of sapphire fiber Stokes and anti-Stokes measurement in use as a mechanism for ultrahigh temperature sensing.
NASA Astrophysics Data System (ADS)
Wang, Li; Wang, Jun; Bao, Dong; Yang, Rong; Yan, Qing; Gao, Fei; Hua, Dengxin
2018-01-01
All fiber Raman temperature lidar for space borne platform has been proposed for profiling of the temperature with high accuracy. Fiber Bragg grating (FBG) is proposed as the spectroscopic system of Raman lidar because of good wavelength selectivity, high spectral resolution and high out-of-band rejection rate. Two sets of FBGs at visible wavelength 532 nm as Raman spectroscopy system are designed for extracting the rotational Raman spectra of atmospheric molecules, which intensities depend on the atmospheric temperature. The optimization design of the tuning method of an all-fiber rotational Raman spectroscopy system is analyzed and tested for estimating the potential temperature inversion error caused by the instability of FBG. The cantilever structure with temperature control device is designed to realize the tuning and stabilization of the central wavelengths of FBGs. According to numerical calculation of FBG and finite element analysis of the cantilever structure, the center wavelength offset of FBG is 11.03 nm/°C with the temperature change in the spectroscopy system. By experimental observation, the center wavelength offset of surface-bonded FBG is 9.80 nm/°C with temperature changing when subjected to certain strain for the high quantum number channel, while 10.01 nm/°C for the low quantum number channel. The tunable wavelength range of FBG is from 528.707 nm to 529.014 nm for the high quantum number channel and from 530.226 nm to 530.547 nm for the low quantum number channel. The temperature control accuracy of the FBG spectroscopy system is up to 0.03 °C, the corresponding potential atmospheric temperature inversion error is 0.04 K based on the numerical analysis of all-fiber Raman temperature lidar. The fine tuning and stabilization of the FBG wavelength realize the elaborate spectroscope of Raman lidar system. The conclusion is of great significance for the application of FBG spectroscopy system for space-borne platform Raman lidar.
Temperature-dependent μ-Raman investigation of struvite crystals.
Prywer, Jolanta; Kasprowicz, D; Runka, T
2016-04-05
The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.
Raman lidar/AERI PBL Height Product
Ferrare, Richard
2012-12-14
Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.
Brozek-Pluska, Beata; Kopec, Monika; Surmacki, Jakub; Abramczyk, Halina
2015-04-07
We present the results of Raman studies in the temperature range of 293-77 K on vibrational properties of linoleic and oleic acids and Raman microspectroscopy of human breast tissues at room temperature. Our results confirmed the significant role of unsaturated fatty acids in differentiation of noncancerous and cancerous breast tissues and the role of vibrational spectroscopy in phase transition identification. We have found that vibrational properties are very sensitive indicators to specify phases and phase transitions typical of unsaturated fatty acids at the molecular level. Using Raman spectroscopy we have identified high-temperature, middle-temperature and low-temperature phases of linoleic acid. Results obtained for linoleic acid were compared with parameters characteristic of α and γ phases of oleic acid - the parent compound of polyunsaturated fatty acids.
Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C
USDA-ARS?s Scientific Manuscript database
Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...
Temperature dependent Raman spectroscopy of melamine and structural analogs in milk powder
USDA-ARS?s Scientific Manuscript database
Hyperspectral Raman imaging has the potential for rapid screening of solid-phase samples for potential adulterants. We found that the Raman spectra of melamine analogs changed dramatically and uniquely as a function of elevated temperature. Raman spectra were acquired for urea, biuret, cyanuric acid...
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Wirelessly Interrogated Wear or Temperature Sensors; Processing Nanostructured Sensors Using Microfabrication Techniques; Optical Pointing Sensor; Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging; High-Temperature Optical Sensor; Integral Battery Power Limiting Circuit for Intrinsically Safe Applications; Configurable Multi-Purpose Processor; Squeezing Alters Frequency Tuning of WGM Optical Resonator; Automated Computer Access Request System; Range Safety for an Autonomous Flight Safety System; Fast and Easy Searching of Files in Unisys 2200 Computers; Parachute Drag Model; Evolutionary Scheduler for the Deep Space Network; Modular Habitats Comprising Rigid and Inflatable Modules; More About N2O-Based Propulsion and Breathable-Gas Systems; Ultrasonic/Sonic Rotary-Hammer Drills; Miniature Piezoelectric Shaker for Distribution of Unconsolidated Samples to Instrument Cells; Lunar Soil Particle Separator; Advanced Aerobots for Scientific Exploration; Miniature Bioreactor System for Long-Term Cell Culture; Electrochemical Detection of Multiple Bioprocess Analytes; Fabrication and Modification of Nanoporous Silicon Particles; High-Altitude Hydration System; Photon Counting Using Edge-Detection Algorithm; Holographic Vortex Coronagraph; Optical Structural Health Monitoring Device; Fuel-Cell Power Source Based on Onboard Rocket Propellants; Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments; Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS; Improved Speed and Functionality of a 580-GHz Imaging Radar; Bolometric Device Based on Fluxoid Quantization; Algorithms for Learning Preferences for Sets of Objects; Model for Simulating a Spiral Software-Development Process; Algorithm That Synthesizes Other Algorithms for Hashing; Algorithms for High-Speed Noninvasive Eye-Tracking System; and Adapting ASPEN for Orbital Express.
Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application
NASA Astrophysics Data System (ADS)
Saritas, Sevda; Kundakci, Mutlu; Coban, Omer; Tuzemen, Sebahattin; Yildirim, Muhammet
2018-07-01
Iron oxide is a widely used sensitive material for gas sensor applications. They have fascinated much attention in the field of gas sensing and detecting under atmospheric conditions and at 200 °C temperature due to their low cost in production; simplicity and fast of their use; large number of detectable gases. Iron oxide gas sensors constitute investigated for hazardous gases used in various fields. The morphological structure (particle size, pore size, etc.), optical, magnetic and electrical properties of Ni:Fe2O3, Mg:Fe2O3 and Fe2O3 thin films which grown by Spray pyrolysis (SP) have been investigated. XRD, Raman and AFM techniques have been used for structural analysis. AFM measurements have been provided very useful information about surface topography. I-V (Van der Pauw) technique has been used for response of gas sensor. These devices offer a wide variety of advantages over traditional analytical instruments such as low cost, short response time, easy manufacturing, and small size.
NASA Astrophysics Data System (ADS)
Abdullah, Q. N.; Ahmed, A. R.; Ali, A. M.; Yam, F. K.; Hassan, Z.; Bououdina, M.; Almessiere, M. A.
2018-05-01
This paper presents the investigation of the influence of the ammoniating time of GaN nanowires (NWs) on the crystalline structure, surface morphology, and optical characteristics. Morphological analysis indicates the growth of good quality and high density of NWs with diameters around 50 nm and lengths up to tens of microns after ammoniating for 30 min. Structural analysis shows that GaN NWs have a typical hexagonal wurtzite crystal structure. Raman spectroscopy confirms the formation of GaN compound with the presence of compressive stress. Photoluminescence (PL) measurements revealed two band emissions, an UV and a broad visible emission. Hydrogen sensor was subsequently fabricated by depositing Pt Schottky contact onto GaN NWs film. The sensor response was measured at various H2 concentrations ranged from 200 up to 1200 ppm at room temperature. It was found that the response increases significantly for low H2 concentration (200-300 ppm) to reach about 50% then increases smoothly to reach 60% at 1200 ppm. The as-fabricated sensor possesses higher performances as compared to similar devices reported in the literature.
Improved sensing using simultaneous deep-UV Raman and fluorescence detection-II
NASA Astrophysics Data System (ADS)
Hug, W. F.; Bhartia, R.; Sijapati, K.; Beegle, L. W.; Reid, R. D.
2014-05-01
Photon Systems in collaboration with JPL is continuing development of a new technology robot-mounted or hand-held sensor for reagentless, short-range, standoff detection and identification of trace levels chemical, biological, and explosive (CBE) materials on surfaces. This deep ultraviolet CBE sensor is the result of Army STTR and DTRA programs. The evolving 10 to 15 lb, 20 W, sensor can discriminate CBE from background clutter materials using a fusion of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions collected is less than 1 ms. RR is a method that provides information about molecular bonds, while LINF spectroscopy is a much more sensitive method that provides information regarding the electronic configuration of target molecules. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using excitation in the deep UV where there are four main advantages compared to near-UV, visible or near-IR counterparts. 1) Excited between 220 and 250 nm, Raman emission occur within a fluorescence-free region of the spectrum, eliminating obscuration of weak Raman signals by fluorescence from target or surrounding materials. 2) Because Raman and fluorescence occupy separate spectral regions, detection can be done simultaneously, providing an orthogonal set of information to improve both sensitivity and lower false alarm rates. 3) Rayleigh law and resonance effects increase Raman signal strength and sensitivity of detection. 4) Penetration depth into target in the deep UV is short, providing spatial/spectral separation of a target material from its background or substrate. 5) Detection in the deep UV eliminates ambient light background and enable daylight detection.
Highly Sensitive NiO Nanoparticle based Chlorine Gas Sensor
NASA Astrophysics Data System (ADS)
Arif, Mohd.; Sanger, Amit; Singh, Arun
2018-03-01
We have synthesized a chemiresistive sensor for chlorine (Cl2) gas in the range of 2-200 ppm based on nickel oxide (NiO) nanoparticles obtained by wet chemical synthesis. The nanoparticles were characterized by x-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) spectroscopy. XRD spectra of the sensing layer revealed the cubic phase of NiO nanoparticles. The NiO nanoparticle size was calculated to be ˜ 21 nm using a Williamson-Hall plot. The bandgap of the NiO nanoparticles was found to be 3.13 eV using Tauc plots of the absorbance curve. Fast response time (12 s) and optimum recovery time (˜ 27 s) were observed for 10 ppm Cl2 gas at moderate temperature of 200°C. These results demonstrate the potential application of NiO nanoparticles for fabrication of highly sensitive and selective sensors for Cl2 gas.
Raman and photothermal spectroscopies for explosive detection
NASA Astrophysics Data System (ADS)
Finot, Eric; Brulé, Thibault; Rai, Padmnabh; Griffart, Aurélien; Bouhélier, Alexandre; Thundat, Thomas
2013-06-01
Detection of explosive residues using portable devices for locating landmine and terrorist weapons must sat- isfy the application criteria of high reproducibility, specificity, sensitivity and fast response time. Vibrational spectroscopies such as Raman and infrared spectroscopies have demonstrated their potential to distinguish the members of the chemical family of more than 30 explosive materials. The characteristic chemical fingerprints in the spectra of these explosives stem from the unique bond structure of each compound. However, these spectroscopies, developed in the early sixties, suffer from a poor sensitivity. On the contrary, MEMS-based chemical sensors have shown to have very high sensitivity lowering the detection limit down to less than 1 picogram, (namely 10 part per trillion) using sensor platforms based on microcantilevers, plasmonics, or surface acoustic waves. The minimum amount of molecules that can be detected depends actually on the transducer size. The selectivity in MEMS sensors is usually realized using chemical modification of the active surface. However, the lack of sufficiently selective receptors that can be immobilized on MEMS sensors remains one of the most critical issues. Microcantilever based sensors offer an excellent opportunity to combine both the infrared photothermal spectroscopy in their static mode and the unique mass sensitivity in their dynamic mode. Optical sensors based on localized plasmon resonance can also take up the challenge of addressing the selectivity by monitoring the Surface Enhanced Raman spectrum down to few molecules. The operating conditions of these promising localized spectroscopies will be discussed in terms of reliability, compactness, data analysis and potential for mass deployment.
NASA Astrophysics Data System (ADS)
Gwak, Raekeun; Kim, Hongki; Yoo, Seung Min; Lee, Sang Yup; Lee, Gyoung-Ja; Lee, Min-Ku; Rhee, Chang-Kyu; Kang, Taejoon; Kim, Bongsoo
2016-01-01
Uranium is an essential raw material in nuclear energy generation; however, its use raises concerns about the possibility of severe damage to human health and the natural environment. In this work, we report an ultrasensitive uranyl ion (UO22+) detection method in natural water that uses a plasmonic nanowire interstice (PNI) sensor combined with a DNAzyme-cleaved reaction. UO22+ induces the cleavage of DNAzymes into enzyme strands and released strands, which include Raman-active molecules. A PNI sensor can capture the released strands, providing strong surface-enhanced Raman scattering signal. The combination of a PNI sensor and a DNAzyme-cleaved reaction significantly improves the UO22+ detection performance, resulting in a detection limit of 1 pM and high selectivity. More importantly, the PNI sensor operates perfectly, even in UO22+-contaminated natural water samples. This suggests the potential usefulness of a PNI sensor in practical UO22+-sensing applications. We anticipate that diverse toxic metal ions can be detected by applying various ion-specific DNA-based ligands to PNI sensors.
Dual-excitation wavelength resonance Raman explosives detector
NASA Astrophysics Data System (ADS)
Yellampalle, Balakishore; Sluch, Mikhail; Wu, Hai-Shan; Martin, Robert; McCormick, William; Ice, Robert; Lemoff, Brian E.
2013-05-01
Deep-ultraviolet resonance Raman spectroscopy (DUVRRS) is a promising approach to stand-off detection of explosive traces due to: 1) resonant enhancement of Raman cross-section, 2) λ-4-cross-section enhancement, and 3) fluorescence and solar background free signatures. For trace detection, these signal enhancements more than offset the small penetration depth due to DUV absorption. A key challenge for stand-off sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have interfering spectral peaks. To address this, we are developing a stand-off explosive sensor using DUVRRS with two simultaneous DUV excitation wavelengths. Due to complex interplay of resonant enhancement, self-absorption and laser penetration depth, significant amplitude variation is observed between corresponding Raman bands with different excitation wavelengths. These variations with excitation wavelength provide an orthogonal signature that complements the traditional Raman signature to improve specificity relative to single-excitation-wavelength techniques. As part of this effort, we are developing two novel CW DUV lasers, which have potential to be compact, and a compact dual-band high throughput DUV spectrometer, capable of simultaneous detection of Raman spectra in two spectral windows. We have also developed a highly sensitive algorithm for the detection of explosives under low signal-to-noise situations.
Jochum, Tobias; Rahal, Leila; Suckert, Renè J; Popp, Jürgen; Frosch, Torsten
2016-03-21
In today's fruit conservation rooms the ripening of harvested fruit is delayed by precise management of the interior oxygen (O2) and carbon dioxide (CO2) levels. Ethylene (C2H4), a natural plant hormone, is commonly used to trigger fruit ripening shortly before entering the market. Monitoring of these critical process gases, also of the increasingly favored cooling agent ammonia (NH3), is a crucial task in modern postharvest fruit management. The goal of this work was to develop and characterize a gas sensor setup based on fiber enhanced Raman spectroscopy for fast (time resolution of a few minutes) and non-destructive process gas monitoring throughout the complete postharvest production chain encompassing storage and transport in fruit conservation chambers as well as commercial fruit ripening in industrial ripening rooms. Exploiting a micro-structured hollow-core photonic crystal fiber for analyte gas confinement and sensitivity enhancement, the sensor features simultaneous quantification of O2, CO2, NH3 and C2H4 without cross-sensitivity in just one single measurement. Laboratory measurements of typical fruit conservation gas mixtures showed that the sensor is capable of quantifying O2 and CO2 concentration levels with accuracy of 3% or less with respect to reference concentrations. The sensor detected ammonia concentrations, relevant for chemical alarm purposes. Due to the high spectral resolution of the gas sensor, ethylene could be quantified simultaneously with O2 and CO2 in a multi-component mixture. These results indicate that fiber enhanced Raman sensors have a potential to become universally usable on-site gas sensors for controlled atmosphere applications in postharvest fruit management.
Micro-Raman spectroscopy for meat type detection
NASA Astrophysics Data System (ADS)
De Biasio, M.; Stampfer, P.; Leitner, R.; Huck, C. W.; Wiedemair, V.; Balthasar, D.
2015-06-01
The recent horse meat scandal in Europe increased the demand for optical sensors that can identify meat type. Micro-Raman spectroscopy is a promising technique for the discrimination of meat types. Here, we present micro-Raman measurements of chicken, pork, turkey, mutton, beef and horse meat test samples. The data was analyzed with different combinations of data normalization and classification approaches. Our results show that Raman spectroscopy can discriminate between different meat types. Red and white meat are easily discriminated, however a sophisticated chemometric model is required to discriminate species within these groups.
Nanostructured sapphire optical fiber for sensing in harsh environments
NASA Astrophysics Data System (ADS)
Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry
2017-05-01
We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.
NASA Astrophysics Data System (ADS)
Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai
2016-01-01
A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08372a
Phonon shift in chemically exfoliated WS2 nanosheet
NASA Astrophysics Data System (ADS)
Sarkar, Abdus Salam; Pal, Suman Kalyan
2018-04-01
We have synthesized few layer WS2 nanosheets in a low boiling point solvent. Few layer of WS2 sheets are characterized by various techniques such as UV-visible and Raman spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). UV-Vis absorption spectra confirm the well dispersed in isopropyl alcohol. SEM and TEM images indicate the sheet like morphology of WS2. Atomic force microscopy image and room temperature Raman spectroscopy confirm the exfoliation of few layer (4-5 layer) of WS2. Further, Raman spectroscopy was used as a meteorology tool to determine the temperature co-efficient. We have systematically investigated the temperature dependent Raman spectroscopic behavior of few layer WS2. Our results depict the softening of the Raman modes E12g in plane vibration and A1g out of plane vibration with increasing the temperature from 77 K to 300 K. Softening of the Raman modes could be explained in terms of the double resonance which is active in the layered materials. The observed temperature coefficients for two Raman peaks E12g and A1g, are - 0.022 cm-1 and -0.009 cm-1, respectively.
Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian
2018-01-01
Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate feedback on process performance. This could help significantly improve cell therapy bioprocessing by allowing proactive decision-making based on real-time process data. Going forward, these types of in-line sensors also open up opportunities to improve bioprocesses further through concepts such as adaptive manufacturing. PMID:29556497
Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian
2018-01-01
Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate feedback on process performance. This could help significantly improve cell therapy bioprocessing by allowing proactive decision-making based on real-time process data. Going forward, these types of in-line sensors also open up opportunities to improve bioprocesses further through concepts such as adaptive manufacturing.
Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering.
Dvoynenko, Mykhaylo M; Wang, Juen-Kai
2007-12-15
The authors report two methods to determine electromagnetic and chemical enhancement factors in surface-enhanced Raman scattering (SERS), which are based on saturation property and decay dynamics of photoluminescence and concurrent measurements of photoluminescence and resonance Raman scattering intensities. Considerations for experimental implementation are discussed. This study is expected to facilitate the understanding of SERS mechanisms and the advancement of the usage of SERS in chemical and biological sensor applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnotti, Gaetano; Barlow, Robert S.
2016-07-12
This study introduces dual-resolution Raman spectroscopy as a novel diagnostics approach for measurements of temperature and species in flames where multiple hydrocarbons are present. Simultaneous measurement of multiple hydrocarbons is challenging because their vibrational Raman spectra in the C–H stretch region are closely overlapped and are not well known over the range of temperature encountered in flames. Overlap between the hydrocarbon spectra is mitigated by adding a second spectrometer, with a higher dispersion grating, to collect the Raman spectra in the C–H stretch region. A dual-resolution Raman spectroscopy instrument has been developed and optimized for measurements of major species (Nmore » 2, O 2, H 2O, CO 2, CO, H 2, DME) and major combustion intermediates (CH 4, CH 2O, C 2H 2, C 2H 4 and C 2H 6) in DME–air flames. The temperature dependences of the hydrocarbon Raman spectra over fixed spectral regions have been determined through a series of measurements in laminar Bunsen-burner flames, and have been used to extend a library of previously acquired Raman spectra up to flame temperature. The paper presents the first Raman measurements of up to twelve species in hydrocarbon flames, and the first quantitative Raman measurements of formaldehyde in flames. Lastly, the accuracy and precision of the instrument are determined from measurements in laminar flames and the applicability of the instrument to turbulent DME–air flames is discussed.« less
Research on the ϕ-OTDR fiber sensor sensitive for all of the distance
NASA Astrophysics Data System (ADS)
Kong, Yong; Liu, Yang; Shi, Yi; Ansari, Farhad; Taylor, Todd
2018-01-01
In this paper, a modified construction for the traditional ϕ-OTDR fiber sensor sensitive for all of distance is presented, the related numerical simulation and experiment analysis results show that this construction can reduce the gain imbalance for all of the distance along the fiber caused by the Rayleigh scattering loss of the fiber and the gain imbalance of Raman fiber amplifier in this fiber sensor system. In order to improve further the vibration sensitivity of this system, the possible methods to restrain the influences of modulation instability effect, Stimulated Brillouin effect, reduce the amplified spontaneous emission (ASE) noises of Raman laser (RL) and Erbium3+-doped fiber amplifiers (EDFA), double Rayleigh backscattering noise in this system are discussed, which will offer a great reference value for the science research and engineering application in the field of fiber sensor as we believe.
Ultrasensitive Raman sensor based on a highly scattering porous structure
NASA Astrophysics Data System (ADS)
Yakovlev, V. V.
2010-02-01
Analytical methods capable of in situ monitoring of water quality have been in high demand for environmental safety, the identification of minute impurities and fundamental understanding of potential risks of these molecular species. Raman spectroscopy, which provides 'fingerprint' information about molecular species in the excitation volume, is a powerful tool for in vivo diagnostics. However, due to a relatively weak Raman signal (~ 1 out of 1014 incident photons produces the useful signal) there is a need to significantly (by many orders of magnitude) enhance this signal, to raise the detection sensitivity of this technique. Traditionally, surface enhanced Raman spectroscopy is employed to dramatically increase the local field intensity and substantially improve the efficiency of Raman scattering. However, the above enhancement occurs only in "hot spots", which represent only a small percent of the total surface are of the substrate. Plasmonic nanostructures are also found to be hard to manufacture in large quantities with the desired degree of reproducibility and to be unable to handle high laser power. We propose and experimentally demonstrate a new type of approach for ultrasensitive Raman sensing. It is based on manufacturing a random porous structure of high-index material, such as GaP, and use the effect of light localization to help improving the detection sensitivity of such sensor. The desired structure was manufactured using electrochemical etching of GaP wafers. The observed Raman signal amplitudes are favorably compared to the best known plasmonic substrates.
NASA Technical Reports Server (NTRS)
Cooper, John B.; Wise, Kent L.; Jensen, Brian J.
1997-01-01
A modification to a commercial FT-Raman spectrometer is presented for the elimination of thermal backgrounds in FT-Raman spectra. The modification involves the use of a mechanical chopper to modulate the CW laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital signal processor lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting modulated FT-Raman fiber-optic spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 370 C. In addition, the signal/noise of generated Raman spectra is greater than for spectra collected with the conventional FT-Raman under identical conditions and incident laser power. This is true for both room-temperature and hot samples. The method allows collection of data using preexisting spectrometer software. The total cost of the modification (excluding fiber optics) is approximately $3000 and requires less than 2 h to implement. This is the first report of Fr-Raman spectra collected at temperatures in excess of 300 C in the absence of thermal backgrounds.
Temperature dependent Raman investigation of multiwall carbon nanotubes
NASA Astrophysics Data System (ADS)
Dilawar Sharma, Nita; Singh, Jasveer; Vijay, Aditi
2018-04-01
We report anomalous observations in our investigations of the temperature dependent Raman spectroscopic measurement of multiwall carbon nanotubes. The Micro-Raman spectra were recorded with the laser source having 514.5 nm wavelength and within the temperature range of 80-440 K. The major Raman bands, the G and D band, are observed at 1584 and 1348 cm-1, respectively, at ambient. The absence of the radial breathing mode confirms the multiwall nature of carbon nanotubes. It has been observed that with an increase in the temperature above 120 K, there is a shift in Raman bands towards the higher wave-number region. However, a drop in the G and D bands is observed from 80 to 120 K which was not observed for the second order band. Thereafter, all Raman modes exhibited mode hardening up to about 320 K followed by mild softening of the phonon modes. Linear temperature coefficients were found to have higher contribution to mode hardening as compared to higher order terms. Total anharmonicity estimation shows a predominant effect of the quasi-harmonic term as compared to the true anharmonic term.
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; DeGroot, Wilhelmus A.; Locke, Randy J.; Anderson, Robert C.
2002-01-01
Spontaneous vibrational Raman scattering was used to measure temperature in an aviation combustor sector burning jet fuel. The inlet temperature ranged from 670 K (750 F) to 756 K (900 F) and pressures from 13 to 55 bar. With the exception of a discrepancy that we attribute to soot, good agreement was seen between the Raman-derived temperatures and the theoretical temperatures calculated from the inlet conditions. The technique used to obtain the temperature uses the relationship between the N2 anti-Stokes and Stokes signals, within a given Raman spectrum. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of fuel/air ratios. This work represents the first such measurements in a high-pressure, research aero-combustor facility.
Temperature induced phonon behaviour in germanium selenide thin films probed by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Taube, A.; Łapińska, A.; Judek, J.; Wochtman, N.; Zdrojek, M.
2016-08-01
Here we report a detailed study of temperature-dependent phonon properties of exfoliated germanium selenide thin films (several tens of nanometers thick) probed by Raman spectroscopy in the 70-350 K temperature range. The temperature-dependent behavior of the positions and widths of the Raman modes was nonlinear. We concluded that the observed effects arise from anharmonic phonon-phonon interactions and are explained by the phenomenon of optical phonon decay into acoustic phonons. At temperatures above 200 K, the position of the Raman modes tended to be linearly dependent, and the first order temperature coefficients χ were -0.0277, -0.0197 and -0.031 cm-1 K-1 for B 3g , A g(1) and A g(2) modes, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Radhe; Sahoo, Satyaprakash, E-mail: satya504@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Chitturi, Venkateswara Rao
2015-12-07
Graphitic carbon nanospheres (GCNSs) were prepared by a unique acidic treatment of multi-walled nanotubes. Spherical morphology with a narrow size distribution was confirmed by transmission electron microscopy studies. The room temperature Raman spectra showed a clear signature of D- and G-peaks at around 1350 and 1591 cm{sup −1}, respectively. Temperature dependent Raman scattering measurements were performed to understand the phonon dynamics and first order temperature coefficients related to the D- and G-peaks. The temperature dependent Raman spectra in a range of 83–473 K were analysed, where the D-peak was observed to show a red-shift with increasing temperature. The relative intensity ratio ofmore » D- to G-peaks also showed a significant rise with increasing temperature. Such a temperature dependent behaviour can be attributed to lengthening of the C-C bond due to thermal expansion in material. The estimated value of the thermal conductivity of GCNSs ∼0.97 W m{sup −1} K{sup −1} was calculated using Raman spectroscopy. In addition, the effect of pulsed laser treatment on the GCNSs was demonstrated by analyzing the Raman spectra of post irradiated samples.« less
NASA Technical Reports Server (NTRS)
1996-01-01
Under a Small Business Innovation Research (SBIR) contract to Kennedy Space Center, EIC Laboratories invented a Raman Spectrograph with fiber optic sampling for space applications such as sensing hazardous fuel vapors and making on-board rapid analyses of chemicals and minerals. Raman spectroscopy is a laser-based measurement technique that provides through a unique vibrational spectrum a molecular 'fingerprint,' and can function in aqueous environments. EIC combined optical fiber technology with Raman methods to develop sensors that can be operated at a distance from the spectrographic analysis instruments and the laser excitation source. EIC refined and commercialized the technology to create the Fiber Optic Raman Spectrograph and the RamanProbe. Commercial applications range from process control to monitoring hazardous materials.
Subframe Burst Gating for Raman Spectroscopy in Combustion
NASA Technical Reports Server (NTRS)
Kojima, Jun; Fischer, David; Nguyen, Quang-Viet
2010-01-01
We describe an architecture for spontaneous Raman scattering utilizing a frame-transfer CCD sensor operating in a subframe burst-gating mode to realize time-resolved combustion diagnostics. The technique permits all-electronic optical gating with microsecond shutter speeds 5 J.Ls) without compromising optical throughput or image fidelity. When used in conjunction with a pair of orthogonally polarized excitation lasers, the technique measures single-shot vibrational Raman scattering that is minimally contaminated by problematic optical background noise.
Industrial Raman gas sensing for real-time system control
NASA Astrophysics Data System (ADS)
Buric, M.; Mullen, J.; Chorpening, B.; Woodruff, S.
2014-06-01
Opportunities exist to improve on-line process control in energy applications with a fast, non-destructive measurement of gas composition. Here, we demonstrate a Raman sensing system which is capable of reporting the concentrations of numerous species simultaneously with sub-percent accuracy and sampling times below one-second for process control applications in energy or chemical production. The sensor is based upon a hollow-core capillary waveguide with a 300 micron bore with reflective thin-film metal and dielectric linings. The effect of using such a waveguide in a Raman process is to integrate Raman photons along the length of the sample-filled waveguide, thus permitting the acquisition of very large Raman signals for low-density gases in a short time. The resultant integrated Raman signals can then be used for quick and accurate analysis of a gaseous mixture. The sensor is currently being tested for energy applications such as coal gasification, turbine control, well-head monitoring for exploration or production, and non-conventional gas utilization. In conjunction with an ongoing commercialization effort, the researchers have recently completed two prototype instruments suitable for hazardous area operation and testing. Here, we report pre-commercialization testing of those field prototypes for control applications in gasification or similar processes. Results will be discussed with respect to accuracy, calibration requirements, gas sampling techniques, and possible control strategies of industrial significance.
Combined raman and IR fiber-based sensor for gas detection
Carter, Jerry C; Chan, James W; Trebes, James E; Angel, Stanley M; Mizaikoff, Boris
2014-06-24
A double-pass fiber-optic based spectroscopic gas sensor delivers Raman excitation light and infrared light to a hollow structure, such as a hollow fiber waveguide, that contains a gas sample of interest. A retro-reflector is placed at the end of this hollow structure to send the light back through the waveguide where the light is detected at the same end as the light source. This double pass retro reflector design increases the interaction path length of the light and the gas sample, and also reduces the form factor of the hollow structure.
Measurement of magnetic field gradients using Raman spectroscopy in a fountain
NASA Astrophysics Data System (ADS)
Srinivasan, Arvind; Zimmermann, Matthias; Efremov, Maxim A.; Davis, Jon P.; Narducci, Frank A.
2017-02-01
In many experiments involving cold atoms, it is crucial to know the strength of the magnetic field and/or the magnetic field gradient at the precise location of a measurement. While auxiliary sensors can provide some of this information, the sensors are usually not perfectly co-located with the atoms and so can only provide an approximation to the magnetic field strength. In this article, we describe a technique to measure the magnetic field, based on Raman spectroscopy, using the same atomic fountain source that will be used in future magnetically sensitive measurements.
The current status of airborne laser fluorosensing. [of aquatic environments
NASA Technical Reports Server (NTRS)
Oneil, R. A.; Hoge, F. E.; Bristow, M. P. F.
1981-01-01
Airborne laser fluorosensors have been used to identify and quantify specific substances in the aquatic environment. It has been shown that the sensor can identify and classify oil films. If the extinction coefficient is known then the thickness of thinner films (less than 20 micrometers) may be calculated. The intensity of the water Raman signal is proportional to the water volume sampled by the sensor and hence an effective attenuation coefficient for the water can be calculated. The same Raman measurement provides the normalization necessary to map chlorophyll and dye concentrations using the intensity of their respective fluorescence signatures.
Low vibration high numerical aperture automated variable temperature Raman microscope
Tian, Y.; Reijnders, A. A.; Osterhoudt, G. B.; ...
2016-04-05
Raman micro-spectroscopy is well suited for studying a variety of properties and has been applied to wide- ranging areas. Combined with tuneable temperature, Raman spectra can offer even more insights into the properties of materials. However, previous designs of variable temperature Raman microscopes have made it extremely challenging to measure samples with low signal levels due to thermal and positional instability as well as low collection efficiencies. Thus, contemporary Raman microscope has found limited applicability to probing the subtle physics involved in phase transitions and hysteresis. This paper describes a new design of a closed-cycle, Raman microscope with full polarizationmore » rotation. High collection efficiency, thermal and mechanical stability are ensured by both deliberate optical, cryogenic, and mechanical design. Measurements on two samples, Bi 2Se 3 and V 2O 3, which are known as challenging due to low thermal conductivities, low signal levels and/or hysteretic effects, are measured with previously undemonstrated temperature resolution.« less
Low vibration high numerical aperture automated variable temperature Raman microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Y.; Reijnders, A. A.; Osterhoudt, G. B.
Raman micro-spectroscopy is well suited for studying a variety of properties and has been applied to wide- ranging areas. Combined with tuneable temperature, Raman spectra can offer even more insights into the properties of materials. However, previous designs of variable temperature Raman microscopes have made it extremely challenging to measure samples with low signal levels due to thermal and positional instability as well as low collection efficiencies. Thus, contemporary Raman microscope has found limited applicability to probing the subtle physics involved in phase transitions and hysteresis. This paper describes a new design of a closed-cycle, Raman microscope with full polarizationmore » rotation. High collection efficiency, thermal and mechanical stability are ensured by both deliberate optical, cryogenic, and mechanical design. Measurements on two samples, Bi 2Se 3 and V 2O 3, which are known as challenging due to low thermal conductivities, low signal levels and/or hysteretic effects, are measured with previously undemonstrated temperature resolution.« less
Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering
Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro
2017-01-01
Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system. PMID:29120358
Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering.
Mars, Kamel; Lioe, De Xing; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru
2017-11-09
Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system.
Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.
2018-04-01
We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.
Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Wehrmeyer, Joseph A.; Osborne, Robin J.; Trinh, Huu P.; Turner, James (Technical Monitor)
2001-01-01
Optically accessible, high pressure, hot fire test articles are available at NASA Marshall for use in development of advanced rocket engine propellant injectors. Single laser-pulse ultraviolet (UV) Raman spectroscopy has been used in the past in these devices for analysis of high pressure H2- and CH4-fueled combustion, but relies on an independent pressure measurement in order to provide temperature information. A variation of UV Raman (High Resolution Hydrogen Raman Spectroscopy) is under development and will allow temperature measurement without the need for an independent pressure measurement, useful for flows where local pressure may not be accurately known. The technique involves the use of a spectrometer with good spectral resolution, requiring a small entrance slit for the spectrometer. The H2 Raman spectrum, when created by a narrow linewidth laser source and obtained from a good spectral resolution spectrograph, has a spectral shape related to temperature. By best-fit matching an experimental spectrum to theoretical spectra at various temperatures, a temperature measurement is obtained. The spectral model accounts for collisional narrowing, collisional broadening, Doppler broadening, and collisional line shifting of each Raman line making up the H2 Stokes vibrational Q-branch spectrum. At pressures from atmospheric up to those associated with advanced preburner components (5500 psia), collisional broadening though present does not cause significant overlap of the Raman lines, allowing high resolution H2 Raman to be used for temperature measurements in plumes and in high pressure test articles. Experimental demonstrations of the technique are performed for rich H2-air flames at atmospheric pressure and for high pressure, 300 K H2-He mixtures. Spectrometer imaging quality is identified as being critical for successful implementation of technique.
Surface enhanced Raman scattering substrates prepared by thermal evaporation on liquid surfaces.
Ye, Ziran; Sun, Guofang; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Xu, Fengyun; Wang, Ke; Ye, Gaoxiang; Yang, Shikuan
2018-06-25
We present an effective surface-enhancement Raman scattering(SERS) substrate enabled by depositing metallic film on a liquid surface at room temperature. Thermal evaporation is used to deposit Au atoms on silicone oil surface and then form quasi-continuous films. Due to the isotropic characteristics of the liquid surface, this film consists of substantial nanoparticles with uniform diameter, which is different from films fabricated on solid substrates and can be served as an applicable substrate for SERS detection. With the assistance of this substrate, SERS signals of Rhodamine 6G(R6G) were significantly enhanced, the dependence between SERS spectra and film thickness was investigated. Analytical simulation results confirm the experimental observations and the superiorities of our proposed method for preparation of SERS substrate. This work provides a potential application of metallic film deposition on free-sustained surface and holds promise as an efficient sensor in rapid trace detection of small molecule analytes. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Anaya, Julian; Rossi, Stefano; Alomari, Mohammed; Kohn, Erhard; Tóth, Lajos; Pécz, Béla; Kuball, Martin
2015-06-01
The thermal transport in polycrystalline diamond films near its nucleation region is still not well understood. Here, a steady-state technique to determine the thermal transport within the nano-crystalline diamond present at their nucleation site has been demonstrated. Taking advantage of silicon nanowires as surface temperature nano-sensors, and using Raman Thermography, the in-plane and cross-plane components of the thermal conductivity of ultra-thin diamond layers and their thermal barrier to the Si substrate were determined. Both components of the thermal conductivity of the nano-crystalline diamond were found to be well below the values of polycrystalline bulk diamond, with a cross-plane thermal conductivity larger than the in-plane thermal conductivity. Also a depth dependence of the lateral thermal conductivity through the diamond layer was determined. The results impact the design and integration of diamond for thermal management of AlGaN/GaN high power transistors and also show the usefulness of the nanowires as accurate nano-thermometers.
NASA Astrophysics Data System (ADS)
Ghimpu, L.; Ursaki, V. V.; Pantazi, A.; Mesterca, R.; Brâncoveanu, O.; Shree, Sindu; Adelung, R.; Tiginyanu, I. M.; Enachescu, M.
2018-04-01
We report the fabrication and characterization of SnO2/CdTe and SnO2/GaAs core/shell microstructures. CdTe or GaAs shell layers were deposited by radio-frequency (RF) magnetron sputtering on core SnO2 microwires synthesized by a flame-based thermal oxidation method. The produced structures were characterized by scanning electron microscopy (SEM), high-resolution scanning transmission electron microscope (HR-STEM), X-ray diffraction (XRD), Raman scattering and FTIR spectroscopy. It was found that the SnO2 core is of the rutile type, while the shells are composed of CdTe or GaAs nanocrystallites of zincblende structure with the dimensions of crystallites in the range of 10-20 nm. The Raman scattering investigations demonstrated that the quality of the porous nanostructured shell is improved by annealing at temperatures of 420-450 °C. The prospects of implementing these microstructures in intrinsic type fiber optic sensors are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzinger, Paul B.; Eres, Gyula; Gu, Baohua
Costs for environmental analysis and monitoring are increasing at a rapid rate and represent a significant percentage of the total and future remedial expenses at many U.S. Department of Defense (DoD) contaminated sites. It has been reported that about 30 to 40% of the remediation budget is usually spent on long-term monitoring (LTM), of which a large percentage represents laboratory analytical costs. Energetics such as perchlorate (ClO 4 -) are among the most frequently detected contaminants in groundwater and surface water at or near military installations due to their persistence and mobility. Currently, the standard protocol entails collecting samples inmore » the field, packaging them, and shipping them overnight to a designated laboratory for analysis. This process requires significant sample preparation and handling, and analytical results may not be available for several days to weeks. In this project, we developed and demonstrated a portable Raman sensor based on surface enhanced Raman scattering (SERS) technology to detect ClO 4 - in contaminated water. We summarize major accomplishments as follows: • A SERS sensor based on elevated gold (Au) nano-ellipse dimer architectures was designed and developed for ClO 4 - with a detection limit of ~10 -6 M (or 100 μg/L); The performance of these sensors was evaluated and optimized through variation of their geometric characteristics (i.e., dimer aspect ratio, dimer separation, etc.). • Large-scale commercial production of SERS substrate sensors via nanoimprinting by Nanova Inc. and Nanoimprint lithography (NIL) technology was successfully demonstrated. This is a substantial step forward toward the commercialization of the SERS sensors and may potentially lead to significantly reduced fabrication costs of SERS substrates. • Commercially produced SERS sensors were demonstrated to detect ClO 4 - at levels above 10 -6 M using a portable Raman analyzer. The performance of the commercial SERS sensors for ClO 4 - detection in the presence and absence of interferences was determined for a series of standard solutions. Sulfate (SO 4 2-) was found to exhibit the greatest interference for the anions tested, which included Cl-, NO 3 -, and SO 4 2-. • Field demonstration of the portable Raman sensor with commercially produced SERS substrates was completed at two Department of Defense (DoD) sites; twice at the Indian Head Naval Surface Warfare Center, Indian Head, MD, and once at Redstone Arsenal, Huntsville, AL. Multiple wells were sampled at both DoD sites, where a standard addition method was employed using the sensor to determine the ClO 4 -4 - and possibly other energetics that are both important for environmental monitoring and of interest for national security. However, we point out that SERS technology is also prone to interferences due to its sensitivity and responses to other ionic species, such as NO 3 -, SO 4 2-, and dissolved organics or co-contaminants present in the groundwater, which could potentially mask the SERS signal of the target analyte (i.e., ClO 4 -). As such, SERS analysis was subject to significant variations (e.g., ±20% or more), and its detection limit for ClO 4 --8 M) and was substantially higher than what we anticipated from laboratory studies. However, despite these complications, the portable Raman sensor developed in this project could be used as a rapid screening tool for ClO 4 - at concentrations above 10 -6 M. Future studies are warranted to further develop the technology and to optimize its performance, and eventually to bring the technology to the market. With additional development and demonstration, the sensor has the potential to reduce analytical costs by eliminating shipping and typical costs associated with laboratory analysis. A cost savings of 30–45% may be realized during a typical sampling event and, more importantly, the technology could allow rapid turn-around of information to decision makers for site characterization and remediation.« less
Tellurium nano-structure based NO gas sensor.
Kumar, Vivek; Sen, Shashwati; Sharma, M; Muthe, K P; Jagannath; Gaur, N K; Gupta, S K
2009-09-01
Tellurium nanotubes were grown on bare and silver/gold nanoparticle (nucleation centers) deposited silicon substrates by vacuum deposition technique at a substrate temperature of 100 degrees C under high vacuum conditions. Silver and gold nanoparticles prepared on (111) oriented silicon substrates were found to act as nucleation centers for growth of Tellurium nanostructures. Density of nanotubes was found to increase while their diameter reduced when grown using metallic nanoparticle template. These Te nanostructures were investigated for their gas sensitivity. Tellurium nanotubes on Ag templates showed better response to NO in comparison to H2S and NH3 gases. Selectivity in response to NO was improved in comparison to Te thin film sensors reported earlier. The gas sensing mechanism was investigated using Raman and X-ray photoelectron spectroscopy techniques. The interaction of NO is seen to yield increased adsorption of oxygen that in turn increases hole density and conductivity in the material.
Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy
2013-01-01
Background A substantial barrier to commercialization of lignocellulosic ethanol production is a lack of process specific sensors and associated control strategies that are essential for economic viability. Current sensors and analytical techniques require lengthy offline analysis or are easily fouled in situ. Raman spectroscopy has the potential to continuously monitor fermentation reactants and products, maximizing efficiency and allowing for improved process control. Results In this paper we show that glucose and ethanol in a lignocellulosic fermentation can be accurately monitored by a 785 nm Raman spectroscopy instrument and novel immersion probe, even in the presence of an elevated background thought to be caused by lignin-derived compounds. Chemometric techniques were used to reduce the background before generating calibration models for glucose and ethanol concentration. The models show very good correlation between the real-time Raman spectra and the offline HPLC validation. Conclusions Our results show that the changing ethanol and glucose concentrations during lignocellulosic fermentation processes can be monitored in real-time, allowing for optimization and control of large scale bioconversion processes. PMID:23425590
Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression
NASA Astrophysics Data System (ADS)
Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan
2018-06-01
In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.
In-vivo spinal nerve sensing in MISS using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Chen, Hao; Xu, Weiliang; Broderick, Neil
2016-04-01
In modern Minimally Invasive Spine Surgery (MISS), lack of visualization and haptic feedback information are the main obstacles. The spinal cord is a part of the central nervous system (CNS). It is a continuation of the brain stem, carries motor and sensory messages between CNS and the rest of body, and mediates numerous spinal reflexes. Spinal cord and spinal nerves are of great importance but vulnerable, once injured it may result in severe consequences to patients, e.g. paralysis. Raman Spectroscopy has been proved to be an effective and powerful tool in biological and biomedical applications as it works in a rapid, non-invasive and label-free way. It can provide molecular vibrational features of tissue samples and reflect content and proportion of protein, nucleic acids lipids etc. Due to the distinct chemical compositions spinal nerves have, we proposed that spinal nerves can be identified from other types of tissues by using Raman spectroscopy. Ex vivo experiments were first done on samples taken from swine backbones. Comparative spectral data of swine spinal cord, spinal nerves and adjacent tissues (i.e. membrane layer of the spinal cord, muscle, bone and fatty tissue) are obtained by a Raman micro-spectroscopic system and the peak assignment is done. Then the average spectra of all categories of samples are averaged and normalized to the same scale to see the difference against each other. The results verified the feasibility of spinal cord and spinal nerves identification by using Raman spectroscopy. Besides, a fiber-optic Raman sensing system including a miniature Raman sensor for future study is also introduced. This Raman sensor can be embedded into surgical tools for MISS.
Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong
2014-09-01
In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C.
NASA Astrophysics Data System (ADS)
Yordanov, R.; Boyadjiev, S.; Georgieva, V.; Vergov, L.
2014-05-01
The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoOx, MoO3) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO3 films were tested for sensitivity to NH3 and NO2. Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.
NASA Astrophysics Data System (ADS)
Mohammed, Ali A. A.; Suriani, AB; Jabur, Akram R.
2018-05-01
Zinc oxide nanorods (ZnO NRs) / reduced graphene oxide (rGO) nanocomposites assisted by sodium dodecyl sulfate surfactant (ZnO NRs/rGO-SDS) showed a good response for UV sensor application that has sensitivity of around ∼32.54. Whereas, the UV sensor response on pristine ZnO NRs showed almost 15 times lower response than the ZnO NRs/rGO-SDS nanocomposites. The pristine ZnO NRs were prepared by sol-gel immersion method before rGO solution was sprayed on the ZnO films using spraying method. The GO solution was produced via electrochemical exfoliation method at 0.1 M SDS electrolyte then the solution was reduced using hydrazine hydrate under 24 hours magnetic stirring at a temperature of around ∼100 °C. The samples were characterized using energy dispersive X-ray, field emission scanning electron microscope, micro-Raman, ultraviolet visible, X-ray diffraction, UV lamp and four-point probe measurement. The aim of this study was to improve the UV sensor response based on ZnO/rGO-SDS nanocomposites. In conclusion, the fabricated ZnO NRs/rGO-SDS nanocomposites assisted with SDS is a good candidate for the use in UV sensor applications as compared to pristine ZnO NRs films.
Interference-free optical detection for Raman spectroscopy
NASA Technical Reports Server (NTRS)
Fischer, David G (Inventor); Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor)
2012-01-01
An architecture for spontaneous Raman scattering (SRS) that utilizes a frame-transfer charge-coupled device (CCD) sensor operating in a subframe burst gating mode to realize time-resolved combustion diagnostics is disclosed. The technique permits all-electronic optical gating with microsecond shutter speeds (<5 .mu.s), without compromising optical throughput or image fidelity. When used in conjunction with a pair of orthogonally-polarized excitation lasers, the technique measures time-resolved vibrational Raman scattering that is minimally contaminated by problematic optical background noise.
Hydrocarbon-Fueled Rocket Plume Measurement Using Polarized UV Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Wehrmeyer, Joseph A.
2002-01-01
The influence of pressure upon the signal strength and polarization properties of UV Raman signals has been investigated experimentally up to pressures of 165 psia (11 atm). No significant influence of pressure upon the Raman scattering cross section or depolarization ratio of the N2 Raman signal was found. The Raman scattering signal varied linearly with pressure for the 300 K N2 samples examined, thus showing no enhancement of cross section with increasing pressure. However at the highest pressures associated with rocket engine combustion, there could be an increase in the Raman scattering cross section, based upon others' previous work at higher pressures than those examined in this work. The influence of pressure upon thick fused silica windows, used in the NASA Modular Combustion Test Article, was also investigated. No change in the transmission characteristics of the windows occurred as the pressure difference across the windows increased from 0 psig up to 150 psig. A calibration was performed on the UV Raman system at Vanderbilt University, which is similar to the one at the NASA-Marshall Test Stand 115. The results of this calibration are described in the form of temperature-dependent functions, f(T)'s, that account for the increase in Raman scattering cross section with an increase in temperature and also account for the reduction in collected Raman signal if wavelength integration does not occur across the entire wavelength range of the Raman signal. These functions generally vary only by approximately 10% across their respective temperature ranges, except for the case Of CO2, where there is a factor of three difference in its f(T) from 300 K to 2500 K. However this trend for CO2 is consistent with the experimental work of others, and is expected based on the low characteristic vibrational temperature Of CO2. A time-averaged temperature measurement technique has been developed, using the same equipment as for the work mentioned above, that is based upon high-spectral resolution UV Raman scattering. This technique can provide temperature measurements for flows where pressure cannot be measured.
Effect of environmental conditions on the spectroscopic signature of DNT in sand
NASA Astrophysics Data System (ADS)
Blanco, Alejandro; Mina, Nairmen; Castro, Miguel E.; Castillo-Chara, Jairo; Hernandez-Rivera, Samuel P.
2005-06-01
Landmines have been a part of war technology for many years. As a result of the continued and indiscriminate use in approximately 90 countries landmines pose a severe and ever growing problem and a daily risk. Raman Spectroscopy is capable of providing rich information about the molecular structure of the sample and pinpoint detection of many chemicals, both of organic and inorganic nature. The presence of landmines in soils can be detected by Raman Spectroscopy sensing in a Point Detection modality, using characteristic vibrational signals of each explosive present in landmines. Detection of 2,4-DNT in sand and studies on how the vibrational signatures of 2,4-DNT is modified by interacting with soil particles and environmental conditions is reported. Raman Microspectrometers equipped with 514 nm and 785 nm laser excitation lines were used. The work focused in how the spectroscopic signatures of DNT in contact with Ottawa Sand are affected by the presence of humidity, pH, temperature, UV light and reaction times. Samples of mixtures of sand/2,4-DNT were analyzed by Raman Spectroscopy at 10, 50 and 100% water content and temperatures in range of 40-80 °C. Mixtures were also analyzed at different pH: 4, 7 and 10 and under ultraviolet light at 254 nm. Raman spectra were taken as a function of time in an interval from 24 to 336 hours (two weeks). Characteristic signals of 2,4-DNT were analyzed in different ranges 100-3800 cm-1, 600-1200 cm-1, 300-1700 cm-1 and 2800-3500 cm-1. The effect of these variables was measured during 45 consecutive days. It was confirmed that the decrease of characteristic vibrational signatures of 2,4-DNT can be attributed to increase of the degradation of 2,4-DNT by the simulated environmental conditions. Spectroscopic characterization of degradation products, both in contact with sand as well as airborne is under way. These results will make possible the development of highly sensitive sensors for detection of explosives materials and correlated with their degradation products in landmines.
Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2
NASA Astrophysics Data System (ADS)
Huang, Xiaoting; Gao, Yang; Yang, Tianqi; Ren, Wencai; Cheng, Hui-Ming; Lai, Tianshu
2016-08-01
We report the temperature-dependent evolution of Raman spectra of monolayer WS2 directly CVD-grown on a gold foil and then transferred onto quartz substrates over a wide temperature range from 84 to 543 K. The nonlinear temperature dependence of Raman shifts for both and A1g modes has been observed. The first-order temperature coefficients of Raman shifts are obtained to be -0.0093 (cm-1/K) and -0.0122 (cm-1/K) for and A1g peaks, respectively. A physical model, including thermal expansion and three- and four-phonon anharmonic effects, is used quantitatively to analyze the observed nonlinear temperature dependence. Thermal expansion coefficient (TEC) of monolayer WS2 is extracted from the experimental data for the first time. It is found that thermal expansion coefficient of out-plane mode is larger than one of in-plane mode, and TECs of and A1g modes are temperature-dependent weakly and strongly, respectively. It is also found that the nonlinear temperature dependence of Raman shift of mode mainly originates from the anharmonic effect of three-phonon process, whereas one of A1g mode is mainly contributed by thermal expansion effect in high temperature region, revealing that thermal expansion effect cannot be ignored.
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor
2013-01-01
Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.
Adu, Kofi W; Li, Qixiu; Desai, Sharvil C; Sidorov, Anton N; Sumanasekera, Gamini U; Lueking, Angela D
2009-01-06
The response of two carbide derived carbons (CDCs) films to NH(3), N(2)O, and room air is investigated by four probe resistance at room temperature and pressures up to 760 Torr. The two CDC films were synthesized at 600 (CDC-600) and 1000 degrees C (CDC-1000) to vary the carbon morphology from completely amorphous to more ordered, and determine the role of structure, surface area, and porosity on sensor response. Sensor response time followed kinetic diameter and indicated a more ordered carbon structure slowed response due to increased tortuosity caused by the formation of graphitic layers at the particle fringe. Steady state sensor response was greater for the less-ordered material, despite its decreased surface area, decreased micropore volume, and less favorable surface chemistry, suggesting carbon structure is a stronger predictor of sensor response than surface chemistry. The lack of correlation between adsorption of the probe gases and sensor response suggests chemical interaction (charge transfer) drive sensor response within the material; N(2)O response, in particular, did not follow simple adsorption behavior. Based on Raman and FTIR characterization, carbon morphology (disorder) appeared to be the determining factor in overall sensor response, likely due to increased charge transfer between gases and carbon defects of amorphous or disordered regions. The response of the amorphous CDC-600 film to NH(3) was 45% without prior oxidation, showing amorphous CDCs have promise as chemical sensors without additional pretreatment common to other carbon sensors.
NASA Astrophysics Data System (ADS)
Scoca, D.; Morales, M.; Merlo, R.; Alvarez, F.; Zanatta, A. R.
2015-05-01
Er-doped TiO2-xNx films were grown by Ar+ ion-beam sputtering a Ti + Er target under different N2 + O2 high-purity atmospheres. The compositional-structural properties of the samples were investigated after thermal annealing the films up to 1000 °C under a flow of oxygen. Sample characterization included x-ray photoelectron spectroscopy, grazing incidence x-ray diffraction, Raman scattering, and photoluminescence experiments. According to the experimental data, both composition and atomic structure of the samples were very sensitive to the growth conditions and annealing temperature. In the as-deposited form, the N-rich TiO2-xNx films presented TiN crystallites and no photoluminescence. As the thermal treatments proceed, the films were transformed into TiO2 and Er3+-related light emission were observed in the visible and near-infrared ranges at room-temperature. Whereas the development of TiO2 occurred due to the insertion-diffusion of oxygen in the films, light emission originated because of optical bandgap widening and/or structural-chemical variations in the vicinity of the Er3+ ions. Finally, the photoluminescence results in the visible range suggested the potential of the present samples in producing an optically based temperature sensor in the ˜150-500 K range.
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Evans, K. D.; DiGirolamo, P.; Demoz, B. B.; Turner, D.; Comstock, J.; Ismail, S.; Ferrare, R. A.; Browell, E. V.; Goldsmith, J. E. M.;
2002-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Southern Great Plains CART site from September - December, 2000 and participated in two field campaigns devoted to comparisons of various water vapor measurement technologies and calibrations. These campaigns were the Water Vapor Intensive Operations Period 2000 (WVIOP2000) and the ARM FIRE Water Vapor Experiment (AFWEX). WVIOP2000 was devoted to validating water vapor measurements in the lower atmosphere while AFWEX had similar goals but for measurements in the upper troposphere. The SRL was significantly upgraded both optically and electronically prior to these field campaigns. These upgrades enabled the SRL to demonstrate the highest resolution lidar measurements of water vapor ever acquired during the nighttime and the highest S/N Raman lidar measurements of water vapor in the daytime; more than a factor of 2 increase in S/N versus the DOE CARL Raman Lidar. Examples of these new measurement capabilities along with comparisons of SRL and CARL, LASE, MPI-DIAL, in-situ sensors, radiosonde, and others will be presented. The profile comparisons of the SRL and CARL have revealed what appears to be an overlap correction or countrate correction problem in CARL. This may be involved in an overall dry bias in the precipitable water calibration of CARL with respect to the MWR of approx. 4%. Preliminary analysis indicates that the application of a temperature dependent correction to the narrowband Raman lidar measurements of water vapor improves the lidar/Vaisala radiosonde comparisons of upper tropospheric water vapor. Other results including the comparison of the first-ever simultaneous measurements from four water vapor lidar systems, a bore-wave event captured at high resolution by the SRL and cirrus cloud optical depth studies using the SRL and CARL will be presented at the meeting.
Optical and electrical studies of cerium mixed oxides
NASA Astrophysics Data System (ADS)
Sherly, T. R.; Raveendran, R.
2014-10-01
The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.
Koh, Eun Hye; Mun, ChaeWon; Kim, ChunTae; Park, Sung-Gyu; Choi, Eun Jung; Kim, Sun Ho; Dang, Jaejeung; Choo, Jaebum; Oh, Jin-Woo; Kim, Dong-Ho; Jung, Ho Sang
2018-03-28
A surface-enhanced Raman scattering (SERS) sensor comprising silver nanowires (AgNWs) and genetically engineered M13 bacteriophages expressing a tryptophan-histidine-tryptophan (WHW) peptide sequence (BPWHW) was fabricated by simple mixing of BPWHW and AgNW solutions, followed by vacuum filtration onto a glass-fiber filter paper (GFFP) membrane. The AgNWs stacked on the GFFP formed a high density of SERS-active hot spots at the points of nanowire intersections, and the surface-coated BPWHW functioned as a bioreceptor for selective pesticide detection. The BPWHW-functionalized AgNW (BPWHW/AgNW) sensor was characterized by scanning electron microscopy, confocal scanning fluorescence microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. The Raman signal enhancement and the selective pesticide SERS detection properties of the BPWHW/AgNW sensor were investigated in the presence of control substrates such as wild-type M13 bacteriophage-decorated AgNWs (BPWT/AgNW) and undecorated AgNWs (AgNW). The BPWHW/AgNW sensor exhibited a significantly higher capture capability for pesticides, especially paraquat (PQ), than the control SERS substrates, and it also showed a relatively higher selectivity for PQ than for other bipyridylium pesticides such as diquat and difenzoquat. Furthermore, as a field application test, PQ was detected on the surface of PQ-pretreated apple peels, and the results demonstrated the feasibility of using a paper-based SERS substrate for on-site residual pesticide detection. The developed M13 bacteriophage-functionalized AgNW SERS sensor might be applicable for the detection of various pesticides and chemicals through modification of the M13 bacteriophage surface peptide sequence.
A Proposed Dynamic Pressure and Temperature Primary Standard
Rosasco, Gregory J.; Bean, Vern E.; Hurst, Wilbur S.
1990-01-01
Diatomic gas molecules have a fundamental vibrational motion whose frequency is affected by pressure in a simple way. In addition, these molecules have well defined rotational energy levels whose populations provide a reliable measure of the thermodynamic temperature. Since information concerning the frequency of vibration and the relative populations can be determined by laser spectroscopy, the gas molecules themselves can serve as sensors of pressure and temperature. Through measurements under static conditions, the pressure and temperature dependence of the spectra of selected molecules is now understood. As the time required for the spectroscopic measurement can be reduced to nanoseconds, the diatomic gas molecule is an excellent candidate for a dynamic pressure/temperature primary standard. The temporal response in this case will be limited by the equilibration time for the molecules to respond to changes in local thermodynamic variables. Preliminary feasibility studies suggest that by using coherent anti-Stokes Raman spectroscopy we will be able to measure dynamic pressure up to 108 Pa and dynamic temperature up to 1500 K with an uncertainty of 5%. PMID:28179756
pH sensor based on boron nitride nanotubes.
Huang, Q; Bando, Y; Zhao, L; Zhi, C Y; Golberg, D
2009-10-14
A submicrometer-sized pH sensor based on biotin-fluorescein-functionalized multiwalled BN nanotubes with anchored Ag nanoparticles is designed. Intrinsic pH-dependent photoluminescence and Raman signals in attached fluorescein molecules enhanced by Ag nanoparticles allow this novel nanohybrid to perform as a practical pH sensor. It is able to work in a submicrometer-sized space. For example, the sensor may determine the environmental pH of sub-units in living cells where a traditional optical fiber sensor fails because of spatial limitations.
pH sensor based on boron nitride nanotubes
NASA Astrophysics Data System (ADS)
Huang, Q.; Bando, Y.; Zhao, L.; Zhi, C. Y.; Golberg, D.
2009-10-01
A submicrometer-sized pH sensor based on biotin-fluorescein-functionalized multiwalled BN nanotubes with anchored Ag nanoparticles is designed. Intrinsic pH-dependent photoluminescence and Raman signals in attached fluorescein molecules enhanced by Ag nanoparticles allow this novel nanohybrid to perform as a practical pH sensor. It is able to work in a submicrometer-sized space. For example, the sensor may determine the environmental pH of sub-units in living cells where a traditional optical fiber sensor fails because of spatial limitations.
Portable SERS sensor for malachite green and other small dye molecules
NASA Astrophysics Data System (ADS)
Qiu, Suyan; Zhao, Fusheng; Li, Jingting; Shih, Wei-Chuan
2017-02-01
Sensitive detection of specific chemicals on site can be extremely powerful in many fields. Owing to its molecular fingerprinting capability, surface-enhanced Raman scattering has been one of the technological contenders. In this paper, we describe the novel use of DNA topological nanostructure on nanoporous gold nanoparticle (NPG-NP) array chip for chemical sensing. NPG-NP features large surface area and high-density plasmonic field enhancement known as "hotspots". Hence, NPG-NP array chip has found many applications in nanoplasmonic sensor development. This technique can provide novel label-free molecular sensing capability and enables high sensitivity and specificity detection using a portable Raman spectrometer.
Shaban, Mohamed; Galaly, A R
2016-05-04
Porous Anodic Alumina (PAA) membrane was functionalized with CoFe2O4 nanoparticles and used as a substrate for the growing of very long helical-structured Carbon Nanotubes (CNTs) with a diameter less than 20 nm. The structures and morphologies of the fabricated nanostructures were characterized by field emission- scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and Raman spectroscopy. By uploading the CNTs on PAA, the characteristic Raman peaks of CNTs and PAA showed 4 and 3 times enhancement, respectively, which leads to more sensitive Surface-Enhanced Raman Spectroscopy (SERS) substrates. For comparison, PAA and CNTs/PAA arrays were used as SERS substrates for the detection of Hg(2+), Cd(2+), and Pb(2+). The proposed sensor demonstrated high sensitivity and selectivity between these heavy metal ions. CNTs/PAA sensor showed excellent selectivity toward Pb(2+) over other metal ions, where the enhancement factor is decreased from ~17 for Pb(2+) to ~12 for Hg(2+) and to ~4 for Cd(2+). Therefore, the proposed CNTs/PAA sensor can be used as a powerful tool for the determination of heavy metal ions in aqueous solutions.
Shaban, Mohamed; Galaly, A. R.
2016-01-01
Porous Anodic Alumina (PAA) membrane was functionalized with CoFe2O4 nanoparticles and used as a substrate for the growing of very long helical-structured Carbon Nanotubes (CNTs) with a diameter less than 20 nm. The structures and morphologies of the fabricated nanostructures were characterized by field emission- scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and Raman spectroscopy. By uploading the CNTs on PAA, the characteristic Raman peaks of CNTs and PAA showed 4 and 3 times enhancement, respectively, which leads to more sensitive Surface-Enhanced Raman Spectroscopy (SERS) substrates. For comparison, PAA and CNTs/PAA arrays were used as SERS substrates for the detection of Hg2+, Cd2+, and Pb2+. The proposed sensor demonstrated high sensitivity and selectivity between these heavy metal ions. CNTs/PAA sensor showed excellent selectivity toward Pb2+ over other metal ions, where the enhancement factor is decreased from ~17 for Pb2+ to ~12 for Hg2+ and to ~4 for Cd2+. Therefore, the proposed CNTs/PAA sensor can be used as a powerful tool for the determination of heavy metal ions in aqueous solutions. PMID:27143512
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Abshire, James B. (Technical Monitor)
2002-01-01
In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.
Lee, Sangyeop; Choi, Junghyun; Chen, Lingxin; Park, Byungchoon; Kyong, Jin Burm; Seong, Gi Hun; Choo, Jaebum; Lee, Yeonjung; Shin, Kyung-Hoon; Lee, Eun Kyu; Joo, Sang-Woo; Lee, Kyeong-Hee
2007-05-08
A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm(-1) in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1-2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.
2015-04-27
from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon materials...corporation). These tools were fully installed and operational. We have also synthesized carbon materials from waste biomass using these two high...materials from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon
NASA Astrophysics Data System (ADS)
Huang, Kai; Jia, Qi; You, Tiangui; Zhang, Shibin; Lin, Jiajie; Zhang, Runchun; Zhou, Min; Yu, Wenjie; Zhang, Bo; Ou, Xin; Wang, Xi
2017-09-01
Cross-sectional Raman spectroscopy is used to characterize the defect formation and the defect recovery in MeV H+ implanted bulk GaN and 4H-SiC in the high energy MeV ion-cut process. The Raman intensity decreases but the forbidden modes are activated at the damage region, and the intensity decrease is proportional to the damage level. The Raman spectrum is quite sensitive to detect the damage recovery after annealing. The main peak intensity increases and the forbidden mode disappears in both annealed GaN and 4H-SiC samples. The Raman spectra of GaN samples annealed at different temperatures suggest that higher annealing temperature is more efficient for damage recovery. While, the Raman spectra of SiC indicate that higher implantation temperature results in heavier lattice damage and other polytype clusters might be generated by high annealing temperature in the annealed SiC samples. The cross-sectional Raman spectroscopy is a straightforward method to characterize lattice damage and damage recovery in high energy ion-cut process. It can serve as a fast supplementary measurement technique to Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA) and transmission electron microscope (TEM) for the defect characterizations.
Development of time-domain differential Raman for transient thermal probing of materials
Xu, Shen; Wang, Tianyu; Hurley, David; ...
2015-01-01
A novel transient thermal characterization technology is developed based on the principles of transient optical heating and Raman probing: time-domain differential Raman. It employs a square-wave modulated laser of varying duty cycle to realize controlled heating and transient thermal probing. Very well defined extension of the heating time in each measurement changes the temperature evolution profile and the probed temperature field at μs resolution. Using this new technique, the transient thermal response of a tipless Si cantilever is investigated along the length direction. A physical model is developed to reconstruct the Raman spectrum considering the temperature evolution, while taking intomore » account the temperature dependence of the Raman emission. By fitting the variation of the normalized Raman peak intensity, wavenumber, and peak area against the heating time, the thermal diffusivity is determined as 9.17 × 10⁻⁵, 8.14 × 10⁻⁵, and 9.51 × 10⁻⁵ m²/s. These results agree well with the reference value of 8.66 × 10⁻⁵ m²/s considering the 10% fitting uncertainty. The time-domain differential Raman provides a novel way to introduce transient thermal excitation of materials, probe the thermal response, and measure the thermal diffusivity, all with high accuracy.« less
High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.
Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A
2006-09-07
Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.
Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.
2007-01-01
A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Craig, Norman C.
2015-06-01
The temperature dependence of self-assembled, cell-like dispersions of phospholipids is investigated with Raman spectroscopy in the biochemistry laboratory. Vibrational modes in the hydrocarbon interiors of phospholipid bilayers are strongly Raman active, whereas the vibrations of the polar head groups and the water matrix have little Raman activity. From Raman spectra increases in fluidity of the hydrocarbon chains can be monitored with intensity changes as a function of temperature in the CH-stretching region. The experiment uses detection of scattered 1064-nm laser light (Nicolet NXR module) by a Fourier transform infrared spectrometer (Nicolet 6700). A thermoelectric heater-cooler device (Melcor) gives convenient temperature control from 5 to 95°C for samples in melting point capillaries. Use of deuterium oxide instead of water as the matrix avoids some absorption of the exciting laser light and interference with intensity observations in the CH-stretching region. Phospholipids studied range from dimyristoylphosphotidyl choline (C14, transition T = 24°C) to dibehenoylphosphotidyl choline (C22, transition T = 74°C).
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-12-09
Transition metal dichalcogenide MoTe 2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe 2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric T d phase from vibrational spectroscopy, and suggest MoTe 2 as an ideal candidate for investigating the temperature-induced topological phase transition.
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-01-01
Transition metal dichalcogenide MoTe2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric Td phase from vibrational spectroscopy, and suggest MoTe2 as an ideal candidate for investigating the temperature-induced topological phase transition. PMID:27934874
NASA Astrophysics Data System (ADS)
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-12-01
Transition metal dichalcogenide MoTe2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric Td phase from vibrational spectroscopy, and suggest MoTe2 as an ideal candidate for investigating the temperature-induced topological phase transition.
Evidence of superconductivity-induced phonon spectra renormalization in alkali-doped iron selenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opačić, M.; Lazarević, N.; Šćepanović, M.
2015-11-16
Polarized Raman scattering spectra of superconducting K xFe 2-ySe 2 and nonsuperconducting K 0.8Fe 1.8Co 0.2Se 2 single crystals were measured in a temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in frequency range from 150 to 325 cm -1 in both compounds, suggesting that K 0.8Fe 1.8Co 0.2Se 2 single crystal also has two-phase nature. Temperature dependence of Raman mode energy is analyzed in terms of lattice thermal expansion and phonon-phonon interaction. Temperature dependence of Raman mode linewidth is considered as temperature-inducedmore » anharmonic effects. It is shown that change of Raman mode energy with temperature is dominantly driven by thermal expansion of the crystal lattice. Abrupt change of the A 1g mode energy near T C was observed in K xFe 2-ySe 2 , whereas it is absent in K 0.8Fe 1.8Co 0.2Se 2. Phonon energy hardening at low temperatures in the superconducting sample is a consequence of superconductivity-induced redistribution of the electronic states below critical temperature.« less
NASA Astrophysics Data System (ADS)
Sun, Yingying; Yanagisawa, Masahiro; Kunimoto, Masahiro; Nakamura, Masatoshi; Homma, Takayuki
2016-02-01
A structure's temperature can be determined from the Raman spectrum using the frequency and the ratio of the intensities of the anti-Stokes and Stokes signals (the Ias/Is ratio). In this study, we apply this approach and an equation relating the temperature, Raman frequency, and Ias/Is ratio to in-situ estimation of the phase change point of a (3-aminopropyl)triethoxysilane self-assembled monolayer (APTES SAM). Ag nanoparticles were deposited on APTES to enhance the Raman signals. A time-resolved measurement mode was used to monitor the variation in the Raman spectra in situ. Moreover, the structural change in APTES SAM (from ordered to disordered structure) under heating was discussed in detail, and the phase change point (around 118 °C) was calculated.
NASA Astrophysics Data System (ADS)
Kim, In Soo
The influence of stoichiometry on the metal-insulator transition of vanadium dioxide (VO2) nanowires was investigated using Raman spectroscopy. Controlled reduction of nominally strain-free suspended VO2 nanowires was conducted by rapid thermal annealing (RTA). The deficiency in oxygen assisted in the unprecedented suppression of the metallic (R) phase to temperatures as low as 103 K through generation of free electrons. In a complementary manner, oxygen-rich conditions stabilized the metastable monoclinic (M2) and triclinic (T) phases. A pseudo-phase diagram with dimensions of temperature and stoichiometry was established, highlighting the accessibility of new phases in the nanowire geometry. Detection of the dynamic elastic response across the metal-insulator transition in suspended VO2 nanowires was enabled by fiber-coupled polarization dependent interferometry. Dual-beam Raman spectroscopy was developed to determine the local domain/phase structure of VO2 nanowires, which allowed for accurate modeling using COMSOL finite element analysis (FEA). The Young's moduli of the single crystal insulating (M1) and metallic (R) phases without artifacts were determined for the first time. The sources of dissipation were identified as clamping losses, structural losses, thermoelastic damping, and domain wall motion. While contribution of thermoelastic damping was found to be dominant in the terminal phases, extraordinary dissipation was observed upon formation and movement of domain walls. Finally, it was shown that creation of local defects could lead to new classes of tunable sensors with a discrete and programmable frequency response with temperature.
Remote sensing of subsurface water temperature by Raman scattering.
Leonard, D A; Caputo, B; Hoge, F E
1979-06-01
The application of Raman scattering to remote sensing of subsurface water temperature and salinity is considered, and both theoretical and experimental aspects of the technique are discussed. Recent experimental field measurements obtained in coastal waters and on a trans-Atlantic/Mediterranean research cruise are correlated with theoretical expectations. It is concluded that the Raman technique for remote sensing of subsurface water temperature has been brought from theoretical and laboratory stages to the point where practical utilization can now be developed.
Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef
2017-06-13
This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.
Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef
2017-01-01
This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution. PMID:28608831
UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser
NASA Technical Reports Server (NTRS)
Shirley, John A.
1990-01-01
Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.
NASA Technical Reports Server (NTRS)
Whiteman, David N.
2003-01-01
The intent of this paper and its companion is to compile together the essential information required for the analysis of Raman lidar water vapor and aerosol data acquired using a single laser wavelength. In this first paper several details concerning the evaluation of the lidar equation when measuring Raman scattering are considered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. These are evaluated for the first time using a new form of the lidar equation. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature dependent effect can reach 10% or more for narrowband Raman water vapor measurements. Also the calculation of atmospheric transmission is examined carefully including the effects of depolarization. Different formulations of Rayleigh cross section determination commonly used in the lidar field are compared revealing differences up to 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique is considered as are several photon pulse-pileup correction techniques.
Processing Raman Spectra of High-Pressure Hydrogen Flames
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Kojima, Jun
2006-01-01
The Raman Code automates the analysis of laser-Raman-spectroscopy data for diagnosis of combustion at high pressure. On the basis of the theory of molecular spectroscopy, the software calculates the rovibrational and pure rotational Raman spectra of H2, O2, N2, and H2O in hydrogen/air flames at given temperatures and pressures. Given a set of Raman spectral data from measurements on a given flame and results from the aforementioned calculations, the software calculates the thermodynamic temperature and number densities of the aforementioned species. The software accounts for collisional spectral-line-broadening effects at pressures up to 60 bar (6 MPa). The line-broadening effects increase with pressure and thereby complicate the analysis. The software also corrects for spectral interference ("cross-talk") among the various chemical species. In the absence of such correction, the cross-talk is a significant source of error in temperatures and number densities. This is the first known comprehensive computer code that, when used in conjunction with a spectral calibration database, can process Raman-scattering spectral data from high-pressure hydrogen/air flames to obtain temperatures accurate to within 10 K and chemical-species number densities accurate to within 2 percent.
Synthesis, characterization and application of functional carbon nano materials
NASA Astrophysics Data System (ADS)
Chu, Jin
The synthesis, characterizations and applications of carbon nanomaterials, including carbon nanorods, carbon nanosheets, carbon nanohoneycombs and carbon nanotubes were demonstrated. Different growth techniques such as pulsed laser deposition, DC/RF sputtering, hot filament physical vapour deposition, evaporative casting and vacuum filtration methods were introduced or applied for synthesizing carbon nanomaterials. The morphology, chemical compositions, bond structures, electronic, mechanical and sensing properties of the obtained samples were investigated. Tilted well-aligned carbon micro- and nano- hybrid rods were fabricated on Si at different substrate temperatures and incident angles of carbon source beam using the hot filament physical vapour deposition technique. The morphologic surfaces and bond structures of the oblique carbon rod-like structures were investigated by scanning electron microscopy, field emission scanning electron microscopy, transmission electron diffraction and Raman scattering spectroscopy. The field emission behaviour of the fabricated samples was also tested. Carbon nanosheets and nanohoneycombs were also synthesized on Si substrates using a hot filament physical vapor deposition technique under methane ambient and vacuum, respectively. The four-point Au electrodes are then sputtered on the surface of the nanostructured carbon films to form prototypical humidity sensors. The sensing properties of prototypical sensors at different temperature, humidity, direct current, and alternative current voltage were characterized. Linear sensing response of sensors to relative humidity ranging from 11% to 95% is observed at room temperature. Experimental data indicate that the carbon nanosheets based sensors exhibit an excellent reversible behavior and long-term stability. It also has higher response than that of the humidity sensor with carbon nanohoneycombs materials. Conducting composite films containing carbon nanotubes (CNTs) were prepared in two different ways of evaporative casting and vacuum filtration methods using the biopolymer kappa-carrageenan (KC) as a dispersant. Evaporative casting and vacuum filtration film-formation processes were compared by testing electrical properties. Results showed that films produced using vacuum filtration had higher electrical properties than those prepared using the evaporative casting method. The evaporative casted multi walled carbon nanotubes composite films also performed as the best humidity sensor over all other films measured.
Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement
Wang, Tianyu; Xu, Shen; Hurley, David H.; ...
2015-12-18
Steady state Raman has been widely used for temperature probing and thermal conductivity/conductance measurement in combination with temperature coefficient calibration. In this work, a new transient Raman thermal probing technique: frequency-resolved Raman (FR-Raman) is developed for probing the transient thermal response of materials and measuring their thermal diffusivity. The FR-Raman uses an amplitude modulated square-wave laser for simultaneous material heating and Raman excitation. The evolution profile of Raman properties: intensity, Raman wavenumber, and emission, against frequency are measured experimentally and reconstructed theoretically. They are used for fitting to determine the thermal diffusivity of the material under test. A Si cantilevermore » is used to investigate the capacity of this new technique. The cantilever’s thermal diffusivity is determined as 9.57 × 10 -5 m 2/s, 11.00 × 10 -5 m 2/s and 9.02 × 10 -5 m 2/s by fitting the Raman intensity, wavenumber and emission. The deviation from the reference value is largely attributed to thermal stress-induced material deflection and Raman drift, which could be significantly suppressed by using a higher sensitivity Raman spectrometer with lower laser energy. As a result, the FR-Raman provides a novel way for transient thermal characterization of materials with a ?m spatial resolution.« less
Improved multiple-pass Raman spectrometer
NASA Astrophysics Data System (ADS)
Kc, Utsav; Silver, Joel A.; Hovde, David C.; Varghese, Philip L.
2011-08-01
An improved Raman gain spectrometer for flame measurements of gas temperature and species concentrations is described. This instrument uses a multiple-pass optical cell to enhance the incident light intensity in the measurement volume. The Raman signal is 83 times larger than from a single pass, and the Raman signal-to-noise ratio (SNR) in room-temperature air of 153 is an improvement over that from a single-pass cell by a factor of 9.3 when the cell is operated with 100 passes and the signal is integrated over 20 laser shots. The SNR improvement with the multipass cell is even higher for flame measurements at atmospheric pressure, because detector readout noise is more significant for single-pass measurements when the gas density is lower. Raman scattering is collected and dispersed in a spectrograph with a transmission grating and recorded with a fast gated CCD array detector to help eliminate flame interferences. The instrument is used to record spontaneous Raman spectra from N2, CO2, O2, and CO in a methane--air flame. Curve fits of the recorded Raman spectra to detailed simulations of nitrogen spectra are used to determine the flame temperature from the shapes of the spectral signatures and from the ratio of the total intensities of the Stokes and anti-Stokes signals. The temperatures measured are in good agreement with radiation-corrected thermocouple measurements for a range of equivalence ratios.
Non-contact temperature Raman measurement in YSZ and alumina ceramics
NASA Astrophysics Data System (ADS)
Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.
2018-02-01
Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.
2013-02-24
Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasbarro, Christina; Bello, Job; Bryan, Samuel
2013-07-01
Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less
NASA Astrophysics Data System (ADS)
Sugiyama, Takuro; Furukawa, Yukio
2008-05-01
We have measured the temperatures of the organic layers in operating organic light-emitting diodes (OLEDs) by Raman spectroscopy. The wavenumbers of the Raman bands due to N,N'-di-naphthaleyl-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD) and copper phthalocyanine (CuPc) have been measured as a function of temperature in the range of 25-191 °C. The observed positions of strong bands around 1607 cm-1 (NPD) and 1531 cm-1 (CuPc) shifted downward linearly with increasing temperature in the ranges lower than 92 and 191 °C, respectively. We have determined the temperatures of the NPD and CuPc layers in an operating OLED from the wavenumber-temperature relations of these bands.
2017-01-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications. PMID:29104259
Miah, Khalid; Potter, David K
2017-11-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.
NASA Astrophysics Data System (ADS)
Klueva, Oksana; Nelson, Matthew P.; Gardner, Charles W.; Gomer, Nathaniel R.
2015-05-01
Proliferation of chemical and explosive threats as well as illicit drugs continues to be an escalating danger to civilian and military personnel. Conventional means of detecting and identifying hazardous materials often require the use of reagents and/or physical sampling, which is a time-consuming, costly and often dangerous process. Stand-off detection allows the operator to detect threat residues from a safer distance minimizing danger to people and equipment. Current fielded technologies for standoff detection of chemical and explosive threats are challenged by low area search rates, poor targeting efficiency, lack of sensitivity and specificity or use of costly and potentially unsafe equipment such as lasers. A demand exists for stand-off systems that are fast, safe, reliable and user-friendly. To address this need, ChemImage Sensor Systems™ (CISS) has developed reagent-less, non-contact, non-destructive sensors for the real-time detection of hazardous materials based on widefield shortwave infrared (SWIR) and Raman hyperspectral imaging (HSI). Hyperspectral imaging enables automated target detection displayed in the form of image making result analysis intuitive and user-friendly. Application of the CISS' SWIR-HSI and Raman sensing technologies to Homeland Security and Law Enforcement for standoff detection of homemade explosives and illicit drugs and their precursors in vehicle and personnel checkpoints is discussed. Sensing technologies include a portable, robot-mounted and standalone variants of the technology. Test data is shown that supports the use of SWIR and Raman HSI for explosive and drug screening at checkpoints as well as screening for explosives and drugs at suspected clandestine manufacturing facilities.
Moros, Javier; Javier Laserna, J
2015-03-01
Data fusion is the process of combining data gathered from two or more sensors to produce a more specific, comprehensive and unified dataset of the inspected target. On this basis, much has been said about the possible benefits resulting from the use of molecular and atomic information for the detection of explosives. The orthogonal nature of the spectral and compositional information provided by Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) makes them suitable candidates for an optimal combination of their data, thus achieving inferences that are not feasible using a single sensor. The present manuscript evaluates several architectures for the combination of spectral outputs from these two sensors in order to compare the benefits and drawbacks of data fusion for improving the overall identification performance. From the simple assembling (concatenation or addition) of Raman and LIBS spectra to signals' processing on the basis of linear algebra (either the outer product or the outer sum), different identification patterns of several compounds (explosives, potential confusants and supports) have been built. The efficiency on target differentiation by using each of the architectures has been evaluated by comparing the identification yield obtained for all the inspected targets from correlation and similarity measurements. Additionally, a specific code integrated by several of these patterns to identify each compound has also been evaluated. This approach permits to obtain a better knowledge about the identity of an interrogated target, mainly in those decisive cases in which LIBS or Raman cannot be effective separately to reach a decision. Copyright © 2014 Elsevier B.V. All rights reserved.
Temperature performance analysis of intersubband Raman laser in quantum cascade structures
NASA Astrophysics Data System (ADS)
Yousefvand, Hossein Reza
2017-06-01
In this paper we investigate the effects of temperature on the output characteristics of the intersubband Raman laser (RL) that integrated monolithically with a quantum cascade (QC) laser as an intracavity optical pump. The laser bandstructure is calculated by a self-consistent solution of Schrodinger-Poisson equations, and the employed physical model of carrier transport is based on a five-level carrier scattering rates; a two-level rate equations for the pump laser and a three-level scattering rates to include the stimulated Raman process in the RL. The temperature dependency of the relevant physical effects such as thermal broadening of the intersubband transitions (ISTs), thermally activated phonon emission lifetimes, and thermal backfilling of the final lasing state of the Raman process from the injector are included in the model. Using the presented model, the steady-state, small-signal modulation response and transient device characteristics are investigated for a range of sink temperatures (80-220 K). It is found that the main characteristics of the device such as output power, threshold current, Raman modal gain, turn-on delay time and 3-dB optical bandwidth are remarkably affected by the temperature.
Fiber sensors for molecular detection
NASA Astrophysics Data System (ADS)
Gu, Claire; Yang, Xuan; Zhang, Jin; Newhouse, Rebecca; Cao, Liangcai
2010-11-01
The demand on sensors for detecting chemical and biological agents is greater than ever before, including medical, environmental, food safety, military, and security applications. At present, most detection or sensing techniques tend to be either non-molecular specific, bulky, expensive, relatively inaccurate, or unable to provide real time data. Clearly, alternative sensing technologies are urgently needed. Recently, we have been working to develop a compact fiber optic surface enhanced Raman scattering (SERS) sensor system that integrates various novel ideas to achieve compactness, high sensitivity and consistency, molecular specificity, and automatic preliminary identification capabilities. The unique sensor architecture is expected to bring SERS sensors to practical applications due to a combination of 1) novel SERS substrates that provide the high sensitivity and consistency, molecular specificity, and applicability to a wide range of compounds; 2) a unique hollow core optical fiber probe with double SERS substrate structure that provides the compactness, reliability, low cost, and ease of sampling; and 3) an innovative matched spectral filter set that provides automatic preliminary molecule identification. In this paper, we will review the principle of operation and some of the important milestones of fiber SERS sensor development with emphasis on our recent work to integrate photonic crystal fiber SERS probes with a portable Raman spectrometer and to demonstrate a matched spectral filter for molecule identification.
Sensor data fusion for spectroscopy-based detection of explosives
NASA Astrophysics Data System (ADS)
Shah, Pratik V.; Singh, Abhijeet; Agarwal, Sanjeev; Sedigh, Sahra; Ford, Alan; Waterbury, Robert
2009-05-01
In-situ trace detection of explosive compounds such as RDX, TNT, and ammonium nitrate, is an important problem for the detection of IEDs and IED precursors. Spectroscopic techniques such as LIBS and Raman have shown promise for the detection of residues of explosive compounds on surfaces from standoff distances. Individually, both LIBS and Raman techniques suffer from various limitations, e.g., their robustness and reliability suffers due to variations in peak strengths and locations. However, the orthogonal nature of the spectral and compositional information provided by these techniques makes them suitable candidates for the use of sensor fusion to improve the overall detection performance. In this paper, we utilize peak energies in a region by fitting Lorentzian or Gaussian peaks around the location of interest. The ratios of peak energies are used for discrimination, in order to normalize the effect of changes in overall signal strength. Two data fusion techniques are discussed in this paper. Multi-spot fusion is performed on a set of independent samples from the same region based on the maximum likelihood formulation. Furthermore, the results from LIBS and Raman sensors are fused using linear discriminators. Improved detection performance with significantly reduced false alarm rates is reported using fusion techniques on data collected for sponsor demonstration at Fort Leonard Wood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peron, O.; Laboratoire de Nanotechnologie et d'instrumentation Optique, Institut Charles Delaunay, FRE 2848, Universite de technologie de Troyes, 12 rue Marie Curie, 10010 Troyes; Rinnert, E.
2010-08-06
In the investigation of chemical pollutions, such as PAHs (Polycyclic Aromatic Hydrocarbons) at low concentration in aqueous medium, surface-enhanced Raman scattering (SERS) stands for an alternative to the inherent low cross-section of normal Raman scattering. Indeed, SERS is a very sensitive spectroscopic technique due to the excitation of the surface plasmon modes of the nanostructured metallic film.
NASA Astrophysics Data System (ADS)
Mal, Priyanath; Bera, G.; Turpu, G. R.; Srivastava, Sunil K.; Das, Pradip
2018-05-01
We present a study of structural and vibrational properties of topological insulator GeBi4Te7. Modified Bridgeman technique is employed to synthesize the single crystal with relatively large crystalline faces. Sharp (0 0 l) reflection confirms the high crystallinity of the single crystal. We have performed temperature dependent Raman measurement for both parallel and perpendicular to crystallographic c axis geometry. In parallel configuration we have observed seven Raman modes whereas in perpendicular geometry only four of these are identified. Appearance and disappearance of Raman modes having different intensities for parallel and perpendicular to c measurement attribute to the mode polarization. Progressive blue shift is observed with lowering temperature, reflects the increase in internal stress.
The Development of a Fiber Optic Raman Temperature Measurement System for Rocket Flows
NASA Technical Reports Server (NTRS)
Degroot, Wim A.
1992-01-01
A fiberoptic Raman diagnostic system for H2/O2 rocket flows is currently under development. This system is designed for measurement of temperature and major species concentration in the combustion chamber and part of the nozzle of a 100 Newton thrust rocket currently undergoing testing. This paper describes a measurement system based on the spontaneous Raman scattering phenomenon. An analysis of the principles behind the technique is given. Software is developed to measure temperature and major species concentrations by comparing theoretical Raman scattering spectra with experimentally obtained spectra. Equipment selection and experimental approach are summarized. This experimental program is part of a program, which is in progress, to evaluate Navier-Stokes based analyses for this class of rocket.
Evidence of superconductivity-induced phonon spectra renormalization in alkali-doped iron selenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opačić, M.; Lazarević, N.; Šćepanović, M.
2015-11-16
Polarized Raman scattering spectra of superconducting K x Fe2-y Se2 and non-superconducting K0.8Fe1.8Co0.2Se2 single crystals were measured in the temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in the frequency range from 150 to 325 cm-1 in both compounds, suggesting that the K0.8Fe1.8Co0.2Se2 single crystal also has a two-phase nature. The temperature dependence of the Raman mode energy is analyzed in terms of lattice thermal expansion and phonon–phonon interaction. The temperature dependence of the Raman mode linewidth is dominated by temperature-induced anharmonic effects. It is shown that the change in Raman mode energy with temperature is dominantly driven by thermal expansion of the crystal lattice. An abrupt change of the A1g mode energy nearmore » $${{T}_{\\text{C}}}$$ was observed in K x Fe2-y Se2, whereas it is absent in non-superconducting K0.8Fe1.8Co0.2Se2. Phonon energy hardening at low temperatures in the superconducting sample is a consequence of superconductivity-induced redistribution of the electronic states below the critical temperature.« less
Long period fiber grating based sensor for the detection of triacylglycerides.
Baliyan, Anjli; Sital, Shivani; Tiwari, Umesh; Gupta, Rani; Sharma, Enakshi K
2016-05-15
In this paper, stable, label free enzyme based sensor using long period fiber grating (LPG) is described for the detection of triacylglycerides. A stable covalent binding technique for lipase enzyme immobilization on an optical fiber is reported. An active and stable attachment of the functional group of the enzyme on the fiber surface is achieved using this method. Enzyme immobilization is confirmed by Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The stability is confirmed by lipase p-nitrophenyl palmitate (PNP) assay. In contrast to widely used amperometric based biosensor, where a number of enzymes are required, only one enzyme, namely, lipase is required in our sensor. The sensor shows optimum response within one minute at a temperature of 37°C and pH of 7.4. The sensor is based on the shift in resonance wavelength of the LPG transmission spectrum due to the interaction of triacylglycerides with the enzyme. The biosensor is highly specific towards triacylglycerides and is unaffected by the presence of many other interfering substances in serum. Interaction between the bio-molecules and the long period grating surface is also modeled theoretically using a four layer model for the LPG fiber with the bio-recognition layer and the results obtained are consistent with experimentally obtained results. The sensor shows a high sensitivity of 0.5 nm/mM and a low detection limit of 17.71 mg/dl for the physiological range of triacylglycerides in human blood. Copyright © 2015 Elsevier B.V. All rights reserved.
Aldalbahi, Ali; Feng, Peter; Alhokbany, Norah; Al-Farraj, Eida; Alshehri, Saad M; Ahamad, Tansir
2017-02-15
Functionalized (MWCNTs-COOH), non-functionalized multiwalled carbon nanotubes (MWCNTs) and polyaniline (PANI) based conducting nanocomposites (PANI/polymer/MWCNTs and PANI/polymer/MWCNTs-COOH) have been prepared in polymer matrix. The prepared nanocomposites were characterized via FTIR, TGA, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was observed that the prepared conducting nanocomposites show excellent sensing performances toward CH 4 at room temperature and both the response and recovery time were recorded at around 5s, respectively, at the room. The PANI/polymer/MWCNTs based detector had quicker/shorter response time (<1s), as well as higher sensitivity (3.1%) than that of the PANI/polymer/MWCNTs-COOH based detector. This was attributed to nonconductive -COOH that results in a poor sensitivity of PANI/polymer/MWCNTs-COOH-based prototype. The PANI/polymer/MWCNTs-COOH nanocomposites show almost 10 time higher sensitivity at higher temperature (60°C) than that at room temperature. Copyright © 2016. Published by Elsevier B.V.
Sharma, Shiv K; Misra, Anupam K; Clegg, Samuel M; Barefield, James E; Wiens, Roger C; Acosta, Tayro
2010-07-13
We report time-resolved (TR) remote Raman spectra of minerals under supercritical CO(2) (approx. 95 atm pressure and 423 K) and under atmospheric pressure and high temperature up to 1003 K at distances of 1.5 and 9 m, respectively. The TR Raman spectra of hydrous and anhydrous sulphates, carbonate and silicate minerals (e.g. talc, olivine, pyroxenes and feldspars) under supercritical CO(2) (approx. 95 atm pressure and 423 K) clearly show the well-defined Raman fingerprints of each mineral along with the Fermi resonance doublet of CO(2). Besides the CO(2) doublet and the effect of the viewing window, the main differences in the Raman spectra under Venus conditions are the phase transitions, the dehydration and decarbonation of various minerals, along with a slight shift in the peak positions and an increase in line-widths. The dehydration of melanterite (FeSO(4).7H(2)O) at 423 K under approximately 95 atm CO(2) is detected by the presence of the Raman fingerprints of rozenite (FeSO(4).4H(2)O) in the spectrum. Similarly, the high-temperature Raman spectra under ambient pressure of gypsum (CaSO(4).2H(2)O) and talc (Mg(3)Si(4)O(10)(OH)(2)) indicate that gypsum dehydrates at 518 K, but talc remains stable up to 1003 K. Partial dissociation of dolomite (CaMg(CO(3))(2)) is observed at 973 K. The TR remote Raman spectra of olivine, alpha-spodumene (LiAlSi(2)O(6)) and clino-enstatite (MgSiO(3)) pyroxenes and of albite (NaAlSi(3)O(8)) and microcline (KAlSi(3)O(8)) feldspars at high temperatures also show that the Raman lines remain sharp and well defined in the high-temperature spectra. The results of this study show that TR remote Raman spectroscopy could be a potential tool for exploring the surface mineralogy of Venus during both daytime and nighttime at short and long distances.
NASA Technical Reports Server (NTRS)
Cooper, John; Aust, Jeffrey F.; Wise, Kent L.; Jensen, Brian J.
1999-01-01
The vibrational spectrum of a high temperature (330 C) polymerization reaction was successfully monitored in real time using a modulated fiber-optic FT-Raman spectrometer. A phenylethynyl terminated monomer was cured, and spectral evidence for two different reaction products was acquired. The products are a conjugated polyene chain and a cyclized trimer. This is the first report describing the use of FT-Raman spectroscopy to monitor a high temperature (greater than 250 C) reaction in real time.
NASA Technical Reports Server (NTRS)
Aust, Jeffrey F.; Cooper, John B.; Wise, Kent L.; Jensen, Brian J.
1999-01-01
The vibrational spectrum of a high-temperature (330 C) polymerization reaction was successfully monitored in real time with the use of a modulated fiber-optic Fourier transform (FT)-Raman spectrometer. A phenylethynyl-terminated monomer was cured, and spectral evidence for two different reaction products was acquired. The products are a conjugated polyene chain and a cyclized trimer. This is the first report describing the use of FT-Raman spectroscopy to monitor a high temperature (greater than 250 C) reaction in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nee, K.; Bryan, S.; Levitskaia, T.
The reliability of chemical processes can be greatly improved by implementing inline monitoring systems. Combining multivariate analysis with non-destructive sensors can enhance the process without interfering with the operation. Here, we present here hierarchical models using both principal component analysis and partial least square analysis developed for different chemical components representative of solvent extraction process streams. A training set of 380 samples and an external validation set of 95 samples were prepared and Near infrared and Raman spectral data as well as conductivity under variable temperature conditions were collected. The results from the models indicate that careful selection of themore » spectral range is important. By compressing the data through Principal Component Analysis (PCA), we lower the rank of the data set to its most dominant features while maintaining the key principal components to be used in the regression analysis. Within the studied data set, concentration of five chemical components were modeled; total nitrate (NO 3 -), total acid (H +), neodymium (Nd 3+), sodium (Na +), and ionic strength (I.S.). The best overall model prediction for each of the species studied used a combined data set comprised of complementary techniques including NIR, Raman, and conductivity. Finally, our study shows that chemometric models are powerful but requires significant amount of carefully analyzed data to capture variations in the chemistry.« less
Nee, K.; Bryan, S.; Levitskaia, T.; ...
2017-12-28
The reliability of chemical processes can be greatly improved by implementing inline monitoring systems. Combining multivariate analysis with non-destructive sensors can enhance the process without interfering with the operation. Here, we present here hierarchical models using both principal component analysis and partial least square analysis developed for different chemical components representative of solvent extraction process streams. A training set of 380 samples and an external validation set of 95 samples were prepared and Near infrared and Raman spectral data as well as conductivity under variable temperature conditions were collected. The results from the models indicate that careful selection of themore » spectral range is important. By compressing the data through Principal Component Analysis (PCA), we lower the rank of the data set to its most dominant features while maintaining the key principal components to be used in the regression analysis. Within the studied data set, concentration of five chemical components were modeled; total nitrate (NO 3 -), total acid (H +), neodymium (Nd 3+), sodium (Na +), and ionic strength (I.S.). The best overall model prediction for each of the species studied used a combined data set comprised of complementary techniques including NIR, Raman, and conductivity. Finally, our study shows that chemometric models are powerful but requires significant amount of carefully analyzed data to capture variations in the chemistry.« less
Electron-electron correlations in Raman spectra of VO2
NASA Astrophysics Data System (ADS)
Goncharuk, I. N.; Ilinskiy, A. V.; Kvashenkina, O. E.; Shadrin, E. B.
2013-01-01
It has been shown that, in single crystals and films of a strongly correlated material, namely, vanadium dioxide, upon a thermally stimulated phase transition from the low-temperature monoclinic phase to the high-temperature tetragonal phase, the narrow-line Raman spectrum of the insulating (monoclinic) phase transforms into the broad-band Raman spectrum, which contains two peaks at 500 and 5000 cm-1 with widths of 400 and 3500 cm-1, respectively. It has been found that, as the temperature of the monoclinic phase approaches the structural phase transition temperature (340 K), the line profile of soft-mode phonons at a frequency of 149 cm-1 with A g symmetry and the line profile of phonons at a frequency of 201 cm-1 with A g symmetry acquire an asymmetric shape with a Fano antiresonance that is characteristic of the interaction of a single phonon vibration with a continuum of strongly correlated electrons. It has been demonstrated that the thermal transformation of peaks in the Raman spectra of the VO2 metallic phase is in quantitative agreement with the theory of Raman scattering in strongly correlated materials.
Study of P3HT/ PCBM morphology using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Kumar, Manoj; Rathi, Sonika; Yadav, Anjali; Upadhyaya, Aditi; Gupta, Saral K.; Singh, Amarjeet
2018-05-01
In the present work we have deposited PEDOT: PSS (poly3,4-ethylene dioxythiophene -poly (styrenesulfonate)) then Pristine P3HT (Poly-3 hexylthiophene-2,5-diyl), PCBM (6,6- PhenylC61 butyric acid methyl ester) and its blend composite (P3HT:PCBM) thin films on ITO substrate via spin coating technique. Pristine P3HT, pristine PCBM and blend thin film samples were annealed at different temperatures (50°C, 80°C and 110°C) for 1 hr. Raman spectra was measured for each thin film samples as prepared (at room temperature or 25°C) and annealed at different temperatures (50°C, 80°C, 110°C). Then we calculated area under Raman peaks which is representation of Raman Intensity and observed that area under Raman peak varies with annealing temperatures. The increase in peak intensity appears due to increased crystallinity in annealed thin films. The mixing of PCBM hinders the crystallization of P3HT in blend. Mixed amorphous phase plays major role in charge transportation in electronic devices.
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet
2007-01-01
An alternative optical thermometry technique that utilizes the low-resolution (order 10(exp 1)/cm) pure-rotational spontaneous Raman scattering of air is developed to aid single-shot multiscalar measurements in turbulent combustion studies. Temperature measurements are realized by correlating the measured envelope bandwidth of the pure-rotational manifold of the N2/O2 spectrum with a theoretical prediction of a species-weighted bandwidth. By coupling this thermometry technique with conventional vibrational Raman scattering for species determination, we demonstrate quantitative spatially resolved, single-shot measurements of the temperature and fuel/oxidizer concentrations in a high-pressure turbulent Cf4-air flame. Our technique provides not only an effective means of validating other temperature measurement methods, but also serves as a secondary thermometry technique in cases where the anti-Stokes vibrational N2 Raman signals are too low for a conventional vibrational temperature analysis.
Optical phonon behavior of columbite MgNb2O6 single crystals
NASA Astrophysics Data System (ADS)
Xu, Dapeng; Liu, Wenqiang; Zhou, Qiang; Cui, Tian; Yuan, Hongming; Wang, Wenquan; Liu, Ying; Shi, Zhan; Li, Liang
2014-08-01
To explore potential applications, MgNb2O6 single crystal grown previously by optical floating zone method was used as a prototype for optical phonon behavior investigation. Polarized Raman spectra obtained in adequate parallel and crossed polarization were presented. All the obtained Raman modes were identified for the MgNb2O6, in good agreement with previous theory analysis. The selection rules of Raman for the columbite group were validated. Additionally, in-site temperature-dependent Raman spectra of MgNb2O6 were also investigated in the range from 83 to 803 K. The strong four Ag phonon modes all exhibits red shift with the temperature increasing. But thermal expansion of spectra is sectional linear with inflection points at about 373 K. And the absolute value of dω/dT at high temperature is higher than the one at lower temperature.
Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming
2014-04-23
For the first time, high-surface-area (approximately 1465 m(2) g(-1)), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900 °C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2(-)) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results.
NASA Astrophysics Data System (ADS)
Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming
2014-04-01
For the first time, high-surface-area (approximately 1465 m2 g-1), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900°C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2-) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupan, O.; Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2385; Chow, L.
2009-01-08
Nanostructured ZnO thin films have been deposited using a successive chemical solution deposition method. The structural, morphological, electrical and sensing properties of the films were studied for different concentrations of Al-dopant and were analyzed as a function of rapid photothermal processing temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron and micro-Raman spectroscopy. Electrical and gas sensitivity measurements were conducted as well. The average grain size is 240 and 224 A for undoped ZnO and Al-doped ZnO films, respectively. We demonstrate that rapid photothermal processing is an efficient method for improving themore » quality of nanostructured ZnO films. Nanostructured ZnO films doped with Al showed a higher sensitivity to carbon dioxide than undoped ZnO films. The correlations between material compositions, microstructures of the films and the properties of the gas sensors are discussed.« less
Qu, Lu-Lu; Song, Qi-Xia; Li, Yuan-Ting; Peng, Mao-Pan; Li, Da-Wei; Chen, Li-Xia; Fossey, John S; Long, Yi-Tao
2013-08-20
Au-Ag bimetallic microfluidic, dumbbell-shaped, surface enhanced Raman scattering (SERS) sensors were fabricated on cellulose paper by screen printing. These printed sensors rely on a sample droplet injection zone, and a SERS detection zone at either end of the dumbbell motif, fabricated by printing silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) successively with microscale precision. The microfluidic channel was patterned using an insulating ink to connect these two zones and form a hydrophobic circuit. Owing to capillary action of paper in the millimeter-sized channels, the sensor could enable self-filtering of fluids to remove suspended particles within wastewater without pumping. This sensor also allows sensitive SERS detection, due to advantageous combination of the strong surface enhancement of Ag NPs and excellent chemical stability of Au NPs. The SERS performance of the sensors was investigated by employing the probe rhodamine 6G, a limit of detection (LOD) of 1.1×10(-13)M and an enhancement factor of 8.6×10(6) could be achieved. Moreover, the dumbbell-shaped bimetallic sensors exhibited good stability with SERS performance being maintained over 14 weeks in air, and high reproducibility with less than 15% variation in spot-to-spot SERS intensity. Using these dumbbell-shaped bimetallic sensors, substituted aromatic pollutants in wastewater samples could be quantitatively analyzed, which demonstrated their excellent capability for rapid trace pollutant detection in wastewater samples in the field without pre-separation. Copyright © 2013 Elsevier B.V. All rights reserved.
Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure
Shang, Linbo; Chou, I-Ming; Burruss, Robert; Hu, Ruizhong; Bi, Xianwu
2014-01-01
The positions of the CH4 Raman ν1 symmetric stretching bands were measured in a wide range of temperature (from −180 °C to 350 °C) and density (up to 0.45 g/cm3) using high-pressure optical cell and fused silica capillary capsule. The results show that the Raman band shift is a function of both methane density and temperature; the band shifts to lower wavenumbers as the density increases and the temperature decreases. An equation representing the observed relationship among the CH4 ν1 band position, temperature, and density can be used to calculate the density in natural or synthetic CH4-bearing inclusions.
Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil
NASA Astrophysics Data System (ADS)
Gu, Z.; Chen, W.; Du, L.; Shi, H.; Wan, F.
2018-05-01
The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm-1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratio I 780/I 893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.
Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil
NASA Astrophysics Data System (ADS)
Gu, Z.; Chen, W.; Du, L.; Shi, H.; Wan, F.
2018-05-01
The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm-1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratio I 780/ I 893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.
Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane.
Stanca, Sarmiza E; Matthäus, Christian; Neugebauer, Ute; Nietzsche, Sandor; Fritzsche, Wolfgang; Dellith, Jan; Heintzmann, Rainer; Weber, Karina; Deckert, Volker; Krafft, Christoph; Popp, Jürgen
2015-10-01
Certain carboxyl groups of the plasma membrane are involved in tumorgenesis processes. A gold core-hydroxyapatite shell (AuHA) nanocomposite is introduced as chemo-spectroscopic sensor to monitor these carboxyl groups of the cell membrane. Hydroxyapatite (HA) plays the role both of a chemical detector and of a biocompatible Raman marker. The principle of detection is based on chemical interaction between the hydroxyl groups of the HA and the carboxyl terminus of the proteins. The AuHA exhibits a surface enhanced Raman scattering (SERS) signal at 954 cm(-1) which can be used for its localization. The bio-sensing capacity of AuHA towards human skin epidermoid carcinoma (A431) and Chinese hamster ovary (CHO) cell lines is investigated using Raman microspectroscopic imaging. The localization of AuHA on cells is correlated with scanning electron microscopy, transmission electron microscopy and structured illumination fluorescence microscopy. This qualitative approach is a step towards a quantitative study of the proteins terminus. This method would enable further studies on the molecular profiling of the plasma membrane, in an attempt to provide accurate cell identification. Using a gold core-hydroxyapatite shell (AuHA) nanocomposite, the authors in this paper showed the feasibility of detecting and differentiating cell surface molecules by surface enhanced Raman scattering. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humayun, Md Tanim; Divan, Ralu; Liu, Yuzi
Chemoresistive sensors based on multiwalled carbon nanotubes (MWCNTs) functionalized with SnO 2 nanocrystals (NCs) have great potential for detecting trace gases at low concentrations (single ppm levels) at room temperature, because the SnO 2 nanocrystals act as active sites for the chemisorption of gas molecules, and carbon nanotubes (CNTs) act as an excellent current carrying platform, allowing the adsorption of gas on SnO 2 to modulate the resistance of the CNTs. However, uniform conjugation of SnO 2 NCs with MWCNTs is challenging. An effective atomic layer deposition based approach to functionalize the surface of MWCNTs with SnO 2 NCs, resultingmore » in a novel CH 4 sensor with 10 ppm sensitivity, is presented in this paper. Scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy, and Raman spectroscopy were implemented to study the morphology, elemental composition, and the crystal quality of SnO 2 functionalized MWCNTs. High resolution TEM images showed that the crystal quality of the functionalizing SnO 2 NCs was of high quality with clear lattice fringes and the dimension almost three times smaller than shown thus far in literature. A lift-off based photolithography technique comprising bilayer photoresists was optimized to fabricate SnO 2 functionalized MWCNTs-based chemoresistor sensor, which at room temperature can reliably sense below 10 ppm of CH4 in air. Such low level gas sensitivity, with significant reversible relative resistance change, is believed to be the direct result of the successful functionalization of the MWCNT surface by SnO 2 NCs.« less
Li, Songyang; Liu, Zhiming; Su, Chengkang; Chen, Haolin; Fei, Xixi; Guo, Zhouyi
2017-02-01
The biological pH plays an important role in various cellular processes. In this work, a novel strategy is reported for biological pH sensing by using Raman spectroscopy and polyaniline nanoparticles (PANI NPs) as the pH-sensitive Raman probe. It is found that the Raman spectrum of PANI NPs is strongly dependent on the pH value. The intensities of Raman spectral bands at 1225 and 1454 cm -1 increase obviously with pH value varying from 5.5 to 8.0, which covers the range of regular biological pH variation. The pH-dependent Raman performance of PANI NPs, as well as their robust Raman signals and sensitivities to pH, was well retained after the nanoparticles incorporated into living 4T1 breast adenocarcinoma cells. The data indicate that such PANI NPs can be used as an effective biological pH sensor. Most interestingly, the PANI spherical nanostructures can be acquired by a low-cost, metal-free, and one-pot oxidative polymerization, which gives them excellent biocompatibility for further biological applications.
Characterization of Upper Troposphere Water Vapor Measurements during AFWEX using LASE
NASA Technical Reports Server (NTRS)
Ferrare, R. A.; Browell, E. V.; Ismail, S.; Kooi, S.; Brasseur, L. H.; Brackett, V. G.; Clayton, M.; Barrick, J.; Linne, H.; Lammert, A.
2002-01-01
Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. Initial comparisons showed the average Vaisala radiosonde measurements to be 5-15% drier than the average LASE, Raman lidar, and DC-8 in situ diode laser hygrometer measurements. We show that corrections to the Raman lidar and Vaisala measurements significantly reduce these differences. Precipitable water vapor (PWV) derived from the LASE water vapor profiles agrees within 3% on average with PWV derived from the ARM ground-based microwave radiometer (MWR). The agreement among the LASE, Raman lidar, and MWR measurements demonstrates how the LASE measurements can be used to characterize both profile and column water vapor measurements and that ARM Raman lidar, when calibrated using the MWR PWV, can provide accurate UTWV measurements.
NASA Technical Reports Server (NTRS)
Fuller, Kirk A.
2005-01-01
In this report, we summarize recent findings regarding the use spherical microcavities in the amplification of light that is inelastically scattered by either fluorescent or Raman-active molecules. This discussion will focus on Raman scattering, with the understanding that analogous processes apply to fluorescence. Raman spectra can be generated through the use of a very strong light source that stimulates inelastic light scattering by molecules, with the scattering occurring at wavelengths shifted from that of the source and being most prominent at shifts associated with the molecules natural vibrational frequencies. The Raman signal can be greatly enhanced by exposing a molecule to the intense electric fields that arise near surfaces (typically of gold or silver) exhibiting nanoscale roughness. This is known as surface-enhanced Raman scattering (SERS). SERS typically produces gain factors of 103 - 106, but under special conditions, factors of 1010 - 1014 have been achieved.
Resonance and Variable Temperature Raman Studies of Chloroperoxidase and Methemoglobin.
NASA Astrophysics Data System (ADS)
Remba, Ronald David
1980-12-01
Raman spectra of the heme proteins chloroperoxidase and methemoglobin, chemically and temperature modified, are obtained for laser excitation near the Soret absorption band. Numerous biochemical and physical results are obtained. The following observations for chloroperoxidase have been made. The scattered intensity for resonance (406.7 nm) excitation is at least twenty times that for near resonance (457.9 nm) excitation. In resonance only totally symmetric modes are enhanced. The positions of marker band I ((TURN) 1370 cm(' -1)) for both the native and reduced enzymes are lower than expected for high-spin heme proteins indicating a strongly electron donating axial ligand. From shifts in spin-sensitive Raman peaks as the temperature is lowered, a high-spin to low-spin transition of the heme iron is inferred. Raman spectra of chloroperoxidase liganded with small ions indicate that there is a second anion binding site near the heme. Photo-dissociation of CO from reduced chloroperoxidase is observed. The position of marker band I in the CO complex indicates that electron density is transferred from the heme onto the CO. The resonance Raman spectra of chloroperoxidase and cytochrome P-450 are nearly identical and are very different from those of horseradish peroxidase and cytochrome c. These results, particularly for the reduced enzymes, indicate that the heme sites in chloroperoxidase and P -450 are essentially the same. Raman spectra of a number of methemoglobins complexed with various small ions are obtained as a function of temperature in the region of spin-sensitive marker band (II) ((TURN) 1500 cm('-1)) for laser excitation near the Soret absorption band. For certain ligands, H(,2)O, N(,3)('-), OCN('-), OH('-) and SCN('-), the iron spin state changes from high spin to low spin with decreasing temperature. The relative spin concentrations are monitored by measuring the Raman intensity ratio, I(,h)/I(,1), of the high-spin and low -spin versions of marker band (II) as a function of temperature. This is the first study where the marker band technique is used to measure quantitatively spin transitions. For hydroxide and cyanate methemoglobin, log(I(,h)/I(,1)) varies linearly with 1/T, indicating a high-spin/low-spin thermal equilibrium. The data are analyzed to extract enthalpic and entropic changes. (DELTA)H values from Raman and static magnetic susceptibility techniques show good agreement. (DELTA)S values for horse hydroxide methemoglobin also agree. However, for cyanate methemoglobin, Raman and susceptibility (DELTA)S values differ substantially. Other evidence (ESR, optical, etc.) supports the Raman result. The discrepancy is probably due to the effects of freezing on the protein solution. Other methemoglobins show a discontinuity in the Raman intensity ratio at the freezing transition indicating a non-equilibrium situation where the freezing process drives the spin transition. Effects of freezing the protein solution on the spin transition are discussed. Both the high-spin and low-spin Raman frequencies are observed to remain constant (within (+OR-) 2 cm('-1)) when the temperature is varied. This is discussed in terms of core expansion and heme deformation. Experimental (DELTA)S values are much larger than the spin-only value. This is discussed in terms of a linear temperature dependence on the energy gap between the ('2)T(,2) ground state and the ('6)A(,1) first excited state. Variable temperature Raman data for carp azide methemoglobin with and without IHP indicate that the free energy for the spin transition decreases by 0.6 (+OR-) 0.3 kcal/mole when hemoglobin quaternary structure changes from R to T. Lack of any frequency shift in either the high-spin or low-spin Raman band upon addition of IHP is consistent with other evidence indicating no iron movement upon conversion of R to T quaternary forms.
Raman spectra of adsorbed layers on space shuttle and AOTV thermal protection system surface
NASA Technical Reports Server (NTRS)
Willey, Ronald J.
1987-01-01
Surfaces of interest to space vehicle heat shield design were struck by a 2 W argon ion laser line while subjected to supersonic arc jet flow conditions. Emission spectra were taken at 90 deg to the angle of laser incidence on the test object. Results showed possible weak Raman shifts which could not be directly tied to any particular parameter such as surface temperature or gas composition. The investigation must be considered exploratory in terms of findings. Many undesirable effects were found and corrected as the project progressed. For instance, initial spectra settings led to ghosts which were eliminated by closing the intermediate of filter slit of the Spex from 8 to 3 mm. Further, under certain conditions, plasma lines from the laser were observed. Several materials were also investigated at room temperature for Raman shifts. Results showed Raman shifts for RCC and TEOS coated materials. The HRSI materials showed only weak Raman shifts, however, substantial efforts were made in studying these materials. Baseline materials showed the technique to be sound. The original goal was to find a Raman shift for the High-temperature Reusable Surface Insulation (HRSI) Reaction Cured borosilicate Glass (RCG) coated material and tie the amplitude of this peak to Arc jet conditions. Weak Raman shifts may be present, however, time limitations prevented confirmation.
NASA Astrophysics Data System (ADS)
Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.
2014-02-01
Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.
Raman scattering measurements in flames using a tunable KrF excimer laser
NASA Technical Reports Server (NTRS)
Wehrmeyer, Joseph A.; Cheng, Tsarng-Sheng; Pitz, Robert W.
1992-01-01
A narrow-band tunable KrF excimer laser is used as a spontaneous vibrational Raman scattering source to demonstrate that single-pulse concentration and temperature measurements, with only minimal fluorescence interference, are possible for all major species (O2, N2, H2O, and H2) at all stoichiometries (fuel-lean to fuel rich) of H2-air flames. Photon-statistics-limited precisions in these instantaneous and spatially resolved single-pulse measurements are typically 5 percent, which are based on the relative standard deviations of single-pulse probability distributions. In addition to the single-pulse N2 Stokes/anti-Stokes ratio temperature measurement technique, a time-averaged temperature measurement technique is presented that matches the N2 Stokes Raman spectrum to theoretical spectra by using a single intermediate state frequency to account for near-resonance enhancement. Raman flame spectra in CH4-air flames are presented that have good signal-to-noise characteristics and show promise for single-pulse UV Raman measurements in hydrocarbon flames.
Frost, Ray L; Adebajo, Moses; Weier, Matt L
2004-02-01
Raman spectroscopy has been used to study the thermal transformations of natural magnesium oxalate dihydrate known in mineralogy as glushinskite. The data obtained by Raman spectroscopy was supplemented with that of infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG-MS identified two mass loss steps at 146 and 397 degrees C. In the first mass loss step water is evolved only, in the second step carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Glushinskite is the dihydrate phase in the temperature range up to the pre-dehydration temperature of 146 degrees C. Above 397 degrees C, magnesium oxide is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 400 degrees C. Changes in the position and intensity of the CO and CC stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario
2013-05-01
An approach to determine the convective available potential energy (CAPE) and the convective inhibition (CIN) based on the use of data from a Raman lidar system is illustrated in this work. The use of Raman lidar data allows to provide high temporal resolution measurements (5 min) of CAPE and CIN and follow their evolution over extended time periods covering the full cycle of convective activity. Lidar-based measurements of CAPE and CIN are obtained from Raman lidar measurements of the temperature and water vapor mixing ratio profiles and the surface measurements of temperature, pressure and dew point temperature provided by a surface weather station. The approach is applied to the data collected by the Raman lidar system BASIL in the frame of COPS. Attention was focused on 15 July and 25-26 July 2007. Lidar-based measurements are in good agreement with simultaneous measurements from radiosondes and with estimates from different mesoscale models.
Raman scattering in single-crystal sapphire at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thapa, Juddha; Liu, Bo; Woodruff, Steven D.
Sapphire is a widely used high-temperature material and this work presents thorough characterization of all the measurable Raman scattering modes in sapphire and their temperature dependencies. Here, Raman scattering in bulk sapphire rods is measured from room temperature to 1081 °C and is illustrated as a method of noncontact temperature measurement. A single-line argon ion laser at 488 nm was used to excite the sapphire rods inside a cylindrical furnace. All the anti-Stokes peaks (or lines) were observable through the entire temperature range of interest, while Stokes peaks were observable until they were obscured by background thermal emission. Temperature measurementsmore » were found to be most reliable for A 1g and E g modes using the peaks at ±418, ±379, +578, +645, and, +750 cm -1 (+ and – are designated for Stokes and anti-Stokes peaks respectively). The 418 cm -1 peak was found to be the most intense peak. The temperature dependence of peak position, peak width, and peak area of the ±418 and ±379 peaks is presented. For +578, +645 and +750, the temperature dependence of peak position is presented. The peaks’ spectral positions provide the most precise temperature information within the experimental temperature range. Finally, the resultant temperature calibration curves are given, which indicate that sapphire can be used in high-temperature Raman thermometry with an accuracy of about 1.38°C average standard deviation over the entire >1000°C temperature range.« less
Raman scattering in single-crystal sapphire at elevated temperatures
Thapa, Juddha; Liu, Bo; Woodruff, Steven D.; ...
2017-10-25
Sapphire is a widely used high-temperature material and this work presents thorough characterization of all the measurable Raman scattering modes in sapphire and their temperature dependencies. Here, Raman scattering in bulk sapphire rods is measured from room temperature to 1081 °C and is illustrated as a method of noncontact temperature measurement. A single-line argon ion laser at 488 nm was used to excite the sapphire rods inside a cylindrical furnace. All the anti-Stokes peaks (or lines) were observable through the entire temperature range of interest, while Stokes peaks were observable until they were obscured by background thermal emission. Temperature measurementsmore » were found to be most reliable for A 1g and E g modes using the peaks at ±418, ±379, +578, +645, and, +750 cm -1 (+ and – are designated for Stokes and anti-Stokes peaks respectively). The 418 cm -1 peak was found to be the most intense peak. The temperature dependence of peak position, peak width, and peak area of the ±418 and ±379 peaks is presented. For +578, +645 and +750, the temperature dependence of peak position is presented. The peaks’ spectral positions provide the most precise temperature information within the experimental temperature range. Finally, the resultant temperature calibration curves are given, which indicate that sapphire can be used in high-temperature Raman thermometry with an accuracy of about 1.38°C average standard deviation over the entire >1000°C temperature range.« less
NASA Astrophysics Data System (ADS)
Wu, X.; Lu, W.
2017-12-01
The concentration detection of the volatiles such as CH4 and CO2 in the hydrothermal systems and fluid inclusions is critical for understanding the fluxes of volatiles from mantle to crust and atmosphere. In-situ Raman spectroscopy has been developed successfully in laboratory, fluid inclusions and submarine environment because of its non-destructive and non-contact advantages. For improving the ability of detecting different species quantitatively by in-situ Raman spectroscopy in the extreme environment, such as the hydrothermal system and fluid inclusion, we studied the temperature- and salinity-dependence of Raman scattering cross section (RSCS) of the water OH stretching band at temperatures from 20 to 300 oC under 30 MPa. This is important because the water is often used as internal standard in the Raman quantitative application. Based on our previous study of NaCl-H2O system, we made further investigation on the CaCl2-H2O system. Our results revealed that the cation shows negligible effect on the RSCS of water OH stretching band, while the cations seems to have more obvious different effect on the structure of water within high temperatures. Besides the NaCl-CH4-H2O system, we also take the CO2-H2O system into account. Further conclusion can be made that the variation of the Raman quantitative factor (QF) (both PAR/mCH4 and PAR/mCO2) with the temperature and salinity is mainly caused by the temperature- and Cl- concentration-dependence of the relative RSCS of the water OH stretching band. If the Raman quantitative factor at ambient condition still being used, the RSCS of the water OH stretching band would induce about 47%, 34% and 29% error for the determined concentration of dissolved CH4 or CO2 (in mol/kg·H2O) by in-situ Raman spectroscopy for 0 m Cl-, 3 m Cl- and 5 m Cl- aqueous system when the temperature increases from 20 to 300 oC, respectively. Considering the wide range of the temperature and salinity in hydrothermal systems and fluid inclusions, the following equation can be used to calculate the relative QF at different temperatures and salinity referencing to the 0 m Cl- aqueous solution at 20 oC: QF(T, salinity)/QF(20 oC, 0 m Cl-)=k(T-20 oC)+b, where a=-0.0035× mCl-1/2+0.00168, b=-0.03× mCl-+1;
Applications of Raman spectroscopy in life science
NASA Astrophysics Data System (ADS)
Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.
2015-06-01
Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.
Defining the temperature range for cooking with extra virgin olive oil using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Ahmad, Naveed; Saleem, M.; Ali, H.; Bilal, M.; Khan, Saranjam; Ullah, Rahat; Ahmed, M.; Mahmood, S.
2017-09-01
Using the potential of Raman spectroscopy, new findings regarding the effects of heating on extra virgin olive oil (EVOO) during frying/cooking are presented. A temperature range from 140 to 150 °C has been defined within which EVOO can be used for cooking/frying without much loss of its natural molecular composition. Raman spectra from the EVOO samples were recorded using an excitation laser at 785 nm in the range from 540 to 1800 cm-1. Due to heating, prominent variations in intensity are observed at Raman bands from 540 to 770 cm-1, 790 to 1170 cm-1 and 1267 and 1302 cm-1. The Raman bands at 1267 and 1302 cm-1 represent cis unsaturated fats and their ratio is used to investigate the effects of temperature on the molecular composition of EVOO. In addition, principal component analysis has been applied on all the groups of data to classify the heated EVOO samples at different temperatures and for different times. In addition, it has been found that use of EVOO for frying twice does not have any prominent effect on its molecular composition.
NASA Astrophysics Data System (ADS)
Yang, Yanqiang; Zhu, Gangbei; Yan, Lin; Liu, Xiaosong; Yang's Ultrafast Spectroscopy Group Team
2017-06-01
Intramolecular vibrational energy redistribution (IVR) is important process in thermal decomposition, shock chemistry and photochemistry. Anti-Stokes Raman scattering is sensitive to the vibrational population in excited states because only vibrational excited states are responsible to the anti-Stokes Raman scattering, does not vibrational ground states. In this report, steady-state anti-Stokes Raman spectroscopy and broad band ultrafast coherent anti-Stokes Raman scattering (CARS) are performed. The steady-state anti-Stokes Raman spectroscopy shows temperature dependent of vibrational energy redistribution in vibrational excited-state molecule, and reveal that, in liquid nitrobenzene, with temperature increasing, vibrational energy is mainly redistributed in NO2 symmetric stretching mode, and phenyl ring stretching mode of νCC. For liquid nitromethane, it is found that, with temperature increasing, vibrational energy concentrate in CN stretching mode and methyl umbrella vibrational mode. In the broad band ultrafast CARS experiment, multiple vibrational modes are coherently excited to vibrational excited states, and the time-frequency resolved CARS spectra show the coincident IVR processes. This work is supported by the National Natural Science Foundation of China (Grant Numbers 21673211 and 11372053), and the Science Challenging Program (Grant Number JCKY2016212A501).
Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy
Bond, Tiziana C.; Altun, Ali; Park, Hyung Gyu
2017-10-03
A sensor with a substrate includes nanowires extending vertically from the substrate, a hafnia coating on the nanowires that provides hafnia coated nanowires, and a noble metal coating on the hafnia coated nanowires. The top of the hafnia and noble metal coated nanowires bent onto one another to create a canopy forest structure. There are numerous randomly arranged holes that let through scattered light. The many points of contact, hot spots, amplify signals. The methods include the steps of providing a Raman spectroscopy substrate, introducing nano crystals to the Raman spectroscopy substrate, growing a forest of nanowires from the nano crystals on the Raman spectroscopy substrate, coating the nanowires with hafnia providing hafnia coated nanowires, and coating the hafnia coated nanowires with a noble metal or other metal.
Surface-enhanced Raman sensor for trace chemical detection in water
NASA Astrophysics Data System (ADS)
Lee, Vincent Y.; Farquharson, Stuart; Rainey, Petrie M.
1999-11-01
Surface-enhanced Raman spectroscopy (SERS) promises to be one of the most sensitive methods for chemical detection and in recent years SERS has been used for chemical, biochemical, environmental, and physiological applications. A variety of methods using various media (electrodes, colloids, and substrates) have been successfully developed to enhance Raman signals by six orders of magnitude and more. However, SERS has not become a routine analytical technique because these methods are unable to provide quantitative measurements. This is largely due to the inability to fabricate a sampling medium that provides reversible chemical adsorption, analysis-to-analysis reproducibility, unrestricted solution requirements (reagent concentration and pH) or sample phase (liquid or solid). In an effort to overcome these restrictions, we have developed metal-doped sol-gels to provide surface-enhancement of Raman scattering.
Space-borne profiling of atmospheric thermodynamic variables with raman lidar
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker
2018-04-01
The performance of a space-borne water vapour and temperature Raman lidar has been simulated, with a specific attention to the Earth Explorer Missions in the frame of ESA's Living Planet Program. We report simulations under a variety of atmospheric scenarios, demonstrating the capability of a space Raman lidar to provide global-scale water vapour and temperature measurements in the troposphere with an accuracy fulfilling most observational requirements for numerical weather prediction (NWP) and climate research.
NASA Astrophysics Data System (ADS)
Sharma, Anshul Kumar; Mahajan, Aman; Bedi, R. K.; Kumar, Subodh; Debnath, A. K.; Aswal, D. K.
2018-01-01
A cost effective solution assembly method has been explored for preparing zinc(II)1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexa-decafluoro-29H,31H-phthalocyanine/multi-walled carbon nanotubes (F16ZnPc/MWCNTs-COOH) hybrid. Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) investigations confirm the non-covalent anchoring of F16ZnPc onto MWCNTs-COOH through п-п stacking interactions. Further, a highly sensitive and selective chemiresistive Cl2 sensor has been fabricated using F16ZnPc/MWCNTs-COOH hybrid. The response of sensor is found to be 21.28% for 2 ppm of Cl2 with a response time of 14 s and theoretical detection limit of the sensor is found down to 0.06 ppb. The improved Cl2 sensing characteristics of hybrid are found to be originated from the synergetic interaction between F16ZnPc and MWCNTs-COOH. The underlying mechanism for improved gas sensing performance of F16ZnPc/MWCNTs-COOH sensor towards Cl2 has been explained using Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS) studies.
Borowicz, P.; Taube, A.; Rzodkiewicz, W.; Latek, M.; Gierałtowska, S.
2013-01-01
Three samples with dielectric layers from high-κ dielectrics, hafnium oxide, gadolinium-silicon oxide, and lanthanum-lutetium oxide on silicon substrate were studied by Raman spectroscopy. The results obtained for high-κ dielectrics were compared with spectra recorded for silicon dioxide. Raman spectra suggest the similarity of gadolinium-silicon oxide and lanthanum-lutetium oxide to the bulk nondensified silicon dioxide. The temperature treatment of hafnium oxide shows the evolution of the structure of this material. Raman spectra recorded for as-deposited hafnium oxide are similar to the results obtained for silicon dioxide layer. After thermal treatment especially at higher temperatures (600°C and above), the structure of hafnium oxide becomes similar to the bulk non-densified silicon dioxide. PMID:24072982
DNA as Sensors and Imaging Agents for Metal Ions
Xiang, Yu
2014-01-01
Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450
Innovative smart micro sensors for Army weaponry applications
NASA Astrophysics Data System (ADS)
Ruffin, Paul B.; Brantley, Christina; Edwards, Eugene
2008-03-01
Micro sensors offer the potential solution to cost, size, and weight issues associated with smart networked sensor systems designed for environmental/missile health monitoring and rocket out-gassing/fuel leak detection, as well as situational awareness on the battlefield. In collaboration with the University of Arkansas (Fayetteville), University of Alabama (Tuscaloosa and Birmingham), Alabama A&M University (Normal), and Streamline Automation (Huntsville, AL), scientists and engineers at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) are investigating several nano-based technologies to solve the problem of sensing extremely small levels of toxic gases associated with both chemical warfare agents (in air and liquids) and potential rocket motor leaks. Innovative techniques are being devised to adapt voltammetry, which is a well established technique for the detection and quantification of substances dissolved in liquids, to low-cost micro sensors for detecting airborne chemical agents and potential missile propellant leakages. In addition, a surface enhanced Raman scattering (SERS) technique, which enhances Raman scattered light by excitation of surface plasmons on nanoporous metal surfaces (nanospheres), is being investigated to develop novel smart sensors for the detection of chemical agents (including rocket motor out-gassing) and potential detection of home-made explosive devices. In this paper, results are delineated that are associated with experimental studies, which are conducted for the aforementioned cases and for several other nano-based technology approaches. The design challenges of each micro sensor technology approach are discussed. Finally, a comparative analysis of the various innovative micro-sensor techniques is provided.
Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.
Kamra, Tripta; Zhou, Tongchang; Montelius, Lars; Schnadt, Joachim; Ye, Lei
2015-01-01
Molecularly imprinted polymers (MIPs) have a predesigned molecular recognition capability that can be used to build robust chemical sensors. MIP-based chemical sensors allow label-free detection and are particularly interesting due to their simple operation. In this work we report the use of thiol-terminated MIP microspheres to construct surfaces for detection of a model organic analyte, nicotine, by surface enhanced Raman scattering (SERS). The nicotine-imprinted microspheres are synthesized by RAFT precipitation polymerization and converted into thiol-terminated microspheres through aminolysis. The thiol groups on the MIP surface allow the microspheres to be immobilized on a gold-coated substrate. Three different strategies are investigated to achieve surface enhanced Raman scattering in the vicinity of the imprinted sites: (1) direct sputtering of gold nanoparticles, (2) immobilization of gold colloids through the MIP's thiol groups, and (3) trapping of the MIP microspheres in a patterned SERS substrate. For the first time we show that large MIP microspheres can be turned into selective SERS surfaces through the three different approaches of assembly. The MIP-based sensing surfaces are used to detect nicotine to demonstrate the proof of concept. As synthesis and surface functionalization of MIP microspheres and nanoparticles are well established, the methods reported in this work are handy and efficient for constructing label-free chemical sensors, in particular for those based on SERS detection.
Micro-Raman imaging on 4H-SiC in contact with the electrode at room temperature
NASA Astrophysics Data System (ADS)
Suda, Jun; Suwa, Satoshi; Mizuno, Shugo; Togo, Kouki; Mastuo, Yuya
2018-03-01
Raman images (30 μm × 30 μm × 180 μm) of a bulk 4H-SiC wafer in contact with a Ni/Au electrode film in 100 nm/200 nm thick were measured with Micro-Raman spectroscopy at room temperature. As the imaging area approached the interface between the SiC and electrode, the center frequency of the E2(TO) mode (778 cm- 1) immediately declined; in the Raman imaging, relative distribution of compressive residual stress around residual tensile stress, and linewidth were broadened due to crystal distortion. For LOPC (LO-phonon-plasmon-coupled) mode (970 cm- 1), center frequency showed variation right next to the interface, while linewidth decreased slowly as the imaging area approached the interface. We evaluated the temperature dependence of the line broadening and the center frequency of the LOPC mode in 4H-SiC in a high-temperature region. Free carrier concentration increased with temperature, and remained almost constant in the center frequency after impurities were ionized completely.
NASA Astrophysics Data System (ADS)
Song, Yang; Hemley, Russell J.; Liu, Zhenxian; Somayazulu, Maddury; Mao, Ho-kwang; Herschbach, Dudley R.
2003-07-01
The properties of nitrosonium nitrate (NO+NO3-) were investigated following synthesis by laser heating of N2O and N2O4 under high pressures in a diamond anvil cell. Synchrotron infrared absorption spectra of NO+NO3- were measured at pressures up to 32 GPa at room temperature. Raman spectra were obtained at pressures up to 40 GPa at room temperature and up to 14 GPa at temperatures down to 80 K. For both lattice and intramolecular vibrational modes, a smooth evolution of spectral bands with pressure indicates that NO+NO3- forms a single phase over a broad range above 10 GPa, whereas marked changes, particularly evident in the Raman spectra at low temperature, indicate a phase transition occurs near 5 GPa. NO+NO3- could be recovered at atmospheric pressure and low temperature, persisting to 180 K. The Raman and IR spectroscopic data suggest that the NO+NO3- produced by laser heating of N2O followed by decompression may differ in structure or orientational order-disorder from that produced by autoionization of N2O4.
NASA Astrophysics Data System (ADS)
McGrane, Shawn D.; Aslam, Tariq D.; Pierce, Timothy H.; Hare, Steven J.; Byers, Mark E.
2018-01-01
Raman spectra and velocimetry of shocked PBX 9502 (plastic bonded explosive composed of 95% triaminotrinitrobenzene (TATB) and 5% 3M Company Kel F-800 polymer binder) are reported with the Stokes/anti-Stokes ratio used to determine temperature after the shock reflects from a lithium fluoride window. Final pressures up to 14.5 GPa were tested, but the pressure induced absorption of TATB caused the Raman signal to decrease exponentially with pressure. The reflected shock temperature could be determined to 7 GPa, with an average increase of 14.9 K/GPa. Suggestions to adapt the technique to permit thermometry at higher temperatures are discussed, as are comparisons to a recently proposed equation of state for PBX 9502.
ERIC Educational Resources Information Center
Gerrard, Donald L.
1984-01-01
Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…
NASA Astrophysics Data System (ADS)
Midya, Anupam; Ghosh, Ruma; Santra, Sumita; Ray, Samit K.; Guha, Prasanta K.
2016-02-01
Development of chemoresistive ammonia sensor that does not suffer with humidity interference is highly desirable for practical environmental monitoring systems. We report enhanced ammonia sensing using chemically reduced graphene oxide (RGO) and rose bengal (RB) nanocomposite fabricated in a very simple and cost effective manner. The RGO-RB nanocomposites were synthesized using three different concentrations (2 mg mL-1, 5 mg mL-1 and 10 mg mL-1) of RB keeping the RGO concentration same. Ammonia and humidity sensing of these three different composites were explored. Interestingly, it was observed that with increasing concentration of RB, the sensitivity of the sensor towards ammonia was increased but the sensitivity towards humidity was decreased. The response of the nanocomposites varied from ˜9-45% against 400-2800 ppm of ammonia whereas intrinsic RGO showed a response of merely 17% against 2800 ppm of ammonia. On the other hand the response of the nanocomposite based sensor was reduced from 18% to 7% against 100% relative humidity. Also, the sensor was found to be selective towards ammonia when tested against other toxic volatile organic compounds. The limit of detection of the RGO-RB based sensor was calculated to be as low as 0.9 ppm. Field emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy were carried out for the detailed structural characterizations of the sensing layer. These results are believed to be very useful for the cost effective fabrication of graphene based ammonia sensors which have reduced effects of humidity.
Quantum Communications Systems
2012-09-21
metrology practical. The strategy was to develop robust photonic quantum states and sensors serving as an archetype for loss-tolerant information...communications and metrology. Our strategy consisted of developing robust photonic quantum states and sensors serving as an archetype for loss-tolerant...developed atomic memories in caesium vapour, based on a stimulated Raman transition, that have demonstrated a TBP greater than 1000 and are uniquely suited
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Eldridge, Jeffrey J.; Krainsky, Isay L.
2009-01-01
Raman spectroscopy is used to measure the junction temperature of a Cree SiC MESFET as a function of the ambient temperature and DC power. The carrier temperature, which is approximately equal to the ambient temperature, is varied from 25 C to 450 C, and the transistor is biased with VDS=10V and IDS of 50 mA and 100 mA. It is shown that the junction temperature is approximately 52 and 100 C higher than the ambient temperature for the DC power of 500 and 1000 mW, respectively.
Holthoff, Ellen L.; Stratis-Cullum, Dimitra N.; Hankus, Mikella E.
2011-01-01
We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs) with surface enhanced Raman scattering (SERS). The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT). Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3) × 10−5 M for TNT and a 3 μM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest. PMID:22163761
Xie, Linglin; Yang, Xia; He, Yi; Yuan, Ruo; Chai, Yaqin
2018-05-02
In this work, we adopted polyacrylamide gel-contained zinc finger peptide (PZF) as a "lock" of Raman signal and zinc ions (Zn 2+ ) as a sensitive "key", which was converted from target-captured ZnO NPs, to achieve the measurement of prostate-specific antigen (PSA). Owing to the lock effect from PZF, the surface-enhanced Raman scattering (SERS) tag toluidine blue (TB) connected on Ag NP-coating silica wafer was sheltered leading to low Raman response. Meanwhile, target PSA can specifically connect with antibody 2-coupled ZnO nanocomplexes (ZnO@Au@Ab 2 ) and antibody 1-coupled magnetic (CoFe 2 O 4 @Au@Ab 1 ) nanocomposite through sandwich immunoassay. In the presence of HCl, the ZnO NPs would convert into Zn 2+ to open the PZF because Zn 2+ can specifically react with zinc finger peptide to destroy the PZF structure forming abundant pores. In this way, Zn 2+ could act as the key of Raman signal to open the PZF structure obtaining a strong Raman signal of TB. The proposed SERS sensor can have a quantitative detection of PSA within the range of 1 pg mL -1 to 10 ng mL -1 with a detection limit of 0.65 pg mL -1 . The interaction between zinc finger peptide and Zn 2+ was firstly applied in SERS sensor for the sensitive detection of PSA. These results demonstrated that the new designed SERS biosensor could be a promising tool in biomarker diagnosis.
In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids
NASA Astrophysics Data System (ADS)
Daniel, Isabelle; Gillet, Philippe; Poe, Brent T.; McMillan, Paul F.
1995-03-01
We have measured in-situ Raman spectra of aluminosilicate glasses and liquids with albite (NaAlSi3 O8) and anorthite (CaAl2Si2O8) compositions at high temperatures, through their glass transition range up to 1700 and 2000 K, respectively. For these experiments, we have used a wire-loop heating device coupled with micro-Raman spectroscopy, in order to achieve effective spatial filtering of the extraneous thermal radiation. A major concern in this work is the development of methodology for reliably extracting the first and second order contributions to the Raman scattering spectra of aluminosilicate glasses and liquids from the high temperature experimental data, and analyzing these in terms of vibrational (anharmonic) and configurational changes. The changes in the first order Raman spectra with temperature are subtle. The principal low frequency band remains nearly constant with increasing temperature, indicating little change in the T-O-T angle, and that the angle bending vibration is quite harmonic. This is in contrast to vitreous SiO2, studied previously. Above Tg, intensity changes in the 560 590 cm-1 regions of both sets of spectra indicate configurational changes in the supercooled liquids, associated with formation of additional Al-O-Al linkages, or 3-membered (Al, Si)-containing rings. Additional intensity at 800 cm-1 reflects also some rearrangement of the Si-O-Al network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Kook In; Lee, In Gyu; Hwang, Wan Sik, E-mail: mhshin@kau.ac.kr, E-mail: whwang@kau.ac.kr
The oxidation properties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.
NASA Astrophysics Data System (ADS)
Pontes, F. M.; Pontes, D. S. L.; Leite, E. R.; Longo, E.; Chiquito, A. J.; Pizani, P. S.; Varela, J. A.
2003-12-01
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. On the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV.
Temperature dependence of the Raman spectrum of 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one
NASA Astrophysics Data System (ADS)
de Toledo, T. A.; da Costa, R. C.; Al-Maqtari, H. M.; Jamalis, J.; Pizani, P. S.
2017-06-01
The heterocyclic chalcone containing thiophene ring 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one, C13H9ClOS was synthesized and investigated using experimental techniques such as nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared spectroscopy (FTIR) at room temperature, differential scanning calorimeter (DSC) from room temperature to 500 K and Raman scattering at the temperature range 10-413 K in order to study its structure and vibrational properties as well as stability and possible phase transition. Density functional theory (DFT) calculations were performed to determine the vibrational spectrum viewing to improve the knowledge of the material properties. A reasonable agreement was observed between theoretical and experimental Raman spectrum taken at 10 K since anharmonic effects of the molecular motion is reduced at low temperatures, leading to a more comprehensive assignment of the vibrational modes. Increasing the temperature up to 393 K, was observed the typical phonon anharmonicity behavior associated to changes in the Raman line intensities, line-widths and red-shift, in special in the external mode region, whereas the internal modes region remains almost unchanged due its strong chemical bonds. Furthermore, C13H9ClOS goes to melting phase transition in the temperature range 393-403 K and then sublimates in the temperature range 403-413 K. This is denounced by the disappearance of the external modes and the absence of internal modes in the Raman spectra, in accordance with DSC curve. The enthalpy (ΔH) obtained from the integration of the endothermic peak in DSC curve centered at 397 K is founded to be 121.5 J/g.
Phase Transition in all-trans-β-Carotene Crystal: Temperature-Dependent Raman Spectra.
da Silva, Kleber J R; Paschoal, Waldomiro; Belo, Ezequiel A; Moreira, Sanclayton G C
2015-09-24
In this study, we studied the stability of an all-trans-β-carotene single crystal using Raman spectroscopy with line excitation at 632.8 nm, in the temperature range 20–300 K. The Raman spectra exhibit clear modifications in the spectral range of the lattice and internal vibrational modes. The temperature dependence of the most intense vibrational modes ν1 (1511 cm(–1)) and ν2 (1156 cm(–1)) that are related to the C═C and C—C stretching vibrations of the polyene chain, respectively, shows an upward shift on the Raman modes. This behavior is similar to that stated in the theoretical work of Wei-Long Liu et al. We conclude that the all-trans-β-carotene crystal undergoes a temperature-induced phase transition at approximately 219 K. This transition is interpreted as a rotation experienced by β-ring groups at each end of the all-trans-β-carotene molecule around the dihedral angle. At low temperatures, the new molecular configuration affects the sliding plane of the space group C2h(5)(P2(1)/n), and the phase transition leads to an unchanged monoclinic structure; however, the original space group is possibly lowered to the space group C2. In the temperature range 200–220 K, the spectral ratio (S) of the integrated intensities of the spectral modes around the symmetric and asymmetric stretching wavenumbers of the methyl group (CH3) changes as a function of temperature in agreement with the phase transition. Furthermore, according to phase transition undergone by the all-trans-β-carotene, the thermal results obtained by differential scanning calorimetry show an exothermic process that occurs near the transition temperature assigned by the Raman spectra.
Spontaneous Raman Scattering Diagnostics for High-pressure Gaseous Flames
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet; Reddy, D. R. (Technical Monitor)
2002-01-01
A high-pressure (up to 60 atm) gaseous burner facility with optical access that provides steady, reproducible flames with high precision, and the ability to use multiple fuel/oxidizer combinations has been developed. In addition, a high-performance spontaneous Raman scattering system for use in the above facility has also been developed. Together, the two systems will be used to acquire and establish a comprehensive Raman scattering spectral database for use as a quantitative high-pressure calibration of single-shot Raman scattering measurements in high-pressure combustion systems. Using these facilities, the Raman spectra of H2-Air flames were successfully measured at pressures up to 20 atm. The spectra demonstrated clear rotational and ro-vibrational Raman features of H2, N2, and H2O. theoretical Raman spectra of pure rotational H2, vibrational H2, and vibrational N2 were calculated using a classical harmonic-oscillator model with pressure broadening effects and fitted to the data. At a gas temperature of 1889 K for a phi = 1.34 H2-Air flame, the model and the data showed good agreement, confirming a ro-vibrational equilibrium temperature.
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.
Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos
2016-06-14
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.
Dynamics of magnetic-field-induced clustering in ionic ferrofluids from Raman scattering
NASA Astrophysics Data System (ADS)
Heinrich, D.; Goñi, A. R.; Thomsen, C.
2007-03-01
Using Raman spectroscopy, the authors have investigated the aggregation/disgregation of magnetic nanoparticles in dense ionic ferrofluids (IFF) into clusters due to the action of an inhomogeneous external magnetic field. Evidence for changes in particle density and/or effective cluster size were obtained from the variation of the Raman intensity in a time window from 10sto10min for magnetic fields up to 350mT and at a temperature of 28°C. Clustering sets in already at very low fields (>15mT) and the IFF samples exhibit a clear hysteresis in the Raman spectra after releasing the magnetic field, which lasts for many hours at room temperature. The authors determined the characteristic times of the two competing processes, that of field-induced cluster formation and, at room temperature, that of thermal-activated dissociation, to range from 100to150s.
Near-Infrared Photon-Counting Camera for High-Sensitivity Observations
NASA Technical Reports Server (NTRS)
Jurkovic, Michael
2012-01-01
The dark current of a transferred-electron photocathode with an InGaAs absorber, responsive over the 0.9-to-1.7- micron range, must be reduced to an ultralow level suitable for low signal spectral astrophysical measurements by lowering the temperature of the sensor incorporating the cathode. However, photocathode quantum efficiency (QE) is known to reduce to zero at such low temperatures. Moreover, it has not been demonstrated that the target dark current can be reached at any temperature using existing photocathodes. Changes in the transferred-electron photocathode epistructure (with an In- GaAs absorber lattice-matched to InP and exhibiting responsivity over the 0.9- to-1.7- m range) and fabrication processes were developed and implemented that resulted in a demonstrated >13x reduction in dark current at -40 C while retaining >95% of the approximately equal to 25% saturated room-temperature QE. Further testing at lower temperature is needed to confirm a >25 C predicted reduction in cooling required to achieve an ultralow dark-current target suitable for faint spectral astronomical observations that are not otherwise possible. This reduction in dark current makes it possible to increase the integration time of the imaging sensor, thus enabling a much higher near-infrared (NIR) sensitivity than is possible with current technology. As a result, extremely faint phenomena and NIR signals emitted from distant celestial objects can be now observed and imaged (such as the dynamics of redshifting galaxies, and spectral measurements on extra-solar planets in search of water and bio-markers) that were not previously possible. In addition, the enhanced NIR sensitivity also directly benefits other NIR imaging applications, including drug and bomb detection, stand-off detection of improvised explosive devices (IED's), Raman spectroscopy and microscopy for life/physical science applications, and semiconductor product defect detection.
Laser Diagnostics for combustion temperature and species measurements
NASA Technical Reports Server (NTRS)
Eckbreth, Alan C.
1988-01-01
Laser optical diagnostic techniques for the measurement of combustion gaseous-phase temperatures and, or species concentrations are discussed. The techniques fall into two classes: incoherent (Rayleigh scattering, spontaneous Raman scattering, laser induced fluorescence spectroscopy) and coherent (coherent anti-Stokes Raman spectroscopy). The advantages, disadvantages and applicability of each method are outlined.
Surface-enhanced Raman spectroscopy of half-mustard agent.
Stuart, Douglas A; Biggs, Kevin B; Van Duyne, Richard P
2006-04-01
The detection and identification of chemical warfare agents is an important analytical goal. Herein, it is demonstrated that 2-chloroethyl ethyl sulfide (half-mustard, CEES) can be successfully analysed using surface-enhanced Raman spectroscopy (SERS). A critical component in this detection system is the fabrication of a robust, yet highly enhancing, sensor surface. Recent advances in substrate fabrication and in the fundamental understanding of the SERS phenomenon enable the development of improved substrates for practical SERS applications.
NASA Astrophysics Data System (ADS)
Blanco, Alejandro; Mina, Nairmen; Castro, Miguel E.; Castillo-Chara, Jairo; Hernandez-Rivera, Samuel P.
2004-09-01
Raman Spectroscopy is a well established tool for vibrational spectroscopy analysis. Interactions of explosives with different substrates can be measured by using quantitative vibrational signal shift information of scattered Raman light associated with these interactions. A vibrational spectroscopic study has been carried out on 2,4-DNT and 2,6-DNT crystals. Raman Microscopy spectrometers equipped with 514 nm and 785 nm laser excitation lines were used. The samples were recrystallized on different solvents (water, methanol and acetonitrile) and allowed to interact with soil samples. The interaction with sand and soil samples doped with the nitroaromatic compounds showed significant shifts in its peaks. The above information was used to detect DNT in soil using Raman Microscopy. These results will make possible the development of highly sensitive sensors for detection of explosives materials.
Advances in Raman Lidar Measurements of Water Vapor
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Evans, K.; Demoz, B.; DiGirolamo, P.; Mielke, B.; Stein, B.; Goldsmith, J. E. M.; Tooman, T.; Turner, D.; Starr, David OC. (Technical Monitor)
2002-01-01
Recent technology upgrades to the NASA/GSFC Scanning Raman Lidar have permitted significant improvements in the daytime and nighttime measurement of water vapor using Raman lidar. Numerical simulation has been used to study the temperature sensitivity of the narrow spectral band measurements presented here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, Buric; Jessica, Mullen; Steven, Woodruff
2012-02-24
NETL has developed new technology which enables the use of Raman spectroscopy in the real-time measurement of gas mixtures. This technology uses a hollow reflective metal-lined capillary waveguide as a gas sampling cell which contains the sample gas, and efficiently collects optical Raman scattering from the gas sample, for measurement with a miniature spectrometer. The result is an optical Raman “fingerprint” for each gas which is tens or hundreds of times larger than that which can be collected with conventional free-space optics. In this manner, the new technology exhibits a combination of measurement speed and accuracy which is unprecedented formore » spontaneous Raman measurements of gases. This makes the system especially well-suited to gas turbine engine control based on a-priori measurement of incoming fuel composition. The system has been developed to produce a measurement of all of the common components of natural gas, including the lesser nitrogen, oxygen, carbon-dioxide, and carbon monoxide diluents to better than 1% concentration accuracy each second. The objective of this task under CRADA 10-N100 was to evaluate the capability of a laser Raman capillary gas sensor for combustion fuels. A portable version of the Raman gas sensor, constructed at NETL, was used for field-trials conducted in a cooperative research effort at a GE facility. Testing under the CRADA was performed in 5 parts. Parts 1-4 were successful in testing of the Raman Gas Composition Monitor with bottled calibration gases, and in continuous monitoring of several gas streams at low pressure, in comparison with an online mass spectrometer. In part 5, the Raman Gas Composition Monitor was moved outdoors for testing with high pressure gas supplies. Some difficulties were encountered during industrial testing including the condensation of heavy hydrocarbons inside the sample cell (in part 5), communication with the GE data collection system, as well as some drift in the optical noise background. The difficulties with liquid contaminants will be overcome through the use of prodigious sample-cell heating and additional line filtration including liquid ingress-protection. The communication problem was resolved through site-specific troubleshooting of the MODBUS data tags.« less
NASA Astrophysics Data System (ADS)
Jumeau, Richard; Bourson, Patrice; Ferriol, Michel; Lahure, François; Ducos, Franck; Ligneron, Jérôme
2011-05-01
Polyethylene (PE) is a very important material. In 2008, almost 30% of the world plastics production was dedicated to this polymer (70 million tons) [1]. It is a consumer polymer because of its moderate cost of manufacturing and its physical and mechanical properties compatible with various applications in everyday life. Indeed, PE is generally easily processable. It possesses an excellent electric insulation and shock resistance combined with a very good chemical and biological inertia [2]. For each application, there is a particular grade, i.e. a polyethylene with well defined rheological properties. Therefore, it is essential to know how to differentiate these different grades by suitable methods of characterization. Differential Scanning Calorimetry (DSC) is one of the techniques usually used for this purpose. The knowledge of characteristic temperatures such as melting, cold crystallization or glass transition gives information on the viscosity and thus, on the grade of the polymer. DSC also allows the detection of defects, (for example, presence of unmelted pieces). However DSC is a tedious method for on-line quality control, limiting its scope. The determination of the polymer structure represents a major challenge in the industrial world of polymers. Raman spectroscopy, another technique of polymer analysis, is nowadays growing fast because of the advantages it presents. It is a non-destructive method, capable of also giving useful information about the morphology of the polymer. This technique can be perfectly used in industry by means of adapted sensors and devices with more and more reduced dimensions [3]. That technique is used to obtain the characteristic temperatures of PE and information on the polymer structure. The purpose of this article is to establish the correlation between the viscosity of a polymer and its characteristic temperatures obtained by DSC and subsequent possibilities of quality control in industry. These measurements are correlated with others obtained by Raman spectroscopy, to get additional details concerning the structure and transitions of the material, the final goal being to use these results in on-line analysis.
Research of high power and stable laser in portable Raman spectrometer based on SHINERS technology
NASA Astrophysics Data System (ADS)
Cui, Yongsheng; Yin, Yu; Wu, Yulin; Ni, Xuxiang; Zhang, Xiuda; Yan, Huimin
2013-08-01
The intensity of Raman light is very weak, which is only from 10-12 to 10-6 of the incident light. In order to obtain the required sensitivity, the traditional Raman spectrometer tends to be heavy weight and large volume, so it is often used as indoor test device. Based on the Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) method, Raman optical spectrum signal can be enhanced significantly and the portable Raman spectrometer combined with SHINERS method will be widely used in various fields. The laser source must be stable enough and able to output monochromatic narrow band laser with stable power in the portable Raman spectrometer based on the SHINERS method. When the laser is working, the change of temperature can induce wavelength drift, thus the power stability of excitation light will be affected, so we need to strictly control the working temperature of the laser, In order to ensure the stability of laser power and output current, this paper adopts the WLD3343 laser constant current driver chip of Wavelength Electronics company and MCU P89LPC935 to drive LML - 785.0 BF - XX laser diode(LD). Using this scheme, the Raman spectrometer can be small in size and the drive current can be constant. At the same time, we can achieve functions such as slow start, over-current protection, over-voltage protection, etc. Continuous adjustable output can be realized under control, and the requirement of high power output can be satisfied. Max1968 chip is adopted to realize the accurate control of the laser's temperature. In this way, it can meet the demand of miniaturization. In term of temperature control, integral truncation effect of traditional PID algorithm is big, which is easy to cause static difference. Each output of incremental PID algorithm has nothing to do with the current position, and we can control the output coefficients to avoid full dose output and immoderate adjustment, then the speed of balance will be improved observably. Variable integral incremental digital PID algorithm is used in the TEC temperature control system. The experimental results show that comparing with other schemes, the output power of laser in our scheme is more stable and reliable, moreover the peak value is bigger, and the temperature can be precisely controlled in +/-0.1°C, then the volume of the device is smaller. Using this laser equipment, the ideal Raman spectra of materials can be obtained combined with SHINERS technology and spectrometer equipment.
Characterization of upper troposphere water vapor measurements during AFWEX using LASE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrare, R. A.; Browell, E. V.; Ismail, I.
2002-07-15
Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere (UT) water vapor measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. Initial comparisons showed the average Vaisala radiosonde measurements to be 5-15% drier than the average LASE, Raman lidar, and DC-8 in situ diode laser hygrometer measurements. They show that corrections to the Raman lidar and Vaisala measurements significantly reduce these differences. Precipitable water vapor (PWV) derived from the LASE water vapor profiles agrees within 3% on average with PWV derived frommore » the ARM ground-based microwave radiometer (MWR). The agreement among the LASE, Raman lidar, and MWR measurements demonstrates how the LASE measurements can be used to characterize both profile and column water vapor measurements and that ARM Raman lidar, when calibrated using the MWR PWV, can provide accurate UT water vapor measurements.« less
NASA Astrophysics Data System (ADS)
de Toledo, T. A.; da Costa, R. C.; Bento, R. R. F.; Pizani, P. S.
2018-03-01
The structural, thermal and vibrational properties of the molecular crystal 2-amine-1,3,4-thiadiazole (ATD) were investigated combining X-ray diffraction, infrared spectroscopy, Raman scattering (in solid and in solution) and thermal analysis as experimental techniques and first principle calculations based on density functional theory using PZ, BLYP in condensed-phase and B3LYP/cc-pVTZ in isolated molecule methods. The structural stability and phonon anharmonicity were also studied using Raman spectroscopy at different temperatures and hydrostatic pressures. A reasonable agreement was obtained between calculated and experimental results. The main difference between experimental and computed structural and vibrational spectra occurred in the intermolecular bond distance Nsbnd H⋯N and stretching modes of NH2. The vibrational spectra were interpreted and assigned based on group theory and functional group analysis assisted by theoretical results, which led to a more comprehensive knowledge about external and internal modes at different thermodynamic conditions. As temperature increases, it was observed the line-width increases and red-shifts, indicating a phonon anharmonicity without a temperature-induced phase transition in the range 10-413 K. However, ATD crystal undergoes a phase transition in the temperature range 413-475 K, as indicated by thermal analysis curve and Raman spectra. Furthermore, increasing pressure from ambient to 3.1 GPa, it was observed the splitting of the external Raman bands centered at 122 cm-1 (at 0.2 GPa), 112 cm-1 (1.1 GPa), 93 cm-1 (2.4 GPa) in two components as well as the appearance of new band near 50 cm-1 at 1.1 GPa, indicating a possible phase-transition. The blue-shift of the Raman bands was associated to anharmonicity of the interatomic potential caused by unit cell contraction.
1986-11-30
Howard University , Department of Chemistry, Washington, DC Distribution Unlimited Per.. .Dr. Donald Polk, ONR/Code 1131M .IL. OFFICE OF NAVAL...the specific facilities to perform this extremely high temperature Raman work at Howard university . Of course, we do have very extensive facilities at... Howard University for CW laser-Raman spectroscopy of melts to about 1600 or 1800 OC. We have four complete laser-Raman instruments; Lhree holographic
Progress in distributed fiber optic temperature sensing
NASA Astrophysics Data System (ADS)
Hartog, Arthur H.
2002-02-01
The paper reviews the adoption of distributed temperature sensing (DTS) technology based on Raman backscatter. With one company alone having installed more than 400 units, the DTS is becoming accepted practice in several applications, notably in energy cable monitoring, specialised fire detection and oil production monitoring. The paper will provide case studies in these applications. In each case the benefit (whether economic or safety) will be addressed, together with key application engineering issues. The latter range from the selection and installation of the fibre sensor, the specific performance requirements of the opto-electronic equipment and the issues of data management. The paper will also address advanced applications of distributed sensing, notably the problem of monitoring very long ranges, which apply in subsea DC energy cables or in subsea oil wells linked to platforms through very long (e.g. 30km flowlines). These applications are creating the need for a new generation of DTS systems able to achieve measurements at up to 40km with very high temperature resolution, without sacrificing spatial resolution. This challenge is likely to drive the development of new concepts in the field of distributed sensing.
NASA Astrophysics Data System (ADS)
Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.
2014-02-01
Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.
Laser Rayleigh and Raman Diagnostics for Small Hydrogen/oxygen Rockets
NASA Technical Reports Server (NTRS)
Degroot, Wilhelmus A.; Zupanc, Frank J.
1993-01-01
Localized velocity, temperature, and species concentration measurements in rocket flow fields are needed to evaluate predictive computational fluid dynamics (CFD) codes and identify causes of poor rocket performance. Velocity, temperature, and total number density information have been successfully extracted from spectrally resolved Rayleigh scattering in the plume of small hydrogen/oxygen rockets. Light from a narrow band laser is scattered from the moving molecules with a Doppler shifted frequency. Two components of the velocity can be extracted by observing the scattered light from two directions. Thermal broadening of the scattered light provides a measure of the temperature, while the integrated scattering intensity is proportional to the number density. Spontaneous Raman scattering has been used to measure temperature and species concentration in similar plumes. Light from a dye laser is scattered by molecules in the rocket plume. Raman spectra scattered from major species are resolved by observing the inelastically scattered light with linear array mounted to a spectrometer. Temperature and oxygen concentrations have been extracted by fitting a model function to the measured Raman spectrum. Results of measurements on small rockets mounted inside a high altitude chamber using both diagnostic techniques are reported.
NASA Astrophysics Data System (ADS)
Ghosh, Santunu; Oliveira, Michelle; Pacheco, Tiago S.; Perpétuo, Genivaldo J.; Franco, Carlos J.
2018-04-01
We have obtained a set of sample crystals of the family of Tutton's salt comprise in the isomorphic series with general chemical formula (NH4)2NixCo(1-x) (SO4)2·6H2O, by employing growth from solutions by slow evaporation technique. The samples crystals were characterized by ICP-AES, X-ray powder diffraction analysis, thermogravimetric analysis, UV-Vis-NIR, Raman and FTIR spectroscopy. This type of material has been studied because of its physical and chemical properties not yet understood and they have potential technological applications. Chemical analysis of the samples by ICP-AES method allowed us to investigate the efficiency of the method of growth used. Thermogravimetric analysis provides the information about the thermal stability of the obtained crystals for high temperature applications, and powder X-ray diffraction analysis at ambient and high temperature reveals the structural quality and structural change of the samples respectively. We have used Raman spectroscopy in the range 100-4000 cm-1 and FTIR spectroscopy in the range 400-4000 cm-1 to understand the internal vibrational mode of the octahedral complexes [Ni(H2O)6]2+ and [Co(H2O)6]2+, SO42- and NH4+ tetrahedra. The transmittance of our mixed ammonium nickel cobalt sulfate hexahydrate (ACNSH) crystals is 75% in the UV region, which indicates that they are ideal to use in UV light filters and UV sensors.
Bagnall, Kevin R; Moore, Elizabeth A; Badescu, Stefan C; Zhang, Lenan; Wang, Evelyn N
2017-11-01
As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E 2 (high), A 1 longitudinal optical (LO), and E 2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to demonstrate its viability, this technique is applicable to any solid-state material with a suitable Raman response and will likely enable new measurement capabilities in a wide variety of scientific and engineering applications.
NASA Astrophysics Data System (ADS)
Bagnall, Kevin R.; Moore, Elizabeth A.; Badescu, Stefan C.; Zhang, Lenan; Wang, Evelyn N.
2017-11-01
As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E2 (high), A1 longitudinal optical (LO), and E2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to demonstrate its viability, this technique is applicable to any solid-state material with a suitable Raman response and will likely enable new measurement capabilities in a wide variety of scientific and engineering applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humayun, Md Tanim; Paprotny, Igor, E-mail: paprotny@uic.edu; Divan, Ralu
Chemoresistive sensors based on multiwalled carbon nanotubes (MWCNTs) functionalized with SnO{sub 2} nanocrystals (NCs) have great potential for detecting trace gases at low concentrations (single ppm levels) at room temperature, because the SnO{sub 2} nanocrystals act as active sites for the chemisorption of gas molecules, and carbon nanotubes (CNTs) act as an excellent current carrying platform, allowing the adsorption of gas on SnO{sub 2} to modulate the resistance of the CNTs. However, uniform conjugation of SnO{sub 2} NCs with MWCNTs is challenging. An effective atomic layer deposition based approach to functionalize the surface of MWCNTs with SnO{sub 2} NCs, resultingmore » in a novel CH{sub 4} sensor with 10 ppm sensitivity, is presented in this paper. Scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy, and Raman spectroscopy were implemented to study the morphology, elemental composition, and the crystal quality of SnO{sub 2} functionalized MWCNTs. High resolution TEM images showed that the crystal quality of the functionalizing SnO{sub 2} NCs was of high quality with clear lattice fringes and the dimension almost three times smaller than shown thus far in literature. A lift-off based photolithography technique comprising bilayer photoresists was optimized to fabricate SnO{sub 2} functionalized MWCNTs-based chemoresistor sensor, which at room temperature can reliably sense below 10 ppm of CH{sub 4} in air. Such low level gas sensitivity, with significant reversible relative resistance change, is believed to be the direct result of the successful functionalization of the MWCNT surface by SnO{sub 2} NCs.« less
Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka
2018-04-28
High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.
NASA Astrophysics Data System (ADS)
Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka
2018-04-01
High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.
Preventing Raman Lasing in High-Q WGM Resonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute
2007-01-01
A generic design has been conceived to suppress the Raman effect in whispering- gallery-mode (WGM) optical resonators that have high values of the resonance quality factor (Q). Although it is possible to exploit the Raman effect (even striving to maximize the Raman gain to obtain Raman lasing), the present innovation is intended to satisfy a need that arises in applications in which the Raman effect inhibits the realization of the full potential of WGM resonators as frequency-selection components. Heretofore, in such applications, it has been necessary to operate high-Q WGM resonators at unattractively low power levels to prevent Raman lasing. (The Raman-lasing thresholds of WGM optical resonators are very low and are approximately proportional to Q(sup -2)). Heretofore, two ways of preventing Raman lasting at high power levels have been known, but both entail significant disadvantages: A resonator can be designed so that the optical field is spread over a relatively large mode volume to bring the power density below the threshold. For any given combination of Q and power level, there is certain mode volume wherein Raman lasing does not start. Unfortunately, a resonator that has a large mode volume also has a high spectral density, which is undesirable in a typical photonic application. A resonator can be cooled to the temperature of liquid helium, where the Raman spectrum is narrower and, therefore, the Raman gain is lower. However, liquid-helium cooling is inconvenient. The present design overcomes these disadvantages, making it possible to operate a low-spectral-density (even a single-mode) WGM resonator at a relatively high power level at room temperature, without risk of Raman lasing.
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S.; Jiang, H.; Silberman, E.; Schieber, M.; Van Den Berg, L.; Keller, L.; Wagner, C. N. J.
1989-11-01
High-temperature studies of mercuric iodide (HgI2) involving differential scanning calorimetry (DSC), Raman spectroscopy and X-ray powder diffraction have failed to confirm the existence of a red-colored tetragonal high-temperature phase called α'-HgI2 reported by S.N. Toubektsis et al. [J. Appl. Phys. 58 (1988) 2070] using DSC measurements. The multiple DSC peaks near melting reported by Toubektsis are found by the present authors only if the sample is heated in a stainless-steel container. Using a Pyrex container or inserting a platinum foil between the HgI2 and the stainless-steel container yields only one sharp, single DSC peak at the melting point. The nonexistence of the α' phase is confirmed by high-temperature X-ray diffraction and Raman spectroscopy performed in the vicinity of the melting point. These methods clearly, indicate the existence of only the yellow orthorhombic β-HgI2 phase. The experimental high-temperature DSC, Raman and X-ray diffraction data are presented and discussed.
NASA Astrophysics Data System (ADS)
Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi
2017-08-01
A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10-12 M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.
Nanoimprinting on optical fiber end faces for chemical sensing
NASA Astrophysics Data System (ADS)
Kostovski, G.; White, D. J.; Mitchell, A.; Austin, M. W.; Stoddart, P. R.
2008-04-01
Optical fiber surface-enhanced Raman scattering (SERS) sensors offer a potential solution to monitoring low chemical concentrations in-situ or in remote sensing scenarios. We demonstrate the use of nanoimprint lithography to fabricate SERS-compatible nanoarrays on the end faces of standard silica optical fibers. The antireflective nanostructure found on cicada wings was used as a convenient template for the nanoarray, as high sensitivity SERS substrates have previously been demonstrated on these surfaces. Coating the high fidelity replicas with silver creates a dense array of regular nanoscale plasmonic resonators. A monolayer of thiophenol was used as a low concentration analyte, from which strong Raman spectra were collected using both direct endface illumination and through-fiber interrogation. This unique combination of nanoscale replication with optical fibers demonstrates a high-resolution, low-cost approach to fabricating high-performance optical fiber chemical sensors.
Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers
NASA Astrophysics Data System (ADS)
Fontana, Jake; Livenere, John; Bezares, Francisco J.; Caldwell, Joshua D.; Rendell, Ronald; Ratna, Banahalli R.
2013-05-01
We demonstrate an average surface-enhanced Raman scattering enhancement on the order of 108 from benzenethiol molecules using self-assembled, macroscopic, and tunable gold nanosphere monolayers on non-templated substrates. The self-assembly of the nanosphere monolayers uses a simple and efficient technique that allows for the creation of a high-density, chemically functionalized gold nanosphere monolayers with enhancement factors comparable to those produced using top-down fabrication techniques. These films may provide an approach for the future development of portable chemical/biological sensors.
Raman Spectral Band Oscillations in Large Graphene Bubbles
NASA Astrophysics Data System (ADS)
Huang, Yuan; Wang, Xiao; Zhang, Xu; Chen, Xianjue; Li, Baowen; Wang, Bin; Huang, Ming; Zhu, Chongyang; Zhang, Xuewei; Bacsa, Wolfgang S.; Ding, Feng; Ruoff, Rodney S.
2018-05-01
Raman spectra of large graphene bubbles showed size-dependent oscillations in spectral intensity and frequency, which originate from optical standing waves formed in the vicinity of the graphene surface. At a high laser power, local heating can lead to oscillations in the Raman frequency and also create a temperature gradient in the bubble. Based on Raman data, the temperature distribution within the graphene bubble was calculated, and it is shown that the heating effect of the laser is reduced when moving from the center of a bubble to its edge. By studying graphene bubbles, both the thermal conductivity and chemical reactivity of graphene were assessed. When exposed to hydrogen plasma, areas with bubbles are found to be more reactive than flat graphene.
Tang, Jing; Torad, Nagy L; Salunkhe, Rahul R; Yoon, Jang-Hee; Al Hossain, Md Shahriar; Dou, Shi Xue; Kim, Jung Ho; Kimura, Tatsuo; Yamauchi, Yusuke
2014-11-01
A recent study on nanoporous carbon based materials (J. Am. Chem. Soc. 2012, 134, 2864) showed that the presence of abundant graphitized sp(2) carbon species in the frameworks led to higher affinity for aromatic hydrocarbons than their aliphatic analogues. Herein, improved understanding of the sensitive and selective detection of aromatic substances by using mesoporous carbon (MPC)-based materials, combined with a quartz crystal microbalance (QCM) sensor system, was obtained. MPCs were synthesized by direct carbonization of mesoporous polymers prepared from resol through a soft templating approach with Pluronic F127. The carbon-based frameworks can be graphitized through the addition of a cobalt source to the precursor solution, according to the catalytic activity of the cobalt nanoparticles formed during the carbonization process. From the Raman data, the degree of the graphitization was clearly increased by increasing the cobalt content and elevating the carbonization temperature. From a QCM study, it was proved that the highly graphitized MPCs exhibited a higher affinity for aromatic hydrocarbons than their aliphatic analogues. By increasing the degree of graphitization in the carbon-based pore walls, the MPCs showed both larger adsorption uptake and faster sensor response towards toxic benzene and toluene vapors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming
2014-01-01
For the first time, high-surface-area (approximately 1465 m2 g−1), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900°C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2−) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results. PMID:24755990
Small influence of magnetic ordering on lattice dynamics in TaFe 1.25 Te 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opačić, M.; Lazarević, N.; Tanasković, D.
2017-11-16
Raman scattering spectra of zigzag spin chain TaFe 1.25Te 3 single crystal are presented in a temperature range from 80 to 300 K. Nine Raman active modes of A g and B g symmetry are clearly observed and assigned by probing different scattering channels, which is confirmed by lattice dynamics calculations. Temperature dependence of the Raman modes linewidth is mainly governed by the lattice anharmonicity. The only deviation from the conventional behavior is observed for A g symmetry modes in a vicinity of the magnetic phase transition at T N ≈ 200 K. This implies that the electron-phonon interaction weaklymore » changes with temperature and magnetic ordering, whereas small changes in the spectra near the critical temperature can be ascribed to spin fluctuations.« less
NASA Astrophysics Data System (ADS)
Zhang, Yang; Wang, Hao; Tomar, Vikas
2018-04-01
This work presents direct measurements of stress and temperature distribution during the mesoscale microstructural deformation of Inconel-617 (IN-617) during 3-point bending tests as a function of temperature. A novel nanomechanical Raman spectroscopy (NMRS)-based measurement platform was designed for simultaneous in situ temperature and stress mapping as a function of microstructure during deformation. The temperature distribution was found to be directly correlated to stress distribution for the analyzed microstructures. Stress concentration locations are shown to be directly related to higher heat conduction and result in microstructural hot spots with significant local temperature variation.
NASA Astrophysics Data System (ADS)
Bolokang, A. S.; Cummings, F. R.; Dhonge, B. P.; Abdallah, H. M. I.; Moyo, T.; Swart, H. C.; Arendse, C. J.; Muller, T. F. G.; Motaung, D. E.
2015-03-01
We report on the correlation between defect-related emissions, the magnetization and sensing of TiO2 nanoparticles (NPs) prepared by milling method. Surface morphology analyses showed that the size of the TiO2 NPs decreases with milling time. Raman and XRD studies demonstrated that the structural properties of the TiO2 transform to orthorhombic structure upon milling. Magnetization improved with an increase of a defect-related band originating from oxygen vacancies (VO), which can be ascribed to a decrease in the size of the NPs due to the milling time. Moreover, the longer-milled TiO2 exhibited enhanced gas-sensing properties to humidity in terms of sensor response, with about 12 s response time at room temperature. A combination of photoluminescence, X-ray photoelectron spectroscopy, vibrating sample magnetometer and sensing analyses demonstrated that a direct relation exists between the magnetization, sensing and the relative occupancy of the VO present on the surface of TiO2 NPs.
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Russo, F.; Demoz, B.; Miloshevich, L. M.; Veselovskii, I.; Hannon, S.; Wang, Z.; Vomel, H.; Schmidlin, F.; Lesht, B.
2005-01-01
Early work within the Aqua validation activity revealed there to be large differences in water vapor measurement accuracy among the various technologies in use for providing validation data. The validation measurements were made at globally distributed sites making it difficult to isolate the sources of the apparent measurement differences among the various sensors, which included both Raman lidar and radiosonde. Because of this, the AIRS Water Vapor Experiment-Ground (AWEX-G) was held in October - November, 2003 with the goal of bringing validation technologies to a common site for intercomparison and resolution of the measurement discrepancies. Using the University of Colorado Cryogenic Frostpoint Hygrometer (CFH) as the water vapor reference, the AWEX-G field campaign resulted in new correction techniques for both Raman lidar, Vaisala RS80-H and RS90/92 measurements that significantly improve the absolute accuracy of those measurement systems particularly in the upper troposphere. Mean comparisons of radiosondes and lidar are performed demonstrating agreement between corrected sensors and the CFH to generally within 5% thereby providing data of sufficient accuracy for Aqua validation purposes. Examples of the use of the correction techniques in radiance and retrieval comparisons are provided and discussed.
Coherent Raman spectroscopies for measuring molecular flow velocity
NASA Technical Reports Server (NTRS)
She, C. Y.
1982-01-01
Various types of coherent Raman spectroscopy are characterized and their application to molecular flow velocity and direction measurement and species concentration and temperature determination is discussed.
Jehlicka, J; Edwards, H G M; Culka, A
2010-07-13
Organic minerals, organic acids and NH-containing organic molecules represent important target molecules for astrobiology. Here, we present the results of the evaluation of a portable hand-held Raman spectrometer to detect these organic compounds outdoors under field conditions. These measurements were carried out during the February-March 2009 winter period in Austrian Alpine sites at temperatures ranging between -5 and -25 degrees C. The compounds investigated were detected under field conditions and their main Raman spectral features were observed unambiguously at their correct reference wavenumber positions. The results obtained demonstrate that a miniaturized Raman spectrometer equipped with 785 nm excitation could be applied with advantage as a key instrument for investigating the presence of organic minerals, organic acids and nitrogen-containing organic compounds outdoors under terrestrial low-temperature conditions. Within the payload designed by ESA and NASA for several missions focusing on Mars, Titan, Europa and other extraterrestrial bodies, Raman spectroscopy can be proposed as an important non-destructive analytical tool for the in situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near subsurfaces.
Plasmonic nanostructures for surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Jiang, Ruiqian
In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a AgCN based plating solution was used to replace Cu shell to form Au/Ag core-shell nanoparticles. These two plasmonic nanostructures were tested as substrates for Raman spectroscopy. It demonstrated that these plasmonic nanostructures could enhance Raman signal from the molecules on their surface. The results indicate that these plasmonic nanostructures could be utilized in many fields, such as such as biological and environmental sensors.
Continuous gradient temperature Raman spectroscopy of n-6 DPA and DHA from -100 C to 20°C
USDA-ARS?s Scientific Manuscript database
One of the great unanswered questions with respect to biological science in general is the absolute necessity of DHA in fast signal processing tissues. N-6 DPA, with just one less diene, group, is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman sp...
Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten
2014-01-01
The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm−1 with a spectral resolution of 1 cm−1 were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca2+-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca2+ presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel. PMID:25071948
Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten
2014-07-01
The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.
Device for self-verifying temperature measurement and control
Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.
2004-08-03
A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.
Device and method for self-verifying temperature measurement and control
Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.
2002-10-29
A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.
Stable black phosphorus quantum dots for alkali PH sensor
NASA Astrophysics Data System (ADS)
Guo, Weilan; Song, Haizeng; Yan, Shancheng
2018-01-01
Black phosphorus, as a new two-dimensional material has been widely used in sensors, photovoltaic devices, etc. However, thin layered black phosphorus chemically degrades rapidly under ambient and aqueous conditions, which hinders the application of it in the chemical sensors. In this work, stable black phosphorus quantum dots (BPQDs) in solution are successfully synthesized by functionalization with 4-nitrobenzene-diazonium (4-NBD). The stable BPQDs are investigated by TEM, AFM, Raman, and UV-absorption. As a potential application, the stable BPQDs are used as sensors in alkali solution, which exhibit outstanding performance. Our work paves the way towards a new application with BPQDs in solution.
Au nanoparticle-based sensor for apomorphine detection in plasma
Lucotti, Andrea; Tommasini, Matteo; Trusso, Sebastiano; de Grazia, Ugo; Ciusani, Emilio; Ossi, Paolo M
2015-01-01
Summary Artificially roughened gold surfaces with controlled nanostructure produced by pulsed laser deposition have been investigated as sensors for apomorphine detection aiming at clinical application. The use of such gold surfaces has been optimized using aqueous solutions of apomorphine in the concentration range between 3.3 × 10−4 M and 3.3 × 10−7 M. The experimental parameters have been investigated and the dynamic concentration range of the sensor has been assessed by the selection of two apomorphine surface enhanced Raman scattering (SERS) peaks. The sensor behavior used to detect apomorphine in unfiltered human blood plasma is presented and discussed. PMID:26734514
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picturemore » of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.« less
Temperature dependent polymorphism of pyrazinamide: An in situ Raman and DFT study
NASA Astrophysics Data System (ADS)
Sharma, Poornima; Nandi, Rajib; Gangopadhyay, Debraj; Singh, Anurag; Singh, Ranjan K.
2018-02-01
The α and γ polymorphs of drug pyrazinamide have been detected with the help of temperature dependent Raman spectroscopic technique. Pyrazinamide is a very useful drug used for the treatment of tuberculosis (TB) and plays a significant role in destroying the dormant tubercle bacilli which are not destroyed by other common TB drugs. Temperature dependent Raman spectra suggest polymorphic phase change from α → γ form of pyrazinamide between 145 and 146 °C. In situ Raman spectra of pyrazinamide between 145 and 146 °C show the conversion of α → γ form by the shift in Cdbnd O stretching vibration accompanied by several other changes. The phase change is characterized by the breaking of two linear Nsbnd H ⋯ O type hydrogen bonds associated with Cdbnd O stretching vibration in α dimer and formation of one linear Nsbnd H ⋯ N type hydrogen bond along with a weak intramolecular Csbnd H ⋯ O type hydrogen bond in the γ dimer.
NASA Astrophysics Data System (ADS)
Yurtseven, H.; Kavruk, D.
In this study, we calculate the Raman frequencies as a function of temperature for the fixed pressures of 706, 1080 and 6355 bars using the volume data for phase II of ammonium iodide. The Raman frequencies calculated here are for the translational optic ν5 TOM (125 cm-1) lattice mode that is located at the zone boundary (M point) of the Brillouin zone of phase II for NH4I. For this calculation the volume data obtained at zero pressure, is used through the mode Grüneisen parameter for the disordered phase II (β phase) which has the CsCl structure of NH4I. Our predicted frequencies of the ν5 TOM (125 cm-1) mode can be compared when the Raman data for this lattice mode is available at various temperatures for fixed pressures of 706, 1080 and 6355 bars in the disordered phase II of ammonium iodide.
NASA Astrophysics Data System (ADS)
Hug, W. F.; Reid, R. D.; Bhartia, R.; Lane, A. L.
2008-04-01
Improvised explosive devices (IEDs), vehicle-borne improvised explosive devices (VBIEDs), and suicide bombers are a major threat to many countries and their citizenry. The ability to detect trace levels of these threats with a miniature, hand-held, reagentless, standoff sensor represents a major improvement in the state of the art of CBE surface sensors. Photon Systems, Inc., in collaboration with Jet Propulsion Laboratory, recently demonstrated a new technology hand-held sensor for reagentless, close-range, standoff detection and identification of trace levels CBE materials on surfaces. This targeted ultraviolet CBE (TUCBE) sensor is the result of an Army Phase I STTR program. The resulting 5lb, 5W, flashlight-sized sensor can discriminate CBE from background materials using a combination of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions resulting from excitation by a new technology deep UV laser. Detection and identification is accomplished in less than 1ms. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using wavelengths below 250nm where Raman and native fluorescence emissions occupy distinctly different wavelength regions. This enables simultaneous detection of RR and LINF emissions with no interferences. The sensor employs fused RR/LINF chemometric methods to extract the identity of targeted materials from background clutter. Photon Systems has demonstrated detection and identification of 100ng/cm2 of explosives materials at a distance of 1 meter using a sensor with 3.8 cm optical aperture. Expansion of the optical aperture to 38 cm in a lantern-sized sensor will enable similar detection and identification of CBE materials at standoff distances of 10 meters. As a result of excitation and detection in the deep UV and the use of a gated detection system, the sensor is solar blind and can operate in full daylight conditions.
Bertoldo Menezes, D; Reyer, A; Musso, M
2018-02-05
The Brill transition is a phase transition process in polyamides related with structural changes between the hydrogen bonds of the lateral functional groups (CO) and (NH). In this study, we have used the potential of Raman spectroscopy for exploring this phase transition in polyamide 6,6 (nylon 6,6), due to the sensitivity of this spectroscopic technique to small intermolecular changes affecting vibrational properties of relevant functional groups. During a step by step heating and cooling process of the sample we collected Raman spectra allowing us from two-dimensional Raman correlation spectroscopy to identify which spectral regions suffered the largest influence during the Brill transition, and from Terahertz Stokes and anti-Stokes Raman spectroscopy to obtain complementary information, e.g. on the temperature of the sample. This allowed us to grasp signatures of the Brill transition from peak parameters of vibrational modes associated with (CC) skeletal stretches and (CNH) bending, and to verify the Brill transition temperature at around 160°C, as well as the reversibility of this phase transition. Copyright © 2017 Elsevier B.V. All rights reserved.
Hajiyev, Parviz; Cong, Chunxiao; Qiu, Caiyu; Yu, Ting
2013-01-01
In this article, we report the first successful preparation of single- and few-layers of tantalum diselenide (2H-TaSe2) by mechanical exfoliation technique. Number of layers is confirmed by white light contrast spectroscopy and atomic force microscopy (AFM). Vibrational properties of the atomically thin layers of 2H-TaSe2 are characterized by micro-Raman spectroscopy. Room temperature Raman measurements demonstrate MoS2-like spectral features, which are reliable for thickness determination. E1g mode, usually forbidden in backscattering Raman configuration is observed in the supported TaSe2 layers while disappears in the suspended layers, suggesting that this mode may be enabled because of the symmetry breaking induced by the interaction with the substrate. A systematic in-situ low temperature Raman study, for the first time, reveals the existence of incommensurate charge density wave phase transition in single and double-layered 2H-TaSe2 as reflected by a sudden softening of the second-order broad Raman mode resulted from the strong electron-phonon coupling (Kohn anomaly). PMID:24005335
Error and uncertainty in Raman thermal conductivity measurements
Thomas Edwin Beechem; Yates, Luke; Graham, Samuel
2015-04-22
We investigated error and uncertainty in Raman thermal conductivity measurements via finite element based numerical simulation of two geometries often employed -- Joule-heating of a wire and laser-heating of a suspended wafer. Using this methodology, the accuracy and precision of the Raman-derived thermal conductivity are shown to depend on (1) assumptions within the analytical model used in the deduction of thermal conductivity, (2) uncertainty in the quantification of heat flux and temperature, and (3) the evolution of thermomechanical stress during testing. Apart from the influence of stress, errors of 5% coupled with uncertainties of ±15% are achievable for most materialsmore » under conditions typical of Raman thermometry experiments. Error can increase to >20%, however, for materials having highly temperature dependent thermal conductivities or, in some materials, when thermomechanical stress develops concurrent with the heating. A dimensionless parameter -- termed the Raman stress factor -- is derived to identify when stress effects will induce large levels of error. Together, the results compare the utility of Raman based conductivity measurements relative to more established techniques while at the same time identifying situations where its use is most efficacious.« less
Enhanced Raman Scattering from InSb Nanodots; Temperature and Laser-Power Dependent Studies
NASA Astrophysics Data System (ADS)
Wada, Noboru; Takayama, Haruki; Morohashi, Satoshi
2010-03-01
InSb nanodots were uniquely fabricated by vapor-transport on a Si substrate which had previously been bombarded by FBI Ga ions. The InSb nanodots were then examined by spatially-resolved Raman scattering using an Ar-ion laser (λ= 514.5 and 488 nm with P=1˜15 mW) with an optical microscope and CCD detector. In addition to the TO and LO peaks of InSb observed at ˜180 and 191 cm-1 respectively, two peaks were observed at ˜110 and 150 cm-1. Those Raman peaks were tentatively attributed to the 2TA and TO-TA second-order Raman processes. Those two peak intensities appeared to grow at the expense of the TO and LO Raman peak intensities with increasing the sample temperature from 10 K to 450 K. Also, the two-phonon peak intensities increased non-linearly with the probing laser power used. Hot carriers and their interactions with phonons in the restricted regions will be discussed together with Raman scattering results obtained from single-crystal InSb.
NASA Astrophysics Data System (ADS)
Sauvajol, J. L.; De Nunzio, G.; Almairac, R.; Moret, J.; Barthés, M.; Bataillon, Place E.
1991-01-01
The focus of experimental and theoretical works about crystalline Acetanilide has been the "anomalous" temperature-dependent ir absorption and Raman peaks at about 1650 cm -1 and the multiband structure in the N-H stretch region. A lively discussion about the assignment of these "anomalous" bands has arisen and is still in progress. The present Raman experiments should be placed in this context as an attempt to identify the molecular degrees of freedom which originate the "anomalous" bands. In this aim Raman experiments have been performed on specifically deuterated Acetanilide [C 6D 5-CONH-CD 3] single crystal in the low-frequency (phonon) and C=O stretching regions. On cooling a distinct band at about 1495 cm -1 increases in intensity. We assign this peak to the equivalent of the 1650 cm -1 band in Acetanilide. The temperature dependence of this Raman line was studied. The results are discussed in the light of the models proposed to explain the anomalous behaviour of the 1650 cm -1 Raman line in Acetanilide.
Transcutaneous Measurement of Blood Analyte Concentration Using Raman Spectroscopy
NASA Astrophysics Data System (ADS)
Barman, Ishan; Singh, Gajendra P.; Dasari, Ramachandra R.; Feld, Michael S.
2008-11-01
Diabetes mellitus is a chronic disorder, affecting nearly 200 million people worldwide. Acute complications, such as hypoglycemia, cardiovascular disease and retinal damage, may occur if the disease is not adequately controlled. As diabetes has no known cure, tight control of glucose levels is critical for the prevention of such complications. Given the necessity for regular monitoring of blood glucose, development of non-invasive glucose detection devices is essential to improve the quality of life in diabetic patients. The commercially available glucose sensors measure the interstitial fluid glucose by electrochemical detection. However, these sensors have severe limitations, primarily related to their invasive nature and lack of stability. This necessitates the development of a truly non-invasive glucose detection technique. NIR Raman Spectroscopy, which combines the substantial penetration depth of NIR light with the excellent chemical specificity of Raman spectroscopy, provides an excellent tool to meet the challenges involved. Additionally, it enables simultaneous determination of multiple blood analytes. Our laboratory has pioneered the use of Raman spectroscopy for blood analytes' detection in biological media. The preliminary success of our non-invasive glucose measurements both in vitro (such as in serum and blood) and in vivo has provided the foundation for the development of feasible clinical systems. However, successful application of this technology still faces a few hurdles, highlighted by the problems of tissue luminescence and selection of appropriate reference concentration. In this article we explore possible avenues to overcome these challenges so that prospective prediction accuracy of blood analytes can be brought to clinically acceptable levels.
Vishwas, M; Narasimha Rao, K; Chakradhar, R P S
2012-12-01
Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Snow, J. B.; Murphy, D. V.; Chang, R. K.
1983-01-01
Coherent anti-Stokes Raman scattering (CARS) from the pure rotational Raman lines of N2 is employed to measure the instantaneous (approximately 10 ns) rotational temperature of N2 gas at room temperature and below with good spatial resolution (0.2 x 0.2 x 3.0 cu mm). A broad bandwidth dye laser is used to obtain the entire rotational spectrum from a single laser pulse; the CARS signal is then dispersed by a spectrograph and recorded on an optical multichannel analyzer. A best fit temperature is found in several seconds with the aid of a computer for each experimental spectrum by a least squares comparison with calculated spectra. The model used to calculate the theoretical spectra incorporates the temperature and pressure dependence of the pressure-broadened rotational Raman lines, includes the nonresonant background susceptibility, and assumes that the pump laser has a finite linewidth. Temperatures are fit to experimental spectra recorded over the temperature range of 135 to 296 K, and over the pressure range of .13 to 15.3 atm.
Mibe, Kenji; Chou, I-Ming; Anderson, Alan J.; Mayanovic, Robert A.; Bassett, William A.
2009-01-01
A Raman spectral study was carried out on 3 solutions of varying concentration and bromide/zinc ratios. Spectra were collected at 11 different temperature-pressure conditions ranging from ambient to 500????C-0.9??GPa. Raman band assignments for zinc(II) bromide species reported in previous studies were used to determine the relative concentrations of ZnBr42-, ZnBr3-, ZnBr2, and ZnBr+ species at various temperatures and pressures. Our results are in close agreement with X-ray absorption spectroscopic (XAS) data, and confirm that the tetrabromo zinc(II) complex, ZnBr42-, is the predominant species up to 500????C in solutions having high Zn concentrations (1??m) and high bromide/zinc molar ratios ([Br]/[Zn] = 8). In agreement with previous solubility and Raman spectroscopic experiments, our measurements indicate that species with a lower number of halide ligands and charge are favored with increasing temperature in dilute solutions, and solutions with low bromide/zinc ratios ([Br]/[Zn] < 2.5). The Raman technique provides an independent experimental means of evaluating the quality of XAS analyses of data obtained from high temperature disordered systems. The combination of these two techniques provides complementary data on speciation and the structure of zinc(II) bromide complexes. The preponderance of the ZnBr42- species in highly saline brines at high temperature is consistent with the predominance of ZnCl42- in chloride-rich brines reported in previous XAS studies. Knowledge of Zn complexing in metal-rich highly saline brines is important for numerical models of ore deposition in high temperature systems such as skarns and porphyry-type deposits. ?? 2008 Elsevier B.V.
[Raman studies of nanocrystalline BaTiO3 ceramics].
Xiao, Chang-jiang; Jin, Chang-qing; Wang, Xiao-hui
2008-12-01
High pressure can significantly increase the densification. Further, during the high pressure assisted sintering, the nucleation rate is increased due to reduced energy barrier and the growth rate is suppressed due to the decreased diffusivity. Thus high pressure enables the specimen to be fabricated with relatively lower temperature and shorter sintering period that assures to obtain dense nanocrystalline ceramics. Dense nanocrystalline BaTiO3 ceramics with uniform grain sizes of 60 and 30 nm, respectively, were obtained by pressure assisted sintering. The crystal structure and phase transitions were investigated by Raman scattering at temperatures ranging from -190 to 200 degrees C. The Raman results indicated that the evolution of Raman spectrum with grain size is characterized by an intensity decrease, a broadening of the line width, a frequency shift, and the disappearance of the Raman mode. With increasing temperature, similar to 3 mm BaTiO3 normal ceramics, the successive phase transitions from rhombohedral to orthorhombic, orthorhombic to tetragonal, and tetragonal to cubic were also observed in nanocrystalline BaTiO3 ceramics. In addition, when particle size is reduced to the nanoscale, one will find some unusual physical properties in nanocrystalline ceramics, compared with those of coarse-grained BaTiO3 ceramics. The different coexistences of multiphase were found at different temperature. Especially, the ferroelectric tetragonal and orthorhombic phase can coexist at room temperature in nanocrystalline BaTiO3 ceramics. The phenomenon can be explained by the internal stress. The coexistences of different ferroelectric phases at room temperature indicate that the critical grain size for the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm.
Fine Structure of the Low-Frequency Raman Phonon Bands of Single-Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Iliev, M. N.; Litvinchuk, A. P.; Arepalli, S.; Nikolaev, P.; Scott, C. D.
1999-01-01
The Raman spectra of singled-wall carbon nanotubes (SWNT) produced by laser and are process were studied between 5 and 500 kappa. The line width vs. temperature dependence of the low-frequency Raman bands between 150 and 200/ cm deviates from that expected for phonon decay through phonon-phonon scattering mechanism. The experimental results and their analysis provided convincing evidence that each of the low-frequency Raman lines is a superposition of several narrower Raman lines corresponding to tubes of nearly the same diameter. The application of Raman spectroscopy to probe the distribution of SWNT by both diameter and chirality is discussed.
Tsiminis, Georgios; Chu, Fenghong; Warren-Smith, Stephen C.; Spooner, Nigel A.; Monro, Tanya M.
2013-01-01
A novel approach for identifying explosive species is reported, using Raman spectroscopy in suspended core optical fibers. Numerical simulations are presented that predict the strength of the observed signal as a function of fiber geometry, with the calculated trends verified experimentally and used to optimize the sensors. This technique is used to identify hydrogen peroxide in water solutions at volumes less than 60 nL and to quantify microgram amounts of material using the solvent's Raman signature as an internal calibration standard. The same system, without further modifications, is also used to detect 1,4-dinitrobenzene, a model molecule for nitrobenzene-based explosives such as 2,4,6-trinitrotoluene (TNT). PMID:24084111
NASA Astrophysics Data System (ADS)
Martucci, Giovanni; Simeonov, Valentin; Renaud, Ludovic; Haefele, Alexander
2018-04-01
RAman Lidar for Meteorological Observations (RALMO) is operated at MeteoSwiss and provides continuous measurements of water vapor and temperature since 2010. While the water vapor has been acquired by a Licel acquisition system since 2008, the temperature channels have been migrated to a Fastcom P7888 acquisition system, since August 2015. We present a characterization of this new acquisition system, namely its dead-time, desaturation, temporal stability of the Pure Rotational Raman signals and the retrieval of the PRR-temperature.
NASA Astrophysics Data System (ADS)
Zhong, Jin-Rong; Zeng, Xin-Yang; Zhou, Feng-He; Ran, Qi-Dong; Sun, Chang-Yu; Zhong, Rui-Qin; Yang, Lan-Ying; Chen, Guang-Jin; Koh, Carolyn A.
2016-12-01
The hydrate structure type and dissociation behavior for pure methane and methane-ethane hydrates at temperatures below the ice point and atmospheric pressure were investigated using in situ Raman spectroscopic analysis. The self-preservation effect of sI methane hydrate is significant at lower temperatures (268.15 to 270.15 K), as determined by the stable C-H region Raman peaks and AL/AS value (Ratio of total peak area corresponding to occupancies of guest molecules in large cavities to small cavities) being around 3.0. However, it was reduced at higher temperatures (271.15 K and 272.15 K), as shown from the dramatic change in Raman spectra and fluctuations in AL/AS values. The self-preservation effect for methane-ethane double hydrate is observed at temperatures lower than 271.15 K. The structure transition from sI to sII occurred during the methane-ethane hydrate decomposition process, which was clearly identified by the shift in peak positions and the change in relative peak intensities at temperatures from 269.15 K to 271.15 K. Further investigation shows that the selectivity for self-preservation of methane over ethane leads to the structure transition; this kind of selectivity increases with decreasing temperature. This work provides new insight into the kinetic behavior of hydrate dissociation below the ice point.
Dong, Qiuchen; Huang, Yikun; Song, Donghui; Wu, Huixiang; Cao, Fei; Lei, Yu
2018-07-30
Both pH-sensitive and glucose-responsive rhodium oxide nanocorals (Rh 2 O 3 NCs) were synthesized through electrospinning followed by high-temperature calcination. The as-prepared Rh 2 O 3 NCs were systematically characterized using various advanced techniques including scanning electron microscopy, X-ray powder diffraction and Raman spectroscopy, and then employed as a dual functional nanomaterial to fabricate a dual sensor for both non-enzymatic glucose sensing and solid-state pH monitoring. The sensing performance of the Rh 2 O 3 NCs based dual sensor toward pH and glucose was evaluated using open circuit potential, cyclic voltammetry and amperometric techniques, respectively. The results show that the as-prepared Rh 2 O 3 NCs not only maintain accurate and reversible pH sensitivity of Rh 2 O 3 , but also demonstrate a good electrocatalytic activity toward glucose oxidation in alkaline medium with a sensitivity of 11.46 μA mM -1 cm -2 , a limit of detection of 3.1 μM (S/N = 3), and a reasonable selectivity against various interferents in non-enzymatic glucose detection. Its accuracy in determining glucose in human serum samples was further demonstrated. These features indicate that the as-prepared Rh 2 O 3 NCs hold great promise as a dual-functional sensing material in the development of a high-performance sensor forManjakkal both solid-state pH and non-enzymatic glucose sensing. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Jun; Zheng, Jiao; Lu, Hong; Yan, Qing; Wang, Li; Liu, Jingjing; Hua, Dengxin
2017-11-01
Atmospheric temperature is one of the important parameters for the description of the atmospheric state. Most of the detection approaches to atmospheric temperature monitoring are based on rotational Raman scattering for better understanding atmospheric dynamics, thermodynamics, atmospheric transmission, and radiation. In this paper, we present a fine-filter method based on wavelength division multiplexing, incorporating a fiber Bragg grating in the visible spectrum for the rotational Raman scattering spectrum. To achieve high-precision remote sensing, the strong background noise is filtered out by using the secondary cascaded light paths. Detection intensity and the signal-to-noise ratio are improved by increasing the utilization rate of return signal form atmosphere. Passive temperature compensation is employed to reduce the temperature sensitivity of fiber Bragg grating. In addition, the proposed method provides a feasible solution for the filter system with the merits of miniaturization, high anti-interference, and high stability in the space-based platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, R. C. da; Universidade Federal de Campina Grande, Pombal-PB, 58840-000; Toledo, T. A. de
The effects of the atomic substitution of Pb by Ni in the PbTiO{sub 3} ferroelectric perovskite on the vibrational and structural properties was studied using x-ray diffraction and Raman scattering. It was observed that for Ni concentrations between 0.0 and 0.4, there is the formation of a solid solution with reduction of the Raman wavenumber of the E(TO1) soft mode and the tetragonallity factor, which influence directly the temperature of the tetragonal ferroelectric to cubic paraelectric phase transition, the Curie temperature. For concentrations greater than 0.4, it is observed the formation of a PbTiO{sub 3} and NiTiO{sub 3} composite, denouncedmore » by the recovering of the both, tetragonallity factor and the E(TO1) soft mode wavenumber. The values of the Curie temperatures were estimated by the Raman scattering measurements for temperatures ranging from 300 to 950 K.« less
NASA Astrophysics Data System (ADS)
Givan, A.; Loewenschuss, A.
1990-12-01
Raman spectra of zero-pressure-formed N2O4 solid layers are reported. Sample composition is extremely dependent upon deposition conditions. For ordered and pure solid N2O4(D2h), produced by slow NO2 deposition, temperature cycling over the range in which the solid is stable shows no significant spectral changes and does not result in autoionization, as argued in a previous Raman study. Fast and low temperature deposited layers are amorphous and multicomponent, showing bands of disordered and isomeric molecular N2O4 and of ionic NO + NO3, nitrosonium nitrate. For nitrosonium nitrate, three solid modifications can be characterized spectroscopically. In the amorphous phase, a light induced, temperature dependent, reversible transition between molecular and ionic nitrogen tetroxide is observed below 150 K. The paths leading to nitrosonium nitrate formation are examined.
Raman and and x-ray diffraction study of iron and iron-nickel alloys at varying P-T conditions
NASA Astrophysics Data System (ADS)
Goncharov, A.; Struzhkin, V.; Gregoryanz, E.; Maddury, S.; Huang, E.; Hemley, R. J.; Mao, H.
2002-05-01
High-pressure properties of iron and iron-rich alloys are crucial for understanding of the Earth interior, because iron is the major constitute element of the Earth core. Using recently developed [1,2] Raman spectroscopy technique for shear elastic modulus determination, we studied iron-rich alloys of Ni (0 to 20 % Ni) up to 150 GPa, and also at varying temperatures (78-400 K). We find substantial decrease of the Raman hcp-phonon frequency compared to the pure iron, and also considerable anharmonic temperature effects. In contrast, low-temperature x-ray diffraction measurements indicate a usual temperature variation of the lattice constants. Possible implications to the Earth core composition and properties are discussed. [1] A. P. Jephcoat, H. Olijnyk, K. Refson, Eos 80, F929 (1999). [2] S. Merkel et al., Science 288, 1626 (2000).
NASA Technical Reports Server (NTRS)
Whiteman, David N.
2003-01-01
In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.
NASA Astrophysics Data System (ADS)
Afzelius, M.; Bengtsson, P.-E.; Bood, J.; Bonamy, J.; Chaussard, F.; Berger, H.; Dreier, T.
Rotational coherent anti-Stokes Raman spectroscopy (CARS) is a well-established spectroscopic technique for thermometry at pre-combustion temperatures and atmospheric pressure. However, at pressures of several MPa, a previous investigation revealed large discrepancies between experimental data and the theoretical model. A re-evaluation has been made of these data (at room temperature and in the range 1.5-9 MPa) with two improvements to the spectral code. The first is the inclusion of an inter-branch interference effect, which is described in detail in Paper I. The second is the use of experimental S1-branch Raman line widths measured at 295 K, with a temperature dependence extracted from semi-classical calculations following the Robert-Bonamy formalism. It is shown that these two modifications significantly improve the theoretical model, since both the spectral fits and the accuracy of the evaluated temperatures are considerably improved.
Raman Scattering Study of the Soft Phonon Mode in the Hexagonal Ferroelectric Crystal KNiCl 3
NASA Astrophysics Data System (ADS)
Machida, Ken-ichi; Kato, Tetsuya; Chao, Peng; Iio, Katsunori
1997-10-01
Raman spectra of some phonon modes of the hexagonal ferroelectriccrystal KNiCl3are obtained in the temperature range between 290 K and 590 K, which includes the structural phase transition point T2(=561 K) at which previous measurements of dielectric constant and spontaneouspolarization as a function of temperature had shown that KNiCl3 undergoes a transition between polar phases II and III. An optical birefringence measurement carried outas a complement to the present Raman scattering revealed that this transition is of second order. Towards this transition point, the totally symmetric phonon mode with the lowest frequency observed in the room-temperature phasewas found to soften with increasing temperature.The present results provide new information on the phase-transitionmechanism and the space groups of thehigher (II)- and lower (III)-symmetric phases around T2.
Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi
2017-08-14
A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10 -12 M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.
Effect of film thickness on localized surface plasmon enhanced chemical sensor
NASA Astrophysics Data System (ADS)
Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng
2014-05-01
A highly-sensitive, reliable, simple and inexpensive chemical detection and identification platform is demonstrated. The sensing technique is based on localized surface plasmon enhanced Raman scattering measurements from gold-coated highly-ordered symmetric nanoporous ceramic membranes fabricated from anodic aluminum oxide. To investigate the effects of the thickness of the sputter-coated gold films on the sensitivity of sensor, and optimize the performance of the substrates, the geometry of the nanopores and the film thicknesses are varied in the range of 30 nm to 120 nm. To characterize the sensing technique and the detection limits, surface enhanced Raman scatterings of low concentrations of a standard chemical adsorbed on the gold coated substrates are collected and analyzed. The morphology of the proposed substrates is characterized by atomic force microscopy and the optical properties including transmittance, reflectance and absorbance of each substrate are also investigated.
Luo, Sida; Liu, Tao
2014-06-25
A graphite nanoplatelet (GNP) thin film enabled 1D fiber sensor (GNP-FibSen) was fabricated by a continuous roll-to-roll spray coating process, characterized by scanning electron microscopy and Raman spectroscopy and evaluated by coupled electrical-mechanical tensile testing. The neat GNP-FibSen sensor shows very high gauge sensitivity with a gauge factor of ∼17. By embedding the sensor in fiberglass prepreg laminate parts, the dual functionalities of the GNP-FibSen sensor were demonstrated. In the manufacturing process, the resistance change of the embedded sensor provides valuable local resin curing information. After the manufacturing process, the same sensor is able to map the strain/stress states and detect the failure of the host composite. The superior durability of the embedded GNP-FibSen sensor has been demonstrated through 10,000 cycles of coupled electromechanical tests.
NASA Astrophysics Data System (ADS)
Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun
2017-10-01
In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.
Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.
Barnett, Patrick D; Angel, S Michael
2017-05-01
A spatial heterodyne Raman spectrometer (SHRS) with millimeter-sized optics has been coupled with a standard cell phone camera as a detector for Raman measurements. The SHRS is a dispersive-based interferometer with no moving parts and the design is amenable to miniaturization while maintaining high resolution and large spectral range. In this paper, a SHRS with 2.5 mm diffraction gratings has been developed with 17.5 cm -1 theoretical spectral resolution. The footprint of the SHRS is orders of magnitude smaller than the footprint of charge-coupled device (CCD) detectors typically employed in Raman spectrometers, thus smaller detectors are being explored to shrink the entire spectrometer package. This paper describes the performance of a SHRS with 2.5 mm wide diffraction gratings and a cell phone camera detector, using only the cell phone's built-in optics to couple the output of the SHRS to the sensor. Raman spectra of a variety of samples measured with the cell phone are compared to measurements made using the same miniature SHRS with high-quality imaging optics and a high-quality, scientific-grade, thermoelectrically cooled CCD.
Highly Enhanced Raman Scattering on Carbonized Polymer Films.
Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun
2017-06-28
We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.
NASA Astrophysics Data System (ADS)
Sato, Harumi; Dybal, Jiří; Murakami, Rumi; Noda, Isao; Ozaki, Yukihiro
2005-06-01
This review paper reports infrared (IR) and Raman spectroscopy and quantum chemistry calculation studies of C-H⋯O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoates. IR and Raman spectra were measured for poly(3-hydroxybutyrate) (PHB) and a new type of bacterial copolyester, poly(3-hydroxybutyrate- co-3-hydroxyhexanoate), P(HB- co-HHx) (HHx=12 mol%) over a temperature range of 20 °C to higher temperatures (PHB, 200 °C; HHx=12 mol%, 140 °C) to explore their structure and thermal behavior. One of bands due to the CH 3 asymmetric stretching modes appears near 3010 cm -1 in the IR and Raman spectra of PHB and P(HB- co-HHx) at 20 °C. These frequencies of IR and Raman CH 3 asymmetric stretching bands are much higher than usual. These anomalous frequencies of the CH 3 asymmetric stretching bands together with the X-ray crystallographic structure of PHB have suggested that there is an inter- or intra-molecular C-H⋯O hydrogen bond between the C dbnd6 O group in one helical structure and the CH 3 group in the other helical structure in PHB and P(HB- co-HHx). The quantum chemical calculation of model compounds of PHB also has suggested the existence of C-H⋯O hydrogen bonds in PHB and P(HB- co-HHx). It is very likely that a chain of C-H⋯O hydrogen bond pairs link two parallel helical structures in the crystalline parts. The temperature-dependent IR and Raman spectral variations have revealed that the crystallinity of P(HB- co-HHx) (HHx=12 mol%) decreases gradually from a fairly low temperature (about 60 °C), while the crystallinity of PHB remains almost unchanged until just below its melting temperature. It has also been found from the IR and Raman studies that for both PHB and P(HB- co-HHx) the weakening of the C-H⋯O hydrogen bonds starts from just above room temperature, but the deformation of helical structures occurs after the weakening of the C-H⋯O hydrogen bonds advances to some extent.
NASA Astrophysics Data System (ADS)
Kalampounias, Angelos G.; Papatheodorou, George N.
2018-06-01
Temperature dependent Raman spectra of boric oxide have been measured in a temperature range covering the glassy, supercooled and liquid state. The shift of the isotropic band assigned to boroxol rings relative to the anisotropic component upon heating the glass is measured and attributed to the Raman non-coincidence effect. The measured shift is associated with the competition between attraction and repulsion forces with increasing temperature. The relation of dephasing and orientational relaxation times to the non-coincidence effect of the condensed phases has been examined. We discuss our results in the framework of the current phenomenological status of the field in an attempt to separate the attraction and repulsion contributions corresponding to the observed non-coincidence effect.
Characterisation of the SOFC material, LaCrO 3, using vibrational spectroscopy
NASA Astrophysics Data System (ADS)
Tompsett, G. A.; Sammes, N. M.
LaCrO 3 is reported to undergo a low to high temperature (HT) phase transition from orthorhombic ( Pnma) to rhombohedral ( R-3 c), at ca. 255 °C. The phases involved in the low temperature phase transition of LaCrO 3 have been determined using Raman spectroscopy at temperatures from -196 to 300 °C. There are nine Raman bands observed from a total of 24 predicted modes, seven of which are assigned from comparison with the Raman profile and relative band positions observed and calculated for the isostructural compound, YMnO 3, as follows: 131(B 2g), 150(B 3g), 174(A g), 252(B 1g), 279(A g), 441(A g) and 590(A g) cm -1. A phase transformation was observed at ca. 260 °C from the change in the Raman profile. The high temperature rhombohedral phase of LaCrO 3 had four bands which are assigned as follows: 58(E g), 161(E g), 288(A 1g) and 434(E g, E g) cm -1, from comparison with the Raman profile and relative band positions observed for the isostructural compound, NdAlO 3. The Fourier transform infrared (FTIR) spectrum of LaCrO 3 showed a total of eight bands discernible at room temperature from 25 predicted modes for the orthorhombic structure. The mode assignments were determined by comparison with the Raman profile and relative band positions observed and calculated for the isostructural compound, SmAlO 3, as follows: 138(B 2u), 166(B 3u), 197(B 1u), 240(B 3u), 266(B 2u), 332(B 2u), 357(B 2u), 381(B 3u), 425(B 3u), 446(B 1u), 471(B 3u), 493(B 3u), 573(B 1u), 606(B 3u) and 670 (B 1u) cm -1.
Global method for measuring stress in polymer fibers at elevated temperatures
NASA Astrophysics Data System (ADS)
Anagnostopoulos, G.; Andreopoulos, A. G.; Parthenios, J.; Galiotis, C.
2005-09-01
In this work, a methodology is presented for evaluating the interfacial shear stress as well as the corresponding axial stress in full polymer fiber reinforced materials under elevated temperatures. Its validity was confirmed by deriving interfacial shear and axial stress expressions for embedded Kevlar® 29 fibers within an epoxy matrix by means of Raman microscopy. This approach can be established to other systems such as carbon or polyethylene fiber composites, for which the observed Raman bands are both stress and temperature sensitive.
Raman scattering by H2 and N2 in the atmospheres of exoplanets
NASA Astrophysics Data System (ADS)
Oklopcic, Antonija; Hirata, Christopher M.; Heng, Kevin
2016-06-01
Rayleigh scattering is an important source of opacity in the atmospheres of exoplanets at short optical and near-UV wavelengths. Raman scattering is an inelastic process related to Rayleigh scattering, but with a weaker cross section. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets. Raman scattering causes filling-in of absorption lines in the incident spectrum, thus producing sharp enhancements in the geometric albedo. It also shifts the wavelengths of spectral features in the reflected light causing the Raman ghost lines. Observing the albedo enhancements could be used to measure the column density of the scattering molecule and provide constrains on the presence of clouds and hazes in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere -- molecules like H2 or N2 which do not show prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. Here we present how these signatures of Raman scattering in hydrogen- and nitrogen-dominated atmospheres can be used as probes of atmospheric pressure, temperature and composition. We analyze the feasibility of detecting these features in the albedo spectra of nearby exoplanets with the existing and future observational facilities.
Polarized Raman scattering of epitaxial vanadium dioxide films with low-temperature monoclinic phase
NASA Astrophysics Data System (ADS)
Shibuya, Keisuke; Sawa, Akihito
2017-07-01
A polarized Raman scattering study was carried out on epitaxial VO2 thin films on MgF2(001) and (110) substrates to investigate the Raman symmetry and tensor elements of the phonon modes of the films in a low-temperature monoclinic phase. From the polarization angular dependence of the Raman intensity, we assigned the phonon modes at 137, 194, 310, 340, 499, 612, and 663 cm-1 to Ag symmetry and the phonon modes at 143, 262, 442, 480, 582, and 820 cm-1 to Bg symmetry. The angular-dependence measurements also revealed that two phonon modes with Ag and Bg symmetries are present at about 224 and 393 cm-1, although only a single peak was observed in the Raman spectra at around these wavenumbers. On the basis of the experimental results, we evaluated the Raman tensors of the identified phonon modes. From the Raman tensors, we found that the atomic displacements of the 194 and 340 cm-1 phonon modes are approximately perpendicular and parallel, respectively, to the V-V dimer direction. This is consistent with a previous theoretical prediction, i.e., these modes are attributable to the tilting motion and the stretching vibration of the V-V dimers, respectively.
In situ Raman-based detections of the hydrothermal vent and cold seep fluids
NASA Astrophysics Data System (ADS)
Zhang, Xin; Du, Zengfeng; Zheng, Ronger; Luan, Zhendong; Qi, Fujun; Cheng, Kai; Wang, Bing; Ye, Wangquan; Liu, Xiaorui; Chen, Changan; Guo, Jinjia; Li, Ying; Yan, Jun
2016-04-01
Hydrothermal vents and cold seeps, and their associated biological communities play an important role in global carbon and sulphur biogeochemical cycles. Most of the studies of fluid composition geochemistry are based on recovered samples, both with gas-tight samplers and as open specimens, but the in situ conditions are difficult to maintain in recovered samples. Determination in situ of the chemical signals of the emerging fluids are challenging due to the high pressure, often strongly acidic and temperature in which few sensors can survive. Most of those sensors used so far are based on electrochemistry, and can typically detect only a few chemical species. Here we show that direct measurement of critical chemical species of hydrothermal vents and cold seeps can be made rapidly and in situ by means of a new hybrid version of earlier deep-sea pore water Raman probe carried on the ROV (Remote Operated Vehicle) Faxian. The fluid was drawn through the probe by actuating a hydraulic pump on the ROV, and measured at the probe optical cell through a sapphire window. We have observed the concentrations of H2S, HS-, SO42-, HSO4-, CO2, and H2 in hydrothermal vent fluids from the Pacmanus and Desmos vent systems in the Manus back-arc basin, Papua New Guinea. Two black smokers (279° C and 186° C) at the Pacmanus site showed the characteristic loss of SO42-, and the increase of CO2 and well resolved H2S and HS- peaks. At the white smoker of Onsen site the strong HSO4-peak observed at high temperature quickly dropped with strong accompanying increase of SO42-and H2 peaks when the sample contained in the Raman sensing cell was removed from the hot fluid due to rapid thermal deprotonation. We report here also the finding of a new lower temperature (88° C) white smoker "Kexue" field at the Desmos site with strong H2S, HS- and CO2 signals. We also have detected the concentrations of CH4,H2S, HS-, SO42-, and S8 in cold seep fluids and the surrounding sediment pore water from the northern South China Sea. Several sediment pore water profiles nearly at the cold seep vent showed the characteristic loss of SO42-, and the increase of CH4, H2S and HS- peaks. Dissolved S8 and CH4had been first found at the fluids under the lush biological communities of the cold seep. This may indicate some bacteria mats at the lush biological communities oxidize hydrogen sulfide and produce elemental sulfur as a byproduct. Our research suggests that the in situ observed H2S:HS-, and HSO4-:SO42- ratios provide elegant pH sensitive "dyes" with which to diagnose the geochemical reactions occurring.
Scanning Raman Lidar Measurements During the WVIOP2000 and AFWEX Field Experiments
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Evans, K. D.; Berkoff, T. B.; Demoz, B. D.; DiGirolamo, P.; Smith, David E. (Technical Monitor)
2001-01-01
The NASA/Goddard Space Flight Center Scanning Raman Lidar (SRL) participated in the Water Vapor IOP 2000 (WVIOP2000) and ARM FIRE Water Vapor Experiment (AFWEX) at the DOE SGP CART site in northern Oklahoma. These experiments occurred during the period of September and December, 2000. The goals of both the WVIOP2000 and AFWEX were to better characterize the water vapor measurement capability of numerous sensors in the lower atmosphere and upper troposphere, respectively. The SRL received several hardware upgrades in anticipation of these experiments that permitted improved measurements of water vapor during the daytime and in the upper troposphere (UT). The daytime SRL water vapor error statistics were demonstrated a factor of 2-3 improvement compared to the permanently stationed CART Raman lidar (CARL). The performance of the SRL in the UT showed improvements as well. The technological upgrades that permitted these improved SRL measurements could also be implemented in the CARL system. Data examples demonstrating the new daytime and upper tropospheric measurement capability of the SRL will be shown at the meeting. In addition, preliminary analysis will be presented on several topics: 1) inter comparison of the water vapor measurements for several water vapor sensors including SRL, CARL, the NASA/Langley Lidar Atmospheric Sensing Experiment (LASE) flown onboard the NASA DC-8, in-situ sensors flown on the DC-8, and the Max Planck Institute Differential Absorption Lidar 2) comparison of cirrus cloud measurements using SRL and CARL and 3) case studies of meteorological events that occurred during the IOPs such as a cold frontal passage on the night of September 23.
Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.
1991-01-01
Ultraviolet (UV) spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. Simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are made with a 'single' narrow band KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat-flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. The single shot measurement precision for concentration and temperature measurement is 5 to 10 pct. Calibration constants and bandwidth factors are determined from the flat burner measurements and used in a data reduction program to arrive at temperature and species concentration measurements. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.
NASA Astrophysics Data System (ADS)
Liang, Wen; Yin, Yuan; Li, Zeming; Li, Rui; Li, Lin; He, Yu; Dong, Haini; Li, Zengsheng; Yan, Shuai; Zhai, Shuangmeng; Li, Heping
2018-03-01
Single crystals of impurity-free siderite were grown successfully using high-temperature-pressure annealing. The size of crystals ranged up to 100 µm, and they exhibited a rhomboid shape upon cleavage along the (101) plane. The composition of Fe0.9988±0.0011CO3 was quantified using electron probe analysis. Accurate crystalline structural data were investigated by means of single crystal X-ray diffraction (XRD) and the unit cell dimensions obtained in the rhombohedral symmetry of the R\\bar {3}c space group were a = 4.6861(3) and c = 15.362(2), and the final R = 0.0499. Using in situ synchrotron XRD, the high-pressure behavior of impurity-free siderite was investigated up to 20 GPa at ambient temperature. The pressure-volume (P-V) EoS was fitted by a third-order Birch-Murnaghan equation, and the isothermal bulk modulus was K 0 = 97.5(11) GPa for K 0' = 4. High-pressure Raman spectroscopy was performed at up to 30 GPa at ambient temperature, and the Raman bands shifted as the increase of pressure ({{d/ν _i}}{{{d}P}} ) was determined. In combination with the high-pressure Raman results and the bulk modulus K 0, the mode Grüneisen parameters of each vibration were calculated. Meanwhile, high-temperature Raman spectroscopy was carried out at up to 300 °C and the Raman band shift ({{d/ν _i}}{{{d}t}} ) was also quantified.
NASA Astrophysics Data System (ADS)
Liu, Xing; Fang, Bijun; Deng, Ji; Yan, Hong; Deng, Hao; Yue, Qingwen; Ding, Jianning; Zhao, Xiangyong; Luo, Haosu
2016-01-01
In this work, the temperature-dependent Raman spectra and electrical properties of the [001]-oriented 0.5 mol. % Mn-doped 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. All the unpoled and poled PIMNT-Mn single crystals experience a ferroelectric tetragonal phase to paraelectric cubic phase transition (FET-PC) around 183 °C (TC), which exhibits a second-order transition behavior. Whereas, the poled PIMNT-Mn single crystals exhibit another two dielectric anomalies around 130 °C (TRM) and 148 °C (TMT), in which the ferroelectric rhombohedral phase to ferroelectric monoclinic phase (FER-FEM) and the ferroelectric monoclinic phase to ferroelectric tetragonal phase (FEM-FET) transitions take place, respectively. Both the two ferroelectric phase transitions exhibit a first-order transition behavior. The discontinuous change of the phase degree (θ) and frequencies (fr and fa) around TRM suggest the occurrence of the FER-FEM phase transition in the poled PIMNT-Mn single crystals. The narrowing of the 510 cm-1 and 582 cm-1 Raman modes around the TRM, TMT, and TC temperatures shown in the temperature-dependent Raman spectra suggests their increased ordering of the local structure. The intensity ratio of I272 cm-1/I801 cm-1 increases obviously around the phase transition temperatures (TRM, TMT, and TC), indicating the reduction of the long-range order. The anomalous broadening of the 272 cm-1 Raman mode around the TRM, TMT, and TC temperatures indicates the occurrence of the successive ferroelectric phase transitions (FER-FEM, FEM-FET, and FET-PC) with increasing temperature in the poled PIMNT-Mn single crystals.
Xie, Min; Qi, Yajing; Hu, Yongjun
2011-04-14
2-Phenylethylamine (PEA) is the simplest aromatic amine neurotransmitter, as well as one of the most important. In this work, the conformational equilibrium and hydrogen bonding in liquid PEA were studied by means of Raman spectroscopy and theoretical calculations (DFT/MP2). By changing the orientation of the ethyl and the NH(2) group, nine possible conformers of PEA were found, including four degenerate conformers. Comparison of the experimental Raman spectra of liquid PEA and the calculated Raman spectra of the five typical conformers in selected regions (550-800 and 1250-1500 cm(-1)) revealed that the five conformers can coexist in conformational equilibrium in the liquid. The NH(2) stretching mode of the liquid is red-shifted by ca. 30 cm(-1) relative to that of an isolated PEA molecule (measured previously), implying that intermolecular N-H···N hydrogen bonds play an important role in liquid PEA. The relative intensity of the Raman band at 762 cm(-1) was found to increase with increasing temperature, indicating that the anti conformer might be favorable in liquid PEA at room temperature. The blue shift of the band for the bonded N-H stretch with increasing temperature also provides evidence of the existence of intermolecular N-H···N hydrogen bonds.
Brozek-Pluska, Beata; Jablonska-Gajewicz, Joanna; Kordek, Radzislaw; Abramczyk, Halina
2011-05-12
We present the results of differential scanning calorimetry (DSC) and Raman studies in the temperature range of 293-77 K on vibrational properties of the oleic acid and the human breast tissue as a function of temperature. We have found that vibrational properties are very sensitive indicators to specify phases and phase transitions at the molecular level. We have found that water content confined in the cancerous tissue is markedly different from that in the noncancerous tissue. The OH stretching vibrations of water are useful as potential Raman biomarkers to distinguish between the cancerous and the noncancerous human breast tissues. Our results provide experimental evidence on the role of lipid profile and cell hydration as factors of particular significance in differentiation of the noncancerous and cancerous breast tissues.
Raman spectroscopic approach to monitor the in vitro cyclization of creatine → creatinine
NASA Astrophysics Data System (ADS)
Gangopadhyay, Debraj; Sharma, Poornima; Singh, Sachin Kumar; Singh, Pushkar; Tarcea, Nicolae; Deckert, Volker; Popp, Jürgen; Singh, Ranjan K.
2015-01-01
The creatine → creatinine cyclization, an important metabolic phenomenon has been initiated in vitro at acidic pH and studied through Raman spectroscopic and DFT approach. The equilibrium composition of neutral, zwitterionic and protonated microspecies of creatine has been monitored with time as the reaction proceeds. Time series Raman spectra show clear signature of creatinine formation at pH 3 after ∼240 min at room temperature and reaction is faster at higher temperature. The spectra at pH 1 and pH 5 do not show such signature up to 270 min implying faster reaction rate at pH 3.
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Ahlawat, Anju; Sathe, V. G.
2011-07-01
Nonstoichiometric oriented thin films of LaCoO3-δ of equal thickness and varying oxygen content has been deposited on STO (001) substrate by pulsed laser deposition. X-ray diffraction results show that all films are single phase and c-axis oriented in the (001) direction with in plane tensile strain. In these films strain reduces with increasing oxygen content and Raman study also support this result. Low temperature Raman study shows no change in spin state of Co3+ in temperature range from 300 K to down to 80 K.
A Raman spectroscopic study of a fulgurite.
Carter, Elizabeth A; Hargreaves, Michael D; Kee, Terence P; Pasek, Matthew A; Edwards, Howell G M
2010-07-13
A Raman microspectroscopic study of several fulgurites has been undertaken. A fulgurite is an amorphous mineraloid, a superheated glassy solid that is formed when a lightning bolt hits a sandy or rocky ground and thermal energy is transferred. The Raman spectra revealed several forms of crystalline and fused silica and also the presence of polyaromatic hydrocarbons found in an interfacial zone of a glass bubble. This, together with the presence of anatase, a low-temperature polymorph of TiO(2), suggested that some regions of the fulgurite specimen were not subjected to temperatures of 1800 degrees C, which are attained when lightning hits the surface of sand or a rock.
Isotope effect on superconductivity and Raman phonons of Pyrochlore Cd2Re2O7
NASA Astrophysics Data System (ADS)
Razavi, F. S.; Hajialamdari, M.; Reedyk, M.; Kremer, R. K.
2018-06-01
Cd2Re2O7 is the only α-Pyrochlore exhibiting superconductivity with a transition temperature (Tc) of ∼ 1 K. In this study, we present the effect of oxygen isotope (18O) as well as combined 18O and cadmium isotope (116Cd) substitution on the superconductivity and Raman scattering spectrum of Cd2Re2O7. The change of Tc and the energy gap Δ(T) are reported using various techniques including point contact spectroscopy. The shift in Raman phonon frequencies upon isotope substitution will be compared with measurement of the isotope effect on the superconducting transition temperature.
NASA Astrophysics Data System (ADS)
Summa, Donato; Di Girolamo, Paolo; Flamant, Cyrille; De Rosa, Benedetto; Cacciani, Marco; Stelitano, Dario
2018-04-01
Accurate measurements of the vertical profiles of water vapour are of paramount importance for most key areas of atmospheric sciences. A comprehensive inter-comparison between different remote sensing and in-situ sensors has been carried out in the frame work of the first Special Observing Period of the Hydrological cycle in the Mediterranean Experiment for the purpose of obtaining accurate error estimates for these sensors. The inter-comparison involves a ground-based Raman lidar (BASIL), an airborne DIAL (LEANDRE2), a microwave radiometer, radiosondes and aircraft in-situ sensors.
Raman analysis of non stoichiometric Ni1-δO
NASA Astrophysics Data System (ADS)
Dubey, Paras; Choudhary, K. K.; Kaurav, Netram
2018-04-01
Thermal decomposition method was used to synthesize non-stoichiometric nickel oxide at different sintering temperatures upto 1100 °C. The structure of synthesized compounds were analyzed by X ray diffraction analysis (XRD) and magnetic ordering was studied with the help of Raman scattering spectroscopy for the samples sintered at different temperature. It was found that due to change in sintering temperature the stoichiometry of the sample changes and hence intensity of two magnon band changes. These results were interpreted as the decomposition temperature increases, which heals the defects present in the non-stoichiometric nickel oxide and antiferromagnetic spin correlation changes accordingly.
Remote Raman Sensor System for Testing of Rocks and Minerals
NASA Technical Reports Server (NTRS)
Garcia, Christopher S.; Abedin, M. Nurul; Sharma, Shiv K.; Misra, Anupam K.; Ismail, Syed; Sanford, Stephen P.; Elsayed-Ali, Hani
2007-01-01
Recent and future explorations of Mars and lunar surfaces through rovers and landers have spawned great interest in developing an instrument that can perform in-situ analysis of minerals on planetary surfaces. Several research groups have anticipated that for such analysis, Raman spectroscopy is the best suited technique because it can unambiguously provide the composition and structure of a material. A remote pulsed Raman spectroscopy system for analyzing minerals was demonstrated at NASA Langley Research Center in collaboration with the University of Hawaii. This system utilizes a 532 nm pulsed laser as an excitation wavelength, and a telescope with a 4-inch aperture for collecting backscattered radiation. A spectrograph equipped with a super notch filter for attenuating Rayleigh scattering is used to analyze the scattered signal. To form the Raman spectrum, the spectrograph utilizes a holographic transmission grating that simultaneously disperses two spectral tracks on the detector for increased spectral range. The spectrum is recorded on an intensified charge-coupled device (ICCD) camera system, which provides high gain to allow detection of inherently weak Stokes lines. To evaluate the performance of the system, Raman standards such as calcite and naphthalene are analyzed. Several sets of rock and gemstone samples obtained from Ward s Natural Science are tested using the Raman spectroscopy system. In addition, Raman spectra of combustible substances such acetone and isopropanol are also obtained. Results obtained from those samples and combustible substances are presented.
Continuous-wave deep ultraviolet sources for resonance Raman explosive sensing
NASA Astrophysics Data System (ADS)
Yellampalle, Balakishore; Martin, Robert; Sluch, Mikhail; McCormick, William; Ice, Robert; Lemoff, Brian
2015-05-01
A promising approach to stand-off detection of explosive traces is using resonance Raman spectroscopy with Deepultraviolet (DUV) light. The DUV region offers two main advantages: strong explosive signatures due to resonant and λ- 4 enhancement of Raman cross-section, and lack of fluorescence and solar background. For DUV Raman spectroscopy, continuous-wave (CW) or quasi-CW lasers are preferable to high peak powered pulsed lasers because Raman saturation phenomena and sample damage can be avoided. In this work we present a very compact DUV source that produces greater than 1 mw of CW optical power. The source has high optical-to-optical conversion efficiency, greater than 5 %, as it is based on second harmonic generation (SHG) of a blue/green laser source using a nonlinear crystal placed in an external resonant enhancement cavity. The laser system is extremely compact, lightweight, and can be battery powered. Using two such sources, one each at 236.5 nm and 257.5 nm, we are building a second generation explosive detection system called Dual-Excitation-Wavelength Resonance-Raman Detector (DEWRRED-II). The DEWRRED-II system also includes a compact dual-band high throughput DUV spectrometer, and a highly-sensitive detection algorithm. The DEWRRED technique exploits the DUV excitation wavelength dependence of Raman signal strength, arising from complex interplay of resonant enhancement, self-absorption and laser penetration depth. We show sensor measurements from explosives/precursor materials at different standoff distances.
Optical Antenna Arrays on a Fiber Facet for In Situ Surface Enhanced Raman Scattering Detection
Smythe, Elizabeth J.; Dickey, Michael D.; Bao, Jiming; Whitesides, George M.
2009-01-01
This paper reports a bidirectional fiber optic probe for the detection of surface enhanced Raman scattering (SERS). One facet of the probe features an array of gold optical antennas designed to enhance Raman signal, while the other facet of the fiber is used for the input and collection of light. Simultaneous detection of benzenethiol and 2-[(E)-2-pyridin-4-ylethenyl]pyridine is demonstrated through a 35 cm long fiber. The array of nanoscale optical antennas was first defined by electron-beam lithography on a silicon wafer. The array was subsequently stripped from the wafer and then transferred to the facet of a fiber. Lithographic definition of the antennas provides a method for producing two-dimensional arrays with well-defined geometry, which allows (i) the optical response of the probe to be tuned and (ii) the density of ‘hot spots’ generating the enhanced Raman signal to be controlled. It is difficult to determine the Raman signal enhancement factor (EF) of most fiber optic Raman sensors featuring ‘hot spots’ because the geometry of the Raman enhancing nanostructures is poorly defined. The ability to control the size and spacing of the antennas enables the EF of the transferred array to be estimated. EF values estimated after focusing a laser directly onto the transferred array ranged from 2.6 × 105 to 5.1 × 105. PMID:19236032
Zhang, Liying; Jin, Yang; Mao, Hui; Zheng, Lei; Zhao, Jiawei; Peng, Yan; Du, Shuhu; Zhang, Zhongping
2014-08-15
Trace penicilloic acid allergen frequently leads to various fatal immune responses to many patients, but it is still a challenge to directly discriminate and detect its residue in penicillin by a chemosensing way. Here, we report that silver-coated gold nanoparticles (Au@Ag NPs) exhibit a structure-selective hot-spot Raman enhancement capability for direct identification and detection of trace penicilloic acid in penicillin. It has been demonstrated that penicilloic acid can very easily link Au@Ag NPs together by its two carboxyl groups, locating itself spontaneously at the interparticle of Au@Ag NPs to form strong Raman hot-spot. At the critical concentration inducing the nanoparticle aggregation, Raman-enhanced effect of penicilloic acid is ~60,000 folds higher than that of penicillin. In particular, the selective Raman enhancement to the two carboxyl groups makes the peak of carboxyl group at C6 of penicilloic acid appear as a new Raman signal due to the opening of β-lactam ring of penicillin. The surface-enhanced Raman scattering (SERS) nanoparticle sensor reaches a sensitive limit lower than the prescribed 1.0‰ penicilloic acid residue in penicillin. The novel strategy to examine allergen is more rapid, convenient and inexpensive than the conventional separation-based assay methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhong, Jin-Rong; Zeng, Xin-Yang; Zhou, Feng-He; Ran, Qi-Dong; Sun, Chang-Yu; Zhong, Rui-Qin; Yang, Lan-Ying; Chen, Guang-Jin; Koh, Carolyn A.
2016-01-01
The hydrate structure type and dissociation behavior for pure methane and methane-ethane hydrates at temperatures below the ice point and atmospheric pressure were investigated using in situ Raman spectroscopic analysis. The self-preservation effect of sI methane hydrate is significant at lower temperatures (268.15 to 270.15 K), as determined by the stable C-H region Raman peaks and AL/AS value (Ratio of total peak area corresponding to occupancies of guest molecules in large cavities to small cavities) being around 3.0. However, it was reduced at higher temperatures (271.15 K and 272.15 K), as shown from the dramatic change in Raman spectra and fluctuations in AL/AS values. The self-preservation effect for methane-ethane double hydrate is observed at temperatures lower than 271.15 K. The structure transition from sI to sII occurred during the methane-ethane hydrate decomposition process, which was clearly identified by the shift in peak positions and the change in relative peak intensities at temperatures from 269.15 K to 271.15 K. Further investigation shows that the selectivity for self-preservation of methane over ethane leads to the structure transition; this kind of selectivity increases with decreasing temperature. This work provides new insight into the kinetic behavior of hydrate dissociation below the ice point. PMID:27941857
Zhong, Jin-Rong; Zeng, Xin-Yang; Zhou, Feng-He; Ran, Qi-Dong; Sun, Chang-Yu; Zhong, Rui-Qin; Yang, Lan-Ying; Chen, Guang-Jin; Koh, Carolyn A
2016-12-12
The hydrate structure type and dissociation behavior for pure methane and methane-ethane hydrates at temperatures below the ice point and atmospheric pressure were investigated using in situ Raman spectroscopic analysis. The self-preservation effect of sI methane hydrate is significant at lower temperatures (268.15 to 270.15 K), as determined by the stable C-H region Raman peaks and A L /A S value (Ratio of total peak area corresponding to occupancies of guest molecules in large cavities to small cavities) being around 3.0. However, it was reduced at higher temperatures (271.15 K and 272.15 K), as shown from the dramatic change in Raman spectra and fluctuations in A L /A S values. The self-preservation effect for methane-ethane double hydrate is observed at temperatures lower than 271.15 K. The structure transition from sI to sII occurred during the methane-ethane hydrate decomposition process, which was clearly identified by the shift in peak positions and the change in relative peak intensities at temperatures from 269.15 K to 271.15 K. Further investigation shows that the selectivity for self-preservation of methane over ethane leads to the structure transition; this kind of selectivity increases with decreasing temperature. This work provides new insight into the kinetic behavior of hydrate dissociation below the ice point.
NASA Technical Reports Server (NTRS)
Shirley, J. A.
1983-01-01
Results of an analytical investigation to determine the feasibility of temperature profiling in the space shuttle main engine (SSME) fuel preburner are presented. In this application it is desirable to measure temperature in the preburner combustor with a remote, nonintrusive optical technique. Several techniques using laser excitation were examined with a consideration of the constraints imposed by optical access in the fuel preburner and the problems associated with operation near the functioning space shuttle engine. The potential performance of practical diagnostic systems based on spontaneous Raman backscattering, laser induced fluorescence, and coherent anti-Stokes Raman spectroscopy were compared analytically. A system using collection of spontaneous Raman backscattering excited by a remotely located 5 to 10 watt laser propagated to the SSME through a small diameter optical fiber was selected as the best approach. Difficulties normally associated with Raman scattering: weak signal strength and interference due to background radiation are not expected to be problematic due to the very high density in this application, and the low flame luminosity expected in the fuel rich hydrogen oxygen flame.
Vestin, Fredrik; Nilsson, Kristin; Bengtsson, Per-Erik
2008-04-10
Experiments were performed in the temperature range of 294-1143 K in pure CO(2) using high-resolution rotational coherent anti-Stokes Raman spectroscopy (CARS), in the dual-broadband approach. Experimental single-shot spectra were recorded with high spectral resolution using a single-mode Nd:YAG laser and a relay imaging lens system on the exit of a 1 m spectrometer. A theoretical rotational CARS model for CO(2) was developed for evaluation of the experimental spectra. The evaluated mean temperatures of the recorded single-shot dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) spectra using this model showed good agreement with thermocouple temperatures, and the relative standard deviation of evaluated single-shot temperatures was generally 2-3%. Simultaneous thermometry and relative CO(2)/N(2)-concentration measurements were demonstrated in the product gas of premixed laminar CO/air flames at atmospheric pressure. Although the model proved to be accurate for thermometry up to 1143 K, limitations were observed at flame temperatures where temperatures were overestimated and relative CO(2)/N(2) concentrations were underestimated. Potential sources for these discrepancies are discussed.
Natural user interface as a supplement of the holographic Raman tweezers
NASA Astrophysics Data System (ADS)
Tomori, Zoltan; Kanka, Jan; Kesa, Peter; Jakl, Petr; Sery, Mojmir; Bernatova, Silvie; Antalik, Marian; Zemánek, Pavel
2014-09-01
Holographic Raman tweezers (HRT) manipulates with microobjects by controlling the positions of multiple optical traps via the mouse or joystick. Several attempts have appeared recently to exploit touch tablets, 2D cameras or Kinect game console instead. We proposed a multimodal "Natural User Interface" (NUI) approach integrating hands tracking, gestures recognition, eye tracking and speech recognition. For this purpose we exploited "Leap Motion" and "MyGaze" low-cost sensors and a simple speech recognition program "Tazti". We developed own NUI software which processes signals from the sensors and sends the control commands to HRT which subsequently controls the positions of trapping beams, micropositioning stage and the acquisition system of Raman spectra. System allows various modes of operation proper for specific tasks. Virtual tools (called "pin" and "tweezers") serving for the manipulation with particles are displayed on the transparent "overlay" window above the live camera image. Eye tracker identifies the position of the observed particle and uses it for the autofocus. Laser trap manipulation navigated by the dominant hand can be combined with the gestures recognition of the secondary hand. Speech commands recognition is useful if both hands are busy. Proposed methods make manual control of HRT more efficient and they are also a good platform for its future semi-automated and fully automated work.
NASA Technical Reports Server (NTRS)
Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland;
2001-01-01
The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.
NASA Astrophysics Data System (ADS)
Li, Yajuan; Lin, Xin; Yang, Yong; Xia, Yuan; Xiong, Jun; Song, Shalei; Liu, Linmei; Chen, Zhenwei; Cheng, Xuewu; Li, Faquan
2017-02-01
Temperature profiles at altitudes of 5-80 km are obtained with a self-calibrated Rayleigh-rotational Raman lidar over Wuhan, China (30.5°N, 114.5°E). By using the synchronous Rayleigh lidar temperature, rotational Raman temperature in the lower atmosphere could be calibrated and retrieved, which is free of other instruments (like local radiosondes). The results are comparable to the radiosonde calibration method. Based on the self-calibration approach, one-night (August 4-5, 2014) lidar temperature profiles are presented with radiosondes, NRLMSISE-00 model and TIMED/SABER data. Some interesting temperature characteristics have been present for studies of waves propagating from near ground level into the mesosphere. Temperature perturbations are found to increase exponentially with a scale height of 10 km. The wavy structure shows minimal perturbations ('nodes') at some altitudes of 39, 52, 64 and 73 km. Dominant wavelengths and temperature variations are also analyzed at different time and altitudes. By comparison of the temperature and associate perturbations from the tropopause up to the stratopause, different amplitudes, phase fronts and vertical wavelengths are discovered as well. These discoveries indicate that some waves may originate in the lower atmosphere and propagate upward with decreasing static stability.
NASA Astrophysics Data System (ADS)
da Silva, Antonio N.; Neto, Antonio B. S.; Oliveira, Alcemira C.; Junior, Manoel C.; Junior, Jose A. L.; Freire, Paulo T. C.; Filho, Josué M.; Oliveira, Alcineia C.; Lang, Rossano
2018-06-01
High temperature and pressure effects on the physicochemical properties of binary oxides catalysts were investigated. The nanocomposites catalysts comprising of CeAl, CeMn and NiAl were characterized through various physicochemical techniques. A study of the temperature and pressure induced phenomena monitored by Raman spectroscopy was proposed and discussed. Spectral modifications of the Raman modes belonging to the CeMn suggest structural changes in the solid due to the MnO2 phase oxidation with increasing temperature. The thermal expansion and lattice anharmonicity effects were observed on CeMn due to lack of stability of the lattice vacancies. The CeAl and NiAl composites presented crystallographic stability at low temperatures however, undertake a phase transformation of NiO/Al2O3 into NiAl2O4, mostly without any deformation in its structure with increasing the temperature. It was also inferred that the binary oxides are more stables in comparison with monoxides. Detailed pressure-dependent Raman measurements of the T2g phonon mode of CeMn and NiAl revealed that the pressure contributes to modify bonds length and reduces the particles sizes of the solids. On the contrary, high pressure on CeAl sample improved the stability with addition of Al2O3 in the CeO2 lattice. The results then suggest a good stability of CeAl and NiAl composite catalysts at high pressure and low temperature and show how to prospect of tuning the catalysis for surface reactions entirely through in situ spectroscopic investigations means.
NASA Astrophysics Data System (ADS)
Gupta, Sakshi; Ahmad, Azeem; Gambhir, Vijayeta; Reddy, Martha N.; Mehta, Dalip S.
2015-08-01
In a typical Raman based sensor, a single laser beam is used for exciting the sample and the backscattered or forward scattered light is collected using collection optics and is analyzed by a spectrometer. We have investigated that by means of exciting the sample with multiple beams, i.e., by dividing the same input power of the single beam into two or three or more beams and exciting the sample from different angles, the Raman signal enhances significantly. Due to the presence of multiple beams passing through the same volume of the sample, an interference pattern is formed and the volume of interaction of excitation beams with the sample increases. By means of this geometry, the enhancement in the Raman signal is observed and it was found that the signal strength increases linearly with the increase in number of excitation beams. Experimental results of this scheme for excitation of the samples are reported for explosive detection at a standoff distance.
Field testing the Raman gas composition sensor for gas turbine operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buric, M.; Chorpening, B.; Mullem, J.
2012-01-01
A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class Imore » Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.« less
Post examination of copper ER sensors exposed to bentonite
NASA Astrophysics Data System (ADS)
Kosec, Tadeja; Kranjc, Andrej; Rosborg, Bo; Legat, Andraž
2015-04-01
Copper corrosion in saline solutions under oxic conditions is one of concerns for the early periods of disposal of spent nuclear fuel in deep geological repositories. The main aim of the study was to investigate the corrosion behaviour of copper during this oxic period. The corrosion rate of pure copper was measured by means of thin electrical resistance (ER) sensors that were placed in a test package containing an oxic bentonite/saline groundwater environment at room temperature for a period of four years. Additionally, the corrosion rate was monitored by electrochemical impedance spectroscopy (EIS) measurements that were performed on the same ER sensors. By the end of the exposure period the corrosion rate, as estimated by both methods, had dropped to approximately 1.0 μm/year. The corrosion rate was also estimated by the examination of metallographic cross sections. The post examination tests which were used to determine the type and extent of corrosion products included different spectroscopic techniques (XRD and Raman analysis). It was confirmed that the corrosion rate obtained by means of physical (ER) and electrochemical techniques (EIS) was consistent with that estimated from the metallographic cross section analysis. The corrosion products consisted of cuprous oxide and paratacamite, which was very abundant. From the types of attack it can be concluded that the investigated samples of copper in bentonite underwent uneven general corrosion.
Saerens, Lien; Ghanam, Dima; Raemdonck, Cedric; Francois, Kjell; Manz, Jürgen; Krüger, Rainer; Krüger, Susan; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas
2014-08-01
The aim of this research was to use Raman spectroscopy for the in-line monitoring of the solid state of materials during pharmaceutical hot-melt extrusion in the die head of a 12 mm (development scale) twin-screw extruder during formulation development. A full factorial (mixed) design was generated to determine the influence of variations in concentration of Celecoxib (CEL) in Eudragit® E PO, three different screw configurations and varying barrel temperature profiles on the solid state, 'melt temperature' and die pressure of continuously produced extrudates in real-time. Off-line XRD and DSC analysis were used to evaluate the suitability of Raman spectroscopy for solid state predictions. First, principal component analysis (PCA) was performed on all in-line collected Raman spectra from the experimental design. The resulting PC 1 versus PC 2 scores plot showed clustering according to solid state of the extrudates, and two classes, one class where crystalline CEL is still present and a second class where no crystalline CEL was detected, were found. Then, a soft independent modelling of class analogy (SIMCA) model was developed, by modelling these two classes separately by disjoint PCA models. These two separate PCA models were then used for the classification of new produced extrudates and allowed distinction between glassy solid solutions of CEL and crystalline dispersions of CEL. All extrudates were classified similarly by Raman spectroscopy, XRD and DSC measurements, with exception of the extrudates with a 30% CEL concentration extruded at 130 °C. The Raman spectra of these experiments showed bands which were sharper than the amorphous spectra, but broader than the crystalline spectra, indicating the presence of CEL that has dissolved into the matrix and CEL in its crystalline state. XRD and DSC measurements did not detect this. Modifications in the screw configuration did not affect the solid state and did not have an effect on the solid state prediction of new produced extrudates. Secondly, the influence of variations in die pressure on the Raman spectra was examined. The applied drug concentration, processing temperature and feeder performance influence the die pressure, which is reflected in the Raman spectra as a change in spectral intensity. When applying PCA on the raw spectra from the experimental design, the first principal component describes the influence of die pressure on the spectra, which was seen as a decrease in Raman intensity of the whole spectrum when the pressure in the sample increased. Clustering according to processing temperature was found, although the temperature in the die remained constant, indicating that a difference in viscosity, resulting in a changed die pressure, was detected. When the feeder was stopped, the score values of the first principal component almost simultaneously decreased, and only stabilized once the die pressure became stable. Since Raman spectra collected in the extrusion die are influenced by changes in die pressure, disturbances upstream of the extrusion process can be observed and identified in the Raman measurements. Copyright © 2014 Elsevier B.V. All rights reserved.
Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials
NASA Technical Reports Server (NTRS)
Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor
2007-01-01
This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.
Stavrou, E; Tsiantos, C; Tsopouridou, R D; Kripotou, S; Kontos, A G; Raptis, C; Capoen, B; Bouazaoui, M; Turrell, S; Khatir, S
2010-05-19
Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out on four mixed tellurium-zinc oxide (TeO(2))(1 - x)(ZnO)(x) (x = 0.1, 0.2, 0.3, 0.4) glasses under variable temperature, with particular attention being given to the respective glass transition region. From the DSC measurements, the glass transition temperature T(g) has been determined for each glass, showing a monotonous decrease of T(g) with increasing ZnO content. The Raman study is focused on the low-frequency band of the glasses, the so-called boson peak (BP), whose frequency undergoes an abrupt decrease at a temperature T(d) very close to the respective T(g) values obtained by DSC. These results show that the BP is highly sensitive to dynamical effects over the glass transition and provides a means for an equally reliable (to DSC) determination of T(g) in tellurite glasses and other network glasses. The discontinuous temperature dependence of the BP frequency at the glass transition, along with the absence of such a behaviour by the high-frequency Raman bands (due to local atomic vibrations), indicates that marked changes of the medium range order (MRO) occur at T(g) and confirms the correlation between the BP and the MRO of glasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul; Hajiri, Tetsuya
Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPSmore » spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.« less
Spectroscopic analysis of temperature dependent growth of WO3 and W0.95Ti0.05O3 thin films
NASA Astrophysics Data System (ADS)
Yun, Young; Manciu, Felicia; William, Durrer; Howard, James; Ramana, Chintalapalle
2011-10-01
We present a comparative spectroscopic study of the morphology and composition of tungsten oxide WO3 and W0.95Ti0.05O3 thin films, grown by radio frequency magnetron reactive sputtering at substrate temperatures varied from room temperature (RT) to 500 ^oC, using Raman and X-ray photoelectron spectroscopy (XPS). The Raman results demonstrate the occurrence of a phase transformation from a monoclinic WO3 structure to an orthorhombic or tetragonal configuration in the W0.95Ti0.05O3 thin films. This remark is based on the observed shifting, with Ti doping, to lower frequencies of the Raman peaks corresponding to W-O-W stretching modes of WO3 at 806 and 711 cm-1, to 793 and 690 cm-1, respectively. Also, higher growth temperatures are required to obtain crystalline microstructure for Ti-doped WO3 films than for WO3 films. XPS data indicate that the doped material has a reduced WO3-x stoichiometry at the surface, with the presence of W^+6 and W^+5 tungsten oxidation states; this observation could also be related to the existence of a different structural phase of this material, corroborating with the Raman measurements.
Bonales, L J; Muñoz-Iglesias, V; Santamaría-Pérez, D; Caceres, M; Fernandez-Remolar, D; Prieto-Ballesteros, O
2013-12-01
We have carried out a systematic study of abiotic precipitation at different temperatures of several Mg and Ca carbonates (calcite, nesquehonite, hydrocalcite) present in carbonaceous chondrites. This study highlights the capability of Raman spectroscopy as a primary tool for performing full mineralogical analysis. The precipitation reaction and the structure of the resulting carbonates were monitored and identified with Raman spectroscopy. Raman spectroscopy enabled us to confirm that the precipitation reaction is very fast (minutes) when Ca(II) is present in the solution, whereas for Mg(II) such reactions developed at rather slow rates (weeks). We also observed that both the composition and the reaction mechanisms depended on temperature, which might help to clarify several issues in the fields of planetology and geology, because of the environmental implications of these carbonates on both terrestrial and extraterrestrial objects. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gillet, Philippe; Guyot, Francois; Malezieux, Jean-Marie
1989-12-01
High pressure (up to 2.7 GPa) and high temperature (up to 1000 K) Raman spectra of Ca 2GeO 4 (olivine form) have been recorded. Measurements of the pressure- and temperature-induced frequency shifts of 14 modes have been performed. The classical mode Gruneisen parameter and a corresponding parameter related to temperature variation are calculated. For the high frequency modes (GeO stretching) we calculate these parameters with local tetrahedral elastic parameters. From these parameters anharmonic parameters are calculated for each Raman active mode. The effect of anharmonicity on the specific heat is calculated and compared with calorimetric data. Taking anharmonicity into account leads to a departure from the Dulong and Petit limit of the order of 2% at 1000 K and more than 6% at 2000 K, in good accord with experimental data. We propose that, eventually, such effects might be significant in the calculations of thermodynamic properties of mantle silicates like forsterite and its polymorphs.
Kalampounias, Angelos G; Boghosian, Soghomon
2009-09-01
A formalism for correlating relative Raman band intensities with the stoichiometric coefficients, the equilibrium constant, and the thermodynamics of reaction equilibria in solution is derived. The proposed method is used for studying: (1) the thermal dissociation of molten KHSO(4) in the temperature range 240-450 degrees C; (2) the dinuclear complex formation in molten TaCl(5)-AlCl(3) mixtures at temperatures between 125 and 235 degrees C. The experimental and calculational procedures for exploiting the temperature-dependent Raman band intensities in the molten phase as well as (if applicable) in the vapors thereof are described and used for determining the enthalpy of the equilibria: (1) 2HSO(4)(-)(l) <--> S(2)O(7)(2-)(l) + H(2)O(g), DeltaH(0)=64.9 +/- 2.9 kJ mol(-1); and (2) 1/2Ta(2)Cl(10)(l) + 1/2Al(2)Cl(6)(l) <--> TaAlCl(8)(l), DeltaH(0)=-12.1 +/- 1.5 kJ mol(-1).
Chemical structural analysis of diamondlike carbon films: II. Raman analysis
NASA Astrophysics Data System (ADS)
Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji
2018-02-01
The chemical structure of diamondlike carbon (DLC) films, synthesized by photoemission-assisted glow discharge, has been analyzed by Raman spectroscopy. Raman analysis in conjunction with the sp2 cluster model clarified the film structure. The sp2 clusters in DLC films synthesized at low temperature preferred various aliphatic structures. Sufficient argon-ion assist allowed for formation of less strained DLC films containing large amounts of hydrogen. As the synthesis temperature was increased, thermal desorption of hydrogen left carbon dangling bonds with active unpaired electrons in the films, and the reactions that followed created strained films containing aromatic sp2 clusters. In parallel, the desorption of methane molecules from the growing surface by chemisorption of hydrogen radicals prevented the action of argon ions, promoting internal strain of the films. However, in synthesis at very high temperature, where sp2 clusters are sufficiently dominant, the strain was dissolved gradually. In contrast, the DLC films synthesized at low temperature were more stable than other films synthesized at the same temperature because of stable hydrogen-carbon bonds in the films.
Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS 2 by Raman Thermometry
Yalon, Eilam; Aslan, Ozgur Burak; Smithe, Kirby K. H.; ...
2017-10-20
The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS 2 with AlN and SiO 2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m –2 K –1 near room temperature, increasing as ~ T 0.65 in the range 300–600 K. The similar TBC of MoS 2 with themore » two substrates indicates that MoS 2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.« less
Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS 2 by Raman Thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalon, Eilam; Aslan, Ozgur Burak; Smithe, Kirby K. H.
The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS 2 with AlN and SiO 2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m –2 K –1 near room temperature, increasing as ~ T 0.65 in the range 300–600 K. The similar TBC of MoS 2 with themore » two substrates indicates that MoS 2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.« less
40 CFR 63.2269 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature sensor in a position that provides a representative temperature. (2) Use a temperature sensor with... owners manual. Following the electronic calibration, you must conduct a temperature sensor validation check in which a second or redundant temperature sensor placed nearby the process temperature sensor...
40 CFR 63.2269 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature sensor in a position that provides a representative temperature. (2) Use a temperature sensor with... owners manual. Following the electronic calibration, you must conduct a temperature sensor validation check in which a second or redundant temperature sensor placed nearby the process temperature sensor...
In-pile Thermal Conductivity Characterization with Time Resolved Raman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xinwei; Hurley, David H.
The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heatingmore » of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.« less
Optical Characterization of Lead Monoxide Films Grown by Laser-Assisted Deposition
NASA Astrophysics Data System (ADS)
Baleva, M.; Tuncheva, V.
1994-05-01
The Raman spectra of PbO films, grown by laser-assisted deposition (LAD) at different substrate temperatures are investigated. The spectra of the films, deposited on amorphous, single crystal quartz and polycrystal PbTe substrates, are compared with the Raman spectra of tetragonal and orthorhombic powder samples. The phonon frequencies determined in our experiment with powder samples coincide fairly well with those obtained by Adams and Stevens, J. Chem. Soc., Dalton Trans., 1096 (1977). Thus the Raman spectra of the powder samples presented in this paper can be considered as unambiguous characteristics of the two different PbO crystal phases. It was concluded that the Raman scattering may serve as a tool for identification of PbO films and their crystal modifications. On the basis of this investigation it was concluded that the film structure changes from orthorhombic to tetragonal with increased substrate temperature, and that the nature of the substrate influences the crystal structure of the films. On the basis of the Raman spectra of the β-PbO films with prevailing (001) orientation of crystallization, an assignment of the modes is proposed.
An in-situ Raman study on pristane at high pressure and ambient temperature
NASA Astrophysics Data System (ADS)
Wu, Jia; Ni, Zhiyong; Wang, Shixia; Zheng, Haifei
2018-01-01
The Csbnd H Raman spectroscopic band (2800-3000 cm-1) of pristane was measured in a diamond anvil cell at 1.1-1532 MPa and ambient temperature. Three models are used for the peak-fitting of this Csbnd H Raman band, and the linear correlations between pressure and corresponding peak positions are calculated as well. The results demonstrate that 1) the number of peaks that one chooses to fit the spectrum affects the results, which indicates that the application of the spectroscopic barometry with a function group of organic matters suffers significant limitations; and 2) the linear correlation between pressure and fitted peak positions from one-peak model is more superior than that from multiple-peak model, meanwhile the standard error of the latter is much higher than that of the former. It indicates that the Raman shift of Csbnd H band fitted with one-peak model, which could be treated as a spectroscopic barometry, is more realistic in mixture systems than the traditional strategy which uses the Raman characteristic shift of one function group.
Temperature dependence Infrared and Raman studies of III-V/II-VI core-shell nanostructures
NASA Astrophysics Data System (ADS)
Manciu, Felicia S.; McCombe, Bruce D.; Lucey, Derrick
2005-03-01
The temperature dependence (8 K < T < 300 K) of optical phonon modes confined in InP/II-VI core-shell nanostructures have been investigated by far-infrared (FIR) and Raman scattering spectroscopies. The core-shell nanostructures were fabricated by colloidal chemistry and characterized by transmission electron microscopy and X-ray diffraction prior to being embedded in a polycrystalline CsI matrix for the present studies. The FIR measurements of InP/ZnSe sample exhibits three absorption features, one clearly due to the Froelich mode of the InP cores, and the others related to modes associated with the shell layer and its coupling to the matrix. Strong mixing of the characteristic vibrations of each constituent material was observed for InP/ZnS sample. Raman scattering (457.9 nm excitation) features were determined without polarization selection in the backscattering geometry. Interesting T-dependent resonant Raman effect of the surface optical phonon modes has been discovered in InP/ZnSe sample. Reasonable agreement is obtained between the Raman and FIR results, as well as with theoretical calculations.
Inelastic Light Scattering Measurements of a Pressure-Induced Quantum Liquid in KCuF3
NASA Astrophysics Data System (ADS)
Yuan, S.; Kim, M.; Seeley, J. T.; Lee, J. C. T.; Lal, S.; Abbamonte, P.; Cooper, S. L.
2012-11-01
Pressure-dependent, low-temperature inelastic light (Raman) scattering measurements of KCuF3 show that applied pressure above P*˜7kbar suppresses a previously observed structural phase transition temperature to zero temperature in KCuF3, resulting in the development of a fluctuational (quasielastic) response near T˜0K. This pressure-induced fluctuational response—which we associate with slow fluctuations of the CuF6 octahedral orientation—is temperature independent and exhibits a characteristic fluctuation rate that is much larger than the temperature, consistent with quantum fluctuations of the CuF6 octahedra. A model of pseudospin-phonon coupling provides a qualitative description of both the temperature- and pressure-dependent evolution of the Raman spectra of KCuF3.
Modulated Fourier Transform Raman Fiber-Optic Spectroscopy
NASA Technical Reports Server (NTRS)
Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)
2000-01-01
A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.
Origin of the monolayer Raman signature in hexagonal boron nitride: a first-principles analysis.
Ontaneda, Jorge; Singh, Anjali; Waghmare, Umesh V; Grau-Crespo, Ricardo
2018-05-10
Monolayers of hexagonal boron nitride (h-BN) can in principle be identified by a Raman signature, consisting of an upshift in the frequency of the E 2g vibrational mode with respect to the bulk value, but the origin of this shift (intrinsic or support-induced) is still debated. Herein we use density functional theory calculations to investigate whether there is an intrinsic Raman shift in the h-BN monolayer in comparison with the bulk. There is universal agreement among all tested functionals in predicting the magnitude of the frequency shift upon a variation in the in-plane cell parameter. It is clear that a small in-plane contraction can explain the Raman peak upshift from bulk to monolayer. However, we show that the larger in-plane parameter in the bulk (compared to the monolayer) results from non-local correlation effects, which cannot be accounted for by local functionals or those with empirical dispersion corrections. Using a non-local-correlation functional, we then investigate the effect of finite temperatures on the Raman signature. We demonstrate that bulk h-BN thermally expands in the direction perpendicular to the layers, while the intralayer distances slightly contract, in agreement with observed experimental behavior. Interestingly, the difference in in-plane cell parameter between bulk and monolayer decreases with temperature, and becomes very small at room temperature. We conclude that the different thermal expansion of bulk and monolayer partially 'erases' the intrinsic Raman signature, accounting for its small magnitude in recent experiments on suspended samples.
Origin of the monolayer Raman signature in hexagonal boron nitride: a first-principles analysis
NASA Astrophysics Data System (ADS)
Ontaneda, Jorge; Singh, Anjali; Waghmare, Umesh V.; Grau-Crespo, Ricardo
2018-05-01
Monolayers of hexagonal boron nitride (h-BN) can in principle be identified by a Raman signature, consisting of an upshift in the frequency of the E2g vibrational mode with respect to the bulk value, but the origin of this shift (intrinsic or support-induced) is still debated. Herein we use density functional theory calculations to investigate whether there is an intrinsic Raman shift in the h-BN monolayer in comparison with the bulk. There is universal agreement among all tested functionals in predicting the magnitude of the frequency shift upon a variation in the in-plane cell parameter. It is clear that a small in-plane contraction can explain the Raman peak upshift from bulk to monolayer. However, we show that the larger in-plane parameter in the bulk (compared to the monolayer) results from non-local correlation effects, which cannot be accounted for by local functionals or those with empirical dispersion corrections. Using a non-local-correlation functional, we then investigate the effect of finite temperatures on the Raman signature. We demonstrate that bulk h-BN thermally expands in the direction perpendicular to the layers, while the intralayer distances slightly contract, in agreement with observed experimental behavior. Interestingly, the difference in in-plane cell parameter between bulk and monolayer decreases with temperature, and becomes very small at room temperature. We conclude that the different thermal expansion of bulk and monolayer partially ‘erases’ the intrinsic Raman signature, accounting for its small magnitude in recent experiments on suspended samples.
NASA Astrophysics Data System (ADS)
Huang, Yiming
Surface-enhanced Raman scattering (SERS) has been developed over forty years with a wide variety of applications. Signals enhanced from single molecule absorbed on the surface of metallic nanoparticles can be up to 14-order-of-magnitude. This is due to the resonance between the optical field and surface plasmon of the metal substrate. Nanoshells have been chosen as substrates since they do not need to pre-aggregate due to their tunable optical property. We developed Raman imaging system by incorporating functionalized nanoshells, cells and SERS. Nanoshells have been coated with different self-assembled monolayers containing poly(ethylene glycol) (PEG) molecules. Probes have been designed by coating nanoshells with Raman active PEG molecules and delivered into macrophage cells. The imaging technique requires less preparation and provides the information of nanoshells in semi-quantitative way in vitro. We developed half-sandwich bioassay by detecting low volume of antigens on nitrocellulose membrane, detected by SERS. Antibodies were grafted to the surface of nanoshells and were conjugated to the antigens on the nitrocellulose membrane for detection. Raman active PEGs were conjugated onto the metal substrate for recognition and quantification. The benefits of this assay are that it is faster, easier to execute and requires less volume of antigen to conjugate onto the substrate. We also developed reactive oxygen species (ROS) sensors by incubating PEGs and either 4-nitrobenzenethiol (4-NBT) or 4-mercaptophenol (4-MP) on the surface of nanoshells. By analyzing the changes of SERS spectrum, the production of hydroxyl radicals produced in the Fenton reaction can be tracked in low concentrations. The sensors were designed to track ROS production within cells when they are under oxidative stress. The methods developed in this thesis are versatile, and can be broadly applied to the study of different subtracts, such as gold colloid.
Low-Frequency Raman Modes of 2H-TaSe2 in the Charge Density Wave Phase
NASA Astrophysics Data System (ADS)
Chowdhury, Sugata; Simpson, J.; Einstein, T. L.; Hight Walker, A. R.; Theoretical Collaboration
With changes in temperatures, tantalum diselenide (2H-TaSe2) , a layered, transition metal chalcogenides (TMD) exhibits unique super-lattice structures. The metallic ground state changes to an incommensurate charge density wave (CDW) state at 122?K followed by a commensurate CDW state at 90?K, and eventually a superconducting state 0.14 K. These phase transitions are driven by strong electron-phonon coupling and favored by the particular form of the Fermi surface of these systems. Here we theoretically studied the structural origin of low-frequency Raman modes of bulk 2H-TaSe2\\ in the CDW phases. Our calculations reveal that changes observed in the Raman modes are associated with the thermal expansion in the basal plane of 2H-TaSe2. The Grüneisen parameters of these two Raman modes increase in the CDW phases. Changes in the lattice parameter ``a'' are large compared to ``c'' which induces strain along the a-axis. We compared our results with experimental data which show low-frequency Raman phonon modes are very sensitive to temperature and are not observed in the metallic room-temperature state. In addition, we found that cation displacement is more than anion in CDW phase. Our results may shed more light on exact nature of the CDW instability and optical properties in this system.
Raman and Conductivity Analysis of Graphene for Biomedical Applications
Qiu, Chao; Bennet, Kevin E.; Khan, Tamanna; Ciubuc, John D.; Manciu, Felicia S.
2016-01-01
In this study, we present a comprehensive investigation of graphene’s optical and conductive properties using confocal Raman and a Drude model. A comparative analysis between experimental findings and theoretical predictions of the material’s changes and improvements as it transitioned from three-dimensional graphite is also presented and discussed. Besides spectral recording by Raman, which reveals whether there is a single, a few, or multi-layers of graphene, the confocal Raman mapping allows for distinction of such domains and a direct visualization of material inhomogeneity. Drude model employment in the analysis of the far-infrared transmittance measurements demonstrates a distinct increase of the material’s conductivity with dimensionality reduction. Other particularly important material characteristics, including carrier concentration and time constant, were also determined using this model and presented here. Furthermore, the detection of micromolar concentration of dopamine on graphene surfaces not only proves that the Raman technique facilitates ultrasensitive chemical detection of analytes, besides offering high information content about the biomaterial under study, but also that carbon-based materials are biocompatible and favorable micro-environments for such detection. Such information is valuable for the development of bio-medical sensors, which is the main application envisioned for this analysis. PMID:28774016
Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples.
Ly, Nguyễn Hoàng; Joo, Sang-Woo
2015-04-29
Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.
Mineralogy and Astrobiology Detection Using Laser Remote Sensing Instrument
NASA Technical Reports Server (NTRS)
Abedin, M. Nurul; Bradley, Arthur T.; Sharma, Shiv K.; Misra, Anupam K.; Lucey, Paul G.; Mckay, Chistopher P.; Ismail, Syed; Sandford, Stephen P.
2015-01-01
A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters. OCIS codes: (120.0280) Remote sensing and sensors; (130.0250) Optoelectronics; (280.3640) Lidar; (300.2530) Fluorescence, laser-induced; (300.6450) Spectroscopy, Raman; (300.6365) Spectroscopy, laser induced breakdown
Temperature dependence of the Raman spectrum of UO2
NASA Astrophysics Data System (ADS)
Elorrieta, J. M.; Bonales, L. J.; Baonza, V. G.; Cobos, J.
2018-05-01
The position of the main spectral features (located at ∼445, ∼575, ∼625, ∼925 and ∼1145 cm-1) in the Raman spectrum of UO2 has been examined from room temperature up to 600 °C. The wavenumber shifts measured for the observed bands have allowed us to obtain the temperature dependence (dω/dT) of the different vibrational modes. Our measurements corroborate the assignment of the band observed at ∼1145 cm-1 to the 2LO overtone. In addition, the temperature dependence of the bandwidths of the T2g and 2LO modes has been analysed.
The phase diagram of ammonium nitrate.
Chellappa, Raja S; Dattelbaum, Dana M; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-14
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH(4)NO(3)] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
The phase diagram of ammonium nitrate
NASA Astrophysics Data System (ADS)
Chellappa, Raja S.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-01
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH4NO3] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
Single-shot gas-phase thermometry by time-to-frequency mapping of coherence dephasing.
Yue, Orin; Bremer, Marshall T; Pestov, Dmitry; Gord, James R; Roy, Sukesh; Dantus, Marcos
2012-08-09
We demonstrate a single-beam coherent anti-Stokes Raman scattering (CARS) technique for gas-phase thermometry that assesses the species-specific local gas temperature by single-shot time-to-frequency mapping of Raman-coherence dephasing. The proof-of-principle experiments are performed with air in a temperature-controlled gas cell. Impulsive excitation of molecular vibrations by an ultrashort pump/Stokes pulse is followed by multipulse probing of the 2330 cm(-1) Raman transition of N(2). This sequence of colored probe pulses, delayed in time with respect to each other and corresponding to three isolated spectral bands, imprints the coherence dephasing onto the measured CARS spectrum. For calibration purposes, the dephasing rates are recorded at various gas temperatures, and the relationship is fitted to a linear regression. The calibration data are then used to determine the gas temperature and are shown to provide better than 15 K accuracy. The described approach is insensitive to pulse energy fluctuations and can, in principle, gauge the temperature of multiple chemical species in a single laser shot, which is deemed particularly valuable for temperature profiling of reacting flows in gas-turbine combustors.
NASA Astrophysics Data System (ADS)
Johnston, Clifford T.; Swanson, Basil I.
1985-03-01
The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C 6H 5NHCOCH 3) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering, from acetanilide and its ND and 13CO substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the ND and 13CO substituted species the unusual temperature dependence in the 1650 cm -1 region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane NH deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species.
Ammonia sensing properties of V-doped ZnO:Ca nanopowders prepared by sol–gel synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fazio, E.; Hjiri, M.; Dhahri, R.
2015-03-15
V-doped ZnO:Ca nanopowders with different V loading were prepared by sol–gel synthesis and successive drying in ethanol under supercritical conditions. Characterization data of nanopowders annealed at 700 °C in air, revealed that they have the wurtzite structure. Raman features of V-doped ZnO:Ca samples were found to be substantially modified with respect to pure ZnO or binary ZnO:Ca samples, which indicate the substitution of vanadium ions in the ZnO lattice. The ammonia sensing properties of V-doped ZnO:Ca thick films were also investigated. The results obtained demonstrate the possibility of a fine tuning of the sensing characteristics of ZnO-based sensors by Camore » and V doping. In particular, their combined effect has brought to an enhanced response towards NH{sub 3} compared to bare ZnO and binary V-ZnO and Ca-ZnO samples. Raman investigation suggested that the presence of Ca play a key role in enhancing the sensor response in these ternary composite nanomaterials. - Graphical abstract: V-doped ZnO:Ca nanopowders prepared by sol–gel synthesis possess enhanced sensing characteristics towards NH{sub 3} compared to bare ZnO. - Highlights: • V-doped ZnO:Ca nanopowders with different V loading were prepared by sol–gel synthesis. • Raman features of V-doped ZnO:Ca samples indicate the substitution of V ions in the ZnO lattice. • Combined effects of dopants have brought to an enhanced response to NH{sub 3} compared to ZnO. • Ca play a key role in enhancing the sensor response of ternary V-doped ZnO:Ca composites.« less
Raman study of transition-metal oxides with perovskite-like structure
NASA Astrophysics Data System (ADS)
Kolev, Nikolay Iliev
Perovskite-like oxides exhibit a rich variety of properties of fundamental scientific interest and potential application value. The motivation for this work is to contribute to our knowledge of perovskite-like systems and strongly correlated systems in general. The polarized Raman spectra of single crystal and thin film CaCu3Ti4O12, single crystal and thin film CaRuO3, microcrystals of La0.5Ca 0.5MnO3, and ceramic and thin film CaMnO3 have been investigated. In close comparison to results from lattice dynamics calculations most of the Raman lines in the CaCu3Ti4O12, CaRuO3, La0.5Ca0.5MnO3 and CaMnO 3 spectra, have been assigned to definite phonon modes. The validity of the model for twin orientation in the Pnma structure for CaRuO3 and La0.5Ca0.5MnO3 is confirmed. The analysis of the CaMnO3 spectra contributed to the development of a model, based on four basic distortions of the (distorted) perovskite structure. The temperature behavior of the CaCu3Ti4O 12 spectra shows that there is no evidence for structural phase transition in the temperature range 20--600 K, so such a transition cannot be responsible for the sharp drop in the dielectric constant below 100 K. The Raman spectra indirectly support the mechanism of formation of barrier layer capacitances in CaCu3Ti4O12.The observation of additional Raman mode of nominal Ag symmetry is discussed in terms of coexistence of domains of different atomic arrangement, or alternatively of non-stoichiometry (Cu deficiency). In the case of the thin film, the tetragonal distortions could be responsible for the greater separation of the additional Ag line. No anomalies in the temperature behavior of the Raman lines of CaRuO3 is observed, which is an indirect evidence for its lack of long-range magnetic ordering at low temperatures (depending on whether this ordering would be observable by Raman spectroscopy through spin-phonon coupling). In La0.5Ca0.5MnO 3 the appearance of several Raman lines below TN is analyzed in terms of ordering and freezing of the Jahn-Teller distortions in a superstructure. Polarized Raman spectra confirmed their usefulness in studying thin films and their properties.
Hu, Yaxi; Lu, Xiaonan
2016-05-01
An innovative "one-step" sensor conjugating molecularly imprinted polymers and surface enhanced Raman spectroscopic-active substrate (MIPs-SERS) was investigated for simultaneous extraction and determination of melamine in tap water and milk. This sensor was fabricated by integrating silver nanoparticles (AgNPs) with MIPs synthesized by bulk polymerization of melamine (template), methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linking agent), and 2,2'-azobisisobutyronitrile (initiator). Static and kinetic adsorption tests validated the specific affinity of MIPs-AgNPs to melamine and the rapid adsorption equilibration rate. Principal component analysis segregated SERS spectral features of tap water and milk samples with different melamine concentrations. Partial least squares regression models correlated melamine concentrations in tap water and skim milk with SERS spectral features. The limit of detection (LOD) and limit of quantification (LOQ) of melamine in tap water were determined as 0.0019 and 0.0064 mmol/L, while the LOD and LOQ were 0.0165 and 0.055 mmol/L for the determination of melamine in skim milk. However, this sensor is not ideal to quantify melamine in tap water and skim milk. By conjugating MIPs with SERS-active substrate (that is, AgNPs), reproducibility of SERS spectral features was increased, resulting in more accurate detection. The time required to determine melamine in tap water and milk were 6 and 25 min, respectively. The low LOD, LOQ, and rapid detection confirm the potential of applying this sensor for accurate and high-throughput detection of melamine in tap water and milk. © 2016 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Yan, Xia; Shi, Xiaofeng; Yang, Jie; Zhang, Xu; Jia, Wenjie; Ma, Jun
2017-10-01
A self-assembled surface enhanced Raman scattering (SERS) sensor is reported in this paper. To achieve high sensitivity, a high sensitive SERS substrate and a high efficient self-constructed light path were made. The SERS substrate was composed by gold nanoparticles (AuNPs, pH=13), glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) porous material and syringe filter. The substrate had a good repeatability, and the relative standard deviation (RSD) of the same substrate was less than 5%. The efficiency of the self-constructed light path is about two times better than RPB Y type reflection fiber when the energy density was roughly equal on samples. The size of the SERS sensor is 350×300×180 mm and the weight is 15 kg. Its miniaturization and portable can comply with the requirements of field detection. Besides, it has good sensitivity, stability and selectivity. For lab experiments, strong enhancements of Raman scattering from organic pollutant polycyclic aromatic hydrocarbons (PAHs) molecules were exhibited. The dependences of SERS intensities on concentrations of PAHs were investigated, and the results indicated that they revealed a satisfactory linear relationship in low concentrations. The limits of detection (LODs) of PAHs phenanthrene and fluorene are 8.3×10-10 mol/L and 7.1×10-10 mol/L respectively [signal to noise ratio (S/N) =3]. Based on this SERS sensor, signals of benzo (a) pyrene and pyrene were found in environmental water and the sensor would be an ideal candidate for field detection of PAHs.
NASA Astrophysics Data System (ADS)
De Biasio, Martin; Arnold, Thomas; McGunnigle, Gerald; Kraft, Martin; Leitner, Raimund; Balthasar, Dirk; Rehrmann, Volker
2011-06-01
Recycling of glass requires the removal of specialist glasses, such as fireproof and mineral glasses, and glass ceramics, which are regarded as contaminants. The sorting must take place before melting for efficient glass recycling. Here, we demonstrate the feasibility of a real-time Raman mapping system for detecting and discriminating a range of industrially relevant glass contaminants in recovered glass streams. The components used are suitable for industrial conditions and the chemometric model is robust against imaging geometry and excitation intensity. The proposed approach is a novel alternative to established glass sorting sensors.
Surface-enhanced Raman spectroscopy on coupled two-layer nanorings
NASA Astrophysics Data System (ADS)
Hou, Yumin; Xu, Jun; Wang, Pengwei; Yu, Dapeng
2010-05-01
A reproducible quasi-three-dimensional structure, composed of top and bottom concentric nanorings with same periodicity but different widths and no overlapping at the perpendicular direction, is built up by a separation-layer method, which results in huge enhancement of surface-enhanced Raman spectroscopy (SERS) due to the coupling of plasmons. Simulations show plasmonic focusing with "hot arcs" of electromagnetic enhancement meeting the need of quantitative SERS with extremely high sensitivities. In addition, the separation-layer method opens a simple and effective way to adjust the coupling of plasmons among nanostructures which is essential for the fabrication of SERS-based sensors.
Remote Measurement of Atmospheric Temperatures By Raman Lidar
NASA Technical Reports Server (NTRS)
Salzman, Jack A.; Coney, Thom A.
1973-01-01
The Raman shifted return of a lidar, or optical radar, system has been utilized to make atmospheric temperature measurements. These measurements were made along a horizontal path at temperatures between -20 C and +30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the Raman spectrum which were simultaneously sampled from a preset range. The lidar unit employed in this testing consisted of a 4 joule-10ppm laser operating at 694.3 nm, a 10-inch Schmidt-Cassegrain telescope, and a system of time-gated detection and signal processing electronics. The detection system processed three return signal wavelength intervals - two intervals along the rotational Raman scattered spectrum and one interval centered at the Rayleigh-Mie scattered wavelength. The wavelength intervals were resolved by using a pellicle beam splitter and three optical interference filters. Raman return samples were taken from one discrete range segment during each test shot and the signal intensities were displayed in digital format. The Rayleigh-Mie techniques. The test site utilized to evaluate this measurement technique encompassed a total path length of 200 meters. Major components of the test site included a trailer-van housing the lidar unit, a controlled environment test zone, and a beam terminator. The control zone which was located about 100 meters from the trailer was 12 meters in length, 2.4 meters in diameter, and was equipped with hinged doors at each end. The temperature of the air inside the zone could be either raised or lowered with respect to ambient air through the use of infrared heaters or a liquid-nitrogen cooling system. Conditions inside the zone were continuously monitored with a thermocouple rake assembly. The test path length was terminated by a 1.2 meter square array of energy absorbing cones and a flat black screen. Tests were initially conducted at strictly ambient conditions utilizing the normal outside air temperatures as a test parameter. These tests provided a calibration of the Raman intensity ratio as a function of' temperature for the particular optical-filter arrangement used in this system while also providing a test of' the theoretical prediction formulated in the design of the system. Later tests utilized zone temperatures above and below ambient to provide temperature gradient data. These tests indicate that ten shots, or one minute of' data acquisition, from a 100 meter range can provide absolute temperature measurements with an accuracy of + 30 C and a range resolution of about 5 meters. Because this measurement accuracy compares well with that predicted for this particular unit, it is suggested that a field-application system could be built with signif'icant improvements in both absolute accuracy and range.
Phonon Confinement Effect in TiO2 Nanoparticles as Thermosensor Materials
2018-01-24
TiO2 or ZnO nanoparticles (NPs) have a very strong finite-size dependency in their Raman spectra or photoluminescence (PL) spectra due to the phonon...spectrometers were used to establish the particle size versus the Raman/PL peak position master curves. Systematic isothermal and temperature- dependent heat...Thermosensor Materials", Workshop on Time- Dependent Temperature Measurements in Energy Release Processes, Chicago, IL, 2012. 11 3) Ashish Kumar Mishra
Development of nanostructured biocompatible materials for chemical and biological sensors
NASA Astrophysics Data System (ADS)
Curley, Michael; Chilvery, Ashwith K.; Kukhatreva, Tatiana; Sharma, Anup; Corda, John; Farley, Carlton
2012-10-01
This research is focused on the fabrication of thin films followed by Surface Enhanced Raman Spectroscopy (SERS) testing of these films for various applications. One technique involves the mixture of nanoparticles with twophoton material to be used as an indicator dye. Another method involved embedding silver nanoparticles in a ceramic nano-membrane. The substrates were characterized by both Atom Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). We applied the nanostructured substrate to measure the SERS spectra of 10-6 Mol/L Rhodomine 6G(Rh6G), e-coli bacteria and RDX explosive. Our results showed that silver coated ceramic membranes can serve as appropriate substrates to enhance Raman signals. In addition, we demonstrated that the in-house-made colloidal silver can work for enhancement of the Raman spectra for bacteria. We measured the Raman spectra of Rh6G molecules on a substrate absorbed by a nanofluid of silver. We observed several strong Raman bands - 613cm-1,768 cm-1,1308cm-1 1356 cm-1,1510cm-1, which correspond to Rh6G vibrational modes υ53,υ65,υ115,υ117,υ146 respectively, using a ceramic membrane coated by silver. The Raman spectra of Rh6G absorbed by silver nanofluid showed strong enhancement of Raman bands 1175cm-1 and 1529cm-1, 1590 cm-1. Those correspond to vibrational frequency modes - υ103,υ151,152. We also measured the Raman spectra of e-coli bacteria, both absorbed by silver nanofluid, and on nanostructured substrate. In addition, the Fourier Transfer Infrared Spectra (FTIR) of the bacteria was measured.
Lückerath, R; Woyde, M; Meier, W; Stricker, W; Schnell, U; Magel, H C; Görres, J; Spliethoff, H; Maier, H
1995-06-20
Mobile coherent anti-Stokes Raman-scattering equipment was applied for single-shot temperature measurements in a pilot-scale furnace with a thermal power of 300 kW, fueled with either natural gas or coal dust. Average temperatures deduced from N(2) coherent anti-Stokes Raman-scattering spectra were compared with thermocouple readings for identical flame conditions. There were evident differences between the results of both techniques, mainly in the case of the natural-gas flame. For the coal-dust flame, a strong influence of an incoherent and a coherent background, which led to remarkable changes in the spectral shape of the N(2)Q-branch spectra, was observed. Therefore an algorithm had to be developed to correct the coal-dust flame spectra before evaluation. The measured temperature profiles at two different planes in the furnace were compared with model calculations.
NASA Astrophysics Data System (ADS)
Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Ramos, Sérgio L. L. M.; Sebastian, Mailadil T.; Matinaga, Franklin M.; Righi, Ariete; Dias, Anderson
2018-05-01
The low-temperature vibrational properties of B a2ZnTe O6 double-perovskite ceramics obtained by the solid-state route were investigated by Raman scattering and Fourier-transform infrared reflectivity. We found that this material undergoes a reversible ferroelastic phase transition at around 140 K, well compatible with a recently proposed rhombohedral-to-monoclinic structural change that would occur below 165 K. Complementary calorimetric measurements showed that the phase transition has a first-order character, with an entropy jump compatible with a displacive mechanism. The vibrational spectra show clearly the splitting of the doubly degenerate E modes into nondegenerate representations of the low-symmetry phase. In particular, the lowest-frequency Raman mode presents soft-mode behavior and splits below the critical temperature, confirming the in-plane ferroelastic deformation in the low-temperature phase.
A comparison of the far-infrared and low-frequency Raman spectra of glass-forming liquids
NASA Astrophysics Data System (ADS)
Perova, T. S.; Vij, J. K.; Christensen, D. H.; Nielsen, O. F.
1999-04-01
Far-infrared and low-frequency Raman spectra in the wavenumber range from 15 to 500 cm -1 were recorded for glycerol, triacetin (glycerol triacetate) and o-terphenyl at temperatures from 253 to 355 K. The far-infrared spectra of glycerol appear complex compared with the spectra of triacetin owing to the presence of hydrogen bonding in glycerol. The experimental results obtained for o-terphenyl are in good agreement with normal mode analyses carried out for crystalline o-terphenyl (A. Criado, F.J. Bermejo, A. de Andres, Mol. Phys. 82 (1994) 787). The far-infrared results are compared with the low-frequency Raman spectra of these three glass-forming liquids. The difference in temperature dependences found from these spectra is explained on the basis of different temperature contributions of the relaxational and vibrational processes to the low-frequency vibrational spectra.
Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method.
Li, Qingwei; Liu, Changhong; Wang, Xueshen; Fan, Shoushan
2009-04-08
The thermal contact resistance is a difficult problem that has puzzled many researchers in measuring the intrinsic thermal conductivity of an individual carbon nanotube (CNT). To avoid this problem, a non-contact Raman spectra shift method is introduced, by which we have successfully measured the thermal conductivity (kappa) of an individual single-walled carbon nanotube and a multi-walled carbon nanotube. The measured kappa values are 2400 W m(-1) K(-1) and 1400 W m(-1) K(-1), respectively. The CNT was suspended over a trench and heated by electricity. The temperature difference between the middle and the two ends of the CNT indicated its intrinsic heat transfer capability. The temperature difference was determined by the temperature-induced shifts of its G band Raman spectra. This new method can eliminate the impact of the thermal contact resistance which was a Gordian knot in many previous measurements.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Mohanty, Debapriya P.; Tomar, Vikas
2016-11-01
Inconel 617 (IN-617) is a solid solution alloy, which is widely used in applications that require high-temperature component operation due to its high-temperature stability and strength as well as strong resistance to oxidation and carburization. The current work focuses on in situ measurements of stress distribution under 3-point bending at elevated temperature in IN-617. A nanomechanical Raman spectroscopy measurement platform was designed and built based on a combination of a customized open Raman spectroscopy (NMRS) system incorporating a motorized scanning and imaging system with a nanomechanical loading platform. Based on the scanning of the crack tip notch area using the NMRS notch tip, stress distribution under applied load with micron-scale resolution for analyzed microstructures is predicted. A finite element method-based formulation to predict crack tip stresses is presented and validated using the presented experimental data.
NASA Astrophysics Data System (ADS)
Wavering, Thomas A.; Greene, Jonathan A.; Meller, Scott A.; Bailey, Timothy A.; Kozikowski, Carrie L.; Lenahan, Shannon M.; Murphy, Kent A.; Camden, Michael P.; Simmons, Larry W.
1999-01-01
Optical fiber sensors have numerous advantages over conventional sensing technologies. One such advantage is that optical fiber sensors can operate in high temperature environments. While most conventional electrical-based sensors do not operate reliably over 300 degrees C, fused silica based optical fiber sensors can survive up to 900 degrees C, and sapphire based optical fiber sensors can survive up to 2000 degrees C. Using both fused silica and sapphire technologies, we present result for high temperature strain, pressure, and temperature sensors using Extrinsic Fabry-Perot INterferometric-based and Bragg grating sensors. High temperature strain and temperature sensors were used to conduct fatigue testing of composite coupons at 600 degrees C. The results from these specific high temperature applications are presented along with future applications and directions for these sensors.
Raman spectroscopy analysis of air grown oxide scale developed on pure zirconium substrate
NASA Astrophysics Data System (ADS)
Kurpaska, L.; Favergeon, J.; Lahoche, L.; El-Marssi, M.; Grosseau Poussard, J.-L.; Moulin, G.; Roelandt, J.-M.
2015-11-01
Using Raman spectroscopy technique, external and internal parts of zirconia oxide films developed at 500 °C and 600 °C on pure zirconium substrate under air at normal atmospheric pressure have been examined. Comparison of Raman peak positions of tetragonal and monoclinic zirconia phases, recorded during the oxide growth at elevated temperature, and after cooling at room temperature have been presented. Subsequently, Raman peak positions (or shifts) were interpreted in relation with the stress evolution in the growing zirconia scale, especially closed to the metal/oxide interface, where the influence of compressive stress in the oxide is the biggest. Reported results, for the first time show the presence of a continuous layer of tetragonal zirconia phase developed in the proximity of pure zirconium substrate. Based on the Raman peak positions we prove that this tetragonal layer is stabilized by the high compressive stress and sub-stoichiometry level. Presence of the tetragonal phase located in the outer part of the scale have been confirmed, yet its Raman characteristics suggest a stress-free tetragonal phase, therefore different type of stabilization mechanism. Presented study suggest that its stabilization could be related to the lattice defects introduced by highstoichiometry of zirconia or presence of heterovalent cations.
Various Silver Nanostructures on Sapphire Using Plasmon Self-Assembly and Dewetting of Thin Films
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Sui, Mao; Zhang, Quanzhen; Pandey, Puran; Li, Ming-Yu; Lee, Jihoon
2017-04-01
Silver (Ag) nanostructures demonstrate outstanding optical, electrical, magnetic, and catalytic properties and are utilized in photonic, energy, sensors, and biomedical devices. The target application and the performance can be inherently tuned by control of configuration, shape, and size of Ag nanostructures. In this work, we demonstrate the systematical fabrication of various configurations of Ag nanostructures on sapphire (0001) by controlling the Ag deposition thickness at different annealing environments in a plasma ion coater. In particular, the evolution of Ag particles (between 2 and 20 nm), irregular nanoclusters (between 30 and 60 nm), and nanocluster networks (between 80 and 200 nm) are found be depended on the thickness of Ag thin film. The results were systematically analyzed and explained based on the solid-state dewetting, surface diffusion, Volmer-Weber growth model, coalescence, and surface energy minimization mechanism. The growth behavior of Ag nanostructures is remarkably differentiated at higher annealing temperature (750 °C) due to the sublimation and temperature-dependent characteristic of dewetting process. In addition, Raman and reflectance spectra analyses reveal that optical properties of Ag nanostructures depend on their morphology.
Zinc oxide decorated multi-walled carbon nanotubes: their bolometric properties
NASA Astrophysics Data System (ADS)
García-Valdivieso, Guadalupe; Jesús Velázquez-Salazar, J.; Samaniego-Benítez, José Enrique; Joazet Ojeda-Galván, Hiram; Josefina Arellano-Jiménez, M.; Martínez-Reyna, Karí G. H.; José-Yacamán, Miguel; Navarro-Contreras, Hugo R.
2018-03-01
We report the synthesis of MWNT/ZnO hybrid nanostructures. A simple, affordable, chemical procedure to functionalize MWNTs with ZnO nanoparticles was performed. A significant portion of the surface of MWNTs was covered with ZnO nanoparticles; these particles formed highly porous spherical nodules of 50-150 nm in diameter, sizes that are an order of magnitude larger than similar ZnO nanonodules reported in the literature. Hence, the self-assembled nanocomposite the ZnO exhibited a large surface-to-volume ratio, which is a very advantageous property for potential catalytic applications. The resultant MWNT/ZnO nanocomposites were characterized by x-ray diffraction, scanning and high-resolution transmission electron microscopy, and UV-vis and Raman spectroscopy. The temperature coefficient of resistance (TCR) of the nanocomposites was measured and reported. The average TCR value goes from -5.6%/K up to -18%/K, over temperature change intervals from 10 K to 1 K. Based on these TCR results, the nanocomposite MWNT/ZnO prepared in this work is a promising material, with potential application as a bolometric sensor.
NASA Astrophysics Data System (ADS)
Kutrowska-Girzycka, Joanna; Jadczak, Joanna; Bryja, Leszek
2018-07-01
We report on resonant Raman scattering studies of monolayer MoS2 as a function of the excitation laser energy (1.959-2.033 eV) and temperature (T = 7-295 K). In complementary reflectivity contrast experiments we determined the temperature evolution of the A exciton and trion resonances. We focus our studies on the dispersive, second order 'b' mode related to the resonant two phonon Raman process of successive emissions of the acoustic LA and TA phonons at K points. We found that when excitation laser energy is tuned across the A exciton level this mode shifts almost linearly to lower frequency with the rate equal -83 and -71 cm-1/eV at T = 7 and 295 K, respectively, which is about two times higher rate than those reported in the previous studies of monolayer MoS2 but very close the relevant rate recorded for bulk MoS2. We interpret this effect as related to the difference of concentration of two dimensional electron gas. We also determined, using excitation with the He-Ne laser the temperature shifts of the Raman peaks of dispersive 'b' and dispersionless E‧ and A1‧ modes. We found that absolute value of the temperature coefficient of 'b' mode, equals 3.5 × 10-2 cm-1/K, is much higher than those of E‧ and A1‧ modes, equal 0.4 × 10-2 and 0.8 × 10-2 cm-1/K, respectively.
NASA Astrophysics Data System (ADS)
Bagnall, Kevin R.; Wang, Evelyn N.
2016-06-01
Micro-Raman thermography is one of the most popular techniques for measuring local temperature rise in gallium nitride (GaN) high electron mobility transistors with high spatial and temporal resolution. However, accurate temperature measurements based on changes in the Stokes peak positions of the GaN epitaxial layers require properly accounting for the stress and/or strain induced by the inverse piezoelectric effect. It is common practice to use the pinched OFF state as the unpowered reference for temperature measurements because the vertical electric field in the GaN buffer that induces inverse piezoelectric stress/strain is relatively independent of the gate bias. Although this approach has yielded temperature measurements that agree with those derived from the Stokes/anti-Stokes ratio and thermal models, there has been significant difficulty in quantifying the mechanical state of the GaN buffer in the pinched OFF state from changes in the Raman spectra. In this paper, we review the experimental technique of micro-Raman thermography and derive expressions for the detailed dependence of the Raman peak positions on strain, stress, and electric field components in wurtzite GaN. We also use a combination of semiconductor device modeling and electro-mechanical modeling to predict the stress and strain induced by the inverse piezoelectric effect. Based on the insights gained from our electro-mechanical model and the best values of material properties in the literature, we analyze changes in the E2 high and A1 (LO) Raman peaks and demonstrate that there are major quantitative discrepancies between measured and modeled values of inverse piezoelectric stress and strain. We examine many of the hypotheses offered in the literature for these discrepancies but conclude that none of them satisfactorily resolves these discrepancies. Further research is needed to determine whether the electric field components could be affecting the phonon frequencies apart from the inverse piezoelectric effect in wurtzite GaN, which has been predicted theoretically in zinc blende gallium arsenide (GaAs).
Nanocolloid substrate for surface enhanced Raman scattering sensor for biological applications
USDA-ARS?s Scientific Manuscript database
Biopolymer encapsulated with silver nanoparticle (BeSN) substrate was prepared by chemical reduction method with silver nitrate, trisodium citrate in addition to polyvinyl alcohol. Optical properties of BeSN were analyzed with UV/Vis spectroscopy and hyperspectral microscope imaging. UV/Visible spec...
Raman Spectral Determination of Chemical Reaction Rate Characteristics
NASA Astrophysics Data System (ADS)
Balakhnina, I. A.; Brandt, N. N.; Mankova, A. A.; Chikishev, A. Yu.; Shpachenko, I. G.
2017-09-01
The feasibility of using Raman spectroscopy to determine chemical reaction rates and activation energies has been demonstrated for the saponification of ethyl acetate. The temperature dependence of the reaction rate was found in the range from 15 to 45°C.
High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar
NASA Astrophysics Data System (ADS)
Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin
2010-05-01
Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to derive vertical profiles of aerosol backscatter ratio and aerosol extinction at 355 nm. Set of Stokes and anti-Stokes PRR lines are separated by the polychromator to derive temperature profiles. The humidity profiles have vertical resolution from 15 m (within the boundary layer) to 100-450 m (within the free troposphere), time resolution of 30 min and 5 km vertical range at daytime and 10 km at night-time. The aerosol backscatter ratio and extinction profiles have similar resolution with vertical range of approximately 10 km. The temperature profiles are derived from PRR lidar signals, simultaneously recorded in analog and photon counting mode, allowing vertical range of approximately 10 km. Vaisala RS-92 and Snow-White chilled mirror hygrometer radiosondes were used for calibration of the water vapor and temperature channels. Continuous temperature profiles were obtained and were coupled with the available water vapor mixing ratio profiles to obtain relative humidity time series. Lidar derived aerosol backscatter ratio profiles will be used for estimation of the boundary layer height and validation of NWP model results. Optical thickness time series are currently compared to independent measurements from a collocated sun photometer to assess the performance of the aerosol channel.
Reliability of an infrared forehead skin thermometer for core temperature measurements.
Kistemaker, J A; Den Hartog, E A; Daanen, H A M
2006-01-01
The SensorTouch thermometer performs an infrared measurement of the skin temperature above the Superficial Temporal Artery (STA). This study evaluates the validity and the accuracy of the SensorTouch thermometer. Two experiments were performed in which the body temperature was measured with a rectal sensor, with an oesophageal sensor and with the SensorTouch. After entering a warm chamber the SensorTouch underestimated the core temperature during the first 10 minutes. After that, the SensorTouch was not significantly different from the core temperature, with an average difference of 0.5 degrees C (SD 0.5 degrees C) in the first study and 0.3 degrees C (SD 0.2 degrees C) in the second study. The largest differences between the SensorTouch and the core temperature existed 15 minutes after the start of the exercise. During this period the SensorTouch was significantly higher than the core temperature. The SensorTouch did not provide reliable values of the body temperature during periods of increasing body temperature, but the SensorTouch might work under stable conditions.
High-pressure high-temperature phase diagram of organic crystal paracetamol
Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.
2016-01-06
High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I → orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II → unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. As a result, this new data is combined with previous ambientmore » temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol.« less
High-pressure high-temperature phase diagram of organic crystal paracetamol
NASA Astrophysics Data System (ADS)
Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.
2016-01-01
High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I → orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II → unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.
Spin-State Transition in La1-xSrxCoO3 Single Crystals
NASA Astrophysics Data System (ADS)
Bhardwaj, S.; Prabhakaran, D.; Awasthi, A. M.
2011-07-01
We present a study of the thermal conductivity (κ), specific heat (Cp) and Raman spectra of La1-xSrxCoO3 (x = 0,0.1) single crystals. Both the specimens have low thermal conductivity and board Raman peaks, arising from strong scattering of phonons by lattice disorder, produced by (and doping-enhanced) spin-states admixture of the Co3+ ions. The thermal conductivity anomalously deviates from ˜1/T behaviour at high (room) temperatures, expected of an insulator. High-temperature specific heat reveals large decrease in the metal-insulator (M-I) transition temperature with Sr-doping.
Schafer, Dorothea; Boogaart, Sheri; Johnson, Lynette; Keezel, Catherine; Ruperts, Liga; Vander Laan, Karen J
2014-02-01
Appropriate thermoregulation affects both morbidity and mortality in the neonatal setting. Nurses rely on information from temperature sensors and radiant warmers or incubators to appropriately maintain a neonate's body temperature. Skin temperature sensors must be repositioned to prevent skin irritation and breakdown. This study addresses whether there is a significant difference between skin sensor temperature readings from 3 locations on the neonate and whether there is a significant difference between skin sensor temperatures compared with digital axillary temperatures. The study participants included 36 hemodynamically stable neonates, with birth weight of 750 g or more and postnatal age of 15 days or more, in a neonatal intensive care unit. Gestational age ranged from 29.6 to 36.1 weeks at the time of data collection. A method-comparison design was used to evaluate the level of agreement between skin sensor temperatures and digital axillary thermometer measurements. When the neonate's skin sensor was scheduled for routine site change, 3 new skin sensors were placed-1 each on the right upper abdomen, left flank, and right axilla. The neonate was placed in a supine position and redressed or rewrapped if previously dressed or wrapped. Subjects served as their own controls, with temperatures measured at all 3 skin sensor sites and followed by a digital thermometer measurement in the left axilla. The order of skin sensor temperature measurements was randomly assigned by a computer-generated number sequence. An analysis of variance for repeated measures was used to test for statistical differences between the skin sensor temperatures. The difference in axillary and skin sensor temperatures was calculated by subtracting the reference standard temperature (digital axillary) from the test temperatures (skin temperatures at 3 different locations), using the Bland-Altman method. The level of significance was set at P < .05. No statistically significant differences were found between skin temperature readings obtained from the 3 sites (F2,70 = 2.993, P = .57). Differences between skin temperature readings and digital axillary temperature were also not significant when Bland-Altman graphs were plotted. For hemodynamically stable neonates in a supine position, there were no significant differences between skin sensor temperatures on abdomen, flank, or axilla or between skin sensor temperatures and a digital axillary temperature. This may increase nurses' confidence that various sites will produce accurate temperature readings.
NASA Astrophysics Data System (ADS)
Cunha, Renato; Perea-López, Néstor; Elías, Ana Laura; Fujisawa, Kazunori; Carozo, Victor; Feng, Simin; Lv, Ruitao; dos Santos, Maria Cristina; Terrones, Mauricio; Araujo, Paulo T.
2018-05-01
The interactions of adsorbates with graphene have received increasing attention due to its importance in the development of applications involving graphene-based coatings. Here, we present a study of the adsorption of noble gases on pristine and nitrogen-doped graphene. Single-layer graphene samples were synthesized by chemical vapor deposition (CVD) and transferred to transmission electron microscopy (TEM) grids. Several noble gases were allowed to adsorb on the suspended graphene substrate at very low temperatures. Raman spectra show distinct frequency blue shifts in both the 2D and G bands, which are induced by gas adsorption onto high quality single layer graphene (1LG). These shifts, which we associate with compressive biaxial strain in the graphene layers induced by the noble gases, are negligible for nitrogen-doped graphene. Additionally, a thermal depinning transition, which is related to the desorption of a noble gas layer from the graphene surface at low temperatures (ranging from 20 to 35 K), was also observed at different transition temperatures for different noble gases. These transition temperatures were found to be 25 K for argon and 35 K for xenon. Moreover, we were able to obtain values for the compressive biaxial strain in graphene induced by the adsorbed layer of noble gases, using Raman spectroscopy. Ab initio calculations confirmed the correlation between the noble gas-induced strain and the changes in the Raman features observed.
NASA Astrophysics Data System (ADS)
Ullah, Rahat; Khan, Saranjam; Shah, Attaullah; Ali, Hina; Bilal, Muhammad
2018-05-01
The current study presents time dependent variations in the concentration of beta-carotene in carrot under different storage-temperature conditions using UV–VIS and Raman spectrophotometric techniques. The UV–VIS absorption spectra of beta-carotene extracted from carrot shows three distinct absorption peaks at 442, 467, and 500 nm with maximum absorption at 467 nm. These absorption peaks are very much reproducible and are assigned to β-carotene. Similarly, Raman spectra of carrot samples also confirmed the three main Raman peaks of beta-carotene at shift positions 1003, 1150, and 1515 cm‑1. An overall decrease in beta-carotene content has been observed for time-temperature conditions. These results depict a decrease of about 40% in the content of beta-carotene when carrot samples were stored in a refrigerator (4 °C) for the first 20 d, whereas a decrease of about 25% was observed when carrot samples were stored in a freezer (‑16 °C) for the same period. The objective of this study is to investigate the possible use of Raman spectroscopy and UV–VIS spectroscopy for quick and detailed analysis of changes (degradation) in beta-carotene content associated with time and temperature in storage (frozen foods) in order to promote quality foods for consumers. Future study with a greater focus on the concentration/content of beta-carotene in other fruits/vegetables is also desirable.
NASA Astrophysics Data System (ADS)
Jarabana, Kanaka M.; Mishra, Ashutosh; Bisen, Supriya
2016-10-01
Polycrystalline BaTiO3 (BTO) and SrTiO3 (STO) were synthesized by solid state route method and properties of made polycrystalline were characterized by X-Ray diffraction (XRD), Raman Spectroscopy & FTIR Spectroscopy. XRD analysis shows that samples are crystalline in nature. In Raman Spectroscopy measurement, the experiment has been done with the help of JOBIN-YOVN HORIBA LABRAM HR800 single monochromator, which is coupled with a “peltier cooled” charge coupled device (CCD). Raman Spectroscopy at low temperature measurement shows the phase transition above & below the curie temperature in samples. Fourier transform Infrared spectroscopy was used to determine the Ti-O bond length position.
Potyrailo, Radislav A.; Surman, Cheryl
2013-01-01
Uncontrolled fluctuations of ambient temperature in the field typically greatly reduce accuracy of gas sensors. In this study, we developed an approach for the self-correction against fluctuations of ambient temperature of individual gas and vapor sensors. The main innovation of our work is in the temperature correction which is accomplished without the need for a separate uncoated reference sensor or a separate temperature sensor. Our sensors are resonant inductor-capacitor-resistor (LCR) transducers coated with sensing materials and operated as multivariable passive (battery-free) radio-frequency identification (RFID) sensors. Using our developed approach, we performed quantitation of an exemplary vapor over the temperature range from 25 to 40 °C. This technical solution will be attractive in numerous applications where temperature stabilization of a gas sensor or addition of auxiliary temperature or uncoated reference sensors is prohibitive. PMID:23956496
UV Raman scattering measurements in a Mach 2 H2-air flame for assessment of CFD models
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.; Jarrett, O., Jr.; Northam, G. B.
1991-01-01
An UV narrowband tunable excimer laser is used for spontaneous Raman scattering measurements in hydrogen diffusion flames. The UV Raman system is characterized by a repetition rate of about 100 Hz, a temporal resolution of about 20 ns, and a spatial resolution of about 0.4 mm. It is concluded that a single KrF excimer laser based on spontaneous Raman scattering in conjunction with laser-induced predissociative fluorescence is capable of measuring instantaneously and simultaneously major species (H2, O2, N2, H2O), minor species (OH), and temperature.
Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.
Kong, Kien Voon; Dinish, U S; Lau, Weber Kam On; Olivo, Malini
2014-04-15
Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases. © 2013 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Miralles, I.; Capel Ferrón, C.; Hernández, V.; López-Navarrete, J. T.; Jorge-Villar, S. E.
2017-01-01
Lithopanspermia Theory has suggested that life was transferred among planets by meteorites and other rocky bodies. If the planet had an atmosphere, this transfer of life had to survive drastic temperature changes in a very short time in its entry or exit. Only organisms able to endure such a temperature range could colonize a planet from outer space. Many experiments are being carried out by NASA and European Space Agency to understand which organisms were able to survive and how. Among the suite of instruments designed for extraplanetary exploration, particularly for Mars surface exploration, a Raman spectrometer was selected with the main objective of looking for life signals. Among all attributes, Raman spectroscopy is able to identify organic and inorganic compounds, either pure or in admixture, without requiring sample manipulation. In this study, we used Raman spectroscopy to examine the lichen Squamarina lentigera biomarkers. We analyse spectral signature changes after sample heating under different experimental situations, such as (a) laser, (b) analysis accumulations over the same spot and (c) environmental temperature increase. Our goal is to evaluate the capability of Raman spectroscopy to identify unambiguously life markers even if heating has induced spectral changes, reflecting biomolecular transformations. Usnic acid, chlorophyll, carotene and calcium oxalates were identified by the Raman spectra. From our experiments, we have seen that usnic acid, carotene and calcium oxalates (the last two have been suggested to be good biomarkers) respond in a different way to environmental heating. Our main conclusion is that despite their abundance in nature or their inorganic composition the resistance to heat makes some molecules more suitable than others as biomarkers.
NASA Technical Reports Server (NTRS)
Snow, J. B.; Murphy, D. V.; Chang, R. K.
1984-01-01
Coherent Anti-stokes Raman Scattering (CARS) from the pure rotational Raman lines of N2 is employed to measure the instantaneous rotational temperature of N2 gas at room temperature and below with good spatial resolution. A broad-bandwidth dye laser is used to obtain the entire rotational spectrum from a signal laser pulse; the CARS signal is then dispersed by a spectrograph and recorded on an optical multichannel analyzer. A best-fit temperature is found in several seconds with the aid of a computer for each experimental spectrum by a least squares comparison with calculated spectra. The model used to calculate the theoretical spectra incorporates the temperature and pressure dependence of the pressure-broadened rotational Raman lines, includes the nonresonant background susceptibility, and assumes that the pump laser has a finite linewidth. Temperatures are fit to experimental spectra recorded over the temperature range of 135 to 296K, and over the pressure range of 0.13 to 15.3 atm. In addition to the spatially resolved single point work, we have used multipoint CARS to obtain information from many spatially resolved volume elements along a cylindrical line (0.1 x 0.1 x 2.0 mm). We also obtained qualitative information on the instantaneous species concentration and temperature at 20 spatially resolved volume elements (0.1 x 0.1 x 0.1 mm) along a line.
Drewniak, Sabina; Muzyka, Roksana; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Kotyczka-Morańska, Michalina; Setkiewicz, Maciej
2016-01-01
The paper presents the results of investigations on resistance structures based on graphite oxide (GRO) and graphene oxide (rGO). The subject matter of the investigations was thaw the sensitivity of the tested structures was affected by hydrogen, nitrogen dioxide and carbon dioxide. The experiments were performed at a temperature range from 30 °C to 150 °C in two carrier gases: nitrogen and synthetic air. The measurements were also aimed at characterization of the graphite oxide and graphene oxide. In our measurements we used (among others) techniques such as: Atomic Force Microscopy (AFM); Scanning Electron Microscopy (SEM); Raman Spectroscopy (RS); Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Microscopy (XPS). The data resulting from the characterizations of graphite oxide and graphene oxide have made it possible to interpret the obtained results from the point of view of physicochemical changes occurring in these structures. PMID:26784198
Drewniak, Sabina; Muzyka, Roksana; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Kotyczka-Morańska, Michalina; Setkiewicz, Maciej
2016-01-15
The paper presents the results of investigations on resistance structures based on graphite oxide (GRO) and graphene oxide (rGO). The subject matter of the investigations was thaw the sensitivity of the tested structures was affected by hydrogen, nitrogen dioxide and carbon dioxide. The experiments were performed at a temperature range from 30 °C to 150 °C in two carrier gases: nitrogen and synthetic air. The measurements were also aimed at characterization of the graphite oxide and graphene oxide. In our measurements we used (among others) techniques such as: Atomic Force Microscopy (AFM); Scanning Electron Microscopy (SEM); Raman Spectroscopy (RS); Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Microscopy (XPS). The data resulting from the characterizations of graphite oxide and graphene oxide have made it possible to interpret the obtained results from the point of view of physicochemical changes occurring in these structures.
Purification process for vertically aligned carbon nanofibers
NASA Technical Reports Server (NTRS)
Nguyen, Cattien V.; Delziet, Lance; Matthews, Kristopher; Chen, Bin; Meyyappan, M.
2003-01-01
Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.
Zhao, Xiangwei; Xue, Jiangyang; Mu, Zhongde; Huang, Yin; Lu, Meng; Gu, Zhongze
2015-10-15
Novel transducers are needed for point of care testing (POCT) devices which aim at facile, sensitive and quick acquisition of health related information. Recent advances in optofluidics offer tremendous opportunities for biological/chemical analysis using extremely small sample volumes. This paper demonstrates nanostructured capillary tubes for surface enhanced Raman spectroscopy (SERS) analysis in a flow-through fashion. The capillary tube integrates the SERS sensor and the nanofluidic structure to synergistically offer sample delivery and analysis functions. Inside the capillary tube, inverse opal photonic crystal (IO PhC) was fabricated using the co-assembly approach to form nanoscale liquid pathways. In the nano-voids of the IO PhC, gold nanoparticles were in situ synthesized and functioned as the SERS hotspots. The advantages of the flow-through SERS sensor are multifold. The capillary effect facilities the sample delivery process, the nanofluidic channels boosts the interaction of analyte and gold nanoparticles, and the PhC structure strengthens the optical field near the SERS hotspots and results in enhanced SERS signals from analytes. As an exemplary demonstration, the sensor was used to measure creatinein spiked in artificial urine samples with detection limit of 0.9 mg/dL. Copyright © 2015 Elsevier B.V. All rights reserved.
Anderson, William J; Nowinska, Kamila; Hutter, Tanya; Mahajan, Sumeet; Fischlechner, Martin
2018-04-19
Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.
NASA Astrophysics Data System (ADS)
Jiang, Shaolong; Zhao, Liyun; Shi, Yuping; Xie, Chunyu; Zhang, Na; Zhang, Zhepeng; Huan, Yahuan; Yang, Pengfei; Hong, Min; Zhou, Xiebo; Shi, Jianping; Zhang, Qing; Zhang, Yanfeng
2018-05-01
Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77–290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Marple, D. T. F.; Kingsley, J. D.
1981-01-01
Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed.
Active thermal isolation for temperature responsive sensors
NASA Technical Reports Server (NTRS)
Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)
1994-01-01
The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.
OPTIMIZATION OF RAMAN SPECTROSCOPY FOR SPECIATION OF ORGANICS IN WATER
We describe herein a method for determining constants for simultaneously occurring, site-specific "microequilibria" (as with tautomers) for organics in water. The method is based in part on modeling temperature-variant Raman spectra according to the van't Hoff equation. Spectra a...
NASA Astrophysics Data System (ADS)
Sheng, Shaoxiang; Li, Wenbin; Gou, Jian; Cheng, Peng; Chen, Lan; Wu, Kehui
2018-05-01
Tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with the Raman spectroscopy, is capable to access the local structure and chemical information simultaneously. However, the application of ambient TERS is limited by the unstable and poorly controllable experimental conditions. Here, we designed a high performance TERS system based on a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV-STM) and combined with a molecular beam epitaxy (MBE) system. It can be used for growing two-dimensional (2D) materials and for in situ STM and TERS characterization. Using a 2D silicene sheet on the Ag(111) surface as a model system, we achieved an unprecedented 109 Raman single enhancement factor in combination with a TERS spatial resolution down to 0.5 nm. The results show that TERS combined with a MBE system can be a powerful tool to study low dimensional materials and surface science.
Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry
NASA Astrophysics Data System (ADS)
Özgenç, Özlem; Durmaz, Sefa; Boyaci, Ismail Hakki; Eksi-Kocak, Haslet
2017-01-01
In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and Fourier-transform Raman (FT-Raman) spectroscopy techniques were used to determine changes in the chemical structure of heat-treated woods. For this purpose, scots pine (Pinus sylvestris L.), oriental beech (Fagus orientalis L.), and oriental spruce (Picea orientalis L.) wood species were heat-treated at different temperatures. The effect of chemical changes on the FT-Raman and ATR-FTIR bands or ratios of heat-treated wood was related with the OH association of cellulose, functional groups, and the aromatic system of lignin. The effects of heat treatment on the carbohydrate and lignin peaks varied depending on the wood species. The spectral changes that occurred after heat treatment reflected the progress of the condensation reaction of lignin. Degradation of hemicelluloses led to a decrease in free hydroxyl groups. High temperature caused crystalline cellulose to increase due to the degradation of amorphous cellulose.
Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry.
Özgenç, Özlem; Durmaz, Sefa; Boyaci, Ismail Hakki; Eksi-Kocak, Haslet
2017-01-15
In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and Fourier-transform Raman (FT-Raman) spectroscopy techniques were used to determine changes in the chemical structure of heat-treated woods. For this purpose, scots pine (Pinus sylvestris L.), oriental beech (Fagus orientalis L.), and oriental spruce (Picea orientalis L.) wood species were heat-treated at different temperatures. The effect of chemical changes on the FT-Raman and ATR-FTIR bands or ratios of heat-treated wood was related with the OH association of cellulose, functional groups, and the aromatic system of lignin. The effects of heat treatment on the carbohydrate and lignin peaks varied depending on the wood species. The spectral changes that occurred after heat treatment reflected the progress of the condensation reaction of lignin. Degradation of hemicelluloses led to a decrease in free hydroxyl groups. High temperature caused crystalline cellulose to increase due to the degradation of amorphous cellulose. Copyright © 2016 Elsevier B.V. All rights reserved.
Raman spectral characteristics of magmatic-contact metamorphic coals from Huainan Coalfield, China
NASA Astrophysics Data System (ADS)
Chen, Shancheng; Wu, Dun; Liu, Guijian; Sun, Ruoyu
2017-01-01
Normal burial metamorphism of coal superimposed by magmatic-contact metamorphism makes the characteristics of the Raman spectrum of coal changed. Nine coal samples were chosen at a coal transect perpendicular to the intrusive dike, at the No. 3 coal seam, Zhuji Coal Mine, Huainan Coalfield, China, with different distances from dike-coal boundary (DCB). Geochemical (proximate and ultimate) analysis and mean random vitrinite reflectance (R0, %) indicate that there is a significant relationship between the values of volatile matter and R0 in metamorphosed coals. Raman spectra show that the graphite band (G band) becomes the major band but the disordered band (D band) disappears progressively, with the increase of metamorphic temperature in coals, showing that the structural organization in high-rank contact-metamorphosed coals is close to that of well-crystallized graphite. Evident relationships are observed between the calculated Raman spectral parameters and the peak metamorphic temperature, suggesting some spectral parameters have the potentials to be used as geothermometers for contact-metamorphic coals.
NASA Astrophysics Data System (ADS)
Xie, Changan; Li, Yong-qing; Tang, Wei; Newton, Ronald J.
2003-11-01
The development of laser traps has made it possible to investigate single cells and record real-time Raman spectra during a heat-denaturation process when the temperature of the surrounding medium is increased. Large changes in the phenylalanine band (1004 cm-1) of near-infrared spectra between living and heat-treated cells were observed in yeast and Escerichia coli and Enterobacter aerogenes bacteria. This change appears to reflect the change in environment of phenylalanine as proteins within the cells unfold as a result of increasing temperatures. As a comparison, we measured Raman spectra of native and heat-denatured solutions of bovine serum albumin proteins, and a similar change in the phenylalanine band of spectra was observed. In addition, we measured Raman spectra of native and heat-treated solutions of pure phenylalanine molecules; no observable difference in vibrational spectra was observed. These findings may make it possible to study conformational changes in proteins within single cells.
NASA Astrophysics Data System (ADS)
Di Girolamo, P.; Summa, D.; Stelitano, D.
2012-04-01
This paper illustrates an approach to determine the convective available potential energy (CAPE) and the convective inhibition (CIN) based on the use of data from a Raman lidar system. The use of Raman lidar data allows to provide high temporal resolution (5 min) measurements of CAPE and CIN and follow their evolution over extended time period covering the full cycle of convective activity. Lidar-based measurements of CAPE and CIN are obtained from Raman lidar measurements of the temperature profile and the surface measurements of temperature, pressure and dew point temperature provided from a surface weather station. The approach is tested and applied to the data collected by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) in the period 01 June - 31 August 2007 in the frame of the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France. Reported measurements are found to be in good agreement with simultaneous measurements obtained from the radiosondes launched in Achern and with estimates from different mesoscale models. An estimate of the different random error sources affecting the measurements of CAPE and CIN has also been performed, together with a detail sensitivity study to quantify the different systematic error sources. Preliminary results from this study will be illustrated and discussed at the Conference.
NASA Astrophysics Data System (ADS)
Lempert, Walter R.; Adamovich, Igor V.
2014-10-01
The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.
NASA Astrophysics Data System (ADS)
Dutkiewicz, E. M.; Suchanicz, J.; Bovtun, V.; Konieczny, K.; Czaja, P.; Kluczewska, K.; Handke, B.; Antonova, M.; Sternberg, A.
2016-08-01
Thermal expansion, Raman and dielectric properties of the lead-free (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramic solid solutions, fabricated by the conventional solid-state reaction method, were investigated. The Sr-doping results in an increase of the dielectric permittivity, broadening of the permittivity maximum, enhancement of the relaxation near depolarization temperature, broadening of the Raman bands and shift of all anomalies toward lower temperatures. The observed effects are attributed to an increase of the degree of cationic disorder and enhancement of the relaxor-like features. Anomalies in the thermal expansion strain were observed at the temperatures corresponding to the dielectric anomalies but not related to any phase transitions. These anomalies are supposed to follow changes of the averaged unit cell volume in the temperature interval of tetragonal and rhombohedral phase coexistence.
NASA Astrophysics Data System (ADS)
Satish Jeyashekar, Nigil; Seiner, John
2006-11-01
The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.
NASA Astrophysics Data System (ADS)
Terao, Wakana; Mori, Tatsuya; Fujii, Yasuhiro; Koreeda, Akitoshi; Kabeya, Mikitoshi; Kojima, Seiji
2018-03-01
Terahertz time-domain spectroscopy and low-frequency Raman scattering were performed on the natural polymer starch to investigate the boson peak (BP) dynamics. In the infrared spectrum, the BP was observed at 0.99 THz at the lowest temperature. Compared to the result from a previous study for vitreous glucose, both the frequency of the BP and absorption coefficient show lower values than those of the vitreous glucose. These behaviors originate from the longer correlation length of the medium-range order and lower concentration of hydroxyl groups in the starch. In the Raman spectrum, the BP was observed at 1.1 THz at room temperature, although the BP was not observed around room temperature due to the excess wing of the fast relaxation modes in the infrared spectrum. The temperature dependence of ε″(ν) during the heating process and cooling process shows a hysteresis below 230 K. During the heating process, kinks were observed at 140 K and 230 K. These kinks are attributed to the β-relaxation and the βwet-relaxation, respectively.
Nanotwinning and structural phase transition in CdS quantum dots
NASA Astrophysics Data System (ADS)
Kumar, Pragati; Saxena, Nupur; Chandra, Ramesh; Gupta, Vinay; Agarwal, Avinash; Kanjilal, Dinakar
2012-10-01
Nanotwin structures are observed in high-resolution transmission electron microscopy studies of cubic phase CdS quantum dots in powder form by chemical co-precipitation method. The deposition of thin films of nanocrystalline CdS is carried out on silicon, glass, and TEM grids keeping the substrates at room temperature (RT) and 200°C by pulsed laser ablation. These films are then subjected to thermal annealing at different temperatures. Glancing angle X-ray diffraction results confirm structural phase transitions after thermal annealing of films deposited at RT and 200°C. The variation of average particle size and ratio of intensities in Raman peaks I 2LO/ I 1LO with annealing temperature are studied. It is found that electron-phonon interaction is a function of temperature and particle size and is independent of the structure. Besides Raman modes LO, 2LO and 3LO of CdS at approximately 302, 603, and 903 cm-1 respectively, two extra Raman modes at approximately 390 and 690 cm-1 are studied for the first time. The green and orange emissions observed in photoluminescence are correlated with phase transition.
Nanotwinning and structural phase transition in CdS quantum dots.
Kumar, Pragati; Saxena, Nupur; Chandra, Ramesh; Gupta, Vinay; Agarwal, Avinash; Kanjilal, Dinakar
2012-10-23
Nanotwin structures are observed in high-resolution transmission electron microscopy studies of cubic phase CdS quantum dots in powder form by chemical co-precipitation method. The deposition of thin films of nanocrystalline CdS is carried out on silicon, glass, and TEM grids keeping the substrates at room temperature (RT) and 200°C by pulsed laser ablation. These films are then subjected to thermal annealing at different temperatures. Glancing angle X-ray diffraction results confirm structural phase transitions after thermal annealing of films deposited at RT and 200°C. The variation of average particle size and ratio of intensities in Raman peaks I2LO/I1LO with annealing temperature are studied. It is found that electron-phonon interaction is a function of temperature and particle size and is independent of the structure. Besides Raman modes LO, 2LO and 3LO of CdS at approximately 302, 603, and 903 cm-1 respectively, two extra Raman modes at approximately 390 and 690 cm-1 are studied for the first time. The green and orange emissions observed in photoluminescence are correlated with phase transition.
Wang, Xiao; Esquerre, Carlos; Downey, Gerard; Henihan, Lisa; O'Callaghan, Donal; O'Donnell, Colm
2018-06-01
In this study, visible and near-infrared (Vis-NIR), mid-infrared (MIR) and Raman process analytical technologies were investigated for assessment of infant formula quality and compositional parameters namely preheat temperature, storage temperature, storage time, fluorescence of advanced Maillard products and soluble tryptophan (FAST) index, soluble protein, fat and surface free fat (SFF) content. PLS-DA models developed using spectral data with appropriate data pre-treatment and significant variables selected using Martens' uncertainty test had good accuracy for the discrimination of preheat temperature (92.3-100%) and storage temperature (91.7-100%). The best PLS regression models developed yielded values for the ratio of prediction error to deviation (RPD) of 3.6-6.1, 2.1-2.7, 1.7-2.9, 1.6-2.6 and 2.5-3.0 for storage time, FAST index, soluble protein, fat and SFF content prediction respectively. Vis-NIR, MIR and Raman were demonstrated to be potential PAT tools for process control and quality assurance applications in infant formula and dairy ingredient manufacture. Copyright © 2018 Elsevier B.V. All rights reserved.
A scanning Raman lidar for observing the spatio-temporal distribution of water vapor
NASA Astrophysics Data System (ADS)
Yabuki, Masanori; Matsuda, Makoto; Nakamura, Takuji; Hayashi, Taiichi; Tsuda, Toshitaka
2016-12-01
We have constructed a scanning Raman lidar to observe the cross-sectional distribution of the water vapor mixing ratio and aerosols near the Earth's surface, which are difficult to observe when a conventional Raman lidar system is used. The Raman lidar is designed for a nighttime operating system by employing a ultra-violet (UV) laser source and can measure the water vapor mixing ratio at an altitude up to 7 km using vertically pointing observations. The scanning mirror system consists of reflective flat mirrors and a rotational stage. By using a program-controlled rotational stage, a vertical scan can be operated with a speed of 1.5°/s. The beam was pointed at 33 angles over range of 0-48° for the elevation angle with a constant step width of 1.5°. The range-height cross sections of the water vapor and aerosol within a 400 m range can be obtained for 25 min. The lidar signals at each direction were individually smoothed with the moving average to spread proportionally with the distance from the laser-emitting point. The averaged range at a distance of 200 m (400 m) from the lidar was 30.0 m (67.5 m) along the lidar signal in a specific direction. The experimental observations using the scanning lidar were conducted at night in the Shigaraki MU radar observatory located on a plateau with undulating topography and surrounded by forests. The root mean square error (RMSE) between the temporal variations of the water vapor mixing ratio by the scanning Raman lidar and by an in-situ weather sensor equipped with a tethered balloon was 0.17 g/kg at an altitude of 100 m. In cross-sectional measurements taken at altitudes and horizontal distances up to 400 m from the observatory, we found that the water vapor mixing ratio above and within the surface layer varied vertically and horizontally. The spatio-temporal variability of water vapor near the surface seemed to be sensitive to topographic variations as well as the wind field and the temperature gradient over the site. From the wide-range cross-sectional observations of the water vapor mixing ratio and the backscatter ratio of aerosols within a 2000 m range, we can detect small-scale water vapor structures on a horizontal scale of several hundred meters in the atmospheric boundary layer.
Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCary, Kelly Marie
Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C
NASA Astrophysics Data System (ADS)
Suchanicz, J.; Bovtun, V.; Dutkiewicz, E. M.; Konieczny, K.; Sitko, D.; Kluczewska, K.; Wajda, A.; Kalvane, A.; Sternberg, A.
2016-08-01
Lead-free (Na0.5Bi0.5)1-xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics with relative densities above 97% were prepared by solid-state synthesis process. Their dielectric, thermal and Raman properties were studied. X-ray diffraction analysis shows perovskite structure with rhombohedral symmetry at room temperature. Sr doping of Na0.5Bi0.5TiO3 (NBT) results in an increase of the dielectric permittivity, diffusing of the permittivity maximum and its shift toward lower temperatures. The temperature of the rhombohedral-tetragonal phase transition indicated by the differential scanning calorimetry (DSC) peak and relaxational dielectric anomaly near the depolarization temperature are also shifted toward lower temperatures. The observed increase and broadening of the permittivity maximum, enhancement of the dielectric relaxation near the depolarization temperature, broadening of the DSC anomaly related to the rhombohedral-tetragonal phase transition and broadening of the Raman bands with increasing Sr content are attributed to the increase of the degree of cationic disorder and evident enhancement of the relaxor-like features in NBT-xST. This enhancement could play a positive role in the improvement of the piezoelectric performance of NBT-based ceramics.
Gerasimova, Yu V; Oreshonkov, A S; Laptash, N M; Vtyurin, A N; Krylov, A S; Shestakov, N P; Ershov, A A; Kocharova, A G
2017-04-05
Two ammonium oxofluorovanadates, (NH 4 ) 3 VO 2 F 4 and (NH 4 ) 3 VOF 5 , have been investigated by temperature-dependent infrared and Raman spectroscopy methods to determine the nature of phase transitions (PT) in these compounds. Dynamics of quasioctahedral groups was simulated within the framework of semi-empirical approach, which justified the cis-conformation of VO 2 F 4 3- (C 2v ) and the C 4v geometry of VOF 5 3- . The observed infrared and Raman spectra of both compounds at room temperature (RT) revealed the presence at least of two crystallographically independent octahedral groups. The first order PT at elevated temperatures is connected with a complete dynamic disordering of these groups with only single octahedral state. At lower temperatures, the octahedra are ordered and several octahedral states appear. This PT is the most pronounced in the case of (NH 4 ) 3 VOF 5 , when at least seven independent VOF 5 3- octahedra are present in the structure below 50K, in accordance with the Raman spectra. Ammonium groups do not take part in PTs at higher and room temperatures but their reorientational motion freezes at lower temperatures. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Poultney, S. K.; Brumfield, M. L.; Siviter, J. S.
1975-01-01
Typical pollutant gas concentrations at the stack exits of stationary sources can be estimated to be about 500 ppm under the present emission standards. Raman lidar has a number of advantages which makes it a valuable tool for remote measurements of these stack emissions. Tests of the Langley Research Center Raman lidar at a calibration tank indicate that night measurements of SO2 concentrations and stack opacity are possible. Accuracies of 10 percent are shown to be achievable from a distance of 300 m within 30 min integration times for 500 ppm SO2 at the stack exits. All possible interferences were examined quantitatively (except for the fluorescence of aerosols in actual stack emissions) and found to have negligible effect on the measurements. An early test at an instrumented stack is strongly recommended.
Gap-mode enhancement on MoS2 probed by functionalized tip-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Alajlan, Abdulrahman M.; Voronine, Dmitri V.; Sinyukov, Alexander M.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.
2016-09-01
Surface enhancement of molecular spectroscopic signals has been widely used for sensing and nanoscale imaging. Because of the weak electromagnetic enhancement of Raman signals on semiconductors, it is motivating but challenging to study the electromagnetic effect separately from the chemical effects. We report tip-enhanced Raman scattering measurements on Au and bulk MoS2 substrates using a metallic tip functionalized with copper phthalocyanine molecules and demonstrate similar gap-mode enhancement on both substrates. We compare the experimental results with theoretical calculations to confirm the gap-mode enhancement on MoS2 using a well-established electrostatic model. The functionalized tip approach allows for suppressing the background and is ideal for separating electromagnetic and chemical enhancement mechanisms on various substrates. Our results may find a wide range of applications in MoS2-based devices, sensors, and metal-free nanoscale bio-imaging.
Raman Scattered He II 4332 and Photoionization Model in the Symbiotic Star V1016 Cygni
NASA Astrophysics Data System (ADS)
Lee, H.-W.; Heo, J.-E.; Lee, B.-C.
2014-08-01
Symbiotic stars are wide binary systems of a white dwarf and a mass losing giant. They exhibit unique Raman scattered features as a result of inelastic scattering of far UV line photons by atomic hydrogen. Co-existence of a far UV He II emission region and a thick H I region in symbiotic stars is necessary for the formation of Raman-scattered features blueward of hydrogen Balmer emission lines. Being a single electron atom, He II has the same atomic structure as the hydrogen atom and hence emits far UV emission lines that are slightly blueward of hydrogen Lyman lines. These far UV He II emission lines can be Raman scattered to appear blueward of hydrogen Balmer lines. In particular, the symbiotic star V1016 Cyg is found to exhibit Raman scattered He II 4332 feature in the BOES high resolution spectrum. Our profile fitting of Raman scattered He II 4332 is consistent with the mass loss geometry proposed by Jung & Lee (2004). We use the photoionization code ‘ CLOUDY' to estimate the far UV He II emission lines and make comparisons with the observed Raman scattered He II 4332 blueward of Hγ in the high resolution echelle V1016 Cyg. The emission nebula is assumed to be of uniform density of 108 cm-3 that is illuminated by a black body characterized by its temperature and total luminosity. With our comparisons we conclude that the Raman scattered He II features are consistent with the existence of a photoionized nebula by a hot black body source with temperature 7-8× 104 K with a luminosity 1038erg s-1.
Raman Lidar Measurements of Water Vapor and Cirrus Clouds During The Passage of Hurricane Bonnie
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D OC.; Eloranta, E. W.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.;
2000-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from less than 0.01 to 1.5. The influence of multiple scattering on these optical depth measurements was studied. A correction technique is presented which minimizes the influences of multiple scattering and derives information about cirrus cloud optical and physical properties. The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.005 or greater. Using the ISCCP detection threshold for cirrus clouds on the GOES data presented here, a high bias of up to 40% in the GOES precipitable water retrieval was found.
Data center thermal management
Hamann, Hendrik F.; Li, Hongfei
2016-02-09
Historical high-spatial-resolution temperature data and dynamic temperature sensor measurement data may be used to predict temperature. A first formulation may be derived based on the historical high-spatial-resolution temperature data for determining a temperature at any point in 3-dimensional space. The dynamic temperature sensor measurement data may be calibrated based on the historical high-spatial-resolution temperature data at a corresponding historical time. Sensor temperature data at a plurality of sensor locations may be predicted for a future time based on the calibrated dynamic temperature sensor measurement data. A three-dimensional temperature spatial distribution associated with the future time may be generated based on the forecasted sensor temperature data and the first formulation. The three-dimensional temperature spatial distribution associated with the future time may be projected to a two-dimensional temperature distribution, and temperature in the future time for a selected space location may be forecasted dynamically based on said two-dimensional temperature distribution.
Raman study of high temperature insulator-insulator transition in Ba2Co9O14
NASA Astrophysics Data System (ADS)
Zaghrioui, M.; Delorme, F.; Chen, C.; Camara, N. R.; Giovannelli, F.
2018-05-01
The insulator-insulator transition, at Tt = 570 K, in layered cobalt oxide Ba2Co9O14 was investigated using Raman scattering technique. High temperature (300-800 K) measurements have evidenced no structural transition occurring at Tt. The obtained results are rather consistent with low to high spin-state transition of Co3+ ions in the Co3O12 octahedral trimer. More precisely, only one cobalt ion located in the central octahedron of the trimer undergoes this transition.
NASA Technical Reports Server (NTRS)
Loo, B. H.; Burns, D. H.; Lee, Y. G. L.; Emerson, M. T.
1991-01-01
Fourier transform infrared (FTIR) and Raman spectroscopic techniques were used to study the solution concentration gradient in succino nitrile-rich and water-rich homogeneous solutions. The spectroscopic data shows significant concentration dependency. Although FTIR-attenuated total reflectance could not yield surface spectra since the evanescent infrared wave penetrated deep into the bulk solution, it showed that water-rich clusters were decreased at higher temperatures. This result is consistent with the calorimetric results reported earlier.